Insights into the biogeography and global diversity of

Phytophthora. Thomas Jung^{1,2}, Ivan Milenkovic¹, Tamara Corcobado¹, Michal Tomšovský¹, Josef Janousek¹, Matej Panek¹, Henrieta Ďatková¹, Yilmaz Balci³, Bruno Scanu⁴, Clive M. Brasier⁵, Joan F. Webber⁵, Ana Pérez-Sierra⁵, József Bakonyi⁶, Diána Seress⁶, Alvaro Durán⁷, Marthin Tarigan⁷, Leonardo Oliveira⁷, Eugenio Sanfuentes von Stowasser⁸, Gaetano Magnano di San Lio⁹, Leonardo Schena⁹, Saveria Mosca⁹, Pham Quang Thu¹⁰, Chi Nguyen Minh¹⁰, Cristiana Maia¹¹, Aschwin Engelen¹¹, Giuseppe Carella¹², Salvatore Moricca¹², Santa Olga Cacciola¹³, Antonella Pane¹³, Federico La Spada¹³, Koji Kagayama¹⁴, Ayaka Hieno¹⁴, Hayato Masuya¹⁵, Seiji Uematsu¹⁶, Venche Talgø¹⁷, Miguel Redondo¹⁸, Jonas Oliva¹⁸, Alfredo Cravador¹⁹, Tun-Tschu Chang²⁰, C.H. Fu²⁰, Marília Horta Jung^{1,2}

- ¹Phytophthora Research Centre, Mendel University in Brno, 613 00 Brno, Czech Republic
- ²Phytophthora Research and Consultancy, 83131 Nußdorf, Germany
- ³Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- ⁴Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia (SPaVE), Università degli Studi di Sassari, 07100 Sassari, Italy
- ⁵Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, United Kingdom
- ⁶Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary
- ⁷AAA R&D, PT. Riau Andalan Pulp and Paper, Pangkalan Kerinci, Pelalawan, Riau 28000, Indonesia
- ⁸Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- ⁹Dipartimento di Gestione dei Sistemi Agrari e Forestali, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
- ¹⁰Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Northern Tu Liem District, Hanoi, Vietnam
- ¹¹Center of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- ¹²Department of Agri-Food Production and Environmental Sciences, Plant Pathology and Entomology Division, University of Florence, Piazzale delle Cascine, 28, 50144 Florence, Italy
- ¹³Department of Agriculture, Food and Environment (Di3A), University of Catania, via S. Sofia 100, 95123 Catania, Italy
- ¹⁴River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan 15FFPRI, Japan
- ¹⁵Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
- ¹⁶University of Tokyo, Japan
- ¹⁷Plant Health and Plant Protection Division, Bioforsk Norwegian Institute for Agricultural and Environmental Research, 1430 _As, Norway

Between 2013 and 2019, within the frame of several projects aiming at unravelling global diversity and biogeography of the genus *Phytophthora*, surveys were performed in natural ecosystems of Japan. Taiwan, Vietnam. Indonesia (Borneo, Java, Sulavesi and Sumatra), Chile, Nicaragua, Panama, Curação, Egypt and eight countries in Europe. In total 320 forest sites, 410 forest streams, 9 mangrove forests, 6 lagoons and 5 other marine sites were sampled. Baiting assays and direct plating of necrotic plant tissues were used for isolating *Phytophthora* species from forest streams, forest soils and woody plants. Isolates were identified using both classical identification and sequence analysis of ITS, cox1 and, if necessary, further gene regions. Overall, 13242 isolates were obtained which could be assigned to 65 known and 101 previously unknown species of *Phytophthora* belonging to 11 of the 12 known phylogenetic clades. In addition, an array of interspecific hybrids from Phytophthora Clades 6 and 8, 3 known and 24 novel Halophytophthora species and 9 species from the novel genus Nothophytophthora have been isolated. These surveys contributed to pin down the origin of several invasive aggressive *Phytophthora* pathogens, including *P. cinnamomi*, *P. ×cambivora*, P. lateralis, P. ramorum and the P. citricola complex. Together with records from previous Phytophthora surveys conducted by the authors and other researchers in natural ecosystems of Australia, Africa, Europe, the Americas and Asia, population genetic studies, and pathogenicity data this study provides insights into the global diversity and biogeography of the different clades and subclades of *Phytophthora* which will be discussed.

¹⁸Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, PO Box 7026, 750 07, Uppsala, Sweden

¹⁹Laboratory of Molecular Biotechnology and Phytopathology, Center for Mediterranean Bioresources and Food (MeditBio), University of Algarve, 8005-130 Faro, Portugal

²⁰Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan