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Abstract

We investigate the process of shear melting and resolidification of a colloidal glass, directly after loading (preyielding) and after a series of

consecutive strain sweeps (postyielding). The postyielding glass shows a significant softening compared with the preyielding glass, together

with the absence of history effects in successive shear melting protocols, indicating a reproducible process of fluidisation and resolidification

into a glass state unaffected by residual stresses. However, a significant hysteresis characterizes strain sweeps with increasing or decreasing

strain amplitude. The appearance of history and hysteresis effects coincides with the formation of a glass state, whereas it is not observed in

the liquid. We can describe the onset of shear melting over a broad range of volume fractions and frequencies using a recently developed

model which describes the yielding process in terms of loss of long-lived nearest neighbors. VC 2017 The Society of Rheology.
https://doi.org/10.1122/1.5009199

I. INTRODUCTION

Application of shear to a concentrated colloidal dispersion

typically induces flow. The flow properties have important

consequences for the processing of dispersions that are of

interest in applications, such as paints, foods, and drilling fluids

[1]. These properties depend not only on the characteristics of

the dispersion, such as the particle-particle interactions, shape,

surface properties, and size distribution, but also on the param-

eters of the applied shear field [2]. For the latter, continuous or

oscillatory shear might lead to different responses [3,4], as

well as application of strain or stress [4–8]. Moreover, the con-

trol parameters, such as the shear rate [9], oscillation frequency

[10], and applied stress [6,11], have important influence on the

flow behavior. Despite these studies, a comprehensive under-

standing of the influence of all these factors is yet to be

obtained.

Often, model systems are used to investigate general

properties of a class of materials. For colloids, a suitable

model system is a dispersion of hard-sphere like particles

[12]. At large particle volume fractions (/ � 0:58), these dis-

persions form a nonequilibrium amorphous solid-state, a

glass, due to the dynamical arrest induced by crowding

[13,14]. Under the application of a constant shear rate or

stress, the solid melts and flows [15–19]. Glass melting has

been explained in terms of the rearrangement of the cage

structure surrounding a particle [16,20], through nonaffine

particle motions and plastic events [21]. Cage rearrange-

ments have also been associated with negative stress correla-

tions by mode-coupling theory (MCT) [3,22].

The application of oscillatory shear at constant frequency

and with a sufficiently large strain or stress amplitude similarly

leads to structural yielding and flow [10,23–25], due to cage

breaking [17,23,25] and to the onset of irreversible particle

motions [10,26–28]. Shear melting due to cage breaking is also

observed in softer glasses [8,29–31], however accompanied to

significant qualitative differences in the detailed yielding

behavior [31]. Most of the studies on hard-sphere glasses dis-

cuss the initial yielding and transition to flow when, starting

from the state after loading (preyielding) or a reproducible state

after preshearing, the strain or stress amplitudes are progres-

sively increased (strain or stress sweep). Less is known about

structure reformation when, starting from the flowing state

achieved after yielding, the strain amplitude c is progressively

decreased down to the linear response regime. Due to the pres-

ence of unrelaxed stresses in the flowing glass [32,33], shear

history effects might lead to a different glass state when the

structure reforms (postyielding), with distinct mechanical prop-

erties compared with the preyielding solid [34]. Recent results

on model glasses indicate the presence of these shear history

effects and their connection to structural rearrangements [19].

However, the process of shear-melting and resolidification

of the postyielding glassy dispersion was not investigated in
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detail. In particular, the question arises whether the applica-

tion of a series of consecutive shear-melting and resolidifca-

tion processes to the postyielding glassy dispersion leads to

ever different glass states, associated with the presence of

residual stresses in the shear-molten solid. Alternatively,

repeated processes of shear-melting and resolidification might

lead to a well defined solid state with reproducible mechani-

cal properties. The ability of shear to induce structural

arrangements facilitating flow, and the presence of memory

effects, has been demonstrated by studies on non-Brownian

dispersions subjected to several cycles of deformation

[35–37]. It should be noted that for more monodisperse sam-

ples than the ones studied here, the application of repeated

cycles of oscillatory shear might lead to crystallization, as

already observed for similar dispersions of hard spheres and

colloid-polymer mixtures [38,39]. To investigate the effects

of repeated cycles of shear-melting and resolidification on the

glass state, we study the mechanical response of hard-sphere

glasses and concentrated hard-sphere fluids to several consec-

utive forward (increasing c) and backward (decreasing c)

dynamic strain sweeps (DSS). We show that in the glass the

postyielding solid, while presenting significant softening

compared with the preyielding solid, shows reproducible evo-

lution of the moduli during the shear-melting and resolidifica-

tion processes. However, a reproducible and significant

hysteresis is observed between the moduli measured in strain

sweeps during shear melting (increasing strain amplitude) or

resolidification (decreasing strain amplitude). Moreover, by

comparison with the fluid state, we demonstrate that the

appearance of the initial softening of the modulus and hystere-

sis in the postyielding glass are signatures of glass formation.

In order to demonstrate the qualitative differences

between the preyielding and the postyielding glass, and in

particular the existence of a glass state with reproducible

mechanical properties over several cycles of shear-melting

and resolidification, we present here the measurements of the

shear moduli in the first harmonic approximation. More

sophisticated analyses of large amplitude oscillatory shear

data, taking into account higher harmonic contributions,

exist [40–42]: While they could provide additional informa-

tion on the intracycle yielding, we expect that they would

not change the qualitative results provided in the first har-

monic approximation. We therefore postpone these analyses

to later studies.

In addition, we rationalize the onset of shear melting for a

broad range of colloid volume fractions and oscillations fre-

quencies, in terms of the loss of long-lived neighbors, as

recently proposed for the transition to flow of glasses under

the application of a constant shear rate [21].

II. MATERIALS AND METHODS

A. Samples

We investigated the dispersions of polymethylmethacrylate

(PMMA) particles sterically stabilized with poly-hydroxystea-

ric-acid (PHSA) of radius R¼ 150 nm and polydispersity of

about 12%, as determined by static and dynamic light scatter-

ing on a very dilute sample with /< 10�3. The particles were

suspended in a mixture of octadecene and bromonaphtalene to

minimize solvent evaporation. Due to the relatively small size

of the particles, gravity effects were found to be negligible

over the experimental measuring times. In this solvent mix-

ture, PMMA particles behave as nearly hard-spheres [12,31].

Samples at different volume fractions were obtained by dilut-

ing a sediment obtained by centrifugation, for which we esti-

mated a volume fraction of /¼ 0.66 according to simulation

results [43]. Then, the diluted samples were homogenized in a

rotating wheel for at least 1 day.

B. Rheology

Rheological measurements were performed using a

DHR3 stress-controlled rheometer (TA Instruments) with a

cone-plate geometry having a diameter of 50 mm and a cone

angle of 0.5�. A solvent trap was used to minimize solvent

evaporation. In order to avoid the occurrence of wall slip, the

geometries were spin-coated with a /¼ 0.35 dispersion of

larger (RB¼ 720 nm) PMMA spheres. The deposited layer of

particles was then sintered at T¼ 110 �C for 1 h [44]. For

each sample, several consecutive DSS were performed at dif-

ferent frequencies, alternating increasing (forward) and

decreasing (backward) strain amplitude c. The forward DSS

spanned a range of amplitudes 10�3� c� 10. Each back-

ward DSS was started from the maximum c achieved in the

previous forward test (c¼ 10), and c was reduced progres-

sively down to c¼ 10�3. Before a series of repeated DSS at

one frequency, a rejuvenation procedure was performed such

that each series started from a reproducible state of the sam-

ple. On the other hand, no rejuvenation was performed in

between the consecutive DSS tests of a series and all repeated

measurements were performed on the same sample loading.

The rejuvenation procedure consisted of a step rate test; that

is, the application of a step of constant shear rate _c ¼ 0:1 s�1

deformation until the steady state of flow was reached. After

that, we performed a dynamic time sweep (DTS) with

c¼ 0.01%–0.1% (depending on the sample) in the linear vis-

coelastic regime, extended until the elastic, G0, and viscous,

G00, moduli reached constant steady-state values.

C. Phenomenological model

The model we use in this manuscript describes the devia-

tion from the linear response regime and the onset of shear

melting in dense fluids and glasses. It has been described in

detail in the recent work [19,21]. We recall here the main

features and assumptions of the model. We remark also that

the model in its present state cannot provide insights into the

hysteresis and oscillatory steady state responses discussed

later in the manuscript.

1. Onset of yielding

In the model of shear-melting, the decrease in G0 with

increasing strain amplitude c is the result of shear-induced

loss of long-lived nearest neighbors. The long-lived neigh-

bors are only a fraction of the total number of nearest neigh-

bors that can be measured in a snapshot. A significant

number of the nearest neighbors is indeed continuously

changing due to fast and large oscillations induced by shear
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and therefore cannot provide a significant contribution to

stress transmission.

When shear is applied to a glassy dispersion of colloidal

particles, the long-lived nearest neighbors constituting

the cage of any tagged particle tend to leave the cage in

the extensional sectors, whereas almost no new long-lived

neighbors move in along the compression sectors as a result

of excluded volume [45–47]. This results in a negative bal-

ance of long-lived, mechanically active nearest-neighbors

which leads to a weakening of the stress-bearing structure of

the glass with increasing strain amplitude [48]. This effect

has been confirmed experimentally at the microscopic level

in recent work for a strain ramp in start-up shear [21]. In [21],

the number of long-lived nearest neighbors was experimen-

tally determined as a function of accumulated strain and used

to calculate the stress-strain response of the system. The loss

of long-lived nearest neighbors leads to increasing nonaffine

displacements until, at yielding, the effective number of near-

est neighbors is barely enough to sustain the nonaffine dis-

placements required to keep mechanical equilibrium [48].

This picture is also consistent with the “percolation” of plas-

tic events in the sample.

As previously shown [19,21], the affine part of the shear

modulus can be written as G0A ¼ ð1=5pÞðj/=RÞnðcÞ in the

linear regime. Here, n(c) is the number of long-lived nearest

neighbors. The elastic spring constant j is defined as

j ¼ ½d2Veff=dr2�r¼r, where Veff=kBT ¼ �lngðrÞ is the poten-

tial of man force between two bonded neighbors. The num-

ber of bonded neighbors can be obtained from the integral of

the first peak of g(r), which yields n0� 12 for the static hard-

sphere glass, as verified in [21]. As mentioned, under applied

shear, particles become crowded in the compression sector

of the shear plane, whereas particles become diluted in the

extension sector, where long-lived neighbors are lost.

The recent results show that the number of nearest neigh-

bors decreases exponentially with strain amplitude in large

amplitude oscillatory shear experiments [19], nðcÞ ¼ ðn0

�ncÞ expð�acÞ þ nc, or super-exponentially under the appli-

cation of a step to a constant shear rate [21]. To be consistent

with previous work on large amplitude oscillatory shear, we

choose here to use the exponential dependence on c. The

numerical factor a in the exponential decay is determined in

the fitting to experimental data. Since this parameter repre-

sents the extent of the shear-induced microscopic connectiv-

ity loss, its fitted values, as discussed below, may vary

depending on the shear protocol, the glass volume fraction,

and the frequency. The parameter nc is the critical number

nc¼ 6 of long-lived neighbors for central-force interactions

[48]. Once the system has become fluidlike, a finite nc¼ 6 is

expected due to the steady-state hydrodynamic flow and its

local structure [49]. This flow pushes the six neighbors in

compression direction toward the particle, and thus, they

remain for a long time.

As a result of the reduced connectivity, there are increas-

ing nonaffine contributions to the shear modulus, as shown

recently also in numerical simulations [50]. According to the

previous work [19,21], the nonaffine contribution to the

shear modulus is defined as G0NA in G0 ¼ G0A � G0NA and can

be written as G0NA ¼ ð1=5pÞðj/=RÞ nc. This value results

from the fact that while the affine part is proportional to the

total number of mechanical constraints n, the nonaffine part

is instead related to the relaxation of local forces that arise

due to the local lack of inversion symmetry in a disordered

solid. Hence, given its nature of relaxation process, the non-

affine contribution is proportional to the total number of

degrees of freedom, 3N. Upon factoring out common prefac-

tors, this leaves the well known scaling G� (n� 6), as

derived with full details in [48]. Combining the affine and

nonaffine contributions, we can therefore write the storage

modulus as

G0 ¼ G0A � G0NA ¼ K ðn0 � ncÞ expð�acÞ½ �: (1)

This expression, as already mentioned, can describe the ini-

tial deviation from linear behavior of G0ðcÞ, for c< cc¼ 1/a.

The prefactor K ¼ ð1=5pÞðj/=RÞ.

2. Large strain amplitude regime

The model detailed in Sec. II C 1 is able to describe the

initial regime of yielding of the solid, that is, the initial decay

from the linear response regime, which is also poorly

affected by anharmonic contributions to the shear moduli

[40–42]. In the transient regime for c� cc the system is not

completely fluidized and the dependence of G0 on c is not

described by the model. At large strains c� cc, the previous

work has shown that in the flow regime G0 and G00 follow a

power-law dependence on c which is a characteristic of shear

thinning [31,51,52]. We therefore analyze, in addition to the

initial yielding regime, the regime of large strain amplitudes

by fitting the data with an empirical power-law dependence

on strain amplitude c, G0 ¼ Bc� .

III. RESULTS AND DISCUSSION

A. Initial shear-melting

1. Experiments

We investigated the samples in a volume fraction range

0:53�/�0:62, going from a fluid state at the smallest / to a

solid amorphous state at the highest /. The first DSS tests of

a series (DSS 1) at x¼ 1 rad/s clearly show the transition

between a fluidlike response and a solidlike response (Fig. 1)

with increasing /: At /¼ 0.53, the loss modulus G00 is larger

than the storage modulus G0 for all c, as expected for a fluid,

and a power law dependence of the moduli close to that of a

Newtonian fluid; that is, G0 � c2 and G00 � c are observed at

large c. At /¼ 0.58, where the glass transition of slightly

polydisperse hard-spheres is expected [14], a solidlike

response is observed in the linear viscoelastic regime, with

G0 > G00, before the system yields at c� 0.2, as indicated by

the crossing of the storage and loss moduli and the maximum

of G00 [23]. This characteristic yield strain is associated with

the maximum elastic deformation of a cage [23]. The initial

rise of G00 from the linear regime value up to a maximum is

due to the rise of the viscous dissipative part of the response,

while the purely elastic part (G0) decreases due to nonaffin-

ity. The successive decrease after the peak can be interpreted
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as the consequence of the transition from the dominance of

viscous/dissipative response into a new regime where dissi-

pation is comparatively reduced due to shear-induced order-

ing manifested in a shear thinning regime, recently proposed

for continuous shearing [21]. The system starts then to flow

at larger c. Figure 2 shows the comparison between DSS

tests at different frequencies of the glass sample with

/¼ 0.62. The moduli increase in magnitude with increasing

frequency, as expected since we are observing the system at

increasingly shorter times where the response is increasingly

solid. Moreover, at x¼ 5 and 10 rad/s we observe two peaks

in G00: One small peak at strain amplitudes c� 0.1, which

corresponds to the cage rupturing process, and a more pro-

nounced peak at c� 0.4, which has been associated with the

occurrence of shear-induced collisions at high frequencies

[25]. Finally, we can notice that the departure from the linear

response regime appears to be approximately independent of

frequency. The inset of Fig. 2 shows comparable results of

the liquid sample with /¼ 0.53. Here, we note also that the

moduli approach each other at large frequencies in the linear

regime, indicating that the liquid responds almost as a solid

at short times. Furthermore, we observe that the departure

from the linear response regime here shifts to smaller c with

increasing x, which can be understood based on the competi-

tion between Brownian relaxation and the timescale of shear,

as will be discussed in more detail later. These responses are

in good agreement with the previous results on hard-sphere

repulsive glasses [19,23,51,52].

2. Phenomenological model

We present in Fig. 3 the exemplary fits of the initial decay

from the linear response regime of the storage moduli. The

regime of small strain amplitudes, up to the initial deviation

from the linear viscoelastic regime, which is quantified as

the strain amplitude at which the storage modulus has

decayed to 30% of the value in the linear response regime, is

fitted using the model of Eq. (1) (solid lines), with K and a as

free parameters. Note that the fit results would not change

significantly if the last point of the fitted range is moved to

the previous or next value of c. Moreover the changes would

only affect the absolute values of the parameters and not the

trends reported in Fig. 4. In addition, Fig. 3 shows power-

law fits of the final relaxation regime at large strains (dashed

lines), as discussed in Sec. II C 2.

a. Elastic constant. We report in Fig. 4(a) the elastic con-

stant j¼ 5pKR//, obtained from the fitted values of K, for all

values of the oscillation frequency and volume fraction /.

We can observe that j increases with increasing /, in agree-

ment with the stiffening of the dispersions when approaching

and entering the glass state. At fixed frequency, the values of

j are in good agreement with the recent results on a similar

system under continuous shearing [21]. It is interesting to

note the presence of two clear regimes in the / dependence

of j, separated by the value /¼ 0.57. The regime for

/< 0.57 shows a marked frequency dependence and a strong

/ dependence at small frequency, which becomes increas-

ingly less pronounced and very weak at the highest fre-

quency. On the other hand, for /> 0.57 the / dependence is

FIG. 1. Storage (G0, closed symbols) and loss (G00, open symbols) moduli as

a function of strain c, obtained by DSSs at frequency x¼ 1 rad/s for samples

with different volume fractions /, as indicated.

FIG. 2. Storage (G0, closed symbols) and loss (G00, open symbols) moduli as

a function of strain c, for /¼ 0.62, obtained by DSSs at different frequen-

cies, as indicated. Inset: Comparable data for /¼ 0.53.

FIG. 3. Exemplary model fits (red lines) of the storage (G0, closed symbols)

moduli of samples with different /, as indicated, as a function of strain

amplitude c, at x¼ 1 rad/s, obtained in the initial DSS measurements (DSS

1). Dashed blue lines represent power-law fits G0 � c� of the final relaxation

at large c.
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moderate and similar at all frequencies. This different behav-

ior in the two volume fraction regimes might depend on the

fact that for the liquid at /< 0.57, the timescale of Brownian

motion still competes with the timescale imposed by shear,

while for the glass, the timescale of Brownian motion

becomes extremely large and therefore the timescale of shear

dominates. Indeed, we can estimate the dressed oscillatory

Peclet number Pex¼xsR (/), with sR the structural relaxa-

tion time, which estimates the relative contribution of

Brownian and shear-induced relaxation; that is, Pex�1 indi-

cates that the structural relaxation is faster than the character-

istic timescale of shear and vice versa. We use data on the

volume fraction dependence of the long-time diffusion coeffi-

cient DL (/)¼ f(/)D0 from the work of van Megen et al. [53]

to estimate f(/), and thus, the structural relaxation time

sRð/Þ ¼ R2=DLð/Þ ¼ 6pgR3=f ð/ÞkBT. We obtain that

Pex� 0.9 for the liquid at /¼ 0.53 and x¼ 1 rad/s, but

becomes> 1 for bigger values of x. Increasing /, Pex

becomes > 1 also at the smallest frequency and in the glass

Pex� 1 for all frequencies.

b. Onset of yielding. In Fig. 4(b), we show the dependen-

ces on / and frequency of cc¼ 1/a, with a the exponent of

the exponential decay of the number of long-lived neighbors

in Eq. (1): cc can be interpreted as a measure of the onset of

anelasticity, or onset of the departure from the linear response

regime. At small frequencies, up to 1 rad/s, cc is found to

decrease with increasing / in the fluid state. This indicates

that the departure from the linear response regime occurs at

increasingly smaller strain amplitudes when approaching the

glass. This can be associated with the fact that in the fluid,

Brownian motion gives flexibility to the cage, which can

adapt to the deformation before breaking. With increasing /,

the dynamics become slower: The cage becomes more rigid

and can support less deformation before rearranging irrevers-

ibly. Subsequently, in the glass, cc remains approximately

constant up to about /¼ 0.60 and then eventually decreases

again. This approximately constant value can be associated

with the size of the cage of nearest neighbors. The second

decrease in cc can be associated with the approach to random

close packing: that is, the reduction in free volume in the sys-

tem with the consequence that lesser space is available for

rearrangements to sustain the deformation, and therefore, the

structure breaks at increasingly smaller c.

With increasing frequency, the flat region extends to

increasingly smaller /. When increasing x, the relaxation

time of the fluid becomes increasingly large compared with

the characteristic time of shear, as demonstrated earlier

through the estimated values of the dressed oscillatory Peclet

number Pex. Therefore, Brownian motion, which helps in

adapting the cage structure to the deformation before disrup-

tion, becomes increasingly irrelevant and the cage also in the

fluid appears frozen on the timescale of the oscillatory defor-

mation. Hence, in the limit of high frequencies the fluid

resembles the glass.

c. Final relaxation. We finally report the values of the

exponent � obtained by fitting the final relaxation of G0 with

a power-law dependence. As shown in Fig. 4(c), � presents

the values that are considerably smaller than 2, the value

expected for the generalized Maxwell model [51]. Values

considerably smaller than 2 for glasses have been observed

before in experiments, simulations, and theory [31,51,52]. At

the smallest frequency x¼ 0.1 rad/s, � presents a maximum

around /¼ 0.57. The origin of this maximum is not clear,

and the trend might be affected by the more pronounced

noise of the experimental data at x¼ 0.1 rad/s and the small-

est / values. For intermediate frequencies, x¼ 0.5 and

1 rad/s, the exponent is approximately constant. For the high-

est frequencies, � eventually slightly decreases with increas-

ing /. The origin of these trends is not clear at present.

B. Resolidification and successive melting of the
postyielding dispersion

For the same samples and oscillation frequencies dis-

cussed in Sec. III A, we compare the first DSS test (DSS 1)

with the two successive DSS tests (DSS 2 and DSS 3, Fig.

5). DSS 2 is performed immediately after the first, decreas-

ing c starting from the maximum value reached in the first

test. In DSS 3, the strain amplitude is increased again using

the same protocol as in DSS 1. For the fluid at /¼ 0.53, the

response in DSS 2 reproduces that of DSS 1 [Fig. 5(c)]. This

FIG. 4. (a) Elastic spring constant j, extracted from the prefactor K obtained

from fitting Eq. (1) to the experimental data, as a function of /, for different

frequencies, as indicated. (b) cc¼ 1/a, obtained from fitting Eq. (1) to the

initial experimental DSS measurements, as a function of /, for different fre-

quencies x [same as in (a)]. (c) Exponent � obtained from power-law fits

of the DSS data at large c for different frequencies [same as in (a)].

Uncertainties, when larger than symbol sizes, are indicated by error bars.
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is reasonable for a fluid state in which no history effects are

expected. For the sample with /¼ 0.58 we observe instead

that, while the viscoelastic moduli at large strain amplitudes

are again comparable with the first test, at small and particu-

larly intermediate strain amplitudes the moduli are smaller in

the second test. This effect becomes much more pronounced

for the highest /¼ 0.62, where in the linear regime a reduc-

tion of approximately 35% of G0 is observed. This finding

suggests that, in agreement with the recent results on similar

systems, in which structural changes were monitored under

shear [19,26], the first fluidisation of the sample induces irre-

versible structural rearrangements in the glass, which lead to

a reduction in the elastic modulus. This is also consistent

with the presence of residual stresses after the initial yielding

occurs [32,33].

The progressive growth of the difference between DSS 1

and 2 with increasing / is better visualized through the quan-

tity G0varðcÞ ¼ ½G01ðcÞ � G02ðcÞ�=G0lin1 , where G01ðcÞ and G02ðcÞ
are the strain-dependent storage moduli measured in the first

and second DSS, respectively, and G0lin1 is the value of the

storage modulus in the linear response regime from DSS 1.

As shown in Fig. 6(a), where G0varðcÞ is reported for all mea-

sured samples and x¼ 10 rad/s, this difference becomes sig-

nificant and grows fast for /> 0.57, that is, entering the

glass state. It is also interesting to observe that the difference

starts to be significant and grows for c�0:2, a value of the

strain amplitude that has been associated with the cage size

in hard-sphere colloidal glasses [23]. This supports our inter-

pretation of the difference as a result of structural rearrange-

ments occurring at the level of the cage of nearest neighbors.

The growth of the difference when entering the glass state is

observed at all measured frequencies and increases with

increasing frequency [Fig. 6(b)].

A similar, but less noisy behavior is observed for the dif-

ference between the values of the elastic constants obtained

by fitting DSS 1 and DSS 2 with the phenomenological

model of Eq. (1) [Fig. 7(a)]. This confirms that the reforma-

tion of a different state in resolidification after shear-melting

is a phenomenon related to the glass state, and that becomes

increasingly pronounced approaching random close packing.

From the model fits of DSS 1 and DSS 2, we additionally

evaluated the difference between the values of cc obtained in

tests 1 and 2 [Fig. 7(b)]. It apparently shows, within the noise,

that a maximum positive difference is observed in the vicinity

of the glass transition; that is, the yielding is observed at sig-

nificantly larger strain amplitudes in the shear-melting pro-

cess than in the structure reformation. The microscopic origin

of this behavior deserves future investigation.

We now consider the third DSS, which is measured

immediately after DSS 2 and for increasing c (Fig. 5). Again,

for the fluid sample with /¼ 0.53 the results reproduce those

of the previous tests. For the sample with /¼ 0.58, in the

linear regime the response is comparable to DSS 2, but starts

FIG. 5. Storage (G0, closed symbols) and loss (G00, open symbols) moduli at

x¼ 1 rad/s, for the initial DSS with increasing strain amplitude c (DSS 1,

filled circle), the second DSS with decreasing c (DSS 2, filled square), and

the third DSS with increasing c (DSS 3, filled triangle), for volume fractions

/: (a) 0.62, (b) 0.58, and (c) 0.53. No rejuvenation was performed in

between these measurements.

FIG. 6. (a) Relative variation of the storage modulus (G0var) with respect to

the first DSS, as a function of strain c, for x¼ 10 rad/s, and different volume

fractions /, as indicated. (b) G0var calculated for the smallest c in (a), as a

function of /, for different frequencies x, as indicated.
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to deviate at larger c, in the regime where the system yields,

approaching the response of DSS 1. At large strain ampli-

tudes c � 1, all responses overlap. This hysteresis between

the third and the second DSS tests becomes even more pro-

nounced for /¼ 0.62. The increase in hysteresis with increas-

ing / is more precisely quantified through G0hystðcÞ ¼ ½G03ðcÞ
�G02ðcÞ�=G0lin3 , where G03ðcÞ and G02ðcÞ are the strain-

dependent storage moduli measured in DSS 3 and DSS 2,

respectively, and G0lin3 is the average value of G03 in the linear

regime. As shown in Fig. 8(a), G0hystðcÞ shows significant hys-

teresis when approaching /¼ 0.58, similar to G0varðcÞ, and

becomes particularly large for the highest values of /, deep

in the glass state.

This trend is confirmed at all frequencies, as shown in Fig.

8(b), where the area under G0hystðcÞ; Ahyst ¼
Ð�1

�3
G0hystð10xÞdx

with x ¼ log c is plotted as a function of / for different fre-

quencies. It is interesting to note that the frequency depen-

dence of the hysteresis is apparently nonmonotonic, with

maximum hysteresis at the intermediate frequency x¼ 1 rad/

s. We finally report in Fig. 8(c) the strain chyst ¼ 10�x obtained

from the first moment of G0hystðcÞ; �x ¼
Ð�1

�3
xG0hystð10xÞdx=

Ahyst. The value chyst is used to estimate the strain at which

maximum hysteresis is observed, minimizing the noise that

would be present if using directly the location of the maxi-

mum of data shown in Fig. 8(a). In the glass state, chyst

clearly decreases at all frequencies. On the other hand, in the

fluid it decreases with / at small frequencies but increases at

large frequencies. The decrease in chyst might be associated

with the earlier onset of yielding at large volume fractions, as

also evidenced for cc in Fig. 4. The observation of yielding at

smaller strain amplitudes might be associated with the

approach to random-close packing and the reduction in the

available free volume for deformation.

We can qualitatively understand the hysteresis observed

at high /, in the glass state, as follows: In a DSS with

increasing strain amplitude (such as DSS 1 and 3 in a series),

the sample is initially in a solid state and the maximum

amplitude of deformation is progressively increased. The

cage opposes elastically the deformation until the strain

amplitude is sufficiently large to induce yielding and cage

breaking. For even larger strain amplitudes, the system starts

to flow, with the storage modulus rapidly decreasing with

FIG. 7. Difference in (a) Dj and (b) Dcc, between the j and cc parameters,

respectively, obtained in the fittings of DSS1 and DSS2, as a function of vol-

ume fraction / and for different oscillation frequencies (as indicated).

FIG. 8. (a) Relative difference in the shear modulus (G0hyst) measured with

increasing or decreasing c in the third and second DSS, respectively, as a

function of strain c, for x¼ 10 rad/s, and different volume fractions /, as

indicated. (b) Area Ahyst of G0hyst, and (c) the value chyst of c related to the

maximum hysteresis, as a function of /, for different frequencies x, as

indicated.
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increasing c. On the other hand, in a DSS with decreasing

strain amplitude (such as DSS 2 in a series), the system is ini-

tially in a fluid state and by decreasing c starts to reform a

solid state with G0 increasing with decreasing c. However, the

formation of the solid is partially contrasted at intermediate c
by the still undergoing structural disruption induced by the

oscillatory shearing. Thus, the increase in G0 with decreasing

c for the reforming solid in DSS 2 does not follow the result

of a DSS with increasing strain amplitude (DSS 3); it is rather

lower due to still ongoing structural disruption. This occurs

until the linear response regime is achieved, where the small

deformation does not lead to significant structural disruption

and the same G0 is measured for DSS 2 and 3.

The emergence of hysteresis in the glass state (and not in

the liquid) can also be interpreted from an energy landscape

perspective. In the liquid, all minima are shallow and of the

same (uniformly low) depth. Hence, over a shearing cycle the

system moves from a shallow minimum into another shallow

minimum of approximately the same depth, with no apprecia-

ble hysteresis. In the glass, instead, the system is initially in a

deep glassy minimum (meta-basin) which, in the energy land-

scape, is far apart from other deep minima of comparable

depth. In this case, shear melting brings the system out of the

meta-basin into a nearby minimum which cannot be as deep

as the original one. This is reflected in the average connectiv-

ity being lower in the new steady-state (shallower minimum).

Another manifestation of this scenario is the widely different

anelasticity for liquid and glass, as shown by our data.

Anelasticity measures the strength of the departure from the

linear response regime to the yielding and flow. For a solid

glass originally in a deep minimum, the anelasticity has to be

strong (and connectivity change has to be large) to go from

the stable initial system into the flowing state. For the liquid,

conversely, since the system is initially in a shallow mini-

mum, this change is much smaller.

C. A reproducible shear-induced glass state

We extended the repeated measurements of DSS beyond

the third test, alternating tests with increasing and decreasing

strain. For all samples, including all glass states, and all fre-

quencies, we find that the response of tests performed with

the same direction of strain variation is reproducible, and, for

the glass states, the hysteresis between the tests with opposite

direction of strain variation remains constant. Data for

/¼ 0.60 and x¼ 10 rad/s are shown in Fig. 9(a) as an exam-

ple. This is shown more quantitatively in Fig. 9(b), where the

area of G0hyst; Ahyst, is presented as a function of melting and

resolidification cycle for three samples in the glass state

(/¼ 0.58, 0.60, 0.62), at different frequencies. No significant

variations of Ahyst are observed for the three samples and for

the different frequencies in the different cycles (cycle 1: DSS

2 and DSS 3, cycle 2: DSS 4 and DSS 5, cycle 3: DSS 6 and

DSS 7). This indicates that, after a transient regime corre-

sponding to the first melting in DSS 1 and the successive

resolidification in DSS 2, in which residual stresses lead to

the reformation of a different glass, as shown in the analysis

of G0varðcÞ in Fig. 6, successive processes of shear-melting

and resolidification become reproducible and the same glass

state is obtained repeatedly after resolidification.

This result is surprising in view of recent studies which

show, under application of a constant shear rate or a constant

stress, that the flowing dispersion retains residual stresses,

which are dependent on the previous shear history and lead

to the reformation of a different glass state after the removal

of the shear field [32,33]. It suggests therefore that after the

initial yielding, which indeed leads to the reformation of a

different glass, as shown by the different moduli obtained in

DSS 1 an DSS 2 both in the linear and nonlinear regime, the

application of successive melting processes to the postyield-

ing glass apparently is not resulting in the storage of addi-

tional residual stresses. Since these residual stresses were

associated with remaining structural deformation in the mol-

ten glass [17,33], we can speculate that the consecutive melt-

ing processes do not induce any additional persistent

structural deformation. This process of training the flowing

system by shear is reminiscent of memory effects induced by

oscillatory shearing in non-Brownian suspensions, which

have been related to a shear-induced structural organization

of the particles under shear [35–37]. The existence of such

FIG. 9. (a) Storage (G0, closed symbols) and loss (G00, open symbols) moduli

as a function of strain amplitude c, for sample with /¼ 0.60 and x¼ 10 rad/

s, obtained for successive repeated DSS measurements, with the strain

amplitude c increasing (odd numbers in legend) or decreasing (even num-

bers in legend). No rejuvenation was performed in between these measure-

ments. (b) Ahyst as a function of cycle number, for glassy samples with

/¼ 0.58, 0.60, and 0.62, as indicated, and frequencies x¼ 0.5 rad/s (solid

lines), 5 rad/s (dashed lines), and 10 rad/s (dashed-dotted lines).
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shear-induced structural organization in these systems will

be the subject of future work.

It is also interesting to note that the reproducibility of the

mechanical properties of the glass formed after the initial

melting provides a simple and rapid way of rejuvenating a

glass [34].

IV. CONCLUSIONS

We analysed the process of shear-melting and resolidifi-

cation of hard-sphere colloidal glasses, in comparison with

concentrated fluids. In particular, we investigated the evolu-

tion of the first harmonic viscoelastic moduli G0 and G00 over

a series of consecutive strain sweeps with increasing and

decreasing amplitude, at several fixed frequencies. For fluids,

we do not observe significant changes in the response along

the series. Upon entering the glass instead, different effects

can be observed. The glass in its initial state after preshear-

ing, previous to any oscillatory deformation leading to yield-

ing (preyielding glass), can be distinguished from the glass

that reforms after the first yielding process (postyielding

glass). The latter presents a smaller storage modulus G0 in

the linear regime, which we can associate with irreversible

structural rearrangements of the cage during yielding, in

agreement with the recent results on silica dispersions [19]

and the previous results on continuous shearing [32,33]. The

postyielding solid shows a reproducible response over sev-

eral consecutive strain sweeps, with a reproducible linear

modulus, but also the presence of hysteresis effects: The

moduli measured with decreasing strain amplitude are

smaller at intermediate strain amplitudes than the corre-

sponding values measured with increasing strain amplitude.

We interpret this difference as the result of two distinct phys-

ical processes, in which in the strain sweep with increasing c
the cage is progressively deformed until it breaks, while in

the strain sweep with decreasing c the cage is rebuilt, but

under the disturbance of the oscillatory deformation which

reduces its resistance. The reproducible glass state obtained

after the initial yielding and resolidification suggests that,

after the initial yielding, successive shear-melting protocols

do not lead to the storage of additional residual stresses in

the material. These reproducible cycles of shear-melting and

resolidification are reminiscent of memory effects observed

in athermal systems [35–37], which lead to a steady struc-

tural arrangement of particles over several cycles of defor-

mation. These results indicate also an easy and rapid way of

rejuvenating a colloidal glass.

We describe the initial melting of the preyielding and

postyielding glass in terms of a recently proposed model

based on the loss of long-lived nearest neighbors [19,21].

The elastic constant extracted from the model shows a strong

frequency dependence in the fluid, and weak in the glass. We

associate this result with the fact that in the fluid there is a

competition between the timescales imposed by shear and

associated with Brownian relaxation, while in the glass shear

dominates due to the divergence of the timescale of

Brownian motion. The model allows to distinguish three

regimes of deformation for the cage during yielding: a

regime of cage flexibility in the fluid, in which the departure

from linear response associated with cage rearrangements

occurs at increasingly smaller strain amplitudes when

approaching the glass transition. This is interpreted in terms

of the loss of cage flexibility associated with the slowdown

of the dynamics. In the second regime, around the glass tran-

sition the cage size is constant and the departure from linear

response is independent of /. Finally, in the third regime,

where cage compaction occurs, due to the approach to ran-

dom close packing, the departure from linear response

decreases again with /, due to the decreasing free volume

available for deformation. The regime of cage flexibility dis-

appears at high frequencies, since at short timescales, com-

pared with the cage relaxation the fluid appears as a solid

glass.
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