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ABSTRACT

We study the formation and evolution of a turbulent spectrum of Alfvén waves driven by reflection off the
solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvénic
critical point. The background solar wind is assigned and two-dimensional shell models are used to describe
nonlinear interactions. We find that the turbulent spectra are influenced by the nature of the reflected waves.
Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves,
respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum.
The turbulent dissipation is found to account for at least half of the heating required to sustain the background
imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating
below 1.5 solar radii. Therefore, reflection and reflection-driven turbulence are shown to play a key role in
the acceleration of the fast solar wind and origin of the turbulent spectrum found at 0.3 AU in the heliosphere.
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1. INTRODUCTION

Recent high-resolution observations from Hinode (De
Pontieu et al. 2007) and the coronal multi-channel polarimeter
(CoMP) (Tomczyk et al. 2007) have shown that the solar atmo-
sphere is pervaded by Alfvénic (or kink-like, e.g., Van Doors-
selaere et al. 2008) oscillations: observed in jets, spicules, or in
coronal loops, velocity and magnetic field oscillations (δb, δu)
are coupled and propagate at speeds close to the Alfvén speed.
Far from the Sun, between 0.3 AU and several AU, in situ data
show that in the frequency range 10−4 Hz � f � 10−2 Hz, fluc-
tuations in magnetic field and velocity δb and δu possess many of
the properties of outward-propagating “spherically polarized”
Alfvén waves, namely, quasi-incompressibility, correlated os-
cillations, and a constant (total) magnetic field intensity, while
at the same time revealing their turbulent nature through a well-
developed power-law frequency spectrum, with a break separat-
ing different power law slopes of −1 and −1.6 which moves to
lower frequencies with increasing distance from the Sun (Bavas-
sano et al. 1982; Tu et al. 1984). The δu · δb correlation, upon
which the propagation direction determination is made, depends
on the frequency considered and varies with distance (Bavas-
sano et al. 2000a, 2000b) and latitude (Grappin 2002), typically
in the range 1/2 < |(δu ·δb/

√
4πρ)/(δu2 +δb2/4πρ)| < 1 (per-

fect correlation corresponding to 1). These facts suggest that the
inward traveling wave-mode component, required for nonlinear
couplings between incompressible fluctuations, must indeed be
present.

This component might be generated locally between 0.3 AU
and 1 AU by shear, compressible or pick-up ion interactions, or
it could be already formed in the sub-Alfvénic corona and, later
on, nonlinearly advected into the heliosphere by the solar wind,
the hypothesis we consider here.

The dynamics inside the Alfvénic point region is of primary
importance to understand the origin of the spectrum one finds at
0.3 AU and to determine whether it has any role in accelerating
the solar wind. The variation of the propagation speed induced
by density gradients in the stratified corona and accelerating so-

lar wind causes outward Alfvén waves to be reflected, predom-
inantly at lower frequencies, hence triggering the incompress-
ible cascade. The power dissipated by the cascade contributes to
coronal heating, also modifying the overall turbulent pressure
gradient, fundamental to the acceleration of the fast solar wind.

While there are several studies on the linear propagation
and reflection of Alfvén waves in the sub-Alfvénic corona and
solar wind (Hollweg 1978; Heinemann & Olbert 1980; Velli
1993; Hollweg & Isenberg 2007), excepting phenomenological
models with an essentially dimensional estimate of the role of
turbulent heating (Hollweg et al. 1982; Dmitruk et al. 2001;
Cranmer & van Ballegooijen 2005; Verdini & Velli 2007) very
few of them have considered nonlinear interactions. Velli et al.
(1989, 1990) studied the turbulent cascade sustained by reflected
waves in the super-Alfvénic solar wind, while Dmitruk et al.
(2002) considered the same mechanism in the sub-Alfvénic
corona below 3 R�, hence neglecting the solar wind.

In this Letter, we will extend these studies following the
development of the turbulent cascade from the base of the
corona up to 17 R�, well beyond the Alfvénic critical point
(located at about 13 R� in the solar wind model adopted). Direct
numerical simulations are still prohibitively costly in terms
of computational time, so nonlinear interactions are simulated
using a two-dimensional shell model (Buchlin & Velli 2007)
which simplifies nonlinear interactions but still allows four
decades in the perpendicular wavenumber space to be covered
while rigorously treating the propagation and reflection of waves
along the radial mean magnetic field.

2. MODEL DESCRIPTION

The equations describing the propagation of Alfvén waves
in an inhomogeneous medium are derived from magneto-
hydrodynamics (MHD), assuming that the large-scale fields are
stationary and separating the time-fluctuating fields from the
large-scale averages (Heinemann & Olbert 1980; Velli 1993).
Therefore, the large-scale magnetic field, bulk wind flow, and
density (B,U, ρ, respectively) appear as specified coefficients
in the MHD equations for the fluctuations.
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Figure 1. Root-mean-squared amplitudes of the mother wave Z+ and the reflected waves Z− in km s−1 (left and right panels, respectively) as a function of heliocentric
distance and time (in unit of τcr), along with the outgoing and ingoing characteristics U ± Va (red curves). Two different paths of the Z− can be distinguished in the
right panel: one associated with its phase speed (U − Va , negative below the Alfvénic critical point at ≈ 13 R�) and the other associated with reflection from the Z+

which forces the fluctuations to follow the outgoing wave (with phase speed U + Va).

We consider a magnetic flux tube centered in a polar coro-
nal hole, which expands super-radially with a (nondimen-
sional) area A(r) = r2f (r) first prescribed by Kopp & Holzer
(1976) and Munro & Jackson (1977). Distances are normal-
ized to the solar radius, and the coefficients are given by
r0 = 1.31, σ = 0.5, fmax = 7.26 (respectively, the location,
width, and asymptotic value of the super-radial expansion) so
that A(1) = 1. The field becomes B(r) = B�/A(r) where
we take B� = 10 G. The wind speed and density U (r), ρ(r)
are obtained solving the one-dimensional momentum equation
with an assigned temperature T (r), T� = 4105 K and a nu-
merical density at the coronal base n� = 5107 cm−3 (see
Verdini & Velli 2007 and references therein for details on the
equation and on the temperature profile). The resulting wind
is supersonic far from the Sun with U1 AU ≈ 750 km s−1 and
n1AU ≈ 3 cm−3. The Alfvén critical point (ra) is at about 13 R�,
the sonic critical point is at about 1.9 R�, the Alfvén speed
Va = B/

√
4πρ at the base is Va,� ≈ 1000 km s−1 and has a

maximum Va,max ≈ 3500 km s−1 at r = 1.5 R�. At the end of
the domain (17 R�) U ≈ 740 km s−1 and Va ≈ 630 km s−1.

We assume δu to be incompressible and transverse with re-
spect to B. The momentum and induction equations for δu and δb
are written in terms of the Elsässer fields Z± = δu∓δb/

√
4πρ,

corresponding to Alfvén waves which propagate respectively
outward and inward in the solar wind reference frame.

Substituting the nonlinear terms, which act in planes perpen-
dicular to the radial direction, with a two-dimensional MHD
shell model representation (in the form given by Biskamp
1994) and assuming radial propagation finally yields the model
equations for Z± = Z±(r, k⊥) = Z±

n (r):

∂Z±
n

∂t
+ (U ± Va)

∂Z±
n

∂r
+

1

2
(U ∓ Va)

(
d log Va

dr
+

d log A

dr

)
Z±

n

− 1

2
(U ∓ Va)

(
d log Va

dr

)
Z∓

n = −k2
n

(
ν+Z±

n + ν−Z∓
n

)
+ ikn(T±

n )∗. (1)

The complex scalar values, un = (Z+
n + Z−

n )/2, bn = (Z−
n −

Z+
n )/2, represent the velocity and magnetic (in velocity units)

field fluctuations corresponding to the scale λn = λ02−n =
2π/kn, n is the shell index, and T ±

n accounts for nonlinear
interactions of the form Z+

l Z−
m , with l, m = n±1, n±2. Finally,

ν± = (ν ±η)/2 are combinations of the kinematic viscosity and
the magnetic resistivity (we take η = ν).

Simulations are carried out with the code Shell-Atm
5

(Buchlin & Velli 2007). The advection terms in Equation (1)

5 Modified to include the wind spherical expansion.

are computed with a second-order upwind scheme (Fromm
scheme) which allows a good conservation of the phase of the
fluctuation. Time is advanced with a third-order Runge–Kutta
for the nonlinear part of the equations. The radial domain is
decomposed in ∼25,000 planes over a nonuniform grid while
21 shells are used for the nonlinear interactions. Transparent
boundary conditions are imposed at the top for both waves, and
at the bottom for the Z−. Here, all the gradients are artificially
set to zero, in order to avoid reflections. Energy is injected in
the domain imposing the amplitude Z+

n,� = fn(t) at the first
three shells corresponding to length scale of the order of 8.000–
34.000 km (λ0,� = 0.02 R� in the shell model), with f (t) a
function with a time correlation and periodicity τ ∗ ≈ 1000 s.
The form of the function is given in Buchlin & Velli (2007);
here it is important to note that despite the correlation time is
only 1000 s, some low-frequency fluctuations are injected for
long time series (as in the present simulation). Simulations last
about 20 crossing timescales, τcr = ∫ 17 R�

R�
≈ 7000 s, and time-

averaged quantities are computed on the last 10τcr, during which
the system has an approximate stationary state.

3. REFLECTION AND NONLINEARITIES

Given that we start with an initial flux of Z+ at the coronal
base, reflection is the only trigger for nonlinear interactions.
In Figure 1, the root-mean-squared (rms) amplitudes |Z±| =√∑

n |Z±
n |2 are plotted as a function of time and heliocentric

distance. Two components of the reflected waves are clearly
visible in the Z− contours: a “classical” component Z−

class, which
propagate with the expected U − Va phase speed (negative
below the Alfvénic critical point, ra ≈ 13 R�) and an
“anomalous” component Z−

anom, which travels with the same
speed as the mother wave, U + Va . As shown analytically
and numerically (Velli et al. 1990; Hollweg & Isenberg 2007)
this “anomalous” component is the direct product of reflection.
Generally, in the presence of density gradients, for small values
of the ratio ε = α/ω, typical of the upper corona, with
α = τ−1

R = |(U ∓ Va)V ′
a/Va| in Equation (1), each field can

be decomposed in a primary and secondary component. A Z+

primary component is injected at the base, while the Z− is
made up of only the secondary component, given by reflection.
In each plane, as the Z+ arrives, the secondary component can
be seen as the result of a forcing term given by ≈ αZ+, hence
producing a wave which travels with the same phase speed and
of the above amplitude. The value Z− = εZ+ follows naturally
by finding the “forced” solution to the linearized equation for
Z−. At a later time, as the Z+ has propagated away, the forcing
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Figure 2. Energy spectra E±
k (solid and dashed lines, respectively) as a function

of the perpendicular wavenumber in four different planes, as indicated at the
bottom left of each panel (r = R/R�). Spectra are averaged in time and
normalized to ≈ 1025 cm3 s−2, wavenumbers to R−1

� . The thin lines are power
law with the indicated slopes, plotted for reference.

disappears and the secondary component propagates backward
with the classical phase speed. When a Z+ pulse wave is excited
in the corona, Z− appears as a halo spreading backward from
the mother Z+ wave. Nonlinear interactions modifies the above
picture, acting as a local (in a given plane) source for the Z−

n

which is uncorrelated with respect to that given by reflection
and hence generating waves propagating with classical phase
speed U − Va , i.e., a primary component.

Inward propagating waves have a very long propagation time
at ra that slows down the overall relaxation toward a steady
state: for example, in Figure 1 the increase of the Z− amplitude
at t ≈ 8τcr results from the superposition of the Z−

anom with the
backward propagating Z−

class produced at t ≈ 3τcr.
The different nature of the reflected waves influences the

spectral energy transfer. Generally speaking, while the wave
amplitudes increase with distance the nonlinear timescales
τ±

nl = (knZ
∓
n )−1 decrease, following the reflection coefficient

and the flux tube expansion. At small wavenumbers τ−
nl < τ +

nl,
the energy transfer is more efficient for the reflected waves,
although the Z+ contribute more to the total energy dissipation.
As a matter of fact, the Z− develop an inertial range in the
whole domain and the resulting cascade is more “aged.” Their
dynamics is governed by the nonlinear interactions which have
shorter timescales (as Z+ > Z−) and act for longer periods, the
Z− having a smaller propagation speed.

The contribution of coherent interactions Z+Z−
anom in shaping

the energy spectra E±
k = |Z±

n |2/(4kn) can be seen in the low
corona, before 1.2 R� (left panels of Figure 2). In fact at
1.09 R�, assuming waves of period T = 1000 s, ε ≈ 0.07
(εmax = 0.16 at the coronal base), hence in the presence of
lower frequency fluctuations (injected by the forcing) reflection
is relatively high. At about 1.5 R�, Va has a maximum and
reflection vanishes, so that the Z− are not produced locally
but rather propagate from above. This inhibits the spectral
energy flux of Z+ that becomes negative at large scales. The
inverse spectral transfer is responsible of the flatter part of the
E+ spectrum one finds at small k⊥. Further out reflection is
negligible and the spectra are the remnant of those produced
in the inner layers, showing a slow evolution toward the
asymptotic state in which E+ � 3E−. The spectral energy
flux is given by the interactions Z+Z−

class that are subject
to the “Alfvén effect” (a longer cascade timescale due to
the nonlinear interactions between wavepackets propagating
in opposite directions), producing the same spectral slopes
−5/3 for E± (right panels of Figure 2).

Note that the largest perpendicular scale is proportional to the
flux tube width, λ0(r) = λ0,�

√
A(r), hence the same number

of shells spans a k⊥ interval that shifts to smaller values with
increasing r.

The asymptotic slope −5/3 and that of the reflection-
dominated spectra can be deduced from the expression of
spectral energy flux of the shell model (a1 = 11/24, a2 =
1 − a1, a3 = −15/24),

Π±
n = −Im

[
knZ

+
n

(
a1Z

+
n+1Z

−
n+2 + a2Z

−
n+1Z

+
n+2

)
+ kn−1Z

+
n+1

(
a2Z

+
n−1Z

−
n + a3Z

−
n−1Z

+
n

) ]
. (2)

When reflection is negligible one can assume that the Z+

and Z− are uncorrelated 〈Z+Z−∗〉t ≈ 0. Assuming a power
law for the spectral energies, E±

n ∝ (kn/k0)p± , substituting
Z±

n = 2(knE
±
n )1/2 in Equation (2) one finds that Π±

n is
independent of the shell index n when p+ = p− = −5/3. For
a given plane, it implies a constant normalized cross helicity
σc = (E+ − E−)/(E+ + E−) in the inertial range, with a cross
helicity spectrum Hc = E+ − E− of the same slope as E+, in
contrast to EDQNM closure models, which, including nonlocal
interactions in Fourier space, predict a distinct steeper spectrum,
Hc ∝ k−2 (Grappin et al. 1983). From the evolution of the
spectra (right panels) one can see that the normalized cross
helicity decreases with r because of two factors, the general
increase of the total energy and the decrease of Hc at all scales.
The former is due to the approximate conservation of the total
wave action density. The latter results from the competition
of the linear coupling (reflection), which forces Z− � Z+ for
low-frequency fluctuations, with the nonlinear coupling, which
damps the nondominant wave population, the Z− (Dmitruk
et al. 2001). Indeed the E± spectra look the same at small
wavenumbers (corresponding to n = 0, 1, 2) in which low-
frequency fluctuations reside.

When reflection is high the two fields are strongly coupled
and one can assume that the growth of Z−

n has contributions
both from the nonlinear cascade and direct generation through
reflection ≈ εnZ

+
n . The reflected contribution shares the phase

properties of Z+
n so interactions due to reflection are coherent

below 1.2 R� and the cascade may be isotropic for small
wavenumbers in the k⊥–k|| plane. For the first seven shells (2
orders of magnitude), one would find ωn = knVa , εn ∝ λ−n

and the following scaling for the spectra E+ ∝ k−1, E− ∝ k−3

(Velli et al. 1990). If the nonlinear cascade is somehow inhibited,
keeping fixed the total energy in the parallel wavenumbers, low
frequencies are confined to smaller n and εn ∝ λ−np with p < 1,
yielding a steeper (flatter) spectrum for E+ (E−) compared to
the isotropic case. In the present simulations, ε1.09 R� ∝ λ0.7 for
n < 8 which yields p+ = 1.2, p− = 2.6 as in the bottom left
panel of Figure 2.

The resulting turbulent heating is computed from Equation
(1) multiplied by (Z±

n )∗ and summed over the shell index.
The total energy dissipation per unit mass H = Q/ρ =
1/2ν

∑
n k2

n(|Z+
n |2 + |Z−

n |2) increases in the low corona and
decreases exponentially in the sub-Alfvénic region of the wind,
as expected. For δu� ≈ 49 km s−1 (solid line in Figure 3), it is
also very close to the heating required to sustain the specified
background wind (red line in Figure 3): the location and height
of the peak coincide, although more energy is dissipated in the
upper corona. This would produce a faster wind, not altering too
much the mass flux, since the peak of the dissipation is close to
the sonic critical point (Hansteen et al. 1999).

For smaller values of δu� a better agreement is found in the
decreasing part, the rapid increase in the low corona is still
reproduced but the peak intensity is not attained. Despite the
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Figure 3. Time-averaged heating per unit mass as a function of distance for
different root-mean-squared amplitudes at the coronal base Z+�. Also plotted in
red is the heating function necessary to sustain the background specified solar
wind. H is in units of ≈ 3 × 1010cm2 s−3.

fact that the spectra and the spectral fluxes possess the same
properties, for δu� ≈ 45 and 42 km s−1 the peak intensity
decreases by a factor 1/4 and 1/2, respectively (dashed and
dotted line in Figure 3). It turns out that the amount of dissipation
is very sensitive to the level of velocity fluctuations at the
base of the corona. In fact, δu is determined by the injection
of Z+ at the coronal base but also by the response of the
atmosphere and by the nonlinear interactions (the level of Z−).
In contrast the peak dissipation seems to scale linearly with
the rms amplitude Z+

� although further studies (dependence
on the frequency, on the nonlinear interactions in the shell
model, on the imposed wind) are necessary to define the scaling
precisely.

4. DISCUSSION

We have studied the propagation, reflection, and nonlinear
interaction of Alfvén waves from the base of the corona up
to 17 solar radii, well beyond the Alfvénic critical point. For
the first time two-dimensional shell models have been applied
to account for nonlinear interactions in magnetically open
regions on the Sun, such as coronal holes. Thanks to such
a simplification, compared to MHD or reduced MHD direct
numerical simulations, it is possible to follow the development
of a turbulent spectrum in the expanding solar wind, where
waves are continuously reflected by the gradients in mean
fields. Reflected waves are made of two components, one
propagating with the characteristic phase speed U − Va (Z−

class)
and the other following the path of the outgoing wave with
speed U + Va (Z−

anom), a confirmation of previous linear results
(Velli et al. 1989; Hollweg & Isenberg 2007) which hold in a
similar way also in the nonlinear regime. For typical coronal
parameters, we find Z− = ε(r, ω)Z+ ∝ V ′

aZ
+, in contrast to

Z− ∝ λ0V
′
a (independent of Z+) found in a strong turbulence

regime (Dmitruk et al. 2002) in which Z−, λ0 → 0. Differences
arise because the above limits impose a timescale ordering
τ−

nl << τ +
nl � τR < τcr which is not satisfied in our simulation,

basically because Z−
� 0 even in case in which the outer scale

of turbulence does not follow the flux tube expansion (similar
to the limit λ0 → 0).

Close to the coronal base one can distinguish the contribution
to the spectral slope of the coherent nonlinear interactions
Z−

anomZ+, which give E+ ∝ k−1.2, and the one from the
incoherent nonlinear interaction Z−

classZ
+, giving E± ∝ k−5/3

(in this shell model, which includes nonlinear interactions
only locally in Fourier space). The resulting spectra change
with distance, starting from a coherent-interaction-dominated
spectrum at the coronal base and evolving toward the asymptotic

Kolmogorov spectra at greater distance, where reflection is
negligible. According to this model, outside the Alfvénic critical
point, the turbulent spectra have already lost any feature acquired
in the low corona. Note that this is referred to perpendicular
wavenumber spectra and not to the frequency spectra, which by
contrast are almost unchanged, since their evolution is limited
to the first solar radius above the coronal base.

Turbulent dissipation is remarkably high in the low corona.
Depending on the injected energy an almost complete or partial
matching is found with the “theoretical” heating, that is the one
required to form the imposed background solar wind. The best
agreement is found for δu� ≈ 50 km s−1 which is at the limit
of observational constraints (Chae et al. 1998). Nonetheless,
even for more conservative values δu� ≈ 40 km s−1, turbulent
dissipation accounts for half of the above theoretical heating,
maintaining the same profile (i.e., a peak at the sonic point). This
implies that the role of coherent interactions is fundamental in
shaping the heating function and that turbulence and turbulent
heating cannot be neglected when studying the acceleration of
the solar wind.

The peak dissipation seems to scale linearly with the rms
amplitude Z+

� although a proof of the precise scaling would
require further studies. We finally observe that if the lower
boundary is shifted to the base of the chromosphere, hence
including the transition region, a stronger dissipation rate is
expected to be found at the transition region and in the low
corona. The Alfvén speed is smaller below the transition region
but its gradients are higher, increasing the amount of energy
residing in the anomalous reflected component which, having
more time to interact with its mother wave, might increase the
spectral energy transfer.
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