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Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, Sesto Fiorentino, Firenze,

50019, Italy

*Address correspondence to David Baracchi. E-mail: david.baracchi@unifi.it.

Introduction

The long-lasting coevolution between flowering plants and associate

pollinators has made both partners intimately connected and recip-

rocally dependent on one another (Chittka and Thomson 2001;

Harder and Barrett 2006; Waser and Ollerton 2006). The inter-

action between plants and pollinators rests mostly on a mutualistic

exchange: plants invest in the production of nectar and pollen to re-

ward pollinators who, in turn, sustain plant reproduction by vector-

ing their pollen to conspecific flowers (Harder and Barrett 2006;

Waser and Ollerton 2006).

From a pollinator’s perspective, a meadow is a rich marketplace

consisting of a multitude of flower species offering sweet rewards

for free. Yet, foraging is anything but an easy task. Flowers are

diverse, sometimes difficult to handle, and offer only inconsistent

minute rewards. Flower-visiting invertebrates such as bees, butter-

flies, flies, or vertebrates such as birds and bats must make thou-

sands of sequential decisions during each foraging bout. Making use

of a number of factors including spatial distribution, availability,

abundance, ease of handling, and, most importantly, the quantity

and quality of the reward, pollinators must make economic deci-

sions to ensure a net gain of resources (Chittka and Thomson 2001).

Therefore, it is not surprising that pollinators naturally excel in cog-

nitive abilities such as flower discrimination, reward evaluation,

learning and memory, copying and navigation (Chittka and

Thomson 2001; Menzel and Giurfa 2006; Srinivasan 2010;

Avarguès-Weber et al. 2011; Giurfa 2013; Chittka 2017).

Although all the overmentioned cognitive abilities are fundamen-

tal requirements to optimize foraging efficiency, they explain only

partially how pollinators manage to behave according to the optimal

foraging theory (Stephens and Krebs 1986). Indeed, one of the most

challenging aspects that pollinators face during foraging is repre-

sented by the unpredictable ecological circumstances that typically

characterize the natural environment (Danchin et al. 2004;

Dall et al. 2005). Flowers are ephemeral, ever-changing in space and

time. The absolute and relative value of the rewards provided by

flowering plants depends on weather conditions, seasons, the succes-

sion of bloom, and the presence of other pollinators. Therefore,

pollinators not only must be able to find, discriminate, and memor-

ize the best flowers available in the surroundings, but they also need

to readily react and tune to a fast-changing world. Needless to say,

pollinators excel also in their foraging flexibility. Indeed, pollina-

tors’ capability to value options and make economic decisions is un-

doubtedly rooted in their extraordinary behavioral and cognitive

plasticity.

Both innate- and experience-dependent preferences guide pollina-

tors’ decision-making process (Menzel 1985). Although pollinators

have innate predilections for certain flower traits such as color

(Giurfa et al. 1995; Weiss 1997; Raguso 2001), shape (Lehrer et al.

1995; Kelber 1997), or size (Dafni and Kevan 1997; Johnson and

Dafni 1998; Giurfa and Lehrer 2001), they also exhibit rapid sensory

learning in which they can quickly associate flower traits with a re-

ward value (Menzel 1985, 1990; Spaethe et al. 2001). This plasticity

allows pollinators to selectively respond to cues and optimize their

foraging behavior. Preferences can change quickly under changing

conditions. However, once a reward source has been established, pol-

linators can show solid flower constancy, in which they are loyal to

the learned flowers while bypassing other equally rewarding flowers

(Free 1963, 1970; Chittka et al. 1999). This behavior is likely to in-

crease the rate of consecutive conspecific flower visitations and thus

the chance of cross-pollination. Therefore, plant competition for pol-

linators is increased, as it is even more vital to capture their selective

attention.

From a plant’s perspective, pollinators are a unique resource of

greedy customers to retain. Attracting and retaining customers is top

priority for any flowering plant. Visibility is key, and if you are a

plant in a meadow your flowers must stand out from other flowers

and the green background, be easily localizable, and, crucially, more

memorable than others. This further enhances the selective pressure

on floral traits. Flowers exploit a variety of signals and traits to at-

tract or, at times, deter specific pollinators (Adler 2000; Irwin et al.

2004; Lunau et al. 2011; van der Kooi et al. 2018). It has been dem-

onstrated that flower colors are commonly tuned to the visual sys-

tem of functional groups of pollinators such as bees, flies, and birds

(Kay 1976). For instance, flowers selectively reflect long or short
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wavelength radiation depending on the target pollinators (Raven

1972; Lunau et al. 2011). Red flower coloration is adapted to bird

pollinators and associated with other floral traits linked to orni-

thophily. Bowl-shaped flowers are typically linked to beetle pollina-

tors while flowers with broken outlines to small bee pollinators

(Dafni and Kevan 1997).

Once attracted, pollinators must be retained by plants and the

best way to build pollinators’ loyalty is to provide them with the

best reward available in the market. Nectar and pollen provide polli-

nators with all the essential macronutrients they need including car-

bohydrates, proteins, and lipids (Nicolson and Thornburg 2007).

An increasing number of studies has shown how pollinators pro-

vided with artificial diets can adjust or even self-compose their diets

to balance the acquisition of macronutrients (Paoli et al. 2014;

Stabler et al. 2015; Hendriksma and Shafir 2016; Vaudo et al.

2016a, 2016b). This flexibility in feeding preference is crucial, given

that social pollinators, such as honeybees and bumblebees, need to

carefully adjust their diet at multiple organizational levels to meet

both individual and collective nutritional demands (Lihoreau et al.

2014). However, floral nectars are far from being a simple reward

composed of mono and disaccharide sugars and essential amino

acids. They are extremely rich in secondary metabolites (SMs), such

as phenolics, terpenes, alkaloids, and nonprotein amino acids,

whose ultimate function remains largely unknown (Adler 2000;

Nicolson and Thornburg 2007; Nepi 2014; Stevenson et al. 2017).

Whether pollinators can taste or not the various classes of SMs is

still under debate, but it seems likely that both pre- and postingestive

processes account for food preference/avoidance and feeding plasti-

city showed by pollinators (Wright et al. 2010; de Brito Sanchez

2011). The presence in nectar of SMs such as alkaloids seems coun-

terintuitive as probably distasteful and toxic at high concentrations.

Their ingestion induces a variety of adverse health effects on pollina-

tors (Detzel and Wink 1993; Irwin et al. 2004; Manson et al. 2013).

Yet, a complete deterrence by SMs is rare, even at unnatural lethal

doses (Detzel and Wink 1993; Tiedeken et al. 2014). Some nectar

SMs can attract pollinators (Hagler and Buchmann 1993;

Singaravelan et al. 2005). Gelsemine, nicotine, and anabasine can

reduce pathogen load in pollinators (Manson et al. 2010; Baracchi

et al. 2015; Richardson et al. 2015) and free flying infected bumble-

bees preferentially visit nicotine-enriched nectar to ameliorate they

health conditions (Baracchi et al. 2015). A growing body of litera-

ture has shown that plant nectars trick bees into appearing foraging

bargains using alluring nectars rich in mind-altering chemicals

(Barron et al. 2009; Wright et al. 2013; Couvillon et al. 2015;

Baracchi et al. 2017a). Ecologically relevant concentrations of these

substances can deeply impact either positively or negatively various

cognitive functions, ultimately affecting pollinators’ foraging strat-

egies and feeding preference. Caffeine, nicotine, and cocaine in nec-

tars may serve as a form of floral deception, by manipulating the

behavior of pollinators in a way that increases the quantity and

quality of pollination services received by the plants (Couvillon et al.

2015; Thomson et al. 2015).

While foraging, pollinators make decisions by picking out infor-

mation from their surroundings (Stephens et al. 2007). In order to

make the most appropriate decision, they must select the most rele-

vant source of information (Dall et al. 2005). In doing so, pollina-

tors typically make use of multiple cues. Interestingly, they do not

only rely on direct cues from flowers but they also readily take

advantages of additional indirect cues from the environment such as

the presence of other pollinators (Leadbeater and Chittka 2005;

Dawson and Chittka 2012). Bees with previous social foraging

experience are attracted to flowers with conspecifics (Leadbeater

and Chittka 2007, 2009). They can learn simple flower color–re-

ward associations by observing the choices of conspecifics (Worden

and Papaj 2005; Dawson et al. 2013; Avarguès-Weber and Chittka

2014). Remarkably, bees can flexibly change the value attributed

to social and personal cues depending on the specific circumstances,

the difficulty of the tasks, and the reliability of both types of

information (Ings et al. 2009; Dunlap et al. 2016; Baracchi et al.

2017b).

The use of social information can greatly improve individual fit-

ness, but social information is not always adaptive nor is it fail-safe.

As a result, the payoff of social information use can be null or even

negative (Grueter and Leadbeater 2014). Thanks to their extraordin-

ary behavioral flexibility, pollinators often avoid incurring in these

costs by tailoring their reliance on social information. For instance,

copying others and sharing flowers potentially increases the risk of

getting infected by pathogens left on flowers by other pollinators

(Durrer and Schmid-Hempel 1994). Nonetheless, in response to

parasite threat, some pollinators have adapted their foraging behav-

ior to reduce parasite intake by avoiding contaminated flowers

(Fouks and Lattorff 2011). Interestingly, bumblebees have evolved

the ability to detect the trypanosome gut parasite Crithidia bombi

on flowers using the odor from the pathogen itself and in the pres-

ence of contaminated flowers bees seems to ignore scent marks left

by conspecific on flowers (Fouks and Lattorff 2013).

Contributions to This Issue

The present Special Column consisting of 6 original scholars pro-

vides glimpses of the research strands linked to the background out-

lined above. The articles are diverse along several dimensions and

acknowledge the complexity and multitude of perspectives from

which we can approach and study the phenomenon of the behavior-

al and cognitive plasticity in pollinators and their interaction with

flowering plants.

Switzer et al. (2019) used a series of original and well-designed

experiments to tackle the unexplored question of whether the vari-

ation in sonication frequency showed by Bombus impatiens is due

to instrumental learning for reward, part of a fixed behavioral reper-

toire or a “mechanical constraint.” While there is a huge variation

in how bees sonicated flowers, no study has attempted to study why

sonication behavior varies so much within and among individuals of

the same species. By designing an original mechanical pollen dispen-

ser, the authors specifically tested whether bumblebees use instru-

mental learning to alter their sonication behavior, whether bees

display a predictable and innate response to variation in reward

provided by the flower and whether flower mass and bee size affect

sonication acceleration and/or frequency. They demonstrated with

style that bumblebees do not display instrumental learning of

sonication frequency in response to pollen rewards but rather may

rely more heavily on an innate foraging strategy. They also provided

evidence that the sonication motor routine is highly flexible,

and that sonication frequency and acceleration can be adjusted to

improve pollen release during sonication.

Kraus et al. (2019) used a 3D nutritional geometry design to

examine how colonies of the buff-tailed bumblebee B. terrestris free-

ly regulate their nutrient collection of proteins, carbohydrates, and

lipids either in the presence or absence of brood in the nest. This ele-

gant study provided evidence of how pollinators can flexibly self-

compose their diets to balance at multiple levels the acquisition of
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essential macronutrients. Moreover, the authors showed how con-

fining bumblebee colonies to a single unbalanced diet compromised

its integrity and health, adding further support to the key role of nu-

trient ratios for pollinator well-being. The study highlighted the im-

portance of considering bee nutrition as a multidimensional

phenomenon and added another missing piece of the puzzle to our

fragmentary knowledge about the effects of malnutrition on pollin-

ator declines.

Fouks et al. (2019) studied the role of conspecifics and personal

experience on behavioral avoidance of contaminated flowers by

bumblebees. The authors showed that the visual presence of conspe-

cific on artificial flowers did not have a significant impact on bee

foraging choices and did not help bees to avoid contaminated flow-

ers. Yet, interestingly, the study found that while gaining experience,

bumblebees tended to avoid conspecifics resting on contaminated

flowers and to copy them when resting on uncontaminated ones.

Therefore, this study is a nice example of the remarkable ability of

bee pollinators to flexibly change the values attributed to social and

personal cues depending on personal experience.

Howard et al. (2019) examined whether the honeybee Apis mel-

lifera prefer flowers that are typically visited and pollinated by

insects over flowers that are typically pollinated by birds.

Using a simple design and a clear rationale, this elegant study used

2D-printed grayscale flower images to investigate the impact of flower

shape mediated by the green contrast on the attractiveness for bees.

The authors demonstrated that honeybees prefer insect-pollinated

flowers and showed that such a preference is most likely mediated by

holistic information rather than by individual image parameters. Using

pictures of flowers from a different continent than that of the tested

bees, the authors ruled out the possibility that bees had encountered

before these flowers and supported the idea that the recognition and

preference for certain flower shapes by honeybees is innate.

Garcia et al. (2019) investigated whether the angle-dependent

coloration resulting from optical structures of flowers represents a

signal or a cue and whether pollinators can make use of this type of

information whilst foraging. The authors tackled this relevant ques-

tion by applying a sophisticated set of linearized cameras and mod-

els to study the optical structures and the emergent spectral

characteristics of floral petals. They complemented their original

work with 3 behavioral experiments with honeybees aimed at for-

mally testing the hypotheses arising from the imaging results.

Thanks to their original and integrated approach, the authors pro-

vided evidence that floral iridescent coloration does not comply

with the requirements of a signal for plant–pollinator communica-

tion but rather with those of a visual cue not specifically evolved for

communication.

Hannah et al. (2019) used an array of similar–dissimilar color

stimuli commonly used to test color perception in bee pollinators,

combined with a novel differential conditioning protocol, to tackle

the question of whether the drone fly Eristalis tenax demonstrates a

categorical or continuous color discrimination. This rigorous study

revealed that this syrphid fly, which is a pollinator actively foraging

on nectar and pollen-bearing flowers, shares with other hymenopter-

an pollinator species a color choice mediated by a continuous mono-

tonic discrimination function rather than a categorical (step

function) discrimination of colors as predicted by the model of

blowfly color vision. Besides the new insights on flower fly vision,

this study developed a novel multiday differential conditioning para-

digm that represents a valuable method for studying in the future

the foraging behavior and the cognitive ecology of this neglected

pollinator species.
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