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Abstract

We investigate the yielding and transition to flow of different colloidal glasses. Using a single model system, a binary mixture of colloidal

hard spheres with different compositions and size ratios, we study single, double and asymmetric glasses, which differ in the degree of

mobility of the small particles and the caging mechanisms of the large spheres. The rheological response following either a step to a constant

shear rate or to a constant stress (creep) is measured and the two responses are quantitatively compared. Although the same steady state of

flow is observed at long times, the transient responses in strain- and stress-controlled experiments differ significantly. To achieve yielding

and a steady state of flow, less time and less energy input is required if a constant strain rate is applied. Moreover, larger strain rates or

stresses result in faster yielding and flow, but require more total energy input. If a constant strain rate is applied, yielding and the transition to

flow depend on the properties of the glass state, while much smaller differences are observed if a constant stress is applied. VC 2017 The
Society of Rheology. https://doi.org/10.1122/1.5009193

I. INTRODUCTION

The behavior of glasses under application of a mechanical

deformation or a force, that is under shear, is of great rele-

vance for many applications that rely on or exploit the flow

of glass-forming systems. Colloidal glasses have proven to

be ideal model systems to study this behavior [1,2]. They are

characterized by arrested dynamics resulting in a very slow

internal relaxation. Dynamical arrest occurs at large volume

fractions and is associated with crowding [1–4]; particles are

trapped in “cages” formed by their nearest neighbors, at least

until activated processes can restore diffusion [5]. External

driving, e.g., by application of shear, leads to a competition

between the slow internal relaxation and the time scale

imposed by shear. At small deformations, where the linear

viscoelasticity of the system is probed, the response of col-

loidal glasses is dominated by elasticity and the system

behaves as a viscoelastic solid [6–10]. In contrast, under

large shear deformations the system shear melts and starts to

flow with the viscous instead of the elastic component domi-

nating its response [10–13].

Continuous shear, namely, the application of a constant

strain rate or a constant stress, leads to steady flow beyond the

yield point [9–11,13–20]. The transition from rest and solid-

like behavior to steady flow is characterized by transient phe-

nomena [12,19–21]. At rest, the behavior of the investigated

glasses is dominated by cages formed by neighbors that, on

average, are isotropically distributed. After application of a

step in strain rate, the cages become deformed and the corre-

sponding convection of the cages is associated with superdif-

fusive dynamics at intermediate times. Thus, an anisotropy in

the local microscopic structure develops. The cage deforma-

tion can be quantified based on the pair distribution function

g(r). The deformations are particularly evident in the shear-

gradient plane [12,19,20]. The maximum cage deformation

coincides with the occurrence of a stress overshoot in the rhe-

ological response [12,19–22]. In the steady state, the shear-

induced longest relaxation time is found to be inversely pro-

portional to the shear rate reflecting a convective cage release

mechanism through which cages break and particles rearrange

[23]. A constant stress also leads to the fluidization of the glass

if the stress is larger than the yield stress [10,13–15,24,25]. In

contrast, for stresses below the yield stress, the system does not
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flow [14,15, 26–29]. Instead, a creep regime is observed

which is characterized by a slow sublinear increase of the

strain as a function of time. The strain is linearly related to

the mean squared displacement (MSD) of the individual

particles [24]. This finding can be related to the observation

that, under stress-control, the single-particle dynamics as

well as the strain are dominated by groups of highly mobile

particles. The fusion of regions with highly mobile particles

eventually leads to flow [24]. In contrast, in the strain-

controlled case, no linear relation between the strain and

the MSD is found [12,20–22,30,31]. Thus, different rela-

tions between macroscopic strain and microscopic dynam-

ics are observed after a constant stress or strain rate is

applied. This indicates qualitative differences in otherwise

analogous rheological protocols. Here, we compare the rhe-

ological responses to stress- and strain-controlled shear,

respectively, in the transient and steady state of flow.

We investigate binary colloidal glasses with a large size,

and hence dynamical, asymmetry. Depending on the number

density and size ratio, different glass states exist in this sys-

tem. At moderate size ratios, double glasses are found, in

which both species are arrested. At larger size ratios and

small to intermediate relative volume fractions of small

spheres, single glasses are observed, in which the small par-

ticles are mobile in a glass of large particles. At large size

ratios and large relative volume fractions of small spheres

asymmetric glasses exist, in which the large particles are

trapped in a glass of small spheres. The transitions between

these glass states are accompanied by softening and melting

of the glasses [31–33]. Due to the different nature of the

glasses and the different involved arrest mechanisms, we

expect different yielding mechanisms to occur. Therefore,

using a single model system, a binary colloidal mixture, we

can systematically study and compare the transitions from

dynamical arrest to flow in different glass states.

II. MATERIALS AND METHODS

A. Sample

The samples contained sterically stabilized polymethyl-

methacrylate (PMMA) spheres with different radii: In the

first system RL1¼ 304 nm (10% polydispersity) and

RS1¼ 63 nm (15% polydispersity) resulting in a size ratio

d¼RS1/RL1¼ 0.21 and in the second system RL2¼ 358 nm

(14% polydispersity) and RS2¼ 137 nm (12% polydispersity)

resulting in d¼ 0.38. The radii and polydispersities were

determined using static and dynamic light scattering in very

dilute samples with volume fractions /< 10�3. In the first

system with d¼ 0.21, the particles were suspended in a mix-

ture of cis-decalin and cycloheptyl-bromide (CHB) which

matches the density and almost the refractive index of the

particles. In this mixture, PMMA colloids acquire a charge

which was screened by adding salt, 4 mM tetrabutylammo-

niumchloride [34]. For the second system with d¼ 0.38, the

particles were suspended in a mixture of octadecene and bro-

monaphtalene to minimize solvent evaporation [35]. In both

solvent mixtures, the PMMA particles show hard-sphere-like

behavior [36].

The volume fractions of sediments, obtained by centrifug-

ing dilute suspensions, were estimated to be /¼ 0.67 and

0.68 depending on the polydispersity [37]. One-component

samples with a nominal volume fraction /¼ 0.61 were

obtained by diluting the sediments. Due to the uncertainties

in the volume fractions, the volume fractions of the two asso-

ciated suspensions were adjusted according to their normal-

ized linear viscoelastic moduli, taking into account the

trivial size dependence of the rheological response. For each

value of d, one component was chosen as reference and the

volume fraction of the suspension containing the second

component are adjusted such that their normalized linear vis-

coelastic moduli are comparable. This procedure has been

applied and described in detail previously [32]. By mixing

the one-component stock suspensions, binary mixtures were

obtained which had a total volume fraction /¼ 0.61 and dif-

ferent compositions, i.e., fractions of small particles xs¼/s/

/, where /s is the volume fraction of the small component.

B. Rheology

For samples with d¼ 0.21, creep measurements were per-

formed using an AR2000ex stress-controlled rheometer (TA

instruments) and a cone and plate geometry with diameter

D¼ 20 mm, cone angle a ¼ 2� and truncation gap

d¼ 0.054 mm. For step-rate measurements, we used an

ARES G2 strain-controlled rheometer (TA instruments) and

cone and plate geometries with D¼ 25 mm, a ¼ 2�,
d¼ 0.048 mm and D¼ 50 mm, a ¼ 1:16�, d¼ 0.051 mm,

respectively. Creep and step rate measurements of samples

with d¼ 0.38 were performed using an MCR 501 stress

controlled rheometer (Anton Paar) with a cone and plate

geometry with D¼ 25 mm, a ¼ 3:22�; and d ¼ 0:024 mm.

To minimize solvent evaporation, solvent traps were used

which enclosed the samples in a small volume saturated with

solvent vapor. To check whether the sample is affected by

evaporation or other effects, the linear viscoelasticity was

determined between the individual nonlinear measurements.

If the measured viscoelasticities were deviated more than

1%–19% (depending on the noise in the individual measure-

ments), the measurement series was stopped and a new sam-

ple was loaded.

A rejuvenation procedure was performed before each

measurement to reduce the effects of loading, aging, and

sample history and hence prepare each sample in a reproduc-

ible initial state. To achieve this, directly after loading first

a dynamical strain sweep (DSS), i.e., oscillatory shear with

a frequency x¼ 1 rad/s and an increasing strain from

c¼ 0.002% to between 500% and 1000% (depending on the

sample), was performed in order to determine the flow

regime. The onset of flow was determined from the onset of

the terminal relaxation of the moduli, characterized by

power-law dependencies of the moduli on strain amplitude

[38]. Subsequently and before each measurement, two

dynamical time sweeps (DTS) were applied. For 100 s, a

time sufficient to reach steady state values of the moduli in

all samples, a DTS was performed with a strain in the flow

regime, c � 300 % (as determined from the previous DSS),

to fluidize the sample and thus remove loading, aging, and
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history effects. Subsequently, a DTS was performed in the

linear viscoelastic regime, c¼ 0.003%�0.1% (depending on

the sample), and extended until the elastic, G0, and viscous,

G00, moduli reached constant, steady state values. The time

needed to achieve a steady state also depends on the sample.

This procedure ensures that each sample is in a reproducible

state before they are subjected to a rheological test.

III. RESULTS AND DISCUSSION

A. Steady-state flow curve

The response in a steady-state shear flow is characterized

by the flow curve, in which the shear stress, r, is plotted as a

function of the applied shear rate _c (Fig. 1, inset). Data

obtained upon increasing and decreasing the shear rate,

respectively, show no significant difference (Fig. 1, inset,

continuous and dashed lines, respectively).

In order to account for trivial effects due to the different

average particle sizes, the stress is also reported in units of

the energy density kBT=hR3i ¼ kBT½1� xsð1� 1=d3Þ�=R3
L

and plotted as a function of the Peclet number Pe ¼ _chssi ¼
_chss

0i=f with hss
0i ¼ 6pghR3i=kBT the average short-time

Brownian time in the dilute limit. The factor f is estimated to

be f� 1/32 for /¼ 0.61, obtained by extrapolating the data

in Fig. 8 of [39]. Note that the short-time Brownian time in

the dilute limit, hss
0i, and hence Pe does not reflect the soft-

ening of the glasses discussed below.

The flow curves reveal two distinct ranges of Pe. At large

Pe, for all samples a sublinear increase of the stress r with

increasing Pe is observed. It indicates shear thinning with the

viscosity decreasing with shear rate _c [11,13,19,21,22,30,40,41].

At low Pe two distinct behaviors are observed. For glassy

systems, in the limit of Pe! 0 the stress tends toward a con-

stant value, the yield stress. Its value cannot be determined

precisely due to the limited accessible range of Pe. However,

an extrapolation to low Pe suggests values between 1 and

10 kBT=hR3i. This range compares well with previous studies

on hard sphere glasses [10,42] and is lower than those

obtained for soft spheres [42,43]. This is observed for sam-

ples with xs¼ 0.7, 0.9, and 1.0. In contrast, a stress that

decreases with decreasing Pe also for the smallest investi-

gated Pe indicates fluid samples, here with intermediate

compositions xs¼ 0.1, 0.3, and 0.5. For the sample with

xs¼ 0.0, the range of explored Pe values does not extend to

sufficiently low Pe to reveal the existence of a yield stress.

However, there is no reason to assume that this sample does

not have a yield stress.

The one-component systems, xs¼ 0 and xs¼ 1, represent

the same glass state and correspondingly possess similar val-

ues of the stress in dimensionless units. Nevertheless, the

shapes of the flow curves show differences, especially at the

largest studied Pe. For xs¼ 0, the slope is about 0.85,

whereas for xs¼ 1 it is significantly smaller, about 0.3.

However, these slopes are not expected to be the asymptotic

slopes as the range of studied Pe is limited. Slopes between

0.5 and 0.75 were observed in previous studies on similar

hard sphere systems [13,38]. Other soft glassy materials,

such as dispersions of soft spheres, emulsions, or foams, typ-

ically exhibit slopes between 0.5 and 0.6 [38,44,45]. The

smaller slope of the one-component system of small particles

may therefore be due to the larger polydispersity and a more

pronounced softness of the small particles. The latter might

be due to the different extent of the stabilizing polymer layer

relative to the particle radius; about 7.5% for the small par-

ticles compared to about 1.5% for the large particles. The

slopes of the flow curves for intermediate mixing ratios

appear to be interpolations between the values obtained for

xs¼ 0 and xs¼ 1, which might reflect the weighting of the

two softnesses and polydispersities.

Adding small spheres to a glass of large spheres, i.e.,

increasing xs, for all Pe the normalized stress decreases and

reaches a minimum at xs¼ 0.3 before it increases again.

Moreover, for intermediate xs the stress plateau at low rates

disappears and the stress continuously decreases with

decreasing Pe. Both observations indicate the softening for

intermediate xs and a subsequent reentrant vitrification. This

agrees with previous experimental results [46], including

DSS tests [32] and step-rate experiments [31], and theoreti-

cal calculations [47,48]. It is thought to reflect the transition

from a glass in which the cage is formed by large spheres at

small xs, to a glass where the cage is formed by small spheres

at large xs [31,32].

When the flow curve is determined, the shear rate is suc-

cessively increased to measure the individual data points.

We also obtained data upon decreasing the shear rate, which

show no significant difference (Fig. 1, continuous and dashed

lines, respectively). Nevertheless, with both protocols for

each data point the initial state of the sample is the steady-

state of flow reached by the application of the previous _c.

For comparison, rð _cÞ is also extracted from a series of step-

rate experiments. In this case, after rejuvenation the initially

quiescent sample is subjected to a constant shear rate _c and

the stress r as a function of strain c measured. The constant

FIG. 1. Flow curves, that is stress r in units of the energy density kBT=hR3i
as a function of shear rate _c in units of the Brownian time, that is Peclet

number Pe (in the inset the data are not normalized), measured by increasing

(continuous lines) or decreasing (dashed lines) the shear rate _c as well as

extracted from step rate experiments (crosses) and step stress, i.e., creep,

experiments (circles). The conditions shown in Fig. 8 are indicated by

arrows and dashed-dotted lines. Samples with size ratio d ¼ 0:21 and differ-

ent compositions xs (as indicated).
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steady-state stress is reached at large c and also reported in

Fig. 1 (crosses). All protocols result in comparable rð _cÞ,
indicating that the flow curve measurement represents

steady-state stress values. Another way to measure the rate

dependent stress rð _cÞ is provided through a series of creep

experiments, where a constant stress r is applied and the

strain c or strain rate _c is measured as a function of time t. In

the creep regime, i.e., below the yield stress r � ry, the

strain rate slowly decreases with time without reaching a

constant value and hence no steady state of flow is reached.

In contrast, for stresses beyond the yield stress, r > ry, the

shear rate _c reaches a steady-state value at long times. These

values (Fig. 1, full circles) agree with the flow curve or are

slightly larger. The agreement between steady-state stress

values obtained with different shear protocols as well as for

different one-component and binary systems in different

fluid and glass states, i.e., with different compositions xs,

indicates that, for all these systems, a comparable steady

state of flow is reached independent of the shear protocol

[49]. Thus, steps to either a constant shear rate _c or a con-

stant stress r > ry result in the same rð _cÞ as classical flow

curve measurements.

B. Step-stress experiments (creep)

In creep experiments, a constant shear stress r is applied

and the induced deformation c or deformation rate _c is

recorded as a function of time t. This is illustrated for the

one-component glass [Fig. 2(a)]. The response significantly

depends on whether a stress above or below the yield stress

ry is applied. The yield stress ry was estimated from the

crossing point of the shear moduli G0 and G00 measured in

DSS with an angular frequency x ¼ 1 rad/s. For this sam-

ple (RS1; xs ¼ 1:0), we determined ry � 80 Pa. At short

times, the initial superlinear increase of the strain c(t) is fol-

lowed by oscillations which are caused by instrument iner-

tia [50] and will not be discussed further. After this initial

stage, for stresses below the yield stress, r < ry, a creep

response is observed at sufficiently long times. The creep

response is characterized by a slow sublinear increase of

strain which can be separated into two regimes: At interme-

diate times (immediately after the regime affected by

instrument inertia) an extremely slow increase of c(t) and at

long times a stronger but still sublinear increase of c(t) is

observed. This long-time regime is in general observed for

yield-stress fluids and is known as Andrade creep for a vari-

ety of systems [15,28,44,51]. Recently, it was shown that

these two regimes are characteristic for creep in colloidal

glasses [14,15,50] and colloidal gels [52,53]. For larger

applied stresses, r > ry, the system flows and a linear time

dependence of the strain c(t) is observed. If a stress close to

the yield stress is applied, r � ry, an intermediate behavior

is found. The creeplike response at intermediate times is

followed by a superlinear increase of c(t) over a limited

time interval, after which a steady state of flow is reached.

The superlinear increase of c(t) implies a progressively

decreasing instantaneous viscosity and hence shear thin-

ning, while flow is associated with a constant viscosity.

Recent studies indicate that inhomogeneous flow might

occur during the transition to steady flow [24,54–56].

For one-component and binary glasses, it has been shown

that the superlinear increase of cðtÞ can be associated with

super-diffusive dynamics and the opening of shear-deformed

cages which ultimately leads to diffusion [14,24]. While the

superlinear behavior is well-developed for the smallest

PMMA particles used in this study (Fig. 2), it is less clear for

the other single component samples investigated here and

samples studied previously [15]. This might be due to the

FIG. 2. (a) Strain c and (b) shear rate _c as a function of time t measured in

step stress (creep) experiments with stresses r¼ 10, 15, 35, 50, 65, 80, 100,

140, 200, and 300 Pa (from bottom to top). (c) and (d) Logarithmic time

derivative of the strain kcreepðtÞ ¼ d logðcÞ=d logðtÞ as a function of (c) time t
and (d) strain c. Time t1 and strain c1 (�) are defined by kcreep ¼ 1, time tmax

and strain cmax (�) indicate the maximum of kcreep, and time tcflow and cc
flow

(() indicate when the steady state of flow is reached. Samples contain only

particles of radius RS1, i.e., xs ¼ 1:0.
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softness of the smaller PMMA particles which is expected to

promote the superlinear behavior [57].

The creep response of the binary mixtures is shown for

normalized stresses r=ðkBT=hR3iÞ (Fig. 3). Depending on

the composition xs, different scenarios are observed. For the

one-component glasses, the applied stress is smaller than the

yield stress and correspondingly a creeplike response is

observed. The yield stress of the one-component glasses is

about 1 kBT=hR3i, in agreement with previous investigations

on hard-sphere glasses [10,42]. In contrast, a fluidlike

response is found for mixtures with intermediate xs. This

effect is not symmetric with respect to the composition: For

d¼ 0.21 the strongest softening occurs at xs� 0.3 [Fig. 3(a)]

[31,33], whereas for d¼ 0.38 the sample with xs¼ 0.25 still

shows a creep response, in agreement with linear viscoelas-

ticity measurements [32]. With decreasing d hence the maxi-

mum softening seems to move toward smaller xs, i.e., the

softening becomes more asymmetric with respect to xs.

Moreover, with decreasing d the softening becomes more

pronounced; for d¼ 0.21 flow is reached almost immediately

at low and intermediate compositions xs. An intermediate

behavior, with a transition from creep to flow, was observed

for d¼ 0.21 and xs¼ 0.7 as well as for d¼ 0.38 and xs¼ 0.5

and 0.75. This is consistent with softening at intermediate xs

as well as with the flow curves (Fig. 1) and other studies

[31–33].

As mentioned above, the evolution of c(t) shows different

regimes characterized by differently increasing c(t). To

quantify the transitions between these regimes, the logarith-

mic time derivative of the strain kcreepðtÞ ¼ d logðcÞ=d logðtÞ
is calculated. This implies c � tkcreep and hence a comparison

of kcreepðtÞ with 1 identifies sublinear, linear and superlinear

dependencies of c on t. Figures 2(c) and 2(d) show kcreepðtÞ
for the one-component glass of small spheres as a function

of t and c, respectively. Due to instrument inertia, the initial

regime is characterized by a fast decrease from an initial

exponent kcreep ¼ 2 and by oscillations. Subsequently, for

r > ry, the value of kcreepðtÞ starts to increase from below 1,

reaches a maximum larger than 1 and finally tends to 1,

which characterizes flow. Deviations from this behavior are

observed for r < ry, where the maximum value is smaller

than 1, and for r	 ry, where no clear maximum is

observed.

Based on kcreepðtÞ and the corresponding kcreepðcÞ [Figs.

2(c) and 2(d)], we can determine the transitions and extract

the corresponding times and strains. The requirement

kcreepðt1Þ ¼ 1 defines t1 and c1, which marks the transition

from the creep regime, i.e., kcreep < 1, to the superlinear

regime, i.e., kcreep > 1. Furthermore, the maximum of kcreepðtÞ
occurs at tmax and cmax. The final steady-state flow regime is

reached once kcreepðtÞ approaches 1, i.e., c depends linearly on

t, which occurs beyond about tc
flow and cc

flow.

The strains c1 and cmax increase with increasing stress r
[Figs. 4(b) and 4(c)]. We find a scaling cmax � ra with

a¼ 0.3, independent of the size ratio d and composition xs,

while the dependence of c1 on r is weaker and less clear.

The increase of c1 and cmax can be understood in terms of the

balance between Brownian motion and shear-induced motion

together with the cage effect. With increasing stress r,

Brownian motion becomes less important and affine motions

as well as shear-induced diffusion due to particle collisions

FIG. 3. Strain c as a function of time t measured in creep experiments per-

formed on samples with size ratio (a) d ¼ 0:21 and (b) d ¼ 0:38 and compo-

sition xs (as indicated) at similar normalized stresses r=ðkBT=hR3iÞ.

FIG. 4. (a) Strain cc
flow required to reach the steady state of flow, i.e., where

kcreep becomes about 1, (b) strain cmax where kcreep reaches its maximum and

(c) strain c1 where kcreep crosses 1 for the first time as a function of normal-

ized stress r=ðkBT=hR3iÞ for samples with d¼ 0.21 and compositions

xs¼ 0.0 (*), 0.1 (3), 0.3 (�), 0.5 ("), 0.7 (•), 0.9 (�), 1.0 (*) as well as

d ¼ 0:38 and xs ¼ 0:25 ((), 0.5 (�), 0.75 (�), 1.0 (þ). The black lines rep-

resent fits with c � ra.

153COLLOIDAL GLASSES UNDER SHEAR



start to dominate. Thus, at large r _c the cage is deformed

more before it breaks due to shear-induced particle colli-

sions. Therefore, c1 and cmax increase as r increases.

The strain cc
flow that is needed to reach steady-state flow

shows two regimes upon increasing r. At low applied

stresses, cc
flow is almost constant for all xs, whereas it starts to

increase at large r. Similar to the above argument, the

increase at large r suggests that, for these r, cage deforma-

tions become controlled by shear [12,19,31]. For the differ-

ent xs, the transition occurs at different r, which is attributed

to the dependence of the modulus on the state of the sample,

i.e., its composition xs.

C. Step-rate experiments

In a step-rate experiment, the evolution of the stress r is

measured as a function of strain c (or time t ¼ c= _c) under

application of a constant shear rate _c. Typically, r(c) shows

an initial linear increase, deviations from linear behavior fol-

lowed by a maximum, the stress overshoot, and finally a con-

stant stress corresponding to the steady state of flow (Fig. 5).

The stress overshoot was found to be related to the maximum

cage deformation before the cage breaks [19,20,58].

Moreover, the singe-particle dynamics reveal a transient

superdiffusive regime at deformations that are comparable to

those of the stress overshoot [12,19–22]. In particular at low

shear rates, shear inhomogeneities may be present [59,60].

For one-component samples, the overshoot occurs at

increasing strain cpeak and becomes less pronounced as the

shear rate _c or Peclet number Pe increase (Fig. 5). For the

same Pe, the two one-component systems show a similar

response, if the normalized stress r=ðkBT=hR3iÞ is consid-

ered [Fig. 6(b)]. The smaller particles show a slightly more

pronounced overshoot, which is attributed to their slightly

softer interactions and is consistent with the observations in

the flow curve and creep experiments (Figs. 1 and 3) and pre-

vious findings [38]. In contrast, a pronounced reduction of

the stress is observed at intermediate xs with the effect being

more pronounced for the smaller size ratio, d¼ 0.21 (Fig. 6).

This is consistent with the observations in the creep experi-

ments (Fig. 3) and the yield stress previously measured in

DSS [32]. It is attributed to the softening effect discussed

above (Sec. III B).

To quantify the dependence on the composition xs and

shear rate _c or Peclet number Pe, the strain at the overshoot,

cpeak, the magnitude of the overshoot, rpeak=rsteady � 1, and

the strain when steady-state flow is approximately reached,

csr
flow, are extracted from the measurements as a function of

composition xs and Pe (Fig. 7). The steady state of flow is

assumed to be reached when the stress becomes approxi-

mately constant, quantified by a condition for the logarithmic

time derivative of the stress d logðrÞ=d logðtÞ < 0:1. For both

size ratios d and all compositions xs, the strain at the overshoot

cpeak changes only little for Pe< 1. In this Peclet number

range, Brownian motion dominates over the influence of shear

and thus the shear-induced cage deformation is not important.

Therefore, the escape from cages is mainly due to Brownian

motion and cpeak is essentially independent of _c. For Pe> 1,

however, cpeak is found to increase. Under these conditions,

the particle motion is increasingly dominated by affine and

shear-induced diffusive motions, in agreement with previous

work [12,22,31] and analogous to the evolution in creep

experiments (Fig. 4). A similar dependence is observed for the

strain csr
flow and the corresponding time tsr

flow ¼ csr
flow= _c at which

the steady state of flow is approximately reached [Fig. 7(a)].

In this case, the data show a larger spread which we attribute

to the slow approach to the steady state and hence the not very

well defined transition to steady-state flow.

The magnitude of the stress overshoot, rpeak=rsteady � 1

[Fig. 7(c)], characterizes the ability to store and release

FIG. 5. Normalized stress r=ðkBT=hR3iÞ as a function of strain c measured

in step-rate experiments with shear rates corresponding to Peclet numbers

Pe¼ 0.032, 0.24, 0.64, 1.2, 2.4, and 4.7 (from bottom to top). Samples con-

tain only particles of radius RS1, i.e., xs ¼ 1:0.

FIG. 6. Normalized stress r=ðkBT=hR3iÞ as a function of strain c measured

in step-rate experiments with shear rates corresponding to (a) Peclet number

Pe¼ 0.24 for samples with size ratio d ¼ 0:21 and composition xs (as indi-

cated) and (b) Pe¼ 0.13–0.18 for d ¼ 0:38 and xs as indicated.
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stress. As a function of Pe, it shows a nonmonotonic behav-

ior with a maximum at intermediate Pe, whose position

depends on the specific sample. This is observed for samples

with d¼ 0.21 and intermediate compositions xs¼ 0.5 and

0.7, whereas for the other samples the stress overshoot at

small Pe is too small to be quantified unambiguously. This

nonmonotonic behavior, as in the creep experiments, has

been associated with the competition between the time-

scales of the structural relaxation of the caging species,

which dominates at small _c, and of shear, which dominates

at high _c [12,19, 31]. The maximum reflects the transition

between both regimes and hence depends on the balance

between the structural relaxation time and the imposed time

scale 1= _c. The structural relaxation time depends on the

composition xs. Hence the transition occurs at smaller Pe in

the glassy samples and at higher Pe in the fluid samples, i.e.,

intermediate xs. The nonmonotonic behavior is more pro-

nounced for d¼ 0.21. These trends are consistent with the

results of the creep experiments. It is related to the degree of

cage compressibility which similarly varies as a function of

xs and reflects the transition from a cage of large spheres to a

cage of small spheres [31]. For d¼ 0.38, the overshoot only

increases slightly with increasing xs [Fig. 7(c)]. This might

be related to the absence of a well-defined cage transition for

smaller size asymmetries.

D. Comparison of step-stress and step-rate
experiments

Now we contrast the findings obtained in the creep experi-

ments with those of the step-rate experiments. It was shown

that they both lead to very similar steady states of flow (Fig. 1).

However, they follow different paths to the steady state of flow.

To elucidate this, we compare the transient regimes.

Figure 8 shows two creep and two step-rate measurements

for the sample with d¼ 0.21 and xs¼ 0.7. In a creep experi-

ment, the steady flow is characterized by a linear increase of

the strain with time, i.e., a regime of constant shear rate. In

the two examples, the shear rates are _cðr ¼ 20 Pa)� 1.9 s�1

(condition I) and _cðr ¼ 30 Pa)� 10.4 s�1 (condition II) [Fig.

8(a)]. On the other hand, in the step-rate experiments similar

shear rates, _c ¼ 2:0 s�1 and _c ¼ 10:2 s� 1, are applied [Fig.

8(b)] and in the steady-state of flow r� 19 Pa and r� 30 Pa

are measured, which are similar to the stresses applied in the

creep experiments. Both shear protocols, stress- and strain-

controlled, lead to the fluidization of the glass and result in

comparable steady states of flow with very similar stresses

and strains (indicated in Fig. 1).

To compare the transient regimes, the data obtained fol-

lowing the two protocols are represented in a joint graph as

the product r _cðtÞ [Fig. 8(c)]. The data at long times indeed

show that the steady state of flow is the same for the creep

and step-rate experiments. In the transient regime, however,

the responses differ and hence the sample follows a different

path toward the steady state of flow under constant stress and

constant shear rate, respectively. For the step-rate experi-

ment, r _cðtÞ resembles rðcÞ since _c is constant and the strain

c ¼ _ct. Initially, it steeply increases with time and, beyond

the overshoot, decreases to a constant value. In the stress-

controlled (creep) case, however, the increase of r _c is more

gradual and hence steady flow is achieved later. While this

difference is observed in both cases, it is more pronounced

for the larger stress r¼ 30 Pa and strain _c ¼ 10:2 s� 1 (con-

dition II). Note that these differences cannot result from

thixotropic behavior, as for example observed in colloidal

gels [51]. Our samples do not show any relevant bifurcation

in the flow curves measured with increasing and decreasing

shear rates (Fig. 1). In addition, the absence of two-step

yielding in step rate experiments (Fig. 6), as well as previous

results obtained under oscillatory shear [32] seem to indicate

that attractive glasses or gels are not formed in the present

mixtures [61].

To quantify these differences, based on cc
flowðrÞ [Fig.

4(a)] and csr
flowð_cÞ [Fig. 7(a)] the time tflow ¼ cflow= _c required

to reach the steady state of flow in creep and step-rate experi-

ments, respectively, is considered as a function of r _c, which

allows for a direct comparison of the times tflow determined

following both protocols [Fig. 9(a)]. In this comparison, the

product r _c is based on the steady-state value _cðt!1Þ in

the case of creep experiment where a constant stress r is

applied and on the steady-state value rðc!1Þ in step-rate

experiments where a constant shear rate _c is applied. In creep

experiments, tflow is found to initially decrease but then to

increase again with r _c, as indicated by the bend formed by

the squares in Fig. 2(a). In step-rate experiments, however,

tflow monotonically decreases with increasing r _c. For small

r _c, tflow observed in step rate experiments are slightly

smaller than those observed in creep experiments, but in gen-

eral they show very similar behavior, namely, a decrease

with increasing r _c. This regime of decreasing tflow corre-

sponds to the approximately constant cc
flowðrÞ [Fig. 4(a)],

FIG. 7. (a) Strain when the steady state of flow is approximately reached,

csr
flow, (b) strain at the stress overshoot, cpeak, and (c) magnitude of the stress

overshoot, rpeak=rsteady � 1, as a function of Peclet number Pe for size ratio

d ¼ 0:21 and composition xs ¼ 0:1 (•), 0.3 (•), 0.5 (•), 0.7 (•), 0.9 (•),

1.0 (•) [31] and for d ¼ 0:38 and xs ¼ 0:25 ((), 0.5 (�), 0.75 (�), 1.0 (þ).
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indicating that in this regime the decrease of tflow is balanced

by the increase of the shear rate _c and hence the decrease of

the imposed time scale 1= _c. This suggests that this decrease

in tflow is an effect of the increasing shear rate _c. This shows

similarities with observations on yield stress fluids [62]. In

contrast, for large r _c the steady-state flow is reached consid-

erably later by application of a constant stress. This indicates

that, in this regime of r _c, application of a constant shear rate

leads to a steady state of flow and the fluidization of the

sample in a shorter time. As discussed above (Sec. III B),

this might be related to the dominance of shear-induced dif-

fusive and affine motions as well as deformations over

Brownian motion under these conditions.

In the transient regime, different characteristic times are

relevant; in step-rate experiments the time tpeak when the

stress overshoot appears, in creep experiments the time t1
when the transition from creep to superlinear behavior

occurs (and hence t1 is determined by kcreep¼ 1) and the

time tmax when the maximum slope of c(t) is observed (and

hence tmax is determined by the maximum of kcreep) [Fig.

9(b)]. For all compositions xs and protocols, the characteris-

tic times decrease with increasing r _c and, at large r _c,

become constant. Similar observations have been reported

for one-component hard-sphere glasses [14] and colloidal

gels [26,52]. Furthermore, for all compositions xs the charac-

teristic times of the step-rate experiments, tpeak, are shorter

than those of the creep experiments, t1 and tmax. This is anal-

ogous to the finding that tflow is slightly shorter in step-rate

experiments than in creep experiments. Thus, at comparable

values of r _c, in a colloidal glass yielding as well as flow is

achieved in a shorter time if a constant shear rate is applied

than if a constant stress is applied.

Next we consider the efficiency of the two protocols to

achieve yielding or to induce flow. The work per volume, W,

required to reach yielding or the steady state of flow is given

FIG. 8. (a) Strain c(t) (symbols) and corresponding shear rate _cðtÞ (a dotted

line) as a function of time t measured in creep experiments with stresses

r¼ 20 and 30 Pa. (b) Stress rðtÞ as a function of t measured in step-rate

experiments with shear rates _c ¼ 2:0 and 10.2 s� 1. (c) and (d) Data replotted

as r_c as a function of (c) time t and (d) strain c. The time tflow and strain

cflow that are required to reach steady-state flow are indicated by crosses

with the corresponding colors. Samples with a size ratio d ¼ 0:21 and com-

position xs ¼ 0:7.

FIG. 9. (a) Time required to reach steady-state flow, tflow, as a function of

the product of stress and strain rate, r _c, measured in step-rate (�) and creep

(() experiments. (b) Time at the stress overshoot, tpeak (�), measured in

step-rate experiments, and time where kcreep ¼ 1, t1 (�), and the time where

kcreep reaches its maximum, tmax (�), measured in creep experiments as a

function of r_c. The conditions shown in Fig. 8 are indicated. Samples with a

size ratio d ¼ 0:21 and different compositions xs (as indicated).
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by W ¼
Ð ty

0
r _cðtÞdt with ty ¼ tpeak, t1, tmax or tflow character-

izing the time required for yielding or reaching flow. It hence

depends on the time-dependent power density, r _cðtÞ, but

also the time required to achieve yielding or flow [Fig. 8(c)].

Since previous work associated the yielding and flow of

glasses to the deformation and breakdown of cages

[12,19–21] and the loss of long-lived nearest neighbors [63],

we interpret the work to reach yielding and flow as the work

needed to irreversibly rearrange and break the cage structure

in the glass.

To be able to compare creep and step-rate experiments, W
to reach flow [Fig. 10(a)] and yielding [Fig. 10(b)], respec-

tively, is shown as a function of r _c. Less work is required to

achieve yielding or flow if a step rate is applied. This corre-

sponds to the smaller characteristic times required in step-

rate experiments. Furthermore, W increases with increasing

r _c indicating that yielding and flow is most efficiently,

although slowly, achieved by applying a small stress or strain

rate. The increase is very moderate at small values of r _c.

This is attributed to the balance between the increase in the

applied stress or shear rate and the decrease in the time

needed to reach yielding or flow (Fig. 9). In addition, the

yield strain or stress typically increase slightly with the

applied stress or shear rate, which contributes to the increase

of the required work W. At large r _c, W becomes proportional

to r _c for all compositions xs with the limiting behavior

occurring already at smaller r _c for weaker glasses. In this

regime, fluidization is reached quickly (Fig. 9). This suggests

that, beyond a minimum stress or shear rate, flow is induced

almost instantaneously and cannot be achieved within a

shorter time while the required work still increases, about

linearly with r _c due to the about constant times required to

reach yielding and flow. In other words, if the applied stress

or shear rate is increased beyond a threshold, the time to

yield and reach flow does not significantly decrease any lon-

ger and therefore the amount of work increases due to the

increased rate of energy input. Hence the process becomes

less efficient without any significant gain in time. The abso-

lute scale of W, e.g., characterized by the limiting value of W
at small r _c, depends on the sample composition xs and

appears to follow the xs dependence of the shear modulus.

The different characteristic times and work observed in

the creep and strain-controlled experiments (Figs. 9 and 10)

can be related to the single-particle dynamics [24,31]. In a

creep experiment, the MSD of individual particles becomes

superdiffusive in the transient regime. At the same time, the

strain c(t) increases superlinearly [Fig. 2(a)]. Thus, the MSD

is proportional to the strain c(t) [24]. In a step-rate experi-

ment, the MSD also shows transient superdiffusive behavior,

about when the stress overshoot occurs [31]. However, due

to the constant shear rate, the strain c(t) increases only line-

arly with time. Hence the dynamics increases faster than the

strain c(t) and, therefore, requires less time than in a creep

experiment. This is consistent with the yielding and transi-

tion to flow which is observed to be reached within a shorter

time in step-rate experiments than in creep experiments.

Furthermore, it indicates that the enhanced dynamics are

responsible for yielding and flow.

IV. CONCLUSIONS

Using binary mixtures of hard-sphere-like particles, we

investigated the rheological response of concentrated fluids

and glasses that are characterized by different caging mecha-

nisms. In particular, we compare their responses to the appli-

cation of a step in stress and a step in shear rate,

respectively. While the steady state of flow is identical for

both protocols, the transient regimes are different. At compa-

rable values of r _c, yielding and flow is achieved within a

shorter time and requires less work if a step rate rather than a

step stress is applied. In both cases, larger applied fields, i.e.,

stresses or strain rates, require more work to achieve yielding

and flow but lead to yielding and flow within shorter times,

up to a sample-dependent limiting stress or strain rate.

Furthermore, the composition, i.e., the glass state and caging

mechanism, affects yielding in step-rate experiments [Fig.

7(c)] whereas it seems not in creep experiments (Fig. 4).

This might be due to the slower yielding process in creep

experiments in which the cage has been found to deform

intermittently rather than continuously [15]. This might con-

ceal the effects of the different caging mechanisms. The

more efficient yielding and transition to flow as well as the

FIG. 10. Work per volume, W, required to achieve (a) flow and (b) yielding,

respectively, as a function of the product of stress and strain rate, r _c, in the

stress- and strain-controlled experiments (as indicated, see text for details).

The conditions shown in Fig. 8 are indicated. Samples with a size ratio d ¼
0:21 and different compositions xs (as indicated).
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shorter times needed to achieve them in step-rate experi-

ments appears to be linked to the dynamics which also is

faster in step-rate experiments than under constant stress

[24,31]. This is consistent with the expectation that yielding

and flow are controlled by the dynamics.
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