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Abstract

Strawberry powdery mildew (Podosphaera aphanis Wallr.) is a pathogen which infects the

leaves, fruit, stolon and flowers of the cultivated strawberry (Fragaria ×ananassa), causing

major yield losses, primarily through unmarketable fruit. The primary commercial control of

the disease is the application of fungicidal sprays. However, as the use of key active ingredi-

ents of commercial fungicides is becoming increasingly restricted, interest in developing

novel strawberry cultivars exhibiting resistance to the pathogen is growing rapidly. In this

study, a mapping population derived from a cross between two commercial strawberry culti-

vars (‘Sonata’ and ‘Babette’) was genotyped with single nucleotide polymorphism (SNP)

markers from the Axiom iStraw90k genotyping array and phenotyped for powdery mildew

susceptibility in both glasshouse and field environments. Three distinct, significant QTLs for

powdery mildew resistance were identified across the two experiments. Through compari-

son with previous studies and scrutiny of the F. vesca genome sequence, candidate genes

underlying the genetic control of this trait were identified.

Introduction

Strawberry powdery mildew (Podosphaera aphanis Wallr., previously known as Sphaerotheca
macularis f.sp. fragariae) infects the leaves, fruit, stolon and flowers of strawberry plants and

causes major yield losses where the infection renders the fruit unmarketable. Many commer-

cial strawberry varieties exhibit high levels of susceptibility to the disease [1] and while brief

exposure to UV-C radiation has been reported to effectively reduce the mildew symptoms on

strawberry [2], commercial control of the disease is primarily through the application of fungi-

cidal sprays. However, since new European regulations are restricting the use of active
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ingredients of commercial fungicides [3] and the efficacy of triazole fungicides as a powdery

mildew control in strawberry is reducing [4], alternative disease control methods are now

required for sustainable strawberry cultivation, particularly under protected canopies[5].

The potential of breeding for powdery mildew resistance in strawberry has been explored

previously [1,6]. In the study of Davik and Honne [6], both broad- and narrow-sense heritabil-

ity for resistance to powdery mildew was found to be intermediate, and a number of commer-

cial cultivars, such as ‘Solprins’, ‘Kent’ and ‘Patty’, were shown to transmit high levels of

resistance to powdery mildew to their progeny when used as parents. More recently, Kennedy

et al [7] identified wild octoploid strawberry germplasm with enhanced levels of resistance to

powdery mildew, and the authors suggested introgression of such wild material into the culti-

vated strawberry could be a strategy of novel resistance for breeding future commercial varie-

ties. However, such an approach, particularly if resistance is polygenic, would be challenging.

Powdery mildew species infect many different plant species, and members of the genus

Podosphaera (previously known as Sphaerotheca) are economically significant pathogens of

many commercial species of the Rosaceae family (of which strawberry is a member), including

apple, apricot, and peach [8]. In cultivated apple (Malus pumila), recessive mutations in homo-

logues of Mildew Resistance Locus O (MLO; [9]) confer stable resistance to powdery mildew,

often considered as immunity to the disease [8]. Indeed, Pessina et al [10] reported that

knock-down expression of the MLO gene MdMLO19 in apple reduced the susceptibility of

transformed lines to powdery mildew, and Jiwan et al [11] reported that antisense expression

of the peach MLO gene PpMLO1 in transgenic cultivated strawberry lines conferred resistance

to Fragaria-specific powdery mildew isolates. Recently, two groups [12,13] characterised sev-

eral MLO genes and pseudogenes in the genome sequence of F. vesca. Twelve of the identified

genes were expressed following challenge by isolates of powdery mildew in F. vesca accessions

[13]. Two of these genes, annotated as FvH4_7g08130.1 and FvH4_7g19790.1 in the FvH4 v4.0

assembly [14], were differentially expressed in response to powdery mildew infection in F.

vesca [13].

Markers associated with strawberry powdery mildew resistance were described in a US pat-

ent application by Koishihara et al [15], who reported the identification of a major resistance

locus in segregating populations derived from the cultivar ‘Miyazaki Natsu Haruka’ and the

breeder’s selection ‘08 To-f’. The locus was located on the proximal end of an unnamed linkage

group in the patent, but the authors presented sequence information defining the region from

which the QTL was derived. More recently, Cockerton et al [16], using two strawberry map-

ping populations, reported both stable and transient QTLs for powdery mildew resistance of

moderate effect distributed across the cultivated strawberry genome. Using data generated

with the strawberry Axiom arrays [17,18], Cockerton et al [16] identified six loci exhibiting sta-

ble resistance between populations and years, along with multiple other QTLs that were identi-

fied on only one occasion. The authors suggested that the use of the markers defining the QTL

in a program of marker-assisted breeding or genomic selection would enable the development

of cultivars with increased resistance to powdery mildew. Nelson et al. [1] studied the inheri-

tance of resistance to mildew in strawberry in both glasshouse and field environments. Whilst

they concluded that genetic differences between cultivars were expressed similarly in both

environments, only moderate, and only occasionally significant correlations were observed

between glasshouse and field phenotypic rankings when disease pressure was not extremely

high, and weak correspondence between genetic resistance mechanisms at differing severities

of infection, as often occur in different environments, were observed.

In this study, a previously published mapping population derived from a cross between the

commercial cultivars ‘Sonata’ and ‘Babette’ [19] was supplemented with markers from the

Axiom iStraw90k genotyping array [17]. Since previous studies have shown disease pressure to

Strawberry powdery mildew resistance QTL
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be very different for fungal pathogens in different strawberry production environments [5], we

speculated that different mechanisms of resistance might operate in these different environ-

ments as has been demonstrated previously for powdery mildew [15], and as such the mapping

progeny was phenotyped for powdery mildew in both a glasshouse and field environment. The

aim of the study was to identify genetic loci controlling resistance to powdery mildew in culti-

vated strawberry, and by determining the physical position of the QTL identified through the

physical positions of flanking genetic markers on the diploid Fragaria genome sequence, to

identify potential candidate genes conferring resistance.

Materials and methods

Plant material development and growing conditions

An experimental population of 145 F1 hybrid seedlings was developed from the cross between

the Dutch cultivar ‘Sonata’ (♀, ‘Elsanta’ × ‘Polka’) and the Norwegian cultivar ‘Babette’ (♂,

‘Patty’ × ‘Jonsok’) with the aim of studying the genetics of resistance to powdery mildew in the

cultivated strawberry. In previous field trials at the Norwegian Institute of Bioeconomy

Research the parental cultivars had shown different responses to powdery mildew, with

‘Sonata’ displaying more robust resistance.

A linkage map of the ‘Sonata’ × ‘Babette’ F1 population developed using double digest

restriction-site associated DNA sequencing (ddRAD) markers was previously reported by

Davik et al [19]. The F1 progeny were grown in 1 litre pots and, from each plant, an abundant

number of runner plants were cut and raised in 66 pot plastic trays placed in a heated glass-

house under 18-hour days at 20 ± 2˚C and 6 hour nights at 14 ± 2˚C. Supplemental light was

provided by high-pressure sodium lamps (SON-T) at a PPFD of 90 μmol quanta m-2 s-1. Equal

sized plantlets were selected as plant material for one field experiment and one glasshouse

experiment. During plant multiplication from runners, powdery mildew control was under-

taken using sulphur vapor.

Field experiment

A duplicated experiment with 137 ‘Sonata’ × ‘Babette’ F1 progeny, and additional commercial

cultivars was established with an α-design [20] at the experimental site of Graminor Ltd in

Ridabu, Norway in August 2013. Additional commercial cultivars, namely the two parental

lines, ‘Sonata’ and ‘Babette’, the grandparents, ‘Elsanta’, ‘Polka’, ‘Patty’ and ‘Jonsok’, and the

great grandparents, ‘Gorella’, ‘Holiday’, ‘Sivetta’, ‘Honeoye’, ‘Marmolada’ and ‘Senga Sengana’

were included in the trial. Each plot consisted of six clonally replicated plants, and thus in the

trial, each experimental unit, i.e., a F1 seedling or a cultivar, was represented by 12 plants. The

field was allowed to establish before it was covered with two layers of fleece to protect against

low-temperature damage during winter. Standard growing regimes were used except for the

omission of powdery mildew fungicide treatment. A growing system with plastic mulch and a

nutrient solution containing 7.8 mmol N, 1 mmol P, and 4.6 mmol K per litre, applied in a

1:100 ratio to equal approximately the recommended 60 kg N ha-1 over the entire growing sea-

son was used.

Glasshouse experiment

The experiment was set up in triplicate with 145 F1 progeny and the same commercial cultivars

as in the field experiment giving an experiment of 216 plots per replication (glasshouse com-

partment) using an α-design [20]. The F1 progeny were usually present in all three replicates,

while the commercial cultivars were represented at varying levels.

Strawberry powdery mildew resistance QTL
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Equal sized plants were selected and grown in 9 cm pots using 18 pot trays (Vefi System

tray PR909) containing a peat-based potting compost (90% peat, 10% clay), with the addition

of 1:5 (v/v) granulated perlite. The plants were raised in a heated glasshouse in the same man-

ner as stated previously. The same nutrient solution used in the field experiment was applied

when necessary, usually every second day. One experimental plot consisted of four clonal

plants planted in one half of a tray with 18 (3×6 9 cm pots, Vefi System tray PR909). Each tray

carried two four-plant plots (S1 Fig), i.e., each F1 progeny was represented by 12 clonally prop-

agated plants and the entire F1 population by 1,740 plants. Between the experimental plants,

one previously infected plant of the susceptible cultivar ‘Korona’ was included.

Inoculum preparation

An isolate of strawberry powdery mildew was collected from infected ‘Korona’ leaves from

glasshouse grown plants and multiplied on surface sterilized young unfolded leaves of suscep-

tible ‘Korona’ placed in dishes with water agar [21]. A batch of uninfected ‘Korona’ plantlets

were inoculated by gently rubbing their leaves against the infected leaves and the pathogen was

allowed to establish for three weeks before putting one plant in the middle of each plot (S1

Fig). On each corner of the three replicates, fans were placed and run for one hour in the

morning and one hour in the afternoon to distribute spores from the infected source plants.

Disease scoring

Individual plants of the experiments were phenotyped using the five point scale described by

Simpson [22]:

1. No visual symptoms

2. Slight leaf curling, no apparent mycelia

3. Leaf curling and mottling

4. Severe leaf curling, reddening and visible damage to lower leaf surface;

5. Severe necrosis and some leaf death.

The scores were made by a single qualified person three times every second week starting

on October 7th 2013 in the glasshouse experiment, and every second week from early June to

the end of the fruiting season in the field experiment. Using the trapezoidal formula, the area

under the curve score was calculated for each genotype, along with mean and end-point scores

for each genotype.

Spatial modelling

Even though means were taken to ensure an even spread of inoculum throughout the experi-

ments, it is conceivable that this not always happened. Such unevenness can be one cause for

correlations between neighbouring plots. In order to account for this, we used the approach

taken by Gilmour et al [23], where correlations between neighbouring plots and trends (linear

and cubic) across the experimental fields can be accounted for. When modelling these experi-

mental data, we followed the sequential approach taken by Davik and Honne [6]:

1. Initially a base model was established, typical for a replicated experiment with independent

errors

2. Then the dependency of adjacent plots was modelled through the error matrix (R) using a

two-dimensional autoregressive spatial model, often referred to as AR1 × AR1

Strawberry powdery mildew resistance QTL
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3. Finally, other fixed or random design or trend effects were added.

The significance of the AR1 × AR1 spatial error model and the random effects were evalu-

ated using the likelihood ratio [24]. The fixed effects were evaluated partly by the accompa-

nying F-statistics and partly inspecting a variogram of the residuals. The statistical analyses of

the field experiments were done using the ASReml software [25].

Linkage map supplementation

The linkage map of Davik et al [19] developed using ddRAD markers was supplemented with

SNP markers from the Axiom iStraw 90k array [17] that segregated in the progeny. DNA from

the progeny was extracted using the DNeasy Plant Minikit (Qiagen) and assessed for quality

using a Qiagility spectrophotometer (Qiagen). Samples with a 260/280 ratio of between 1.8

and 2.0 were normalised to 10 ng/μl following quantification on a Qubit fluorometer against

manufacturer-supplied standards (Thermo Scientific). DNA from the parental genotypes

‘Sonata’ and ‘Babette’ and all progeny from the initial population of 145 seedlings for which

phenotypic data were available was genotyped on a GeneTitan instrument (ThermoFisher)

using the Axiom 96-array protocol. SNP genotypes were assigned according to the best-prac-

tices protocol using the Axiom Analysis Suite software (ThermoFisher) and in total 113 seed-

lings had both a genotype and phenotype. SNP data from the parental genotypes were

examined, and those SNPs that were heterozygous in at least one parent were retained, whilst

all SNPs that were either monomorphic or where there were missing data for either parental

genotype were discarded. The SNP segregation data were retained for further analysis if the

progeny contained only genotypes predicted from the parental combination and contained 8%

or fewer missing values.

Segregating SNPs were coded for analysis with JOINMAP 4.1 (Kyazma, NL) and data were

combined with the segregation data used to construct the previously published map of the

‘Sonata’ × ‘Babette’ mapping population [19]. Marker groups were determined and retained

based on the previously published linkage groups, and marker inclusion and ordering within a

linkage group was based on the criteria used for the construction of the previously published

ddRAD linkage map [19]; marker placement was determined using regression mapping with a

minimum logarithm of odds (LOD) score threshold of 3.0, a recombination fraction threshold

of 0.35, ripple value of 1.0, jump threshold of 3.0 and a triplet threshold of 5.0, and mapping

distances were calculated using the Kosambi mapping function to produce a linkage map.

Linkage group names and sub-genomes (A, b, X1 and X2) were assigned according to the pres-

ence of Axiom SNP markers common to the map of Sargent et al [26] and the linkage maps

presented were plotted using MapChart 2.1. BLAST analysis of the F. vesca ‘Hawaii 4’ v4.0

genome sequence (FvH4 v4.0) and the F. ×ananassa ‘Camarosa’ v1.0 genome sequence [27]

was performed with default parameters using the ddRAD tag sequences and the published

Axiom SNP flanking sequences as queries [14,28] and the physical positions of the markers

were used to plot Marey maps of genetic vs. physical position of all mapped genetic markers.

Quantitative trait loci detection

End-point (EP) and mean (MP) susceptibility scores, and area under disease progress curve

(AUDPC), for both the field and glasshouse evaluation of mildew susceptibility were used to

perform QTL analyses on the 113 progeny for which phenotypic data from both field and

glasshouse were available and that had both a ddRAD and Axiom genotype set. Data were ana-

lysed by interval mapping and the phenotypic variance explained by each marker genotype

and associated LOD values were calculated using MapQTL 6.0 (Kyazma, NL). A genome-wide

Strawberry powdery mildew resistance QTL
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LOD threshold of 4.5 was determined following a permutation test over 20,000 permutations

for end-point, mean and AUDPC datasets. The restricted multiple QTL method (rMQM) was

performed using markers with significant association with mildew susceptibility as cofactors

to attempt uncover the presence of minor QTLs throughout the linkage groups of the genetic

map. The step size used for both the interval mapping (IM) and the restricted multiple QTL

mapping (rMQM) was 1.0 cM.

Candidate gene identification and annotation

Genes located in the 3 Mb region of the FvH4 v4.0 genome sequence centred around the

marker most significantly associated with each QTL were scrutinized to identify candidate

genes putatively involved in powdery mildew resistance. Using the best-hit reports of homol-

ogy of predicted transcripts within the QTL regions, determined using the blastx algorithm

against the NCBI non-redundant (Release 2017–07), Arabidopsis (TAIR10), UniProt SwissProt

(Release 2017–11), and UniProt TrEMBL (Release 2017–11) protein databases that were

downloaded from the Genome Database for Rosaceae (GDR) [29], along with the gene model

annotation on the GDR, candidate genes with a putative role in disease resistance were

identified.

Results

Powdery mildew resistance phenotyping

The average end-point score in the field experiment was 2.9 with a minimum and maximum

score of 1.4 and 4.7 (Fig 1A). For the glasshouse experiment the mean score was 3.3 and the

minimum and maximum scores were 1.7 and 4.7 (Fig 1B). The results showed that in under

field conditions, ‘Babette’ was more resistant to powdery mildew, whilst under glasshouse con-

ditions, both parental cultivars showed similar levels of resistance to the pathogen, with

‘Sonata’ being slightly more resistant than ‘Babette’. Within both experiments the differences

between the 145 entries were highly significant (p< 0.0001, Wald F test) indicating a strong

genetic regulation of powdery mildew resistance/susceptibility in both environments. Even

though the Spearman’s rank correlations between the two environments was highly signifi-

cant, the correlation itself was not high, indicating rank shifts from the field experiment to the

glasshouse experiment (ρ = 0.30, p = 0.0002) (Fig 1C).

Linkage map supplementation

The ‘Sonata’ × ‘Babette’ linkage map was constructed using data from a total of 113 progeny

for which both phenotypic and genotypic data were available (S1 File). A total of 580 ddRAD

markers from the linkage map of Davik et al [19] were assimilated with 2,970 markers from

the Axiom iStraw 90k array at 1,474 loci into 31 linkage groups, representing the 28 haploid

chromosomes of the F. ×ananassa genome (Fig 2; Table 1). The markers spanned a total

genetic distance of 1498.2 cM, and a total physical distance of 769.9 Mbp, estimated from the

physical positions of the distal- and proximal-most markers on the diploid FvH4 v4.0 genome

sequence [28,30]. Identification of common markers with the linkage map of Sargent et al [26]

enabled all 31 linkage groups to be assigned to one of the four F. ×ananassa homeologous sub-

genomes (i.e. A, b, X1 or X2 according to the nomenclature of Sargent et al [26]) (Fig 2).

Marey maps depicting the genetic distances of the linkage groups resolved vs the physical posi-

tions of the markers on the FvH4 v4.0 genome sequence [14] showed overall good marker col-

linearity between the genetic and physical maps (Fig 3).

Strawberry powdery mildew resistance QTL
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QTL analysis and detection

The AUDPC, along with the end-point (EP) and mean (MP) disease scores were used for QTL

analysis using the interval mapping approach and the non-parametric rank sum test of Krus-

kal-Wallis. In all analyses, three significant QTLs were identified; two in the field experiment

and one in the glasshouse experiment (S1 File). Details of the positions of the QTLs identified

for each of the datasets following interval mapping, including linkage group, genetic and phys-

ical positions of the closest flanking markers, and associated LOD values and total phenotypic

variance explained, are given in Table 2, along with the associated Kruskall-Wallis test statistic

(K�) scores for the most significant marker in each dataset. A significant QTL above the LOD

threshold of 4.5 was identified for mildew resistance on linkage group LG7A of the ‘Sonata’ ×
‘Babette’ linkage map in the 2013 glasshouse mildew evaluation (Fig 4) with resistance alleles

segregating in the ‘Babette’ parental genotype, whilst two significant QTLs above the LOD

threshold of 4.5 were identified on linkage groups LG5b and LG7X2 in the 2015 field evalua-

tion (Fig 5), with resistance alleles segregating in the ‘Babette’ and in both parental genotypes

on LG5b and LG7X2 respectively. In both the glasshouse and field evaluations, the LOD peaks

of the identified QTLs were higher in the end-point data analysis. The QTLs were associated

with ddRAD marker 8082 (LOD = 9.74, percentage variance explained = 34.2%, equating to a

one point change on the disease ranking scale used to phenotype the plants) on LG7A in the

glasshouse evaluation, and with Axiom markers AX-89836603 (LOD = 4.97, percentage vari-

ance explained 18.3%, equating to a change of approximately 0.5 on the disease ranking scale

used to phenotype the plants) and AX-89800832 (LOD = 5.17, percentage variance explained

19%, equating to a change of approximately 0.5 on the disease ranking scale used to phenotype

Fig 1. The average end-point mildew susceptibility phenotypic scores of the ‘Sonata’ × ‘Babette’ F1 mapping progeny for the field experiment (a) and

glasshouse experiment (b), along with the Spearman’s rank correlation between the two datasets (c).

https://doi.org/10.1371/journal.pone.0222829.g001

Strawberry powdery mildew resistance QTL
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the plants) on LG5b and LG7X2, respectively. BLAST analysis of the sequence data available

for the most significant mapped markers against the FvH4 v4.0 genome sequence (S1 File)

placed marker 8082 (LG7A) on chromosome 7 at a physical position of 23,480,779 bp. Marker

AX-89836603 (LG5b) was located on chromosome 5 at a physical distance of 7,298,636 bp,

whilst marker AX-89800832 (LG7X2) was located on chromosome 7 at a physical distance of

16,764,242 bp. The positions of the markers were also queried on the F. ×ananassa ‘Camarosa’

genome sequence and whilst the positions were largely concordant with those of the FvH4

v4.0, the individual ‘Camarosa’ homeologues of both Fvb5 and Fvb7 within the genome were

orientated in opposite directions, making positioning of markers between homeologues

Fig 2. The ‘Sonata’ and ‘Babette’ F1 linkage map containing 3,550 markers at 1,474 loci in 31 linkage groups representing the 28 haploid chromosomes of the F.

×ananassa genome. The linkage map spans a total genetic distance of 1498.2 cM and a total physical distance of 769.9 Mbp, estimated from the physical positions of the

distal- and proximal-most markers on the diploid F. vesca v4.0 genome sequence. All linkage groups have been assigned to one of the four F. ×ananassa homeologous

subgenomes (i.e. A, b, X1 or X2) of the linkage map of Sargent et al [26] through identification of common markers in the two studies.

https://doi.org/10.1371/journal.pone.0222829.g002

Strawberry powdery mildew resistance QTL
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confusing, and identification of candidate gene positions problematic. The positions of

mapped markers and subsequent identification of candidate genes was therefore performed

using the FvH4 v4.0 diploid genome sequence.

Candidate gene identification

Analysis of gene predictions in the physical regions surrounding the QTLs using tblastx

revealed several candidate resistance genes. In the QTL interval on LG7A, clusters of candidate

resistance genes of the TIR-NBS-LRR class were identified. Five genes (FvH4_7g32710,

7g32720, 7g32740, 7g32750 and 7g32760) were clustered in an interval between 23,469,310

and 23,493,387 bp containing the 8082 ddRAD SNP marker most significantly associated with

the LG7A QTL, the closest being FvH4_7g32740, positioned at 23,480,734, just 45 bp from

marker 8082. In the QTL interval on LG7X2, FvH4_7g20580, a predicted NB-ARC domain-

containing disease resistance gene was identified at 16,702,990 bp, 61 kb from AX-89800832,

the Axiom marker most significantly associated with the LG7X2 QTL. The MLO gene FvMLO-

Table 1. Summary of the molecular markers mapped to the 31 linkage groups of the ‘Sonata’ × ‘Babette’ F1 mapping population, detailing the number of ddRAD

and Axiom markers mapped to each linkage group, the linkage group lengths and the physical distances on the F. vesca genome associated with each linkage group.

Linkage group ddRAD Axiom Total LG length (cM) LG physical length (Kbp)

LG1A 32 92 124 46.7 23,957,603

LG1b 19 147 166 59.4 23,685,054

LG1X1 16 68 84 43.5 24,060,629

LG1X2 11 98 109 53.3 23,779,102

LG2A 17 48 65 38.1 11,484,408

LG2b 13 63 76 44.9 25,698,315

LG2X1 20 86 106 75.5 28,877,060

LG2X2 18 59 77 54.9 30,310,907

LG3A 16 106 122 26.2 7,150,320

LG3b 36 107 143 64.1 37,489,006

LG3X1 19 113 132 57.8 37,494,884

LG3X2 17 134 151 44.3 31,899,046

LG4A 20 75 95 39.8 33,800,549

LG4b 26 48 74 30.9 21,646,936

LG4X1 16 80 96 39.8 31,159,059

LG4X2 22 70 92 59.6 32,958,309

LG5A.1 21 91 112 44.4 27,514,567

LG5A.2 12 153 165 34.2 23,721,032

LG5b 18 88 106 56.5 23,221,682

LG5X1.1 4 63 67 19.1 5,731,902

LG5X1.2 9 127 136 24.8 20,086,173

LG5X2 21 91 112 61.5 29,120,806

LG6A 40 132 172 67.4 35,379,216

LG6b 26 134 160 78.2 39,485,620

LG6X1 19 259 278 56.5 37,111,072

LG6X2 15 78 93 37.9 23,459,542

LG7A 32 150 182 75 22,775,856

LG7b 14 41 55 48.1 10,165,563

LG7X1 12 119 131 44.2 23,438,682

LG7X2 19 50 69 71.6 23,258,857

Total 580 2970 3550 1498.2 769,921,757

https://doi.org/10.1371/journal.pone.0222829.t001
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20 (FvH4_7g19790) was positioned 0.5 Mb from AX-89800832, and a cluster of ten

TIR-NBS-LLR resistance genes (FvH4_7g21060, 7g21070, 7g21090, 7g21100, 7g21110,

7g21130, 7g21140, 7g21150, 7g21170, and 7g21180) were positioned in an interval between

16,963,133 and 17,059,456, i.e. 199 kb from AX-89800832. On chromosome 5, two candidate

resistance genes were identified in the 100 kb surrounding marker AX-89836603 in the QTL

interval; gene FvH4_5g12510, a predicted leucine-rich receptor-like protein kinase, positioned

at 7,370,161 bp, and gene FvH4_5g13060, a predicted serine/threonine protein kinase 3,

Fig 3. Marey maps depicting the relationships and colinearity between the markers’ physical position on the F. vesca v4.0 genome sequence and

the genetic positions on the ‘Sonata’ and ‘Babette’ linkage groups. Genetic distances are plotted on the y-axes and physical distances on the x-axes.

Red points indicate the positions of ddRAD markers, whilst black points indicate the positions of Axiom iStraw90 markers.

https://doi.org/10.1371/journal.pone.0222829.g003
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Table 2. The positions of the significant QTLs (LOD>4.5) identified for AUDPC, endpoint and mean disease score datasets following interval mapping, including

linkage group, genetic and physical positions of the closest flanking markers, and associated LOD values and total phenotypic variance explained, along with the

associated Kruskall-Wallis test statistic (K�) scores for the most significant marker in each dataset.

QTL name Experiment Linkage group Closest SNP Genetic position Physical position FvH4.4 LOD Percentage variance explained 1-LOD interval

FxaPMR7A Glasshouse LG7A 8082 70.7 cM 23,480,779 bp 9.74 34.2% 66.3–75.0 cM

FxaPMR5b Field LG5b AX-89836603 20.9 cM 7,298,636 bp 4.97 18.3% 15.6–23.5 cM

FxaPMR7X2 Field LG7X2 AX-89800832 22.2 cM 16,764,242 bp 5.17 19% 19.9–30.5 cM

https://doi.org/10.1371/journal.pone.0222829.t002

Fig 4. Plots of the significant QTLs (LOD threshold>4.5) identified for mildew susceptibility on linkage group LG7A in the glasshouse mildew evaluation of the

‘Sonata’ × ‘Babette’ mapping population. LOD scores are plotted along the x-axes (dotted line indicates the 4.5 LOD threshold), whilst genetic distances are plotted

along the y-axes.

https://doi.org/10.1371/journal.pone.0222829.g004
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located at 7,366,880 bp, the closest of which was 68,244 bp from marker AX-89836603. Fig 6

shows the three linkage groups on which the QTL for powdery mildew resistance were identi-

fied, along with the physical positions of the closest mapped molecular markers, the candidate

resistance genes and the positions of the intervening non-candidate genes.

Discussion

Previous investigations of mildew resistance in strawberry have identified multiple QTLs

exerting small effects controlled by both additive and non-additive genetic components [6,22].

In total, three significant QTLs for powdery mildew resistance were identified in this investiga-

tion; a single QTL on linkage group LG7A according to the nomenclature of Sargent et al [26]

from a glasshouse-based disease trial, and two QTLs from a field-based experiment. Whilst

similar trends were observed in disease progression in both glasshouse and field evaluation of

mildew resistance in this investigation, a strong genotype × environment interaction was

detected between experiments as with previous studies of the genetics of mildew resistance in

Fig 5. Plots of the significant QTLs (LOD threshold>4.5) identified for mildew susceptibility on linkage group

LG7A in the glasshouse mildew evaluation in the field evaluation of the ‘Sonata’ × ‘Babette’ mapping population.

LOD scores are plotted along the x-axes (dotted line indicates the 4.5 LOD threshold), whilst genetic distances are

plotted along the y-axes.

https://doi.org/10.1371/journal.pone.0222829.g005

Fig 6. The physical positions of the candidate resistance genes associated with powdery mildew resistance in the ‘Sonata’ × ‘Babette’ mapping population. The

three genetic linkage groups on which resistance QTL were identified; LG7A in the 2013 glasshouse experiment and LG5b and LG7X2 in the 2015 field trials are shown,

along with local physical maps of the QTL regions showing flanking genetic markers in red, candidate resistance genes identified in blue, and intervening non-candidate

genes in grey. Genetic distances are represented in centiMorgans (cM) whilst physical distances are represented in nucleotides.

https://doi.org/10.1371/journal.pone.0222829.g006
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strawberry [7,16]. Additionally, quite different QTLs were identified in the field and glasshouse

studies.

In the glasshouse experiment, the marker most closely associated with the resistance QTL

on the ‘Sonata’ × ‘Babette’ linkage map was the ddRAD marker 8082, physically located at

23,654,621 bp on chr7 of the F. vesca v4.0 genome sequence, with the 1-LOD markers flanking

marker 8082 spanning the physical interval between 23,335,372 and 24,102,125 bp. Koishihara

et al [15] filed a patent application characterising a major QTL for powdery mildew resistance

in Japanese accessions of the cultivated strawberry. In their application, they detailed DNA

sequence for 19 molecular markers distributed within the genomic interval containing their

QTL. BLAST analysis of the marker sequences performed in this investigation (S1 File) located

the associated markers to an interval of chr7 of the F. vesca v4.0 genome sequence between

21,061,818 bp and 23,555,440 bp, a very similar physical interval to that of the QTL character-

ised in this study; the two studies sharing an overlapping region of 220,068 bp which contained

the most significantly associated region of the ‘Sonata’ × ‘Babette’ linkage map, including

marker 8082. The overlapping physical location of the QTL identified in the glasshouse experi-

ment of this study and the QTL reported by Koishihara et al [15] indicates that they are ortho-

logous QTLs, despite being characterised based on commercial strawberry cultivars from

highly divergent genetic backgrounds, under different environmental conditions, and presum-

ably using very different strains of powdery mildew.

In the physical proximity of the QTL, a cluster of five TIR-NBS-LRR resistance genes were

identified, the closest being 45 bp from marker 8082. Such genes are members of the largest

disease resistance gene family in plants, and their cognate proteins contribute to signal trans-

duction during plant defence [31]. TIR-NBS-LRR genes encode proteins containing an

amino-terminal variable domain, a central nucleotide binding site (NBS), a carboxy-terminal

leucine rich repeat (LRR) domain and a Toll/Interleukin-1 (TIR) receptor domain [32].

Numerous previous studies have demonstrated the role of NBS-LRR in plant disease resistance

to many different viral, bacterial and fungal pathogens [33], including the powdery mildew

resistance gene Mla1 (CC-NBS-LRR) in barley [34], the stripe rust resistance gene γr10 (CC-

NBS-LRR) in wheat [35] and the Peronospora parasitica resistance gene Rpp5 (TIR-NBS-LRR)

in Arabidopsis [36]. The close physical proximity to the resistance gene clusters to the QTLs

identified on LG5b and LG7A suggest a role for TIR-NBS-LRR resistance genes in powdery

mildew resistance in cultivated strawberry, however, further functional studies are required in

order to determine the role of these genes in powdery mildew resistance.

Recently Miao et al [12] and Jambagi and Dunwell [13] characterised a number of MLO
genes and pseudogenes in the F. vesca genome sequence. Twelve of the genes identified were

expressed following challenge by powdery mildew in F. vesca accessions [13]. Two of the

genes, annotated as FvH4_7g08130.1 and FvH4_7g19790.1 in the FvH4 v4.0 assembly which

were differentially expressed in response to powdery mildew infection in the study of Jambagi

and Dunwell [13], were located on chr7 of the FvH4 v4.0 genome sequence at 8,086,217 bp

and 16,255,327 bp respectively. The QTL identified on LG7X2 in the analysis of field data in

this experiment was associated most strongly with the Axiom marker AX-89800832 which was

located at a physical distance of 16,764,302 bp in the FvH4 v4.0 genome sequence. Gene

FvH4_7g19790.1 was positioned within the wide 1-LOD interval of the LG7X2 QTL

(14,537,753 bp– 19,214,153 bp) and as such is a possible candidate for the gene underlying the

QTL.

The identification of different QTLs in the field and glasshouse experiments conducted

here, and associated rank shifts in phenotypes between parents and progeny between the two

environments suggests, as with previous studies [16], that resistance to powdery mildew is

under the control of different genes in different environments. However, the likely orthology
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of the QTL identified here with a major QTL identified from the segregating populations from

an unrelated Japanese study [15] supports the significance and potential utility of the loci iden-

tified in this study. These would make excellent candidates for marker development and

marker-assisted selection with the potential to perform consistently across a wide germplasm

base, and with different mildew strains. Further work to validate the QTL identified here and

develop markers for resistance screening would be required to enable resistant cultivar

development.

Supporting information

S1 Fig. Plot layout of the greenhouse experiment. Four experimental plants of each F1 line

where used in each plot. The figure shows two lines (‘x’ and ‘y’) and the powdery mildew

infected source plant.

(TIF)

S1 File. Genetic and phenotypic data. Genotyping and phenotyping data used in the analyses

in this study, along with the output from the QTL analyses, sequence tag data for the ddRAD

and Axiom markers used in the study and their physical positions on the FvH4 v4.0 genome

sequence, the genetic positions of all mapped markers, and the blastx and annotation links for

all candidate genes identified in this study.

(XLSX)
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