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Abstract

The definition of wind effects on buildings with permeable envelopes may represent a challenging
task. Owing to a complex aerodynamic interaction, the relatively small cavity created between the
building and the external screen may play a crucial role on the fluid-dynamic characterization of
such buildings, thus on the envelope performances in terms of wind resistance and natural
ventilation.

The present work deals with an exploratory two-dimensional study on systems composed by an
open-gap airtight screen and a rectangular section. The aerodynamic interference caused by the
presence of the screen has been investigated, trying to understand the role of each potential
influencing factor. The effects produced by the concurrent presence of confined (in the cavity
behind the screen) and unconfined (around the whole system) flows have been analyzed, in terms
of wind induced forces and pressures. Moreover, the possibility of using simplified models to
evaluate the internal pressures having the external ones on a section where the cavity has not been
reproduced, namely the possible external and internal pressure decoupling, has been considered.
The studied geometries were characterized by a square or a rectangular 2:3 section, with a face
entirely shielded by a relatively thin screen, spaced less than 1/10 of the cylinders cross-flow
dimension. Despite the many contributions on bluff body aerodynamics concerning dual bluff
bodies, and similar researches mainly oriented towards a drag reduction, to the author’s knowledge,
studies on configurations such as those considered in the present study have not been performed yet
(in particular, considering screens with so small gap widths).

Experimental and Computational Fluid-Dynamic (CFD) simulations have been carried out with
a complementary role. Wind tunnel tests have been conducted by varying the main parameters,
namely the gap width, the screen typology, the wind direction, the shielded rectangular cylinder
and the approaching flow characteristics. On the other hand, two-dimensional Unsteady Reynolds-
Averaged Navier-Stokes (URANS) simulations have been performed on a selected case study to
integrate the experimental results through flow visualizations and velocity measurements.

For a wind direction normal to the shielded face, the global aerodynamic parameters of the

system are slightly affected by the presence of the open-gap screen. By contrast, the pressures on
the lateral sides and on the rear face exhibit a different trend when the screen is present. In
particular, CFD simulations showed that the screen causes the mean flow reattachment on the
lateral body sides of the square section. However, the screen effects depend on the gap width, the
shielded cross-section and the approaching flow turbulence.
Mean pressure coefficients in the cavity behind the screen are always negative, with values between
-1.9 and -2.5, inducing a drag on the screen comparable to that of the considered sections without
it. Significant effects also occur when the wind direction is varied, since the presence of the screen
reduces the lift coefficient slope and increases the angle of flow reattachment.

The through cavity behind the airtight screen plays a crucial role: for winds normal to the face
an oscillating flow occurs, driven by the vortex shedding and influencing the aerodynamics of the
two-dimensional system. By contrast, if the flow in the cavity is prevented by an airtight
compartmentation, the aerodynamic interaction does not occur, and the screen acts as a mere body
elongation in the streamwise direction.

The present study can be considered as a precursor study for more complex three-dimensional
geometries, such as those involving permeable building envelopes. Since further studies are
necessary to properly define the wind effects on more realistic cases, a simple classification useful to
plan future studies is also proposed in the present thesis.



Zusammenfassung

Die Definition von Windeinwirkungen auf Gebaude mit Vorgehingten hinter liifteten Fassaden
kann eine herausfordernde Aufgabe darstellen. Aufgrund einer komplexen aerodynamischen
Wechselwirkung, kénnte der relativ kleine Hohlraum zwischen dem Gebédude und des externen
Schirms eine entscheidende Rolle bei der fluiddynamischen Charakterisierung solcher Gebéude und
somit bei der Umschlagleistungen in Bezug auf Windwiderstand und natiirliche Beliiftung spielen.

Die vorliegende Arbeit befasst sich mit einer explorativen zweidimensionalen Untersuchung von
Systemen, die aus einem luftdichten Schirm mit offener Luftspalte und einem rechteckigen
Querschnitt bestehen. Die aerodynamische Interferenz, die durch das Vorhandensein des Schirms
verursacht wird, wurde untersucht, um die Rolle jedes moglichen Einflussfaktors zu verstehen. Die
untersuchten Formen waren durch einen quadratischen oder rechteckigen Querschnitt von 2: 3
gekennzeichnet, wobei eine Fliche vollstindig durch ein relativ diinnen Schirm abgeschirmt war,
der weniger als 1/10 der Zylinderquerstromungsdimension aufwies. Experimentelle und
Computergestiitzte Fluid-Dynamische (CFD) Simulationen wurden mit einer komplementdren
Rolle durchgefiihrt. Windkanalversuche wurden durchgefithrt, indem die Hauptparameter,
namlich die Spaltbreite, die Bildschirmtypologie, die Windrichtung, der abgeschirmte
Rechteckzylinder und die sich nahernde Flief}eigenschaften untersucht wurden.

Bei einer Windrichtung senkrecht zur abgeschirmten Fliche werden die globalen
aerodynamischen Parameter des Systems durch das Vorhandensein des Bildschirms mit offenem
Spalt geringfiigig beeinflusst. Im Gegensatz dazu, zeigen die Driicke auf den Seiten und auf der
Riickseite einen anderen Trend, wenn der Schirm vorhanden ist.

Insbesondere zeigten CFD-Simulationen eine oszillierende Stromung, die durch die
Wirbelablosung und eine mittlere Stromungswiederbefestigung an den Auflenseiten des
quadratischem Querschnitt angetrieben wurde. Die Schirmeffekte hidngen jedoch von der
Spaltbreite, dem abgeschirmten Querschnitt und der sich anndhernden Stromungsturbulenz ab.
Signifikante Effekte treten auch auf, wenn die Windrichtung variiert wird, da das Vorhandensein

des Schirms die Steigung des Auftriebskoeffizienten verringert.
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Chapter 1 - Introduction

The present study aims to investigate the aerodynamics of a two-dimensional system composed
by an airtight screen attached to a rectangular cross-section. As sketched in Fig. 1.1, the study
attempts to comprehend the wind effects caused by the presence of a screen which creates a
through cavity, as a preparatory work for more realistic three-dimensional systems, such as

buildings with permeable envelopes.
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Fig. 1.1 - A picture to summarize the thesis approach. Courtesy of C. Torsoli (2017).

1.1 Motivations

Recently, many engineering problems have stimulated a renewed interest in bluff body
aerodynamics, a field in which experimental, numerical and theoretical studies coexist
describing the reciprocal effects between a body and the incoming flow experiencing boundary
layer separation.

When the wind approaches a building with a permeable envelope, part of the flow moves in
the cavity between the external screen and the building face. If the cavity flow and the
external flow mutually interacts, the evaluation of the wind effects on this complex system may
represent a quite complicated task.

From an aerodynamic point of view, a permeable envelope can be considered as an additional
layer somehow held in front of the building face, at a relatively small distance. The
interference between the screen and the body is such that they behave as a unique object,
namely, a new fluid-interacting system. This is an interesting fluid-dynamic case study, for
which additional studies are nowadays required in order to have a deeper insight.

Such a system may exhibit an aerodynamic behavior quite different from the one associated to
the original bluff body without the screen. Thus, the role of each parameter affecting the
system aerodynamics needs to be clarified. In particular, it is necessary to understand when the
presence of the screen can be neglected and if the wind induced pressures in the cavity can be
evaluated through simplified models.

The introduction of geometrical parameters of a lower order of magnitude with respect to the
cross-flow body dimension, as the gap width, complicates the problem, and the combination of
all the possible parameters leads to a wide number of possible cases. Hence, a detailed study on
a simplified two-dimensional system is needed.
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On the other hand, previous studies concerning very small changes on bluff body geometries
(e.g. Lajos, 1986), demonstrated that the aerodynamics of these bodies can be remarkably
affected by apparently negligible modifications, like the sharpness of the corners or the surface
roughness (Fig. 1.2). Such studies support the interest in the investigation of such small

geometrical parameters of the system.

The literature concerning screened bluff bodies is mainly focused on the drag reduction of the
overall system, so that the considered screen distances are comparable with the body
characteristic dimension (e.g. Koenig and Roshko, 1985, Cooper, 1988). Conversely, the current
study deals with gap widths between 1/10 and 1/40 of the cross-wind section dimension. To the
author’s knowledge, rectangular cylinders with a flat plate (the screen) positioned in order to

create such a small through cavity constitute geometries which are yet to be investigated.

Fig. 1.2 - Drag reduction using a “step” an order of magnitude smaller than the characteristic body dimension on the
front face: on the left, results of a two-dimensional study (Lajos, 1986); on the right the Taipei 101 tower in Taiwan
represents an impressive practical application of corners modification to reduce wind loads (Irwin, 2008).

1.2 Objectives

The fluid-dynamic characterization of the two-dimensional system composed by an airtight
screen and a rectangular cylinder, as schematized in Fig. 1.3, in which concurrent unconfined
and a confined flows are involved, represents a complex task that requires the achievement of
intermediate steps, as set out below.

One of the first goals is to understand if and how the presence of the screen modifies the
aerodynamics of the bluff body, once the system is composed. If the screen does not affect the
aerodynamic behavior, or its influence is negligible, the possibility to decouple the external and
internal pressures in the cavity (Ze to use the external pressures as boundary conditions to

evaluate the internal ones) is considered.
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Fig. 1.3 - Sketch of the two-dimensional section studied: cross-flow characteristic dimension (D), gap depth (L),
body dimension parallel to the flow (5) and wind direction (a).
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Under this assumption, the system is studied in different configurations, with gap distances
down to 1/40 of the body cross-flow characteristic dimension. The effects of a different screen
typology, with an airtight interruption of the through cavity to prevent the flow passage, or
with an opening on the external layer, are investigated. Parameters, such as the approaching
flow turbulence and the wind direction, are varied in order to understand if the screen effects
occur only under specific conditions. A peculiar fluid-dynamic behavior of the system is
expected by varying potential influencing factors, and both the external and the internal flows

are investigated through the measure of local and global aerodynamic coefficients.

In the present study the cavity behind the screen is connected to the outer flow through the
lateral openings. The pressure at the extremities of the cavity tends to drive the cavity flow,
and an internal flow motion may occur. If an oscillating flow occurs, the local Reynolds
number and an additional non-dimensional parameter related to the oscillating frequency,
namely the Womersley number, must be considered to define the flow regime. These two non-
dimensional numbers allow the definition of the flow properties in terms of velocity profile
and phase difference with respect to the driving pressure gradient. Investigations of the
Reynolds and Womersley number effects have been studied to understand their influence on
the global and local aerodynamic quantities, and the attempt to extend the range of
investigated Womersley numbers through Computational Fluid Dynamics (CFD) simulations is

discussed.

1.3 Methodologies

Experimental and numerical studies on two-dimensional body cross-sections are usually taken
as a reference, and aimed to the comprehension of more complex (even three-dimensional)
flow phenomena. As an example, the studies on circular cylinders (e.g. Bearman, 1969) are used
for approaching the definition of the wind load on structures like chimneys (or similar), as well
as those related to rectangular cylinders (e.g. Vickery, 1966), are the basis for tall buildings and
bridges.

In order to achieve the targets established, experimental tests in the wind tunnel on section
models and CFD simulations on two-dimensional sections were planned and executed. These
two approaches have to be meant as complementary.

Aerodynamic forces were measured to evaluate the global effects possibly induced by the
presence of the screen. Pressure distributions were measured on the screened body and
evaluated on the screen (by means of CFD) to describe the system behavior in details through
pressure signal statistics. In particular, the pressures around the mere screen were evaluated
only using CFD, because it was not possible to equip this component of the physical model
with pressure taps. Qualitative flow visualization were performed through CFD post-
processing.

The study was carried out by varying the main parameters, such as Reynolds number (7.86x10*
- 2.26x10°), gap depth (D/40 < L < D/10) and the ratio of the body sides (B/D =1 and = 2/3), as
indicated in Fig. 1.3, according to wind tunnel or computational limitations. Moreover, wind
direction (0° < a < 180°) and turbulence properties of the approaching flow (smooth and
turbulent . = 13%) were also varied to understand their influence. Finally, in order to improve
the comprehension of the through cavity role, two other types of screen configurations were
experimentally tested: one with an additional vertical airtight compartmentation and one with

an external opening on the screen.
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It is to be noted that, only in very few specific conditions the flow around a tall building
section can be considered in a very first approach as two-dimensional (Fig. 1.4), this is the
reason why this study does not intend to give results directly applicable on a realistic three-

dimensional case.
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Fig. 1.4 - Horizontal section of a tall building at the stagnation point (Holmes, 2007).

1.4 Implications

The current two-dimensional aerodynamic study may be also considered as exploratory though
preparatory for more complex three-dimensional geometries (Fig. 1.5). In particular, a
rectangular prism with an airtight screen, and an internal laterally-opened cavity partitioned
with horizontal airtight layers, is considered as the base case for the 2-D extrapolation
discussed in the present work (Fig. 1.5 - ¢). This, in turn, may represent a more realistic system
composed by a building with a permeable envelope, thus implying significant contributions to
this technological field deriving from the main outcomes of the present study. This facade
typology, to the author’s knowledge, has received relatively little attention so far, but the
system aerodynamics, and in particular the oscillating flow expected behind the screen, may
open new possibilities in terms of natural ventilation and energy harvesting devices
installation. Moreover, such a building envelope may exhibit a good fire performance, thanks
to the horizontal airtight compartmentations. In Fig. 1.6 one of the few practical applications
encountered is reported. The facade exhibited high performance in the building energy
context. Indeed, the double-skin, side-opened facades of the Unipol Tower in Bologna (Italy)
contributed to achieve the Gold level of LEED certification (Leadership in Energy and
Environmental Design, Green Building Council).

Finally, in order to simplify the extension of the obtained results, a review of the research
concerning wind effects on permeable envelopes together with a classification of possible case
studies, useful to plan future research activities, are carried out. This part is reported in an

appendix, to improve the thesis readability.

Fig. 1.5 - Sketches of the three-dimensional system flow: (a) without screen; (b) and (c) are respectively the case
with an airtight screen without (b) and with (c) horizontal compartmentations.
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Fig. 1.6 - A case study with characteristics of the selected reference facade typology: the Unipol Tower in Bologna
(Italy). Pictures of the tower under construction (left, center) and completed (right).

1.5 Contributions and outline of the research work
In the following, a brief summary of the thesis contents is described. The flow chart reported in
Fig. 1.7 summarizes the main points of the research work pointing out the interaction between

the many different aspects analyzed in the present study.

In Chapter 2 a detailed review on fundamentals of bluff body aerodynamics without and with a
screen is conducted. The main results obtained on regular two-dimensional rectangular
cylinders with low side ratio are collected in order to point out the main flow features. The
analysis of such basic works is extended to rectangular cylinders with modifications. It is
shown how small changes to the geometry may remarkably affect the system aerodynamics.

The chapter also analyzes the few researches carried out on geometries similar to the object of
the current work. It is also useful to contextualize the characteristics of the internal oscillating

flows, a quite unusual topic in wind engineering.

In Chapter 3 the experimental campaign is described. This represents the most important part
of the whole work. The experimental set-up is accurately described together with its

limitations, and the obtained results are extensively analyzed.

In Chapter 4 CFD simulations are described. A case study, previously investigated by means of
wind tunnel test, was selected to show how the use of numerical simulations could help to

overcome some of the limits encountered during the experimental campaign.

In Chapter 5 the main conclusions are summarized, and possible future developments and

outlooks of the thesis work are identified.

Towards future studies, a wind-effects based literature review on permeable building envelopes
was carried out, as reported in Appendix 1. From the analysis of the state of art, the lack of a
classification of possible fagade configurations emerged. It was argued that this lack is related to
the many geometric scales and parameters involved in the problem. The consequence is
expressed, for example, by the wind loading codes inadequacy. Hence, a very first classification
for permeable double-skin building envelopes merely based on the system aerodynamics is
proposed.
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Chapter 2 - Fundamentals of bluff body aerodynamics

In the present chapter fundamentals of fluid dynamics involving a bluff body in a moving air
fluid are proposed. The few points recalled (and discussed) are crucial for the correct physical

interpretation of the results obtained by both the experimental and the numerical studies.

2.1 Basic bluff body flow features

The aerodynamics is defined as the study of the motion of air interacting with a solid body.
Indeed, when a solid body is immersed in a flow, surface forces caused by pressure and viscous
stresses act on the body, and mutually on the fluid. By integrating the surface forces around the
whole body surface, the resulting fluid-dynamic force and moment are obtained.

Usually, in a two-dimensional flow domain, the resultant force is divided into two components
based on the direction of the free-stream velocity vector (U, ), namely drag and lift force
(moment is intentionally neglected in the present work). The force component aligned with
U, is called drag (F,) which, in turn, is given by two contributions: the pressure drag and the
friction drag. The cross-flow force component is called i/ ( F ). Based on a body characteristic
dimension, as the cross-flow width (D), the approaching fluid density ( p ) and velocity (U, ),
the two force components are expressed through the relative non-dimensional drag and lift
coefficients per unit length (L, ), respectively indicated as C, and C, :
C, - F C, - F

Y2pU,°DL, V2pU,7DL,

From an aerodynamic point-of-view, the bodies immersed in the moving fluid can be

(eq. 2.1)

distinguished into two groups, namely, the aerodynamic (or streamlined) bodies and the b/uff
bodies. The following distinction is carried out referring to an incompressible two-dimensional
flow at relatively high Reynolds numbers.

Aerodynamic bodies are characterized by small drag coefficients, mainly caused by friction
drag. The flow around this typology of body develops a thin boundary layer that remains
attached over almost the whole surface. This feature allows to an approximate estimation of the
wind-induced forces, and explains the small wake behind such body typology compared to the
characteristic cross-flow dimension. A standard aerodynamic body, namely, a two-dimensional
symmetrical airfoil aligned with the free-stream, characterized by a velocity U_, is reported on

the left side of Fig. 2.1. The pressure on the body surface at a certain location ( p(s) ) coincides
with that in the potential flow just outside the boundary layer which, in turn, is directly
related to the velocity in the same region (U, (s)). So that, the pressure distribution can be
described through the pressure coefficient from the application of Bernoulli’s theorem:

PS)- P, _,_Un(s)
V2,07 u?

Three representative points of the distribution can be considered. At the stagnation point,

C,(s)=

(eq. 2.2)

where velocity U, is null, the maximum pressure coefficient (C, =1) occurs. Conversely, the

minimum pressure coefficient lies in correspondence of the widest cross-section point, where
U, >U_ . Finally, at the end of the aerodynamic body, U, =U_ and the pressure coefficient

results almost null.
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The bluff bodies are characterized by drag coefficients one order of magnitude higher than the
streamlined ones. In this case, the pressure drag is high enough to neglect the friction
contribution. Indeed, a bluff body exhibits a more or less premature separation of the boundary
layer from the surface, generating a wake in size comparable to the characteristic cross-flow
body dimension (Buresti, 2012).

The pressure drag of a bluff body may be further divided into two contributions. The first is
due to the forebody drag, i.e. pressure over the front part of the body with attached boundary
layer. The second contribution, that is the afterbody (or rearbody) drag, results from the
pressures on the surface portion lying inside the separate wake. Depending on the bluff body
shape, the forebody drag can range from close to zero up to values comparable to the afterbody

drag.

In bluff body aerodynamics the sharp-edged and round-edged bodies constitute two well
separated groups. The circular cylinder represents the limit case of a round-edged body. In
round-edged bodies the flow separation occurs at different locations depending also on the
Reynolds number and surface roughness, while in sharp-edged bodies the separation is fixed at
the edges. In this second group, parameters such as the body geometry and the free stream
turbulence influence the wake characteristics without moving the location of the separation
point.

Separated shear layers tends to roll up into vortices, causing, for example, the vortex shedding:
for a steady, smooth, approaching flow, at Reynolds numbers sufficiently high (with
Re=U_D/v), a symmetrical two-dimensional bluff body exhibits a regular alternate shedding
of vortices from the two sides of the body. The double row of vortices of opposite sign shed is
also known as the Kdrman vortex street, so that the steady approaching flow becomes unsteady
around the body. In particular, the flow can be considered as a periodic flow, with period equal
to T =1/f,, where f, is the frequency of vortex shedding, also named the Strouhal frequency.
The critical Reynolds number above which the vortex shedding occurs depends on the body
shape, characterized by a certain Strouhal value.

The vortex shedding causes even remarkable transversal forces also when the flow is aligned
with the body axis-of-symmetry. During the alternate shedding, the lift force reaches a
minimum and a maximum instantaneous peak value that may be of the same order of
magnitude of the drag force. To consider these transversal force oscillations, the lift coefficient
standard deviation parameter (C_') is usually employed. However, the averaged lift coefficient
at the end of a complete vortex shedding cycle results null.

The geometrical considerations on the bluff body corners obviously affects the main
aerodynamic parameters, such as the C,, the C_ and the Strouhal frequency (St). Generally,
for Reynolds numbers typical of the wind engineering, and according to the briefly introduced
dependency of the separation point with Reynolds number, a round-edged body may exhibit a
Re-dependence Strouhal frequency. In contrast, for a sharp-edged body (with the flow
perpendicular to a face) the frequency of vortex shedding results almost constant regardless of
Reynolds number.

It is worth noting that this is valid only for Re numbers of practical use in wind engineering
(usually Re > 10*). For certain rectangular bluff bodies in specific Reynolds number ranges, the
Strouhal numbers could depend on Re (e.g Okajima, 1982).
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Fig. 2.1 - Two representative flow visualizations reported by Buresti, 2012. On the left, an aerodynamic
(streamlined) body: a NACA 64A015 profile at Reynolds number (Re) equal to 7000. On the right, a bluff body: the
circular cylinder at Re= 140 (Van Dyke, 1982).

2.2 Main flow characteristics around two-dimensional rectangular cylinders

The flow around a bluff body is characterized by two basic flow features: boundary layer
separation (and reattachment, depending on the body shape), and formation of the Kdrman
vortex street (Nakamura, 1993). In the case of two-dimensional rectangular cylinders, the
condition of wind perpendicular to the front is the starting configuration to describe such

features.

Two-dimensional rectangular prisms could exhibit a drag, expressed through the non-
dimensional drag coefficient, that varies non monotonically by increasing the side ratio. For a
smooth approaching flow, Fig. 2.2-left shows the drag coefficients obtained in literature versus
the side ratio in a range 0 < B/D < 2.8 (Laneville and Yong, 1983). Fig. 2.2-right shows another
peculiarity of two-dimensional rectangular cylinder by means of pressure distributions for
different side ratio rectangles, showing that the variation of C, for different side ratios
depends mainly on the rearbody pressure drag (Da Matha Sant’Anna et a/, 1988). Indeed, as
reported in the figure, pressure coefficient distributions on the front of various rectangular
cylinders exhibit almost equal trends, while pressure distributions at the base develop
differently. In particular, the Authors distinguished the cases A,B,C,D from the cases E,F,G
based on the suction measured behind the separation point (high in the former, low in the
latter). It is worth noting that the terms “base pressure” indicate the pressure at the central

”»

point of the body rear face (the base). The related coefficient is usually named “C,,”, though

sometimes base pressure indicates the average of pressures measured over different points on
the leeward face (eg. Lee, 1975).

The relation between the drag coefficient and the side ratio can be ascribed, in first
approximation, to the curvature of the streamlines close to the trailing edge (Fig. 2.3): starting
from the C, measured for a near-zero side ratio (flat plate perpendicular to the flow), the drag
coefficient increases by increasing the streamwise body dimension (Fig. 2.2-left). At the same
time, the size of the separated wave cavity reduces (filled by the body itself), while the
streamlines curvature increases reaching a maximum at B/D = 0.6 (Nakaguchi et al, 1968,
Bearman and Trueman, 1972). Up to this side ratio, the mean flow does not feel the influence
of the leeward corners, and the pressures at the base decrease down to the values to which
corresponds the maximum drag coefficient (B/D = 0.6). This trend is reversed for higher values
of the side ratio, because the vortices are forced by the trailing edge corners to form further
downstream. According to Lyn and Rodi (1994), the near-field wake flow behind a bluff body
is temporally and spatially extremely complex, with the interaction between the two separated
shear layers and regions of irrotational flow entrained into the wake.

9
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Fig. 2.2 - Drag force of rectangular cylinder for different side ratios with perpendicular flow: (left) some drag
coefficients from literature (Laneville and Yong, 1983); (right) front and rear pressure distributions (Da Matha
Sant’Anna er al, 1988).

Fig. 2.4 - Mechanism of vortex formation behind a bluff body. On the left, the scheme proposed by Gerrard (1966)
for a generic bluff body with low side ratio. Arrows showing a reverse flow (r) and entrainment in the wake (e_I and
e_ll). On the right, the scheme proposed by Laneville and Yong in 1983. Part of the initial vorticity (a) is absorbed by
the bubble (b), while the unabsorbed continues in the shear layer (c). The vortex is created by the shear layer (d),
and it is supplied with fluid from the wake (e) and entrainment from the opposite shear layer (f).
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Fig. 2.5 - Parameters to describe the main flow features of two-dimensional rectangular cylinders in smooth flow:
non-dimensional transversal relative distance of vortex centers (d/D) and non-dimensional streamwise distance from
the base of vortex formation (a/D) (Laneville and Yong, 1983).

The main mechanism of vortex formation behind a generic bluff body was discussed by
Gerrard in 1966 (Fig. 2.4-left). Later, Laneville and Yong (1983) proposed an interpretation of
the same mechanism for the rectangular section (Fig. 2.4-right). According to the Authors, the
main flow features can be clearly described focusing on the loci of the wake vortices, the wet
length on the body side and the base pressure distribution, well described and quantified in the
original papers. In particular, the normalized distance of vortex formation in the streamwise
dimension (a/D), and width in the transversal dimension (d/D) are shown in Fig. 2.5 for
different side ratios. The wet length represents the portion of the body side over which the
separation bubble is attached.

Generally, at the sharp edge the boundary layer separates and part of its vorticity is absorbed by
a growing separation bubble. For Laneville and Yong (1983), the separation bubble can be
considered as a buffer region of variable size during a cycle, filled with fluid and vorticity, then
released at maturity. The remaining part of vorticity continues in the shear layer, and it rolls in
the forming vortices, in a proportion related to the cylinder side ratio. Then the vorticity and
fluid contained in this shear layer interacts with the opposite vortex, or the adjacent one,
depending again on the side ratio. Hence, when the vortex has been shed, the separation
bubble reduces to its minimum size. At the end of the cycle, if the side ratio is low (B5/D < 3),
the vorticity and fluid released by the bubble entrain in the forming wake vortex., otherwise, if
the reattachment occurs on the cylinder side (B/D > 3), the bubble exhausts its content in
patches of vorticity.

Laneville and Yong highlighted some macroscopic (but not trivial) effects of the side ratio on
the wake characteristics: the initial vorticity and the interaction between opposite forming
vortex, are affected by the afterbody length of the body.

With the simple description of a vortex shedding cycle, it is possible to better understand the
drag coefficient trend above described referring to Fig. 2.2-left. Based on the interpretation of
time integrated patterns of flow visualization, they distinguished four possible fluid mechanical
processes. The present work deals with the two central cases described in the original paper.
For a cylinder side ratio in the range 0.5 < B/D < 1 the separation bubble extends from the
separation point, even if the lateral side is not completely wet by the bubble. An important part
of the vorticity contained in the initial shear layer feeds the bubble, which in turn interacts
with a weakened shear layer. The vorticity contained in the bubble tends to produce a
downwash effect which forces the wake vortex to roll up closer to the centerline. In this group
lies one of the tested sections: the rectangular 2:3 section. According to the literature, for a side

11
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ratio close to 0.6, the maximum drag coefficient occurs. Referring to Fig. 2.5, for rectangular
cylinders included in this group, the loci of the vortex formation (a/D) are close to the rear
body face, along the centerline. The vortex centers normalized transversal distance (d/D) is
small compared to the other cases, and the typical U-shaped pressure distribution at the base
occurs (Fig. 2 of the original paper). The streamlines close to the trailing edge exhibit very high
curvature (Fig. 2.3).

In the present work, the case of a screen attached in front of a rectangular cylinder is studied.
Its presence could act as a body elongation or it could create a more complex system. However,
to understand the consequences of an elongation of a rectangular cylinder is fundamental to
correctly interpret the results once the screen is fixed on. In particular, for cylinders with 1 <
B/D < 3, an increase of the side ratio tends to reduce the downwash effects caused by the
separation bubble, so that the wake vortex formation locates away from the centerline (Fig.
2.5). The pressure distribution along the base is almost uniform and the pressures increased.
The flow mechanisms in this side ratio range are quite complex, in fact they split up the
standard vortex shedding regime (with fully separated flow) from the reattachment one. An
intermittent reattachment is supposed to occur, albeit not detectable with the set-up used by
the Authors. However, the absence of a secondary region on the leeward part of the lateral
side, seems to preclude the possibility of a steady reattachment, while it suggests that at the end

of its growth, a direct entrainment of the bubble in the wake vortex occurs.

2.2.1 Turbulence effects

The formation mechanisms around rectangular cylinders are usually presented for smooth flow
and wind perpendicular to the windward face. In this specific configuration, the side ratio
dependence on pressure distributions around the body, and, in turn, resulting drag coefficients,
assumes a physical relevance. However, in order to give a comprehensive description, a further
step consists to consider the free stream turbulence (referred as FST in the following).

The effects of turbulence on two-dimensional rectangular bluff bodies, was observed on their
drag coefficients since early studies (e.g McLaren er al, 1969). At low angle of attack, a C,
reduction was observed increasing the turbulence, while the effect was reversed at large angles.
Intensity and length scales are the main FST characteristics. In this topic, the FST is considered

spatially uniform.

Turbulence intensity (Iu) is usually defined as the ratio of the r.m.s. velocity fluctuations of the
streamwise component to the mean velocity. The turbulence characteristics depend on the
oncoming flow, originating upstream, as it occurs, for instance, in the wind tunnel when a
homogeneous turbulence grid is fixed upstream the tested model.

According to Kolmogorov theory, the length scales of vortices characterizing the turbulent
flow are divided in three ranges responsible for the production, transfer and dissipation of
energy contained. Integral length scales (L, Ly), describes the first range, and they are the most
interesting for the purpose of this work. These scales are evaluated as the areas under the
curves of spatial autocorrelation of the wind velocity components in the longitudinal (x) or
transverse (y) directions, and are assumed to be representative of the average size of the most
energetic turbulent eddies. Moreover, the integral scales could indicate the largest distance of
velocity correlation between two distant points.

12
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Usually, in the bluff body field, it is important to refer to the ratio between L, (or L« that it is
easier to measure maintaining a similar physical meaning) and the characteristic body
dimension (D). If L/D >> 1, the vortices with higher energy content are larger than the body
itself. The FST will appear to the flow around the body as a time-varying flow in terms of
magnitude and direction. In this case, the interaction between the FST and the body generated
turbulence does not occur and the main FST effects can be estimated using the quasi-steady
assumption.

In contrast, if LD << 1, the turbulence interacts with the local flow. According to Bearman
and Morel (1983), the overall effect of FST is often the result of the combination of three basic
mechanisms, namely: (i) accelerated transition to turbulence in shear layers, (ii) enhanced
mixing and entrainment, and (iii) distortion of FST itself by the mean flow. Effects as the
anticipated transition to turbulence, the increased mixing and spreading rate, affect the shear
layers behavior, namely, the body aerodynamics. Moreover, the FST is distorted by the
blocking effects of a solid wall and by the mean flow field around the body in turn (Bearman,
1972). Therefore, the distorted turbulence in proximity of a bluff body may be quite different
in structure from that of the approaching FST.

The importance of the streamlines curvature respect to the afterbody drag has been already
discussed in the reference literature. The shear layer after the separation in correspondence of a
sharp edge quickly become turbulent (Cherry et al, 1984), so that the transition effect of the
FST is not likely to be the dominant one at high Reynolds numbers. By contrast, the more
important effect will be the enhancement of entrainment into the shear layers. This effect
tends to increase the shear layer curvature. The main results on those bluff bodies with shapes
characterized by fully separated flow (B/D < 0.5) is a reduction of the pressure at the base, ie.
an increased drag. For bluff bodies experiencing reattachment in smooth flow (5/D > 3), the
increased entrainment anticipates the location of reattachment, thus reducing it by increasing
the turbulence intensity. Bluff bodies with intermediate side ratio (0.5 < B/D < 3) exhibit a
shear layer interaction with the rear body corners. So that, according to the effect previously
described in smooth flow, the FST reduces the drag coefficient for these last two groups.

Fig. 2.6 shows how the mechanism by which the FST influences the flow past rectangular
cylinders, resulting in a shift of the smooth drag coefficient trend (previously reported in Fig.
2.2-left). In fact, it has been reported that FST has the same effect on rectangular bluff bodies of
a “body extension” in the streamwise direction (e.g. Nakamura, 1993).

Bearman and Morel (1983) concluded that the scale of turbulence is not a key parameter, as if it
lied into the range between one order of magnitude smaller than the shear layer thickness, and
one order larger than the typical body dimension. This lack of scale sensitivity was explained
by the Authors assuming that there is a complex interaction between physical mechanisms
involving small and large scales. Changing the length scale could strengthen some and weaken
the other, thus leaving the resulting measured quantities substantially unchanged. On the
contrary, Nakamura (1993) distinguishes two main turbulence scales: the scale comparable
with, respectively, the shear layer thickness (Z+v/D =~ (.1) and the body size (Lv/D =~ 1). The
Author found that there is a strong interaction between the body-scale turbulence and vortex
shedding from bluff bodies, especially for short rectangular cylinders (0.2 < B/D < 0.6).
Moreover, this interaction leads to opposite effects for two- or three- dimensional bodies. On
the other hand, the small-scale turbulence is responsible to promote the shear-layer/edge

interaction above described.
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Fig. 2.6 - Drag of two-dimensional rectangular cylinder in smooth and turbulent streams: The continuous line
represents the results obtained by Bearman and Trueman (1972) in smooth flow. The dashed curves, indicate the
smooth and turbulent conditions studied by Courchesne and Laneville (1972).

The scales distinction pointed out by Nakamura is in accordance with some detailed works
carried out on the formation of vortices behind bluff bodies. In particular, Gerrard (1966)
concluded that there are two simultaneous characteristic lengths which participate at the
oscillating wakes of bluff bodies: the scale of the formation region and the width to which the

free shear layer diffuse.

The FST causes distinguishable effects also varying the wind angle of attack (a). The bluff
bodies that in smooth flow at a = 0° exhibit a separated flow (B/D < 3), experience flow
reattachment at a typical angle of attack. For instance, the flow around the square section
reattaches for a = 13° in smooth flow, but it anticipates to a~ 10° in turbulent flow (Lee, 1975).
The FST effect, according to the interpretation of a “body elongation”, consists in an earlier
reattachment for bluff bodies with low side ratio.

FST is uniformly generated, both experimentally and numerically, by means grids or, only
numerically, synthetic inlet boundary conditions. Issues concerning the correct turbulence
reproduction were mentioned by Bearman and Morel (1983), and it has to be paid attention to
them nowadays. The wide dispersion of data in turbulent flow reflects the complexity of this

practical aspect.

2.2.2 The square section

Taking into account sharp-edged bodies, the square section can be considered the counter part
of the circular cylinder for the round-edged ones. Therefore, a large number of experimental
and numerical works are dedicated to the aerodynamics of this section. Some of them
elucidated the flow mechanisms behind the above mentioned properties of shear layers and
near-wake, as well as many contributions focused on the turbulence influence. A complete
literature review on the square section is outside the scope of the current section. In the
following, the main aerodynamic features of the two-dimensional section, based on selected
papers, are proposed.

Vickery (1966) performed experimental tests to carry out a first comparison between smooth
and turbulent flow. He concluded that, in the Reynolds range considered (4x10* < Re <
1.6x10°), the square section produces considerably greater and more strongly correlated lift
forces than the circular cross-section. An important reduction of lift fluctuation and drag
coefficient in turbulent flow was measured, and the interaction between shear-layer and

trailing edge caused by turbulence was discussed. Later, Lee (1975) focused the attention on the
14



Chapter 2 — Fundamentals of bluff body aerodynamics

turbulence effects for different turbulence intensities and length scales, also varying the angle
of attack. He clearly showed that the mean pressure distribution changes on the body sides and
the increased base pressure were caused by the FST interaction with the flow field around the
body. He noticed that at the lateral sides of the body, for wind perpendicular to the face, a
pressure recovery occurs for turbulence intensity I. > 6.5%. Generally speaking, the r.m.s.
pressure distributions (C, ') at the base is reduced by the FST. On the body sides, FST does not

modify the overall C ' pattern, except for I > 12.5%, where its rear peak in the distribution

move forward to almost 0.5D. According to Vickery (1966), the spectral analyses show a
reduction of the vortex shedding effects (as the lift force) once the FST is introduced. A
broadened band width centered on the Strouhal frequency, and a loss of energy at that
frequency, were measured in turbulent flow.

Unexpected effects caused by an increase in I. were observed by Namiranian and Gartshore
(1988): in contrast with previous studies (e.g. Vickery, 1966), the Authors observed a steady
increase in correlation lengths, for vortex excitation forces, experienced by the square section.
Recently, Lander et al (2016) performed in-deep studies on the influence of FST on the square
section, focusing on the shear layers role. In their work, most of the previously reported effects
of FST on the section aerodynamics were reproduced and discussed. Instantaneous
measurements were carried out so to complete steady observations already present in literature:
specifically by using time-resolved particle image velocimetry (TRPIV). Some results are
proposed in Fig. 2.7, in which a so called “elliptical vortices” transformation accompanied by an
elongation in the streamwise direction is reported. The increased length of the wake was also
associated with a reduction in the cross-stream velocity fluctuations. The paper elucidates
many aspect concerning the shear layers behavior with enhanced FST. For instance, it was
found the substantial increase in curvature towards the body, but no pronounced increase in

the shear layer growth rate was observed.

Concerning the angle of attack variation, its influence was documented by observing the
anticipated pressure recovery at the rear of the side face caused by the FST (Lee, 1975). This
experimental evidence was explained by a twofold effect. On one hand, the thickening of the
shear layer may cause the total enclosure of the separation bubble to occur at a smaller angle;
on the other hand, the thicker shear layer may result in a smaller separation area with less local
suction. Furthermore, the variation of base pressure with flow angle in smooth and turbulent
condition confirmed the results from Vickery: for angles above the flow reattachment, the

region of vortex formation is distanced from the body, thus the difference of Cp measured

with the two approaching flows is small. Detailed measurements for different angles of attack
were also performed by Rockwell (1977). The tests were carried out in smooth flow, with two
pressure taps on the lateral side, respectively close to the leading and the trailing edge. They
found that the maximum pressure fluctuation amplitude, caused by vortex-shedding, occurs at
a=5°

As introduced at the beginning of the section, there is a vast literature on the square cylinder.
The two-dimensional square section merges a simple geometry with a complex flow behavior,
representing a, so to say, benchmark case of bluff body aerodynamics employed to validate
experimental tests and numerical simulations. For the sake of completeness, two additional
aspects need to be briefly mentioned.
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Fig. 2.7 - Phase-averaged normalized vorticity at five phases along the shedding cycle: upper row, smooth flow;
lower row, turbulent flow. In the figure from Lander er al (2016) are reported also the formation length (Zr)
measured for the two approaching flow conditions.

A huge number of computational fluid dynamic (CFD) numerical simulations have been
carried out so far. According to the approach of the current section, results obtained from
experimental tests were recalled and employed to describe the main flow features around the
square section because, historically, the CFD simulations made use of the square section as a
benchmark to validate the simulations themselves (e.g. Murakami and Mochida, 1995, Bosch
and Rodi, 1998, Yu and Kareem, 1998, Shur er al, 2005, Oka and Ishihara, 2009, Raisee er al.,
2010). In this field, a milestone paper was carried out by Rodi in 1997. The Author reported
and discussed the results of a LES (Large Eddy Simulations) Workshop, (organized by the
Author together with Professor Ferziger of Stanford University). In the workshop, groups from
different universities were invited to submit the results of CFD simulations for two case studies:
one of these was the two-dimensional square section.

Despite the more recent development of CFD, respect to wind tunnel tests, the level achieved
(e.g. Trias et al, 2015) suggests that contributions of CFD in bluff body aerodynamics will
became more and more important.

The second aspect concerns the proneness of the square section to the galloping instability
phenomenon. The current study does not deal with aeroelastic tests, therefore in this
introductory part the galloping phenomenon is not considered. However, the lift coefficient
slope parameter together with the drag coefficient (Den Hartog criterion), was employed to

evaluate the effect of the screen on the baseline sections (square and rectangle in Chapter 3).

2.3 Effects of bluff body cross-section modification

Studies on two-dimensional rectangular bluff bodies may help in understanding the main flow
features of slender three-dimensional structures, such as bridges or tall buildings.

The comprehension of rectangular cylinders aerodynamics allows to design opportune
adjustments to the original section, aiming for an increased aerodynamic performance of
structures (e.g. a drag reduction). Thus, making an overview on several opportunely modified
geometries, may be preparatory to investigate the effects caused by the presence of a screen
fixed close to a rectangular section.

From here on simple cross sections, such as circular or square, are indicated as “original” (or

“baseline”) whereas those presenting variations or addictions are called “modified”. It is worth
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noting that each modified section proposed can be described in terms of shear layer curvature,
wake width and body side-ratio (fully separated, trailing-edge interaction and reattachment of
the flow). In line with the previous section, turbulence effects are also considered here, while
section modifications, which involve the use of splitter plates to modify the body wake, are not
dealt with hereafter.

According to Lajos (1986), the value of the forebody drag can be reduced by accelerating the
flow over the front face. This can be achieved in different ways: for instance “streamlining” the
forebody geometry, rounding up or beveling the leading edges. Moreover, the effects of various
devices attached near the periphery of the front face were investigated by the Authors. The
aerodynamic appendages fixed on the forebody exhibited a drag reduction down to 50%. The
main results obtained in these two-dimensional exploratory studies, were also extended in the
field of tall buildings, as pointed out in Kwok and Bailey (1987).

Anyway, most of literature studies on drag reduction were aimed to fuel consumption of
vehicles reduction, by considering bluff bodies with high side ratio (commercial trucks
applications). On the other hand, the results obtained inspired similar studies for civil
engineering applications (e.g. Takeuchi, 1990). In fact, Tamura and Miyagi (1999) compared
the effects of chamfered and rounded corners on a square cylinder and a three-dimensional
prism, investigating also the effects of turbulence. For both, the modified two- and three-
dimensional models, it was observed an overall reduction of the drag force and lift fluctuations.
For all the tested cases in smooth flow, the lift coefficient slope centered in 0° (wind
perpendicular to the model face) was negative. In turbulent flow, the rounded section only
reached a positive lift coefficient slope. The Authors concluded that irrespectively to the
approaching flow (smooth or turbulent), the original square section and the modified one with
chamfered corners exhibited a flow pattern of complete separation. In contrast, the model with
rounded corners in turbulent flow was characterized by separation with reattachment. The
modified sections exhibited also an increased vortex shedding frequency compared to the
original case. They observed the corner-modifications sensitivity also in the three-dimensional
case, although the measured effects were smaller than in the two-dimensional case. Additional
results on the square section with rounded corners can be found in Carassale ez al (2014).
Another method of drag reduction and, more generally, of aerodynamics modification, is based
on the turbulence manipulation of the approaching flow (e.g. Narashima and Sreenivasan,
1988). The FST effects discussed in the previous section suggested the researchers to employ
additional elements in the system designed to generate turbulence. The effects caused by the
introduction of a small rod in front of a circular cylinder were studied by Prasad and
Williamson (1997), while Igarashi (1997) considered the same effects on the square section.
Both the studied bodies exhibited flow patterns modifications, as pointed out from the
substantial drag reduction achieved. Moreover, the two studies investigated the optimal
configuration for drag reduction by varying the rod dimension and its distance to the body
(parametric study).

Many other methods for the drag reduction has been proposed during the years. Munshi ez al
(1999), and, later, Beaudoin er al (2006), investigated the effect of corners with a moving
surface in order to actively modify the body aerodynamics. Other solutions tended to use
passive flow features to reduce the drag (Fig. 2.8), deflecting the flow in order to reduce the
shear layer curvature and/or increasing the base pressure (e.g. Hirst ez al, 2015).
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A fascinating study in the field of tall buildings was performed by Menicovich ez al, (2014), by
proposing an innovative approach to integrate active air flow control into the building
envelopes, in order to modify the tall building aerodynamics. In their work, an active system of
jets modified the building aerodynamics without varying the original building shape.

On the other hand, Hassanli et al (2017) proposed an innovative building envelope able to
interact with the building aerodynamics (aspect previously studied in Hu er al, 2016), to
exploit the internal flows for energy harvesting devices. The Authors assumed the building
envelope to be a screen in different configuration of external openings with the cavity opened
both laterally and on top. The three-dimensionality of the problem did not allow to simplify
the problem as two-dimensional but it demonstrated the possibility to modify the system
building+facade aerodynamics with passive internal flows. Their work showed that a screen
fixed close to a rectangular prism can interfere with the overall aerodynamics, also when the
gap width is small compared to the building characteristic dimension (J). In particular, the

tests were performed with an open gap width equal to 1)/22.5.

2.3.1 Some studies concerning bluff bodies with a screen

The modification of a bluff body shape through small scale adjustments may cause important
aerodynamics modification, depending on the location of the modifications. This can occur also
with a screen fixed in front of the building structure, where the openings of the cavity
(between the facade and the building) lie behind the edges, namely, the separation point.
Nevertheless, there is a lack of literature in bluff body aerodynamics concerning a system
where the screen is fixed very close to the body spaced by a through cavity.

The effect of a flat plate fixed in front of a semi-infinite circular cylinder (having the length
dimension parallel to the oncoming flow direction) was investigated by Koenig and Roshko
(1985), although, the aim of the work was oriented to parameterize screen dimension and
distance in order to reduce the system drag as much as possible. By combining the results, four
drag regimes (A,B,C,D in Fig. 2.9) were distinguished, with the related boundary configurations
(see AB, CB, etc. in Fig. 2.9). Gap widths of the same order of magnitude as those tested in the
current work were not investigated, but interesting considerations were discussed, such as on
the rotating flow effect behind the screen.

Cooper (1988) performed wind tunnel tests on a square cylinder having a forebody plate held
in front of the windward face. He also tested different configurations by varying the plate
width and the gap width, always searching for a drag reduction. Measurements were carried
out for different angles of attack reaching gap a width of 7J11. The model was equipped only
with a force balance, so that no pressure data were recorded.

Fig. 2.8 - Main flow structure around a generic bluff body (left) and expected results (right) after passive flow
modifications (Hirst et al, 2015).
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Fig. 2.9 - Patterns obtained from intersections of a disk-wake profile and a semi-infinite cylinder (Koenig and
Roshko, 1985). In their study both the gap width (g) and the screen dimension (d1) respect to the body chord (dz) are
varied.

In case the cross-flow body dimension equals that of the flat plate, such geometry coincides
with the current work reference case. The smallest gap width tested by Cooper is almost equal
to the largest one tested in the current work. However, as pointed out in Chapter 3, the results
obtained are not in line with Cooper’s paper. In Fig. 2.10, it is possible to appreciate a reduction
of the drag coefficient compared to the case without forebody plate, and a negligible effect on
the lift coefficient slope. Unfortunately there is not enough information to assess the reliability
of these results, but the drag coefficient of the square section without the screen equal to 1.82
at 0° indicates some criticalities of the set up adopted by Cooper. Considering the small
dimensions of the model (side length equal to 19mm), it is possible that it was not suitable to

appreciate the plate effect at a distance of 1.7mm (2/11).

Finally, it is worth recalling the work performed by Bentley and Nichols (1990) in which the
vortex fields around dual bluff bodies were mapped. In this case the geometry of the problem
was still similar to the one tested in the current work, but the minimum gap width tested was
D)2.5, which is far away from the one of interest in the field of building facade. Nevertheless,
interesting remarks were reported after the comparison between the case without and with a
vertical compartmentation of the cavity. The Authors observed that the movement of air
through the gap widths tested was crucial to vortex shedding enhancement (Fig. 2.11). Similar
considerations were reported by Hu er al. (2016), by observing that, for wind perpendicular to
the airtight screen, with the open gap cavity, “the flow within the double-skin facade appears
to be in unison with the vortex shedding frequency and hence reinforces the vortex shedding

process’.
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Fig. 2.11 - Movement of the shear layers on separate halves of the vortex cycles (Bentley and Nichols, 1990).

2.4 Oscillating flows

The observations on the flow behavior in presence of a forebody screen, support the necessity
of in-deep studies on the flow in the cavity behind the screen. According to the contributions
gathered, the internal flow, for wind perpendicular to the screen, may oscillates driven by the
vortex shedding. The cavity extremities behind the sharp edge separation points of the body are
characterized by an almost sinusoidal pressure gradient due to vortex shedding. The oscillating

pressure gradient tends to drive an oscillating flow inside the cavity in turn.

Oscillating flows are considered a branch of the more general research field of pulsating flows.
In a pulsating flow instantaneous quantities (Z.e. pressure, velocity,...) are distinguished in three
components: an ensemble-averaged part related to a “long-time average”, an additional
ensemble-averaged part related to the oscillatory component due to the pulsation (oscillation)
and a fluctuating turbulent component (Gundogdu and Carpinlioglu, 1999). The oscillating
flow is defined as a pulsating flow with zero-mean. This type of flow is quite unusual in wind

engineering, therefore its theoretical basis are briefly recalled.

Governing equations for an incompressible fluid

It seems useful here to firstly introduce non-dimensional numbers that characterize the flow.
For a steady incompressible flow, Navier-Stokes (NS) equations can be rewritten in a non-
dimensional form only as a function of the Reynolds number. Following the same approach, for
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an oscillating incompressible flow the non-dimensional form of the NS equations requires the
use of an additional non-dimensional parameter linked to the frequency of oscillation, that is a
reduced frequency (Kge ).

Starting from the momentum equation (see e.g. Fung 1997):

%4_ u%+v%+w% =X _@4_ a_2+i+a_2 u 23
Pa P Ty e )T Mo Ty ) (eq.-23)
where: u, denotes the velocity vector (with component U, v, W)

X, is the body force per unit volume
P is the pressure

p and K are the air density and viscosity respectively

Then, a characteristic velocity Uy, , frequency @, and length L., are chosen to rewrite the

equations in terms of non-dimensional quantities:
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Introducing now the non-dimensional parameters:
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(Reynolds number)
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Kee = a)CJ Lo (Reduced frequency)

By omitting the body force and dividing by pU,,* / L., the equations, by substituting, can be

chr >

rewritten, for the U' component, as:
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With the same procedure, the continuity equation can also be rewritten as:
ou' ov' ow' 0
&+5+§— (3425)

Since the two equations above constitute the complete set of field equations for an
incompressible fluid, it is clear that only two physical parameters, namely Re and Kg. , enter
into the field equations of the flow. The momentum equation with the two parameters can be
given as:

ou' ou' - au' o au' _@+i[azu' ou’ azu'j

e — FU'—+V'— —= st — T
ot' ox' oy' or' ox' Relox™ oy*” oz

K (eq. 2.6)

From eq. 2.5 it is clear that for k,- =0 the flow is steady. It is also expected that for a low kg
value the flow behaves in a quasi-steady manner, while for high k.. values the flow behaves as

unsteady, though different from the quasi-steady one. Depending on the field of study, other
parameters can be employed instead of K. , as in the present study the Womersley Number:

Wo=L,,, /% (eq. 2.7)
1
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Critical Reynolds number for an oscillating flow

Similarly to the steady case, for an oscillating flow too is possible to distinguish three flow
regimes: laminar, transitional and turbulent. The definition of the two threshold limits,
respectively for the fully turbulent regime and for the laminar regime must consider both the
Reynolds number and a frequency parameter. In the literature, the Womersley number is the
most widely employed as frequency parameter. The dependence on the frequency parameter is
needed as it is well-known that the velocity profile varies its shape depending on the frequency
of oscillation. Therefore, the position of the peak velocity and the region where turbulence is
generated changes together with these non-dimensional quantities.

When the flow is in the laminar regime, the Womersley number alone can properly describe
the velocity profile features, and three sub-regimes are identified, as explained in the next
section. When the flow becomes turbulent, the whole velocity profile follows the 1/7 power
law shape (Gundogdu and Carpinlioglu, 1999). It remains with this shape for almost the entire

oscillating period, except for the initial phase of acceleration and the last part of deceleration.

Ohmi and Iguchi (1982), investigated internal oscillating flow in a circular pipe, defining the

limits to distinguish laminar, transitional and turbulent regimes. Based on the Womersley

number (WO) and a local Reynolds number (Re namely, a Reynolds number defined

osc.c
with local quantities of the internal flow) they obtained the following results for a circular

pipe:
Critical Reynolds number at which generation region of turbulence is fully built up

For quasi- steady flow behavior

Reosc,c =2450 when W0 <1 (eq. 2.8)

For oscillating flow behavior

Reosc,c =882-Wo when WO > 7 (eq. 2.9)

Critical Reynolds number at which generation of turbulence disappears

For quasi- steady flow behavior

Reog ¢ =1800 when WO <5.026 (eq. 2.10)

For oscillating flow behavior

8/7

Regsc c =(211-Wo)
The results obtained by Ohmi and Iguchi (1982), summarized also in Fig. 2.12, are valid for

when WO > 7 (eq. 2.11)

internal flows in circular pipes. Hence, for the case of two-parallel plates different values are
expected. Nevertheless, to the author’s knowledge, the critical Reynolds numbers for an
oscillating flow between parallel plates are still missing. Only Loudon and Tordesillas (1998) in
their work on oscillating flow between parallel plates reported that the flow is probably
laminar for Re,,, <5000 and W0 <20, referring to a “Re,,, ", instead a “Re€yy ¢ ” based on

the mean velocity in the section. However, it is not clear whether they were referring to the
parallel plates or to the circular pipe channel (or tubes, or vessels) by giving the above
mentioned values for Re,,,, and Wo.
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2.4.1 Womersely Number

The oscillating flow in laminar regime is fully characterized by the Womersley number alone.
In particular, it exhibits two distinct behaviors for Wo<1 and W0 >>1, separated by an
intermediate range of mixed conditions. When W0<1, the fluid behaves in a quasi-steady
manner. Increasing Wo the velocity profile maintains its parabolic shape but begins to show a
phase lag with respect to the pressure gradient. Finally, when W0 >>1, the phase lag increases
and the velocity profiles changes its shape, with the maximum velocity no longer located in the
middle between the two plates (Fig. 2.13). The phase lag phenomenon was first observed and
formalized by Womersley (1955).

These considerations can be formalized through the equations presented in the following.

For parallel plates the Womersley number, is defined as:

Wo = E /@ (eq. 2.12)
2\ v

where L is the distance between the plates
f is the oscillation frequency
V is the kinematic viscosity

The governing equation of motion for the oscillating flow in laminar regime is given by:

du(yt) pau(yt) _ldp

. 213
where: u ( y,t) is the x-component of the velocity
p

o is the pressure gradient
X

The boundary conditions are: U (—%,tj =0, u[%,tj =0 (for any t).
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Fig. 2.13 - Velocity profiles between two flat plates at eight points in time during a single cycle of a sinusoidally-
varying pressure gradient for three values of the Womersley number (Loudon and Tordesillas, 1998).

Considering a pressure gradient periodic in time as:

8p pZ pl iwt
— =—Ae L 2.14
x| (eq- 2.19)

where: i= \/—_1
w=2rxf

A is a real constant which indicates the amplitude of the oscillating quantity
the solution for the velocity in this case may be found as:

cosh| Wo-i¥?. Y
L/2 e'” 215
iwp cosh(Wo-lj/z) (eq- 2.15)

u(y,t)=

Therefore, the velocity varies along the coordinate normal to the flow (y) and in time. The
amplitude depends on the pressure gradient amplitude (A) and on the Womersley number.

Then, the attention is focused on the real part of the solution in order to define the velocity
profile features:

[sinh @, (y)sin®, (y)+sinh®, (y)sind, (y)]cos(nt)+ }
(eq. 2.16)

u(y, "
(V:1) oo np;/{[y_coshcpl(y)cosq)z(y)—coshCDZ(y)COSq)l(y)]Sin(nt)
where:

Wo

@, (y) _ng(1+ L)/lz] @, (y) =$(1—Lj, 7 :cosh(«/f-Wo)+cos(\/§-Wo)

L/2

The amplitude of this oscillating velocity (maximum velocity) is:

sinhd, (y)sind, (y +sinth smd) +
Unax :i [ 1( ) 2( ) ] 5 (eq. 2.17)
npy [y—cosh(l)l(y)coquZ(y)—coshCDZ(y)costl)l(y)]
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Finally, the volume flow rate per unit depth is given by:
L/2

Q(t)= [ u(y.t)dy (eq. 2.18)

-L/2

Volume flow rate varies with Wo according to the variation of the velocity profile. For
instance, if the driving pressure gradient oscillates more rapidly without changing amplitude,
the corresponding oscillation in total flow also increases in frequency, but it decreases in
amplitude when the frequency is high enough to result Wo >1 (Fig. 2.14).

In Fig. 2.15, the general pattern of the decrease in amplitude for the oscillating volume flow
rate in the range 0<WO0 <10 is reported. It is to note that, in the case of parallel plates, the
flow rate decreases rapidly from W0o=1 (where it is the 92% of the steady case) to Wo=2,
where it is almost half of it (Fig. 2.15). According to Loudon and Tordesillas (1998), this drop is
even sharper than that one observed for the geometry of flow inside circular cylinder, where
the amplitude is not halved until W0>3. This argument entails some doubts on the
applicability of the critical Reynolds values found by Ohmi and Iguchi (1982) for the parallel
plates case.

For sake of completeness, it must be mentioned that the variation of velocity profile influences
the shear stress at the wall, varying in time, because it is related to the velocity gradient at the
wall. The magnitude of the maximum velocity gradient at the wall during oscillatory flow
changes dramatically with a change in Wo. However, the maximum values are expected for

low Wo numbers.
(a)

change in frequency but not amplitude
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Fig. 2.14 - The oscillating pressure gradient frequency variation effect on the volume flow rate (Loudon and
Tordesillas, 1998)

Definition of @ __ : Definition of @, :
dpldx dpldx
0 . 0 -
/ time time
Q Q T
P ; Qma: , # errad)'
0 0 -
time time

Fig. 2.15 - Volume flow rate normalized by the corresponding steady-state value varying Wo (Loudon and
Tordesillas, 1998)
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On the use of Womersley number in the present study
In the present work, an interaction between the external flow around the body and the
internal flow behind the screen is expected. If the frequency oscillation of the pressure drop at
the extremities of the cavity behind the screen, is driven only by the vortex detachment, it is
possible to rearrange the expression of the Womersley number (eq. 2.10). The small gap widths
considered in the current work (from /40 to 1)/10) allows to hypothesize that the Strouhal
frequency is not affected by the presence of the screen (later verified, for the case tested in the
experimental campaign, Chapter 3).
Therefore, by combining the bluff body vortex shedding frequency equation:

f= S'[‘UF°o (eq. 2.19)
where: St is the Strouhal frequency

U, is the free stream mean velocity of the approaching flow

D is the characteristic body dimension

with the Womersley expression (eq. 2.10), it is possible to rewrite:
Wo:%-«/St-Re-\/§=1.253-%-«/St-Re (eq. 2.20)

where: L is the cavity gap

Re is the Reynolds number
Eq. 2.20 is employed in the next chapters to estimate the Wo number for a wind direction of 0°,
taking into account the screened bluff body section (5¢), the approaching flow (Re) and the
cavity geometry (L/D) characteristics. However, to exhaustively characterize the oscillating

flow it is necessary also a local Re number (Re,. . ). At the end of Chapter 4, results of internal

flow velocity obtained from explorative numerical simulations are discussed to estimate an
approximate value of Re, .
2.5 Summary

In this Chapter, the main flow features of a two-dimensional bluff body immersed in an
incompressible flow were discussed. The massive separation which characterize the bluff
bodies suggests to divide the body in two parts, namely, the forebody and the rearbody. This
distinction is marked by the separation point, which, in the general case of a rectangular bluff
body is fixed at the body edges.

The flow features around a rectangular cylinder were analyzed in order to relate them with the
pressures acting on the body. The main flow topology was described through the shear layers
curvature and the wake vortex properties. Especially for the case of smooth flow perpendicular
to the body face, the relationship between the flow and the body side ratio (5/D) was presented
and discussed. The rearbody drag is the most affected by the ratio between the depth (B) and
the width (D) of the body, while the forebody drag results almost constant for different side
ratios.

Another aspect concerns the free stream turbulence (FST) effects on the body aerodynamics,
which was elucidated by clarifying the mechanisms of interaction with the shear layers and the
mean flow, with the subsequent “body elongation” effect.
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A selective review on peculiar aspects of the square section was recalled. The main flow
features described for a generic rectangular cylinder were reported. The square section exhibits
the shear-layer/trailing-edge interaction when the approaching flow is turbulent. This can be
observed by a pressure recovery on the side. For high values of turbulence intensity (>12.5%),
also the pressure fluctuating component is affected. The presence of FST affects the wind angle
at which the flow reattachment occurs. According to the general behavior of the FST on the
rectangular sections, the reattachment results anticipated, i.e. it occurs for a smaller angle of
attack.

Some works on bluff body cross-section modifications were recalled in order to point out that
small adjustments on the geometry can considerably affect the overall aerodynamics. The
dissertation was then extended from two- to three-dimensional more realistic case studies
related to the civil engineering field. These works confirm the importance of the main flow
parameters, such as the shear-layer curvature, together with the relation between the wake and
the body side ratio (in terms of loci of vortex formation). Indeed, the modifications proposed
are effective only if they affect somehow the above mentioned parameters. Hence, it is not
only the relative dimension of the change, but also its location.

Literature dealing with corner modifications, turbulence manipulations, active and passive
solutions changing the flow, was briefly presented to motivate the expected effects of the
screen fixed in front of the bluff body object of the thesis.

In this Chapter, it has been shown that also the presence of a screen in front of a rectangular
cylinder can influence the aerodynamics of the new system formed by the screen and the body
itself. Two aspects arose from the papers reviewed. First, with the screen fixed at the same
distance, the interference effects are different if the open gap cavity allows the flow moving or
if the internal cavity is interrupted by an airtight layer. In particular, some authors observed a
relation between the vortex shedding and the moving flow behind the screen. Second, the flow
behavior of the system it is not easily predictable, and most of the gap widths investigated in
the current work have not been investigated yet.

On the basis of the above mentioned observations, the relation between the vortex shedding
around the body and an internal oscillating flow, in the cavity behind the screen, may be of
high relevance to understand the behavior of the system composed by the screen and the bluff
body. The fundamentals of oscillating flows are briefly recalled. Oscillating flow regimes can be
characterized based on two non-dimensional quantities, such as the Reynolds number and the
Womersley number. Studies on circular duct showed that there are typical limit values to
distinguish the oscillating flow regimes, as it occurs with a steady flow. Unfortunately, there
are only qualitative indications for the case of oscillating flow between parallel plates, as the
flow expected in the current work. However, under a certain Re limit value, the oscillating
flow characteristics can be defined only through the Womersley number.

Finally, the Wo number expression has been rewritten for the internal oscillating flow

expected in the present work.
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Chapter 3 - Experimental tests

The present chapter deals with the experimental campaign performed in the CRIACIV wind
tunnel of the University of Florence. The aim of the experimental tests was to obtain reliable
values of wind induced forces and pressures, on models reproducing a two-dimensional system
composed by an open-gap airtight screen, attached to different rectangular cylinders.

The laboratory facilities and instruments are described, and the design of a new set-up where
the section models are installed vertically is motivated. The need to integrate the work with an
additional CFD study is introduced, based on the limitations of the experimental arrangements.
Information on the model geometries and the approaching flow conditions are given. Then, the
configurations tested are described to explain the way in which the results is presented. Finally,
the results are summarized and discussed in two distinct sections: one for flow normal to the

screen and the other for flow at different angles of attack.

3.1 Experimental set-up

3.1.1 The C.R.I.LA.C.I.V. atmospheric boundary layer wind tunnel

All the experimental tests were carried out in the C.R.I.LA.C.I.V. (Inter-University Research
Centre on Building Aerodynamics and Wind Engineering) atmospheric boundary layer wind
tunnel. The wind engineering laboratory is active since 1993, and it is located in Polo

Universitario “Citta di Prato’, a branch of the University of Florence.

The CRIACIV atmospheric boundary layer wind tunnel (Fig. 3.1) is an open-circuit wind
tunnel entirely installed inside the laboratory, therefore inlet and outlets are not connected
with the external environment.

The wind tunnel cross-section is rectangular with sides of 2.2m by 1.6m at the inlet section,
after the air converging section equipped with a honeycomb. The tunnel is then slightly
divergent until the working section which is 2.4m wide and 1.6m high. About 3m behind the
test section there is the fan powered by the 156kW electric motor which draws the air from the
inlet and ejects it from a T-shaped diffuser. The overall length of the wind tunnel from the
inlet to the outlets is about 22m. The main characteristic dimension are sketched in Fig. 3.2.

Fig. 3.1 - The CR.I.A.C.I.V. Atmospheric Boundary Layer Wind Tunnel. View from the inlet.
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Flow Direction
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Fig. 3.2 - Geometry of the C.RI.A.CIV. Atmospheric Boundary Layer Wind Tunnel. A) Inlet, B) Zone of
development of boundary layer, C) Test Section, D) connection between the test section and the fan, E) motor, F) T-
Shape diffuser.

The supporting structure of the wind tunnel is made of steel, closed on the floor and the ceiling
with wooden panels, while laterally with glazed panels. In the wind tunnel there are two main
working sections: the first, used when the atmospheric boundary layer is reproduced, is
equipped with a turning table installed on the floor; the second, used for section models, is
about 40cm upstream of the circular working section. The latter is the section employed in the
present experimental campaign. Its peculiarity is the presence of an additional steel
reinforcement all around the supporting structure in order to fix the section models directly to
this, bypassing the deformable wooden floor. The air flow mean speed ranges from 0 to 30 m/s,
through a double regulation system: the variation of the fan blades pitch angle and the

variation of the fan rotating frequency (r.p.m.) controlled through an inverter.

3.1.2 Model set-up
The set-up was designed in order to measure forces and pressures (on the middle section)
acting on the section models tested in a Reynolds number (and Womersley number) range as

wide as possible, according to the working ranges of the instruments.

The first goal was to design a set-up where the screen can be fixed as close as possible to the
bluff body. Due to the relation between the cross-flow dimension of the rectangular section
and the cavity gap, it was necessary to design a bluff body as large as possible according to the
blockage constraint. Another issue in the set-up design phase was that an excessively small gap
width could influence the flow behind the screen because of the deformability of the screen or
the roughness of the model. Moreover, the study of a section model requires the use of a model
with high aspect ratio (Berger and Wille, 1972) in order to avoid three-dimensional effects. The
solution was to place the section model vertically so to employ the wider side of the wind
tunnel. The model obtained was 0.12m wide (which corresponds to 5% of blockage) and 1.24m
long for both the square and the rectangular 2:3 sections (Fig. 3.3). The cross-flow section
width (D) is the reference dimension to evaluate the Reynolds number, the force coefficients

and the geometrical ratios as the gap distance.
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SUPPORTING S
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Fig. 3.3 - Views from the wind-tunnel inlet of the two models (2:3 rectangular section on the left, square section on
the right) fixed vertically in the wind tunnel.

To test a section model of large dimensions with a high approaching flow speed leads to
remarkable wind load. In order to measure forces in the working range of the instruments with
such high loads, it has been necessary to share this load fixing two force balances at the model
extremities. Moreover, in order to avoid the damage of one of these instruments during the set-
up assembly (caused by unintentional loads higher than the full scale values), between the
wind tunnel and the model extremities, two flexible couplings were employed, as reported in
Fig. 3.4. The force balances were oriented in order to measure the drag force along the X-axis

and the lift force along the Y-axis.

The model needed to be equipped with different screens at variable distances, and it was
necessary to switch easily from the rectangular 2:3 cross-section to the square geometry.
Therefore, it was designed with an internal structure made of aluminum ribs of 16mm
thickness fixed to a stainless steel pipe (Fig. 3.5). The internal pipe has a 60.3mm diameter and
2mm thickness. It gives the model high stiffness and allows the passage of the cables from the
section equipped with pressure taps to the interface unit for data acquisition. The aluminum
ribs have different types of threaded holes on each side: on the front there are holes used to fix
the frontal panel and holes to fix the screen across it; on both sides there are holes to fix the
lateral panels; finally, on the rear part there are again two types of holes: the first type to fix the
rear panel of the cylinder, the second to vary the body cross-section. Indeed, if the model
section is switched from the rectangular 2:3 section to the square section, an additional rib is
fixed on the rear part to the main one, as shown in Fig. 3.5.

Fig. 3.4 - Assembly steps of the model supporting system on one side. The elastic device of coupling is fixed on the
plate, while the force balance is equipped with a special adapter. Finally, a clamp, which can rotate, is connected to
the balance.
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Fig. 3.5 - Picture of the model during the assembly. It is possible to see the internal structure with the pipe and the
ribs. In this particular case, additional ribs are installed in order to obtain the square section.

Finally, the two ribs at the extremities were equipped with additional threaded holes in order
to fix the end-plates and the model to the balances. Two different end-plates were used
depending on the rectangular section studied. For the rectangular 2:3 section, they were two
circular stainless steel end-plates of 1m diameter and 2mm thick, while for the square section
they were two circular aluminum end-plates of 0.84m diameter and 3mm of thickness.

Both the end plates were designed based on the literature recommendations (e.g. Obasaju,
1979, ESDU80024, 1998).

Between the model and the balances opportune rotating systems were placed: they left the
model free to rotate without rotating the force balances. These were employed to reach the

desired angle of attack and fastened during the measurements.

The model was equipped with pressure taps in the middle section (Fig. 3.6). The taps were
1.5cm away from the corners and lcm spaced apart. In order to have a good frequency
resolution the pressure tubing system needs tubes of 50cm length from the tap to the pressure
transducer. Previous studies conducted in the laboratory demonstrated that longer tubes tend
to filter out the pressure signals down to values lower than those related to the expected
significant phenomena (e.g. the vortex shedding). Therefore, the model was designed to have
enough internal space to allocate the two scanners, which have dimension about 3.5cm x 3.5cm

x 7cm.

The tested screens (schematized in Fig. 3.7) were designed in order be very thin compared to
the cross-section reference dimension D, and less deformable as possible. Moreover, it was
fundamental to control the distance between the screen and the body with high accuracy.
Therefore, stainless steel foils of 1mm (Z¥120) were employed, fixed on the front face of the
model at six levels. Metallic or plastic spacers were placed between the screen and the model
(Fig. 3.8).

All the three tested screens were obtained from airtight stainless steel foils. Each screen’s depth
was equal to D, namely, 0.12m. Indeed the screen closed internally, named screen S2 (Fig. 3.9-
left), had the same structure as the one without vertical compartmentation (screen SI) with
additional PVC components of 1cm width. The screen with the opening on the front, 7e. the
screen 53 (Fig. 3.9-right), was made of two stainless steel foils fixed at the spacers, in order to
obtain an air intake in the front of 6mm ()20) width.
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PRESSURE TAPS

R3mand  SCREEN (1mm)
|(— MODEL SHARP EDGE

Fig. 3.6 - Detail of the pressure taps on the lateral face of the model. In this configuration the model is equipped with
the screen S1. The screens are not equipped with pressure taps.

Screen S1 Screen S2 Screen S3
B | B B
D/20 D/20 |]
D , D , |] D
D/40 = D/10 " D/40 = D/10 " D/40 = D/10

Fig. 3.7 - Schematization of the three screen typologies. Each screen has an airtight surface, it screens the whole face
of the rectangular cylinder (depth = D) and it has a thickness of 1J/120.

Fig. 3.8 - Picture of the internal layer of the screen S1. The stainless steel plate is equipped with six spacers. Their
thickness corresponds to the minimum gap width tested (0/40).

Fig. 3.9 - Pictures of screen S2 and screen S3 internal layers. The screen S2 (on the left) is obtained modifying the
screen S1 with additional airtight elements that reproduce the vertical compartmentation. The screen S3 is made of
two stainless steel plates fixed through the spacers to create an opening /20 width.
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3.1.3 Measuring instruments

Pressure system

The pressure measurement system adopted was the PSI-DTC Initium, in particular two 32-
ports ESP pressure scanners were employed (Fig. 3.10). These scanners are miniature electronic
differential pressure measurement units consisting of an array of silicon piezo-resistive pressure
sensors, one for each pressure port. The sensors are mounted on a common hybrid glass
substrate using a proprietary technique which maximizes long term stability. The output of the
sensors are electronically multiplexed through a single onboard instrumentation amplifier at
rates up to 70kHz using binary addressing. The multiplexed amplified analog output is capable
of driving long lengths of cable to a remote A/D converter. The A/D converter is connected to a

PC workstation with the DTC Initium software installed. The frequency sampling was 500Hz.

Fig. 3.10 - The DTC Initium Pressure System. The A/D converter and two scanners.

The pressure tubing system was tested and calibrated in order to have a flat transfer function
up to 70-80Hz, therefore all the pressure time histories are filtered at 70Hz through a digital
low-pass Butterworth filter. The study of the transfer function and the system calibration was
carried out with the help of two PhD students from Slovak University of Technology, Magat
M. and Oleksakova I., during their internship. Each tube is made of three parts connected in
series: the first one is a Teflon tube of 0.8mm internal diameter of 36cm length, which starts
from the tap on the model; the second part is a 0.3mm internal diameter Teflon tube of lcm
length, which acts as a physical damper to avoid resonances in the pressure transferred to the
transducer, and connects the first and the third parts of the tubing system; the third part is
again a Teflon tube of 0.8mm internal diameter of 13cm length, which ends at the scanner (Fig.
3.11). The three parts are connected through airtight external silicon connections. The
configuration adopted is the result of a wide series of tests with a subwoofer, in order to
generate specific input signals, and in the wind tunnel with a turbulence generator.

The static accuracy of the pressure transducers is the most important to consider and it depends
on the range of use, as summarized in the technical data sheet (Fig. 3.12). In the present work,

the pressure measurements were affected by an error of +2.5Pa.

! Teflon 0.8 mm

Silicon tube for connections 7 ¢ Teflon 0.3 mm

-
>
o

-

Fig. 3.11 - Typologies of tubes employed.
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Static Accuracy

@ 100% Range +0.05 %FS After rezero (for ranges >= 5 psid (34kPa))
+0.10 %FS After rezero (for ranges <5 psid (34kPa))
@ 33% Range +0.10 %FS After rezero (for ranges >= 5 psid (34kPa))
+0.20 %FS After rezero (for ranges <5 psid (34kPa))

Total Thermal Error
@ 100% Range +0.002 | %FS/°C | Worst case (for ranges >=5 psid (34kPa))
+0.004 %FS/°C | Worst case (for ranges <5 psid (34kPa))

@ 33% Range +0.003 %FS/°C | Worst case (for ranges >=5 psid (34kPa))
+0.005 %FS/°C | Worst case (for ranges <5 psid (34kPa))

A/D Resolution 18 bits

Measurement Resolution | +0.003 %FS

Throughput Rate 625 Hz/ch | Using 8 each 32 channel scanners

(in engineering units) 312 Hz/ch | Using 8 each 32 channel scanners

Fig. 3.12 - Range (left) of the DTC Initium pressure scanners, and its accuracy from the data sheet (right).

Force system

The force measuring system adopted consisted of a pair of ATI Industrial Automation FT-Delta
SI-165-15 High Frequency Force Balance (HFFB) transducer (Fig. 3.13-left). Each six-
components transducer converts force and torque into analog strain gage signals. Therefore,
through opportune calibration matrix it is possible to obtain forces and moments with respect
to the three axis (x, y and z). The transducers are connected to a power supply box (externally
to the wind tunnel), which in turn are connected to the A/D interface. The interface is a multi-
channel 24-bit unit by National Instruments, which is connected to a PC workstation and
managed with a Labview data acquisition software. The sampling frequency was 2kHz. The
accuracy of the force balances is expressed as percentage of the full scale measuring range and it
varies depending on the component considered, as summarized in the technical data sheet in
Fig. 3.13-right. In the present work, the forces measured along x- and the y- axis were affected
by an error of +0.099N.

Specifications Values
Range of measurement, F, Fy +165 N
Range of measurement, F, +495 N
Range of measurement, M, M,, M, +15 Nm
Resolution, F, F, +1/128 N
Resolution, F, +1/64 N
Resolution, M., M,, M. +1/2112 Nm
Repeatability +0.03 % FS
/ Full Scale Error, F., F, + 0.06 % FS
/ Full Secale Error, F. +0.10 % FS
Full Scale Error, M., M,,, M, +0.01 % FS
Resonance frequency 1.700 Hz
Operating temp. range 0=70°C

Fig. 3.13 - Picture of the high frequency force balance ATI FT-Delta SI-165-15 (left) and its accuracy from the data
sheet.

Flow-velocity system
The instruments employed to measure the wind speed were the Pitot-Prandtl tube for the

flow-velocity mean component and a hot-wire anemometer for the fluctuating component.
During the flow characterization in the working section the two instruments were employed
together in order to evaluate both the mean wind profile and the turbulence intensity. During
the tests on the model, only the Pitot-Prandtl in a fixed position was used. The Prandtl tube
allows measuring the mean kinetic pressure of the incoming flow and therefore indirectly the

mean wind speed. It is connected to a differential membrane pressure transducer of Setra
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Systems, which converts the pressure difference into an electric signal sent to the A/D
interface. The hot-wire anemometer is able to measure accurately the wind velocity
fluctuations: it works as a sensitive resistor connected to a Weathstone bridge, which varies its
resistance depending on the temperature of the probe, and therefore on the wind speed. The
system employed was a DANTEC 65C01 instrumented with one mono-component hot-wire

probe. The electric signal was amplified and sent to the A/D interface.

3.1.4 Flow characteristics in the test section

The first part of the experimental tests is fundamental in order to know the characteristics of
the approaching flow during the tests on the section models. A relatively small blockage ratio
of the models (in the present work was around the 5% depending on the model rotation around
the longitudinal axis) ensures that the approaching flow is not significantly influenced by the
model itself. Therefore, the measurements carried out during the anemometry campaign along
the model axis vertical line without the model are considered representative of the approaching

flow during the tests.

Smooth and turbulent flow conditions were reproduced during the tests. The smooth flow was
obtained without any additional device, so that it is the flow as smooth as possible that can be
generated in the C.R.ILA.C.I.V. wind tunnel in that specific section. As shown in Fig. 3.14, the
mean velocity and the turbulence index (<1%) of the approaching flow are constant at different

velocity in the area confined by the end plates.

1600 1600

Upgr = 25m/s Uper = 25 mis
1400 Ugee =5 /s 1400 Upgr =5 m/s
Upgr = 10m/s Upgr = 10m/s
=15 m/; =
1200 Ugee =15m/s 1200 Ugge = 15m/s
Upgr =20m/s Upgr = 20m/s
—- 1000 Upgr =25 m/s 1000 Uper =25 m's
= 800 = 800
= S
= 600 = 600
400 400 ¢
200 200
0 0
0 5 10 15 20 25 0 2 4 6 8 10

Velocity (m/s Tu [%

Fig. 3.14 - Mean wind speed (left) and turbulence intensity (right) in smooth flow. Ukt denotes the mean flow
velocity measured at the central section (height = 800mm).

The turbulent flow was obtained with a wooden grid fixed in the wind tunnel close to the
inlet. In this case, the grid characteristics and the distance between the grid and the working
section were fixed to obtain a turbulent flow, characterized by a turbulence intensity I. =
13+15% (depending on the flow velocity) and an integral length scale Lx/D = 2. As shown in
Fig. 3.15, the mean wind profile and the turbulence intensity are not uniform along the vertical
axis. This is mainly due to the fact that the turbulence generator was designed to carry out
experiments on section models placed horizontally. For this reason, only the pressure
measurements on the middle section are considered for the tests carried out in turbulent flow.
It is worth noting that warning about this type of issues were given in the literature, for
instance by Bearman and Morel (1983).
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.15 - View from the fan of the square section model with the grid turbulence generator (top). Mean wind speed

(bottom-left) and turbulence intensity (bottom-right) in turbulent flow.

3.2 Experimental campaign
3.2.1 Test configurations
Aerodynamic measurements of forces and pressures were performed on section models. The

tests

were conducted by varying the side ratio of the shielded rectangular cylinders. The effect

of three screen typologies (S1, S2 and S3) on the system aerodynamics, was investigated
attaching them at several distances. Moreover, wind directions and approaching flow

conditions were varied. In Fig. 3.16 all the tested configurations are summarized. A code name

was associated with each set of tests as follows:

Square — Smooth - S1 — 0° refers to systems composed by the square section cylinder
equipped with the screen S1 (laterally opened without internal vertical
compartmentations) fixed at different distances in smooth flow. The tested distances were
D/40 (3mm), /30 (4mm), D20 (6mm), /13 (9mm) and /10 (12mm). The tests were
carried out at three different flow velocities corresponding to Reynolds numbers equal to
7.86x10%, 1.01x10°> and 2.26x10°. The wind direction was normal to the face with the
screen (a = 0°).

Square — Smooth — 52 53 — 0° refers to systems composed by the square cross-section in
smooth flow equipped with two different screens S2 and S3 at two distances: /40 (3mm)
and )20 (6mm). Tests were carried out at three Reynolds numbers, namely Re = 7.86x10%,
1.01x10° and 2.26x10°. The wind direction was a = 0°.

Square — Turb - 51 - 0°is a group of systems geometrically identical to the first set (same
geometries and a = 0°) but with a turbulent approaching flow. In this case the turbulence
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generator grid reduced the Reynolds numbers to the values 7.29x10% 8.89x10* and
1.58x10°.

o 2:3 — Smooth - S1 — 0° refers to systems composed by the rectangular 2:3 cross-section
equipped with the screen S1 (laterally opened without vertical compartmentations) fixed
at different distances in smooth flow. The tested distances were /40 (3mm) and D/20
(6mm). Tests were carried out at four Reynolds numbers, respectively equal to 1.41x10,
1.62x10%, 1.82x10° and 2.03x10°. The wind direction was perpendicular to the screen (a =
0°).

o 2:3 — Smooth — 52 53 — 0° refers to systems composed by the rectangular 2:3 section
cylinder equipped with the screens S2 and S3 at the distance of /)40 (3mm). Tests were
carried out at four different velocities corresponding to Re = 1.41x10%, 1.62x10°, 1.82x10°
and 2.03x10°. The wind direction was a = 0°.

o Square — Smooth — 51 — AlIAng refers to systems composed by the square cross-section and
the section with the screen S1 fixed at different distances in smooth flow for several wind
direction. The tested distances were /40 (3mm) and /20 (6mm). Tests were carried out
at three different Reynolds numbers equal to 7.86x10%, 1.01x10° and 2.26x105.

o Square — Turb — 51 — AllAng is a group of systems geometrically identical to the previous
one (same geometry) but with a turbulent approaching flow. Tests were carried out at Re =
7.29x10%, 8.89x10% and 1.58x10°.

o 2:3 — Smooth — S1 — AllAng refers to a system composed by the rectangular 2:3 cross-
section with and without the screen S1 (laterally opened without vertical
compartmentations) fixed at /20 (6mm) in smooth flow for various wind directions. Tests
were carried out at Re=1.41x105, 1.62x105, 1.82x10° and 2.03x105.

Screened Body
Wind direction and Screen Gap width Code name
Square

Flow
@ Sauore-smooth-51-0°
Smooth (
Flow N
@ D/20 and D/40 Square - Smooth - 5253 -0

Square

A GEE] | Turb. @ From D/10 to /40 | Square- Turb-51-0°
to the screen

Flow
a=0°

Rect 2:3 /
Smooth [
@ 23 smooth-5253-0°

Flow

Square

Smooth @ Square - Smooth - 51 - AllAng

Flow

Flow at an
angle to the
system
a #+ 0°

Square

Turb. k @ D/20 and D/40 Square - Turb-S1 - AllAng

Flow

Rect 2:3

= @ 23 - Smooth-51 - Alng

Flow

Fig. 3.16 - Scheme of the tested configurations. The results are presented following this scheme.
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3.2.2 Limits of the set-up

The experimental tests gave reliable results according to the limits related to the study of a
model, with instruments in a specific set-up. In the current section these limits are briefly
analyzed for a better interpretation of the results.

First of all, the use of a wind tunnel implies a maximum wind speed limit. The CRIACIV wind
tunnel has a ten-blade fun powered by a 156kW electrical motor which allows achieving a
maximum wind speed of about 30m/s in smooth flow condition. This determines the maximum
Reynolds number reachable during the tests. The range of velocity was also limited on the
lower side, because of the accuracy of the instruments. The study of the behavior behind the
screen Sl at very low Womersley numbers (reachable reducing the Reynolds number) was
prevented by the fact that pressures of a low absolute value are more affected by the

instrument tolerance (Z.e. an unacceptable relative error occurs).

The force balances were connected to the model and the wind tunnel support structure
through components that cannot ensure an orientation perfectly parallel to the flow. For this
reason, the position of 0° wind direction (approaching flow perpendicular to the model face)
was found through the analysis of the mean and standard deviation of the pressures on the
sides of the models. In particular, for the case of the rectangular 2:3 cylinder it was necessary to
correct the force values, while in the case of the square section the error was negligible (less
than 1° of misalignment). This correction was done by the comparison between the forces

measured with the balances and the integrated pressure resultants over the cross section.

The flexible constraints at the ends of the models were fundamental in the assembly phase.
Nevertheless, at the same time a flexible localized element was introduced in the system, where
the model is much stiffer than the constraints. Consequently, this system had a range of flow
speeds where the lock-in phenomenon arose. This problem, combined with the vibration of the
end-plates, affected the fluctuating components measured with the force balances. The choice

of so wide end-plates was due to the bluff-body dimension, according to the literature.

The number of cases tested is another limit of the experimental campaign. In the current work
the focus was on the square section equipped with the screen S1; therefore, all the other

configurations tested were necessary for the sake of comparison with this reference case.

The model was equipped with pressure taps all around the middle section of the bluff body but
it was not possible to mount pressure taps also on the screen. So that, for a null wind angle, it
was necessary to assume that the pressure distribution was identical on both internal layers of
the cavity gap (the one on the bluff body side is equipped with pressure taps), and that on the
face directly hit by the wind, the pressure distribution was not affected by the type of screen or
its distance to the model. This last assumption is supported by the results of Da Matha
Sant’Anna et al (1988), about the already discussed pressure distribution on the forebody of
rectangular cylinders with different aspect ratios.

Finally, the absence of devices to carry out flow visualization, and the physical impossibility to
measure the wind velocity behind the screens were other two limitations. In the present work,
the complementary role of CFD simulations arises with the aim to overcome these limits.
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3.3 Experimental results
The experimental results are reported to show and analyze the system aerodynamics. In order
to give the results in a clear way, they are divided into three subsections, according to Fig. 3.16:

- 331 Models without the screen. The results are given for the two models without the
screen. The case of the square section with turbulent approaching flow is also discussed.
This part gives information about the reliability of the results through the comparison
with the literature, as well as about the quality of the models employed. It represents the
starting point to measure the effect of the screens installed later.

- 332 Results for flow normal to the screen. This section contains the main results in
terms of global and local aerodynamic quantities for flow perpendicular to the screen. The
lift coefficient slope centered in = 0° is a parameter included in this section.

- 333 Results for flow at an angle of attack to the system. The section deals with the
results obtained for different angles of attack. The attention is focused on the range of
angles in which the screen effects observed at a = 0° are still visible. Moreover, the case of
screen fixed behind the bluff body (a = 180°) is discussed.

To investigate possible effects of the screen, global and local aerodynamics quantities, related to
systems in different configurations, are compared. In the following, these quantities are also
indicated as global and local parameters of the system. In the current work, the global
parameters employed are:

o the drag coefficient (C,), evaluated on the overall system, measured with the force
balances;

o the rearbody drag coefficient (Cg; ), evaluated through the integration of the pressures on
the rear face of the model;

o the Strouhal number (St) of the overall system, evaluated through the pressures on the
lateral sides, approximating the values obtained at different velocities with the least mean
square fitting technique;

o the lift coefficient standard deviation (C, '), evaluated through the integration of the
pressures on the model;

o the difference between the drag coefficient on the overall system and the integration of
the pressures all around the shielded body, resulting in the mean drag coefficient on the
screen (Cpy );

o the mean lift coefficient slope dC, /da centered around the 0° wind direction, estimated
from the measurements with the force balances.

The force coefficients are normalized respect to the cross-flow dimension D, the model length
L

Therefore, the generic force (/) measured on the model is non-dimensionalized as follows:
F

C.=——
" 12pu°DL,

The wind direction is varied following a counterclockwise rotation (as shown in Fig. 3.17)

and the mean flow velocity measured in the middle section of the wind tunnel U, .

m 2

(eq. 3.1)

thanks to the supporting system that is able to rotate the model. It is worth noting that the
current work, similarly to Cooper’s paper (1988), focused only on the drag and lift forces.
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Ly

Fig. 3.17 - Scheme of the conventional signs adopted for positive angle of attack, drag and lift coefficients.

The local effects are compared through the pressures measured locally and normalized
according to eq.2.1. In particular:

o the mean base pressure coefficient (C,, ), where the term “base” refers to the middle point

of the rear face of the bluff body;

o the standard deviation of the base pressure coefficient (C,,");

o the mean pressure coefficient at the separation point (Cy, ), measured at the tap closest to

the upstream edge of the model (1cm downstream the body edge);

o the standard deviation of the pressure coefficient at the separation point (C,,");

 the mean pressure coefficient behind the screen (C, ).

Moreover, the phase difference between signals measured at different locations and the

pressure spectra are employed to comprehend the flow behavior.

Values obtained from the pressure taps are reported through body aligned coordinates or by
following the numeration shown in Fig. 3.18.

It is worth noting that in the current chapter the measurements for the wind direction a = 0°,
referred to the first tap on the lateral side of the section models right behind the edge (taps
n°l1 and 23 for the square section, taps n°7 and 19 for the rectangular section), are called
“separation point” even if the presence of a screen anticipates the flow separation point at the

screen edge.

23—>33 19— 25
22 34 18 26
12 44 8 36

Me—-1 7<— 1

Fig. 3.18 - Pressure taps numeration around the square and the rectangular 2:3 cross-sections.

3.3.1 Models without the screen

To show the reliability of the results, the rectangular section models employed, without any
screen, are compared with some previous studies. Results for both the square and the
rectangular 2:3 sections, are reported considering only the case of wind normal to the building
section. In this way, possible model imperfections and/or limits of the set up can be
highlighted.

The effects caused by the presence of the screen are evaluated through the comparison of
results obtained in systems with a screen versus the rectangular cross-sections treated in this
section. For this reason, in the following of the thesis, the two-dimensional cross-sections
reproducing the system without the screen are also named baseline cases.
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Square cross-section in smooth and turbulent flow

The aerodynamic coefficients obtained for the square cross-section in smooth flow agree with
the literature data, as shown in Tab. 3.1. Even if the lift coefficient fluctuations are slightly
higher than the values reported from other works, the quality of the model is confirmed by the
pressure distributions reported in Fig. 3.19-left. In particular, the characteristic base pressure
distribution (described in section 2.2), related to the locus of vortex formation on the

centerline, occurs.

Despite the uniformity problems mentioned above, the square cross-section in turbulent flow
behaves as expected. While the global aerodynamic coefficients seem to be more in line with
the literature data related to a lower turbulence (Tab. 3.2), the comparison based on the mean
pressure coefficients distribution (Fig. 3.19-right) clarifies that such disagreement with Lee’s

results (1975) is probably caused by the effect of the distorted approaching velocity profile in
turbulent flow rather than by a lower turbulence intensity. Indeed, the values of C_p in the

separated regions seem to be shifted compared to the literature data from Lee, obtained for I. =
12.5%. Such a discrepancy could be due to the velocity non-uniformity caused by the
turbulence generator: since the mean velocity is higher in the lateral portions of the model
(Fig. 3.15-bottom), it is supposed that the pressure in the wake tends to equalize, lowering the
pressure on the lateral and rear side of the mid span equipped cross-section. Moreover, the
blockage correction was performed in the literature reported, while it was not in the current
work. To conclude, while these studies could give meaningful information about the
turbulence effects on the system considered, further tests are necessary with a turbulence
generator properly designed for this set-up.

Nevertheless, according to the literature recalled in section 2.2, the mean pressure coefficients
on both side walls exhibit a different trend compared to the smooth flow case, because the free-
stream turbulence interacts with the shear layers which are deflected by the downstream
corners of the body. Therefore, the turbulence acts as a body stretching in the streamwise
direction, with a consequent increase of both lateral spacing and base distance of the forming
vortices. The mean pressure coefficients reported in Fig. 3.19-right exhibit a pressure recovery
on the side walls and an almost uniform base pressure distribution.

The Strouhal frequency in turbulent flow results increased compared to the smooth flow case.
This is in accordance with Lander er al (2016) and Lee (1975) for a turbulence intensity of
6.5%, to Vickery (1966) with I.= 10%, but not with the results obtained by Lee with I.= 12%
and Lv/D=0.94.

On the other hand, the pressure coefficient standard deviations (Cp‘), on the lateral sides of

the body approached by a smooth flow, exhibit a bump (Fig. 3.20-left). The peak centered in
the second half of the side (= % D) moves forward (= %2 D) for an approaching turbulence of
12.5%, as noticed by Lee. However, the peak in smooth flow was higher than in turbulent
condition. The opposite trend is observed on the front face, around the stagnation point, where
the turbulence increases the fluctuations.

Generally, significant effects by varying the Reynolds number in the tested range were not
observed. Since the measuring instruments perform better in the highest workability range,
(Ze. the relative measurement errors are reduced), in the present work, experimental data are

mainly reported for the highest tested Re.
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Current Vickery Lee Bearman Schewe Lander er al
(1966) (1975) (1982) (1984) (2016)
Co 2.34 - 2.05 2.29 2.15 2.35
Cors 1.53 ~1.3 ~1.3 ~1.6 - =1.6
St 0.125 ~(0.118 =(0.122 =0.129 0.121 =0.114
C' 1.39 =1.32 =1.2 =1.25 - 1.14
dC, /da 4.4 - - - -4.35 -

Tab. 3.1 - Global parameters evaluated for the square cross-section at a = 0° in smooth flow. Results for Re =
2.26x10° (data from literature are indicated as approximated when they are extrapolated from figures).

Current — Vickery — Lee - Lee — Lander et al -
Lu=13-15% Iu=10% Iu=6.5% Iu=12.5% Tu=6.5%
Co 2.03 - ~1.95 =1.5 1.86
Cors 1.22 ~0.7 ~1.2 ~0.8 ~1.4
St 0.135 =0.12 =0.125 =0.120 =0.120
cC.' 0.89 ~0.67 ~0.95 ~0.6 1.10
Tab. 3.2 - Global parameters evaluated for the square cross-section at a = 0° in turbulent flow. Results for Re =
1.58x105.
Smooth Flow Turbulent Flow
1Pesag, [ % Lee (1975) - 1, = 0.05% 1 ¢ Lee (1973) - 1, = 6.5%
0.75 "E’Tr’-\ 1 O Bearman and Obasaju (1982) - I, = 0.04% | 0.75 o Lander et al. (2016) - I, = 6.5%
1| 0 Lander et al. (2016) - I, = 1% o Lee (1975) - 1, = 8%
05 %o | |2--- Current Work - £, = 1% 05 Lee (1075) - I, = 12.5%
0.25 & 0.25 ----Current - I, = 15%
) & ’ T
e et B L
025} 3 i ] -0.25 i
& o oo l | = = «1\» !
O -05 b % i O w05 : > ;
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Fig. 3.19 - Mean pressure coefficients around the square cross-section. Comparison with some literature data. On the
left, smooth approaching flow data from Lee (1975) with I. = 0.05%, Bearman and Obasaju (1982) with I. = 0.04%,
Lander et al (2016) with Iu= 1% and the current work with Iu < 1%. On the right, turbulent approaching flow data
from Lee (1975) with Iu= 6.5-12.5%, Lander er al (2016) with I.= 6.5% and the current work with I.= 15%.

Smooth Flow Turbulent Flow

UFPPER PART UPPER PART

o
o

LOWER PART LOWER PART

0.5

£/D
Fig. 3.20 - Square cross-section at a = 0° in smooth flow (left) and turbulent flow (right). Pressure coefficient
standard deviations at the highest Reynolds numbers tested (Re = 2.26x10° smooth flow, Re = 1.58x10° turbulent

flow). The values obtained on the upper (red-circle) and lower (blue-triangle) parts, in symmetrical locations are
overlapped.
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Rectangular 2:3 cross-section in smooth flow

The rectangular 2:3 cross-section was tested only in smooth flow, and it exhibits higher drag
coefficient and lift fluctuations if compared to the square cross-section case (Tab. 3.3). The drag
coefficients reported in Laneville and Yong (1983), corrected for blockage, range between 3
and 2.65 for side ratios respectively between 0.6 and 0.7, so that, the C, = 2.91 results a value

in accordance with the literature.

The C, are in good agreement with the results in the literature, except in the rear corner area

where both the lateral and the base pressures exhibit a different trend (Fig. 3.21). It is to note
that the values employed in the comparison were corrected for the blockage, which was
estimated by the Authors to be about 9.8%. However, the expected pressure distribution at the
base occurs. The C_bp is equal to -2.29, therefore it lies between the corrected values reported by
Da Matha Sant’Anna et al. (= -2.125) and Laneville and Yong (=2.375) for rectangular cylinder
with a side ratio equal to 0.6.

The distribution of C,' around the rectangular 2:3 cylinder are reported in Fig. 3.22.

Finally, as noticed for the square cross-section, experimental data concerning the rectangular
cylinder are given mainly for the highest tested Reynolds number, since no significant effects
were observed by varying this parameter. Nevertheless, due to the possible presence of internal

flows (in cavity created by the screen), Reynolds effects were investigated for each system with

the screen.
Current
Co 291
Cors 2.01
St 0.127
C, 1.62
dC, /da -3.04
Tab. 3.3 - Global parameters evaluated for the rectangular 2:3 cross-section for a = 0°, in smooth flow, at Re =
2.03x10°.
1 B0 1 I 1
e o | Da Matha Sant’Anna et al. (1988)
0.75 '\‘. 1 o Current T
05+ %o i
0.25 - i
0 % ]
o A 1
-0.25 k| [t
05" . n |l
S 075 |
a i |
-1.25 i i
15 3 i
-1.75 i 10
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Fig. 3.21 - Mean pressure coefficients around the rectangular 2:3 cross-section for wind normal to the long side, at
Re=2.03x10°. Comparison with Da Matha Sant’Anna et a/ (1988) for a side ratio equal to 0.6.
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UPPER PART

LOWER PART

208
0.6
0.4

0.2

0.5 117 1.67
/D

Fig. 3.22 - Pressure coefficient standard deviation around the rectangular 2:3 cylinder at a = 0°, in smooth flow at Re
= 2.03x10°. The values obtained in symmetrical locations respect to the axis parallel to U, are overlapped: in red,

the upper part, in blue the lower part.
3.3.2 Results for flow normal to the screen

Systems with the square cross-section in smooth flow

The global parameters reported in Tab. 3.4 (and Fig. 3.23) show that the presence of the screen
slightly affects the overall behavior of the new system, when the smooth flow is perpendicular
to the face equipped with the screen (a = 0°). With the exception of the lift coefficient slope,
the global aerodynamic quantities evaluated in the baseline case without the screen, exhibit
variations at most equal to 10% when the screen is present. On the other hand, the pressure
coefficient statistics, also in some selected points (Tab. 3.5 and Fig. 3.23), show the occurrence

of an aerodynamic modification when the screen S1 is present, but the screen interaction
results more evident in terms of mean (C, ) and standard deviation (C,') pressure coefficient

distributions, as reported in Fig. 3.24 and Fig. 3.25.

Fig. 3.24 shows that on the lateral sides of the screened section, independently of the gap
distance, a pressure reduction at the separation point occurs, while close to the downstream
edges the pressure increases, compared to the baseline case without the screen. Despite the fact
that this effect on the body sides appears similar to the recovery effect caused by a turbulent
approaching flow, the mean pressure coefficients at the base are reduced (Fig. 3.23), with a
distribution that indicates that the vortex formation is still on the centerline, so that two
possibilities are considered: either the locus of vortex formation is closer to the base (toward
the base) with an almost unchanged intensity, or it is moved downstream with an increased

energy content. It may also be possible that both the mechanisms act simultaneously.

In general, the pressure distributions do not vary monotonically increasing with the gap width.
Therefore, on the basis of the results reported in Fig. 3.24, it seems logical to distinguish two
sub-groups of gap widths, which cause different types of aerodynamic effects: the first for the
distances /40 and D/30, the second for the distances from D/20 to IJ/10. Indeed, re-
considering Tab. 3.4, the two sub-groups are marked off clearly by the C_' (Fig. 3.25).

In Fig. 3.26 some results reported in Tab. 3.5 are highlighted, as the pressure coefficient
standard deviation at the separation point and at the base, to show that the two-sub groups are
distinguished also for all the Reynolds numbers tested.
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When the screen S1 is present, also the pressure fluctuations exhibit a different distribution. In
particular, a significant increase is observed on the upstream part of the body sides and at the
base, close to the rear-side corners. Fig. 3.25 shows that the peak of C ' results anticipated on

the first half of the side. However, it is to note that in the second half, the two sub-groups
distinction occurs again: the group related to the smallest gap widths (1/40 and [1/30) exhibits

higher fluctuations compared to the pressures measured in case without the screen, while for

. are lower than those obtained in the baseline configuration.

the other group, C

For a deeper view at the pressure fluctuations, maximum and minimum pressure coefficients
are reported in Fig. 3.27. These values are evaluated for each time history as the mean of the
ten percent of respectively the maximum and minimum peak values measured. If compared to
the baseline case without screen, maximum peaks differ more in the portion of body side close
to the cavity extremities, while the minima in the base region. In particular, the shape of the

maximum values (Cp) seems to be affected by the Reynolds number in proximity of the cavity

extremities.

The variation of pressure fluctuations at the base observed in Fig. 3.25 is investigated also
through power spectral density analyses. The comparisons between the pressure spectra at the
separation point and in some locations at the base reported in Fig. 3.28 show that an increase of
fluctuations occurs at the separation point when the screen is present. The energy content of
the pressures close to the rear corner is centered around the Strouhal frequency (St).

Moreover, the second sub-group of screen distances seems to reduce the process bandwidth.

The presence of the screen can also be appreciated through global parameters by slightly
varying the wind angle of attack. For example, for the /40 and /20 cases, a lift coefficient
slope (in the origin) of -3.2 and -0.6 respectively were obtained. These values are significantly
reduced as compared to the square section in smooth flow (dC, /da = -4.4). Therefore, the
screen fixed at a distance of 0.05.0 makes the section stable with respect to galloping instability
(according to the Den Hartog criterion). It is to note that Cooper (1988) for a gap width equal
to 0.09.D obtained an unstable system.

GLOBAL PARAMETERS No Screen D/40 D/30 D20 D13 D/10
Drag coefficient
C 2.34 2.33 2.38 2.34 2.35 2.38
D
Rear body drag coefficient
C 1.53 1.58 1.62 1.53 1.56 1.60
DRB
Strouhal b
e 0.125 0.120 0.122 0.121 0.119 0.120
Lift coefficient standard deviation
' 1.39 1.49 1.52 1.39 1.43 1.42
C
Drag coefficient on the screen
c - 2.68 2.80 2.82 2.89 2.90
Ds
Lift coefficient slope in 0°
dc, /da -4.4 -3.2 - -0.6 - -

Tab. 3.4 - Global parameters without and with the screen S1 fixed to the square section model, at different distances,
in smooth flow. Results for Re = 2.26x105.
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LOCAL PARAMETERS No Screen D/40 D/30 D/20 D/13 D/10
Mean base pressure coefficient
~ -1.60 -1.68 -1.71 -1.59 -1.64 -1.69
Cyp
Standard deviation base pressure
. 0.32 0.37 0.37 0.30 0.33 0.34
coefficient C,,
Separation point mean pressure
.= -1.62 -1.68 -1.79 -1.80 -1.80 -1.59
coefficient C,
Separation point standard deviation
. 0.72 0.72 0.72 0.66 0.68 0.68
pressure coefficient C,,
Mean pressure coefficient behind
- -1.92 -2.03 -2.01 -2.09 -2.12
the screen C g,

Tab. 3.5 - Local parameters for the system with screen S1 fixed to the square section model, at different distances, in

smooth flow. Results for Re = 2.26x10°.
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Fig. 3.23 - Main aerodynamic parameters for systems without and with the screen S1 at different distances (Re =
2.26x10%): on the left, drag coefficient and mean base pressure coefficient; on the right, standard deviations of the lift
coefficient and pressure coefficient at the separation point.
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Fig. 3.24 - Mean pressure coefficients around the screened square cross-section in smooth flow, at Re = 2.26x105,
with wind normal to the screen (a = 0°). The screen S1 is fixed at different distances between /40 and D/10.
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Smooth Flow
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Fig. 3.25 - Pressure coefficient standard deviations around the screened square cross-section in smooth flow, at Re=
2.26x10°, a=0°, screen S1 gap widths from /40 to D/10.
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Fig. 3.26 - The screen effects on selected locations for different Reynolds numbers. On the left, the tap numeration
and markers employed. On the right, C," at the separation point and other two base points for different gap width.

Each line type represents the Reynolds number tested: continuous line (Re=2.26x10°), dashed line (Re=1.01x105),
dotted line (Re=7.86x10%).
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Fig. 3.27 - Maximum (top) and minimum (bottom) pressure coefficients around the square cross-section with the
screen Sl at two different Reynolds numbers.
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Fig. 3.28 - Pressure spectra at the separation point and in some locations along the base of the square section model
in smooth flow. Re=2.26x10°.
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The presence of an open gap cavity, with the extremities close to the separation point of the
bluff body system, involves an oscillating flow driven by an oscillating pressure gradient
caused, in turn, by the vortex shedding. The oscillating flow occurrence is also confirmed
through the CFD simulations reported in Chapter 4.

The non-dimensional frequency of vortex shedding is slightly lower when the screen is present
(Tab. 3.4). However, St does not vary much by increasing the gap width. This implies that the
use of eq. 2.20 to define the Womersely number (Wo) may be a representative dimensionless
number to characterize the oscillating flow in the cavity, at least in the range of screen

distances tested.

Behind the screen, the C, distribution in the central portion of the cavity is almost constant,

and local effects close to the extremities occur for the second sub-group of gap widths (Fig.
3.24). This is supposed to be caused by the model sharp edge, when the air is drawn in the
cavity and, locally, a flow separation occurs. However, the CFD flow visualization discussed in

the next chapter clarifies this peculiar effect.

The mean pressure coefficient (C, ) in the cavity is always negative, and it ranges from -1.92

to -2.12. Assuming the pressure distribution on the external face of the screen to be similar to
those measured on the body face without screen, and the pressures on the internal face similar
to those measured on the corresponding locations of the screened body face, the estimated

mean value of the screen drag coefficient (C, ) ranges between 2.7 and 2.9.

Fig. 3.25 shows that the pressure fluctuations in the cavity reduce moving toward the center
location. In particular, the internal pressure dominant frequencies are related to the vortex
shedding, as confirmed by the power spectral density analysis reported in Fig. 3.29 for two
tested geometries. Each figure shows two peaks, respectively at St and 2St. Therefore, the
driving pressure gradient at the extremities of the cavity is a periodic signal composed by two
dominant frequencies, one twice the other. The phase difference between these components
has been studied through FFT (Fast Fourier Transform) analyses, but it does not seem a
deterministic quantity. On the other hand, the combination of such components with a
random phase, in a narrow band process such as the vortex shedding in this system, may
explain the non-null skewness that has been found in most of the cavity pressure signals.
However, moving towards the middle of the cavity, the pressures exhibit a higher (tap 16), or
at least equal (tap 14), energy content at the first superharmonic frequency. The two peaks
seem slightly affected by the screen distance: only when the screen is fixed at /13 and /10
they result increased.

Generally, by increasing the Reynolds number, and therefore the Womersley number, the
pressure oscillations seem to regularize. This behavior can also be recognized in the pressure
spectra, where the difference between the energy content at the two dominant frequencies
above discussed, and the other remaining frequencies, results increased.

The values of C,' measured along half of the cavity, respectively one for each sub-group, are

reported in Tab. 3.6 and Tab. 3.7. The values reported for different Re numbers, seem to be
more affected by the position along the cavity than by the Re (and subsequently Wo) number
variation. Referring to Fig. 2.12, this may indicate that the oscillating flow, in the investigated
range of Wo numbers, lies in the same regime. The pressure measured at the central point (tap
17) seems to exhibit the highest variations.
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N° Tap Re = 7.86x10* Re = 1.01x10° Re =2.26x10°
Wo=3 Wo=35 Wo=5

17 (central) 0.24 0.22 0.15

16 0.30 0.30 0.29

14 0.38 0.37 0.36

12 (edge) 0.49 0.48 0.47

11 (model separation point) 0.70 0.70 0.72

Tab. 3.6 - System with the square cross-section and screen S1 at /40 in smooth flow. Pressure coefficient standard
deviations behind the screen and at the separation point.

N° Tap Re = 7.86x10+* Re = 1.01x10° Re = 2.26x10°
Wo=6 Wo=7 Wo=10

17 (central) 0.29 0.27 0.17

16 0.35 0.36 0.32

14 0.39 0.40 0.36

12 (edge) 0.50 0.51 0.47

11 (model separation point) 0.66 0.69 0.66

Tab. 3.7 - System with square cross-section and screen S1 at /20 in smooth flow. Pressure coefficient standard
deviations behind the screen and at the separation point.
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Fig. 3.29 - Pressure spectra behind the screen S1 and at the separation point. Systems with the square cross-section
in smooth flow: gap width equal to D/40 (left), Re=2.26x10> (Wo=5) and to V13 (right), Re=2.26x105 (Wo=16). It is
to note that here the colors and markers indicate taps different than Fig. 3.26.

Tests with different screen configurations

The pressure distribution around the screened model results completely different if the cavity
is internally closed (Fig. 3.30), or if the screen has an opening (Fig. 3.32). The global
aerodynamic coefficients in these configurations, described in Fig. 3.7 and Fig. 3.9, are

summarized in Tab. 3.8.

Screen 52

For a system which employs a screen with closed cavity (screen S2), both C_p and C," exhibit a
trend similar to the baseline case without screen, and basically the flow sees the screen as an
elongation of the model in the streamwise direction (given by the screen thickness plus the gap
width). In particular, the mean pressure coefficients follow the distribution suggested by the

literature, ie. the side wall pressures and base pressures are increased (e.g. Laneville and Yong,
1983).
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As shown in the left side of Fig. 3.30, the mean pressures behind the screen are similar to the
mean pressure measured at the separation point. Moreover, while behind the screen S1 the
fluctuations reduce moving toward the central location of the cavity, behind the screen S2 the

C,' are similar to the value measured at the separation point.

Power spectral density analyses reveal that the energy content of pressure fluctuations behind
both the screens S1 and S2 is mainly concentrated around the Strouhal frequency (Fig. 3.31).
However, the air-tight compartmentation employed in the screen S2 divides the cavity gap into
two cavities, each one with an external opening placed behind the separation point. This
geometry prevents internal flows and, at the same time, it exhibits pressure oscillations equally
distributed all over each cavity. This pressure oscillates according to the pressure at the
separation point both in terms of frequency and amplitude.

In this configuration, the use of external pressures around the baseline case without the screen
(Z.e. a model which does not reproduce the screen) to evaluate the internal ones, namely the
external and internal pressures decoupling, seems to be allowed.

The oscillating flow features highlighted with the cavity internally closed must be kept in mind
for future three-dimensional studies. In this perspective, the results obtained preventing the
oscillating flow, suggest to consider possible Helmholtz resonances (e.g. Holmes, 1979) and the

required volume distorted scales.

GLOBAL No Screen | S1-D/40 | S2-D/40 | S3-D/40 | S1-D/20 | S2-D/20 | S3-D/20
G 2.34 2.33 2.27 2.46 2.34 2.27 2.51
Cors 1.53 1.58 1.45 1.63 1.53 1.43 1.65
St 0.125 0.120 0.122 0.116 0.121 0.124 0.119
C' 1.39 1.49 1.34 1.45 1.39 1.26 1.38
Cos - 2.68 2.38 2.03 2.82 2.40 2.35

Tab. 3.8 - Global aerodynamic coefficients for the square section model, in smooth flow, with the screens S1, S2 and
S3 at different distances. Results for Re=2.26x10°.
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Fig. 3.30 - Mean (left) and standard deviation (right) of the pressure coefficients around the screened square section
in smooth flow, at Re = 2.26x10%, with wind perpendicular to the screen and the two screens (S1 and S2) fixed at the
same gap width equal to 1/40.
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Fig. 3.31 - Square cross-section in smooth flow with screen S2 fixed at 1/40 (left) and 1/20 (right), at Re =7.86x10*
spectra of the pressures behind the screen and at the separation point.

Screen 53

The behavior of the system with the screen S3 (the screen with a central opening on the front
face) appears more complicated compared to the other two examined cases. The aerodynamic
coefficients when such a screen is present, especially in terms of C, and St, exhibit

remarkable variations, as reported in Tab. 3.8.

The mean and standard deviations of the pressure coefficients describe a different system as
compared to screen configurations analyzed up to now (Fig. 3.32). The pressures on the body

sides are always higher than the reference case. In terms of C ', with the exception of the last

two taps at the leeward corner, the pressures fluctuate uniformly along the side length. At the
base, a typical U-shaped mean pressure distribution indicates that the formation of vortices still
occur in the centerline. Nevertheless, the standard deviation trend in this part is shifted

compared to the baseline configuration, and the pressure is significantly lower.

Behind the screen S3, the pressures in the proximity of the extremities are higher than those
measured with the screen S1 or S2, while in correspondence of the central opening, a

stagnation point occurs. The pressure reduces moving toward the center, up to the two taps
close to the opening. These exhibit a C, lower than all the other taps, and a C," higher than at

any other location around the body surface, even higher than at the separation point. This can
be explained supposing that during the vortex shedding, on the side where the maximum
instantaneous suction occurs, the air in the gap (behind the whole screen) is forced to move
together with the air that is entering through the frontal opening toward this side. The strong
mean suction measured in the two taps behind the middle one suggests that the flow close to
these points “feels” a constriction that causes an increase in the local velocity (and therefore a
reduction of the pressure). The constriction is supposed to be the composed by two effects,
namely: a vena-contracta effect at the screen opening (as an orifice plate), and the effect caused
by the air in stagnation on the central portion of the cylinder’s face.

Generally, behind the screen S3 an oscillating flow occurs with different fluid-dynamic
characteristics, as compared to the one observed with the screen S1.
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Fig. 3.32 - Mean (left) and standard deviation (right) of the pressure coefficients around the screened square section
in smooth flow, at Re = 2.26x105, with wind normal to the screen and the two screens (S1 and S3) fixed at the same
gap width equal to 1/20.

Systems with the square cross-section in turbulent flow
The presence of the screen S1 in turbulent flow at null angle of attack provides less variations

of pressure and force coefficients compared to the smooth flow case, as shown in Tab. 3.9, Tab.
3.10 and Fig. 3.33. Both St and C, ' exhibit a different value if the screen is present, but the
values remain almost unchanged for different gap widths until 7J10, where a small variation of
C, 'occurs. The C..,, evaluated through the pressures at the base, show that the variation of
drag pressure at the rearbody is negligible. On the basis of the C,.; trend and the previously
discussed features of the forebody drag in rectangular cylinders, it seems reasonable to consider
the C, a global coefficient almost unaffected by the presence of the screen S1.

It is to note that in this case, all the global aerodynamic coefficients are evaluated through
integration of the pressures. Due to the non-uniformity of the approaching flow, the forces
measured with the force balances at the extremities of the whole model were not considered

usable.

Generally, the pressures on the external faces of the body are less affected by the variations of
the gap width as compared to the smooth flow case. The distributions of both C_p (Fig. 3.34)
and C,' (Fig. 3.35) of the pressure coefficients seem to vary monotonically with the screen
distance, with the exception of some C,' values obtained with the screen spaced of 2J10.

The mean pressure coefficients close to the separation point are the most affected by the
presence of the screen. In the first half of the side, the pressures are always lower than in the
baseline case without the screen, while in the second part they are all higher than those.

The mean pressure distribution at the base is almost the same for all the tested configurations.
It seems that the shear layers in turbulent flow are enough stable to result almost unaffected by
the presence of the screen. Therefore, the shear layer/trailing-edge interaction remains
basically unchanged and the locus of vortex formation is more distant from the base as
compared to the smooth flow case.
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On the other hand, the pressure coefficient fluctuations are affected by the presence of the
screen. Along the lateral sides, the peak results slightly shifted downstream, as it occurs with a
lower index of turbulence (Lee, 1975). However, the C ' laterally (except than close to the

front corner) and at the base, result increased if compared to the baseline case without screen.

The power spectral density analysis confirms an increase of energy content on the portion of

base close to the edge (compared to the smooth flow case), while C_ '

unchanged (Fig. 3.36).

remains almost

GLOBAL PARAMETERS No Screen D/40 DI30 DJ20 D3 Do
C, 2.03 - - - - -

Cors 1.22 1.24 1.23 1.23 1.23 1.20

St 0.135 0.130 0.131 0.128 0.132 0.131

C.' 0.89 0.96 0.96 0.96 0.96 0.92

Cps - (2.86) (2.89) (2.95) (2.99) (2.98)
oC, /oa  [rad] -5.5 - - - - -

Tab. 3.9 - Global parameters of square cross-section without and with the screen S1 at different distances, in
turbulent flow. Results for Re=1.58x10°.

LOCAL PARAMETERS No Screen D/40 D30 D20 D13 D10
Cy, -1.20 -1.23 -1.22 -1.22 -1.20 -1.18
Cy' 0.29 0.34 0.33 0.34 0.34 0.35
Cep -1.87 -1.99 -2.02 -2.08 2.11 2.11
Cep' 0.58 0.58 0.56 0.55 0.54 0.52
Coser - -2.06 -2.09 2.15 2.19 2.18

Tab. 3.10 - Local parameters of square cross-section without and with the screen Sl at different distances, in
turbulent flow. Results for Re=1.58x10°.

1.1
1
O‘gc/
“Sosl ]
< ——Cr’
" - k- Cﬁ('p,
=07
)
06; .
* e |
0.5 T
0.4 . . -
NoSereen D/40 D/30 D/20 D/13 D/10

Fig. 3.33 - Standard deviations of the lift coefficient and pressure coefficient at the separation point, for systems
without and with the screen S1 at different distances, in turbulent flow with a Re=1.58x10°.
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Fig. 3.34 - C_p distributions around the square cross-section equipped with the screen S1 at different distances in
turbulent flow for o= 0° at Re =1.58x10°.
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Fig. 3.35 - Cp' distributions around the square cross-section with the screen S1, gap width between /40 and /10,
turbulent flow, a=0° and Re =1.58x10°.
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Fig. 3.36 - Pressure spectra at the separation point and the base of the square section model in turbulent flow at Re =
1.58x10°: case without the screen (left) and with the screen fixed at )20 (right).
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Behind the screen, the Cp distribution is similar to the one observed in the smooth flow case.

The mean pressure coefficient is always negative (values in the range -2.06 to -2.18), and local
effects close to the cavity extremities occur for screen distances higher or equal to 1)/20.

In terms of C,', Fig. 3.35 shows lower values in the cavity as compared to the smooth flow

case. However, due to the presence of the screen, these fluctuations are still driven by the
vortex shedding process. The time histories and the pressure spectra (filtered around the
Strouhal frequency) reported in Fig. 3.37 show that an oscillating flow occurs, although
influenced by a widened range of frequencies, as compared the smooth flow case. The time
interval reported on the left side of Fig. 3.37 is representative of a signal less regular in
amplitude and phase due to a modulation effect. Therefore, in many cases the time signals of
symmetric pressure taps alternate an almost perfect phase opposition with a nearly in-phase
behavior. The data reported in Fig. 3.37 were filtered around st to clearly show the modulation
effect. However, as compared to the smooth flow case, the present case does not exhibits
evident peak at 2 st.

In Fig. 3.38, the phase lags measured between the pressure taps behind the screen and the first
tap on the lateral side close to the separation point are reported. In both cases, respectively
with a smooth and a turbulent flow, the phase lag only depends on the gap width. The
turbulent case exhibits a phase variation lower than the smooth one, although a dependency on
the gap width still remains. It is supposed that, while the “driving force” of oscillations remains
almost of the same intensity, the higher volume of fluid to move by increasing the gap width
tends to increase the phase lag in turn.

Tests carried out at different Reynolds numbers show that the phase lag is not affected by this
parameter in the investigated range. A similar Re-independent trend was already observed and

discussed referring to C,' into the cavity with an approaching smooth flow (Tab. 3.6 and Tab.

3.7).
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Fig. 3.37 - Pressure time histories (left) and spectra (right) behind the screen S1 at [)/20. System with the square
cross-section, turbulent flow, Re =1.58x105.
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Smooth Flow

Turbulent Flow
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Fig. 3.38 - Phase difference between the pressure measured on the side wall close to the separation point and the
pressures measured along the cavity, for a null wind angle of attack, at the highest Reynolds numbers (smooth
Re=2.26x10, turbulent Re=1.58x10%). Comparison between smooth (left) and turbulent (right) approaching flow in
systems with the square cross-section.

Systems with the rectangular 2:3 cross-section in smooth flow
The system with rectangular 2:3 cross-section, in smooth flow, at null angle of attack, is

influenced by the presence of the screen S1, as pointed out by the global (Tab. 3.11) and local
(Tab. 3.12) parameters, summarized in Fig. 3.39. Therefore, the system globally seems more

influenced than the square cross-section case with the same flow condition and, as discussed in
the following, the C distributions exhibit some differences (Fig. 3.40).

The drag coefficient, along with the mean pressure distribution on the rear side, increases with
the gap width (up to 7.5% of growth). This parameter (more affected than in the square section
case) indicates that the presence of the screen S1 strengthens the underpressure in the body
wake and/or it shifts the forming vortex core closer to the body.

In the current set of measurements only two gap widths were tested, so that it is less clear the
presence of discontinuities in the pattern of global and local parameters respect to the gap
width.

One of the main differences between the screen Sl effects on the square and the rectangular
2:3 cross-sections lies in the C_p distribution on the lateral sides (Fig. 3.40-left). In the current

case, the presence of the screen fixed at 720 increases the pressure on the body sides, which
results always higher than those measured without screen. With the attempt to find a common

pattern to the square cross-section case, the gap width can be expressed respect to the side
length B, so that the screen distance of 0.05D results equal to 0.0755. Nevertheless, the C_p

distribution has still not a trend like that obtained for square cross-section with the screen S1 at
D/13 (=B/13=0.076B). Moreover, when the screen S1 is present, in the base region the pressures
are reduced almost uniformly, while in the square section case the central portion of the base
was the most affected. This may be explained recalling the basic flow features of a rectangular
cylinder with such a small side ratio (see Section 2.2). The shear layers of the rectangular 2:3
cross-section without screen are not influenced by the trailing edges, and the base pressure
indicates that they are still unaffected when the screen S1 is attached on the body face.
Therefore it is shown that, locally, the aerodynamic effects produced by the screen depend also
on the shielded cross-section side ratio employed in the system.
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On the other hand, the C,' distributions reported in Fig. 3.40 show on the lateral side a

modified trend respect to the case without screen, according to the square cross-section case of
Fig. 3.24. Also on the base, the pressure fluctuations are influenced with the same patterns
observed for the square cross-section in smooth flow. The comparison of power spectral

densities reported in Fig. 3.41 confirms the occurrence of a mechanism of interaction similar to

the one encountered with the square cylinder in this region.

The case of the screen S1 fixed at 7)20 was also tested varying the angle of attack. In this case,
the lift coefficient slope in the origin is equal to -1.24. The dC, /da evaluated on the baseline

case without screen results less than halved when the screen is present, so that, the system

becomes stable with respect to the galloping instability.

GLOBAL PARAMETERS No Screen D/40 D/20
Co 291 3.00 3.13

Cons 2.01 2.14 2.22

St 0.127 0.127 0.128

o 1.62 1.72 1.55

Cpos - 3.33 3.45

dC, /da -3.04 - -1.24

Tab. 3.11 - Global parameters for the system with rectangular 2:3 cross-section in smooth flow without and with the
screen Sl at different distances. Results for Re=2.02x105.

LOCAL PARAMETERS No Screen D40 D20
Cyy -2.29 -2.40 2.45
Cy' 0.55 0.54 0.50
Cep -1.83 -1.95 -1.74
Cep' 1.22 1.28 1.15
C - -2.47 -2.54

pScr

Tab. 3.12 - Local parameters for the system with the rectangular 2:3 cross-section without and with the screen S1 at
different distances in smooth flow. Results for Re=2.02x105.
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Fig. 3.39 - Main aerodynamic parameters for systems with the rectangular 2:3 cross-section without and with the
screen Sl at different distances (smooth flow, Re = 2.02x10%): on the left, drag coefficient and mean base pressure

coefficient; on the right, standard deviations of the lift coefficient and pressure coefficient at the separation point.
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Smooth Flow

Smooth Flow
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Fig. 3.40 - CT) (left) and C,'

(right) distributions around systems with rectangular 2:3 cross-section and screen S1

fixed at different distances at Re = 2.02x10%, in smooth flow, at null wind angle of attack.
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Fig. 3.41 - Pressure spectra at the separation point and the base of the 2:3 rectangular section model in smooth flow
at Re=2.02x105: case without screen (left) and case with screen at 1/40 (right).

According to the two previous cases with the square cross-section in smooth and turbulent
flow, a wider gap leads to a local reduction of mean suction behind the screen, close to the
extremities (Fig. 3.40). Behind the screen the mean pressure coefficient is lower than in the
systems with square cross-section, so that the screen drag coefficients of 3.33 and 3.45 are
obtained (Tab. 3.11).

The pressure behind the screen regularly oscillates driven by alternate vortex shedding on the
lateral body sides. As it occurs with the square section in smooth flow, an additional
component at 2t was observed.

The phase difference of cavity pressures, with respect to a point close to the separation corner
(Fig. 3.42), also exhibits a trend with the gap width similar to the first case discussed (Fig. 3.38).
Nevertheless, while for a cavity depth of /40 (Fig. 3.42-left), the phase lag at the Strouhal
frequency is closer to the values obtained with the square cross-section, for the 120 case (Fig.
3.42-right), such a phase angle results higher in the system with the rectangular cylinder.
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Fig. 3.42 - Phase difference between the pressure measured on the side wall close to the separation point and the
pressures measured along the cavity: comparison between the systems with square and rectangular 2:3 cross-
sections, with the screen S1 at 1/40 (left) and at 7¥20 (right). Smooth flow, Re = 2.26x10° (case with the square), Re
=2.02x10° (case with the rectangle), a=0°.

When the cavity is closed, the system shares a common behavior with the square cross-section
case. Global and local parameters, respectively reported in Tab. 3.13 and Tab. 3.14, confirm that
the screen S2 reduces the overall drag of the system, once again, simply as if the streamwise
length of the body was increased. In particular, with the screen S2 the pressures follow on both
lateral sides the patterns observed for the baseline section model without screen, while the
pressure distribution at the base is increased.

In this case, as in the analogue with the square cross-section, the external and internal
pressures decoupling seems possible. As shown in Fig. 3.43, the values of C, and C,' measured

in the cavity, are similar to the values measured on the rectangular 2:3 cross-section without
the screen, in the proximity of the extremity locations, namely at the separation points.

Observing, for instance, the C ' for a gap width equal to /40 (Fig. 3.43), it is possible to notice

that the above mentioned effects of the screen S1 in terms of fluctuations increase (Fig. 3.40) do

not occur when the screen S2 is employed.

GLOBAL PARAMETERS No Screen S1-D/40 $2 - D/40 $3 - D/40
Co 291 3.00 2.82 2.83
Cons 2.01 2.14 1.90 1.86
St 0.127 0.127 0.126 0.123
C' 1.62 1.72 1.49 1.31
Cos - 3.33 2.64 2.15

Tab. 3.13 - Global parameters evaluated for systems with rectangular 2:3 cross-section and screens S1, S2 and S3 at
D/40, in smooth flow, at Re=2.02x105.

LOCAL PARAMETERS No Screen S1-D/40 S2 - D/40 S3 - D/40
Cyy -2.29 -2.40 2.11 -2.09
Cy' 0.55 0.54 0.51 0.60
Cep -1.83 -1.95 -1.79 -1.55
Cep' 1.22 1.28 1.13 0.99
Co - -2.47 1.72 1.18

Tab. 3.14 - Local parameters evaluated for systems with rectangular 2:3 cross-section and screens S1, S2 and S3 at
D/40, in smooth flow, at Re=2.02x105.
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Fig. 343 - C, (left) and C," (right) distributions around the rectangular 2:3 cross-section at Re = 2.02x10° in

smooth flow for a= 0° with the screen S1 and S2 at the same distance (2/40).

The screen S3 attached at a distance equal to /40 from the body face, influences the
aerodynamics of the rectangular 2:3 cross-section in a different way compared to what
observed for the system with the square cylinder. In particular, the presence of the screen S3
causes the highest parameter variation, as compared to the same system configuration with the
square cross section: a reduction of 18.9% is achieved for C, ' (Tab. 3.13). However, the C, and

C, ' of the baseline case (rectangular 2:3 cross-section without the screen) result reduced when

the screen S3 is present.

The pressures at the base are higher than those measured on the baseline configuration without
the screen, while for the square cross-section, a reduction of pressures in this portion of the
body was observed (more evident than with the screen S1).

The different mechanism of interaction can be shown also in the frequency domain. The
comparison between the two cross-sections without and with the screen S3 at 740 is reported
in Fig. 3.45. The screen S3 attached to the rectangular 2:3 cross-section reduces the peak at the
separation point, and the energy content at the base, close to the rear corner. On the contrary,
if the screen is fixed to the square cross-section, these values are increased along with the
growth of an additional Strouhal super harmonic peak, measured at the tap in the middle of the
base.

On the other hand, the wind induced pressures behind the screen in the two systems behave
similarly. The discontinuous distribution of C, in the cavity is influenced by the values in the

vicinity of the opening, even if the fluctuation of the pressure coefficients near the central
opening are similar to the value measured at the separation point. This result is also evident in
the frequency domain. Increased fluctuations are found mainly in correspondence of the
Strouhal frequency and its first superharmonic for systems with both cross-sections when the
screen is fixed at 1/40, while the energy growth seems more pronounced on the whole
spectrum when the screen in distanced of /20 (Fig. 3.46).

It is worth noting that the pressure distribution related to the screen S3 reported in Fig. 3.44, is
not symmetrical behind the screen itself. This problem is due to an imperfection of the screen.
It is possible that the two stainless steel foils were deformed while fixing them to the spacers.
Otherwise it is possible that the whole screen, equipped to the section model through screws,
was not opportunely fixed during this measurement (with a gap width of /20 this problem is
less evident).
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Fig. 3.45 - Pressure spectra at the separation point and at the base of two systems with the screen S3 at the same
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3.3.3 Results for flow at an angle of attack to the system

Systems with the square cross-section in smooth flow

The results obtained for systems with a square cross-section without and with the screen, fixed
respectively at /40 and )20, approached by a smooth flow are presented. In this set of tests,
the wind direction ranges between a = -5° and a = +180° considering a = 0° the wind normal
to the shielded face of the bluff body. However, for the sake of clarity, the data are reported
only up to a = 90°. The experimental tests were carried out varying the Re numbers in the

range previously described for flow normal to the screen.

The drag (C,) and lift (C, ) coefficients obtained for the baseline case without screen are
reported in Fig. 3.47. The highest value (in absolute terms) of C, occurs for a = 13°. According
to the literature (e.g. Lee, 1975, Rockwell, 1977), around this angle of attack (the angle slightly
varies from one work to another), which follows a counter clockwise rotation (according to
Fig. 3.17), the flow mean reattachment occurs at the body lower side. Generally, for a
rectangular cylinder, the angle for flow reattachment corresponds to a local minimum of the
Co.

In the baseline configuration, the lift coefficient slope centered in 0° is equal to -4.4. Such

parameter was evaluated through a linear regression of the values corresponding to the wind
angles between -2° and +2° (Tab. 3.4).

When the screen S1 is fixed at the distances of /40 and D20, the lift coefficient slope
centered in 0° (dC,_/da) is equal respectively to -3.2 and -0.6, both obtained through a linear

regression of the values measured between a = -5° and a = +5°. In these cases, reported
respectively in Fig. 3.48 and in Fig. 3.49, it is evident the reduction of dC _/da due to the
presence of the screen, even if only with a gap width of )20 the section is stable to the
galloping phenomenon (according to the Den Hartog criterion).

The maximum C, (in absolute value) obtained for the system with the screen S1 at 120
results shifted to a = 15°. Therefore, it seems that the presence of such screen slightly delays
the flow mean reattachment.
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It is to note that the angle for reattachment of a rectangular cylinder in smooth flow tends to
increase if the side ratio reduces. For instance, Da Matha Sant’Anna er al. (1988), obtained an
angle for reattachment a = 13.5-14° for the square section and a = 16° for the rectangular
cylinder with side ratio B/D = 0.8. However, the angle at which reattachment occurs, in the
system with the screen at 740, remains around a = 13°.
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Fig. 3.47 - On the left, C, and C, measured on the baseline square cylinder, o = -5° + 90°, smooth flow, Re =

2.26x10°. Values measured with the force balances (continuous line) and values obtained through the integration of
pressures (dotted line) are reported. On the right, a focus on the range a = 0° + 25°.
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Fig. 3.48 - On the left, C, and C, measured on the system composed by the square cross-section and the screen S1

at D/40, a =-5° + 90°, smooth flow, Re=2.26x10°. On the right, a focus on the range a = 0° + 25°.

1.5 1.5 I
0 10 20 30 40 50 60 70 80 90 -5 0 5 10 156 20 25
Angle [deg| Angle lrir'_{;J
0.5 0.5
0 0
~ ~
b) CL @)
3, | s T —
cb
,1 4 ,1 4
0 10 20 30 40 S0 60 70 80 90 -5 0 5 10 15 20 25

Angle [deg| Angle [deg]

Fig. 3.49 - On the left, C, and C, measured on system composed by the square cross-section and screen S1 at
D20, a = -5° + 90°, smooth flow, Re=2.26x10°. On the right, a focus on the range a = 0° + 25°.
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The C_p distributions measured around the middle section of the cylinder, for angles of attack

in the range a = 0°+25°, are shown in Fig. 3.50. The screen effects observed for a wind direction
equal to 0°, occur also for a small angle of attack. When the screen S1 is present, for a=5° and
10°, the pressures on the upper side (the opposite to that where a reattachment is expected) and
at the base are almost always lower than in the baseline case, irrespectively to the gap width.
Since for such small wind angles of attack a mean pressure difference occurs at the cavity
extremities, it is argued that the oscillating flow observed for a = 0°, becomes a pulsating flow,
namely, a flow composed by a non-zero mean and an fluctuating component.

For a wind direction a = 15°, the mean pressure distributions still exhibit a small jump between
the external value in the proximity of the upper extremity and into the cavity. The pressures
measured at the base of the three systems exhibit the same distribution. This pattern also occurs
on the lateral side in the wake region when the angle reaches 20°. In particular, at this angle of
attack, the pressure in the cavity is equal to the pressures at both the extremities. With the help
of the C,' reported in Fig. 3.51, it is supposed that such condition represents the end of the

oscillating flow behavior driven by the vortex shedding. For a = 20°, also the pressure
fluctuations behind the screen, although attenuated, are similar to those at the exterior, in the
proximity of the extremities.

Then, at a = 25° the presence of the screen influences only the lateral side directly exposed to
the flow. A completely different role of the screen is expected for values between this angle
and a = 90°. The flow tends to go directly in the cavity (Fig. 3.52), and local effects at the inlet
are expected.

Finally, for a wind direction parallel to the screen, an increased lifting behavior by increasing
the gap width is shown in Fig. 3.48 and Fig. 3.49.
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Systems with the square cross-section in turbulent flow
In Fig. 3.53, the mean pressure coefficient distributions around the square cross-section
employed in turbulent flow, without and with the screen S1, are reported. The signals
measured with the force balances were not employed.

In contrast to the previous case in smooth flow, the mean pressures at the base already coincide
for a null angle of attack. By varying the wind direction in the range a = 0+25°, the pressures in
this portion of the body remain unaffected by the presence of the screen, irrespectively of the

gap width. By contrast, the pressures on the upper body side behaves similarly to the previous
case in smooth flow. From a small angle of attack (a = 5°), up to 15°, the distributions of C_p are

lower when the screen is present at 1)/20 or D/40.

The shear layers stability enhanced by the turbulence, seems to preserve on the rear side the
peculiar pressure distributions caused by the screen, up to a = 15°. In smooth flow, at this angle
of attack, the pressures in this portion of the body were not affected by the presence of the
screen anymore.

For a wind direction equal to 20°, the pressure exhibits patterns similar to the distributions
observed in smooth flow for a = 25°. This seems to be in line with the literature, in which the
turbulence effects can be explained as a body elongation, with a corresponding anticipated

angle of flow reattachment as compared to the smooth flow case.

Behind the screen, close to the edge directly exposed to the flow, the mean pressures exhibit a
local peak. This local effect of flow separation occurs for a = 20° irrespectively of the gap width,
but it becomes higher when the screen is fixed at 720, and the angle of attack reaches 25°. The
cavity extremity on the upper side (according to Fig. 3.53), connects the interior of the cavity
with a separated flow region. Therefore, the internal pressures tend to equalize with the

pressures in the wake.
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Systems with the rectangular 2:3 cross-section in smooth flow

The C, and C, coefficients obtained for systems with the rectangular 2:3 cross-section,

without and with the screen S1, are reported respectively in Fig. 3.54 and Fig. 3.55. The model

without the screen for a = 90°, is a rectangular 3:2 cylinder with the wind normal to the

shortest face. The maximum lift coefficient (in absolute value) occurs around a = 20°. Da Matha

Sant’Anna et al. (1988), reported a flow reattachment for a rectangular cylinder with side ratio

equal to 0.6 at a=19°.
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Fig. 3.55 shows that the C, peak-shifting-effect caused by the presence of the screen, and

observed also with the square cross-section in smooth flow, still occurs. In this case, less
measurements were performed, so it is not possible to indicate exactly the angle of flow
reattachment with the screen. However, in the figure it is evident that the peak lies between o
=20 and 25° (Da Matha Sant’Anna et al. indicate that for a side ratio of 0.5 the flow reattaches
at 23°).

The lift coefficient slope around 0° is equal to -3.04, and it is obtained through a linear
regression of the values corresponding to the wind directions between -3° and +3°. When the
screen Sl is present, dC _/da is equal to -1.24 (linear regression of C, for 0° < a < +5°). In
agreement with the results obtained for the systems with the square cross-section, the
reduction of lift coefficient slope introduced by the presence of the screen S1 is evident, and it

leads the system to became stable against the galloping phenomenon.

The pressure distributions reported in Fig. 3.56 confirm the results observed at null angle of
attack, in the previous section. Locally, the rectangular 2:3 and the square cross-sections are
affected by the screen S1 in different ways.

For a small angle of attack, such as 5°, the pressure distributions without and with the screen
are similar. This behavior can be due to the strong mechanism of vortices formation related to
the rectangular 2:3 cross-section. The lateral side in the region of separated flow has all the
pressures lower than the baseline case without screen only when the angle of attack reaches
15°. With the square cross-section this condition was reached for a = 5.

The angle for reattachment is shifted by the presence of the screen. In case with square cross-
section, the angle for reattachment (with the screen) was at 15°, and from a = 20° the pressure
in the cavity was equalized with the wake pressure. In a similar way, with rectangular 2:3
cross-section, the system with the screen experiences flow reattachment between 20° and 25°,
and the cavity pressure equalization is achieved for a = 25°. It is argued that, when the flow
completely reattaches on the body side, the recirculating bubble “trapped” by the shear layer
and the wake portion on the opposite side, are connected by the cavity, so the pressure

equalizes.
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Fig. 3.54 - On the left, C, and C, measured on the rectangular 2:3 cross-section without screen, a = -5° + 100°,

smooth flow, Re=2.03x10°. Values measured with the force balances (continuous line) and values obtained through
the integration of pressures (dotted line) are reported. On the right, a focus on the range a = 0° + 25°.
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The case of screen S1 fixed at the base (a = 180°)
The tests carried out by varying the angles of attack were focused on the wind directions

around the configuration of flow normal to the screen S1. The range of wind directions for
which the oscillating flow (observed for a = 0°) persists was investigated. However, the
experimental campaign was conceived in order to measure the screen effects also when the
flow comes from the opposite direction, namely, for the configuration of screen attached at the
base of the bluff body.

The global aerodynamic coefficients reported in Tab. 3.15 show that, generally, the screen
fixed at the base influences the system aerodynamics much less than when it is placed on the
front. Depending on the side ratio of the screened bluff body, some parameters result almost
unaffected, as C, and C,' for the square cross-section, while parameters as the C, ' for the
rectangular 2:3 cross-section varies. In particular, the lift coefficient fluctuations are always
reduced. Based on the side ratio, the screen may result slightly pushed toward the body (case
with the square cross-section) or pulled away from the body (with the rectangular 2:3 cross-

section).

The two cases in smooth flow, reported respectively in Fig. 3.57 and Fig. 3.59, exhibit higher
mean pressures along the body sides when the screen is fixed at the base. In the case of square
cross-section with a turbulent flow they are much less affected (Fig. 3.58).

When the square cross-section is employed in smooth and turbulent flow, the distribution of

C_p inside the cavity is lower than the one measured at the base of the bluff body without the

screen. The assumption of a distribution on the external layer of the screen similar to the base
distribution for the baseline case, may explain the results reported in Tab. 3.15, for which the
screen results attracted to the body. With the same approach, the pressure distributions
measured in the cavity of the rectangular 2:3 cross-section case may explain the positive value
of Cs (the screen tends to be distanced from the body).

The presence of the screen tends to reduce the pressure fluctuations in any configuration

tested. In particular, when it is fixed behind the rectangular 2:3 cross-section, the C,' are

reduced along the body sides and at the base equipped with the screen. On the other hand,

with the square section in smooth and turbulent flow a reduction of C," is observed behind

the screen and, laterally, in the proximity of the leading edge.

Generally, when the screen S1 is fixed in front of the body, the oscillating flow is driven by the
opposite pressure variation, namely an oscillating pressure gradient. By contrast, when the
screen is attached behind the body, the flow moves inside the cavity following the air
movement of the wake, which is characterized by a transversal component even without the
screen. The presence of such a component was explained in Chapter 2 while describing the

entrainment interaction between two opposite vortices (see Fig. 2.4).
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GLOBAL Square Smooth Flow Square Turbulent Flow Rect 2:3 Smooth Flow
PARAMETERS | No Screen D40 D20 No Screen D/40 D20 No Screen D20
Co 2.36 2.36 2.36 (2.02) - - 291 2.85
St 0.123 0.120 0.122 0.133 0.136 0.124* 0.127 0.128
C' 1.43 1.38 1.39 0.89 0.82 0.82 1.59 1.26
Cos - -0.1 -0.04 - (-0.1) (-0.08) - +0.09

Tab. 3.15 - Global parameters for the square and the rectangular 2:3 cross-sections without and with the screen S1 at
different distances. Results for a = 180°, Reynolds numbers respectively equal to 2.26x10°, 1.58x10°, 2.02x10°.

(*) from the power spectral density analysis, the lift coefficient and the pressures close to the separation point exhibited two

dominant peaks, one at 0.138, lower, and one at 0.124, higher.
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3.4 Summary

Wind tunnel tests were performed on systems composed by a rectangular cylinder equipped
with an airtight screen. The tests aimed to investigate the effects of the screen on the system
aerodynamics. The screen had the same depth of the face of the two rectangular cylinders over
which it was attached on. The cylinders were characterized by a square and a rectangular 2:3
cross-section. In order to better understand the role of the through cavity created between the
screen and the model face, different screens were employed. The tests were carried out at
different Reynolds numbers in smooth and turbulent flow, for different wind angles of attack,
by varying the gap width between the screen and the body. In particular, gap widths between

1/40 and 1/10 of the characteristic body cross-section dimension were tested.

In the preliminary part of the experimental campaign, the wind tunnel set-up was described,
and its inherent limitations discussed. Then, possible model imperfections were checked
through the comparison with some literature data. While the physical models appeared of good
quality and the smooth flow had the characteristics expected, the turbulent flow generated by
the grid was non-uniform. Nevertheless, the results obtained in turbulent flow seem to be

representative in terms of turbulence interaction with the system aerodynamics.

Generally, for flow normal to the shielded face, the presence of the screen with open gap cavity
(screen S1) affects the system aerodynamics, resulting in a new fluid-dynamic system.

Despite the gap width dimensions are an order of magnitude smaller respect to the two-
dimensional body dimensions, the influence of the airtight screen with through cavity plays a
crucial role: an oscillating flow occurs in the cavity irrespectively of the shielded cross-section
and approaching flow features. The oscillating flow is driven by the oscillating pressure
gradient at the cavity extremities, caused by the alternate shedding of vortices, occurring
almost at the same frequency, with or without the screen.

The presence of an oscillating flow, which draws and expels air from the extremities, modifies
the pressure distributions along the lateral body sides and at the base (i.e. the separated flow
region around the body). In smooth flow, the screen S1 tends to increase the drag coefficient of
the system, even if the modified pressure distributions do not vary monotonically by increasing
the gap width. On the other hand, regardless of the approaching flow features, the mean
pressures on the downstream portion of the lateral body sides are always higher than in the
baseline case without screen. In addition, pressure fluctuations are enhanced in the part of the
body close to the trailing edge, laterally and at the base. However, the screen effects are more
evident in smooth than in turbulent flow, and the systems with the rectangular 2:3 cross-
section result the most affected cases.

Tests performed with the cavity closed by an airtight vertical compartmentation demonstrated
that the oscillating flow is fundamental to obtain such peculiar aerodynamic effects. In fact, if
the cavity flow was prevented, the system would feel the presence of the screen just as a body
elongation in the streamwise direction. Other investigations concerning small modifications of
the system geometry were performed. They showed that also an opening on the screen with
depth comparable to the gap width may lead the system to a different aerodynamic behavior, as
compared to configurations with an airtight screen.
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The mean pressure coefficients in the cavity for a flow normal to the screen are always
negative, in particular, they result much lower than the pressures on the lateral body side,
behind the separation point. Despite the many performed tests, it was not possible to explain
the flow mechanism that causes this “pressure jump”. An empty space with flow able to move
behind the separation point represents undoubtedly a different boundary condition close to the
shear layer origin, as compared to that imposed when the flow separates from the edge of a
rectangular cylinder without screen (Z.e. the velocity at the wall is null). It is supposed that this
different boundary condition affects a very sensitive region for the system aerodynamics which
could also explain the mean underpressure measured in the cavity. However, further studies
are needed to profoundly understand the flow mechanism that occurs in this portion of the
flow field.

When the square cross-section is employed in the system, the cavity pressures are lower than
those at the base. On the contrary, for systems with the rectangular 2:3 cross-section, the
suction behind the screen and at the base are comparable.

An additional observation concerning the internal pressures is that, for certain gap widths,
regardless the cross-section side ratio, local effects further reduce the mean pressures in the
proximity of the extremities. It was argued that these effects are related to a local flow
separation when the air is drawn in the cavity.

Between the oscillating pressures along the cavity and the pressure measured laterally, close to
the separation point, it was observed a phase lag which increases by increasing the gap width.
An attempt to characterize the oscillating flow through the Reynolds and the Womersley
numbers was carried out. However, it was not observed any remarkable variation in the range
of Re (and Wo) numbers tested.

Significant global effects are measured for different wind angles of attack. In terms of lift
coefficient slope, impressive variations were measured compared to the case without a screen.
Indeed, the presence of the screen in some cases prevents the galloping instability of the
system.

The mean pressure distributions around the section show an angle for flow reattachment
increased when the screen is present. The oscillating cavity flow observed for wind normal to
the screen, becomes a pulsatile flow (with a non-zero mean) increasing the angle of attack,
which continues to oscillate and to interfere with the external flow. This behavior persists up
to the angle in which two regions characterized by an almost constant pressure are formed: the
recirculation bubble on the body side which experiences the flow reattachment, and the
separated region on the opposite side. Through the cavity that connects the two regions, the
pressure tends to equalize. Therefore, the oscillating flow disappears and the internal pressures
result almost constant, with values similar to the external pressures in the proximity of the

cavity openings.

The complex flow-interaction observed suggests to integrate the experimental results with the
CFD simulation ones, reported in Chapter 4, prior to attempting an interpretation of the effects
caused by the presence of the open-gap screen.
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The experimental tests performed on the two-dimensional systems, composed by a screen and a
rectangular cylinder, produced a large amount of data in terms of global and local aerodynamic
parameters. Through these results, it was possible to describe the effects of different screen
configurations, aiming at a better comprehension of the fluid dynamic behavior of the systems.
Nevertheless, the experimental campaign was affected by some limits, as described in Chapter
3, such as the lack of flow visualization, the impossibility to equip the screen with pressure taps
and the limited range of Reynolds numbers (Re) tested. The Computational Fluid Dynamics
(CFD) simulations here performed aim to overtake some of the limitations encountered in the
experimental tests, playing them a complementary role.

In the present work, two-dimensional Unsteady Reynolds Averaged Navier-Stokes (URANS)
simulations were carried out with the Spalart-Allmaras and the Menter’s kw-SST turbulence
models, by using the open source software package OpenFOAM®. In the following, the
numerical set-up of the simulations is described in terms of computational mesh, turbulence
models and numerical schemes. Then, after the discussion of the results obtained for the square
cross-section without screen (characterized by a cross-flow dimension D), the attention is
focused on the system composed by the square section with the screen S1 fixed at a distance of
Dy20. This specific case has the screen at an intermediate distance, it is stable with respect to
galloping instability and it exhibits remarkable local effects at the cavity extremities. A deeper
insight, through a flow visualization, may improve the comprehension of the aerodynamic

behavior of such a system.

4.1 Simulation set-up

The CFD is a wide field of study in which numerical methods and algorithms are employed to
solve fluid flow problems over a discrete domain. Among the many available discretization
methods, the use of finite volumes is the most employed to study computationally the wind
effect on civil structures (this field is called Computational Wind Engineering, CWE): to assess
wind loads (e.g. Dagnew and Bitsuamlak, 2013, Tominaga, 2015), to understand pedestrian
comfort (eg. Stathopoulos and Wu, 1995, Blocken, 2014) and to evaluate diffusion of pollutants
(e.g. Li et al, 2008, Ramponi et al, 2015). CFD studies with the finite volume method are also
widely employed in the field of bluff body aerodynamics (e.g Rodi, 1997, Shur et al, 2005,
Raisee et al,, 2010, Mannini, 2015).

In the current work, the governing equations are the incompressible Navier-Stokes equations,

that is the system of equations composed by:

the momentum equations i +pU; M __p + ﬂ
q P ot PU; 8Xj ox, an (eq. 4.1)
. . au;
and the continuity equation = 0 (eq. 4.2)

i
expressed for a flow velocity component u;. p is the fluid density, p indicates the pressure

and t;; the viscous stress tensor expressed as:

J
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tj = 2415 (eq. 43)

where x is the molecular dynamic viscosity and §;; is the strain-rate tensor:

s..:1 %+% (eq. 4.4)

b2 oX;  oX o

There are mainly three ways to solve the Navier-Stokes equations over a fluid domain

discretized through finite volumes, depending on the approach employed to consider the

turbulence:

(i). Direct Numerical Simulation (DNS), where the equations are completely solved. In this
case the domain and time discretization must be fine enough to computationally solve
the motion flow field down to the smaller turbulence length scales in the turbulence
spectra. Usually, this type of simulation requires a huge amount of computational
resources since the number of grid cells must be proportional to Re?3.

(ii). Large Eddy Simulations (LES), where filtered equations are solved. In this case a new set
of equations is obtained after the filtering. The domain discretization must reach a
certain level of fineness proportional to the filter itself. All the length scales smaller than
this threshold are modeled, while the larger scales are solved. This type of simulation
requires a lower number of grid cells as compared to DNS. Nevertheless, it needs a
significant use of computational resources.

(iii). Steady or Unsteady Reynolds-Averaged Navier-Stokes equations (RANS or URANS),
where the whole turbulence spectrum energy content is modeled into a new set of
equations arisen after the averaging process. This type of simulations is one of the
cheapest from a computational resource point of view. In contrast to the two previous
cases, it allows to solve two-dimensional problems, which means an additional saving in
computational demand. Despite their many limits, RANS and URANS are approaches

able to give reliable results for many aerodynamic problems.

Unsteady RANS Simulations

First of all, a brief description of the concept of Unsteady RANS (URANS) is carried out.
According to Wilcox (1993), the three forms of Reynolds averaging most employed in
turbulence-model research are: the time average, the spatial average and the ensemble average.
The current case refers to the ensemble average.

To explain the URANS approach, it may be helpful to consider an instantaneous velocity

component U, (X,t), related to a position X at time t, as the sum of a mean and a fluctuating
part:

u; (x,t) =U, (X)+u; '(xt) (eq. 45)
where the velocity component U; (X), time-averaged over a finite time interval T, can be

expressed as:
t+T

_ 1
Ui(x):nmmF [ u(xt)dt (eq. 4.6)

t
Since it is impossible to measure an infinite 7'in a physical flow, it is sufficient to consider a
very long time 7 (as compared to the maximum period of the velocity fluctuations 77), but, for
flows in which the mean velocity component contains very slow variations, also the period of
these variations 72 must be considered. In this manner it is possible to re-write the average as:
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t+T
Ui(X,t)zlimT%le I u(xt)dt T <T<T, (eq. 4.7)

t
In the current work, this interpretation (sketched in Fig. 4.1) can be applied assuming the
hypothesis that the time scales 72 (related, for instance, to the period of vortex shedding) and
T: are separated by a spectral gap (i.e. the two time scales differ by several order of magnitude).

ui (X,i)

t

Fig. 4.1 - Time averaging for nonstationary turbulence (Wilcox, 1993).

It is worth pointing out that URANS cannot be considered as “Very Large Eddy Simulations”
(V-LES), even if in some cases it could be more evocative (Speziale, 1998). Indeed, according to
Shur er al (2005), in URANS, grid refinement will not extend the range of resolved eddies as it
occurs in LES. This is because in LES the differential equations are tied to the grid spacing,
while in URANS they are not. In URANS, grid refinement leads to a solution closer to the exact
solution of a system of equations. Nevertheless, it has been proven that the use of URANS to
study the aerodynamics of a square cylinder gives better results than steady RANS (e.g
Iaccarino er al, 2003, Raisee et al., 2010).

4.1.1 Turbulence models tested

When the Navier-Stokes equations are Reynolds averaged, additional unknown quantities are
introduced in the momentum equation, therefore, additional equations are required. The
turbulence models provide these additional equations, modeling the effects of the turbulence
on the mean, or slowly varying, flow. In particular, the Reynolds-averaged Navier-Stokes
equations for an incompressible, Newtonian fluid, are expressed in the following form:

CLI 0 (eq. 4.8)

aXi q. 4.
p%+pujaa—gj':—%l::+ai;j(2ysij—pu'ju'i) (eq. 4.9)

where the capital letter means an averaged variable.

The Reynolds-stress tensor oU' i U introduces six additional unknown quantities (it is

symmetrical). Usually it is denoted as:

Tj =—pU'j u' (eq. 4.10)
The problem, after the average operation, has now ten unknown quantities (three mean-flow
velocities + pressure + six Reynolds stress components) and only four equations (three
momentum equations + continuity equation).

In this research, two turbulence models were alternatively tested to close the problem: the
Spalart-Allmaras (SA) model, which introduces one additional equation, and the kw-SST
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model, which introduces two additional equations. Both the models are based on the
Boussinesq hypothesis, which states that the momentum transfer caused by turbulent eddies
can be modeled as an eddy viscosity. Therefore, a linear relation is found between the
Reynolds-stress tensor and the mean velocity gradients, expressed as:

Ty =240 S + 6 \/EVT SiiS; /(381) (for the Spalart Allmaras model) (eq. 4.11)
7 =2p6S, — g pks,  (for the ke-SST model) (eq. 4.12)

where u; is the eddy viscosity, S; is the mean strain-rate tensor and k=1/2u’u’; is the kinetic
energy of the turbulent fluctuations. The term a, is called the “structure parameter”, v; = /p

is the kinematic eddy viscosity.

Since a turbulence model provides the missing equation(s) to close the problem, aiming to
reproduce the turbulence effects, different fluid dynamic problems require different turbulence
models, Ze. it does not exists a “universal” turbulence model which could give accurate results
for any flow condition.

When the system composed by the square cross-section and the screen with a through cavity is
considered, the fluid dynamic problem is complicated by the simultaneous presence of
confined (in the cavity) and unconfined (around the body) flows. Moreover, the experimental
tests pointed out that, for a wind flow normal to the shielded face, an oscillating flow takes
place into the cavity. According to Scotti and Piomelli (2002) such a flow condition represents
a challenging test case for URANS models.

Both the SA and the kw-SST models were previously employed for two-dimensional
simulations in bluff body aerodynamics. For instance, a modified version of the SA model was
employed to study the wind action on two-dimensional square section by Soda er al (2011),
obtaining reliable results as compared to experimental tests. The kw—-SST model was employed
on the same geometry by Xu er al (2011) who observed that, compared to other turbulence
models (standard ke, RNG-ke, Realizable-ke, standard k), the kw—SST model showed the best
agreement with the experimental results.

Scotti and Piomelli (2002) investigated turbulence models for pulsating flow, concluding that
the SA and an earlier version of the ke (the kw? model of Saffman and Wilcox, 1974) both give
reasonably accurate results in terms of velocity profile. According to the Authors, these models

might, however, be inaccurate to investigate quantities such as the Reynolds shear stress.

In the following, the turbulence models employed are described starting from their first
versions in order to explain their theoretical basis. In particular, in this research the two
turbulence models are employed as “Low-Reynolds” models, 7.e. the equations are integrated
through the viscous sub-layer down to the wall. This means that the equations are solved
without the use of wall functions. This should allow a better modeling of the flow features,
especially behind the screen. OpenFOAM® implements different versions of both the SA and
the ko-SST turbulence models, depending on the software version. In the present work the

version 2.3.1 was employed.
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The Spalart-Allmaras turbulence model

The work carried out by Spalart and Allmaras (1992) minutely describes the development of
the one-equation turbulence model “from scratch”, based on the use of a modified eddy
viscosity additional equation. In the current work the meaning of each term in the additional
equation is synthetically explained. For a complete description of the model, the original paper

is suggested.

The modified eddy viscosity transport equation is:

Dv v

<1 o 3 c ’
Ezcbl[l— ft2]8v+;[v-((v+v)Vv)+cb2(Vv)z}—{cwlfw—%ftz}[a} + f,AU?

(eq.4.13)

The transported quantity is the modified eddy viscosity v, as highlighted by the total derivative
on the left-hand side of the equation, and it is necessary in eq. 4.11 to close the problem.
Symbols and letters employed are:
o the “7” cap over the letters, which indicates a modified quantity;
e ¢, o and « , which are constants. In particular the last two are the Prandtl and the Von
Karman numbers;
o f followed by the subscript indicates a blending function.

The concept of modified eddy viscosity arises to solve the equation in the near-wall viscous
region. Indeed, the relation V; = 17fv1 shows that, thanks to the use of the blending function fvl,

the eddy viscosity V; differs from v only in the viscous region.

The first term on the right-hand side of eq. 4.13 is the production term. The basic idea is that,

in the flows of interest, turbulence is found only where vorticity is, both emanating from the
solid boundaries. The calibration constant G is set equal to 0.1355.

The second term on the right-hand side is the diffusion term. It depends on the spatial

derivatives of v, on the Prandtl number (=2/3) and the constant C;, (=0.622).

The third term was introduced by explaining that in a boundary layer the blocking effect of a
wall is felt at a distance through the pressure term, which acts as the main destruction term for
the Reynolds shear stresses. This suggested the Author to introduce a destruction term in the
transport equation for the eddy viscosity, inversely proportional to the wall distance d . This
term tends to zero in free shear flows when d becomes large, and the non-dimensional
functions f, helps the destruction term for a better decay in the outer region of the boundary
layer.

Finally, the last term (called “the trip term”) is useful to obtain transition where desired. This
term is neglected in the Spalart-Allmaras model implemented in the OpenFOAM® version
employed in this work.

The kw-SST turbulence model

The kw-SST two-equation turbulence model by Menter (1992, 1993, 1994) is a mix of two
other models: the ke model in its standard form (Jones and Launder, 1972, Launder and
Sharma, 1974) and the ko model by Wilcox (1988), together with an additional feature to

improve its behavior in adverse pressure gradient flows.
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According to Menter, the ke model has demonstrated good performance in a large variety of
flow conditions, but it is less accurate when adverse pressure gradients are involved. Moreover,
the standard ke model needs the use of wall functions or damping functions when applied in
low-Reynolds form. This is because the turbulence dissipation rate ¢ does not go to zero at a
no-slip surface.

On the other hand, the ko model performs better than the ke models under adverse pressure
gradient conditions, it has a simple formulation in the viscous sublayer, but it exhibited a
strong dependence on the freestream value of w (turbulence frequency).

The kw-SST blends these two models in order to take advantage of the strong points of both of
them. Indeed, the model is identical to the ko model of Wilcox for the inner region of a
boundary layer (up to approximately §/2, where J is the boundary layer thickness) and
gradually changes to the high Reynolds number version of the ke model of Jones and Launder
(1972) in the outer region. Therefore, in order to perform the computations with just one set of
equations, the Jonas-Launder ke model is re-written in a kw formulation, while the blending
between the two regions is performed by a blending function.

Moreover, on the basis of the good results obtained with the Johnson and King model (1988),
which accounts for the effect of the transport of the principal turbulent shear-stress, the model
has a further feature: the SST (Shear-Stress Transport). Menter (1991), referring to the ke and
ke models, re-wrote the equation of the turbulent shear-stress for a boundary layer, outside

the viscous sublayer. Therefore the equation:

(Menter’s notation) (eq. 4.14)

was re-written to obtain:

— Production
—u'v'= f_kaik (Bradshaw’s assumption in Menter’s notation) (eq. 4.15)
Dissipation,

Menter noticed that for an equilibrium boundary layer, the ratio of production to dissipation is
close to one in the outer part of the layer, so to obtain —u'v'= a,k . Differently, for an adverse
pressure gradient flow this ratio can be larger than one. Therefore, on the basis of experimental
results (Driver, 1991), Menter underlined the necessity to limit the turbulent shear-stress to the
maximum values measured in adverse pressure-gradient flow. These considerations to overtake
the problem of the high shear-stress levels produced in adverse pressure-gradient flows (in the
standard ko model by Wilcox) were implemented through a modification of the eddy viscosity

term (as shown in the following eq. 4.25).

Hereafter the main equations to describe the kw-SST model (Menter, 1992) are summarized,

starting from the original ke and the transformed ke models.

The original ke model reads:

Turbulent kinetic energy

opk  Opuk . 0 ok

-+ =R - ok +—| (u+o — . 416,
o X, B p ox, (ﬂ kibdr ) X, (eq )

Specific turbulent dissipation rate

opw  OpU;@ , 0 ow

——+ =v.P - B po® +— +0 — . 4.17,
at 6XJ 71 w ﬂlp OXJ (lu (ulﬂT ) OXJ (e‘] )
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The transformed ke model reads:

Turbulent kinetic energy

opk Opuk . 0 ok
e =P, - pok +—| (u+ 0,1t )— 418
o ox, x— B p ox, (H+ 0t ) &, (eq. 4.18)
Specific turbulent dissipation rate
Gpa) opu;@ 10k dw & 0w
=y,P " +2p0 —+—|(u+o — . 4.19
at 8XJ 7/2 2] ﬂZp p ®w2 8X a axj {( wZIUT)a j :| (eg )
where:

au
3 au(au+ J 2 k56u

B = —= ok, —~
T ax e )3T M,
6u ou, c’}uj 2 au,
0= __pa)é‘lj P
ax 8x 8Xi 3 OX;

with the following constants (for the two sets):

0, =05;0,,=05; §,=00750; 5" =009 ; x=041; 5, = B/ F —c.,& |\[F
0,,=10;0,,=0.856; ,=0.0828; 5 =009 ; Kk =041; y, = B,/ B —0,,> /B

The equations of the original ke model are multiplied by the blending function F1, while those
of the transformed ke model are multiplied by (1-F1); then they are added together to give the
ke-SST model:

opk  Opu;k . 8 ok
—4 =P - K+—] (u+ — . 4.20,
a o B pe x (u+ou) x (eq. 4.20)
6pa) opu;@ 1k dw 0O ow

— P +20(1-F y———t+— + — . 4.21
a o ~fpe’ +2p(1-F)o, * 00K, O, 0% [(” G“’”T)axj (eq. #21)

In the kw-SST, each constant ¢; from the original ke model (O,;,...) and the respective
constant @, from the transformed ke model (0y,,...) are related to the constant of the new

model (0y,...) through the following relation:

p=Fp+(1-F)e, (eq. 4.22)
The blending function is expressed as:

F, =tanh(arg; ) (eq. 423)
arg, = max(min[olc\)éi)y 0. 459} 4;2:} (eq. 4.24)
Where :

o Q) is the absolute value of the vorticity;

3/2
o The first argument k indicates the turbulent length scale ﬂ( k¥ j divided by
0.09wy 0.09w &

the distance to the closest surface Y;
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e The second argument 0.45§ is needed to limit the spurious solution of the original kw
model with small freestream values;

v . . .
ensures that the function #7 does not go to zero in the viscous

e The third argument

o
sublayer.

The eddy viscosity (which includes the SST modification) assumes the form:
V. oAk

" max(a,w;QF,) (eq. 4.25)
where the blending function F, is defined in a similar way to F,, and limits v;, as expressed
below:

Jk . 400v

arg, = max| 2——; . 4.

g ( 0.090y "y’ (eq. 4.26)
F, =tanh(arg} ) (eq. 427)

This form of the eddy viscosity leads to a lower eddy viscosity estimation, and it requires the

modification of the constants in the first set of equations as follows:

0,,=085; 6,,=065; f=00750; f" =0.09; k=041, y,= B,/ — 0./

Finally, once the k and w are evaluated, through eq. 4.12, the problem can be closed and

numerically solved. In particular, the term g = pv; of such equation takes into account for

the eddy viscosity reported in eq. 4.25, which, in turn, may assume the ke standard form

(VT :Ej or the SST modified form [VT - ]
@ QF,

4.1.2 Domain discretization

The computational domain was discretized through the BlockMesh mesh generator. It is
included in the open source package of OpenFOAM® and it is a powerful mesh generator in
case of simple geometries with sharp edges because it allows the generation of cartesian grids.
The BlockMesh mesh generator allows a geometrically isotropic grid refinement all over the
computational domain. Moreover, thanks to the cartesian grid, the mesh skewness was null and
the mesh non-orthogonality problem completely avoided.

Other mesh generators were tested: from the open source SnappyHexMesh, Salome, Gmsh to
the commercial software Ansa from BetaCAE Systems. This exploratory part of the work
showed that each of the aforementioned mesh generators has pro and cons, proving that the
choice of the tool to use depends on the case study features. For instance, if there was the
necessity to rotate the studied two-dimensional section (in order to change the angle of attack),

a mesh generator different from BlockMesh would have been needed.

The domain employed in all the simulations is sketched in Fig. 4.2. Its overall dimensions were
fixed in order both to ensure a low blockage ratio and to avoid problems due to boundaries too
close to the studied object. The number of cells slightly varies depending on the case study.
According to Spalart’s recommendation (2000, 2001), the growth ratio of the cells size away
from the wall (measured in the direction normal to the wall surface) was maintained around to
1.2, as detailed in section 4.2. The mesh designed for the reference case study with the screen

(Re =7.56x10*) was also employed for the cases with lower Re values.
83



Chapter 4 - Computational fluid dynamics simulations

UPPER WALL

INLET

It

LOWER WALL

Fig. 4.2 - Computational domain defined in terms of the characteristic body dimension.

4.1.3 Boundary and Initial Conditions

The boundary and initial conditions are fundamental to properly define, and then to solve, the
case study. The studied marching problem is governed by parabolic equations, so that initial
conditions are needed in the entire domain, and conditions on all the boundaries are required
for all the simulation time.

The physical boundaries that delimit the computational domain are: the /n/et and Outlet, the
lateral sides (UpperWall and LowerWall), the faces of the object (StlSurface) and finally the
Front and Back sides of the domain (OpenFOAM® deals only with three-dimensional
domains). An example is given in Tab. 4.1, where the boundary and initial conditions are
described for the simulations carried out with the SA model. It is worth noting that the
StlSurface boundary includes all the object faces even if they are disconnected, as in the case of
the square with the screen.

In Tab. 4.1, U and p are velocity and pressure, while nut and nu7ilda (according to the

OpenFOAM® file names) are respectively the eddy viscosity (VT) and the modified eddy

viscosity (17T ) . The boundary condition typologies are explained through the names employed

in the program files (ie. zeroGradient means that the specific quantity respects a Neumann
condition which imposes a null gradient across that boundary). It is worth noting that the
boundary condition at the Outlet is a particular Neumann condition with an additional feature
to avoid reflection. Moreover, the empty condition (at the Front and Back) is employed in two-
dimensional simulations to speed up the solution.

To complete the description, at the instant t=0 also the internal field must have a starting value
(namely, an initial condition), as reported in Tab. 4.2.

The values employed in Tab. 4.1 and Tab. 4.2 refers to the case Re =7.56x10%, that corresponds
to a Womersley number (Wo) equal to 6 when the body section is equipped with the screen.
The boundary and initial values of eddy viscosity are set according to the prescriptions of
Spalart and Allmaras (1992).
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U P nut nuTilda

Inlet type type type type

fixedvValue; zeroGradient; calculated; fixedvValue;

value value value

uniform (0.189 0 0) uniform 1.05e-07 uniform 1.5e-06
Outlet type type type type

inletOutlet; fixedvalue; zeroGradient; zeroGradient;

inletValue value

uniform (0.189 0 0) uniform 0

value
uniform (0 0 0)

UpperWall type type type type
symmetryPlane; symmetryPlane; symmetryPlane; symmetryPlane;
LowerWall type type type type
symmetryPlane; symmetryPlane; symmetryPlane; symmetryPlane;
FrontAndBack type type type type
empty; empty; empty; empty;
StlSurface type type type type
fixedvalue; zeroGradient; fixedvalue; fixedvalue;
(e.g The Square | ya1yue value value
Secdon) uniform (0 0 0) uniform 1le-20 uniform 1le-20

Tab. 4.1 - Boundary and initial conditions with the SA model.

U P nut nuTilda

Internal Field uniform (0.189 0 0) uniform 0; uniform 1.05e-07 | uniform 1.5e-06

Tab. 4.2 - Internal field initial conditions.

4.1.4 Adopted numerical schemes
OpenFOAM® employs a cell-centered finite volume method, and it gives the user the
possibility to set the whole numerical procedure. The main information about the numerical

set up are reported in the following.

The backward differencing method was employed for time discretization. It is an implicit
second-order method, provided that the spatial discretization is also second-order accurate. The
convection term was discretized through the application of the Gauss theorem, where the
interpolation scheme to obtain the face values of the variables was a central differencing
scheme blended with an upwind scheme. The same blended scheme was employed for the
transport of V. The diffusion term was discretized in a similar way to the convection terms, but
the interpolation scheme employed was a central differencing. A similar set-up was adopted
with the kw—-SST model, where, for the transport equations of k and @, the same scheme
employed for the transport of v was used. It is worth noting that the use of a cartesian grid

ensures the absence of non-orthogonality and skewness errors.

The PIMPLE algorithm, a combination of the PISO and the SIMPLE algorithms, was employed
for pressure-velocity coupling. Regarding the time step, the use of implicit time schemes allows
overtaking the Courant-Friedrichs-Lewy (CFL) stability condition. This condition, usually
indicated through the Courant number (C0), relates the time step (At) of the time-marching

simulation with the local value of velocity (u) and the dimension (AX) of each cell all over the

domain. The condition is usually expressed as:

u
Co=At-—<1 . 428
AX (eq )

Generally, in CFD the goal is to accurately solve the equations also when the maximum

Courant number (maxCo) is higher than 1, in order to speed up the simulations. The PIMPLE
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algorithm used, namely pimpleFoam, allows fixing a maxCo all over the domain, instead of
adopting a constant time step. When the simulation reaches a steady regime, the time step does

not vary much, and therefore it is possible to associate a characteristic time step (At ) with

each maxCo fixed. Moreover, At can be expressed in a non-dimensional form as:

. U,
A = Aty - (eq. 4.29)
Physically, this parameter may represents the ratio of the free-stream flow velocity and unit

convection velocity of the body (Soda ez a/ 2011).

The GAMG (Geometric Agglomerated algebraic Multi-Grid) solver, was employed to solve the
discretized system of equations. The GAMG uses a coarser grid with fast solutions to smooth
out high frequency errors and to generate a starting solution for the finer grid. The solver was
employed together with smoothers as the DIC / Gauss-Seidel, in which the simplified diagonal-
based incomplete Cholesky smoother for symmetrical matrices is followed by the Gauss-Seidel
smoother to ensure that any possible spikes created by the DIC are smoothed out (Behrens,
2009).

4.1.5 Data processing

Since a variable time step was used, the data were first resampled with a constant frequency of
about 100+200 points per period of vortex shedding (depending on the time-step and grid
employed). The first part of each simulation exhibits a transient prior to reaching a stable
condition of vortex shedding. Evaluating a moving average on the force coefficients and
through a visual check, it was possible to consider only the simulation in a developed vortex
shedding conditions, neglecting the first part. An example for the square section is reported in
Fig. 4.3. It is to note that in many cases, this first part of the computations was obtained with
first-order schemes or with coarser meshes.

The force coefficient signals were first analyzed to determine the opportune duration of the
simulation. The solution was considered converging when the relative error between the mean
value at a certain time and its value two periodicity before, was less than 0.0001. The
simulation convergence was also checked by a visual control. The transient part of the solution

was also excluded in the analysis of pressures and flow velocities.

25

ARAMAARARARARARAAAAARARARAANARAARARA
2 ,'vv‘l‘l‘lvvvuvvHllvtlvnlnv
1.5 .
5 ‘ ;

0.5

3% B2 gl Rl f bR R

0 Oy

Force Coef ficients

~—movAvgCp

-2.5 3
0 50 100 150 200 250

t* [
Fig. 43 - Computed time histories of the force coefficients with the initial transient part. Medium grid with

maxCo=4 case study. In this case, the statistics are calculated over the signals after the black dotted line (¢*=75). The
moving average of the drag coefficient signal improved the visual check on the simulation convergence.
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4.2 The square cross-section case

Preliminary investigations were carried out on the square cross-section with approaching
smooth flow perpendicular to a body face. The simulations were carried out at Re=7.56x10%, in
order to evaluate the best numerical set-up in terms of domain discretization and time step.
This Reynolds number was chosen because it was the smallest value that allowed a direct
comparison with the experimental tests. With this aim, a grid convergence study was carried
out with three grids and the SA turbulence model. The main characteristics of the
computational meshes (Fig. 4.4) are summarized in Tab. 4.3. In particular, the stretching factor
indicates the growth ratio between two consecutive cells, measured in the proximity of the
body wall, in direction normal to the wall surface. The cel/ dimension in wake represents the
mean cell size around the body, in the portion of the domain external to the near wall region,
where the formation of vortices is expected to occur. Similarly, the normalized cell size closest
to the wall (n, /D) indicates the level of refinement in the near wall region for each tested grid.
As in the experimental campaign, the results of the numerical simulations are reported in terms
of global and local aerodynamic parameters. Aerodynamic coefficients and mean recirculation
length of the wake (normalized respect to the body cross-section D) are considered as global
parameters. The pressure coefficients, at the separation point and at the base, represent the

local parameters. The dimensionless wall distance y* is used as an indicator of the wall
refinement accuracy. Given the dimension of a cell at the wall surface n,, for a fluid
characterized by a viscosity v, the y” is defined as:
+_ un,
o

(eq. 4.30)

where u,is a characteristic non-dimensional velocity at the wall (the friction velocity),
evaluated as the square root of the ratio of the wall shear stress to the fluid density. It is to note
that, for every studied case, the maximum y"* value reported in the following (e.g. Tab. 4.5)
was limited to very few cells close to the edges, in the proximity of the separation point.
Finally, it is to note that, due to its relation with the grid dimension, to fix the same maxCo for
different meshes does not correspond to employ the same time step. In this work, maxCo
numbers equal to 4, 2 or 1 were used, so that, in Tab. 4.4, a representative value of the
normalized time-steps (At") (evaluated in a regime of regular vortex shedding) related to the
tested grids are reported. In the following, considerations about the time step will be carried
out referring to the maxCo.

N° of cells n,/D Stretching Factor Cell dimension in wake
Coarse 59365 6e-4 1.28 D/40
Medium 118888 4.95e-4 1.19 D/60
Fine 240839 3.5e-4 1.13 D/85

Tab. 4.3 - Characteristics of the grids employed in the grid convergence study.

Coarse Grid Medium Grid Fine Grid
max Co 1 2 4 1 2 4 1 2 4
At 0.0004 0.0008 0.0016 0.0002 0.0005 0.001 0.0002 0.0004 0.0008

Tab. 4.4 - Maximum Courant number and relative non-dimensional time step.
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Fig. 4.4 - Two views of the fine mesh: the refinement in the wake region (left); close-up view of the sharp edge
refinement (right). The overall domain coincides with the one shown in Fig. 4.2.

Firstly, the grid convergence study was carried out with a maxCo=4. Even if the results
showed good agreement with the experiments reported in the previous chapter, in terms of
both global (Tab. 4.5) and local (Tab. 4.6) parameters, with maxCo=4 it was not possible to

appreciate the effects of the grid refinement.

As reported in Tab. 4.7 and Tab. 4.8, the study was repeated on the same meshes with a smaller
time step (maxCo=2) in order to investigate the convergence of the numerical solution. By
comparing the results to those obtained in the previous simulations, it is apparent that, while
refining the mesh, the solution of the equations does not tend to the experimental results (see
Chap. 3). Moreover, as shown in Tab. 4.7, the medium grid exhibits a different solution as
compared to the coarse or fine one, so that, in order to clarify this point, a time convergence

study was also carried out employing the medium grid.

With the results summarized in Tab. 4.9 and Tab. 4.10, it is possible to interpret those
previously obtained in the following way: after the time step reduction from maxCo=4 to
maxCo =2, the coarse and the fine grids tend to converge to the numerical solution of the
system of equations. It seems that, respectively, the maxCo=2 time step was fine enough for
the coarse grid, while the fine grid was intrinsically accurate enough to work with such a
“large” time step (Tab. 4.7 and Tab. 4.8). By contrast, the medium grid represented an
intermediate condition, which seemed to be in better agreement with the experimental results,
but that was “affected” by the time step corresponding to maxCo =2 . The further reduction of
the time step down to maxCo =1 with the medium grid confirmed that the numerical solution
of the governing equations tends to the unphysical one, with St =0.1, as in the case of the fine
grid reported in Tab. 4.7 and Tab. 4.8.

Lift Drag
. . . . Mean
Drag coefficient | coefficient Strouhal )
o recircul.
GLOBAL PARAMETERS coefficient standard standard number ) h max (v
(CD ) deviation deviation (St) engt (y )
C 1 C 1 ( LC/D )
(C.H) (Cp )
Coarse 2.07 1.57 0.17 0.128 0.5 4:5
Medium 2.04 1.54 0.15 0.125 0.6 3+4
Fine 2.02 1.52 0.13 0.126 0.5 2:3

Tab. 4.5 - Grid convergence results in terms of global parameters with maxCo=4.
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Mean base Standard deviation | Separation point Separation point
pressure base pressure mean pressure pressure coeff.
LOCAL PARAMETERS coefficient coefficient coefficient standard deviation
(Cyp) (Cyp ") (Cep) (Cp )
Coarse -1.39 0.24 -1.70 0.89
Medium -1.37 0.22 -1.71 0.87
Fine -1.32 0.20 -1.69 0.84
Tab. 4.6 - Grid convergence results in terms of local parameters with max Co=4.
GLOBAL PARAMETERS Co C' Gy’ St L./D max(y")
Coarse 191 1.48 0.12 0.116 0.7 4:5
Medium 2.03 1.52 0.15 0.126 0.5 3:4
Fine 1.98 1.30 0.36 0.104 0.9 2:3
Tab. 4.7 - Grid convergence results in terms of global parameters with maxCo=2.
LOCAL PARAMETERS Cyy Cy' Cep Cep'
Coarse -1.15 0.15 -1.57 0.69
Medium -1.34 0.21 -1.67 0.86
Fine -1.21 0.47 -1.57 0.64
Tab. 4.8 - Grid convergence results in terms of local parameters with maxCo=2.
GLOBAL PARAMETERS Cp c' Co' St
maxCo =1 2.00 1.40 0.24 0.116
max Co =2 2.03 1.52 0.15 0.126
maxCo =4 2.04 1.54 0.15 0.125
Tab. 4.9 - Global results of the time-step convergence study with the medium grid.
LOCAL PARAMETERS Cyp Cy' Cop Cop'
maxCo =1 -1.23 0.31 -1.68 0.74
max Co = 2 -1.35 0.22 -1.71 0.86
max Co =4 -1.37 0.22 -1.71 0.87

Tab. 4.10 - Local results of the time-step convergence study with the medium grid.

The preliminary tests seem to show that the simulations carried out with the SA model tend to

the experimental results when additional (numerical) viscosity is introduced either increasing

the time step or coarsening the mesh.

In Tab. 4.11, the results obtained in three representative configurations of these preliminary

studies are compared to some works (CFD and experimental), with a focus on URANS

simulations performed on the two-dimensional square section. The main aerodynamic

coefficients obtained with the medium grid and a maxCo =2 (At”=0.0005), exhibit differences

around 10-15% as compared to the experimental results (uncorrected for blockage effects)

obtained in the present work. Moreover, despite the simplicity of the SA model, the results

(except the mean recirculating wake length) are comparable to other URANS studies

performed with more sophisticated turbulence models, such as the two-equation Linearized

Explicit Algebraic kw model (LEA), used by Soda ez al. (2011).

On the other hand, the comparison with the literature, especially with more reliable studies on

square cylinders (such as those performed by means of DNS and experimental tests), is quite

tricky to interpret, since the case Medium (MaxCo=2) exhibits similar values of aerodynamic
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coefficient but not of L /D, while the case Fine (maxCo=2) seems to predict this parameter but

not the frequency of vortex shedding.

However, the CFD results reported in Tab. 4.11, are considered also to complete the
observations discussed above on the effects encountered by reducing the time step (case Medium
(maxCo=1)) or the mesh size (case Fine (maxCo=2)).

The only literature reference, among those reported in Tab. 4.11, which used OpenFOAM® is
the work by Tian er al, (2012). The Authors investigated the time-step convergence in a range
0.004 <At < 0.006, and near-wall refinement in the range 0.0015 <n,/D< 0.004, obtaining
variations of a few percentage. Both the parameters were an order of magnitude higher than in

the present work. In their final set-up, the maximum y* value, namely max(y*) , was equal to

8.4. Given the different parameters range, and the different turbulence model used, a direct
comparison with the results by Tian er a/ (2012) is not possible.

It remains an open question if the unexpected solution trend encountered in the present work
(by refining the mesh or the time step) concerns the turbulence model accuracy, or other issues

such as its numerical implementation, so that, further investigations are needed.

Nevertheless, aware that the square section is a challenging case for numerical simulations
(Rodi er al, 1997), the simulations seem to be still suitable for the qualitative results aimed to

integrate the experimental campaign of the square section with the screen.

Turb. model C, C.' C,' St L. /D

Medium (MaxCo=2) SA 2.03 1.52 0.15 0.126 0.5
Medium (MaxCo=1) SA 2.00 1.40 0.24 0.116 0.7
Fine (MaxCo=2) SA 1.98 1.30 0.36 0.104 0.9
Liibcke er al, 2001 EASM 2.21 0.95 - 0.15 1.64
Taccarino er al, 2003 v —f 2.22 1.83 0.06 0.141 1.45
Soda er al, 2011 LEA 1.99 1.41 0.17 0.126 1.31
Xu eral, 2011 Std ke 1.59 0.17 - 0.121 2.30

= RNG - ke 1.94 1.11 - 0.136 0.87

= Realizable - ke 2.02 1.15 - 0.139 0.83

= Std ke 2.14 1.50 - 0.131 0.53

= ke - SST 2.09 1.39 - 0.121 0.91
Tian et al,, 2012 ke - SST 2.06 1.49 - 0.136 -
Rodi, 1997 * RANS 1.64-2.43 0.31-1.49 0-0.27 0.134-0.159 | 0.98-2.80
Rodi, 1997 * LES 2.02-2.77 1.15-1.79 0.14-0.27 0.09-0.15 0.94-1.68
Trias et al, 2015 DNS 2.18 1.71 0.205 0.132 1.04
Lyn et al, 1995 Experimental - - - 0.132 0.87
Lander er al, 2016 Experimental 2.35 1.14 - 0.114(*) 0.83(*)
Present work Experimental 2.34 1.39 - 0.125 -

Tab. 4.11 - Comparison of the results obtained on the square cross-section with some literature data (“Std” means
standard version of the turbulence model).
(*) results presented in the ERCOFTAC workshop (Rodi et al, 1997).
(**) values reported from Fig. 5 and Fig. 10 of the original paper.
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4.3 The system with square cross-section and screen S1 at /20

The two-dimensional system composed by the square section and the screen S1 fixed at 120,
with an approaching smooth flow perpendicular to the shielded face, was modeled building a
mesh with the same characteristics of the fine grid (Tab. 4.3). This choice was suggested by
both the grid-convergence study and the geometry details, such as the screen thickness (2/120)
and/or the gap width (/)20). Simulations were carried out with two turbulence models (SA and
ke-SST), and a time step corresponding to maxCo=2. Theoretically, the presence of an
additional part (the screen) modifies the problem geometry, thus requiring an additional grid-
convergence study. This was not done, but the cavity was finely discretized, with 30 cells in
the direction normal to the cavity walls, gradually refined moving toward the surface, in order

to reach a maximum y* similar to that obtained without the screen (Fig. 4.5).

The results of the simulations were firstly compared to the experimental results, in order to
assess their reliability. As with the previous studies, once the convergence was reached (Fig.
4.6), the comparison was based on the analysis of global (Tab. 4.12) and local (Tab. 4.13)

parameters.

The mean aerodynamic coefficients evaluated with the SA model agree well with the
experimental results, as reported in Tab. 4.12 and Tab. 4.13. The lift coefficient standard
deviation obtained with the SA model, is around 15% higher than the experimental value,
while the remaining global coefficient are closer to the wind-tunnel test results. However, such
a discrepancy is considered acceptable for the purposes of the present work. The global
parameters are in good agreement also with the results obtained with the two-equations ke-
SST model, with the exception of C,, which is slightly smaller than the experimental value.
The mean pressure coefficients are comparable to the experimental results (Fig. 4.7-left), even
if, behind the screen, the SA model gives a mean pressure 10% lower than the experimental
results.

The main differences observed (the discrepancies are of the order of 10-20%) are related to the
fluctuating components of pressure coefficients. In particular, with both the turbulence model,
the reference pressure coefficient standard deviation at the separation point is overestimated as
compared to the experimental results, and a difference around the 20% was observed.
However, quite surprisingly, with the SA model, the pressure coefficient standard deviations in
the trailing edge region (on the lateral body side and at the base) agree with the experimental
results better than with the kw-SST model (Fig. 4.7-right). It is worth noting that the pressure
coefficients corresponding to symmetrical points are averaged to speed up the convergence of
the results.

Generally, the results obtained are satisfactory for the sake of complementing the experimental

study.
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Fig. 4.5 - Mesh domain of the square cross-section with the screen S1 fixed at 1/20: refinement in the wake region
(top) and detail of the discretization at the upper cavity extremity (bottom).

SA

400 450 500 550 600

kw-SST
3
ol ol
\v U P | | Y 44 T
N R e -
I 1 ;
Mol
PR 1 G AR AR RN AR R A A AR AR AR RA AR IR AR AR AN
oo
1 D!
=9
&)
I
a-1y
S)
or
o0 150 200 250 300 350 400

b [

Fig. 4.6 - Convergence in mean of the simulations: results with the SA model (left) and with the kw-SST model

(right). In both cases, the mean convergence trend of mean drag coefficient (C, ), drag standard deviation (C, ")

and lift coefficient standard deviation (C, ') are shown with the lift coefficient time history. The circular markers

indicate when the convergence criterion was satisfied for C,,, C, 'and C, '. However the visual check suggested

to further extend the simulations.
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GLOBAL PARAMETERS No Screen SA No Screen Screen S1 Screen S1 S1-D/20
(Fine) Experimental D/20 SA D/20 k-SST | Experimental
Drag coefficient
1.99 2.34 2.32 2.25 2.34
Co
Rear body drag coefficient
1.22 1.53 1.59 1.51 1.53
Core
S“ouhaétnumber 0.104 0.125 0.126 0.131 0.121
Lift coefficient standard
deviation 1.30 1.40 1.60 1.45 1.35
C'
Drag coefficient on the screen
C - - 291 2.77 2.82
Ds

Tab. 4.12 - Global parameters without and with the screen S1 at [)/20. Comparison of the experimental results with

the SA and kw-SST models.

LOCAL PARAMETERS No Screen SA No Screen Screen S1 Screen S1 S1-D/20
(Fine) Experimental D/20 SA D/20 k-SST | Experimental
Mean base pressure coefficient
- -1.21 -1.55 -1.68 -1.54 -1.57
Cyp
Standard deviation base
pressure coefficient 0.47 0.35 0.46 0.71 0.37
Cyp'
Separation point mean
pressure coefficient -1.57 -1.61 -1.81 -1.68 1.77
Csep
Separation point standard
deviation pressure coefficient 0.64 0.72 0.87 0.85 0.69
Csep '
Mean pressure coefficient
behind the screen +0.83 +0.79 -2.19 -2.03 -2.01
C pScr

Tab. 4.13 - Local parameters without and with the screen S1 at /20

the SA and kw-SST models.
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Fig. 4.7 - Comparison of mean (left) and standard deviation (right) of the pressure coefficients around the screened
body.
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The flow visualization of time-averaged flow improved the comprehension of the mean
pressure coefficient distributions. In particular, the pressure recovery on the lateral sides
pointed out in Fig. 4.7-left, also observed in experimental results, is shown by the time-
averaged flow velocity obtained with the SA model (Fig. 4.8, 4.9 and 4.10). Fig. 4.8 compares
the magnitude of the normalized mean velocity without and with the screen S1 at 7/20. While
the shear layers curvature at the separation point does not seem modified, the maximum
velocity values are slightly higher when the screen is present. This could suggest that the mean
velocity of the shear layers at the origin may be increased by the different boundary condition
at the wall, represented by the through cavity. The streamlines reported in Fig. 4.9 are
analyzed in detail focusing on the upper side and increased in number in Fig. 4.10. In
agreement with Fig. 4.8, the streamlines in the region close to the front corner seem to
preserve the same curvature. However, an increased streamline curvature in the downstream
corner region, reveals a trailing edge/mean flow interaction, with a behavior apparently similar
to that described in the literature for a turbulent approaching flow (e.g. Bearman and Morel,
1983).

Fig. 4.9-right and 4.10-right show that the mean flow reattaches when the screen is present.
The mean recirculation region is shifted upward along the body side, in agreement with the
interpretation of the experimental results discussed in the previous chapter. The anticipated
location of this region, and an increased flow velocity around it, may explain the reduction of

pressures in the first half of the body side, as previously observed in the C_p distribution

reported in Fig. 3.24. Moreover, effect on the lateral regions may explain the increased and
anticipated C,' distribution. On the other hand, the discrepancies of C,' in the first half of the

body side reported in Fig. 4.7-right, may indicate that the interference mechanisms in this
portion of the flow are not fully captured by the URANS simulations.

In URANS simulations, L./D is one of most complicated parameter to match with
experimental results, as can also be deduced from Tab. 4.11. However, through the comparison
between the case without and with the screen, the wake region behind the base does not seem
stretched in the streamwise dimension (as in the case of free-stream turbulence interaction
with the shear layers). Despite the mean flow reattachment at the rear corner, the mean
recirculating wake length seems only slightly reduced in the direction transversal to the flow.
On the other hand, the increased number of streamlines in the wake region close to the body

base, as shown in Fig. 4.9, seems to indicate an increase in the energy of the forming vortex.

Fig. 4.8 - Mean velocity magnitude (U) normalized respect to the undisturbed velocity flow (Uinr). On the left, the
square cross-section case; on the right, the system composed by the square cross-section with screen S1 at )/20.
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Fig. 4.9 - Streamlines of the mean flow: case of the square cross-section (left) and system with screen S1 at /20
(right).

Fig. 4.10 - Detailed pictures of mean flow streamlines: case of the square cross-section (left) and system with screen
S1 at 120 (right). To enhance the differences, the number of streamlines is increased respect to Fig. 4.9.

In Chapter 3, the description of the experimental set-up clarified the impossibility to equip the
screen with pressure taps. In CFD this problem is overtaken, therefore the pressure distribution
was measured all around the screen. The measurements were carried out with both the SA and
the kw-SST turbulence models, as shown in Fig. 4.11, where the pressure values are averaged
on symmetrical points. The results are plotted with a distorted scale at the abscissa, because the
four pressure taps on the upper and lower sides of the screen are placed on a side which is
1/120 of the front side.

The pressure coefficients on the internal face of the screen exhibit a slightly reduced mean
value (reduction of about 5%) in the taps located close to the end of the cavity, as compared to
the corresponding pressures measured on the shielded face. It is supposed that in this portion of
the cavity, the pressure distribution on the screen internal face and the square front face is
affected by the presence of a mean vortex, as shown in Fig. 4.10-right in the proximity of the
cavity extremity. However, all over the remaining part of the internal face of the screen, the
mean pressure coefficients are almost equals to those on the screened face of the square section.
Generally, the pressures behind the screen behave similarly to those obtained by means of
wind tunnel tests reported in Fig. 3.29. In particular, the power spectral densities obtained with
the SA model (Fig. 4.12-left) exhibit two peaks, respectively at the Strouhal frequency (St) and
at its first superharmonic. While at the extremity of the cavity (e.g tap 12) the peak is centered
in St, by moving towards the center of the cavity (e.g. tap 16), the peak occurs at 2xSt. The
analysis of pressure spectra obtained from the simulations carried out with the kw-SST model
are less clear (Fig. 4.12-right), probably because the analysis was performed on a lower number
of cycles (the simulated time was shorter than with the SA model).

95



Chapter 4 - Computational fluid dynamics simulations

157 T T
SCREEN | i SCREEN
fe— EXTERNAL —»! | «— INTERNAL —»>
i FACE | | FACE
\ i 1 - £ =00
[ i DN -
Vi L’ . tQ
' | . f IR
vl | <Y 1 I q\
| I )} 1 i L)
4l '|: ! SCREEN | > ' ! W
H | «— INTERNAL —> " ! .
i i ACE | N | ~
sl ) | FACE | 05 ! | ) m_:_“
g"i**——b-kln\: ,' i £ [ |
Al SCREEN i "“‘“‘*'e"%\ o [
e— EXTERNAL —>! N T St ol o’
FACE ! e PP |
-2.5 0
0 0.5 0.55 1.05 0 0.5 0.55 1.056
§/D §/D
Fig. 4.11 - Mean (left) and standard deviations (right) of the pressure coefficients around the screen.
104 y T T T T 10 - T T
23——33 Sr 23—>33
I | 22 34
‘ [ «— Sep. 2xSt . 2xSt
3 mn!> )
10°F ]o ! N — % e 10
12+ 44 A 1 ; o0V
102
=) =
® N 10!
=5 (=}
g g 10
0 0
107" i !
---- Tap n° 11 (Separation Point) ---- Tap n° 11 (Separation Point)
102} *  Tap n® 12 (Close to Edge) 102 * Tapn®12 (Close to Edge)
f o Tap n° 14 (Between Tap12 and Tap16) o Tap n° 14 (Between Tap12 and Tap16)
[ b Tap n° 16 (Close to Center) Tap n° 16 (Close to Center)
103! : 107 ‘
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
nD/U [-] nD/U [-]

Fig. 4.12 - Pressure spectra at the separation point and in some selected points behind the screen: on the left, results
with the SA model; on the right, results with the kw-SST model.

The aerodynamic effects caused by the presence of the screen were investigated by means of
the comparison between two cases at the same Reynolds number, namely, the square section
without (Fig. 4.13) and with the screen S1 at )20 (Fig. 4.14). Such a comparison was based on
flow visualization, by dividing the vortex shedding cycle in eight equal parts. Both the
simulations were carried out with the SA turbulence model. The numerical set-up used for the
square cross-section has been described in detail in 4.2. In particular, for the geometry without
screen, data are reported for the medium grid and a time-step corresponding to maxCo = 2. On
the other hand, the numerical set-up adopted for the system with the screen is explained in the
first part of the current section. The figures are plotted overlapping colors, representing the
instantaneous pressures, and streamlines.

Fig. 4.13-a shows the instant of maximum suction on the upper side. Later, the recirculating
region behind the separation occurred at the upstream corner moves toward the downstream
corner (Fig. 4.13-b), down to its “breakage” (Fig. 4.13-c). Simultaneously, the wake vortex
moves away from the base. While the upper recirculating region spreads out, on the lower side
the opposite area of vorticity grows in intensity (Fig. 4.13-d), and a little recirculating bubble
seems to appear on the downstream edge of the upper side (Fig. 4.13-e). Meanwhile, at the
base, a recirculating zone similar to that seen in Fig. 4.13-a grows up. The recirculating region
on the lower side moves toward the downstream corner, as seen in (Fig. 4.13-b) for the upper
side. Then it enlarges together with the shear layer movement (Fig. 4.13-g). Meanwhile a little
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recirculating area localized at the lower downstream corner (Fig. 4.13-h) occurs, similarly to
Fig. 4.13-e, and the vortex shedding cycle ends.

On the other hand, the presence of the screen complicates the flow topology during the vortex
shedding. In analogy with Fig. 4.13-a, the description here starts with the instant of maximum
suction on the upper side (Fig. 4.14-a). However, in this case, an additional internal airflow
occurs, due to the air drawn in the cavity from the lower side. While the upper recirculating
region extends downstream (together with the vortex at the base), on the lower side of the
screen, in the proximity of the cavity extremity a small vortex forms (Fig. 4.14-b). In this
vortex shedding phase, the driving pressure gradient at the cavity extremities is reduced, so it
seems that the external flow tends to drag the air out of the cavity (from the lower extremity).
The presence of the small vortex modifies the formation of the lower recirculating region (Fig.
4.14-c), as compared to Fig. 4.13-c. The little vortex grows and enlarges downstream (Fig. 4.14-
d), and at the base, close to the lower corner, the wake recirculating area appears. This area
enlarges together with the recirculating region on the lower side, which is close to the instant
of maximum suction (Fig. 4.14-e). Later, Fig. 4.14-f and —g show the little opposite vortex,
located on the upper body side, originated in proximity of the cavity extremity. It deflects the
streamlines too, down to the body wall in the rear corner region of the lateral side, thus
influencing the formation of the recirculating region on it, as observed in Fig. 4.14-c and -d.
Finally, in Fig. 4.14-h the instant before the end of the vortex shedding cycle is reported.

Therefore, the presence of the screen influences the vortex shedding process. In particular, the
formation of alternate vortices at the cavity extremities tends to promote an intermittent flow
reattachment in the proximity of the trailing edge (visible also in the time-averaged flow field
and pressure coefficients), which, in turn, influences also the portion of the base behind that

corner.
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Fig. 4.13 - Streamlines of the square cross-section simulations at Re=7.56x10* with a time step corresponding to
maxCo=2 and the medium grid. Colors indicates the pressure field (blue, low pressure - red, high pressure).
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Fig. 4.14 — Pressure field (see Fig. 4.13 for colors) and streamlines of the system with square cross-section and screen
S1 fixed at 1/20 during a vortex shedding cycle. Re=7.56x10* and the estimated Wonumber is around 6.

Fig. 4.15 - Cavity flow of the velocity y-component (Vy) normalized to the approaching flow velocity (Vinf). Detail
of the two extremities at the same instant.

99



Chapter 4 - Computational fluid dynamics simulations

The flow drawn and ejected from the cavity is reported in Fig. 4.15. In Fig. 4.15-left, it is
possible to visualize the behavior hypothesized from the analysis of the experimental results
and to confirm that the cavity airflow is driven by the pressure gradient caused by the vortex
shedding. As a matter of fact, the air drawn in the cavity comes from the area below the shear
layer, in a recirculating zone close to the body lateral side, where the flow has a low velocity.
This means that the flow does not enter into the cavity with a straight path, but with a sharp-
edged elbow (according to the hydraulic nomenclature). Then, the incoming air exhibits a
section reduction due to the separation at the edge. Therefore, locally, a flow acceleration
together with a pressure reduction occur. By contrast, when the flow exits from the cavity
extremity, the local effects are negligible (Fig. 4.15-right). Hence, also averaging in time the
pressure time history at this point, the local effects observed when the air is entering are still

visible.

Flow features in the cavity

The difficulty to measure the flow velocity in the cavity during the experimental tests is
evident. Indeed, the gap widths tested in wind tunnel range from /40 to /10, which at model
scale correspond to 3mm to 12mm respectively. Considering that a hot-wire anemometer
support usually employed in the wind tunnel has a diameter of about 2 mm, it is clear that the
measurement of the flow velocity in the cavity would be affected by the presence of the
instrument. Moreover, due to the accuracy of the employed pressure transducers, the lower
limit of the Reynolds-number range tested with the square section was Re = 7.56x10%. This
value, when the screen is fixed at 720, corresponds approximately to Wo = 6 for the oscillating
flow behind the screen (based on eq. 2.20).

These limitations suggested to investigate through CFD simulations the characteristics of the
velocity profile in the cavity (in terms of shape, amplitude and phase respect to the driving
pressure gradient), also reducing the velocity of the approaching flow, in order to reach a
Womersley number in the cavity equal to 1. This additional simulation was carried out at Re =
2.1x10% (Wo = 1), with the same numerical set-up adopted in the previous case study with the
SA turbulence model.

The comparison carried out between the case at Re = 7.56x10* and that at Re = 2.1x103, based
on global aerodynamic parameters is summarized in Tab. 4.14. It shows that the second case
converges to a solution with Strouhal number lower than the expected one, by analogy with
the square section when a fine grid or very small time step are employed. During the
experimental campaign such a low Reynolds number was not achieved, so that, there are not
data to compare with. However, it is supposed that the employed grid (tuned with Re =
7.56x10%, and therefore acting as a “very fine” mesh for a Reynolds number 36 times smaller),

could give the same problems discussed in section 4.2 on the square cross-section.

It is worth noting that this study investigated only a part of the whole Reynolds-number range
of interest, but to investigate Reynolds numbers close to full scale values (Re >10°) was too
demanding for the computational resources employed during this study. Indeed, in order to
perform a simulation with the same characteristics of those used in the present study (referring,
in particular, to the y* parameter) required an additional grid- and time-convergence study on

a much finer mesh. However, further studies are needed to fill this gap.
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GLOBAL PARAMETERS Rerssit Wot | Beotald Wo
Co 232 2.42
Cons 1.60 1.67
St 0.126 0.098
o 1.60 1.65
Cos 2.92 2.29

Tab. 4.14 - Global aerodynamic parameters of the system with the screen S1 at 7/20 employing the SA model.
Comparison between Re=7.56x10* (Wo=6) and Re=2.1x10°® (Wo=1).

The velocity profiles in the central section of the cavity (Fig. 4.16a), for different instants, are
plotted in the following. These instants were chosen considering five oscillation phases of the
time-varying pressure difference at the cavity extremities. As shown in Fig. 4.17, they
corresponds to: the positive and negative peaks of the pressure difference (respectively APmax
and APmin), the instant when the pressure difference is null (APO), and two intermediate
points (AP_P and AP_N). The pressure difference was calculated as the difference between two
pressure time histories, evaluated close to the extremities, after a check of the pressure
distribution along the cavity transversal section in different positions. Referring to Fig. 4.16-b
the pressure difference was evaluated as P(A)— p(B), so that, for a quasi-steady behavior, a
positive value corresponds to a downward airflow that in the following is represented as a
negative velocity. By contrast, a negative pressure gradient drives an upward airflow,
corresponding to a positive velocity. The pressure time histories in A and B were evaluated
averaging the pressure at a point on the screen (A1) and the corresponding point on the square
section (A2), as illustrated in Fig. 4.16-c.

SECTION FOR
VELOCITY PROFILES
>

—_—
Y]
—

(b) (c)
Fig. 4.16 - Sketches to explain the data analyzed.

AP

Fig. 4.17 - Pressure gradient at the instants employed to evaluate the velocity profiles.

Fig. 4.18 shows the phase lag between the pressure gradient and the y-component of the
velocity (parallel to the screen) along the cavity section, evaluated at the Strouhal frequency.
Both the SA and kw-SST turbulence models seem to be able to simulate a ¢-dependent phase
difference (where € is a coordinate transversal to the cavity flow), as expected for a Wo >> 1.
By contrast, the simulation carried out at Wo=1 exhibits a quasi-steady flow behavior, because
the oscillating flow velocity is slightly out-of-phase with the driving pressure gradient at the
extremities. It is worth noting that with the kw-SST model at Wo = 6 the phase lag varies
between -150° (at the wall) and -75° (at the center), while the values are slightly different at
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the walls for the SA model (-135°). The case with Wo =1 exhibits almost constant values along
the whole section (around 25°).

Fig. 4.19 shows the velocity profiles expected for the out-of-phase behavior in case of large
values of Womersley number. Indeed, when the positive pressure gradient peak occurs, the
velocity profile shows that the flow is moving in the opposite direction, as compared to the one
expected for a quasi-steady behavior at that specific instant. Moreover, the flow profile shape
assumes different forms, as previously discussed in Section 2.4.

The amplitude of the maximum velocity reached in the cavity is of the same order of
magnitude of the mean approaching flow. This consideration allows characterizing, in first
approximation, the oscillating flow, if combined with the Wo number estimated following eq.
2.20. Therefore, considering the gap width (Z) expressed as a fraction of the cross-flow body

characteristic dimension (D), a local maximum value of Reynolds (Re,, ., ) can be estimated as

a fraction of the Reynolds number (Re) based on the undisturbed flow velocity and D, as

follows:

Reloc,max ~ Re% (eq 43])

Despite the global results do not agree with the expected values, the case study at Wo =1 may
be representative of the different oscillating flow behavior in the cavity. Indeed, the results
reported in Fig. 4.20 seem to confirm that for low Wo number the flow behind the screen
nearly behaves in a quasi-steady manner. In this case, the flow is slightly out-of-phase, as
clarified by the velocity profile corresponding to the instant of null pressure gradient.
Nevertheless, this phase lag is much smaller than in the previous case. In addition, at any
instant, the shape of the velocity profile is parabolic, as expected for a quasi-steady laminar
flow. The amplitude of velocity fluctuations is smaller than in the previous case.

It is necessary to remind that the pressure gradient is not perfectly sinusoidal as sketched in
Fig. 4.17, because of its additional frequency components (especially at 2x St ), as shown in Fig.

4.12. This is, however, supposed to have a limited impact on the results here presented.
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Fig. 4.18 - Phase lag between the pressure gradient and the velocity y-component in correspondence of the Strouhal
frequency: case of Wo=6 solved with SA model (blue), Wo=6 with kw-SST model (red), Wo=1 with SA model.
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Fig. 4.19 - Velocity profiles in the cavity central section for Re=7.56x10* (Wo0=6): results with the SA model (top);
results with the kw-SST model (bottom).
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Fig. 4.20 - Velocity profiles in the cavity central section for Re=2.1x10° (Wo=1), obtained with the SA model.
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4.4 Summary

The experimental tests discussed in the previous chapter stressed the necessity of
complementary studies for an improved comprehension of the aerodynamic effects caused by
the presence of the screen. The potential of URANS CFD simulation has been analyzed through
a challenging benchmark: the aerodynamics of a square cross-section with flow perpendicular
to a face. This preliminary step revealed that, despite the limitations related to this simplified

approach, qualitatively good results are expected to integrate the experimental study.

The simulations concerning the system composed by the square cross-section and the screen
fixed at [¥20 with open gap cavity has been validated through global and local aerodynamic
parameters obtained in the experimental campaign.

Time-averaged flow visualizations showed that the mean pressure coefficient distributions
observed in the experimental tests on the lateral body sides are caused by a shear layers
interference in the rear corners region. In proximity of the trailing edges, the mean streamline
patterns exhibit a flow reattachment. This, in turn, anticipates the center of the recirculating
region on the lateral body side. Moreover, the area of vortex formation behind the base seems

reduced when the screen is present.

The mean pressure distribution around the screen showed that, in the proximity of the cavity
extremities, the local effects (already observed in the experiments) causes a relatively small
difference between the pressures measured on the internal face of the screen and the

corresponding shielded face of the body.

The analysis of streamlines and pressure around the two-dimensional system has been plotted
for selected instants of a vortex shedding cycle. The mechanisms of interference, related to the
air-flows drawn and ejected from the cavity and the streamlines deflection, supposed in the
previous chapter, are confirmed. The focus on the cavity extremities showed that such air

movement generates a local separation of flow when the air is drawn.

The simulations performed were able to show that, qualitatively, the velocity profile in the
cavity behaves as expected for an oscillating flow. Moreover, a maximum velocity in the cavity
of the same order of magnitude as the external undisturbed approaching-flow velocity, allows
estimating a local maximum Reynolds number into the cavity, useful to estimate, in first
approximation, the internal oscillating flow regime.

Since the discrepancies between the results obtained at Wo = 1 and the experimental results, it
has not been possible to investigate in details the screen effect on the system when the internal

flow behaves as quasi-steady.
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In the present dissertation, the aerodynamics of a two-dimensional system, composed by an
airtight screen attached to a rectangular cylinder creating a through cavity was studied. The
role of potential influencing factors, such as the gap width, the approaching flow features, the
side ratio of the shielded rectangular cross-section, the wind direction and the Reynolds
number was investigated. The study was carried out by performing experimental tests and

numerical simulations as complementary tools.

5.1 - Main contributions of the present work

The main original contributions achieved in the present work are summarized in the following.

Aerodynamic interference. The presence of the open-gap airtight screen influences the
aerodynamics of the original bluff body producing a new fluid dynamic system. In particular,
the screen effects on the square and rectangular 2:3 sections were investigated. The interaction
occurs even though the gap width is more than an order of magnitude smaller than the
characteristic cross-flow body dimension.

The screen affects the system aerodynamics for all the tested screen distances, irrespectively of
the approaching flow features and the shielded cross-section side ratio. Anyway, the screen
effects are more pronounced in smooth rather than in turbulent flow.

For a wind flow normal to the screen, the vortex shedding process drives an oscillating internal
flow in the cavity behind the screen, which may reach a maximum velocity comparable to the
mean one of the approaching undisturbed flow. It is argued that the location of the cavity
extremities behind the separation point may play a crucial role for the interaction between the
internal flow, periodically drawn and ejected, and the outer flow around the body. Based on
the results obtained, the cavity oscillating flow can be characterized, as a first approximation,
through estimated local values of Womersley (eq. 2.20) and Reynolds (eq. 4.30) numbers, once
the system geometry and the oncoming flow Re number are defined.

Global aerodynamic coefficients appear slightly affected by the presence of the screen for a null
angle of attack. Nevertheless, the measurements performed by varying the angle of attack
showed a reduced slope of the lift coefficient as a function of the angle of attack, implying a
reduced proneness of the system respect to the galloping instability.

The pressures around the shielded body exhibit different features depending mainly on the
approaching flow turbulence and the cross-section side ratio. Nevertheless, in case of flow
normal to the screen, the cavity mean pressure coefficients are always negative, with values
between -1.9 and -2.5. Moreover, in the proximity of the extremities, the mean pressure
further decreases by increasing the gap width.

The presence of the screen produces a pressure recovery in the rear corner portion of the
lateral body sides. In particular, flow visualization pointed out a mean flow reattachment when
the screen is distanced from the square section by 1/20 of its characteristic cross flow-
dimension.

Generally, pressure distributions along the lateral body sides and the rear face are influenced,
in terms of mean and fluctuating components, also for non-zero angles of attack, where
investigations revealed that the presence of the screen tends to increase the angle at which the

flow reattaches.
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External and internal pressure decoupling. The presence of a through cavity is a crucial
feature, since, if the transversal flow behind the screen is prevented, the previously mentioned
interaction does not occur, and the influence of the screen is reduced to a mere body
elongation. The internal airtight compartmentation used to avoid the internal flow splits up the
cavity into two regions independently connected to the external flow. In such a configuration
and for a flow normal to the screen, it is reasonable to evaluate the internal pressures from the
external ones measured in the proximity of the cavity openings. On the contrary, when the
cavity is not partitioned and the air passage is allowed, simplified models to determine internal
pressures hardly lead to reliable values, given the results sensitivity observed by varying the

main influencing factors.

Contributions to the research literature (i). The tested systems provide an experimental data
set about two-dimensional geometries not considered yet, to the author’s knowledge. Pressure
and force measurements on a system with the airtight-screen depth equals to the body cross-
flow dimension (D) and gap widths in the range between /)40 and /10 were motivated as a
preparatory work on permeable building envelopes, but they might be useful for other alike
case studies.

Contributions to the research literature (ii). The present thesis’ Appendix is useful for
planning future studies on more realistic “building + permeable envelope” systems. Therefore, a
classification of possible case studies based on the system aerodynamics was proposed. Such
classification emerged from the state of art on wind effects on permeable building envelopes.

To the author’s knowledge, such a collection of literature contributions has not been provided

yet.

5.2 — Implications and perspectives

The main fluid-dynamic findings pointed out in the thesis suggest to concentrate future
investigations on three-dimensional case studies concerning buildings with permeable
envelopes. Therefore, some considerations are reported in the following, especially referring to

facades with an external airtight layer and a through cavity.

» Wind Ioads on permeable building envelopes. The present study has pointed out that the
interference between internal and external flows may occur when a building with a permeable
envelope is considered. In particular, wind loads on the envelope may be strongly affected by
the occurrence of peculiar flow features, such as the oscillating flows observed in the present
work. Therefore, in order to obtain reliable design values, to perform investigations on models
which correctly reproduce the permeable envelope seems a key requirement.

o A possible structural improvement. Experimental results has shown a reduced proneness
to galloping instability of the two-dimensional section considered. It is suggested to take into
account this results for possible studies aiming to improve the stability of slender structures,
such as very tall buildings.

o Natural ventilation. Results obtained in two-dimensional studies showed that an
oscillating internal flow may occur for a limited range of wind directions around the null angle
of attack. For all the remaining wind directions either the flow tends to enter directly in the
cavity or it gets through the cavity driven by the wake movement (e.g for a=180°). Therefore,
it seems possible working towards the design of a wind-driven ventilation for such envelopes,

since also for wind normal to the fagade an internal ventilation may occur.
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o Energy harvesting. The wind effects on the system, in terms of both external and internal
flows, could represent a potential source for wind energy harvesting devices. Recently, many
funding initiatives are paying attention to energy saving and generation from renewable power
sources, e.g. part of the research and innovation program "Horizon 2020" of the European
Community. Nowadays, the use of double-skin facade internal flows for energy harvesting is
being discussed among the wind engineering community: for instance, Hassanli er al (2017)
proposed a facade configuration designed accordingly. Therefore, a deeper understanding into
the flow field around such complex three-dimensional systems may open new possibilities to

integrate renewable energy into the building of future smart cities.

5.3 - Future work

The obtained results and implications suggest mainly two possible research paths. At first, the
two-dimensional bluff body aerodynamics study needs further in-deep investigations. On the
other hand, it is necessary to extend the present study to more realistic three-dimensional case

studies.

Bluff body aerodynamics. CFD simulations provided useful qualitative results, but future
work should be devoted to obtain quantitative results. The interference observed between the
confined (internal) and the unconfined (external) flows, and the related phase difference
between the driving pressure gradient and the flow in the cavity, point out that a deeper
knowledge of the flow mechanism is required. Moreover, an effort is needed to increase the
investigated Reynolds (and Womersley) number range. For these reasons, it is supposed that
LES may represent the most suitable tool (instead of RANS and URANS) for further
developments of the work. It is supposed that accurate simulations will also be able to
overcome the impossibility to measure net peak pressures on the screen encountered in wind
tunnel tests.

A further branch of research in this field will be the study of different system
configurations, for example by attaching the screen on two opposite body faces, or by using

permeable screen instead the airtight one.

Three-dimensional case studies. Although the study of three-dimensional geometries
representing building immersed in the atmospheric boundary layer increases the number of
potential influencing parameters to investigate, studies oriented towards the definition of wind
effects on more realistic case studies are needed. In particular, the case of a permeable envelope
characterized by an airtight panel, opened along the lateral sides, with internal horizontal
compartmentations (according to present classification proposed in Al.4) seems the most
suitable geometry over which planning future works. Numerical and/or experimental studies
should be performed aiming to elucidate also the following additional aspects:

« the screen effects depending on the ratio between the building cross-flow dimension and
its height, namely the building aspect ratio;

o the role of atmospheric boundary layer on the wind effect that the permeable envelope
may create on the three-dimensional case study;

o the role of horizontal compartmentations on the system aerodynamics. Hence the
comparison between model with different configurations of horizontal compartmentations (e.g.
cavity partitioned at each storey, every few storeys and without compartmentations);

« the possible effects caused by the presence of a permeable envelope on more than one face.
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Such a study represents a challenging task, owing to the scaling issues involved in such a multi-
scale problem, combined with the importance of obtaining reliable net wind pressures on the
building envelope.

An additional step will be the characterization of such building envelope energy
performance, in order to put into relation wind effects and energy efficiency of the facade. It is
expected that the definition of the driving parameters will lead to a system optimization, taking

into account wind resistance and energetic behavior of the naturally ventilated facade.
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envelopes

The present work deals with two-dimensional studies on bluff body aerodynamics, preparatory
for more complex three-dimensional geometries. Further works will be oriented towards the
definition of wind effects on more realistic case studies, such as systems composed by a building
with a permeable envelope. The aim of the current appendix is to simplify the extension of the
results obtained in this work. For this purpose, a review of the research concerning wind
effects on permeable envelopes and a classification of possible case studies, useful to plan future

research activities, are carried out.

In the present appendix, firstly, an overview of permeable double-skin building envelope
typologies is carried out (Al.1). Three different typologies are considered: rainscreen walls,
double skin facades and porous screens. In particular, the first two are examined in depth,
trying to clarify the role of each facade component and how these envelopes are usually
designed in practice. Then, after a short introduction on porous screen, some selected
fundamentals of fluid dynamics are recalled to discuss the use of simplified models to evaluate
internal pressures.

Wind effects may be used to define the envelope performance in terms of natural ventilation
and/or wind loads. Since the use of wind induced pressures to design internal flows of
ventilation, requires the same level of comprehension of the system aerodynamics that it is
necessary for the definition of wind loads, the state of art on wind loads on such building
envelopes is analyzed (Al.2). Through the review, it is shown that the definition of wind
effects on certain building envelope typologies is still an open problem in the wind engineering
field.

Finally, an attempt to re-organize the literature through a classification merely based on system
components is performed (A1.3).

It should be noted that, the author considers necessary to underline that:

o The present work is focused on the behavior of the permeable building envelopes under
the wind action, 7.e. on the fluid dynamics of the system composed by the building and the
facade in case of wind storm. Other issues, such as for instance the “stack effect” due to
thermal effects, are neglected.

o The current study treats only envelopes with one additional “skin”. In order to have an
approach as general as possible, three conceptual layers are considered: the outer layer
(also called external skin), the cavity between the two skins and the inner layer (also called
air barrier).

o The review deals only with cases in which the cavity is connected to the exterior. The link
may be represented by openings or porous screens on the outer layer or at the edges, on

the lateral sides, or on the top/bottom sides.

Al.1 An overview of permeable double-skin building envelope typologies
The field of permeable building envelopes merges many different topics. The energetic and
acoustic performance, the materials employed and the aesthetic details are only some of the

factors influencing the design of the same building component. The aim of this section is to
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describe how these envelopes are conceived, in order to understand their fluid-dynamic
working principle under the wind action. In this manner, elements with different names

and/or appearance could share a common aerodynamic behavior.

A1l.1.1 Rainscreen walls
Usually, rainscreen walls have an external skin composed by the assembly of many elements
(e.g. metal or ceramic panels), each one characterized by a small dimension as compared to the
height of a storey. These elements are spaced enough to ensure a ventilation between the
external environment and the internal cavity (Fig. A1.1). Rainscreen walls are mainly divided
in Pressure Equalized Rainscreen (PER) and Back Vented Rainscreen (BVR):

o PER aims to eliminate the water penetration through the pressure-equalization across the

rainscreen;

o BVR allows water to penetrate into a ventilated cavity where it is subsequently drained.

The PER walls are made of three components (Fig. A1.2): the external rainscreen, the internal
air barrier and the cavity obtained through the compartmentations. The compartmentations
often coincide with the supporting systems of the rainscreen. They also fix the distance
between the two skins, Ze. the cavity depth, once the thickness of the insulation usually placed
in front of the air barrier is known. The openings are often placed along the panel sides. In
practical cases the gap width ranges from tenths to few centimeters.
From the early works carried out to describe the operating principle (e.g. Johansson, 1946,
Garden, 1963) to the most recent guidelines (Baskaran, 1992), the design approach proposed for
a good rainwater penetration control is mainly based on:

o the relationship between the air leakage of the air barrier and the size of the openings on

the rainscreen (also called venting holes);

o the relationship between the cavity volume and the total area of the venting holes;

o the flexibility of the outer skin;

« the position of the single element on the facade (e.g. near the corner, central area, etc.) and

the related compartmentation.

Air cannot exit
Air exits
——
Closed at top |
b
Open at top

Open at bottom
-—
-

Open at bottom

[}

0

Air enters

Air enters
e —————————————————————— e ————————————————————
Fig. Al.l - Working principle sketches of PER and BVR. Illustration of Steve  Baczek

(http://www2.buildinggreen.com/article/how-rainscreens-work).
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Fig. A1.2 - Principal components and design features of a PER (Baskaran and Brown, 1992).

Based on the above considerations, the PER geometry (cavity width, opening size, etc.) is
defined in first approach to ensure a good pressure equalization aiming for a rain water
penetration reduction. However, each rainscreen wall geometry corresponds to a pattern of
wind induced pressures. Moreover, other issues, such as the effective air-tightness of the inner
layer or the spatial pressure variations (Fig. A1.3), that are indicated as a problem in the process
of pressure equalization, should be considered in the evaluation of the wind effects on this
envelope typology. For example, if the same compartmentalized cavity is connected to two
external points at different pressure, this difference acts as a driving force for internal flows. In
addition, the pressure on the two points could vary in time influencing both, the rainwater
penetration and the wind loads. The concepts related to the pressure equalization of PER were
also considered in the first studies on BVR by Gerhardt and Kramer (1983), in which the tests
were conducted varying the building aerodynamics (spatial variations) and the wind profile

characteristics (temporal variations).

Wind Speed

Proﬁly'

Perpendicular Wind: B=90P Quartering Wind: 3=135p

Fig. A1.3 - Sketches of wind streamlines (left) and average spatial pressure gradients (right) on a building face for
different wind directions (Straube, 2001).

A1.1.2 Double-skin fagades

Historically, the idea of a ventilated fagade first appeared in the second half of the nineteenth
century, even if the first applications are found in the early 1900s. At the beginning, the
priority was to maximize day lighting, as shown in the Post Office Savings Bank in Vienna,
designed by Otto Wagner in 1903. Later, other pioneering architects like Ginzburg and Le
Corbusier since the 30's have used ventilated double-skin fagades with an approach more

similar to that used nowadays.
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Double-skin fagades are employed for their energetic, acoustic and/or aesthetic role. Usually,
such permeable envelopes are placed externally on the building framework through apposite
supporting systems. The building could be equipped with a ventilated double-skin facade by
the direct installation of its components, such as glass panes, or by pre-assembled panes also
called “unitized system”.

Following the sketches in Fig. A1.4, a double-skin fagade system consists of:

o Exterior and interior skins. The two physical layers, the external and the internal one, are
commonly called “skins”. The choice of the material is almost always oriented to glass. The
glass type for the interior and exterior panels depends on the typology of the fagade. In
case of a facade ventilated with outdoor air, an insulating pane (sealed double-glazed unit)
is usually placed as a thermal break at the interior side and a single pane at the exterior
side. Both the skins could be equipped with openings, respectively for the ventilation of
the cavity and of the building’s interior.

e An air cavity between the exterior and interior layers. The ventilation of the cavity may be
totally natural, fan supported (hybrid) or totally mechanical. The case of totally
mechanical ventilation does not requires the presence of external openings. The depth of
the cavity can vary between tenths to few meters. The depth influences the physical

properties of the facade and also the way that the facade is maintained.

The openings on the skins of this typology of facade are needed for the ventilation of the
internal cavity or, in some cases, to intake air inside the building. For this reason these facades
are also called ventilated double-skin facades (VDSF). These facades could be classified
according to the Belgian Building Research Institute (BBRI), based on three criteria (Loncour et
al., 2004):
o the type of ventilation: natural, mechanical, hybrid;
o the partitioning of the facade: horizontally and vertically per storey, only horizontally per
storey, only vertically;
o the modes of ventilation of the cavity: referring to Fig. A1.5, respectively from left to
right, outdoor air curtain, indoor air curtain, air supply, air exhaust, buffer zone.
Nevertheless, a specific classification oriented to the wind load, or somehow to the

aerodynamic behavior of such building envelopes, has not been provided yet.

Internal Layer

External Layer

Grated Walkway

Ventilation Grille

<«—— Spandrel Panel

Fig. A1.4 - Principal components of a double-skin facade (ArchiExpo, 2003).

112



Appendix 1 - On the wind effects on permeable double-skin building envelopes

/ \ \

v » » | «

ouT IN | OUT IN [ OUT IN ouT IN [OUT IN

Fig. A1.5 - Ventilation modes for double-skin facades (BESTFACADE, 2007).

Generally, the thermal performance is the first goal in the design of a VDSF. The two most
common indexes to evaluate the thermal performance are: the SHGC (Solar Heat Gain
Coefficient) and the U-Factor. The former is defined as the fraction of incident solar radiation
admitted through a window, both directly transmitted and absorbed and subsequently released
inward (SHGC is expressed as a number between 0 and 1). The U-Factor (or U-Value) is the
measure of the rate of heat loss through a material. Other important factors in designing a
VDSF are the internal glazing temperature and parameters to define the behavior of the fluid in
the cavity, like cavity airflow speed and temperature (Doebber and McClintock, 2006).
Performance standards related to acoustic insulation, impact protection, fire resistance, seismic
survivability and, of course, wind loads resistance may pose additional requirements for the
VDSF design.

From this brief description of the main design parameters it is possible to understand that the
design of a VDSF is an iterative process. In common practice analysis, specific software are used
to take into account of all the energetic and structural requirements. The wind effects on
ventilated double-skin fagades in businesslike applications are considered after the geometry
definition driven by the comfort and energetic objectives. However, the wind load still remains
the main structural design load.

Aiming at a comprehension of the fluid-dynamic behavior of the VDSF, a first distinction can
be made, based on the cavity connection typology with the exterior field. Based on Poirazi’s
review (2004), it is possible to distinguish at least three types of opening configurations, and
consequently other three groups of VDSF walls:

o Walls with uniformly distributed openings (Fig. Al.6-a). In this case, the presence of
regularly-spaced and similarly-shaped openings connects the cavity to the external field.
The so-called box double-skin facades, storey-high double-skin facades or corridor fagades,
distinguished by the internal compartmentations, are included in this group.

o Walls with openings at the top and the bottom (Fig. A1.6-b). Usually facades with this
openings typology are called multi storey double-skin facade. In this case, the facade has a
sealed external skin, while the cavity is connected to the external field through openings
on the top and the bottom of the whole facade.

o Walls with openings on the lateral side (Fig. Al.6-c). This typology is presently less
employed in practical application. In this case, the facade has a sealed external skin and the
cavity is connected to the external field through the lateral edges of the whole facade.
Horizontal partitioning may be required for acoustical, fire safety or ventilation reasons.

It is worth noting that in practical applications a combination of these three basic typologies
can be found. Moreover, a fourth case can be considered when a “dominant opening” is formed
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on the external skin. This case, only mentioned, could represent a configuration of post debris
impact (Minor, 2005).

AT

(c)

Fig. A1.6 - Sketches of VDSF opening typologies: (a) uniformly distributed openings on the outer layer (Lou et al,
2012); (b) openings at the top and bottom (Lou er al, 2012); (c) with openings on lateral side, sketched by the author.

As aforementioned, the fluid dynamic behavior of a double-skin facade relies on the same
parameters of a rainscreen wall (two layers and a cavity connected to the exterior field which
can be partitioned). Nevertheless, some parameters have different characteristics, e.g.:

e openings and cavity size (expected interaction with the building aerodynamic): the
dimension of both the openings and the cavity are usually different. As mentioned above
the depth of a VDSF cavity is of an higher order of magnitude as compared to the
rainscreen case;

o compartmentations (internal flow paths): the internal partitioning of a VDSF is
fundamental for its energetic and thermal performance. Therefore, a VDSF could be
designed with a cavity that connects far apart external points of the facade to facilitate the
internal flows development. On the contrary, the PER working principle suggest that
vertical and horizontal compartmentation must create short paths between the openings to
achieve a good pressure equalization;

o materials (typology of information required): in VDSF are often used time sensitivity
material, as glass. This could lead the researcher (or the designer) to focus the attention on

additional aspects of the wind load compared to the rainscreen case.

Finally, a note on the openings. Adjectives as “uniformly distributed” and “dominant” are
similar to the well-known keywords used in the Eurocode 1.4 for the building internal
pressures. While the Eurocode on this regards refers to openings on the building wall which
directly link the whole internal building volume with the exterior, in the present work, the
openings considered are on the external skin of a two layers wall. The internal layer is

considered always airtight, and "internal pressures" are referred to the cavity pressures.

A1.1.3 Porous screens

A porous screens generally denotes a permeable facade with the external skin made of panels
(usually metal panels) with diffuse openings, uniformly distributed and with a similar shape.
They are employed mainly to protect the building from the direct sunlight, with the external
skin that act as louver.

It seems that the energetic design phase does not involve fluid-dynamic operating principles, in
fact, the literature concerning wind effects on this facade typology is quite poor. However,
wind effects could affect the performance of porous screens, for example, by causing damages
or generating noise. Therefore, in order to understand the aerodynamic behavior of the system
building + porous screen, the state of art presented in section Al.2 has been enriched with
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works performed on clad scaffolding: temporary structures which share a common fluid-
dynamic behavior with such permeable building envelopes if subjected to the wind action.

A1.1.4 On the use of simplified models to evaluate internal pressures

Simplified methods are used in defining the natural ventilation performance of a permeable
facade, relating the wind induced pressure distributions with the air ventilation. Such methods
use the external pressures in the proximity of the cavity openings as boundary conditions to
evaluate internal pressures (since the latter are often not directly measurable). If this approach
was applied to the evaluation of wind loads, it could lead to unsafe design values. On this
regard, two issues are pointed out: first, the presence of a permeable envelope could influence
the external pressure distribution obtained on the system without it, and the values employed
as boundary conditions could not be representative. Second, if the influence of the external
pressures (due to the presence of the permeable envelope) on the internal ones is negligible, the
method to estimate the internal pressures still must still take into account additional factors to
give reliable values. In order to show some of the complexities that such method should

consider, some basic fluid-dynamic topics are recalled.

Basis| - The flow between fixed parallel plates (the Couette flow)
This elementary topic is briefly recalled because in many situations the flow in the cavity is
schematized as a two-dimensional channel (eg Chino er al, 1991). Therefore, an

unidirectional (u, #0,u, =0,u, =0) incompressible flow between two fixed parallel plates at a

distance h is considered (Fig. A1.7).
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Fig. A1.7 - Parallel plates flow sketch.

In this case, the mass conservation law can be simplified. The endless plates extend on X and z

directions, while the velocity u, depends only on the Yy direction. Therefore, if the flow is

stationary, the Navier-Stokes momentum equations can also be simplified. Integrating the

equations and applying the boundary conditions, the velocity equation is obtained:

1 op
Ux(y)=za

where 4 is the dynamic viscosity of the fluid and p is the pressure.

(y* - vh) (eq. AL1)

Therefore, the maximum velocity is at the center of the gap between the two plates:

Uy max = Uy (Ej:____ (eq. A1.2)

While the mean velocity is:
— 2 1 op h?

U =—Upyax === — AL
3 X 3u0x 4 (eq 3)
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Finally, the mean flow rate is evaluated as:

Q=u,h=——"E— (eq. Al.4)

If |, is the length of a channel section, and Apis the pressure difference at its extremities, it is

A
possible to write ?:I_p’ in order to show that velocity and flow rate are directly
X

proportional to the pressure difference applied and inversely proportional to the channel
section length. The theory briefly presented above is only valid if the flow is laminar, 7e. for
Re < Re,,, where the threshold limit Re, is given by:

pUh

Re,., = =1400 (eq. A1.5)

where p is the density of the fluid.

Basis I - The friction losses

The Darcy-Weisbach equation is a basic equation of the fluid dynamics, which relates the
pressure loss (also called the head loss), due to friction along a given length of pipe to the
average velocity of the fluid flow.

The head loss can be calculated as:

I A
h, = f, = — (eq. A16)
where: N,  is the head loss due to friction

|, is the length of the pipe considered

R, isthe hydraulic diameter of the pipe (the ratio of the cross section area over the
perimeter)
u is the average velocity of the fluid flow

g is the local acceleration to gravity

fy,  is a dimensionless coefficient called “Darcy friction factor”

The head loss N; expresses the pressure loss Ap as the height of a column of fluid:

Ap= pghf (eq. AL.7)
where p is the density of the fluid.

The Darcy—Weisbach equation can also be written in terms of pressure loss:

I o2
A'OszR_ppz
h

The Darcy friction factor f, (also named Fanning coefficient), depends on the parameters of

(eq. A1.8)

the pipe and the velocity of the fluid flow, but it is known with high accuracy within certain
flow regimes. It may be evaluated for given conditions by using various empirical or theoretical
relations, or it may be obtained from published charts.

For laminar flows, it is a consequence of Poiseuille's law that:
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_64
Re
where Re is the Reynolds number calculated substituting for the characteristic length the

fo (eq. A1.9)

hydraulic diameter of the pipe, which is equal to the inner diameter for circular pipe
geometries.

For turbulent flows, the friction factor f is evaluated in different ways, e.g using a diagram
such as the Moody chart (Fig. A1.8), solving the Colebrook—White equation, or the Swamee—
Jain equation. While the Moody chart and Colebrook—White equation are iterative methods,
the Swamee—Jain equation (an approximation of the implicit Colebrook-White equation)
allows to directly find f, for a developed flow in a circular pipe. For smooth walls and for Re

numbers below 105, the turbulent friction factor is well described by the Blasius equation:

f 0.3164 (eq. A1.10)
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Fig. A1.8 - The Moody’s diagram for friction losses (adapted from Longo and Tanda, 2009).

It is worth noting that the internal cavity of a facade could have a rectangular cross-section,
while the above equations refer to very simple geometries such as the circular pipe or the
endless parallel plates. This problem has been faced in hydraulics applications, where results
obtained with circular sections were extended to common non-circular sections.

In case of laminar flow, the corrected friction coefficient f_  can be expressed as:

corr
fcorr =5 (eq. A1.11)

where C'is an empirical coefficient that depends on the cross-section shape and R, is the
Reynolds number based on the hydraulic radius (or diameter). In case of fully developed
turbulent flow, Moody's diagram for circular sections is used. In this case the diameter D is
substituted by the hydraulic diameter, also considering the Reynolds number. In most practical
cases, the accuracy of this method is found to be around 15% (White and Corfield, 2006).

Basis III - The local losses

The inlet of a duct can be considered as a cross section reduction (Fig. A1.9). Here, a flow
separation with secondary recirculation and a local energy dissipation occur, where the local
energy loss is expressed in analogy to the friction losses as:
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2
U
P9 29
where K is an empirical coefficient that depends on the inlet (or outlet) geometry.

h =

L

(eq. A1.12)
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Fig. A1.9 - Local losses at the inlet of a duct (adapted from Sadri and Floryan, 2002).

Depending on the inlet and outlet geometrical characteristics, the disturbances in the duct flow
are more or less evident. This concept must be considered as a characteristic that affects every
model in which the inlet / outlet are not accurately reproduced. In fact, the local effects shift
the fully developed flow profile at a certain distance from the extremities. Two empirical

relationships to qualitatively evaluate the distance L, after the inlet, needed to reach the fully

developed flow conditions are:
L, =0.05Re-D for the laminar case (eq. A1.13)

L =44 Re'®.D for the turbulent case (eq. A1.14)
Nore et al (2010), studying the possibility to decouple external and internal pressures on a

narrow ventilated facade, highlighted the inlet problem described above as one of the modeling
limitations in this task. Differences between coupled and decoupled simulations are shown in
Fig. A1.10. The figure shows the velocity profiles along the cavity for the coupled case (Case A)
at two different Reynolds numbers, and the velocity profiles along the decoupled cavity (Case
C1).

Case A Case C1
U= 10mfs uw-z mis Uyp =10 mis

>

Fig. A1.10 - Profiles of normalized wind velocity across the cavity depth for coupled (Case A) and decoupled (Case
C1) simulations (Nore, Blocken, & Thue, 2010)
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Basis IV - The flow through an orifice without and with cross-flow

Let's consider a laminar flow through an opening. The flow rate through an opening is
determined from the knowledge of its still-air discharge coefficient k, (dimensionless), which
is defined by:

Q f p f P
k,=—=< |[-£— =0 |[-£— L ALI
‘T A\ 2ap 2Ap (eq. AL13)

where: Q  denotes the flow rate

A is the area of the opening

p  is the air density

Ap s the pressure difference across the opening
This coefficient in laminar flow is fixed purely by the shape of the opening and the Reynolds
number Re,, defined by:
Re, = pud

(eq. A1.16)
7

where U =% and d is the opening characteristic dimension.

The eq.A1.15 can be employed to evaluate the pressure loss across an opening on the envelope
external layer considering and approaching smooth flow. For turbulent flow, empirical values
of discharge coefficient are adopted. Nevertheless, attention must be paid in case of grazing
flows. According to Chiu and Etheridge (2007), the presence of a cross-flow reduces the

discharge coefficient k, up to 50% depending on the ratio between the flow perpendicular

component U and the parallel component V (Fig. A1.11).

u

xx\%\
|

Fig. A1.11 - Streamline patterns in two-dimensional flow for: (i) V/U =0, (i) V/U <1, (iii) V/U >1 (Chiu
and Etheridge, 2007).
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Simplified method - Zonal modeling approach

The simplified method usually called "zonal approach" is presented referring to Lou et al
(2012). Here the method is used on a fagade with horizontal compartmentations, laterally
closed, with diffuse openings (Fig. A1.12). In this method external pressure coefficient are
considered known, obtained from experimental tests or from a wind loading code values for a
single skin building. With opportune consideration on pressure losses and mass conservation it

is possible to evaluate the internal pressures.
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Fig. A1.12 - Schematic top view of the cavity (Lou et al, 2012).

The cavity (corridor) is divided into a number of cells equal to the number of openings. Air
flow rate Q through openings due to wind pressure difference (Ap) can be determined by the
well-known orifice equation, in the following rewritten as:

Q=k,A(Ap) (eq. A1.17)
where the flow exponent t could range between 0.5 and 0.8, while K, is a discharge

coefficient.
Starting from this equation Lou et al. (2012) define the air flow rate through the ;j-tA opening

as:
—o\! B
QJE = deE (%j (CPE,j _CPI,j)(‘CPE,j _CPI,j‘)(t ! (eq. A1.18)

where: CpE, j is the external pressure coefficient at j-zA cell

Co ,j is the internal pressure coefficient at ;j~tA cell

The pressure loss due to friction along cavity of the corridor VDSF can be calculated by the
Darcy-Weisbach equation. Therefore the air flow rate inside the VDSF cavity from the (j+1)-th
cell to the j-th cell is expressed as:

7] (05)
QJ!+1,J‘ :m(cpl,m_Cpl,j)(|CP|,j+1 _CPI,j|)05 (eq. A1.19)

where: A, s the cross section area of the cavity

C, Jj+1 is the internal pressure coefficient at (j+1)-th cell

The mass conservation equation of the air flow for the j-zA cell can be written as:

E, A [
> Q,=Q7+Q';;+Q;,,; =0 (eq. A1.20)
finally, with opportune substitutions, and applying the boundary conditions to the first and last

cell (j=1 or j=n), the above system of n coupled equations can be solved numerically for n

unknowns of internal pressure coefficients.

As pointed out, simplified models based on the fluid dynamic concepts here recalled are
unavoidably affected by limitations. Even if the use of such models could give quite good
qualitative results with very simple geometries (Lou et al, 2012), it seems not possible to

employ such qualitative results as wind load design values.

A1.2 A literature review on wind effects on building envelopes
The definition of wind effects on building envelopes is a relatively new field of research.
Historically, studies regarding the wind effects on buildings considered it as a bluff body with

single-layer airtight walls. First studies on the wind action on low-rise buildings were carried
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out at the end of the XIX century with very rudimentary wind tunnel facilities (Holmes, 2007).
The earliest investigations were fundamental to introduce poorly understood concepts, such as
the roof suction. Subsequently, after about 30 years of isolated studies in the few existing
aeronautical wind tunnels, two important works were carried-out: Irminger and Nokkentved
(1930), tested models with porous walls, measuring both external and internal pressures; Bailey
and Vincent (1943) introduced the boundary layer wind tunnel concepts, later explored by
Jensen (1958). Since then, many researchers contributed to the development of the wind
engineering.
This work deals with wind action on building envelopes that the Eurocode EC 1.4 (EN1991-1-
4:2005) defines as "Walls with more than one skin". In such a multi-disciplinary field, it is clear
that the actual knowledge level is the result of a wide and complex development of the
research on many different topics. Trying to cover chronologically this heterogeneous
development, the current review is divided into four subsections as:

e Al.21  The first studies

e Al.22  Two basic studies

e A1.23  Towards the ventilated double skin facades

e Al24 Porous screens

A1.2.1 The first studies

The first pioneering work on the field of building envelopes were carried out by Kramer er al
(1979). In this work, the Authors introduced some basic concepts in order to study wind loads
on roofing elements, like tiles or paving blocks, that will be later employed for permeable
facades. Considering the roofing elements as fixed to an airtight layer, they studied the wind
loads acting on the external permeable layer ( Fig. A1.13). They asserted that the net wind load
is determined by the building flow field, the wind gustiness and the element flow field. In their
work, the Authors decoupled external and internal (Ze. in the cavity) pressures: a concept still
discussed nowadays. Moreover, the many tests done were useful to understand the internal
pressure behaviour varying the two main parameters of the external screen: its permeability
and the distance from the inner wall. Finally, attention was focused on the supporting systems
and how the compartmentations could influence the inner flow and consequently the internal
pressure. The reliability of this first study was confirmed by Cheung and Melbourne (1986) and
recently by Oh and Kopp (2014, 2015).

In 1983, Gerhardt and Kramer advanced their studies, with a focus on permeable facades.
Recalling the previous work, they proposed a wind load mechanism where the internal
pressures are influenced by the resistance of the flow through the external layer, and the flow
resistance into the internal gap (Fig. Al.14). Internal flows are driven by external pressure
differences on the building wall. In that work, the Authors tested many configurations varying
the building parameters, permeability of the fagade, wind profile and direction, investigating

also the effect of vertical compartmentations and lateral side edges.
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Fig. A1.13 - Sketches from early works on the flow mechanism on permeable roofs: on the left from Kramer er al
(1979); on the right from Cheung and Melbourne (1986).
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Fig. A1.14 - Schematic of wind loading mechanism of permeable building walls (Gerhardt and Kramer, 1983).

The main conclusions are here summarized:

o concerning the permeability of the exterior wall: increasing the permeability of the
cladding a decrease of net wind pressures occurs, while for small permeability the internal
pressure is almost constant;

o concerning the flow resistance in the cavity: for a given facade permeability, if the internal
flow resistance is increased, the net wind pressure across the external layer decrease.
However, the influence of the gap width is negligible for facades with small permeability;

o considering time averaged pressures: the lowest external pressures and the largest net
pressures occur if the flow separates at the leading edges and reattaches on the side walls;

 considering both time-averaged and peak pressures: the highest net pressures occur with a
smooth approaching flow;

« internal pressures equilibration of two adjacent building walls should be avoided because it
increases the net pressures on the external layer.

After this important study, field measurements on rainscreen walls were carried-out by
Ganguli and Dalgliesh (1988), and then summarized by Rousseau (1990). Meanwhile, other
fundamental studies, on the cavity pressure (Fazio and Kontopidis, 1988), or on permeable
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roofs (Amano er al, 1988, Sun and Bienkiewicz, 1993), were carried out. Concerning the topic
of internal ventilation, interesting studies with comparisons between experimental and

numerical results were carried out by Kato ez al (1992).

In 1991 Chino et al developed an analytical approach, in which the Bernoulli equation for
multi-room buildings was applied to double skin walls with many openings on the external
layer. In the model, for the internal flow between the skins, the equation of flow between
parallel plates was employed (Chino er al, 1991). Then, they validated the model with
experimental tests. The instrumented wall was placed on a side of the building, ie. in an area of
flow separation (Fig. A1.15). They concluded that the results of the analytical model agreed
well with the experimental results if proper values for flow resistance between the double walls

were used.

Wind direction

15° J -

20=2,4,8,16nm

Longitudinal section of
double walls and air-flow

Fig. A1.15 - Sketches of the double wall wind tunnel model (Chino et aZ, 1991).

A1.2.2 Two basic studies

In 1994, two important researches in the field of rainscreen walls / permeable facades were
published: the first deals with a BVR geometry, and it is the conclusion of the work started
fifteen years before by Gerhardt, the second concerns PER, and it is the study in the frequency

domain by Inculet and Davenport. In the following work these will be discussed in deep.

“Wind loads on wind permeable facades” (Gerhardt and Janser, 1994) represents one of the
most important experimental work on permeable facades carried out up to date. Based on the
principles of flow resistance through the external layer and in the cavity introduced in the
previous section (Fig. Al.16), a huge amount of configurations were tested varying the
following parameters:
o The boundary layer: three boundary layers were used for the tests, with profile exponents
ar=0.1,0.2 and 0.3.
¢ The model dimensions: models with relative dimensions A/2=0.5, 1, 1.5, and 4 and /2=
1, 2 and 4 with a constant width 2 = 100mm were tested. The building model was a
rectangular prism where 4 is the height, »and a are the other side dimensions.
o The wind direction: the flow direction was varied in steps of Aa=10°.
o The permeability of the external skin: permeabilities of &£ = 0.5%, 0.75% and 1% were
investigated.
o The gap flow resistance: this parameter was varied by changing the gap width s between
the impermeable building, and the porous facade. The tested cases were: s/a= 0.0025, 0.005
and 0.01.
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Fig. A1.16 - Flow mechanism (Gerhardt and Janser, 1994).

Two important similarity consideration were done by the Authors:
(i). The first one was on the scaling method for the external screen. To ensure the similarity

of the net pressures between the full scale and the model scale, they proposed that the

relation between pressure loss (4p) and volume flow (V) must be conserved. This

relation was expressed as:
Ap=CV" (eq. A1.21)
The range of the characteristic values of C'and 2 to ensure this similarity was checked in
Gerhardt’s thesis (Gerhardt and Kramer, 1983).
(ii). The second one was on the scaling method used for the cavity gap. They considered the
gap flow as the flow in the inlet section of a two-dimensional channel (Fig. A1.17). Then,
through considerations on the pressure loss at the channel entrance, they proposed a

distorted scale criterion for the cavity gap, instead of a geometric one.
panel

el >
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surface fiction  + pressure loss
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Fig. A1.17 - Representation of the cavity gap flow (Gerhardt and Janser, 1994).

Results were given for the constant wind direction a = 10°, because with that value the largest
suctions occurred at the edges. Overall, Gerhardt and Janser drawn the following conclusions:

o For a building with rectangular cross-section and a fixed distance between the screen and
the building model, the external suctions increase by increasing the building height, while
the cavity pressures result less affected (only slightly increasing when reducing the wall
permeability). Therefore, the gap pressures are not remarkably affected by the through-
flow resistance (Fig. A1.18-a).
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o In Fig. A1.18-b, the external and internal pressure coefficients versus the relative building
height are plotted. A smaller gap width corresponds to a larger gap flow resistance.
Subsequently, it is easier for the gap pressures to follow the external pressures.

o Fig. Al.18-c shows the maximum net pressure coefficient (ép,net) for relatively large

porosity and relatively small gap width. The C_ ., for each configuration is plotted versus

p,net
the relative building height. The smallest net pressures occur when the building lie in
completely flow-separated regions.

o For typical full scale values of gap widths, the gap flow slightly contributes to the pressure
equilibration, since is dominated by the through flow (Fig. A1.18-d). The use of the peak
factor approach to evaluate the wind loads, seems reliable to the Authors. Indeed, the
pressure equilibration across the permeable cladding occurs at the speed of sound, Ze. it is
shorter than the typical gust duration time.

o Based on the peak pressures, the influence of the oncoming flow on the wind loads is
defined. The internal pressures vary little by varying the approaching flow conditions.
External and internal peak pressure were not measured simultaneously. Thus, Fig. A1.18-d
shows an envelope of averaged internal peak pressure coefficients. For relatively smooth
flow exposure, the smallest net peak pressure coefficient is obtained. However, the
external pressure fluctuations are higher, as compared to the internal pressure fluctuations,
attenuated by the through-flow and the gap-flow resistances. Nevertheless, the Authors
conclude that net pressure coefficients are almost independent on the approaching flow
and the most critical condition occurs in open country exposure flow, where for a certain

height, the stagnation pressure is higher than for urban flow conditions.

Finally comparisons between full scale studies and model studies were carried out. In the full
scale tests also the air tightness of the edges was considered. As an example, Fig. A1.19 shows
the effects on the net pressures on the facade. The importance of the vertical closures at the

edges pointed out in the previous work dated 1983 was confirmed.
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Fig. A1.19 - Effect of the side openings (Gerhardt and Janser, 1994).

This work was followed by another important case study (Gerhardt and Kruger, 1997) in which
the principles learnt from the previous studies were applied to the double skin facades of the
office building Stadttor Dlsseldorf. With this practical case, Gerhardt and Kriiger highlighted
that a reduction of wind load on a permeable fagade respect to an impermeable one is possible
in the design phase; moreover, they found that the sum of wind loads on the permeable
external and impermeable internal skin is higher than the load on a single skin fagade.
Nevertheless, very little information on the model and the set up, and few detailed results were
provided.

Few remarks can be done on the work by Gerhardt and Janser (1994) before continuing the

history of wind load on walls with more than one skin. Surely, the contribution to this field

from Gerhardt’s research group is precious. They firstly faced the two main problems of this
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topic: the high number of parameters involved and the multi-scale nature of the problem.
Regarding the first aspect, many configurations were planned and tested. From this point of
view, the goal was to find the worst condition for a specific parameter, i.e. the wind direction,
and then to study the remaining parameters with the first one fixed. Unfortunately the cavity
compartmentation was not considered as one of the main parameters. In any case, this work
can be considered fundamental for researchers dealing with parametrical experimental studies.
Concerning the second aspect, the adopted scaling criterions are not fully supported by the
theory. The scaling problem of a whole building is a relatively easy issue. Usually building
models used in wind tunnel tests are equipped with pressure and force transducers. In standard
experimental tests on buildings, the Reynolds similarity is not fully satisfied but, especially for
practical cases involving sharp edged buildings, Reynolds effects can be neglected. The problem
raises up when details of the building need to be scaled. The word “details” refers to parts of the
building of a lower scale order, and in this case it refers to small openings or small cavities. The
local flow around (or in) a detail could be strongly influenced from the mismatch of the
Reynolds similarity. Many researchers tried to study this delicate topic, which strongly
influences the accuracy of the results from laboratory tests. For instance, there are many
experimental (e.g. Stathopoulos and Zhu, 1988, Chand et al, 1998, Maruta et al, 1998) or
numerical (e.g. Montazeri et al, 2013) investigations carried out on pressure field on buildings
with appurtenances or balconies. The problem of the permeable/porous screen and the cavity is
more complicated since the "flow behaviour" through these elements must be scaled. In the
following, some specific scaling difficulties are pointed out:

o The rainscreen has small venting openings. In most of the practical cases, these openings
are small. It is easy to understand that if the geometric scale usually employed in wind
tunnel range between 1:200 / 1:500, an opening in real scale of around 20mm must be
represented in the model as an opening of 0.1 / 0.04mm. Thus, a direct geometric scaling is
not possible. Allori er al (2013) proposed a scaling criterion for porous panels based on
maintaining the similarities of porosity, ratio of thickness (of the screen) to hydraulic
diameter and Reynolds number. Their work referred to the case of a porous screen
without a wall behind it. It was not proven whether this criterion can be applied to the
external panel of a rainscreen (which has the building wall behind it). The criterion
adopted by Gerhardt et al seems very similar to the one proposed by Allori er al. thirty
years later. To the knowledge of the author, this problem is still open.

o Usually the cavity in real scale is small. For a rainscreen, the cavity dimensions are in the
order of few centimetres. Therefore, the considerations previously pointed out on the
direct geometric scaling are valid also for the cavity. To solve this problem, Gerhardt ez al.
developed another scaling criterion. Their idea was to consider both the gap flow and the
outflow through the porous cladding. Therefore, they considered the gap flow as the flow
in the inlet section of a two-dimensional channel and its pressure losses. Since it was not
possible to apply a direct geometry scaling to the cavity, the proposed method was based
on ensuring the same amount of losses. Considering a laminar flow in the gap, the Authors
used a relation between the losses at the entrance of a two-dimensional channel and the
laminar flow to increase the cavity depth and reach the same amount of losses.

The reliability of the proposed method was not assessed. In particular, the results could be
affected by the assumed hypothesis and the measurements accuracy in such a small cavity.

In their work, Gerhardt er al adopted a constant width of the model equal to 2 = 100mm.
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The gap width tested are: s/a = 0.0025, 0.005 and 0.01. This means that the absolute value
of the cavity is respectively s = 0.25 mm, 0.5mm and Imm. With these values, also the
roughness of the model material and imperceptible deformations due to the wind action
could affect the results.
Despite the aforementioned limitations, the huge work done by Gerhardt ez al is the basis of
the general principles of a permeable facade without compartmentations. Most of the works in
the field of rainscreens are based on their intuitions, later extended to ventilated double-skin

facades.

In the same year, 1994, another fundamental work on pressure equalized rainscreens was
published by Inculet and Davenport. The study discusses the primary factors that control the
pressure-equalization via the results of theoretical models, wind tunnel experiments, and full
scale experiments on two separate rainscreen typologies. The primary factors considered in
their work are:

 the leakage of the air barrier;

o the aerodynamic damping introduced by venting in the rainscreen;

o the spatial non-uniformity of mean exterior pressures and of fluctuating exterior pressures

due to building aerodynamics and turbulence.

Inculet and Davenport carried out a parametric study varying the leakage of the air barrier, the
compartment size (volume and exterior dimensions), venting configurations and wind
characteristics. The different approach adopted makes the study complementary to that by
Gerhardt and Janser (1994). In the latter, the cavity between the two layers of the whole facade
was considered as a single volume (treated as a two-dimensional channel), while the internal
supporting structures were considered as obstacles for the flow than airtight layers of
compartmentations. Therefore, from a fluid-dynamic point of view, the case is different from
that of Inculet and Davenport (1994). The attention on a smaller "elementary unit", as the
compartmentalized unit (Fig. A1.20), led the two researchers to focus the study on different

parameters, as the air barrier leakage and the venting configurations.

In Inculet and Davenport (1994), a relationship between mean pressure differences across
rainscreen and air barrier was developed at first. The relation obtained from simple orifice
equations was based on the assumptions that the flow was incompressible, steady, and that the
two layers had different flow exponent. Therefore, in this case, also the air barrier was
considered permeable. The Authors recognised the complexity of the problem due to the many
parameters involved, even for the simplest studied primary factor. In particular, they
underlined that the discharge and flow coefficients, employed in the proposed relation, require
clarification. These remarks can be read now as suggestions for further studies on the discharge
coefficients, which were later provided, for instance by Carey (2001), Karava et al (2005), Chiu
and Etheridge (2007).

Fluctuating external pressures tend to drive fluctuating flows through the venting holes of a
rainscreen. These small holes provide a resistance to the flow which tends, in turn, to suppress
the fluctuations: Inculet and Davenport referred to this phenomenon as a damping effect.
Therefore, the Authors concluded that an high damping of the flow through the venting holes
corresponds to high differential pressures on the rainscreen. In their work, they re-arranged

the Helmholtz theory for the pressure equalization problem. Therefore, a theoretical model
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developed based on a sinusoidal pressure fluctuations applied, obtaining an equation similar to
that proposed by Holmes (1979). The equation was further extended to random fluctuations
and validated with experimental and full scale tests. The obtained results suggest to design a
rainscreen wall with a small cavity volume and a large venting area in order to increase the
natural frequency of the cavity and minimize the damping. In particular, comparing theoretical
and experimental results, three aspects were highlighted:

(i). The theory is valid, aside from a minor discrepancy in phase lag.

(ii). Leakage in the air barrier reduces the transfer function value for all exterior pressure
frequencies and amplitudes. This anticipates the results obtained with a more specific
work on pressure fluctuations in a low-rise building by Guha ez a/ (2010).

(iii). The superimposition of a mean pressure drop on the unsteady pressures has different
effects depending on the amplitude fluctuations: small fluctuations may be significantly

reduced while higher amplitudes are less susceptible to this effect.
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Fig. A1.20 - Principle of pressure-equalized rainscreen (Inculet and Davenport, 1994).

In the compartmentation of the cavity, employed to reduce the exterior pressure-gradient
spatial effects, the size and the venting configuration are the only parameters that a designer
can use in the design phase. Therefore, another aim of the work by Incluet and Davenpoert
(1994), was to determine a panel size over which the average peak pressure across the
rainscreen (spatial average) was acceptably reduced as compared to the average exterior peak
pressure at any point of the panel. This goal was achieved comparing the joint acceptance
function related to three configurations of rainscreen walls. The “Case A” of venting

configuration in Fig. A1.21, resulted the most effective.

Even if its contents appear hardly applicable, in this paper it is possible to find all the basics to
study each single element on a wall with more than one skin with internal vertical and

horizontal compartmentations.
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Fig. A1.21 - Effect of spatial averaging of pressures on rainscreen loading for three venting configurations (Inculet
and Davenport, 1994).

A1.2.3 Towards the ventilated double-skin fagades
The strong similarity between "Permeable Facades", "Pressure Equalized Rainscreens (PER)"
and "Double-Skin Facades (DSF)" has been recognized from the first studies carried out in this
field. However, even ignoring in a first approach the difference between the materials usually
employed in PER or DSF, the idea of a DSF as a "bigger PER" is not always directly applicable.
Gerhardt and Kriiger in 1997 extended their studies to the facade of the "Stadttor Dusseldorf"
building but the facade was not instrumented in order to make a comparison between theory
and real case. Inculet and Davenport (1994), reported two full-scale studies, which revealed
some discrepancies compared to the theory. Generally the differences could be:
e between the theoretical model and the real case, therefore a lack of details in the model
leads to discrepancies;
o between the prototype and the model studied in the wind tunnel. Therefore, different
geometric scale effects in fluid dynamics may affect, for instance, the possible flow regime

in the cavity.

Regarding the role of gap width, Wellershoff and Hortmanns (1999) published the results of
experimental tests in wind tunnel on gaps greater than 15cm (Fig. A1.22). Three building were
tested with their relatives fagades with gap width in the range of =~ 0,4m-1,4m. They showed
that the reduction of wind load on the external skin suggested in the Eurocode version of that
time was not reliable for those building systems. The Authors, therefore, rose the attention on

the importance of the gap width parameter.

In 1992 Baskaran and Brown carried out a study on the performance of a PER wall under cyclic
loading with numerical simulations and experimental tests. The Pressure Equalization Index
was proposed. A venting area greater than 1% was suggested to equalize the cavity pressure.
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Fig. A1.22 - Wellershoff and Hortmanns’ approach. On the left, external pressure and principle pressure induced
flow in the gap; on the right, relation between the parameters influencing the resulting wind loads on both skins
(Wellershoff and Hortmanns, 1999).

In 1998, Van Schijndel and Schols proposed a first-order one-zone model for the cavity unit of
a DSF, validated with experimental studies. The model was based on the Helmholtz equation
and one isothermal equation. The agreement between the model and the experimental results
was frequency dependent.

Later, in 2003 Ishida carried out similar tests of dynamic loads on a double skin facade unit
(Fig. A1.23). The Authors considered four openings conditions (on the outer or inner layer).
The case having openings only on the external skin shows that the increase of the opening area
ratio leads to an increase of the inner load. For an opening area ratio of 20cm?/m3 Ishida
measured an inner skin load about the 100% of the wind pressure. Ishida did not find any

differences varying the gap depth from 30cm to 60cm.

Fig. A1.23 - Four test cases with different types of openings (Ishida, 2003).

Few years later, Kawai (2006) presented a simplified method to estimate the pressure in a cavity
of a building-high double-skin facade opened at the edges. Despite the lack of information (not
even the cavity depth is provided) regarding the experimental tests, the numerical method was
based on an extended Bernoulli's theory, using the external pressures as boundaries. Therefore,
in this study it was implicitly assumed that the presence of the gap flow does not affect the
external pressure distribution. The Authors found comparable results between the model and
the experimental tests.

In the same period Da Silva and Gomez (2008) published a wide study on the gap inner
pressures in multi-storey double-skin fagades. The study deals with facades opened at the
edges, without openings on the external panel and without internal compartmentations.
Different configurations of internal connection between fagades and building faces were
considered. The gap width was varied, testing three values related to the longer side of the
building model (Lx): Lx/16.25, Lx/10.83 and Lx/8.125. Moreover, different configurations of the
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lateral openings were considered. The study showed that the inner wall pressure distribution is
highly influenced by the above mentioned parameters. However, the pressure coefficients
within the gap were always negative, regardless the wind direction. Results were given as
recommendations instead of applicable values. Also Wellershoff and Hortmanns (1999)
concluded with a recommendation addressed to the Eurocode. Both these recommendations
can now be found in the Eurocode 1: " The National Annex may give rules for cases where the
extremities of the layer between the skins are air tight and where the free distance between the
skins is less than 100mm" (EN1991-1-4:2005).

In 2009 Kawai et al conducted field measurement of wind pressure on a DSF with a ventilator,
the year after, Bettenhausen er al (2010) carried out a simple two-dimensional Computational
Fluid Dynamics (CFD) simulation in order to investigate the effect of the opening position on
the upper side of double-skin facades. Meanwhile, many works were published on the field of
internal pressures: on the effects related to the internal pressure fluctuations (Ginger et al,
2008, Holmes and Ginger, 2009, Guha et al, 2010), on buildings with large facade openings
(Karava and Stathopoulos, 2011), on the discharge coefficients (Karava et a/, 2005, Chu and
Wang, 2009, Lo and Novoselac, 2012).

In the field of CFD simulations for ventilated facades, a remarkable study was carried out by
Nore et al (2010). In that study, three-dimensional steady RANS (Reynolds-Averaged Navier
Stokes) simulations were performed. Interesting considerations are expressed about the
possibility to decouple the problem of the system building plus facade. Moreover, for the first
time it is clearly expressed that difficulties due to the multi-scale properties of the problem
arise also in CFD simulations. The limitations encountered by Nore et al. were also found by
Montazeri et al, (2013) in their CFD study to evaluate wind comfort behind a DSF.

In recent years, other studies were carried out, mainly experimental tests. Lou et al, (2012)
reported on a wide series of tests related to pressures on corridor DSF of a tall rectangular
building (Fig. A1.24). The cavities were horizontally compartmentalized, closed at the edges
and the openings were diffuse in the upper and lower part of each storey. Different cavity
depths were tested. In particular, referring to the longer side of the building (Lx) cavity gaps
were: Lx/34, Lx/17 and Lx/8.5. Different layouts of connection between facades and building
sides were considered. They found that both the gap inner pressure and net pressures on the
external skin depend on the varied parameters. A maximum net mean pressure coefficient of
1.6 was observed at the external skin of the L-shaped DSF (a DSF on two building sides
internally connected). Moreover, a numerical methods was proposed and compared to the
experimental results with a relatively good agreement. It considers the external pressure
coefficients as boundary conditions, therefore it assumes that internal flows do not affect the

external pressure distribution.
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Fig. A1.24 - Schemes of a corridor DSF with external openings (Lou er al, 2012).

Most of the studies based on numerical modelling were schematically summarized by Oh and
Kopp (2014), referring to a double-layer roof system, as reported in Fig. A1.25. The common
feature of all these studies is that external pressures are a given input. In fact, these numerical
models are used to determine internal pressure distributions considering a connection with the
external field (local losses) which can cause possible internal flows (friction losses), and/or
resonance of internal pressures (amplification or reduction effects) given a known external
pressure. This could have two possible interpretations. The first is that when these models are
applicable, the knowledge of the external pressures does not depend on the internal one,
therefore, the case could be studied in a wind tunnel as a building with a standard facade (or
roof). The second is that if the external pressures are influenced by the internal ones, these
numerical methods are not applicable. At the moment, there are a few comparison of these
methods with corresponding case studies, and there are not parametric studies aimed to

investigate the limits of their applicability.

Reference Dimensions in space Dimensions in time Model Application

Killip and Cheetham [23] Uniform pressure Steady Power law equation Rainscreen walls

Fazio and Kontopidis [16] (i.e., discharge equation)

Baskaran and Brown [3] One-dimensional

Xie et al. [45] (fluctuating)

Burgess [8,9] Power law equation + ideal gas law

Van Schijndel and Schols [43]

Inculet and Davenport [21] Helmholtz resonator

Choi and Wang [13] (i.e., unsteady discharge equation)

Kumar and Van Schijndel [28]

Holmes [20] Building internal pressure

Vickery [44]

Sharma and Richards [37]

Ohetal. [33]

Ginger et al. [19]

Lou et al. [30] One-dimensional Double-skin facades

Amanoetal. [1] Two-dimensional Roof pavers

Trung et al. [42] Porous roof cover sheets

Sun and Bienkiewicz [41] Steady Darcy's law (friction losses) Roof pavers

Current study (2014) One-dimensional One-dimensional Unsteady discharge equation + Double-layer roof
(fluctuating) Couette flow (friction losses)

Fig. A1.25 - Summary of numerical models for internal pressures by Oh and Kopp (2014).

Recently, Geurts et al (2015) carried out a series of wind tunnel studies on a floating cube
equipped with a permeable outer layer (Fig. A1.26). The aim of the study was to show the
effects of opening size and cavity width. Internal compartmentations were not considered,
while different typologies of lateral connections between the external layers were part of the
study. They found that above a certain gap width (>10mm) the internal pressures are almost
constant over the whole cavity: the pressure coefficient is approximately equal to -0.6, except
close to the openings, where there are local effects. When the size of the cavity decreases

(down to 2 mm), the distribution of the pressures inside the cavity differs considerably. Little
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variations were measured varying the ratio between the gap width and the opening size in the
range between 0.2 and 0.8. These studies are also supported by ongoing full scale experiments,
as reported in Van Bentum and Geurts (2015).

The most recent work on this topic was presented at the 8th International Colloquium on Bluff
Body Aerodynamics and Applications (BBAA) conference in 2016 by Hu et al. (Fig. A1.27). In
the work, the effects of a double-skin porous facade system on the wind-induced response of
the CAARC Standard Tall Building were investigated through wind tunnel aeroelastic study.
Four different laterally opened screen configurations were tested, starting from the sealed one,
progressively increasing the number of openings on the front. All the screens were fixed at a
distance of B/22.5, where B denotes the characteristic cross-flow dimension. The different
behaviour of the system with a sealed screen as compared to the cases with openings was
discussed. In particular, in the case without openings, the across-wind response is amplified.
The study was also supported by CFD simulations.

Fig. A1.27 - Test building model with a double skin fagade. The four screen tested (Hu er al, 2016).

A1.2.4 Porous screens

The early applications of porous screens refers to panels used as wind barriers in agriculture
(e.g. Richards and Robinson, 1999, Robertson er al, 2002). Nevertheless, in the last decades,
they have been employed for many civil engineering applications (Briassoulis et al, 2010,
Giannoulis er al, 2012). For instance, the name "porous screen" for civil engineering
applications have been used to describe a permeable fagade (or roof) (Trung et al, 2011), or to
describe an apparatus specifically applied which can interact with the aerodynamic of the main
object on which is mounted on (Belloli er aZ, 2014) (Fig. A1.28). In some circumstances, also a
sun shading screen could be considered a porous screen.
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14).

A porous screen is a permeable layer. Therefore it is important to point out the distinction
between a porous/permeable facade and a fagade with diffuse openings. To the author, this is
based on the relationship between the openings and the gap fluid dynamic of the facade. For
instance, when the facade is a pressure equalized rainscreen wall (with vertical and horizontal
compartmentations), its design against wind loads can be approached referring to many single
independent components. Here, the single component on which the designer is focused
considers the corresponding external opening as "the main" opening, even if the facade itself
has many of these openings and their absolute dimensions are small. In this case the name
diffuse openings, is more evocative. Conversely, if the same facade does not have internal
compartmentations the relationship between the openings and the cavity is different: in this
case the whole facade is affected from all the many openings, therefore from the overall

permeability of the permeable/porous facade.

A particular typology of porous fagade is represented by the clad scaffoldings. These temporary
structures are typically covered with nets or plastic sheets to prevent construction equipment
from falling. From a wind load point of view a clad scaffolding presents the same geometry of a
permeable facade. Moreover, the many applications (and studies) of scaffoldings with airtight
cladding broaden the possibility to compare their fluid-dynamic behaviour also with the
double-skin facades.

In 2005, Yue er al. carried out a series of wind tunnel tests for integral lift scaffolds for a regular
tall buildings. This type of scaffolding is temporarily fixed all around the building for a certain
height, then it is uplifted while the construction grows. In their tests both the blocking ratio of
the scaffolds and the opening ratio of the building (which represented the different
construction phases) were varied. The atmospheric boundary layer was not reproduced. The
drag coefficient on the screen was measured through a force balance, but the model was not
equipped with pressure taps. They found that the load acting on the scaffold reached a
maximum for wind perpendicular to the building face. The shape value increased almost
linearly with the blocking ratio of the screen.

Later, in 2007, Charuvisit et al. performed a series of experimental tests with a solid sheet clad
scaffolding in uniform flow. They tested different configurations, as reported in Fig. A1.29. The
scaffold screen was reproduced as an airtight layer 7mm thick, fixed at a distance of 2mm from
the building face, in any configuration. Considering that the smallest building model side was
132mm, the screen, without internal compartmentations and laterally-opened (also on top),
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was fixed at the relative distance of 1/66 of the building side. They found that the mean net
wind pressure becomes the positive maximum when the screen is directly exposed to the wind
action, with a direction perpendicular to the scaffold. This value was higher for shorter
building walls and shorter scaffolds. Therefore, the width of both, the building wall and the
scaffolds, are important parameters on the resulting wind load.

Irtaza et al (2012) conducted wind tunnel tests on the well-known Silsoe Cube surrounded by
an impermeable sheeting. Tests were carried out with the scaffold model fixed on the ground
and, later, slightly elevated. The screen thickness was 1/100 of the building dimension, but it
was fixed at a distance equal to 1/4 of the cube side. Tests were carried out reproducing the
atmospheric boundary layer in accordance with the literature on the Silsoe experiments. The
Eurocode provisions for sheet-clad scaffoldings and experimental results were compared.
Except on the leeward side, where a pressure coefficient of 0.25 was suggested, they found an
agreement with the code values.

Finally, in 2013 Wang et al investigated the wind loads on nonporous scaffoldings through a
wide experimental campaign. Many scaffolding configurations were tested varying the building
opening ratio and wind angle of attack (Fig. A1.30). The screen model was 5mm thick, so,
almost 1/40 of the shorter building model dimension. The scaffold models was slightly higher
than the building model, and it was equipped with a huge number of pressure taps. The largest
local peak net pressure coefficients were found in the upper region or side edge of the
scaffoldings. The interference between scaffolding placed on more building sides tended to
reduce the magnitude of both positive and negative peak pressures. Moreover, they concluded
that European (BS EN 12811, 2003), Chinese (JGJ 128, 2000) and Japanese (SCEA, 1999)
recommendations underestimate the mean force coefficients for certain scaffolding geometries.
In particular, the SCEA (Scaffolding and Construction Equipment Association of Japan)
recommendations underestimates the negative area-averaged wind force coefficients for some
geometries. The results were then integrated with the study of the interference caused by

surrounding buildings (Wang et a/, 2014).

Scaffold model B Scaffold model C
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Fig. A1.29 - Experimental configurations (unit: mm) tested by Charuvisit er al (2007).
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Fig. A1.30 - Experimental configurations tested by Wang er al. (2013).

As a permeable layer, the porous screen complicates both the experimental and the
computational study. In experimental tests there are scaling problems which need further in-
deep studies. Recently Allori er al (2013), found a scaling procedure for porous screens.
Unfortunately it is not possible to extend it for the cases in which a wall is placed behind the
screen. There might also be difficulties when adopting a computational approach. Even if it is
possible to deal with models at full scale, there is the necessity to simplify the problem. For
instance, CFD simulations were carried out on porous screens to investigate the possibility to
consider a porous equivalent element instead modelling the complete real screen (e.g. Teitel,
2010, Chen et al, 2012). The same approach was employed by Irtaza et al (2010), in the above
mentioned parametric numerical study, but a validation of the results obtained modelling such

porous scaffoldings was missing.

To conclude, it is to note that as much the porosity of the external skin attached on a building
wall increases, as much the fagade and its supporting systems became a series of appurtenances
of the wall. If the facade elements become appurtenances, to consider them as surface
roughness could be more opportune. In this field many researchers as Kramer et al (1979),
Stathopoulos and Zhu (1988), Maruta et al. (1998) carried out significant studies. Nevertheless,
up to now, there is not a porosity threshold which distinguishes the case of a porous screen
from a fagade with appurtenances. This could represent an additional difficulty to codify the

already complex field of building envelopes with external openings.

A1.2.5 Wind loading Codes

The lack of answers that, presently, a Code could give to the facade designer is evident. It is
argued that this may be related to the huge number of possible case studies. The scientific
literature also reveals how, despite many years of research in this field, design rules for such
construction types are lacking (Geurts et al, 2015). In the following, a brief overview of
international wind loading Codes is discussed. The attention is focused firstly to the Eurocode
1.4 (EN1991-1-4:2005), then other national Codes and standards are considered.
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The European code

The Eurocode ENV 1991-1-4:2005 provides a section dedicated to Pressure on walls and roof
with more than one skin. It gives rules for cases where extremities of the cavity between the
skins are airtight and the cavity depth is less than 100mm. First, the permeability u of a skin is
defined as the ratio between the total area of the opening and the total area of the skin (a skin
is defined as impermeable if u is lower than 0,1%). Then, on the basis of the permeability of
both the skins it is possible to evaluate the net pressures on the external and internal layers,
using pressure coefficients given by the code. It is also suggested to consult the National
Annexes. For instance, following the British National Annex the rules provided in the
Eurocode are not applicable for “small format overlapping roofing elements’, and for “cavity

walls when one or both leaves are constructed of small masonry units’ (BS-NA-EN1991-1-
4:2010, 2010).

Other codes and standards

The Australian wind loading code, the AS-NZS 1170-2:2011, contains a section dedicated to
Permeable cladding reduction factor Kp for roof and side walls (Fig. A1.31), which can be used
for facades with a ratio of solid area to the total area of the surface out of the range 0.99-0.999.
The reduction factor decreases the external pressure coefficient in function of the horizontal
distance from the windward edges (AS-NZS1170-2:2011, 2011) in order to give design values.
On the other hand, the American ASCE 7-10 recommends the designer to reduce wind loads
on Air Permeable Cladding without giving explicit values (ASCE-7-10, 2010).

PERMEABLE CLADDING REDUCTION FACTOR (K )

Horizontal distance from windward edge K

(see Note) e
0 1o 0.2d, 0.9 .p.m-wiw
0.2d, 10 044, 0.8
0.4d, 10 0.8d, 0.7
0.8, 1o 1.0d, 0.8 -
1a
NOTIE: o is the along-wind depth of the surlace. in metres

Fig. A1.31 - Australian-New Zeland wind loading code reduction factor (AS-NZS1170-2:2011, 2011).

The main European Standards on this field are: UNI EN 13116 Curtain walling - Resistance to
wind load - Performance requirements and UNI EN 12179 Curtain walling - Resistance to wind
load - Test method. The UNI EN 13116 standard specifies the structural performance
requirements of curtain walling under wind load under positive and negative (suction) static air
pressure (UNI-EN13116:2002, 2002). The main performance requirement given concerns limits
of deflection under positive or negative permissible loads. The standard indicates that these
permissible wind loads must be calculated in accordance with the procedure laid down in the
Eurocode. On the other hand, the UNI EN 12179 standard defines the method for determining
the resistance to wind load of curtain walling under positive and negative (suction) static air
pressure (UNI-EN12179:2002, 2002) but, as in the UNI 13116, the permissible wind loads must
be calculated in accordance with the procedure laid down in the Eurocode.

The American ASTM Standards follows a similar approach to the European Standards regarding
the use of wind load values. They treat also the problem of the impact by windborne debris
(ASTM E1996, ASTM E1886). However they always refer to “the latest edition of ASCE 7” to
evaluate the wind load values.
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A1.3 A classification of permeable double-skin building envelopes

The state of art performed aims to include a very wide group of facades, namely every facade
that is not a common single-skin facade, with an internal cavity connected to the exterior field.
The review of literature contributions (A1.2) underlines the lack of a classification based on the
system aerodynamics. Therefore, a classification based on the main components of the fagade is
here proposed, in an attempt to include as many cases as possible.

The definition of the wind effects on the system (composed by the building and the permeable
envelope) is also influenced by the approaching wind characteristics, the building shape, and
the configuration of the facade fixed to the building. Therefore, the current classification,
focused on the building envelope, must be considered as a part of a procedure for evaluating
wind effects, as sketched in Fig. A1.32. Referring to the figure, the facade characteristics are
divided in macro-parameters and additional information. Both the entries are necessary to
properly define the system aerodynamics but, for the sake of simplicity, the classification deals
only with a part of them.

The use of this classification may become part of a procedure, helpful to the facade designer

that is looking for useful values, recommendations and other case studies to compare with.

Local Wind
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(and shape)
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faces

Proposed classification

Fagade macro-
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. X Layer
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Fig. A1.32 - The parameters involved in the proposed classification into a hypothetical workflow to define the wind
effects on permeable double-skin building envelopes.

A1.3.1 An attempt of classification for permeable double-skin building envelopes

The wide number of parameters involved in the study of a permeable double-skin building
envelope requires a first classification based on the main facade components, here defined
facade macro-parameters (Fig. A1.32 and Fig. A1.33). They are: the compartmentations of the
gap between the two skins, the side openings at the lateral edges or at the top/bottom and the
external layer configuration.
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AIR BARRIER

/ L SIDE OPENINGS

2
VERTICAL AND %

HORIZONTAL
COMPARTMENTATIONS

EXTERNAL SCREEN /

Fig. A1.33 - Scheme of the macro-parameters employed in the classification.

Each one of the above mentioned fagcade components act as flow constraint, or boundary. In

the proposed classification, the smallest flow domain behind the screen is denoted as an

“elementary unit” of the facade. The elementary unit geometry is defined through the macro-

parameters used in the classification. For instance, the case of a building envelope without

compartmentations has a unique elementary unit, while the case with vertical and horizontal

compartmentations has multiple elementary units. This concept could be helpful for the facade

designer to visualize and to understand the role of each part of the system building + facade, for

both the evaluation of the internal pressures and the natural ventilation of the envelope.

Considering a permeable double-skin building envelope fixed only on a single face of the

building, the proposed classification is based on the following hypotheses:

d.

The internal layer (air barrier) is airtight. Even if the air barrier could be equipped with
openings and/or has its permeability (e.g. Tamura and Shaw, 1976, Inculet and Davenport,
1994), these characteristics are not considered in the proposed classification. However, it is
to note that to consider openings and/or porosity on the internal layer, also of the pressure
inside the building has to be known.
The compartmentations and the closure at the edges can have only two levels of
permeability: 0% (airtight) or 100% (open). It is well known that the internal
compartmentations could be made with permeable layers (e.g. metal grids), in order to
ensure a certain level of ventilation driven by thermal effects, and leaving also the
possibility of an easy maintenance of the facade itself, but also this aspect is left for future
improvements. It is implied that, in first approach, a layer conceived to ensure a good
ventilation is closer to an open layer than to a closed one.
All the elements of the facade are considered as rigid bodies (flexibility is neglected).
Studies related to the resonance of internal pressure fluctuations based on the Helmholtz
resonator model consider the influence of the wall flexibility. According to the literature,
this parameter tends to reduce the resonance effects, therefore neglecting it should be
conservative.
The gap width is not considered. As aforementioned, this parameter could be fundamental
to completely define the governing equations of the fluid dynamics of the elementary unit,
and it could also determine if the facade interacts with the building aerodynamics. In the
literature, there are some works which describe the effect of varying this parameter (e.g.
Gerhardt and Janser, 1994). Nevertheless, to preserve the classification approach, the
author prefers not to consider the gap width as a classification parameter. Further
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investigations and upgrades focused on the gap width may improve the classification, so to
include the screen distance among the main facade parameters.
Before a schematic view of the proposed classification, an explanation of the macro-parameters
chosen is given, in order to understand their role in the working principles of the facade.

Moreover, the code assigned to each configuration is introduced.

Compartmentations (C): this parameter is fundamental to understand if the studied facade can
be divided into further elementary units. Net pressures require the knowledge of the internal
pressure distribution. Hence, defining the flow domain behind the screen is of primary
importance. For instance, in terms of internal pressures, a building envelope without any
compartmentation must be studied entirely, because its flow domain is the whole cavity. The
same facade with horizontal and vertical compartmentations could be studied isolating each
single elementary unit if opportune conditions of non-interference were satisfied.
The compartmentations are considered as rigid elements, with no permeability. As sketched in
Fig. A1.34, four types of configurations are considered:

o Without compartmentations (CO)

o Horizontal compartmentations (C1)

o Vertical compartmentations (C2)

o Vertical and horizontal compartmentations (C3)

In Fig. A1.35, an existing case study with horizontal compartmentations is presented.

co - Cl C3

Fig. A1.34 - Sketches of the four cavity compartmentations considered (from left to right C0, C1, C2, C3).

Fig. A1.35 - Practical example of building envelope with horizontal compartmentation: the Unipol Tower (Bologna,
Italy). In this case the building is equipped with a permeable envelope on two building sides. View of the two
double-skin facades during the construction (left), and at the end of construction (center). On the right, a horizontal
section with the two facades is highlighted. Courtesy of Permasteelisa Group.
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Side openings (B): afagade with more than one skin can be opened or closed at the lateral sides
or at the top and bottom sides. This parameter is strictly linked to the compartmentation of the
cavity gap in order to define the geometry and the boundary condition of the elementary unit
behind the screen. It is an important parameter since the edges of a building (a three-
dimensional bluff body) immersed in a flow are sensitive points. There, the flow usually
separates, determining the aerodynamics of the building, and pressure peaks are usually
encountered. If a side of the fagade is open, this point could become the main “inlet” or “outlet”
of the identified elementary unit. For this reason, in this case the cavity could influence the
overall building aerodynamics.
Also for the side openings, intermediate values of permeability are not considered. This leads to
four conditions of side openings, as shown in Fig. A1.36:

o All sides opened (B0)

o Lateral side opened (B1)

o Top and bottom opened (B2)

o Without side openings (B3)

In Fig. A1.37, an example of building envelope with opened lateral side is reported.

7 i
BO Bl D B2 ! B3

Fig. A1.36 - Sketch of the four side opening considered (from left to right BO, B1, B2, B3).

Fig. A1.37 - Example of lateral side opened building envelope: the Darwin Center Phase One, National History
Museum (London, UK). Font: www.hok.com.

External Panel (A): when the geometry of the elementary unit is defined, the type of external
panel together with the side openings complete the facade characteristics. The external panel
could have different opening configurations regarding the position, size and their effect on the
internal cavity.

In particular, three different typologies of external panels, as sketched in Fig. A1.38, are
considered in the classification:
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= Airtight panel (A1)

= Skin with diffuse openings (A2)

= Porous screen (A3)
As explained in section Al.2.4, the main difference between a skin with diffuse openings and a
porous screen lies in their relationship with the elementary unit. When the external panel has
diffuse openings, a detailed study is required. The size, position, shape, thickness of the
openings are necessary to characterize the fluid dynamic behavior of the elementary unit. On
the other hand, a porous screen has uniform characteristics (e.g. Fig. A1.39); the connection
with the external field is not limited to the exact position of the openings but it is diffused on

the whole area occupied by the panel.

=

Fig. A1.39 - An application of building envelope with porous screen: the GreenPix zero-energy media wall designed
by Simone Giostra and partners (Beijjing, China). Font: www.archdaily.com.

The matrix of possible cases derives from three external panel typologies (A1, A2, A3), four side
openings conditions (B0, B1, B2, B3) and four types of compartmentations (CO, C1, C2, C3),
resulting in 48 cases. The number of possible cases could increase if the situation after a debris
impact failure is considered, as suggested by Minor et al (2005). In the present section this
topic will not be treated, but it remains an interesting field of study which needs to be further
explored to be included in such classification.

Among all the possible cases mentioned above, twenty-three meaningful cases were identified.
They are presented in Tab. Al.l where useful entries, for instance concerning practical
applications and the literature references, are linked to each fagade typology defined through a
Code, and a Classification Name.
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A first comment is required on the "Practical Use / Keywords"adopted in the classification. The
approach is as general as possible, especially referring to possible practical applications. These
entries aim to help the designer classifying his case study. For instance, either a nonporous clad
scaffolding of a tall building, or a glazed screen fixed in front of an existing building for
aesthetical and protective reasons, can be classified as a facade with an arrtight panel, all sides
opened, without compartmentations (Code: A1,B0,C0O - Tab. A1.1).

In Tab. Al.1, "Approx"is the abbreviation of Approximation. This entry must be read from the
point of view of a schematic macro-classification. It could help the fagade designer, especially
for the investigation of possible external and internal pressures decoupling. The abbreviation
“3D” means that a study of the whole facade must be carried out to preserve the three-
dimensionality of the problem. In the table, the absence of internal compartmentations advises
against the resort to simplified studies. A further simplification could be to consider the facade
very large, so that, for symmetry, in the middle vertical plan, it is possible to approximate the
problem as a “2D” problem. In some cases this simplification is adopted, as shown in the
literature (e.g. Chino er al, 1991, Bettenhausen et al, 2010, Nore et al., 2010). Therefore, the
abbreviation “2D” used in the table means that, under specific conditions, the designer could
study two-dimensional elementary units of the facade as a very first approximation of the
problem. In particular, the classification distinguishes whether the two-dimensional section
considered is vertical (2DV), or it is horizontal (2DH). Obviously with the awareness that the
whole system building + facade under the wind action is a three-dimensional problem. Finally,
the “1D” cases are referred to the presence of both horizontal and vertical compartmentations.
Usually in these cases the compartmentations are closed (and small) enough to prevent
significant internal flows. For this kind of problems, the fluctuating component of the wind

load plays a fundamental role (e.g. Helmholtz resonances).

The cited "Existing studies” could give the reader/designer information about existing studies,
sometimes directly usable for design (Tab. Al.1). These are the main contributions in the

literature collected by the author, but the hope is to see a continuous update of this table.

The “EC”entry indicates if information on the specific case can be found in the Eurocode EC
1.4.
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Code Classification Name Practical Use / Keywords Approx Existing Studies EC
A | B Airtight panel, all sides Glazed screen for existing 3D Kawai H., (2006), no
110 opened, without building Charuvisit et al. (2007),
compartmentations Photovoltaic wall Wang et al. (2013),
Screen for advertising Geurts eral, (2015)
billboard, Clad scaffoldings
A | B Airtight panel, lateral side Glazed screen for existing 3D - no
1 1 opened, without building
compartmentations Screen for advertising
billboard
A B Airtight panel, lateral side Ventilated fagade with 2DH - no
1 1 opened, with horizontal transversal ventilation
compartmentations Corridor double skin fagade
(opened laterally)
A | B Airtight panel, top and Multi storey ventilated 3D Da Silva and Gomez no
1 2 bottom opened, without double skin fagade (2008)
compartmentations
A | B Airtight panel, top and Multi storey ventilated 2DV Nore er al. (2010), no
1 2 bottom opened, with double skin fagade (with Dan Bettenhausen er al.
vertical comp. compartm.) (2010)
A | B Skin with diffuse openings, Cantilevered glazed screen 3D - no
2 0 all sides opened, without for existing building
compartmentations Screen for advertising
billboard
Permeable facade
A | B Skin with diffuse openings, Cantilevered glazed screen 3D - no
2 1 lateral side opened, without for existing building
compartmentations Screen for advertising
billboard
Permeable facade
A | B Skin with diffuse openings, Corridor double skin facade 2DH Wellershoff and no
2 1 lateral side opened, (opened laterally) Hortmann (1999)
horizontal comp.
A | B Skin with diffuse openings, Back Vented Rainscreens / 3D Gerhardt and Kramer no
2 2 top and bottom opened, Permeable fagade (1983),
without Gerhardt and Janser
compartmentations (1994)
A | B Skin with diffuse openings, Ventilated fagade 2DV - no
2 2 top and bottom opened, Screen for banner and
vertical comp. advertising
A | B Skin with diffuse openings, Back Vented Rainscreens / 3D - yes
2 3 without side openings, Permeable fagade
without comp.
A | B Skin with diffuse openings, Corridor double skin facade 2DH Wellershoff and yes
2 3 without side openings, (laterally closed) Hortmann (1999),
horizontal comp. Lou eral (2012)
A | B Skin with diffuse openings, Shaft box fagade 2DV Chino er al (1991), yes
2 3 without side openings, Ventilated fagade Wellershoff and
vertical comp. Hortmann (1999)
A | B Skin with diffuse openings, Pressure Equalized 1D Ganguli and Dalgliesh yes
2 3 without side openings, Rainscreen (1988),
vertical and horizontal Cellular facade / Box double Baskaran and Brown
compartmentations skin facade (1992),
Photovoltaic wall Incluet and Davenport
(1994),
Van Schijndel and Schols
(1998),
Wellershoff and
Hortmann (1999),
Ishida (2003),
Kawai er al. (2009)
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Appendix 1 - On the wind effects on permeable double-skin building envelopes

Code Classification Name Practical Use / Keywords Approx Existing Studies EC
A| B |C Porous screen, all sides Permeable fagade 3D Gerhardt and Kramer no
3101|060 opened, without comp. Photovoltaic wall (1983)
A|B|C Porous screen, lateral side Back Vented Rainscreens / 3D - no
3 1 0 opened, without Permeable facade
compartmentations (closed on top and bottom)
A|B|C Porous screen, lateral side Louver fagade / Porous fagade 2DH - no
3 1 1 opened, horizontal comp. (compartmentalized)
A | B | C | Porousscreen, without side Back Vented Rainscreens / 3D - no
3|2 0 openings, without Permeable facade / Louver
compartmentations fagade
A|B|C Porous screen, top and Louver fagade / Porous fagade 3D
3|2 2 bottom opened, vertical (compartmentalized) (2DV)
compartmentations
A|B|C Porous screen, top and Back Vented Rainscreens / 3D Gerhardt and Janser yes
3 310 bottom opened, without Permeable facade / Louver (1994)
compartmentations fagade
(open on top and bottom)
A | B | C | Porousscreen, without side Back Vented Rainscreens / 2DH - yes
313 |1 openings, horizontal Permeable fagade / Louver
compartmentations facade
A | B | C | Porousscreen, without side Back Vented Rainscreens / 2DV - yes
3 13| 2 openings, vertical comp. Permeable fagade
A | B | C | Porousscreen, without side Porous fagade / Cellular 1D Montazeri et al. (2013) yes
313]|3 openings, vertical and fagade
horizontal comp.

Tab. Al.1- The proposed classification.

A1l.4 Summary and concluding remarks

Permeable double-skin building envelope geometries are defined to achieve high aesthetic,

acoustic and energetic standards, or, in some cases, simply to protect the walls from rainwater

penetration. From an aerodynamic point of view, the flow around a building immersed in the

atmospheric boundary layer (ABL), with the internal cavity of the envelope connected through

opening and/or porosity to the exterior, results in a complex system. In the following, the main

points highlighted in the current section are summarized:

o The wind effects on permeable double-skin building envelopes depend on many factors,

namely: the approaching wind characteristics, the building shape, the facade configuration
(Ze. how many building faces the permeable envelope is fixed on) and the facade
characteristics. Moreover, different load mechanisms act on the facade depending on the
wind direction (e.g. the permeable envelope exhibits a different behavior if located on the
windward or on the leeward building side).

The use of scaled models reproducing the building envelope geometry is a quite difficult
task. The problem involves a wide range of geometric scales, from the ABL down to the
fagade details. In most of the cases, the envelope features are not directly reproducible.
Scaling rules must be employed to overcame the problem, ie. reproducing the smallest
geometric scale effects, but further investigations are needed in this topic.

In certain cases the smallest scales are neglected, under the hypothesis that they do not
affect the fluid-dynamic system behavior. The cavity pressures are evaluated given the
external pressures in proximity of the openings location, but this approach seems to be
reliable only under specific conditions. Generally, it is not clear in which cases the use of
such a simplified approach might lead to reliable results.
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Appendix 1 - On the wind effects on permeable double-skin building envelopes

An alternative approach to the problem is the in-deep study of an overall simplified model,
but with the envelope characteristics reproduced. In this case, the largest scales are
neglected or somehow modeled, while the attention is focused on the facade details.

In the current work, explorative studies were carried out on a simplified system following
this approach (Chapter 3 and Chapter 4). The study of such a reduced fluid-dynamic
system leads only to approximated results, but it could be helpful to understand the
importance and the role of facade parameters of a lower order of size, as pointed out in
Chapter 2. Moreover, in the thesis the comparison between the configuration without and
with the facade is carried out, with the aim to point out the approximations introduced by
decoupling the external and internal pressures.

e Some building envelopes with a different name (given in practice) could share a common
behavior under the wind action. The lack of a classification based on the aerodynamics of
permeable envelopes raises from the literature review. This can also explain the
inadequacy of wind loading codes in this topic, where the given design values are usable
only in very few cases.

e In the current appendix a classification was proposed. The smallest flow domain behind
the screen is denoted as an “elementary unit” of the facade. The facade components
employed in the classification define, in first approach, the cavity geometry, ie. the
elementary unit typical of each building envelope. The chosen macro-parameters are at
the same time easy to employ (in the classification) and fundamental in the definition of
the wind load. Twenty-three cases were identified through the selective combination of
four compartmentations typologies, four conditions of side openings and three external
screen configurations. Moreover, to further simplify the classification, the following
hypotheses are adopted:

a. The internal layer is airtight.

b. The compartmentations and the closure at the edges could have only two levels of
permeability: 0% or 100%.

c. All the elements of the facade are considered as rigid bodies (flexibility is neglected).

Finally, to enhance the classification, each entry is linked to: a code, a name, a series of

keywords that evokes the practical use, a suggestion on the possibility to perform

simplified studies, the related scientific literature and if the Eurocode EC1.4 consider the

fagade typology in question.

To conclude, based on the classification proposed, the thesis work may be considered as
exploratory for a building envelope with “Airtight panel, lateral side open, with horizontal
compartmentations’ (Tab. Al.1 - Code: A1,B1,CI). Approximate (Z2DH) two-dimensional
investigations on representative horizontal sections of the system building + fagade pointed out
useful results preparatory for a deeper and more realistic aerodynamic study. Based on the
literature review, there are not Existing studies on such a fagade typology, which results not

covered by the Eurocode recommendations (£C1.4) yet.
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