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Abstract
We consider a two-phase heat conductor in R

N with N ≥ 2 consisting of a core
and a shell with different constant conductivities. We study the role played by radial
symmetry for overdetermined problems of elliptic and parabolic type. First of all,
with the aid of the implicit function theorem, we give a counterexample to radial
symmetry for some two-phase elliptic overdetermined boundary value problems of
Serrin type. Afterwards, we consider the following setting for a two-phase parabolic
overdetermined problem. We suppose that, initially, the conductor has temperature 0
and, at all times, its boundary is kept at temperature 1. A hypersurface in the domain
has the constant flow property if at every of its points the heat flux across surface only
depends on time. It is shown that the structure of the conductor must be spherical, if
either there is a surface of the constant flow property in the shell near the boundary
or a connected component of the boundary of the heat conductor is a surface of the
constant flow property. Also, by assuming that the medium outside the conductor has a
possibly different conductivity, we consider a Cauchy problem in which the conductor
has initial inside temperature 0 and outside temperature 1. We then show that a quite
similar symmetry result holds true.
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1 Introduction

In this paper, we examine several overdetermined elliptic and parabolic problems
involving a two-phase heat conductor in R

N , which consists of a core and a shell with
different constant conductivities.

The study of overdetermined elliptic problems dates back to the seminal work of
Serrin [24], where he dealt with the so-called torsion function, i.e., the solution to the
following elliptic boundary value problem.

−�u = 1 in �, u = 0 on ∂�.

Serrin showed that the normal derivative of the torsion function u is a constant function
on the boundary ∂� if and only if the domain � is a ball. We remark that such
overdetermined conditions arise naturally in the context of critical shapes of shape
functionals. In particular, if we define the torsional rigidity functional as T (�) =∫
�
u dx , then Serrin’s overdetermination on the normal gradient of u is equivalent to

the shape derivative of T vanishing for all volume preserving perturbations (we refer
the interested reader to [14, Chap. 5]).

As far as overdetermined parabolic problems are concerned, we refer for example
to [2], where symmetry results analogous to Serrin’s one are proved as a consequence
of an overdetermination on the normal derivative on the boundary, which is called the
constant flow property in [23].

In this paper, we show that two-phase overdetermined problems are inherently
different. As a matter of fact, due to the introduction of a new degree of freedom (the
geometry of the core D), we prove that two-phase elliptic overdetermined problems of
Serrin type admit non-symmetric solutions. On the other hand, we show that, for two-
phase overdetermined problems of parabolic type, the stronger assumption of constant
heat flow at the boundary for all time t > 0 leads to radial symmetry (this result
holds true even when the overdetermined condition is imposed only on a connected
component of the boundary ∂�). We will also examine another overdetermination,
slightly different than the one introduced in [2]. Namely we will consider the case
where, instead of the boundary, the above-mentioned constant flowproperty is satisfied
on some fixed surface inside the heat conductor. We will show that, even in this case,
the existence of such a surface satisfying the constant flow property leads to the radial
symmetry of our heat conductor.

In what follows, we will introduce the notation and the main results of this paper.
Let � be a bounded C2 domain in R

N (N ≥ 2) with boundary ∂�, and let D be a
bounded C2 open set in R

N which may have finitely many connected components.
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Two-Phase Heat Conductors with a Surface...

Assume that � \ D is connected and D ⊂ �. Denote by σ = σ(x) (x ∈ R
N ) the

conductivity distribution of the medium given by

σ =

⎧
⎪⎨

⎪⎩

σc in D,

σs in � \ D,

σm in R
N \ �,

whereσc, σs, σm are positive constants andσc �= σs . This kind of three-phase electrical
conductor has been dealt with in [15] in the study of neutrally coated inclusions.

The first result is a counterexample to radial symmetry for the following two-phase
elliptic overdetermined boundary value problems of Serrin type:

div(σ∇u) = βu − γ < 0 in �, u = c and σs ∂νu = d0 on ∂�; (1.1)

here, ∂ν denotes the outward normal derivative at ∂�, β ≥ 0, γ > 0, and c ∈ R

are given numbers and d0 is some negative constant determined by the data of the
problem.

Theorem 1.1 Let BR ⊂ B1 be concentric balls of radii R and 1. For every domain �

of class C2,α sufficiently close to B1, there exists a domain D of class C2,α (and close
to BR) such that problem (1.1) admits a solution for the pair (D,�).

This result is an application of the implicit function theorem. It was shown by Serrin
in [24] that, in the one-phase case (σc = σs), a solution of (1.1) exists if and only if
� is a ball. Thus, as we shall see for two-phase heat conductors, Theorem 1.1 sets an
essential difference between the parabolic overdetermined regime in Theorem 1.4 and
that in the elliptic problem (1.1).

A result similar to Theorem 1.1 appeared in [9], after we completed this paper. That
result concerns certain semilinear equations (with a point-dependent non-linearity) on
compact Riemannian manifolds. The techniques used there do not seem to be easily
applicable to the two-phase case.

The remaining part of this paper focuses on two-phase overdetermined problems
of parabolic type. The papers [21,22] dealt with the heat diffusion over two-phase or
three-phase heat conductors. Let u = u(x, t) be the unique bounded solution of either
the initial-boundary value problem for the diffusion equation:

ut = div(σ∇u) in � × (0,+∞), (1.2)

u = 1 on ∂� × (0,+∞), (1.3)

u = 0 on � × {0}, (1.4)

or the Cauchy problem for the diffusion equation:

ut = div(σ∇u) in R
N × (0,+∞) and u = X�c on R

N × {0}, (1.5)
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Fig. 1 The two-phase conductor described by � and D and the surface ∂G

where X�c denotes the characteristic function of the set �c = R
N \ �. Consider a

bounded domain G in R
N satisfying

D ⊂ G ⊂ G ⊂ � and dist(x, ∂�) ≤ dist(x, D) for every x ∈ ∂G. (1.6)

In [21,22], the third author obtained the following theorems (Fig. 1).

Theorem A ([21])Let u be the solution of problem (1.2)–(1.4), and let
 be a connected
component of ∂G satisfying

dist(
, ∂�) = dist(∂G, ∂�). (1.7)

If there exists a function a : (0,+∞) → (0,+∞) satisfying

u(x, t) = a(t) for every (x, t) ∈ 
 × (0,+∞), (1.8)

then � and D must be concentric balls.

Theorem B ( [21,22]) Let u be the solution of problem (1.5). Then the following
assertions hold:

(a) if there exists a function a : (0,+∞) → (0,+∞) satisfying

u(x, t) = a(t) for every (x, t) ∈ ∂G × (0,+∞), (1.9)

then � and D must be concentric balls;
(b) if σs = σm and (1.8) holds on some connected component 
 of ∂G satisfying (1.7)

for some function a : (0,+∞) → (0,+∞), then � and D must be concentric
balls.

123

Author's personal copy



Two-Phase Heat Conductors with a Surface...

The condition (1.8) (or (1.9)) means that 
 (or ∂G) is an isothermic surface of the
normalized temperature u at every time; for this reason,
 (or ∂G) is called a stationary
isothermic surface of u.

In this paper, we shall suppose that the solution u of (1.2)–(1.4) or (1.5) admits
a surface 
 ⊂ � \ D of the constant flow property, that is there exists a function
d : (0,+∞) → R satisfying

σs ∂νu(x, t) = d(t) for every (x, t) ∈ 
 × (0,+∞), (1.10)

where ∂νu denotes the outward normal derivative of u at points in 
.
Wewill then prove two types of symmetry results.We shall first start with symmetry

theorems for solutions that admit a surface 
 of the constant flow property in the shell
� \ D of the conductor.

Theorem 1.2 Let u be the solution of either problem (1.2)–(1.4) or problem (1.5), and
let 
 be a connected component of class C2 of ∂G satisfying (1.7).

If there exists a function d : (0,+∞) → R satisfying (1.10), then � and D must
be concentric balls.

With the aid of a simple observation on the initial behavior of the solution u of problem
(1.5)(see Proposition E) as in the proof of Theorem 1.2 for problem (1.5)(see Sect.
4.3), Theorems A and B combine to make a single theorem.

Theorem 1.3 Let u be the solution of either problem (1.2)–(1.4) or problem (1.5), and
let 
 be a connected component of ∂G satisfying (1.7).

If there exists a function a : (0,+∞) → (0,+∞) satisfying (1.8), then � and D
must be concentric balls.

A second kind of result concerns multi-phase heat conductors where a connected
component of ∂� is a surface of the constant flow property or a stationary isothermic
surface. We obtain three symmetry theorems, one for the Cauchy–Dirichlet problem
(Theorem 1.4) and two for the Cauchy problem (Theorems 1.5 and 1.6), with different
regularity assumptions.

Theorem 1.4 Let u be the solution of problem (1.2)–(1.4), and let 
 be a connected
component of ∂�. Suppose that 
 is of class C6.

If there exists a function d : (0,+∞) → R satisfying (1.10), then � and D must
be concentric balls.

When D = ∅, 
 = ∂�, and σ is constant on R
N , the same overdetermined

boundary conditionofTheorem1.4has been introduced in [2,11] and similar symmetry
theorems have been proved by themethod ofmoving planes introduced by [24] and [1].
Theorem 1.4 gives a new symmetry result for two-phase heat conductors, in which that
method cannot be applied. Recently, an analogous problem was re-considered in [23]
in the context of the heat flow in smooth Riemannian manifolds: it was shown that the
same overdetermined boundary condition implies that ∂� must be an isoparametric
surface (and hence ∂� is a sphere if compactness is assumed). We remark that the
methods introduced in [23] cannot be directly applied to our two-phase setting due to
a lack of regularity.
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Theorem 1.5 Let u be the solution of problem (1.5), and let 
 be a connected compo-
nent of ∂�. Suppose that 
 is of class C6.

If there exists a function a : (0,+∞) → (0,+∞) satisfying (1.8), then � and D
must be concentric balls.

TheC6-regularity assumption of Theorems 1.4 and 1.5 does not seem very optimal,
but it is needed to construct the barriers where we use the fourth derivatives of the
distance function to the boundary. It can instead be removed for problem (1.5), in
particular the case in which σs = σm . This can be done by complementing the proof
of Theorem 1.4 with the techniques developed in [17].

Theorem 1.6 Set σs = σm and let u be the solution of problem (1.5). Let 
 be a
connected component of ∂�.

(a) If there exists a function a : (0,+∞) → (0,+∞) satisfying (1.8), then � and D
must be concentric balls.

(b) If N ≥ 3, suppose that
 is strictly convex. If there exists a function d : (0,+∞) →
R satisfying (1.10), then � and D must be concentric balls.

The rest of the paper is organized as follows. Section 2 is devoted to the proof of
Theorem 1.1, which is a combination of the implicit function theorem and techniques
pertaining to the realm of shape optimization. In Sect. 3, we give some preliminary
notations and recall some useful results from [21,22]. In Sect. 4, we shall carry out
the proofs of Theorems 1.2 and 1.3, based on a balance law, the short-time behavior
of the solution, and on the study of a related elliptic problem. The proof of Theorem
1.4 will be performed in Sect. 5: the relevant parabolic problem will be converted into
a family of elliptic ones, by a Laplace transform, and new suitable barriers controlled
by geometric parameters of the conductor will be constructed for the transformed
problem. The same techniques will also be used in Sect. 5.5 to prove Theorem 1.5.
Section 6 contains the proof of Theorem 1.6: here, due to the more favorable structure
of the Cauchy problem in hand, we are able to use the techniques of [17] to obtain
geometrical information.

2 Non-uniqueness for a Two-Phase Serrin’s Problem

Here, the proof of Theorem 1.1 will be obtained by a perturbation argument.
Let D,� ⊂ R

N be two bounded domains of class C2,α with D ⊂ �. We look
for a pair (D,�) for which the overdetermined problem (1.1) has a solution for some
negative constant d0. By evident normalizations, it is sufficient to examine (1.1) with
σs = 1 in the form

div(σ∇u) = βu − γ < 0 in �, (2.1)

u = 0 on ∂�, (2.2)

∂νu = −� on ∂�, (2.3)
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where β ≥ 0, γ > 0, and σ = σcXD+X�\D . By the divergence theorem, the constant
� is related to the other data of the problem by the formula:

� = 1

|∂�|
{

γ |�| − β

∫

�

u dx

}

; (2.4)

here, the bars indifferently denote the volume of � and the (N − 1)-dimensional
Hausdorff measure of ∂�.

It is obvious that, for all values of σc > 0, the pair (BR, B1) in the assumptions
of the theorem is a solution to the overdetermined problem (2.1)–(2.3) for some �.
We will look for other solution pairs of (2.1)–(2.3) near (BR, B1) by a perturbation
argument which is based on the following version of the implicit function theorem,
for the proof of which we refer to [20, Theorem 2.7.2, pp. 34–36].

Theorem C (Implicit function theorem) Suppose that F ,G, and H are three Banach
spaces, U is an open subset of F × G, ( f0, g0) ∈ U, and � : U → H is a Fréchet
differentiable mapping such that �( f0, g0) = 0. Assume that the partial derivative
∂ f �( f0, g0) of � with respect to f at ( f0, g0) is a bounded invertible linear trans-
formation from F toH.

Then there exists an open neighborhoodU0 of g0 inG such that there exists a unique
Fréchet differentiable function f : U0 → F such that f (g0) = f0, ( f (g), g) ∈ U,
and �( f (g), g) = 0 for all g ∈ U0.

2.1 Preliminaries

We introduce the functional setting for the proof of Theorem 1.1. Set D = BR and
� = B1. For α ∈ (0, 1), let φ ∈ C2,α(RN , R

N ) satisfy that Id+φ is a diffeomorphism
from R

N to R
N , and

φ = f ν on ∂D and φ = g ν on ∂�,

where Id denotes the identity mapping, f and g are given functions of class C2,α on
∂D and ∂�, respectively, and ν indistinctly denotes the outward unit normal to both
∂D and ∂�. Next, we define the sets

�g = (Id + φ)(�) and D f = (Id + φ)(D).

If f and g are sufficiently small, D f and �g are such that D f ⊂ �g .
Now, we consider the Banach spaces (equipped with their standard norms):

F =
{
f ∈ C2,α(∂D) : ∫

∂D f dS = 0
}
, G =

{
g ∈ C2,α(∂�) : ∫

∂�
g dS = 0

}
,

H =
{
h ∈ C1,α(∂�) : ∫

∂�
h dS = 0

}
.
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In order to be able to use Theorem C, we introduce a mapping � : F × G → H by

�( f , g) = {
∂νg u f ,g + � f ,g

}
Jτ (g) for ( f , g) ∈ F × G. (2.5)

Here, u f ,g is the solution of (2.1)–(2.2) with � = �g and σ = σc XD f +X�g\D f , νg
stands for the outward unit normal to ∂�g , and � f ,g is computed via (2.4), with
� = �g and u = u f ,g . Also, by a slight abuse of notation, ∂νg u f ,g means the
function of value

∇u f ,g(x + g(x) ν(x)) · νg(x + g(x) ν(x)) at any x ∈ ∂�,

where ν is the outward unit normal to ∂�. Finally, the term Jτ (g) > 0 is the tangential
Jacobian associated to the transformation x 
→ x + g(x) ν(x) (see [14, Definition
5.4.2, p. 190]): this term ensures that the image �( f , g) has zero integral over ∂� for
all ( f , g) ∈ F × G, as an integration of (2.3) on ∂�g requires, when � = � f ,g .

Thus, by definition, we have �( f , g) = 0 if and only if the pair (D f ,�g) solves
(2.1)–(2.3). Moreover, we know that the mapping � vanishes at ( f0, g0) = (0, 0).

2.2 Computing the Derivative of9

The Fréchet differentiability of� in a neighborhood of (0, 0) ∈ F ×G can be proved,
in a standardway, by following the proof of [14, Theorem 5.3.2, pp. 183–184], with the
help of the regularity theory for elliptic operators with piecewise constant coefficients.
In particular, the Hölder continuity of the first and second derivatives of the function
u f ,g up to the interface ∂D f , which is stated in [16, Theorem 16.2, p. 222], is obtained
by flattening the interface with a diffeomorphism of class C2,α as in [16, Chapter 4,
Sect. 16, pp. 205–223] or in [8, Appendix, pp. 894–900] and by using the classical
regularity theory for linear elliptic partial differential equations ( [3,12,16]).

We will now proceed to the actual computation of ∂ f �(0, 0). Since � is Fréchet
differentiable, ∂ f �(0, 0) can be computed as a Gâteaux derivative:

∂ f �(0, 0)( f ) = lim
t→0

�(t f , 0) − �(0, 0)

t
for f ∈ F .

From now on, we fix f ∈ F , set g = 0 and, to simplify notations, we will write
Dt , ut ,�(t) in place of Dt f , ut f ,0,�t f ,0; in this way,we can agree that D0 = D, u0 =
u, and so on. Also, in order to carry out our computations, we introduce some standard
notations, in accordance with [14] and [7]: the shape derivative of u is defined by

u′(x) = d

dt

∣
∣
∣
∣
t=0

ut (x) for x ∈ �. (2.6)

In particular, we will employ the use of the following characterization of the shape
derivative u′ of u. We refer to [5, Proposition 2.3] where the case β = 0 is analyzed,
and to [6, Theorem 2.5] where β < 0 is an eigenvalue. The case β > 0 can be treated
analogously and therefore the proof will be omitted.
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Lemma 2.1 For every f ∈ F , the shape derivative u′ of ut solves the following:

σ�u′ = βu′ in D ∪ (� \ D), (2.7)

[σ∂νu′] = 0 on ∂D, (2.8)

[u′] = −[∂νu] f on ∂D, (2.9)

u′ = 0 on ∂�. (2.10)

In the above, we used square brackets to denote the jump of a function across the
interface ∂D. More precisely, for any function ϕ we mean [ϕ] = ϕ+ − ϕ−, where the
subscripts + and − denote the relevant quantities in the two phases � \ D and D,
respectively, and the equality here is understood in the classical sense.

Lemma 2.2 For all f ∈ F we have �′(0) = 0.

Proof We rewrite (2.4) as

�(t)|∂�| − γ |�| = −β

∫

�

ut dS,

then differentiate and evaluate at t = 0. The derivative of the left-hand side equals
�′(0) |∂�|. Thus, we are left to prove that the derivative of the function defined by

I (t) =
∫

�

ut dx

is zero at t = 0.
To this aim, since ut solves (2.1) for D = Dt , we multiply both sides of this by ut

and integrate to obtain that

γ I (t) = γ

∫

�

ut dx = β

∫

�

u2t dx + σc

∫

Dt

|∇ut |2dx +
∫

�\Dt

|∇ut |2dx,

after an integration by parts. Thus, the desired derivative can be computed by using
Hadamard’s formula (see [14, Corollary 5.2.8, p. 176]):

γ I ′(0) = 2β
∫

�

uu′ dx + 2
∫

�

σ∇u · ∇u′ dx + σc

∫

∂D
(∂νu−)2 f dS

−
∫

∂D
(∂νu+)2 f dS = 2β

∫

�

uu′ dx + 2
∫

�

σ∇u · ∇u′ dx = 0.

Here, in the second equality, we used that ∂νu− and ∂νu+ are constant on ∂D and that
f ∈ F , while, the third equality ensues by integrating (2.7) against u. �
Theorem 2.3 The Fréchet derivative ∂ f �(0, 0) defines a mapping fromF toH by the
formula
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∂ f �(0, 0)( f ) = ∂νu
′,

where u′ is the solution of the boundary value problem (2.7)–(2.10).

Proof Since � is Fréchet differentiable, we can compute ∂ f � as a Gâteaux derivative
as follows:

∂ f �(0, 0)( f ) = d

dt

∣
∣
∣
∣
t=0

�(t f , 0) = d

dt

∣
∣
∣
∣
t=0

{∇ut (x) · ν(x) + �(t)} Jτ (0).

Since Jτ (0) = 1, the thesis is a direct consequence of Lemma 2.2 and definition (2.6).
Finally, the fact that this mapping is well defined (i.e., ∂νu′ actually belongs toH for
all f ∈ F) follows from the calculation

∫

∂�

∂νu
′ dS =

∫

�

div(σ∇u′) dx = β

∫

�

u′ dx = β I ′(0) = 0,

where we also used (2.7)–(2.10). �

2.3 Applying the Implicit Function Theorem

The following result clearly implies Theorem 1.1.

Theorem 2.4 There exists ε > 0 such that, for all g ∈ G with ‖g‖ < ε there exists a
unique f (g) ∈ F such that the pair (D f (g), �g) is a solution of the overdetermined
problem (2.1)–(2.3).

Proof This theorem consists of a direct application of Theorem C. We know that the
mapping ( f , g) 
→ �( f , g) is Fréchet differentiable and we computed its Fréchet
derivative with respect to the variable f in Theorem 2.3. We are left to prove that the
mapping ∂ f �(0, 0) : F → H, given in Theorem 2.3, is a bounded and invertible
linear transformation.

Linearity and boundedness of ∂ f �(0, 0) ensue from the properties of problem
(2.7)–(2.10).

We are now going to prove the invertibility of ∂ f �(0, 0). To this end we study the
relationship between the spherical harmonic expansions of the functions f and u′ (we
refer to [5, Sect. 4] where the same technique has been described in detail). Suppose
that, for some real coefficients αk,i the following holds

f (Rθ) =
∞∑

k=1

dk∑

i=1

αk,i Yk,i (θ), for θ ∈ S
N−1. (2.11)

Here Yk,i denotes the solution of the eigenvalue problem −�SN−1Yk,i = λkYk,i on
S
N−1, with k-th eigenvalueλk = k(N+k−2) ofmultiplicity dk . Under the assumption

(2.11), we can apply the method of separation of variables to get
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u′(rθ) =
∞∑

k=1

dk∑

i=1

αk,i sk(r)Yk,i (θ), for r ∈ (0, R) ∪ (R, 1) and θ ∈ S
N−1. (2.12)

Here sk denotes the solution of the following problem:

σ

{

∂rr sk + N − 1

r
∂r sk − k(k + N − 2)

r2
sk

}

= βsk in (0, R) ∪ (R, 1), (2.13)

sk(R
+) − sk(R

−) = ∂r u(R−) − ∂r u(R+), σc ∂r sk(R
−) = ∂r sk(R

+),

sk(1) = 0, ∂r sk(0) = 0,

where, by a slight abuse of notation, the letters σ and umean the radial functions σ(|x |)
and u(|x |), respectively. By (2.12) we see that ∂ f �(0, 0) preserves the eigenspaces of
the Laplace–Beltrami operator, and in particular, ∂ f �(0, 0) is invertible if and only if
∂r sk(1) �= 0 for all k ∈ {1, 2, . . .}. Let us show the latter. Suppose by contradiction that
∂r sk(1) = 0 for some k ∈ {1, 2, . . .}. Then, since sk(1) = 0, by the unique solvability
of the Cauchy problem for the ordinary differential equation (2.13), sk ≡ 0 on the
interval [R, 1]. Hence ∂r sk(R−) = 0. Multiplying (2.13) by r2 and letting r → 0
yield that sk(0) = 0. Therefore, since β ≥ 0, assuming that sk achieves either its
positive maximum or its negative minimum at a point in the interval (0, R] contradicts
equation (2.13). Thus sk ≡ 0 also on [0, R]. On the other hand, since σc �= 1, we see
that ∂νu+ − ∂νu− �= 0 on ∂D and hence sk(R−) �= 0, which is a contradiction. �

3 Preliminaries for Overdetermined Parabolic Problems

In this section, we introduce some notations and recall the results obtained in [21,22]
that will be useful in the sequel.

For a point x ∈ R
N and a number r > 0, we set: Br (x) = {y ∈ R

N : |y− x | < r}.
Also, for a bounded C2 domain � ⊂ R

N , κ1(y), . . . , κN−1(y) will always denote
the principal curvatures of ∂� at a point y ∈ ∂� with respect to the inward normal
direction to ∂�. Then, we set

�∂�(r , y) =
N−1∏

j=1

[
1/r − κ j (y)

]
for y ∈ ∂� and r > 0. (3.1)

Notice that, if Br (x) ⊂ � and Br (x)∩ ∂� = {y} for some y ∈ ∂�, then κ j (y) ≤ 1/r
for all j’s, and hence �∂�(r , y) ≥ 0.

The initial behavior of the heat content of such kind of ball is controlled by the
geometry of the domain, as the following proposition explains.

Proposition D [21, Proposition 2.2, pp. 171–172] Let x ∈ � and assume that Br (x) ⊂
� and Br (x) ∩ ∂� = {y} for some y ∈ ∂�. Let u be the solution of either problem
(1.2)–(1.4) or problem (1.5).
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Then we have

lim
t→+0

t−
N+1
4

∫

Br (x)

u(z, t) dz = C(N , σ )√
�∂�(r , y)

. (3.2)

Here, C(N , σ ) is the positive constant given by

C(N , σ ) =
⎧
⎨

⎩

2σ
N+1
4

s c(N ) f or problem (1.2)−(1.4),
2
√

σm√
σs+√

σm
σ

N+1
4

s c(N ) f or problem (1.5),

where c(N ) is a positive constant only depending on N.
When κ j (y) = 1/r for some j ∈ {1, . . . , N−1}, (3.2) holds by setting its right-hand

side to +∞
Notice that, if σs = σm , the constant for problem (1.5) is just half of that for problem
(1.2)–(1.4).

By examining the proof of Proposition D given in [21], we can also specify the
initial behavior of the solution of problem (1.5).

Proposition E [21] As t → +0, the solution u of problem (1.5) converges to the

number
√

σm√
σs+√

σm
, uniformly on ∂�.

Proof We refer to [21] for the relevant notations and formulas. In fact, the inequalities
[21, (22), p. 174] yield in particular that

(1 − ε)
μ

θ−
F−(0) − 2E1e

− E2
t ≤ u(x, t) ≤ (1 + ε)

μ

θ+
F+(0) + 2E1e

− E2
t

for every (x, t) ∈ ∂� × (0, tε].

Thus,

(1 − ε)
μ

θ−
F−(0) ≤ lim inf

t→0+ u(x, t) ≤ lim sup
t→0+

u(x, t) ≤ (1 + ε)
μ

θ+
F+(0)

for every ε > 0, and hence our claim follows by observing that

(1 − ε)
μ

θ−
F−(0) and (1 + ε)

μ

θ+
F+(0) →

√
σm√

σs + √
σm

as ε → +0,

since both F−(0) and F+(0) converge to F(0) = 1
2 as ε → +0. �

We conclude this section by recalling two results from [22]. The first one is a
lemma that, for an elliptic equation, states the uniqueness of the reconstruction of the
conductivity σ from boundary measurements.
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Lemma F [22, Lemma 3.1] Let � be a bounded C2-regular domain in R
N (N ≥ 2)

with boundary ∂�. Let D1 and D2 be two, possibly empty, bounded Lipschitz open
sets, each of which may have finitely many connected components. Assume that D1 ⊂
D2 ⊂ D2 ⊂ � and that both � \ D1 and � \ D2 are connected.

Let σ j : � → R ( j = 1, 2) be given by

σ j =
{

σc in D j ,

σs in � \ Dj ,

where σc, σs are positive constants with σc �= σs .
For a non-zero function g ∈ L2(∂�), let v j ∈ H1(�) ( j = 1, 2) satisfy

div(σ j∇v j ) = v j − 1 in � and σs∂νv j = g on ∂�. (3.3)

If v1 = v2 on ∂�, then v1 = v2 in � and D1 = D2.

The second result from [22] gives symmetry in a two-phase overdeterminedproblem
of Serrin type in a special regime. Some preliminary notations are needed.We let D be
a bounded open set of classC2, which may have finitely many connected components,
compactly contained in a ball Br (x) and such that Br (x) \ D is connected. Also, we
denote by σ : Br (x) → R the conductivity distribution given by

σ =
{

σc in D,

σs in Br (x) \ D,

where σc, σs are positive constants and σc �= σs .

Theorem G ([22, Theorem 5.1]) Let v ∈ H1(Br (x)) be the unique solution of the
following boundary value problem:

div(σ∇v) = βv − γ < 0 in Br (x) and v = c on ∂Br (x), (3.4)

where β ≥ 0, γ > 0 and c are real constants.
If v satisfies

σs ∂νv = d on ∂Br (x), (3.5)

for some negative constant d, then D must be a ball centered at x.

4 The Constant Flow Property in the Shell

In this section, we will carry out the proof of Theorem 1.2.
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4.1 Preliminary Lemmas

We start by a lemma that informs on the rough short-time asymptotic behavior of the
solution of either (1.2)–(1.4) or (1.5) away from ∂�. For ρ > 0, we use the following
notations:

�ρ = {x ∈ � : dist(x, ∂�) ≥ ρ} and �c
ρ = {x ∈ R

N \ � : dist(x, ∂�) ≥ ρ}.

Lemma 4.1 Let u be the solution of either problem (1.2)–(1.4) or (1.5).

(1) The following inequalities hold

0 < u(x, t) < 1 for every (x, t) ∈ � × (0,+∞) or (x, t) ∈ R
N × (0,+∞).

(2) For every ρ > 0, there exist two positive constants B and b such that

0 < u(x, t) < Be− b
t for every (x, t) ∈ �ρ × (0,+∞)

and, moreover, if u is the solution of (1.5), then

0 < 1 − u(x, t) < Be− b
t for every (x, t) ∈ �c

ρ × (0,+∞).

Here B and b depend only on N , σc, σs, σm, and ρ.
(3) The solution u of (1.5) is such that

lim|x |→∞(1 − u(x, t)) = 0 for every t ∈ (0,+∞).

Proof Claim (1) follows from the strong comparison principle.
To prove (2) and (3), we make use of the Gaussian bounds for the fundamental

solutions of parabolic equations due to Aronson [4, Theorem 1, p. 891](see also [10,
p. 328]). In fact, if g = g(x, ξ, t) is the fundamental solution of (1.2), there exist two
positive constants α and M only depending on N , σc, σs and σm such that

M−1t−
N
2 e− α|x−ξ |2

t ≤ g(x, ξ, t) ≤ Mt−
N
2 e− |x−ξ |2

αt (4.1)

for all x, ξ ∈ R
N and t ∈ (0,+∞).

When u is the solution of (1.5), 1 − u can be regarded as the unique bounded
solution of (1.5) with initial data X� in place of X�c . Hence we have from (4.1):

1 − u(x, t) =
∫

RN

g(x, ξ, t)X�(ξ) dξ ≤ Mt−
N
2

∫

�

e− |x−ξ |2
αt dξ.
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Since |x − ξ | ≥ ρ for every x ∈ �c
ρ and ξ ∈ �, it follows that

t−
N
2

∫

�

e− |x−ξ |2
αt dξ ≤ e− ρ2

2αt t−
N
2

∫

�

e− |x−ξ |2
2αt dξ ≤ (2πα)

N
2 e− ρ2

2αt ,

for every x ∈ �c
ρ , being � ⊂ R

N . Thus, for any fixed ρ > 0, the solution u of (1.5)
satisfies the inequality

1 − u(x, t) ≤ M(2πα)
N
2 e− ρ2

2αt for every (x, t) ∈ �c
ρ × (0,+∞),

which yields the second formula of (2), with B = M (2πα)
N
2 and b = ρ2/2α, and

(3), by the arbitrariness of ρ.
The first formula of (2) certainly holds for t ∈ (1,+∞), if we choose B > 0 so

large as to have that Be−b ≥ 1, since (1) holds. Therefore, it suffices to consider the
case in which t ∈ (0, 1].

Let ρ > 0, set

N = {x ∈ R
N : dist(x, ∂�) < ρ/2},

and define v = v(x, t) by

v(x, t) = μ

∫

N
g(x, ξ, t) dξ for every (x, t) ∈ R

N × (0,+∞).

Notice that v is the unique bounded solution of

vt = div(σ∇v) in R
N × (0,+∞) and v = μXN on R

N × {0}.

The number μ > 0 can be chosen such that

v ≥ 1 (≥ u) on ∂� × (0, 1],

because (4.1) implies that

v(x, t) ≥ μM−1t−
N
2

∫

N
e− α|x−ξ |2

t dξ ≥ μM−1t−
N
2

∫

Bρ/2(0)

e− α|ξ |2
t dξ

for (x, t) ∈ ∂� × (0,+∞). Thus, the comparison principle yields that

u ≤ v in � × (0, 1]. (4.2)
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On the other hand, it follows from (4.1) that

v(x, t) ≤ μMt−
N
2

∫

N
e− |x−ξ |2

αt dξ for (x, t) ∈ R
N × (0,+∞)

and hence, since |x − ξ | ≥ ρ/2 for every x ∈ �ρ and ξ ∈ N , we obtain that

v(x, t) ≤ μMt−
N
2 e− ρ2

8αt

∫

RN

e− |x−ξ |2
2αt dξ = μM(2πα)

N
2 e− ρ2

8αt

for every (x, t) ∈ �ρ × (0,+∞).
This inequality and (4.2) then yield the first formula of (2). �
Next lemma informs us that, as in the case of stationary level surfaces, surfaces

having the constant flow property satisfy a certain balance law.

Lemma 4.2 (A balance law) Let 
 be a connected component of class C2 of ∂G
satisfying (1.7). Set r0 = dist(
, ∂�)(> 0).

Let u be the solution of either problem (1.2)–(1.4) or (1.5). Then, (1.10) holds if
and only if there exists a function c : (0, r0) × (0,+∞) → R such that

∫

Br (x)
u(y, t) (y − x) · ν(x) dy = c(r , t) for every (x, r , t)∈ 
 × (0, r0)× (0,+∞),

(4.3)

where ν = ν(x) denotes the outward unit normal vector to 
 at x ∈ 
.

Proof Since 
 is compact, let p ∈ 
 be a point such that dist(p, ∂�) = r0. If (1.10)
holds, we have that

d(t) = σs∇u(p, t) · ν(p) = σs∇u(q, t) · ν(q) for every (q, t) ∈ 
 × (0,+∞).

(4.4)

Next, fix a q ∈ 
 and let A be an orthogonal matrix satisfying

Aν(p) = ν(q). (4.5)

From (4.4) and (4.5) we obtain that the function v = v(x, t), defined by

v(x, t) = u(x + p, t) − u(Ax + q, t) for (x, t) ∈ Br0(0) × (0,+∞),

is such that
∇v(0, t) · ν(p) = ∇u(p, t) · ν(p) − [AT∇u(q, t)] · ν(p)

= ∇u(p, t) · ν(p) − ∇u(q, t) · [A ν(p)]
= ∇u(p, t) · ν(p) − ∇u(q, t) · ν(q) = 0,

for every t > 0. Here, the superscript T stands for transpose.
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Now, since assumption (1.6) guarantees that Br0(p) and Br0(q) ⊂ � \ D, and
σ = σs in � \ D, we have that v satisfies the heat equation with constant conductivity
σs :

vt = σs�v in Br0(0) × (0,+∞).

Thus, also the function ∇v(x, t) · ν(p) satisfies the same equation and we have seen
that ∇v(0, t) · ν(p) = 0 for every t > 0. Hence, we can use a balance law (see [19,
Theorem 2.1, pp. 934–935] or [18, Theorem 4, p. 704]) to obtain that

∫

∂Br (0)

∇v(y, t) · ν(p) dSy = 0 for every (r , t) ∈ (0, r0) × (0,+∞)

or, by integrating this in r , that

∫

Br (0)

∇v(y, t) · ν(p) dy = 0 for every (r , t) ∈ (0, r0) × (0,+∞).

By the divergence theorem and again integrating in r , we then get

∫

Br (0)

v(y, t) y · ν(p) dy = 0 for every (r , t) ∈ (0, r0) × (0,+∞),

that is
∫

Br (p)

u(y, t)(y − p) · ν(p) dy =
∫

Br (q)

u(y, t)(y − q) · ν(q) dy

for every (q, r , t) ∈ 
 × (0, r0) × (0,+∞). (4.6)

Therefore, (4.3) ensues.
It is not difficult to show that (4.3) implies (1.10). �
The following lemma is decisive to prove Theorem 1.2. Among other things, it

states that, as in the case of stationary isothermic surfaces, also surfaces having the
constant flow property are parallel to a connected component of ∂�.

Lemma 4.3 Let u be the solution of either problem (1.2)–(1.4) or (1.5), and let 
 be a
connected component of class C2 of ∂G satisfying (1.7). Under the assumption (1.10)
of Theorem 1.2, the following assertions hold

(1) there exists a number r0 > 0 such that

dist(x, ∂�) = r0 for every x ∈ 
;

(2) 
 is a real analytic hypersurface;
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(3) there exists a connected component γ of ∂�, that is also a real analytic hypersur-
face, such that themapping γ � y 
→ x(y) ≡ y−r0 ν(y) ∈ 
 is a diffeomorphism;
in particular γ and 
 are parallel hypersurfaces at distance r0;

(4) it holds that

κ j (y) <
1

r0
for every y ∈ γ and j = 1, . . . , N − 1;

(5) there exists a number c0 > 0 such that �∂�(r0, y) = c0 for every y ∈ γ , where
�∂� is given in (3.1).

Proof We just have to prove assertion (1): the remaining ones then will easily follow
(Fig. 2).

Let r0 > 0 be the minimum of dist(x, ∂�) for x ∈ 
 and suppose it is achieved at
p; assume that there exists a point q∗ ∈ 
 such that

r0 < dist(q∗, ∂�).

Since Br0(q∗) ⊂ �, with the aid of Lemma 4.1 we have

lim
t→+0

t−
N+1
4

∫

Br0 (q∗)

u(x, t) (x − q∗) · ν(q∗) dx = 0. (4.7)

In view of (1.7), since r0 = dist(p, ∂�) = dist(∂G, ∂�) = dist(G, ∂�) and 
 is of
class C2, we can find a ball Bδ(z) ⊂ G satisfying

Bδ(z) ∩ ∂G = {p} and Bδ+r0(z) ⊂ �.

Fig. 2 The three-balls construction.
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Also, by setting p̂ = p + r0ν(p) (∈ ∂�) we have

Br0(p) ∩ ∂� = { p̂} and κ j ( p̂) ≤ 1

r0 + δ
<

1

r0
for j = 1, . . . , N − 1. (4.8)

Thus, Proposition D gives that

lim
t→+0

t−
N+1
4

∫

Br0 (p)

u(x, t) dx = C(N , σ )
√

�∂�(r0, p̂)
. (4.9)

On the other hand, by Lemma 4.1 and the fact that Br0(p) ∩ ∂� = { p̂}, we have

lim
t→+0

t−
N+1
4

∫

Br0 (p)\Bε( p̂)

u(x, t) dx = 0 for every ε > 0. (4.10)

Therefore, combining the last two formulas yields that

lim
t→+0

t−
N+1
4

∫

Br0 (p)

u(x, t)(x − p) · ν(p) dx = r0
C(N , σ )

√
�∂�(r0, p̂)

. (4.11)

In fact, for every ε > 0, we have

∣
∣
∣
∣t

− N+1
4

∫

Br0 (p)∩Bε( p̂)

u(x, t)(x − p̂) · ν(p) dx

∣
∣
∣
∣ ≤ εt−

N+1
4

∫

Br0 (p)

u(x, t) dx, (4.12)

∣
∣
∣
∣t

− N+1
4

∫

Br0 (p)\Bε( p̂)

u(x, t)(x − p̂) · ν(p) dx

∣
∣
∣
∣ ≤ 2r0t

− N+1
4

∫

Br0 (p)\Bε( p̂)

u(x, t) dx .

(4.13)

Moreover, since ( p̂ − p) · ν(p) = r0, we have that

t−
N+1
4

∫

Br0 (p)

u(x, t)(x − p) · ν(p) dx = r0 t
− N+1

4

∫

Br0 (p)

u(x, t) dx

+t−
N+1
4

∫

Br0 (p)\Bε( p̂)

u(x, t)(x− p̂) · ν(p) dx+t−
N+1
4

×
∫

Br0 (p)∩Bε( p̂)

u(x, t)(x− p̂) · ν(p) dx,
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for every t > 0. Therefore, combining (4.9), (4.10), (4.12), and (4.13) yields that

(r0 − ε)
C(N , σ )

√
�∂�(r0, p̂)

≤ lim inf
t→+0

t−
N+1
4

∫

Br0 (p)

u(x, t)(x − p) · ν(p) dx

≤ lim sup
t→+0

t−
N+1
4

∫

Br0 (p)

u(x, t)(x − p) · ν(p) dx ≤ (r0 + ε)
C(N , σ )

√
�∂�(r0, p̂)

for every ε > 0, which gives (4.11).
It is clear that (4.11) contradicts (4.7) and the balance law (4.3), and hence assertion

(1) holds true.
Now, once we have (1), we can apply the same argument as above to any other

point in 
. Thus, we know from (4.3), (4.8), and (4.11) that there exists a connected
component γ of ∂� satisfying (3), (4), and (5). The analyticity of γ follows from
(4) and (5). Indeed, by using local coordinates, the condition (5) with (4) can be
converted into a second-order analytic non-linear elliptic equation of Monge–Ampère
type, where (4) guarantees the ellipticity as is noted in [19, p. 945]. Hence (2) is
implied by (3) together with (4). �

4.2 Proof of Theorem 1.2 for Problem (1.2)–(1.4)

Let u be the solution of problem (1.2)–(1.4). By virtue of (1) of Lemma 4.1, we can
define the function v : � → R by the Laplace transform of 1 − u(x, ·) computed at
the complex parameter 1 + 0

√−1

v(x) =
∫ ∞

0
e−t [1 − u(x, t)] dt for x ∈ �, (4.14)

and set U = v on � \ D and V = v on D. Then, it is easy to show that

0 < U < 1 in � \ D, 0 < V < 1 in D, (4.15)

σs �U = U − 1 in � \ D, σc �V = V − 1 in D, (4.16)

U = V and σs ∂νU = σc ∂νV on ∂D, (4.17)

U = 0 on ∂�. (4.18)

Here, ν denotes the outward unit normal vector to ∂D at points of ∂D. The two
equations in (4.17) follow from the transmission condition satisfied by u on ∂D ×
(0,+∞) and involve the continuous extensions of the relevant functions up to ∂D.

Next, let γ be the connected component of ∂� whose existence is guaranteed
by Lemma 4.3. Claims (5) and (4) of Lemma 4.3 also tell us that γ is an elliptic
Weingarten-type surface, that is its principal curvatures satisfy a symmetric constraint
which can be recast as an elliptic partial differential equation, considered by Aleksan-
drov’s sphere theorem [1, p. 412], and hence γ is a sphere. Consequently, 
 is a sphere
concentric with γ ; we can always assume that the origin is their common center.
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By combining the initial and boundary conditions of problem (1.2)–(1.4) and the
assumption (1.10) with the real analyticity in x of u over � \ D, we see that u is
radially symmetric in x on � \ D for every t > 0. Here, we used the fact that � \ D
is connected. Moreover, in view of (1.3), we can distinguish two cases:

(I) � is a ball; (II) � is a spherical shell.

We first show that case (II) never occurs. Suppose that � = Bρ+ \ Bρ− where
Bρ+ and Bρ− are two balls centered at the origin with ρ+ > ρ− > 0. By the radial
symmetry of u on�\D for every t > 0, being�\D connected, there exists a function
Ũ : [ρ−, ρ+] → R such that U (x) = Ũ (|x |) for x ∈ � \ D. Moreover, by (4.16), Ũ
is extended as a solution of

σs

(

∂rr Ũ + N − 1

r
∂r Ũ

)

= Ũ − 1 for all r > 0,

where ∂r and ∂rr stand for first and second derivatives with respect to the variable r =
|x |. That means thatU is extended as a radially symmetric solution of σs�U = U −1
in R

N \ {0}. By applying Hopf’s boundary point lemma (see [13, Lemma 3.4, p. 34])
to U , we obtain from (4.15), (4.16), and (4.18) that

σs�U = U − 1 < 0 in �, (4.19)

∂νU = −∂r Ũ (ρ−) < 0 on ∂Bρ− and ∂νU = ∂r Ũ (ρ+) < 0 on ∂Bρ+ . (4.20)

Now, we use Lemma F. We set D1 = ∅, D2 = D, and consider two functions
v j ∈ H1(�) ( j = 1, 2) defined by

v1 = U and v2 =
{
U in � \ D,

V in D.

In view of (4.16), (4.17), (4.18), (4.19), and (4.20), Lemma F gives that v1 = v2 in �

and ∅ = D, which is a contradiction. Thus, case (II) never occurs.
It remains to consider case (I), that is we assume that � is a ball BR centered at the

origin for some radius R > 0.
Since u is radially symmetric on � \ D for every t > 0 and � \ D is connected,

by applying Hopf’s boundary point lemma to the radially symmetric function U , we
obtain from (4.15), (4.16), and (4.18) that

σs ∂νU = σs ∂r Ũ (R) < 0 on ∂BR . (4.21)

Thus, in view of (4.15), (4.16), and (4.18), we see that the function v defined in
(4.14) satisfies

div(σ∇v) = v − 1 < 0 in BR and v = 0 on ∂BR .
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Therefore, with the aid of (4.21), we can apply Theorem G to v to see that D must be
a ball centered at the origin.

4.3 Proof of Theorem 1.2 for Problem (1.5)

Let u be the solution of problem (1.5). We proceed similarly to Sect. 4.2. This time,
by virtue of (1) of Lemma 4.1, we define a function v : R

N → R by

v(x) =
∫ ∞

0
e−t [1 − u(x, t)] dt for every x ∈ R

N (4.22)

and, in addition to the already defined functions U and V , we set W = v on R
N \ �.

While U and V satisfy (4.15)-(4.17), W satisfies

0 < W < 1 in R
N \ �, (4.23)

σm �W = W in R
N \ �, (4.24)

W = U and σm ∂νW = σs ∂νU on ∂�, (4.25)

lim|x |→∞ W (x) = 0. (4.26)

Similarly to Sect. 4.2, ν denotes the outward unit normal vector to ∂D or to ∂�, and
both (4.17) and (4.25) are consequences of the transmission conditions satisfied by u
on ∂D× (0,+∞) and on ∂�× (0,+∞), respectively. Also, to obtain (4.26), we used
Lemma 4.1 together with Lebesgue’s dominated convergence theorem.

Again, by Aleksandrov’s sphere theorem [1, p. 412], Lemma 4.3 yields that γ and

 are concentric spheres, with a common center that we can place at the origin. Being
� \ D connected, the radial symmetry of u in x on � \ D for every t > 0 is obtained
similarly, by combining the initial condition in (1.5) and the assumption (1.10) with
the real analyticity in x of u over � \ D.

Moreover, in view of the initial condition of problem (1.5) and Proposition E, we
can prove that � is radially symmetric and hence u is radially symmetric in x on
R

N \ D for every t > 0. Indeed, if there exists another connected component γ̂ of
∂�, which is not a sphere centered at the origin, we can find a number ρ > 0 and two
points p ∈ ∂�, q ∈ � \ D such that

∂Bρ ⊂ �, p ∈ γ̂ ∩ ∂Bρ, and q ∈ (� \ D) ∩ ∂Bρ,

being Bρ the ball centered at the origin with radius ρ (Fig. 3).
Then, since u is radially symmetric on � \ D for every t > 0, we have

u(p, t) = u(q, t) for every t > 0. (4.27)

On the other hand, by PropositionE lim
t→+0

u(p, t) =
√

σm√
σs+√

σm
and by (2) of Lemma4.1

lim
t→+0

u(q, t) = 0. These contradict (4.27). Oncewe know that� is radially symmetric,
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Fig. 3 The ball construction for the Cauchy problem

the radial symmetry of u on R
N \ D for every t > 0 follows from the initial condition

in (1.5).
Thus, as in the previous case, we can distinguish two cases:

(I) � is a ball; (II) � is a spherical shell.

We first show that case (II) never occurs. With the same notations as in Sect. 4.2,
we set � = Bρ+ \ Bρ− . Since u is radially symmetric in x on R

N \ D for every t > 0,
so is W on R

N\�. Observe from (4.23) and (4.24) that

�W > 0 in Bρ− and R
N \ Bρ+ .

Therefore, in view of (4.26), the strong maximum principle tells us that the positive
maximum value of W on Bρ− or on R

N \ Bρ+ is achieved only on ∂Bρ− or ∂Bρ+ ,
respectively. Hence, since W is radially symmetric, Hopf’s boundary point lemma
yields that

∂νW < 0 on ∂Bρ− and ∂Bρ+ . (4.28)

As in Sect. 4.2, U is extended as a radially symmetric solution of σs �U = U − 1
in R

N \ {0}. Then, it follows from (4.28), (4.15), and (4.25) that both (4.19) and (4.20)
also hold true. Therefore, with the aid of Lemma F, by the same argument as in the
proof in Sect. 4.2, we obtain a contradiction, and hence case (II) never occurs.

It remains to consider case (I). As in Sect. 4.2, we set � = BR . Since u is radially
symmetric in x on R

N\D for every t > 0, W is also radially symmetric on R
N\�.

Observe from (4.23) and (4.24) that

�W > 0 in R
N \ BR .

Therefore, in view of (4.26), the strongmaximum principle informs us that the positive
maximum value ofW onR

N \BR is achieved only on ∂BR . Hence, sinceW is radially
symmetric, Hopf’s boundary point lemma yields that
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∂νW < 0 on ∂BR . (4.29)

Combining (4.29) with (4.25) implies that both U and ∂νU are constant on ∂BR .
Therefore, with the aid of Theorem G and by the same argument as in the proof in
Sect. 4.2, we conclude that D must be a ball centered at the origin.

4.4 Proof of Theorem 1.3

In view of the statements of Theorems 1.3, A and B, it suffices to show that Theorem
B can be improved as in Theorem A. Namely, in proposition (b) of Theorem B we
may show that the assumption that σs = σm is not necessary.

Let in fact u be the solution of problem (1.5). Aleksandrov’s sphere theorem [1, p.
412] and [21, Lemma 2.4, p. 176] yield that γ and 
 are concentric spheres. Then,
with the aid of the initial condition of problem (1.5) and Proposition E, we can observe
that the rest of the proof runs as in the proof given in Sect. 4.3.

5 The Constant Flow Property at the Boundary

In this section, we will give the proofs of Theorems 1.4 and 1.5 .
Let u be the solution of problem (1.2)–(1.4), and let 
 be a connected component

of ∂�. We introduce the distance function δ = δ(x) of x ∈ R
N to 
 by

δ(x) = dist(x, 
) for x ∈ R
N . (5.1)

Since 
 is of class C6 and compact, by choosing a number δ0 > 0 sufficiently small
and setting

N0 = {x ∈ � : 0 < δ(x) < δ0}, (5.2)

we see that

N0 ∩ D = ∅, δ ∈ C6(N0), (5.3)

for every x ∈ N0 there exists a unique y = y(x) ∈ 
 with δ(x) = |x − y|, (5.4)

y(x) = x − δ(x)∇δ(x) for all x ∈ N0, (5.5)

max
1≤ j≤N−1

κ j (y) <
1

2δ0
for every y ∈ 
. (5.6)

The principal curvatures κ j of 
 are taken at y with respect to the inward unit normal
vector −ν(y) = ∇δ(y) to ∂�.
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5.1 Introducing a Laplace Transform

Let us define the function w = w(x, λ) by the Laplace–Stieltjes transform of u(x, ·)
or the Laplace transform of ut (x, ·) restricted on the semiaxis of real positive numbers

w(x, λ) = λ

∫ ∞

0
e−λt u(x, t) dt for (x, λ) ∈ � × (0,+∞).

Notice that letting λ = 1 gives

w(x, 1) = 1 − v(x) for every x ∈ �, and w(x, 1) = 1 −U (x) for x ∈ � \ D,

(5.7)

where v is the function defined by (4.14) and U = v|�\D .
Next, we observe that for every λ > 0

div(σ∇w) − λw = 0 and 0 < w < 1 in �, (5.8)

w = 1 on ∂�. (5.9)

Hence, by the assumption (1.10), there exists a function d0 : (0,∞) → R satisfying

σs ∂νw(x, λ) = d0(λ) for every (x, λ) ∈ 
 × (0,+∞). (5.10)

Moreover, it follows from the first formula of (2) of Lemma 4.1 that there exist two
positive constants B̃ and b̃ satisfying

0 < w(x, λ) ≤ B̃e−b̃
√

λ for every (x, λ) ∈ (∂N0 ∩ �) × (0,+∞). (5.11)

5.2 Two Auxiliary Functions

Since w satisfies (5.9) and �w − λ
σs

w = 0 in N0, in view of the formal WKB

approximation of w for sufficiently large τ = λ
σs

w(x, λ) ∼ e−√
τδ(x)

∞∑

j=0

A j (x)τ
− j

2 with some coefficients {A j (x)},

we introduce two functions f± = f±(x, λ) defined for (x, λ) ∈ N0 × (0,+∞) by

f±(x, λ) = e
−

√
λ√
σs

δ(x)
[

A0(x) +
√

σs√
λ
A±(x)

]

,
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where

A0(x) =
⎧
⎨

⎩

N−1∏

j=1

[
1 − κ j (y(x))δ(x)

]
⎫
⎬

⎭

− 1
2

,

A±(x) =
∫ δ(x)

0

[
1

2
�A0(x(τ )) ± 1

]

exp

(

−1

2

∫ δ(x)

τ

�δ(x(τ ′))dτ ′
)

dτ,

with x(τ ) = y(x) − τ ν(y(x)) for 0 < τ < δ(x). It is shown in [13, Lemmas 14.16
and 14.17, p. 355] that

|∇δ(x)| = 1 and �δ(x) = −
N−1∑

j=1

κ j (y(x))

1 − κ j (y(x))δ(x)
.

With these at hand, by straightforward computations we obtain that

∇δ · ∇A0 = −1

2
(�δ)A0, ∇δ · ∇A± = −1

2
(�δ)A± + 1

2
�A0 ± 1 in N0, (5.12)

σs� f± − λ f± = σse
−

√
λ√
σs

δ(x)
(

∓2 +
√

σs√
λ

�A±
)

in N0, (5.13)

and

A0 = 1, A± = 0, f± = 1 on 
, (5.14)

for every λ > 0.
Since 
 is of class C6 and compact, we observe from (5.3)–(5.6) that

|�A±| ≤ c0 in N0,

for some positive constant c0. Therefore, it follows from (5.13), (5.11) and the defini-
tion of f± that there exist two positive constants λ0 and η such that

σs� f+ − λ f+ < 0 < σs� f− − λ f− in N0, (5.15)

max{| f+|, | f−|, w} ≤ e−η
√

λ on ∂N0 ∩ �, (5.16)

for every λ ≥ λ0.

5.3 Construction of Barriers forw(x,�)

Let ψ = ψ(x) be the unique solution of the Dirichlet problem:

�ψ = 0 in N0, ψ = 0 on 
, ψ(x) = 2 on ∂N0 ∩ �.
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For every (x, λ) ∈ N0 × (0,+∞), we define the two functions w± = w±(x, λ) by

w±(x, λ) = f±(x, λ) ± ψ(x)e−η
√

λ.

Then, in view of (5.8), (5.9), (5.14), (5.15), and (5.16), we notice that

σs�w+ − λw+ < 0 = σs�w − λw < σs�w− − λw− in N0,

w+ = w = w− = 1 on 
,

w− < w < w+ on ∂N0 ∩ �,

(5.17)

for every λ ≥ λ0, and hence we get that

w− < w < w+ in N0,

for every λ ≥ λ0, by the strong comparison principle. Hence, combining these inequal-
ities with (5.17) and (5.10) yields that

σs ∂νw+ ≤ d0(λ) ≤ σs ∂νw− on 
, (5.18)

for every λ ≥ λ0. Thus, by recalling the definition of w±, an easy computation with
(5.14) and (5.12) at hand gives that

1

2
�δ −

√
σs√
λ

(
1

2
�A0 + 1

)

+ (∂νψ) e−η
√

λ

≤ d0(λ)

σs
−

√
λ√
σs

≤ 1

2
�δ −

√
σs√
λ

(
1

2
�A0 − 1

)

− (∂νψ) e−η
√

λ on 
, (5.19)

for every λ ≥ λ0.

5.4 Conclusion of the Proof of Theorem 1.4

By observing that the expression in the middle of the chain of inequalities (5.19)
is independent of the choice of the point x ∈ 
 and both sides of (5.19) have the
common limit 1

2�δ(x) as λ → +∞, we see that �δ must be constant on 
. Since

�δ = −
N−1∑

j=1
κ j on 
, Aleksandrov’s sphere theorem [1, p. 412] implies that 
 must

be a sphere.
Once we know that 
 is a sphere, by (5.8), (5.9), and (5.10), with the aid of the

uniqueness of the solution of the Cauchy problem for elliptic equations, we see that v
is radially symmetric with respect to the center of 
 in � \ D for every λ > 0, since
� \ D is connected. In particular, (5.7) yields that the function U defined in Sect. 4.2
is radially symmetric in�\D. Therefore, sinceU = 0 on ∂� and�\D is connected,
the radial symmetry ofU implies that � must be either a ball or a spherical shell. The
rest of the proof runs as explained in Sect. 4.2.
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5.5 Cauchy Problem: A Stationary Isothermic Surface at the Boundary

The techniques just established help us to carry out the proof of Theorem 1.5.
Let u be the solution of problem (1.5), and let 
 be a connected component of ∂�.

Similarly to Sect. 5.1, we define the function w = w(x, λ) by

w(x, λ) = λ

∫ ∞

0
e−λt u(x, t) dt for (x, λ) ∈ R

N × (0,+∞).

Item (1) of Lemma 4.1 ensures that 0 < w < 1 in R
N × (0,+∞).

In view of the assumption (1.8), we set

ã(λ) = λ

∫ ∞

0
e−λt a(t) dt for λ ∈ (0,+∞).

Then, since 0 < a(t) < 1 for every t > 0, it follows from Proposition E that

0 < ã(λ) < 1 for every λ > 0 and ã(λ) →
√

σm√
σs + √

σm
as λ → +∞. (5.20)

Since w = ã on 
 × (0,+∞), barriers forw in the inner neighborhoodN0 of 
 given
by (5.2) can be constructed by modifying those in Sects. 5.2 and 5.3. To be precise,
we set

w±(x, λ) = ã(λ) f±(x, λ) ± ψ(x)e−η
√

λ for (x, λ) ∈ N0 × (0,+∞),

where f±, ψ, η are given in Sects. 5.2 and 5.3. Then, in view of (5.8), (5.14), (5.15),
and (5.16), for every λ ≥ λ0 we verify that

σs�w+ − λw+ < 0 = σs�w − λw < σs�w− − λw− in N0,

w+ = w = w− = ã(λ) on 
,

w− < w < w+ on ∂N0 ∩ �.

These inequalities imply that

w− < w < w+ in N0,

by the strong comparison principle, and hence

∂νw+ ≤ (∂νw)− ≤ ∂νw− on 
, (5.21)

for every λ ≥ λ0, where by (∂νw)− we mean the normal derivative of w on 
 from
inside of�. Thus, by recalling the definition ofw±, a routine computation with (5.14)
and (5.12) at hand gives that
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σs ã(λ)

2
�δ − ã(λ)

σs
√

σs√
λ

(
1

2
�A0 + 1

)

+ σs (∂νψ) e−η
√

λ

≤ σs (∂νw)− − ã(λ)
√

σs
√

λ

≤ σs ã(λ)

2
�δ − ã(λ)

σs
√

σs√
λ

(
1

2
�A0 − 1

)

− σs (∂νψ) e−η
√

λ on 
, (5.22)

for every λ ≥ λ0. Since �δ = −
N−1∑

j=1
κ j on 
, from (5.22) and the second formula in

(5.20), after some simple manipulation we obtain that

−σs ã(λ)

2

N−1∑

j=1

κ j=σs (∂νw)−−ã(λ)
√

σs
√

λ+O
(
1/

√
λ
)
as λ → +∞. (5.23)

Next, we consider the positive function 1 − w in the outer neighborhood of 


defined by Ñ0 = {x ∈ R
N \ � : 0 < δ(x) < δ0}. By similar arguments as above,

since 1− w = 1− ã(λ) on 
 × (0,+∞), we can construct barriers for 1− w on Ñ0,
with the aid of the second formula of (2) of Lemma 4.1 and by replacing σs, ã(λ)with
σm, 1 − ã(λ). Thus, by proceeding similarly, we infer that

+σm [1 − ã(λ)]
2

N−1∑

j=1

κ j = σm (∂νw)+ − [1 − ã(λ)]√σm
√

λ + O(1/
√

λ)

as λ → +∞, (5.24)

where (∂νw)+ denotes the normal derivative from outside of � and we have taken
into account both the sign of the mean curvature and the normal direction to 
.

Now, with the aid of the transmission condition σs (∂νw)− = σm (∂νw)+ on 
, by
subtracting (5.23) from (5.24), we conclude from (5.20) that

N−1∑

j=1

κ j = 2
ã(λ)

√
σs − [1 − ã(λ)]√σm

σm [1 − ã(λ)] + σs ã(λ)

√
λ + O(1/

√
λ) as λ → +∞.

Since the first term at the right-hand side is independent of the choice of the point
x ∈ 
, this formula implies that the first term has a finite limit as λ → ∞ which is
independent of x ∈ 
. Therefore, the mean curvature of 
 must be constant, that is,

 must be a sphere.

Once we know that 
 is a sphere, combining (1.8) with the initial condition in
(1.5) yields that, for every t > 0, u is radially symmetric in x with respect to the
center of 
 in the connected component of R

N \ � with boundary 
. Hence, by the
transmission conditions on ∂� (⊃ 
), the function w satisfies the overdetermined
boundary conditions on 
 for every λ > 0. Then, since σs�w − λw = 0 in � \ D
and � \ D is connected, with the aid of the uniqueness of the solution of the Cauchy
problem for elliptic equations, we see that w is radially symmetric with respect to the
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center of 
 in � \ D for every λ > 0. This means that u is radially symmetric in x
with respect to the center of 
 in

(
� \ D

) × (0,+∞). Moreover, as in the proof of
Theorem 1.2 for problem (1.5), in view of the initial condition in (1.5) and Proposition
E, we can prove that � is radially symmetric and hence u is radially symmetric in x
with respect to the center of 
 on R

N \ D for every t > 0.
The rest of the proof runs as that of Theorem 1.2 for problem (1.5) in Sect. 4.3. �

6 The Cauchy ProblemWhen �s = �m

Here, we present the proof of Theorem 1.6, that is u is the solution of problem (1.5)
with σs = σm . For a connected component 
 of ∂�, set the positive constant

ρ0 = dist(
, D). (6.1)

6.1 Proof of Proposition (a)

Let p, q ∈ 
 be two distinct points and introduce a function v = v(x, t) by

v(x, t) = u(x + p, t) − u(x + q, t) for (x, t) ∈ Bρ0(0) × (0,+∞).

Then, since σ = σs in R
N \ D, we observe from (1.8) that

vt = σs�v in Bρ0(0) × (0,+∞) and v(0, t) = 0 for every t > 0.

Therefore we can use a balance law (see [19, Theorem 2.1, pp. 934–935] or [18,
Theorem 4, p. 704]) to obtain that

∫

Br (0)

v(x, t) dx = 0 for every (r , t) ∈ (0, ρ0) × (0,+∞).

Thus, in view of the initial condition of problem (1.5), letting t → +0 yields that

|�c ∩ Br (p)| = |�c ∩ Br (q)| for every r ∈ (0, ρ0), (6.2)

where the bars indicate the Lebesgue measure of the relevant sets. This means that �
c

is uniformly dense in 
 in the sense of [17, (1.4), p. 4822].
Therefore, [17, Theorem 1.2, p. 4823] applies and we see that 
 must have constant

mean curvature. Again, Aleksandrov’s sphere theorem implies that 
 is a sphere. By
combining (1.8) and the initial condition in (1.5) with the real analyticity in x of u
over R

N \ D, we see that u is radially symmetric in x with respect to the center of 


on
(
R

N \ D
)× (0,+∞). Here we used the fact that R

N \ D is connected. Then, the
rest of the proof runs as in the proof of Theorem 1.2 for problem (1.5) in Sect. 4.3.

123

Author's personal copy



Two-Phase Heat Conductors with a Surface...

6.2 Proof of Proposition (b)

With the aid of a balance law (see [19, Theorem 2.1, pp. 934–935] or [18, Theorem 4,
p. 704]) and the assumption (1.10), by the same argument as in the proof of Lemma
4.3, we obtain the same equality as (4.6)

ν(p) ·
∫

Br (p)

u(x, t)(x − p) dx = ν(q) ·
∫

Br (q)

u(x, t)(x − q) dx

for (r , t) ∈ (0, ρ0) × (0,+∞),

where p, q ∈ 
 and ν is the outward unit normal to ∂�. Then, in view of the initial
condition in (1.5), letting t → +0 yields that for every p, q ∈ 


ν(p) ·
∫

�c∩Br (p)

(x − p) dx = ν(q) ·
∫

�c∩Br (q)

(x − q) dx for r ∈ (0, ρ0). (6.3)

The use of the techniques established in [17] gives the asymptotic expansion

ν(p) ·
∫

�c∩Br (p)

(x − p) dx = ωN−1

N 2 − 1
r N+1

[

1 − C(p)

8(N + 3)
r2 + o(r2)

]

as r → 0,

(6.4)

where ωN−1 is the volume of the unit sphere S
N−2 ⊂ R

N−1 and

C(p) =
⎧
⎨

⎩

3
∑N−1

i=1 κ2
i (p) + 2

∑

i< j
κi (p)κ j (p) if N ≥ 3,

3κ2
1 (p) if N = 2.

(6.5)

Indeed, by introducing the spherical coordinates as in [17, (5.1), p. 4835] where we
choose the origin as the point p ∈ 
 and ν as the outward unit normal vector to ∂�,
[17, (5.5), p. 4835] is replaced with

ν(p) ·
∫

�c∩Br (p)

(x − p) dx =
∫

SN−2

r∫

0

ρN

π/2∫

θ(ρ,v)

sin φ cosN−2 φ dφdρdSv

= 1

N − 1

r∫

0

ρN
∫

SN−2

cosN−1 θ(ρ, v) dSvdρ, (6.6)

where dSv denotes the surface element on S
N−2. Since ∂� is of class C2, [17, (5.4),

p. 4835] is replaced with
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θ(ρ, v) = θ1(v)ρ + o(ρ) as ρ → 0.

Thus, using the formula

cosN−1 θ = 1 − N − 1

2
θ2 + O(θ4) as θ → 0,

yields that

cosN−1 θ(ρ, v) = 1 − N − 1

2
θ1(v)2ρ2 + o(ρ2) as ρ → 0. (6.7)

In the beginning of [17, p. 4837] we know that

θ1(v) = P2(v) = −1

2

N−1∑

j=1

κ j (p)v
2
j for v ∈ S

N−2
(
⊂ R

N−1
)

,

since [17, (5.6), p. 4836] is replaced with

ϕ(y) = P2(y) + o(|y|2) as y → 0 in R
N−1.

With [17, Lemma 5.4, p. 4837] in hand, we calculate that for N ≥ 3

∫

SN−2

θ1(v)2 dSv = 1

4

∫

SN−2

⎛

⎝
N−1∑

j=1

κ j (p)v
2
j

⎞

⎠

2

dSv

= 1

4

⎧
⎪⎨

⎪⎩

N−1∑

j=1

κ2
j (p)

∫

SN−2

v4j dSv + 2
∑

i< j

κi (p)κ j (p)
∫

SN−2

v2i v
2
j dSv

⎫
⎪⎬

⎪⎭

= ωN−1

4(N 2 − 1)

⎧
⎨

⎩
3
N−1∑

j=1

κ2
j (p) + 2

∑

i< j

κi (p)κ j (p)

⎫
⎬

⎭
, (6.8)

and for N = 2
∫

SN−2

θ1(v)2 dSv = 1

2
κ2
1 (p). (6.9)

Therefore it follows from (6.6), (6.7), (6.8), and (6.9) that (6.4) holds true. Thus, by
combining (6.4) with (6.3), we reach the conclusion that C(p) must be constant on 
.

If N = 2, this directly implies that 
 is a (closed) curve of constant curvature,
hence a circle. If N ≥ 3, the equation that C(p) is a constant on 
 means that 


is an elliptic Weingarten-type surface considered by Aleksandrov [1, p. 412], where
the ellipticity follows from the strict convexity min

1≤ j≤N−1
κ j > 0. Thus Aleksandrov’s
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sphere theorem implies that 
 must be a sphere. Then, we conclude by the same
reasoning as in the proof of Theorem 1.2 for problem (1.5) in Sect. 4.3.
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