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ABSTRACT: During a previous experimental campaign, a rectangular cylinder free to vibrate in 
the transverse degree of freedom showed a complicated behavior in turbulent flow. The present 
study aims at modelling the unsteady galloping behavior of the prism, incorporating the effect of 
homogeneous isotropic free-stream turbulence. Such an investigation represents a first attempt to 
explain some of the unclear features unveiled by the experiments. The nonlinear wake-oscillator 
model proposed between the 70s and 80s by Prof. Y. Tamura is adapted here to account for the 
unsteadiness in the oncoming flow. The results clarify that the response of the cylinder in a rela-
tively large-scale turbulent wind cannot simply be ascribed to linear or nonlinear buffeting excita-
tion. Rather, the unsteady contribution of vortex shedding seems to play a key role also in turbulent 
flow. Nevertheless, the oscillation amplitudes predicted by the model are significantly larger than 
in the experiments, so that a future refinement of the model is required. 
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1 INTRODUCTION 

The increased slenderness and lightness of modern engineering structures has raised the attention 
of researchers on possible transverse galloping instability of large constructions such as towers, 
super-tall buildings and long-span arches. In these cases, it is likely that galloping oscillations 
occur at a flow speed for which the contribution of vortex shedding is definitely non-negligible, 
making the classical quasi-steady theory unsuitable to calculate the structural response [1]. 

Furthermore, a recent experimental investigation on a rectangular cylinder with a side ratio of 
1.5 (the shorter side facing the wind) has emphasized the crucial and complicated role played by 
oncoming turbulence [2]. In particular, small-scale turbulence is able to interfere with the separated 
shear layers and to alter significantly the aerodynamic behavior of the oscillating body. In contrast, 
large-scale turbulence is responsible for parametric and external excitations that nonlinearly inter-
act with self-excited forces. Consequently, the integral length scale of free-stream turbulence is a 
key parameter affecting the response of the body. 

Several features of the galloping response in turbulent flow observed in the wind tunnel tests in 
[2] still require to be understood and explained. In particular, in the case of turbulence with an 
integral length scale lower than the section dimensions of the cylinder, an evident delay of the 
onset of the oscillations beyond the vortex-resonance wind speed was encountered. In contrast, for 
a turbulent flow with an integral length scale of few times the characteristic cross-section dimen-
sion, the vibration amplitude was found to slowly increase with the wind speed. In this case, the 
relative importance of forcing due to turbulence and of vortex shedding is not clear. In the present 
work, the galloping behavior in turbulent flow of a rectangular cylinder is mathematically mod-
elled with the aim to shed some light on the experimental results. 



2 MATHEMATICAL MODEL 

2.1 Wake-oscillator model in turbulent flow 

The nonlinear wake-oscillator model proposed in [3-4] and later modified in [5] is considered here. 
The contribution of partially-correlated random flow velocity fluctuations is incorporated in the 
model’s equations based on quasi-steady and strip assumptions, yielding:  
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In the previous equations, 𝑌 = 𝑦/𝐷 and 𝜗(𝑧) are the dependent variables of the differential 

equations, denoting respectively the transverse displacement of the cylinder normalized with the 
cross-flow section dimension 𝐷 and the rotation of the equivalent wake lamina [3-5]. 0 ≤ 𝑧 ≤ 𝐿 
indicates the position along the axis of the cylinder, being 𝐿 the spanwise extension of the body. 
𝑈 =  𝑉/𝜔0𝐷 is the reduced mean flow speed, while �̃�  =  𝑢/𝜔0𝐷 and �̃�  =  𝑤/𝜔0𝐷 are the 
normalized longitudinal and transversal flow velocity fluctuations (Fig. 1). 𝜔0 and 𝜁0 denote 
respectively the natural circular frequency and the critical damping ratio of the mechanical oscil-
lator. 𝜔𝑠 is the circular frequency of vortex shedding, while St is the Strouhal number. 𝐶𝐹𝑦 is 
the quasi-steady transverse force coefficient, which is a function of the instantaneous relative angle 
of attack (Fig. 1) and can be determined from static measurements of lift and drag coefficients [5]. 
𝑚∗ represents the mass ratio of the fluid-elastic system, while 𝑓, 𝛽, 𝐶𝐿0, and 𝜆 are aerody-
namic parameters of the model, which can be estimated as described in [5]. 

Once the turbulent velocity fluctuations are digitally synthetized at a given number 𝑁 of sta-
tions along the axis of the cylinder, the 𝑁 + 1 second-order ordinary differential equations can 
be numerically solved through an explicit Runge-Kutta method. 
 

 

Figure 1. Schematics of flow velocities, motion components and forces. 
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Figure 2. Comparison of wake-oscillator model results in smooth flow and in turbulent flow (a). Effect of a significant 
variation of integral length scale of turbulence in the equations’ results. 𝑦10 denotes the mean of the 10%-largest 
oscillation maxima and minima, 𝐼𝑢 the turbulence intensity and 𝐿𝑢

𝑥  the longitudinal integral length scale. 

2.2 Digital simulation of turbulent fluctuations 

The partially-correlated random field of longitudinal and transverse flow velocity fluctuations is 
digitally simulated as a series of cosine functions with weighted amplitudes, almost evenly spaced 
frequencies, and random phase angles [6]. Homogeneous isotropic turbulence has been assumed 
as in the reference experiments in [2]. The analytical expressions proposed in [7] for auto and cross 
power spectral density functions of turbulent velocity fluctuations were employed. 

3 DISCUSSION OF RESULTS 

The system of Eqs. (1)-(2), denoted as Model 2, was solved for some interesting test cases reported 
in [2]. Since such computations are expensive, a simplified version of the model is considered, in 
which the turbulent fluctuations are included in the mechanical oscillator equation, while only the 
mean velocity component is retained in the wake equation (Eq. (2)). This simplified version of the 
model is called Model 1. Its results are compared with those of Model 2 in Figure 2(a). Clearly, 
the difference between the two approaches is minimal. In the considered case, the results are also 
very close to those obtained in smooth flow up to a normalized oscillation amplitude of about 0.4. 

Figure 2(b) compares the results obtained in two test cases with similar turbulence intensity 𝐼𝑢 
but different longitudinal integral length scale of turbulence 𝐿𝑢

𝑥 . It can be noticed that the model’s 
results are nearly insensitive to a variation of 𝐿𝑢

𝑥 , which is in clear disagreement with experiments. 
All of the previous results were obtained considering the same aerodynamic parameters as in 

smooth flow. Nevertheless, the transverse force coefficient is strongly affected by turbulence in-
tensity and integral length scale (see Fig. 3(a) and results in [2]). Therefore, the equations were 
also solved accounting for the values of 𝐶𝐹𝑦 measured in turbulent flow (Fig. 3(b)). The other 
aerodynamic parameters of the model were kept unchanged (however, it was verified that the value 
of 𝐶𝐿0 is very similar to the one measured in smooth flow, though the lift spectrum is more broad-
banded [2]). In a similar way to a linear analysis [2], the nonlinear buffeting response significantly 
underestimates the experimental amplitude-velocity curve. However, the nonlinear effect of tur-
bulence is even responsible for a delay of the instability compared to the quasi-steady galloping 
threshold. In contrast, the wake-oscillator model correctly predicts the onset of oscillations at the 
Kármán-vortex resonance velocity, but it significantly overestimates the vibration amplitudes. It 

(a) (b) 



is also to note that the contribution of turbulence in the wake-oscillator model has a significant 
effect on the response only for large oscillation amplitudes. 

Figure 3. Transverse force coefficients measured in smooth and in turbulent flow (a). Comparison between experi-
ments and results of wake-oscillator model (WO) calculations carried out with the values of 𝐶𝐹𝑦 measured in turbu-
lent flow (b). The classical quasi-steady (QS) galloping response and the results of a nonlinear buffeting calculation 
(obtained setting to zero the first term on the right-hand side of Eq. (1)) are also reported. 

4 CONCLUDING REMARKS 

The present investigation clarifies that linear and nonlinear buffeting cannot explain the response 
of a rectangular cylinder observed in the experiments in turbulent flow. As suggested by the wake-
oscillator model results, the unsteady contribution of vortex shedding seems to play a key role 
even for a highly turbulent oncoming flow. However, the model significantly overestimates the 
vibration amplitudes. This may be ascribed to the values of the aerodynamic parameters 𝑓, 𝛽 and 
𝜆, which may assume significantly different values in turbulent flow. In addition, the contribution 
of turbulence was incorporated in the equations according to a quasi-steady scheme, whereas it 
may be significantly unsteady. All of these issues need to be carefully addressed in the future. 
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