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Near Infrared Spectroscopy technology for prediction of chemical composition of
natural fresh pastures
Silvia Parrini , Anna Acciaioli , Oreste Franci, Carolina Pugliese and Riccardo Bozzi

Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy

ABSTRACT
This study evaluates the potential of Fourier-Transform Near Infrared Spectroscopy (FT-NIRS) to estimate
the chemical composition of fresh natural pastures of Tuscany without previous drying and grinding.
Chemical composition of herbage samples is determined by applying usual chemistry. FT-NIRS
calibration and cross-validation were developed applying spectra pre-treatment and two statistical
models: partial least square regression and principal component regression. The results are evaluated
in terms of coefficients of determination (R2), root mean square error (RMSE) and residual prediction
deviation (RPD). Calibration results, using partial least square models, obtained a R2 in calibration
greater than 0.95 for dry matter and crude protein, intermediate values (>0.75) for the fibre fraction
and lower results for ash and crude fat (<0.75). The chemometric analysis shows lower results using
principal component regression than partial least square models, although dry matter and acid
detergent fibre obtained relatively high R2 in calibration (0.876 and 0.863, respectively). Cross-
validation achieved both lower R2 and higher errors than calibration. Despite the wide variability of the
data set, the results suggest that coupling FT-NIRS with partial least squares analysis allows us to
estimate some chemical parameters of natural pastures, while the use of principal component
regression models needs further evaluation.
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Introduction

Reliable assessment of the nutritive value of feed is a prerequi-
site for a qualitative and quantitative approach in animal nutri-
tion. Since its introduction, Near Infrared Reflectance
Spectroscopy (NIRS) has been recognized as tool in the determi-
nation of chemical composition of dried forages (Norris et al.
1976). Today, in many research areas there is an increasingly
utilization of NIRS as flexible technology to predict quantitative
and qualitative parameters of animal production (Prieto et al.
2009), other products of agriculture origin but also various
industrial, pharmaceutical and bioenergetic materials (Roberts
et al. 2003).

Unlike chemical analysis, NIRS is a non-destructive method,
requiring a small amount of sample and producing reduced
chemical waste (Park et al. 1998; Stuth et al. 2003); further-
more, this technology can provide a multiple evaluation of
constituents (Roberts et al. 2003). The method is based on
the absorption of wavelengths in the near-infrared electro-
magnetic region by certain molecular groups particularly
involving hydrogen bonds (Deaville and Flinn 2000) which
are the primary constituents of the organic compounds of
plant and animal tissues (Foley et al. 1998). The spectrum
obtained may act as a ‘fingerprinting’ (Woodcock et al.
2008) of sample and can be linked with its secondary charac-
teristics. A further advancement of NIRS technology is Fourier
Transformation (FT-NIRS) where there are improvements in

signal-to-noise ratio, in spectral resolution, in wavenumber
accuracy and a time-scan reduction (Shiroma and Rodri-
guez-Saona 2009; Dvořáček et al. 2012).

In all case, NIRS is an indirect method and chemometric
analysis is necessary in order to compare spectral results with
the samples of known composition (Shenk et al. 1992). A multi-
variate model, often involving a large number of regression pro-
cedures, is constructed by developing a regression equation
between spectral absorbance and the characteristic of interest
obtained in traditional laboratory analyses (Shenk and Wester-
haus 1991, 1993; Deaville and Flinn 2000; Roberts et al. 2003).

Nowadays, techniques of statistical learning are numerous,
varying from the most restrictive techniques such as the
regression models up to the more flexible approaches (e.g.
ANN, SVM, Random Forest and LS-SNV) which usually require
a long and laborious phase of tuning as well as a difficult associ-
ation between predictors and responses. Among the chemo-
metric methods the most commonly used in NIRS analysis is
partial least square (PLS), a multivariate regression method
spread for its simplicity, rapidity and good performance. This
statistical model extracts the information of the NIRS spectra
and reference data parameters and compress it in a set of
new independent latent variables (LVs) (Adams 1995; Kova-
lenko et al. 2006). Nevertheless, also other methods, such as
principal component regression (PCR), can be an effective
data mining technique that reduces the number of variables
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extracting information from NIR spectra and compresses into a
few principal components (PCs) (Park et al. 2003).

Among the various factors influencing the prediction
capacity of NIRS, an important role is covered by the molecular
vibration mechanisms of spectrum, the mathematical and stat-
istical procedures performed (Stuth et al. 2003) and the sub-
mission and preparation conditions of the sample (Prieto
et al. 2009).

In animal nutrition, NIRS has been successfully used to
predict the chemical composition and digestibility of dried
and milling hay, silage and feedstuff as provided by Roberts
et al. (2003) but, to our knowledge, only some publications
have studied the NIRS capacity to predict the parameters
related to pastures or complex botanical resources (Danieli
et al. 2004; Andrés et al. 2005; Lobos et al. 2013; Parrini et al.
2017). Even fewer are the studies about the use of fresh
samples and the effect of sample preparation. Alomar et al.
(2009) considered fresh herbage of Southern Chile pasture,
while Reddersen et al. (2013) studied the effect of sampling con-
ditions (standing sward, silage, hay/chopping and milling) on
the determination of nitrogen, ash and NDF on organic
matter basis (NDFom), on fresh grassland biomass. Further-
more, some research studies, aimed to predict the botanical
composition, had developed models to discriminate between
grass and one or more leguminous species, but not many
authors considered the strategies for grass mixtures (Cougnon
et al. 2013).

Evaluation of the nutritional characteristics of the fresh
product by FT-NIRS may allow a further reduction of cost and
time analysis and, in animal nutrition, it could be particularly
useful in mixed natural pastures that change their composition
over time. Nevertheless, fresh herbage due to the natural pres-
ence of water cannot be grounded by traditional mill and this
can affect the performance of NIRS calibration.

The aim of our research was the evaluation of FT-NIRS as an
easy and fast method for the assessment of the chemical com-
position of natural pasture herbage, considering fresh herbage
with a high water content, direct sample scans (large particle
size) and an ‘open population’ of herbage with mixed species
and applying two statistical models that use PLS regression
and PCR.

Materials and methods

Forage samples set

This study was carried out on 100 real samples collected in the
period 2013–2014 from March to November, spanning over the
full vegetative period of the natural and naturalized pastures.
The samples were harvested in hilly and mountainous areas
of Tuscany where pastures were dedicated to animal grazing
or having the potential to be grazed. As described in Parrini
et al. (2017), samples are obtained by an area of 1 m2 represen-
tative of pastures. Each sample was composed of a different
number of species and the proportion of each species in col-
lected samples was highly variable. Predominant herbage
species were as follows: Avena fatua L, Capsella bursa pastoris
L, Dactylis glomerata L, Festuca ovina L, Festuca pratensis H,
Holcus lanatus L, Lolium perenne L, Poa pratensis L, Poa

annua L, Trifolium pratense L, Trifolium repens L, Ranunculus
bulbosus L, Taraxacum officinale GH Weber ex Wiggers.

Sample preparation, FT-NIR spectral acquisition and
chemical analysis

Fresh sample was cut to 2–4 cm with hand shears and mixed by
hand. For each sample, three aliquots (randomly subsampled)
were exposed, by a cup spinner, to an electro-magnetic scan
in the absorbance mode using a FT-NIRS Antaris II model
(Thermo Scientific). For each aliquot, spectral measurement
was obtained from 32 scans performed at a wavenumber resol-
ution of 4 cm−1 over the range of 4000–9999 cm−1 and cor-
rected against the background spectrum of room environment
which was performed routinely. The average spectrum of three
measurements (Figure 1) was used as the final spectrum of
each sample to assess the potential of prediction FT-NIRS.

After spectra collection, each sample was dried in a forced air
oven at 60 °C to constant weight, then was grounded through a
mill (Brabender OHG, Duisburg) to pass 1 mm and analysed for
the main chemical components.

The chemical analysis was performed according to AOAC
(2012) protocol: dry matter (DM) content using the 934.01
method, crude protein (CP) by the 976.05 method, ash via the
942.05 procedure, ether extract (EE) using the 2003.05
method, acid detergent fibre inclusive of residual ash (ADF),
and Lignin (sa) using the 973.18 method. Neutral detergent
fibre, inclusive of residual ash (NDF), has been determined
according to the procedure described by Van Soest et al. (1991).

NIRS calibration

Calibration and validation models were obtained, correlating
FT-NIRS pre-processed spectral data with results from the wet
chemistry. Mathematical pre-treatment to spectra and outliers
evaluation was performed using the chemometrical software
Result-TQ Analyst 8.6.12 (Thermo Fisher Scientific 2011). Multi-
plicative scatter correction (MSC) was applied to all spectrum,
in order to eliminate optical interference (Martens et al. 1983),
as well as physical effects like particle size and surface blaze
at spectra wavenumber (Maleki et al. 2007). Moreover, a set of
outliers spectra was identified considering a confidence limit
of 5% and removed when necessary.

Finally, some mathematical spectra pre-treatments were
used in order to optimize the extraction of useful information
from the spectra. Each calibration model was optimized apply-
ing the first-order derivative, data normalization and correction
for constant error, choosing the combination that provided the
best result in terms of coefficient of determination.

Chemometrics were applied using two different linear
methods of data analysis: PLS regression and PCR, both devel-
oped using the software TQ Analyst 8.6.12 (Thermo Fisher
Scientific 2011). For each chemical constituent, an individual
model was developed and the number of PLS factors or PCs
retained was the one with the lowest error in cross-validation,
considering the results of the PRESS (predicted residual error
sum square). The two approaches considered the same set of
samples and mathematical pre-treatments.
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To test the robustness of the PCR and PLS models, both PLS
regression and PCR were fully cross-validated using the ‘leave-
one-out’ method, where a single sample is removed from the
model and the model rebuilt without the sample.

The best calibration equation between chemical references
value and FT-NIRS data was evaluated based on the highest
coefficient of determination and smallest root mean square
error (RMSE) in calibration (R2c-RMSEC) and in cross-validation
(R2cv-RMSECV), respectively. RMSE, which suggests information
about the adjustment of the model to the calibration data, was
calculated considering the number of samples, the results of
the reference analysis and the estimated results by theNIRmodel.

Goodness and accuracy of models were tested using the
residual prediction deviation (RPD) calculated, according to Wil-
liams and Sobering (1995), as the ratio of the standard deviation
of reference values to the root mean square error in calibration
(RMSEC) and in cross-validation (RMSECV).

Results

The range, the mean and the standard deviation of samples
used in calibration and cross-validation models, valued in
their chemical entities (DM, CP, Ash, EE, NDF, ADF and Lignin-

sa) by the traditional analysis, are summarized in Table 1.
Values showed a high variability in chemical parameters of
the forage sampled, which reflected not only the large
number of herbaceous species among pastures but also the
response in tissue ageing due to the differences in the pheno-
logical stage of samples.

A preliminary chemometric analysis conducted on the main
wavenumber associated with organic compounds (O–H, C–H
overtone, stretch and their combination) did not show a
remarkable difference with respect to the analysis that con-
sidered the full wavelength of NIRS spectra. Hence, this study
only shows the results using the full NIRS spectra.

The results of the best calibrations and the different math-
ematical treatments, obtained by the FT-NIRS analysis for
each parameter using PLS model regressions, are shown in
Table 2. The best models in the set of fresh samples analysed
were reported for DM and CP, intermediate calibrations were
obtained for the fibrous fraction (NDF, ADF, Lignin-sa), while
the lower results were shown by ash and crude fat. Excluding
these last parameters, the Rc

2 values in calibration were always
higher than 0.78; in the cross-validation model, R2cv were
higher than 0.85 and RMSECV was included between 0.2 and
4. The relation between RMSECV and R2cv and the numbers of
PLS factors for DM, CP and NDF are represented in Figure 2.
The two statistics showed a decreasing or increasing trend up
to 4–5 PLS factors with no substantial changes after this
point. This trend has been shown by all parameters considered.

RPD for PLS models in calibration shows values higher than 3
for dry matter and crude protein, followed by ADF, while values
around 2 are obtained for the other parameters excluding lipids.
In cross-validation, RPDcv values were always lower with results
between 2.2 and 2.7 for CP, ADF and DM, between 1.5 and 1.8
for NDF, Lignin (sa) and Ash; while only 1.2 for crude fat.

Figure 1. Original spectra of fresh herbage forage from a part of pasture.

Table 1. Descriptive statistics of chemical composition of samples.

Parameter n = 100 Mean Minimum Maximum SD

Dry matter (g/kg fresh weight) 226.7 111.4 430.3 74.2
Crude protein (g/kg dry matter) 166.5 73.6 267.1 47.4
Ash (g/kg dry matter) 101.8 33.9 143.2 19.5
Ether extract (g/kg dry matter) 22.9 17.3 28.4 3.3
NDF (g/kg dry matter) 505.2 358.2 658.3 71.7
ADF (g/kg dry matter) 325.8 213.4 488.4 61.6
Lignin (sa) (g/kg dry matter) 62.8 17.2 138.3 29.4

NDF – neutral detergent fibre; ADF – acid detergent fibre; SD – standard deviation.
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The total variance explained by the PCs used in the models is
reported in Table 2 ranging from 94.4% to 99.9%. Furthermore,
for all the parameters considered, the fraction of the variance
explained by each factor is reported in supplementary Table
1. A limited number of PCs (from 3 to 7) are needed to fully
explain the variability of the trait.

The performance of PCR is given in Table 3. This chemometric
analysis shows lower results with respect to PLS models, never-
theless DM and ADF obtained relatively high R2c in calibration
(0.876 and 0.863, respectively). Cross-validation presented
lower R2cv compared to PLS, except for ash and crude fat.
RMSEC of PCR models in calibration is similar to PLS regressions,

Table 2. Summary statistics for the PLS calibration and cross-validation models.

Parameter FPLS %variance explained by PC

Calibration Cross-Validation

Math tr.R2 c RMSEC RPDc R2cv RMSECV RPDcv
Dry matter 7 99.972 0.961 1.77 4.19 0.870 2.70 2.75 1; 2; 3; 4
Crude protein 5 96.434 0.951 1.23 3.85 0.882 2.14 2.26 1; 2; 3; 4
Ash 6 99.968 0.734 0.91 2.12 0.641 1.05 1.87 1; 4
Ether Extract 3 99.659 0.543 0.26 1.27 0.452 0.28 1.18 1; 3; 4
NDF 4 94.461 0.840 3.49 1.76 0.762 4.00 1.54 1; 2; 3; 4
ADF 3 99.753 0.845 2.60 2.76 0.823 2.79 2.57 1; 4
Lignin (sa) 6 99.971 0.788 1.63 1.81 0.729 1.83 1.61 1; 3; 4

FPLS – number of PLS factors; R2c – coefficient of determination in calibration; PC – principal component; RMSEC – root mean square error of calibration; RPDc – residual
prediction deviation of calibration; R2cv – coefficient of determination in cross-validation; RMSECV – root mean square error of cross-validation; RPDcv – residual pre-
diction deviation of cross-validation; Math tr. – Math treatment: 1. multiplicative scatter correction, 2. first derivative, 3. data normalization, 4. correction for constant
error.

Figure 2. Relation between RMSECV and R2cv, and PLS factors. RMSECV – root mean square error in cross-validation; R2cv – coefficient of determination in cross-validation of
crude protein; DM RMSECV – root mean square error in cross-validation of dry matter; CP RMSECV – root mean square error in cross-validation of crude protein; NDF
RMSECV – root mean square error in cross-validation of neutral detergent fibre; DM R-square – coefficient of determination of dry matter; CP R-square – coefficient of
determination of crude protein; NDF R-square – of neutral detergent fibre.

Table 3. Summary statistics for the PCR calibration and cross-validation models.

Parameter PC

Calibration Cross-Validation Math tr.
R2c RMSEC RPDc R2cv RMSECV RPDcv

Dry matter 10 0.876 3.25 2.28 0.826 3.80 1.95 1; 2; 3; 4
Crude protein 8 0.737 3.05 1.55 0.663 3.39 1.40 1; 2; 3; 4
Ash 10 0.716 0.94 2.07 0.619 1.10 1.77 1; 4
Ether extract 10 0.575 0.25 1.32 0.310 0.28 1.18 1; 3; 4
NDF 10 0.820 3.68 1.67 0.726 4.40 1.40 1; 2; 3; 4
ADF 7 0.863 2.49 2.88 0.811 2.88 2.49 1; 4
Lignin (sa) 10 0.783 1.65 1.78 0.708 1.89 1.56 1; 3; 4

PC – principal components; R2c – coefficient of determination in calibration; RMSEC – root mean square error of calibration; RPDc – residual prediction deviation of cali-
bration; R2cv – coefficient of determination in cross-validation; RMSECV – root mean square error of cross-validation; RPDcv – residual prediction deviation of cross-
validation; Math tr. – Math treatment: 1. multiplicative scatter correction, 2. first derivative; 3. data normalization, 4. correction for constant error.
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except for DM and CP with error values higher than 3 and a
similar trend was observed in cross-validation always with
higher errors for DM and CP. Using PCR, RPD results were
always lower than PLS performance, indicating that this model
can contain less clear information of parameters considered.

Discussion

The high variability observed in the chemical composition of
samples is desirable not only to develop NIRS calibration
models in order to have a wide representation of the population
but also to assess the applicability of the model in future predic-
tion of pasture. According to Fekadu et al. (2010), the best per-
formance in calibration equations corresponded to those traits
for which the range of variability in the data set was wider, indi-
cating that successful estimation using NIRS depends on the
variability of constituents under investigation. Nevertheless,
the number and consequently the size of sample of multiple
natural pasture can provide less precise NIRS information than
calibration of classical narrow and closed population (Vance
et al. 2016).

Pearson correlation coefficients between data and wave-
length were higher using PLS than PCR for almost all the par-
ameters considered. PLS also required a smaller number of
components, probably because PLS establishes a supervised
dimensionality reduction through a joint covariance structure
between the response and the explanatory variables Abdi
(2010). On the contrary, the PCR is a two-step approach:
firstly, PCA on X is applied for dimensionality reduction and to
resolve potential multicollinearity problems in X. At this step,
PCA is simply describing variability in X. Then, PCs are selected
as independent variables in regression for predicting a response
variable. The question is which PCs to select and in which order.
For instance, it has been shown that although the first PCs
might capture a significant proportion of the variance in X, as
predictors in a PCR model they might be less important than
the last PCs (Hadi and Ling 1998). Thus, PCR might be under-
powered compared to other regression models, e.g. PLS. The
effect of various methods for extracting and selecting PCs in
PCR for predicting genomic breeding values in cattle has
been investigated by Dadousis et al. (2014).

According to Lobos et al. (2013), PLS model seems to have
more capacity to estimate chemical composition models for
mixed herbage, despite some authors (Danieli et al. 2004)
suggested that other chemometric regressions as Multiple
Linear Regression (MLR) better fit chemical data.

FT-NIRS prediction capacity, using fresh samples, was lower
than the prediction capacity using pre-dried samples (Danieli
et al. 2004; Andrés et al. 2005). Applying NIRS on dried
grounded herbage of Tuscany, Parrini et al. (2017) obtained
values of R2c, R

2
cv and RPD always higher than those reported

in the present study working on fresh matter. This result
could be linked to the presence of water and to the large par-
ticle size of sample preparation. In fact, the spectrum and
reliability of NIRS prediction can be complicated by a multitude
of factors (Prieto et al. 2009). In particular, the high content of
water in fresh sample could cause non-linear responses due
to the strong absorption signals in the NIR spectra (Reeves
1994; Williams 2001). Furthermore, fresh samples cut by hand

shears and mixed by hand were less homogeneous than
dried and grounded samples; this less homogeneity could
influence the calibration process and it is able to reduce the
accuracy of estimation (Prieto et al. 2009; Reddersen et al. 2013).

Dry matter estimation, connected to the strong –OH absorp-
tion in NIRS spectra, showed a coefficient of determination
higher than 0.87 in every model considered. More accuracy
and relatively lower errors were shown in PLS than PCR both
in calibration (1.77 vs 3.25) and in validation (2.7 vs 3.8).
Alomar et al. (2009) in samples of Chile pastures obtained
better cross-validation models on cut fresh sample using a
reflectance technique than using an interactance reflectance
mode. Nevertheless, the range of moisture values in our
samples was higher than those analysed by Alomar et al.
(2009) in which dry matter content was in the range of 92.10–
359.80 g/kg.

Crude Protein estimation, linked to the N–H adsorption
(Roberts et al. 2003), showed a coefficient of determination
of 0.95 and 0.88 in calibration and cross-validation, respect-
ively, using PLS models. Our RMSE of calibration was relatively
higher compared to those reported by Fekadu et al. (2010),
Andrés et al. (2005) and Parrini et al. (2017) who analysed
dried herbage of pastures located in Ethiopia (0.92), Spain
(1.02) and Italy (1.21) but lower than the RMSE reported by
Danieli et al. (2004) (Italy; 4.91). In comparison with the R2c in
calibration here shown, Alomar et al. (2009), using Modified
PLS on fresh herbage, obtained a higher value (+0.05) employ-
ing cross-validation and reflectance mode but a lower value
using cross-validation and interactance mode. Estimation of
CP using the PCR method was always less accurate, with R2c
and R2cv included between 0.73 and 0.64 in calibration and
cross-validation, respectively, and RMSE higher than those
obtained with PLS.

Acid Detergent Fibre showed the better coefficient of deter-
mination among the fibrous fractions irrespective of regression
models used, in line with other research studies. Also, Alomar
et al. (2009), working on fresh herbage samples, showed
better results for ADF than NDF with values of R2cv of 0.90 and
0.80 using a reflectance mode and 0.66 and 0.63 with interac-
tance reflectance mode, respectively. Reddersen et al. (2013)
working on fresh standing sward and using a distance field
spectroscopy, obtained lower results of NDFom than our
results. After all, NDF is a component which represents many
constituents of grass cell (structural carbohydrates and Lignin-
sa) and there is not a direct connection between NIRS spectrum
and constituent (Stuth et al. 2003).

Lignin (sa), not considered in other studies on fresh herbage
of pasture, showed the lowest R2 among the fibrous fractions.
Nevertheless, on dried samples of mixed pasture Danieli et al.
(2004), Andrés et al. (2005) and Fekadu et al. (2010) reported
lower and similar results for this constituent and attributed
the non-satisfactory results to the negative influence of chemi-
cal methods used as the reference method. In particular,
Roberts et al. (2003) attributed modest calibration results and
a high error at the digestible Lignin (sa) procedure. Neverthe-
less, considering that Parrini et al. (2017) on dried samples
showed higher result for acid detergent Lignin (sa) the lowest
accuracies of our work could be attributed to the water interfer-
ence of the samples.
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Ash and much more lipids cannot be confidently predicted
by this sample scanning NIRS. Ash showed a R2c and R2cv below
average of other parameters both in calibration and in cross-
validation. The limited results for ash can relate to the
absence of energy absorption in the near-infrared region of
the inorganic substances as the minerals. Nevertheless, in
some cases, this estimation has been possible probably due
to the correlation of organic compounds with water that use
a large number of wavelengths and so it is able to give signifi-
cant information to the prediction models.

Furthermore, even if we do not have results for single
mineral components, considering that potassium is the major
component of grass ash and that it is almost present as
aqueous ions, our ash results could be spuriously associated
with the water content also present in this specific spectra
region.

In any case, PLS regression performed slightly better than
PCR. Our results in cross-validation models were similar to the
study of Reddersen et al. (2013) on stand fresh swards, while
were lower than the dried samples of Parrini et al. (2017).

The calibration of lipids should be possible due to the
characteristic aliphatic –CH adsorption. In this study, the R2c
was lower of 0.6, but the errors were not high (0.25–0.28). PLS
models obtained similar results in calibration but better per-
formance in cross-validation than PCR. Nevertheless, lipid pre-
diction in grass samples is considered uncommon due to low
tissue concentration and the narrow ranges in forage plants
(Roberts et al. 2003; Stuth et al. 2003). Roberts et al. (2003)
reported that the calibration of lipids in different samples of
dried forage always showed lower result, whereas Stuth et al.
(2003) suggested mixed results in the forage measures due to
low variance linked to small concentration. Furthermore, as
reported by Restaino et al. (2009) a narrow range in compo-
sition and a large error estimation compared to lower variability
in composition do not allow us to obtain stable NIRS calibration.

RPD represents the ratio between the standard deviation of
reference data and the RMSE and it was often used as a measure
of the fitness in order to determine the applicability of the
model. In the literature, there are many classifications of RPD
value referred to NIRS methods and substrates. Williams
(2001) suggests a value of RPD > 2.4 to evaluate the model
goodness, while Williams and Sobering (1995) indicate that
the value of 3 or more is recommended. Our result of RPD
showed in PLS regression values larger than 3 for DM, CP and
ADF in calibration demonstrating that the calibration model
well performed the reference data. In cross-validation, RPD
results might be considered adequate for DM and ADF, inter-
mediate for CP, NDF and Lignin (sa), whereas the estimation
of the other parameters is not suitable for practical use.
Overall, our analysis suggests the use of, FT-NIRS in PLS for
the prediction of some chemical components of fresh
herbage; despite for other constituent model needs of further
study. These differences suggest that the calibration models
might be sensitive to the range of sample used, thus a
specific range of reference values and different landscapes
and sample preparations should be evaluated in order to
verify the robustness of the NIRS models.

The variance explained by the PCs used in the models
suggests that the first two PC explain 98% of the variability,

except for NDF and protein. Further study can be applied in
order to assess the utilization of models explained by a
limited number of components, but that equally represent
the full variability.

On the contrary, PCR, with its always lower RPD values,
cannot be confidently used for the estimation of fresh
herbage components of natural pasture. According to Lovett
et al. (2005), these results suggest that the regression model
employed has a fundamental role in the accuracy of NIRS
calibration.

Conclusion

The results obtained in this work showed the potential of FT-
NIRS technology to estimate the chemical composition of bota-
nically complex as fresh herbages of natural pasture, particularly
for DM, CP and ADF contents. However, in cross-validation RPD
values suggest that only some parameters are barely suitable
for the application use, while a differentiation of low and high
values may be possible for other components, but results are
not acceptable for lipids. The use of FT-NIRS on samples of
fresh grasses performed better using PLS than PCR; however,
the calibration results leave room for further evaluation that
will consider a higher number of samples, but also different
pasture areas.

The power of NIR spectroscopy is certainly complicated by
the inherent increase in variability that is associated with
natural pasture: calibration and validation become more chal-
lenging when environmental variation is high. However, the
variation is itself the attribute of interest and in the agro-
system that considering plants and animals those factors and
their interaction do not allow to standardize the sample collec-
tion. Finally, implementation of FT-NIRS on diversified grassland
population could lead to many advantages in animal nutrition,
even more if fresh samples are considered.
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