
ARTICLE
Received 20 Oct 2015 | Accepted 19 Feb 2016 | Published 4 Apr 2016

Anomalous dynamics of intruders in a crowded
environment of mobile obstacles
Tatjana Sentjabrskaja1,*, Emanuela Zaccarelli2,3,*, Cristiano De Michele2,3, Francesco Sciortino2,3,

Piero Tartaglia3, Thomas Voigtmann4,5, Stefan U. Egelhaaf1 & Marco Laurati1,6

Many natural and industrial processes rely on constrained transport, such as proteins moving

through cells, particles confined in nanocomposite materials or gels, individuals in highly

dense collectives and vehicular traffic conditions. These are examples of motion through

crowded environments, in which the host matrix may retain some glass-like dynamics.

Here we investigate constrained transport in a colloidal model system, in which dilute

small spheres move in a slowly rearranging, glassy matrix of large spheres. Using confocal

differential dynamic microscopy and simulations, here we discover a critical size asymmetry,

at which anomalous collective transport of the small particles appears, manifested as a

logarithmic decay of the density autocorrelation functions. We demonstrate that the matrix

mobility is central for the observed anomalous behaviour. These results, crucially depending

on size-induced dynamic asymmetry, are of relevance for a wide range of phenomena ranging

from glassy systems to cell biology.
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In the presence of a confining medium, the transport of objects
deviates from normal diffusion. Anomalous behaviour, usually
manifested by the presence of sub-diffusivity1,2, emerges as a

common feature of the dynamics. In the Lorentz gas3,4, the
prototype model for anomalous transport, point-like intruders
move in voids between immobile, randomly-distributed particles.
Their motion becomes sub-diffusive once the voids are barely
interconnected. When a critical density of immobile particles is
reached, they percolate and the intruder becomes localized3.
Softness of the immobile particles or interactions among the
intruders are known to modify this picture5–10.

So far the slow movement of the host matrix has been
largely ignored, despite representing realistic situations
of biological11–16 and industrial interest17–23. To address
confined transport in slowly moving matrices, here we
investigate a binary colloidal mixture of small and large hard
spheres, of diameters ss and sl, which represent intruders and
host matrix, respectively. Changing the size ratio d¼ss/sl we also
modify the dynamic asymmetry of the system. We focus on
volume fractions of large particles fl40.5 approaching the
glass transition, occurring at fg

l E0.58. In contrast the volume
fraction of the intruders fs is very small with xs"fs/f¼ 0.01.
Such a system combines the confinement of a dilute fluid of
mobile intruders with the slow dynamics of the matrix (Fig. 1a). It
thus provides the simplest minimal model for the investigation of
motion in crowded soft and biological matter.

Despite its conceptual simplicity, experimental investigations
of the dynamics of small intruders in mixtures of Brownian
particles with large size-asymmetry are scarce. This might be due
to limitations in the spatial and temporal resolution of confocal
microscopy which make it difficult to track particles that are
significantly smaller than another species of Brownian, that is, at
most micron-sized, particles. To overcome these limitations, we
keep the selectivity of fluorescent labelling (Fig. 1b), which allows
us to separately determine the small and large particles. However,
instead of tracking we employ the recent Differential Dynamic
Microscopy (DDM) technique24–26. This is based on the time
correlation in Fourier space of the difference between images
separated by a time delay Dt (Fig. 1c) and provides a measure of
the (isotropic) collective intermediate scattering function or
density autocorrelation function f(q, Dt), where q is the modulus
of the wave vector q (Fig. 1d). The decay of f(q, Dt) as a function
of time delay Dt corresponds to the loss of correlation of the
particle density on a length scale determined by q# 1 within
the time delay Dt. The decay time is therefore related to the
characteristic time of the particle motions on the length scale
q# 1. Approaches similar to DDM, like fluorescence correlation
spectroscopy, do not provide information on the probed length
scale. This information is crucial to investigate the effect on the
dynamics of the size of the voids in which the small particles
move. The function f(q, Dt) can also be obtained by dynamic light
scattering, which, however, does not allow us to distinguish the
two species by fluorescent labeling. We also study the same
system by mode coupling theory (MCT) of the glass transition
and, both in the case of mobile and immobile matrix particles, by
numerical simulations, complementing the experimental results
and providing insights on the underlying microscopic mecha-
nisms. We observe anomalous dynamics of the small spheres at a
critical size ratio dc and we show that this dynamical behavior is
intimately connected to the slow dynamics of the matrix of large
particles.

Results
Small particle dynamics. Figure 2a–d shows the measured
collective intermediate scattering functions f(q, Dt) of the small

particles for size ratios d¼ 0.18 (Fig. 2a,c) and d¼ 0.28 (Fig. 2b,d)
for different f and q. For d¼ 0.18 and all f and q, f(q, Dt) versus
Dt shows an initial decay, followed by a f-dependent inter-
mediate plateau, and eventually a decay to zero at longer times
(Fig. 2a). The initial decay can be associated with the Brownian
motion of small particles within the voids of the large particles
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Figure 1 | Illustration of the system and measurement method.
(a) Schematic illustration of our system at two times t1 and t24t1

highlighting the trajectories (green lines) of the intruders (red beads) in
voids and between voids made possible due to the mobility of the matrix
particles. (b) An exemplary confocal microscopy image of a mixture with
d¼0.18 and f¼0.58 in which (left) both particles and (right) only the
small particles are shown. (c) Image differences DI(r,Dt ) at different delay
times Dt are Fourier transformed to give 2D Fourier power spectra for
different Dt. (d) After azimuthal averaging and additional treatment the
intermediate scattering function f(q, Dt) is obtained.
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matrix. It becomes increasingly slower for increasing f (Fig. 2a)
and decreasing q, which means increasing length scale (Fig. 2c).
The intermediate plateau indicates the dynamical arrest of the
collective dynamics, that is, of density fluctuations, and hence the
absence of diffusion on the length scale determined by q# 1.
The height of the plateau increases progressively with increasing
f, similarly to the scenario, in which a percolation-type transition
is approached5,27, and indicates that voids become smaller
and particles are increasingly localised28. The final decay to
zero of f(q, Dt) shows that particles are still able to diffuse at long
times. For a larger size ratio, d¼ 0.28, and comparable f values, a
completely different scenario appears. Beyond fE0.60, f(q, Dt)
shows remarkable anomalous dynamics, manifested in an
extended logarithmic decay over three decades in time. This
intriguing behavior is mostly visible at f\0.60 and qslE3.5, that

is, when probing a length scale of about 2sl (Fig. 2b), which is
comparable with the size of the matrix particles.

The experimental findings are confirmed by simulations. For
d¼ 0.20 no anomalous behavior of the small particles is detected
in the collective f(q, Dt) (Fig. 2e,g) and in the self fself(q, Dt)
correlation functions (Fig. 2i). Note that for d¼ 0.20, f(q, Dt)
displays a two step-relaxation and the presence of localisation
(Fig. 2e,g), which is absent in fself(q, Dt) (Fig. 2i). Also the mean
squared displacements (MSD) Dr2h i " ~r tð Þ#~r 0ð Þj j2

! "
, with~r tð Þ

the position of a particle at time t, show almost no localisation at
all f (Fig. 2k). This decoupling between collective (f(q, Dt)) and
self dynamics (fself(q, Dt), MSD) originates from the glassy
environment in which the intruders move. Correlated motions of
a group of intruders distributed within the matrix are more
influenced by the slow dynamics of the matrix particles than
uncorrelated single particle motions, which are mostly sensitive to
the local structure of the voids5,29. For d¼ 0.35 we find the
emergence of logarithmic anomalous relaxations of f(q, Dt)
(Fig. 2f,h) and fself(q, Dt) (Fig. 2j), for comparable q as in the
experiments. Additional simulations for d¼ 0.30 and d¼ 0.40
also show a logarithmic decay over a smaller time window.
Furthermore, for d¼ 0.35 and f\0.60 the MSD displays a clear
sub-diffusive behavior, i.e., Dr2h i& ta with ao1 (Fig. 2l). Finally,
for d¼ 0.5, f(q, Dt) and fself(q, Dt) show a two-step decay and
the MSD a localisation plateau at large f, consistent with a
standard glass transition of the small particles. At all investigated
d and for fl40.55, the dynamics of the large particles are very
slow and at intermediate times are indicating localisation and
motion within nearest neighbour cages of approximate size 0.1sl
(Supplementary Fig. 1 and Supplementary Note 1).

These results suggest the existence of a critical size ratio
dcC0.35 at which pronounced anomalous dynamics mark the
transition from a diffusive to a glassy regime of the small particles
moving in the large particles matrix. The dc and f values where
this transition is observed are slightly smaller in the experiments
than in the simulations. This is attributed to the fact that in the
experiments small particles are polydisperse, while in the
simulations they are monodisperse. Polydispersity is expected to
affect the transition since the average size particles might still be
able to diffuse through the void spaces in the matrix, whereas the
largest particles of the size distribution might no longer be able to
diffuse through them. The crossover observed at dc is analogous
to the transition from a diffusive to a localized state in models
with fixed obstacles. However, the excluded volume of the
intruder generates a coupling with the host matrix and, due to the
mobility of the matrix, also between intruders in different voids,
mutating localization into a glass transition due to the (slow)
mobility of the matrix particles. Although this is apparently
similar to intruders in a fixed matrix5–7, the logarithmic decay of
f(q, Dt) stands out as a novel feature.

On the basis of MCT, the appearance of logarithmic decays in
f(q, Dt)30–32 is usually attributed to competing collective arrest
mechanisms, like caging and bonding, and to higher-order glass
transition singularities29,33–35. We solved MCT equations for a
binary mixture of hard spheres and xs¼ 0.01. The resulting
correlators f(q, Dt) for a range of packing fractions around the
MCT glass transition, fcE0.516 and d¼ 0.20 and 0.35, are
shown in Fig. 3. No clear sign of logarithmic decay of f(q, Dt) is
found for these states in MCT: while an approximate logarithmic
dependence of the decay is observed at d¼ 0.35, f¼ 0.51 and
qsl¼ 3.4, this extends over an interval of times much shorter than
in experiments and simulations. In addition, upon further
increasing f the logarithmic dependence does not take over,
but instead a two-step decay is found, followed by the arrest of the
dynamics. Indeed higher-order singularities are not present in
this region of f and xs values29. On the other hand, the MSD
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Figure 2 | Dynamics of the intruders as observed in experiments and
simulations. Collective f(q, Dt) (a–h) and self fself(q, Dt) (i–j) intermediate

scattering functions and mean-squared displacements Dr2=s2
s

! "
(k–l) as a

function of delay time Dt, describing the dynamics of small spheres in
binary mixtures with size ratios d below (left) and around (right) the onset
of anomalous dynamics, for different magnitudes of the scattering vector q
and total volume fraction f (as indicated). Arrows indicate increasing f and
increasing q accordingly.
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obtained from MCT shows the qualitative signatures found in
simulations: for d¼ 0.20odc, the long-time diffusion barely slows
down with increasing f, indicating a partially frozen glass in
which the small particles are mobile. For d¼ 0.35Edc, anomalous
sub-diffusion is observed, indicating that the glass-transition of
the large particles and the localization transition of the small
particles are close to each other. Thus, the appearance of
approximately logarithmic decay in Fig. 3 could be a signal of the
transition from coupled dynamics of the two species at large d to
decoupled dynamics at small d.

Void space explored by small particles. A direct visualisation of
small particle locations shows that the transition from diffusive
dynamics at small d to localised dynamics at large d observed in
experiments, simulations and theory is associated, similarly to
models with immobile obstacles, with the transition from
percolating to non-percolating voids within the matrix. However,
a static picture of the void geometry cannot describe this
transition, because the evolution of the void space involves a
second timescale t2 (Fig. 1a, right) associated with the mobility of
the matrix. To analyse the dynamic rearrangements of the void
structure, we monitor the evolution of the position of the small
particles which explore this evolving structure. Accordingly, in
Fig. 4a,b we show superpositions of small particle locations in 2D
time series of confocal images over a long total observation time
texp
f ¼ 297 s, at which f(q, Dt) for d¼ 0.18 shows a decay of

correlations, while f(q, Dt) for d¼ 0.28 is in the logarithmic
regime. For d¼ 0.18 we find that, within the observation time,
small particles easily explore the whole space of the accessible
voids which form a percolating network. In contrast, for d¼ 0.28
particles mostly explore their local environment, since voids only
barely connect even at long times, allowing only a slow, partial
exploration of the available void space. Simulations provide not
only particle locations but also single-particle trajectories in three
dimensions allowing a more quantitative determination of the
percolation of the explored space. Visualisations of typical small
particle trajectories for a fixed observation time tsim

f ¼100t0

(comparable with the experiments) and three different values
of d confirm the experimental features (Fig. 4c): within the
observation time small particles explore a percolated space for
small d, while for the critical size ratio the space is barely
connected, indicating that particles can rarely escape the local
environment which is only possible due to the stochastic opening
and closing of channels between neighbouring void spaces,
associated with the matrix motion on the long time scale t2. In
addition, the simulations show that for even larger d the explored
space is disconnected. To quantify these observations we calculate
the distribution n(s) of the size s of the clusters in which the space
explored by small particles within a certain time interval is
organized, as explained in Methods. The results are shown in
Fig. 4d for different d values for an observation time equal to tsim

f .
This time corresponds to the interval over which the cluster size
distribution of the explored space for dc is close to percolation, as
indicated by the power-law dependence n(s)Bs# 2.19, consistent
with random percolation predictions36. Percolation at tsim

f for dc
is also indicated, in a finite-size system, by the maximum of the
average size of finite-size clusters (excluding percolating clusters,
calculated as explained in Methods) Lc as a function of time
(Fig. 4e). For the other size ratios instead Lc is very small at tsim

f .
At small d this is due to the fact that particles can easily move
through channels connecting voids, and thus the explored space
quickly associates into a percolating cluster. On the other hand,
for large d the creation of channels that allow the small particles
to move between neighbouring void spaces is rare, and thus
percolation of the explored space does not occur at tsim

f and only
voids corresponding to the size of monomers, dimers and few-
mers are observed. This analysis reveals very different timescales
at which the explored space percolates at different d. These
timescales depend, besides d, on the timescale t2 of the evolution
of the void space, associated with the thermal motion of the
matrix particles: yet this analysis is not offering substantial
evidence that this mobility of the matrix is causing the
logarithmic decays of the correlators observed at dc.

Comparison between mobile and immobile matrix. To go one
step further and link the residual mobility of the matrix particles
with the anomalous logarithmic decays, we perform additional
simulations (for f¼ 0.62) for immobile matrix particles and
compare the dynamics of the intruders with the case of a mobile
matrix. When the large particles are immobile (Fig. 5a), the MSD
shows a sub-diffusive regime (MSDBta) followed by diffusion at
long times (upward curvature) or localization (downward
curvature), depending on d. The crossover between these two
long time behaviors takes place at a critical size ratio dimm

c & 0:275
where the MSD remains subdiffusive also at long times2. The
value of dc is smaller for the simulation with immobile large
particles. This finding is consistent with the opening of channels
as a consequence of the thermal motion of the matrix particles. In
the case of mobile matrix particles localisation is never observed
(Fig. 5b): even for large d, the residual motion of the matrix
allows the small particles to move and hence their MSD increases
at long times. Furthermore, the subdiffusive regime observed in
the case of an immobile matrix is only observed for dodimm

c and
thus in a smaller range than for mobile particles. This is
consistent with the opening of channels as a consequence of the
thermal motion of the matrix particles, which allows larger
particles to move between voids. We also find that fself(q, Dt)
calculated for the case of an immobile matrix displays a power-
law dependence on time extending for several decades (Fig. 5c), as
also observed in the Lorentz gas model37, while the collective f(q,
Dt) displays neither a power-law nor a logarithmic dependence
(Supplementary Fig. 2 and Supplementary Note 2). In the case of
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(bottom) describing the dynamics of small spheres in binary

mixtures with size ratios delta below (left) and around (right) the onset of
anomalous dynamics, for different magnitudes of the scattering vector q
and total volume fraction f (as indicated). Arrows indicate increasing f or
increasing q accordingly.
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a mobile matrix, however, power law behaviour is not observed
but, close to dc, a logarithmic dependence is found. Thus, thermal
motion of the matrix particles gives rise to the logarithmic decay,
a novel type of dynamics which does not occur in models with
immobile obstacles.

Discussion
Our combined experimental, simulation and theoretical study
shows that dynamics of intruders in a mobile crowded
environment requires a description beyond that provided by
models with a matrix of fixed obstacles. The novel application of
the confocal DDM technique to concentrated binary colloidal
mixtures allows us to investigate the collective dynamics of
intruders in a mobile matrix, revealing extended anomalous
dynamics for specific values of the size asymmetry and of
the probed length scale. While the Lorentz model predicts

a power-law behavior, which is typical for systems close to a
percolation transition, in the case of a mobile matrix we observe a
logarithmic decay of the collective and self density fluctuations
over at least three decades in time, at length scales comparable to
the size of the matrix particles. This logarithmic decay marks the
transition between a diffusive behaviour of intruders in a glassy
medium for small size ratios dodc, where transient localization is
due to the excluded volume of the mobile matrix, and
glassy dynamics of the intruders at large size ratios d4dc, due
to crowding. Our results thus show that both percolation
and glassy dynamics have to be considered. By comparing mobile
and immobile matrix environments, we demonstrate that the
dynamics of the small particles is profoundly altered, in a
qualitative way, by the continuous evolution of channels in the
mobile matrix, due to the thermal motion of large particles.
A mobile matrix corresponds to an environment in which small
intruders move in many real systems and applications, like in
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confocal microscopy images, for f¼0.60 and (a) d¼0.18, (b) d¼0.28. (c) Positions of 10 small particles (distinguished by different colours) for (left)

d¼0.2, (middle) d¼0.35 and (right) d¼0.5, for a fixed total time of the trajectories tsim
f ¼100t0, comparable with the experiments (d). Distribution n(s)

(normalized by the number of small particles Ns) of the size s of clusters as defined in Methods, providing a measure of the space explored by small

particles, evaluated within a fixed time interval tsim
f ¼100t0. For d¼0.35 data follow a power-law dependence n(s)Bs# 2.19, consistent with random

percolation (dashed line), while for d¼0.20 all particles belong to the same cluster. (e) Average size Lc of finite clusters as a function of time, for different
d, as indicated. The maximum in each curve signals the onset of percolation.
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glasses, nanocomposite materials, chromatography, catalysis, oil
recovery, drug delivery or cell signaling, cell interiors, human and
animal crowds and vehicular traffic. We thus expect that our
findings will inspire the development of a more realistic
description of these situations and will stimulate theoretical
studies to refine the MCT predictions.

Methods
Materials. We investigated dispersions of sterically stabilized polymethyl metha-
crylate (PMMA) spheres of diameters s1 1ð Þ¼3:10mm (polydispersity 0.07) or
s1 2ð Þ¼1:98mm (polydispersity 0.07) mixed with spheres of diameter ss¼ 0.56 mm
(polydispersity 0.13) (fluorescently labeled with nitrobenzoxadiazole), in a cis-
decalin/cycloheptyl-bromide mixture which closely matches their density and
refractive index. The size ratio of the mixtures is s¼ 0:18 s1 1ð Þð Þ and s¼ 0:28 s1 2ð Þð Þ,
respectively. After adding salt (tetrabutylammoniumchloride), this system presents
hard-sphere like interactions38,39. A sediment of the large spheres with f¼ 0.65 or
of the small spheres with f¼ 0.67, as estimated from comparison with numerical
simulations and experiments40,41, is diluted to obtain one-component dispersions
with desired volume fraction f. Following a recent study42, the uncertainty Df can
be as large or above 3%. Using the nominal volume fraction f of the large spheres
as a reference, the volume fraction of the samples containing the small particles are
adjusted in order to obtain comparable linear viscoelastic moduli in units of the
energy density 3kBT/4pR3, where kB is the Boltzmann constant, T the temperature
and R the particles’ radius, while multiplying the frequency by the free-diffusion
Brownian time t0¼6pZR3=kBT , where Z¼ 2.2 mPa s is the solvent viscosity. In this
way we obtain samples with comparable rheological properties and, according to
the generalised Stokes–Einstein relation43, also dynamics and hence a similar
location with respect to the glass transition. The comparable dynamics but different
polydispersities of the one-component samples imply slightly different f. Samples
with different total volume fractions and a fixed composition, namely a fraction of
small particles xs¼fs/f¼ 0.01, where fs is the volume fraction of small particles,
are prepared by mixing the one-component samples.

DDM measurements. Confocal microscopy images were acquired in a plane at a
depth of approximately 30 mm from the coverslip. Images with 512' 512 pixels,

corresponding to 107' 107mm2, were acquired at a fast rate of 30 frames
per second to follow the short-time dynamics and at a slow rate, between 0.07 and
0.33 frames per second, depending on sample, to follow the long-time
dynamics. Image series were acquired using a Nikon A1R-MP confocal
scanning unit mounted on a Nikon Ti-U inverted microscope, with a 60' Nikon
Plan Apo oil immersion objective (NA¼ 1.40). The pixel size at this magnification
is 0.21' 0.21 mm. The confocal images were acquired with the maximum
pinhole size allowed by the microscope, corresponding to a pinhole diameter of
255 mm. Time series of 104 images were acquired for 2–5 different volumes,
depending on sample.

DDM analysis. Particle movements induce fluctuations of the fluorescence
intensity in the images, i(x, y, t), with x, y the coordinates of a pixel in the image
and t the time at which the image was recorded. To obtain additional information
on the characteristic length scales of particle motions, i(x, y, t) can be Fourier
transformed, yielding î q; tð Þ, with q the wave vector in Fourier space, and then
differences of the Fourier transformed image intensities can be correlated (Fig. 1c)
to obtain the image structure function D(q, Dt):

D q;Dtð Þ ¼ î q; tþDtð Þ# î q; tð Þ
## ##2
D E

; ð1Þ

where hi represents an ensemble average. This analysis technique is named
DDM24. The intermediate scattering function f(q, Dt) (Fig. 1d) can be extracted
from the image structure function:

D q;Dtð Þ ¼ A qð Þ 1# f q;Dtð Þ½ * þB qð Þ; ð2Þ

with A qð Þ ¼ N K̂ qð Þ
## ##2S qð Þ, where N is the number of particles in the observed

volume, K̂ qð Þ is the Fourier transform of the Point-Spread Function of the
microscope, S(q) is the static structure factor of the system, and B(q) accounts for
the camera noise. The inverse of the wave vector q determines the length scale over
which the particle dynamics are probed. Thus f(q, Dt) is obtained, similarly to
dynamic light scattering (DLS)44, but for the present system the advantage of DDM
over DLS is that fluctuations of the incoherent fluorescence signal can be
correlated, a possibility which is excluded by the requirement of coherence of light
in DLS. Furthermore, use of a confocal microscope drastically reduces the amount
of background fluorescence of the measurements, significantly improving the
determination of f(q, Dt). The effect of particles moving in and out of the
observation plane on f(q, Dt) was found to be negligible for all samples, as
determined by the q-dependence of the relaxation times of the initial decay of
f(q, Dt), where no plateau at small q values was observed25,45.

Particle localization. Coordinates of the small particles were extracted from time
series of 2-dimensional images using standard particle localization routines based
on the centroiding technique46. Only the particle positions at each time could be
determined, not the full trajectories. Indeed the displacement of small particles
during the time delay Dt between two successive frames is comparable or larger
than their diameter, which implies that identifying particles after a Dt becomes too
uncertain.

Simulations. We perform event-driven molecular dynamics simulations47 in the
NVT ensemble in a cubic box with periodic boundary conditions for binary
mixtures of hard spheres, of which the large components are 7% polydisperse by a
discrete Gaussian distribution48 and the small ones are monodisperse. For each
studied d we vary the total number of particles in the range of a few thousands.
The number of small particles thus varies from 1980 for d¼ 0.2 to 292 for d¼ 0.5.
Mass and length are measured in units of particle mass m, average large particle
diameter sl, whereas time is in units of t0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2

l =kBT
p

, where kB is the Boltzmann
constant and T the temperature. For the simulations with immobile hard
spheres, after equilibration of the mixture, we freeze the large particles only.
To roughly estimate the critical size ratio which demarcates the transition between
diffusive and localized states, we averaged results over ten different matrix
realizations.

Mode coupling theory. The equations determining f(q, t) and hDr2(t)i within
MCT were solved for a binary mixture of hard spheres within the Percus–Yevick
approximation for the static structure; for details on the theory and the numerical
procedure, see ref. 29. The f(q, Dt) were obtained using a wave-number grid of
equidistant steps Dq¼ 0.4/sl, with large-q cutoff qsl¼ 400. Brownian dynamics is
assumed with the short-time diffusion coefficients following the Stokes–Einstein
relation; the diffusion coefficient of the large particles sets the unit of time t0.
In the calculations, the total packing fraction f is varied, keeping xs¼fs/f¼ 0.01
fixed.

Calculation of the size distribution of the explored space. To evaluate the
distribution of space sampled by the small particles during time we employ the
following procedure: First we generate a sequence of Nc configurations saved at
equally spaced times ti (with i¼ 1y Nc) within a given time window tNc . The time
interval Dtc between two successive configurations, i.e., Dtc¼ tiþ 1# ti is chosen in
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Figure 5 | Small particle dynamics in a mobile or immobile large particles
matrix. (a) MSDs of the small particles for immobile large particles at

f¼0.62 and various values of d, as indicated. For dimm
c &0:275 a clear

subdiffusive behavior is observed at all times. (b) Comparison of the MSDs of
the small particles at f¼0.62 for mobile (dashed lines) and immobile
(full lines) large particles, for increasing d, as indicated. (c) Self intermediate
scattering functions fself(q, Dt) at f¼0.62 and different wavevectors qsl, as
indicated, for d¼0.25 (immobile, full lines) and d¼0.35 (mobile, dashed
lines) highlighting the power-law dependence (dot-dashed line) in the
immobile case. Arrows indicate increasing D or increasing q accordingly.
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such a way that Dr2 Dtcð Þh i=s2
s¼ 0:5. Second, we overlap all Nc configurations and

perform a cluster size analysis according to the following criteria: (i) the same
particle at different times ti belong to the same cluster; (ii) if two particles overlap,
they belong to the same cluster; (iii) the size s of a cluster is defined as the number
of distinct particles belonging to the same cluster (running from one to the total
number of small particles). To improve statistics we average the cluster size dis-
tribution n(s) over a set of at least 10 independent groups of Nc configurations. The
average size of finite clusters is calculated as Lc¼

P
s2n(s)/

P
sn(s), excluding

percolating clusters.
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