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ABSTRACT 

Recent advances in pharmacogenomics have generated a wealth of data of different types whose 

analysis have helped in the identification of signatures of different cellular sensitivity/resistance 

responses to hundreds of chemical compounds. Among the different data types, gene expression 

has proven to be the more successful for the inference of drug response in cancer cell lines. 

Although effective, the whole transcriptome can introduce noise in the predictive models, since 



specific mechanisms are required for different drugs and these realistically involve only part of 

the proteins encoded in the genome.  

We analyzed the pharmacogenomics data of 961 cell lines tested with 265 anti-cancer drugs and 

developed different machine learning approaches for dissecting the genome systematically and 

predict drug responses using both drug-unspecific and drug-specific genes. These methodologies 

reach better response predictions for the vast majority of the screened drugs using tens to few 

hundreds genes specific to each drug instead of the whole genome, thus allowing a better 

understanding and interpretation of drug-specific response mechanisms which are not necessarily 

restricted to the drug known targets. 

  

INTRODUCTION 

The identification of genomic and molecular features that are responsible for a particular clinical 

outcome is one of the goals of cancer research for precision medicine1. Not only specific features 

can be discovered as biomarkers for resistance or sensitivity to a particular drug, but 

combinations of those same genomic and molecular features can be used to predict the effect of a 

drug on a patient2. 

  

Recently, different studies have screened a large number of cancer cell lines with hundreds of 

different compounds and characterized their mutation profile, DNA methylation status, copy 

number alterations and gene expression in order to discover genomic features associated to a 

specific drug response3–6. 

This wealth of data gave rise to a number of different methods capable of predicting the effect of 

a drug on different cancer cell lines, to a certain extent, using different predictive models, e.g. 



kernel methods, support vector regression, neural networks and random forests7–17. These works 

tackle the dual problem of improving the prediction of drug response in different cell lines while 

at the same time trying to identify the genomic and molecular markers underpinning specific 

tumors, representing a valuable resource in translational applications. 

  

Integration of different data types has been observed to improve the prediction of drug response4, 

although possibly introducing redundancy in the information used for the predictive model9. 

From these works gene expression has emerged as the data type with the best predictive 

capability for the inference of drug response in different cell lines. The high dimensionality of 

gene expression datasets has to be taken into account when building predictive models18. 

Currently,  the determination of the best combination of informative genes is a promising 

approach for the improvement of drug response prediction19-21. However this type of studies 

cannot be applied extensively on data generated from primary tumor samples, therefore most 

methods are trained and tested on small datasets of cancer cell lines, or built for few drugs, or 

focus on limited groups of genes which are often not effective in the prediction of drug 

response22. 

  

In this work we show how known drug targets, and their interactome and functional context, do 

not generally hold a good predictive power. We therefore aimed at improving the prediction of 

drug response in cancer cell lines by systematically searching for informative genes to be used as 

features in drug-unspecific and drug-specific predictive models. Following the hypothesis that 

the proteome is not involved in its entirety in the response to a given drug, we selected a smaller 

set of informative genes that better recapitulate drug response mechanisms. We exploited two 



different approaches for the gene selection: first, we selected genes whose expression profiles 

show high variance in a dataset of nearly 1000 different cancer cell lines each treated with more 

than 250 different drugs, then we tried to select informative genes ad hoc for each screened drug, 

hence reducing, on average, the number of genes by two orders of magnitude. Both approaches 

outperform already available methods in the prediction of the resistance/sensitivity of cancer cell 

lines and both reduce the search space in terms of genes considered in the predictive model. We 

then show how the proposed approach can provide additional details on the response 

mechanisms of each single drug by providing both specific informative genes and unique drug-

genes associations that represent a valuable starting point for follow-up experiments testing 

novel drug targets for anti-cancer treatment. 

   

RESULTS 

Gene expression has been demonstrated to hold the best predictive power for pan-cancer drug 

response compared to other types of data (e.g. mutations, copy number alterations and 

methylation data) which in turn were able to improve the predictive models in a cancer-specific 

fashion4 but could also represent a source of redundant information with gene expression9. In this 

work we show that gene expression data can be analyzed to systematically select subsets of 

informative genes that can be used for the prediction of pan-cancer drug response in terms of 

IC50 (drug concentration that reduces cell viability by 50%). We explore the predictive power of 

known drug targets, their close physical interactors and the pathways in which they are involved. 

We present two approaches which improve existing methods on a dataset of pharmacogenomics 

data of 961 cancer cell lines screened with 265 drugs4. We finally show how even though drugs 

of the same classes share similar profiles of resistance/sensitivity response across different cell 



lines, they rarely determine a drug-class-associated model able to predict the response of each 

drug in the same class.  

  

Contribution of known drug targets and of their known interaction partners to the cellular 

drug response 

In a recent pharmacogenomics study a panel of 265 drugs was screened on 1001 cancer cell 

lines, for which gene expression, methylation, copy number alterations and single nucleotide 

variants were determined4. Most of the tested drugs (178) have known targets, which can be 

single proteins, groups of proteins, or, more broadly, pathways and cellular processes (e.g. DNA 

replication). However, we observed that the gene expression, quantified in 961 screened cell 

lines, of the known drug targets shows no correlation with the IC50 of the drugs on the same 

cells, meaning that the drug targets’ expression profiles possess poor capability of predicting the 

drug response (Figure 1A). Despite gene expression showing the best predictive power in the 

original paper4, the effect of a drug on its target could also be altered by the pathogenic variants 

on the target protein (e.g. a mutation in the drug binding site). To some extent it is possible to 

predict the response to a particular drug by analyzing the state of germline and somatic 

variants23. However, we observed that for only 5 drugs out of 178 the presence of a pathogenic 

variant in the drug targets was found to be associated to resistance/sensitivity in the cell lines 

(Mann-Whitney U test, adjusted p<0.05), number that increases to 10 when considering the 

422679 mutations in the genome of all cancer cell lines (Mann-Whitney U test, adjusted p<0.05, 

highlighted points in Figure 1A). As observed in a previous study18, multi-gene predictors 

perform significantly better than single gene predictors, and the determination of the best 

combination of informative genes represents an ongoing and promising source of prediction 



improvement19-21. A first attempt used functional linked networks of genes centered on driver 

kinases in cancer cell lines, however the approach was focused on a small set of cell lines and 

drugs, reaching limited capability and performance22. We therefore tried to extend the analysis to 

the context of the drug targets, in terms of physical interactome24 and functional pathways25. 

We applied an Elastic Net Regression (ENR), a linear modeling that solves the limitations of 

both LASSO and Ridge regressions that has been already successfully used for similar 

problems5,9,10, using the gene expression of a set of genes as features to predict the drug response 

in terms of IC50 (see Methods). The performance of ENR and of a non-linear approach, based on 

Random Forest, on this dataset has been already explored leading to comparable results4, with 

the former allowing a more straightforward interpretation of the models.  The set of genes for 

which we computed the correlation between IC50 and gene expression profiles is firstly 

composed by the drug target and its first neighbors in its physical interactome (P1), then 

extended to the second (P2) and finally to the third neighbors (P3). As comparison we considered 

the whole genome, the set of genes for which the expression has been measured, as features of 

the predictive model, comparing the results with those obtained by Iorio et al.4, that reached an 

average Pearson R of 0.42 between experimentally measured and predicted IC50 (Rpred-obs). Even 

though we observed that extending the neighborhood of the drug targets to second and third 

neighbors was improving the performance, these attempts reached a significantly lower Rpred-obs 

(0.22, 0.32 and 0.36 for respectively P1, P2 and P3 sets consisting of 23, 172 and 745 genes on 

average for each drug) than using the whole genome (Figure 1B and Supplementary Table S1A). 

Moreover we observed a comparable performance with sets of random genes of the same size 

(Mann-Whitney U test, p≥0.05, dashed lines in Figure 1B), and this further demonstrates the 

paucity of information provided by the physical interactome around the drug targets in predicting 



its response. Another different, and possibly more biologically meaningful, selection of the 

analyzed genes associated to the drug targets could take into account the pathways in which they 

are involved. Hence, for each drug we tried separately (F1), and then merged into a unique gene 

set (F2), the genes in the associated pathways. We observed slightly better performances than 

selecting the genes from the physical interactome (Rpred-obs of 0.36 and 0.39 respectively for the 

F1 and F2 sets consisting of 87 and 737 genes on average for each drug, Supplementary Table 

S1A); the F2 set of genes reached better performance than the whole genome for 20 drugs out of 

the 178 considered in this analysis. However the whole genome remained the best predictive set 

of genes (Figure 1B). A complete average performance comparison, using the same training and 

test sets in five 10-fold cross-validations after permuting the initial dataset, of all the 

combinations of gene sets (P1, P2, P3 and F2) and three different prediction methods (Elastic 

Net Regression, Random Forest and Support Vector Regression) can be found in Supplementary 

Table S1B. From this we can conclude that even though single genes can be found associated to 

drug response mechanisms, single-gene predictors based on either gene expression or presence-

absence of variants in the drug targets cannot reliably predict the drug response in cancer cell 

lines. Moreover a multi-gene predictor based on the gene expression of known targets of anti-

cancer drugs and on their physical/functional context, do not hold enough predictive power and 

is outperformed by a predictive model based on the whole genome. The fact that a random 

selection of genes allows to predict drug response with results comparable to the ones obtained 

with a selection of genes centered on the drug target is likely due to the fact that there are more 

genes regulating drug response other than the known drug targets and that an optimal gene 

combination able to predict a drug response must be sought with a more systematic approach. 

We designed two different approaches for the a priori selection of subsets of informative genes 



whose expression alone could provide a better estimate of IC50 values: i) an unspecific selection 

of genes to be used for every drug (termed DUG, Drug-Unspecific Genes), ii) a drug-specific 

subset of response-associated genes (termed DSG, Drug-Specific Genes) that can reflect drug 

peculiarities and different mechanisms of action and response (Figure 2). 

  

Predicting drug response using Drug-Unspecific Genes 

We considered the variance of the gene expression in order to reduce the number of genes used 

as features in a Drug-Unspecific Gene (DUG) predictive model (Figure 2). We gave low priority 

to the genes with an expression that does not change significantly among the hundreds of 

different cancer cell lines and are therefore unable to discriminate well the different cancer cell 

line response. For each of the 17419 genes in the panel4 we ranked the variance of their 

expression profile in training cell lines. The top n genes (different n values were evaluated, as 

explained in the Methods section) were then used as features in a machine learning method to 

predict the IC50 for each tested drug in the test cell lines. The top 5000 genes were selected as 

the optimal gene set since adding 5000 additional genes did not result in a noticeable 

improvement in the Rpred-obs (0.43±0.03 against 0.43±0.03, Supplementary Table S2C) and in 

mean absolute error (MAE of 0.95±0.03 against 0.95±0.03) at the cost of doubling the number of 

genes, therefore diluting the genes more associated with drug response, and increasing the 

calculation time. The selected genes were then clustered by Pearson correlation (with a threshold 

of 0.8) of the gene expression IC50 profiles across the 1001 cell lines in order to remove 

redundancy. This resulted in a list of 4804 genes (DUG selected during the 10-fold cross-

validation) that led to a performance of Rpred-obs 0.48 using a Support Vector Regression with 

Gaussian Kernel in a ten-fold cross-validation. Other tested methods, Random Forest and Elastic 



Net Regression, did not lead to optimal results (Supplementary Table S2C, Supplementary Table 

S2D for average performances using the same training and test sets in five 10-fold cross-

validations after permuting the initial dataset). This final gene set is unspecific and has been used 

for all the drugs in the panel (drug-unspecific genes set, termed DUG, listed in Supplementary 

Table S2A). With this method 120 drugs out of 265 had a significantly better performance (t-test 

adjusted p<0.05) than using the whole genome as feature set, which achieved a lower average 

Rpred-obs of 0.43. 

For example, it was possible to have a great improvement in the prediction of the cellular 

response for drugs like Imatinib (Rpred-obs of 0.5 against the Rpred-obs of 0.34 reached using the 

whole genome, Supplementary Table S3). A functional enrichment analysis (see Methods) of 

this set of 4804 DUG revealed their involvement in general cellular functions, from the 

organization of the extracellular matrix, cell development and proliferation, to cell adhesion and 

migration and finally immune response (Supplementary Table S2B). 

  

Predicting drug response using Drug-Specific Genes 

Although the previously described approach achieved a better prediction of the drug response 

with a reduced number of genes, their number is still too high to narrow down the list of 

pathways associated to the specific mechanisms of response to each drug, moreover the same 

subset of genes is used for every drug. We therefore created subsets of genes that are specific for 

each drug (termed Drug-Specific Genes, or DSG); these genes should be selected if they are 

observed as linked to the response of that particular drug over the whole set of cancer cell lines 

(Figure 2). A DSG was then selected for a drug if its expression profile correlated (Pearson 

R>0.4) with the IC50 profile of the drug over the portion of the dataset of cancer cell lines 



selected as training set (see Methods). The genes selected for a specific drug (DSG) were then 

used as features in the training of Elastic Net Regression (ENR) model4. The ENR was then 

tested on the cell lines in the test set (see Methods). We randomly permuted 10000 times the cell 

line dataset for each drug, therefore creating each time a slightly different set of selected genes, 

training and test sets, averaging out deviations due to cell line ordering and systematic errors. On 

average, we selected 558 genes for each of the 223 drugs for which it was possible to find drug-

specific genes (Supplementary Table S4A) therefore reducing the number of features to be used 

in the machine learning and improving the prediction of the drug response over using the whole 

genome with an average Rpred-obs of 0.45 (Figure 3A and Supplementary Table S3). While we 

observed an improvement in the prediction of drug response when using a SVR instead of an 

ENR with DUG, we observed no improvement with SVR coupled with DSG in terms of Rpred-

obs (Mann-Whitney p<0.05, Supplementary Table S4B for average performances using the same 

training and test sets in five 10-fold cross-validations after permuting the initial dataset). This 

performance is comparable to the DUG approach even though this one uses on average one order 

of magnitude less genes (Figure 4), therefore prioritizing informative genes that, in our opinion, 

will be useful to guide hypothesis-driven experiments aimed at detailing all the cellular pathways 

involved in the response to a particular drug. In order to evaluate the robustness of the selected 

DSG we calculated the performance loss, in terms of Rpred-obs, of each DSG set after removing 

every single gene, therefore assigning to each gene its contribution to the prediction of the 

response to a particular drug (Supplementary Table S5). We measured that on average, across the 

DSG sets, the performance loss was 0.02 Rpred-obs after removing the best gene in each DSG set. 

  

Improving the characterization of drug response mechanism 



Lapatinib is a clinically approved drug which targets ERBB2 and EGFR in the treatment of 

breast cancer. We reached a Rpred-obs of 0.41 with the selection of 399 Lapatinib-specific genes, 

against a Rpred-obs of 0.16 obtained with TANDEM9 (a method described below), 0.31 obtained 

with the whole genome and 0.42 obtained with DUG (Figure 4, respectively colored in yellow, 

light grey, dark grey and blue bars, and Supplementary Table S3). The selected informative 

genes are involved in the regulation of the immune system, inflammatory response, endothelial 

cell apoptotic process and mRNA metabolism and many encode for membrane transporters 

associated with drug import/export26. Only 7% of the genes associated to the cellular pathways 

involving ERBB2 and EGFR belong to the set of Lapatinib-specific genes, reducing the search 

space to fewer genes linked to the drug targets (Figure 3C). For example GRB7 plays an 

important role in the signal transduction in response to EGF, promoting the activation of down-

stream phosphorylation pathways (e.g. AKT1 and MAPK1) and its basal pre-treatment 

expression levels anticorrelate with the cellular response to Lapatinib not only in breast cancer 

cell lines (Pearson R=-0.64) but across the whole cell line panel (Pearson R=-0.39). In fact, its 

key role is demonstrated by its up-regulation after treatment with Lapatinib which, together with 

the rewiring of different signaling networks, and the inhibition of the HER2 signaling pathway, 

promotes cell survival and migration in breast cancer cell lines27,28. 

  

Another example is Parthenolide, which is a drug in clinical development that targets NFKB1, 

and interferes with the assembly of the microtubule network29. 

We reached a Rpred-obs of 0.38 with the selection of 565 Parthenolide-specific genes, against a 

Rpred-obs of 0.28 obtained with TANDEM, 0.28 obtained with the whole genome and 0.29 

obtained with DUG (Figure 4, respectively colored in yellow, light grey, dark grey and blue bars, 



and Supplementary Table S3). The functions of the 565 selected drug-specific genes are enriched 

in immune response, lymphocyte activation, leukocyte proliferation and somatic cell DNA 

recombination. Only 4% of the genes coding for proteins involved in the NFKB1 pathways were 

selected as DSG (Figure 3C). ICAM-2, a key protein in leukocyte adhesion whose expression is 

targeted by NFKB130, has been selected in over 99% of the DSG permutations tests for 

Parthenolide (showing a negative Pearson correlation of -0.33 across the whole cell line panel). 

 

LRMP, a protein involved in the delivery of peptides to MHC class 1 molecules, and PSAP, 

among others, also show a strong association (selected over 99% of the permutation tests) to the 

response to Parthenolide with no experimental validation provided yet to the best of our 

knowledge. In both cases not only the new approach provided a significantly improved 

prediction of the drug effects but it also extended the list of genes to be prioritized for following 

experiments on genes involved in other cellular functionalities that are not directly linked to the 

known drug targets. 

  

More generally, genes associated to the drug target pathway are not enriched in DSG genes 

coding for proteins involved in the pathways of the known drug targets more than random sets of 

genes of the same size (Mann-Whitney U test, p>0.05). In fact only small percentages of the 

genes (around 5% on average, details for each drug in Supplementary Table S6A) involved in the 

pathways associated to the targets of respectively Lapatinib and Parthenolide were selected in 

their respective DSG sets. Additionally, we highlighted genes that showed a unique association 

(see Methods) to the response of one particular drug only, like Contactin-5 and Glutaredoxin-1 

for Lapatinib and cGMP-gated cation channel alpha-1 and Dermokin for Parthenolide. We 



believe that these genes represent a valuable source of information as unique features of each 

drug response mechanisms that can set the ground for following hypothesis-driven experiments 

(complete list of “drug-unique” genes is available in Supplementary Table S6B). 

  

Different issues and approaches in the prediction of drug response 

The task of predicting the drug response in cell lines comes with different issues, bound to the 

high dimensionality of the problem represented by the high number of genes and other features 

considered as features of the predictive model like mutations, methylation profiles and gene copy 

number alterations. Moreover the connection and information redundancy among these 

components and the continuous nature of the cellular response to external stimuli constitute an 

additional layer of complexity. 

One approach for the reduction of the dimensionality of the problem has been proposed with the 

TANDEM method9, which predicts IC50 values for cell lines based on the integration of 

multiple data types, divided into upstream data (gene mutations, copy number alterations and 

methylation profiles and cancer type) and downstream data (gene expression), in order to 

improve the interpretation of the cellular response mechanisms. With TANDEM, an Elastic Net 

model is built using the upstream data, then the residuals are predicted with an Elastic Net built 

using gene expression. Upstream features are associated to drug response and their predictive 

binary value is calculated with a logistic regression using gene expression data. Therefore 

models give higher priority to upstream features, e.g. mutations and methylation status, that 

could explain the downstream gene expression resulting in more interpretable models of drug 

response. 



We applied the TANDEM method to the 961 cell lines panel and measured an average Rpred-obs of 

0.37 (Supplementary Table S3), which is significantly lower than both the DUG and DSG 

approaches (Mann-Whitney U test, p=1.20×10-7 and p=1×10-3 for DUG and DSG respectively) 

(Figure 3A). Even though the authors included upstream data in the prediction no real 

improvement was reached compared to a predictive model based on gene expression only, 

stating that the information in upstream features is also present in gene expression profiles9. 

However the inclusion of upstream features is useful to recapitulate more complex gene 

expression patterns into, for example, few changes in gene mutations or methylation profile 

alteration could in principle improve the prediction and the characterization of the response 

mechanism. The comparison between single-gene-based and multi-gene-based predictors has 

been described in a recent work18, where the latter consistently outperformed the former. 

Moreover the authors explored the possibility to reduce complexity in the predictive model by 

defining binary cellular response (e.g. resistant/sensible) for 127 drugs. Since our approach 

predicts a IC50 value, we transformed this into a binary response (see Methods) in order to 

compare the two methods with the same metrics. Our approach reached higher Matthews 

Correlation Coefficient (MCC), with the SVR-based DUG and DSG approaches reaching MCC 

values of 0.27 and 0.25 respectively against 0.12 of the compared method. Both DUG and DSG 

approaches showed a better performance, for respectively 83 and 84 drugs out of 120, than the 

compared method. The DSG approach showed the best Sensitivity (0.9) compared to the DUG 

approach (0.6) and the other method (0.5), but showed lower Specificity values (0.31) compared 

to the DUG approach (0.65) and the other method (0.61) (Figure 3B, Supplementary Table S3). 

  

Variability of the response mechanisms among similar drugs 



One of the desired traits of a method able to predict the cellular response to a drug is the 

capability of predicting the effect of a novel, unscreened drug for which no experimental data is 

available yet. A first attempt could rely on the assumption that similar drugs have similar effects 

on the same cell. In this way, structurally similar drugs (or with similar active chemical groups) 

could share a similar IC50 profile across the cell line panel. We explored this possibility by 

correlating the similarity in the IC50 profiles of each pair of drugs (calculated as Pearson 

correlation) with the similarity of their chemical structure (see Methods and Supplementary 

Table S7) but we observed no significant association between the two measures. Drugs 

belonging to the same group, defined by the affected cellular pathway and described in the 

original work4, are not significantly more chemically similar than drugs belonging to different 

groups (Mann-Whitney U test, p>0.05), on the other hand they share IC50 profiles across the cell 

line panel that are more similar than drugs of different groups (Mann-Whitney U test, 

p=1.78×10-40). This highlights the issues in transferring drug response from one drug to another 

using chemical similarity, as it has been observed previously in other studies31–33. When the 

drugs were grouped depending on their chemical similarity, e.g. with a similarity score (see 

Methods) equal or higher than 0.7 and equal or lower than 0.3, the similar drugs were showing 

higher IC50 profile correlation than non-similar drugs (Mann-Whitney p <0.05). Several 

studies34–37 showed the relationship between chemical similarity and cellular response similarity, 

therefore the reasons behind the low overall correlation observed in our dataset are most likely 

due to the relatively small size and diverse nature of the original drug datasets, especially when 

compared to much bigger and diverse datasets used in proteochemometrics studies. 

We therefore explored the extent to which a drug class-derived ensemble model could be used to 

infer the response mechanism of a single drug of the same class. The 265 drugs in the initial 



work by Iorio et al.4 were grouped by targeted process/pathway into 21 classes, each of which 

has been analyzed to test the ability of a class-derived prediction model in predicting the cellular 

response to an “unknown drug” that could belong to the same class. To simulate this setting, we 

used a leave-one-out test in which the response to the drug being left out was iteratively 

predicted using the DSG sets of all the other drugs in the class. The predictions of all the drugs in 

a class are then averaged out and the prediction performance on the tested drug left out is then 

evaluated with the Rpred-obs. We measured a mean Rpred-obs value of 0.35 among the different 

classes, concluding that it is possible to transfer, to a certain degree, the response mechanisms 

among drugs that are supposed to aim at the same or similar targets, using different metrics and 

parameters as proxy. However two drug classes, targeting proteins involved in “mitosis” and 

“chromatin histone acetylation” associated pathways, reached high performances with 

predictions that were comparable to those obtained using the DSG sets of each specific drug 

(Rpred-obsof 0.55 and 0.53 respectively). 

  

DISCUSSION 

Different approaches have tried to leverage genomic data in order to predict the effect of 

therapeutic drugs on cancer cell lines. Many methods have been developed to combine different 

sources of information or to reduce the search space by removing redundant information in the 

predictive models. 

The whole genome has been used previously to predict the cellular response to chemical 

compounds, although limited in the prediction performance and in the selection of informative 

genes that could explain resistance/sensitivity mechanisms. Consequently, we explored the 

possibility of reducing the number of informative genes employed in the prediction of pan-



cancer drug response, both in a drug-unspecific (i.e. the same for all the drugs in the panel) and 

drug-specific fashion employing different pre-processing and machine learning approaches and 

gene expression data. We observed a significant improvement in the prediction of the drug 

response in a panel of 1001 cell lines screened with more than 200 drugs, reaching better 

performance than other already published methods with both a drug-unspecific and a drug-

specific approach. We also showed how this was possible with a reduced number of genes (on 

average two orders of magnitude lower) compared to a previous method using the whole 

genome4. This has the double advantage of reducing the noise in the predictive model and 

prioritizing the genes and of the cellular mechanisms behind the response to a particular drug, 

which was not limited to the known drug targets. 

Interestingly, we demonstrated how the gene expression of the known drug targets and their 

variants, introduced in different cancer types, do not hold enough predictive power and cannot be 

used alone in the prediction of the effect of their drug. Therefore the genes coding for drug-

specific response have to be selected from a wide array of pathways, in fact only a small fraction 

of the genes coding for proteins in the pathways involving the known drug targets are selected as 

drug-specific genes. 

Finally, we explored the variability in the response mechanisms of different classes of drugs as 

defined by our model. Even though drugs in the same class do not usually share the same 

chemical structure they do share similar drug response profiles across different cell lines. We 

observed that despite this variability, generalized drug class-derived and reliable predictive 

models can be generated, a features that would greatly contribute to the analysis of novel 

unknown drugs. 



While our performances demonstrate the usefulness of both drug-unspecific and drug-specific 

approaches, using significantly less data nonetheless, there is still room for further 

improvements. Additional information from other sources of data (e.g. methylation, mutation 

profiles, non-coding RNA quantitative data) and integration of other dynamic measures, e.g. the 

activity and relationship of transcription factors38, could provide tissue-specific traits in the 

response mechanisms. It must be noted also that cell lines do not perfectly reflect primary tumor 

samples and the translation of these predictive models will require the integration of clinical 

data, which is sparse for a limited number of drugs and non-standardized at the current stage. 

The inclusion of in vivo patient-derived gene expression and drug response measurements in 

machine learning approaches is a step towards real cases moving from in vitro cancer cell lines-

derived measurements19. The reduction in the number of features (genes, mutations and 

components of other types of data) is a current area of drug response prediction improvement19-

21.   

Finally, since proteins are the first effectors of a cellular response, using only transcriptomics 

data to reliably predict drug response in a particular cellular condition can only provide an 

incomplete picture, since translation regulation can be complex and post-translational 

modifications can modulate the protein cellular roles. Recently different studies tried to use 

proteomics data to model drug response and identify possible biomarker pathways, although on 

very limited datasets39,40. Even though proteomics data is less abundant41 compared to genomics 

and transcriptomics data, we think that the integration of proteomics data, for example protein 

abundance and proteoform status (e.g. epigenetic markers, post-translational modifications and 

their stoichiometry and occupancy status), will constitute the next big step forward in the field. 

  



METHODS 

Dataset 

Gene expression data and cell lines drug response data used in this study were generated in a 

previous work by Iorio et al.4. The dataset consists of large-scale genomic data, including gene 

expression and genomic variant profiles, copy number variations and methylation for 1001 

cancer cell lines representing 29 different tissues. The basal expression profile for each cell line 

was obtained using a microarray analysis (A-GEOD-13667 - [HG-U219] Affymetrix Human 

Genome U219 Array). The raw expression data of each gene has been normalized with z-scores 

in each cell line. On average each cancer type is represented by 30 cell lines and each cell line 

has been treated with different drugs (265 drugs in total). Drug response is expressed in terms of 

IC50, which is the drug concentration that reduces viability by 50% in vitro. Lower values of 

IC50 are associated with a higher sensitivity of a cell line to a given drug and vice versa. 

  

Selection of genes associated to known drug targets 

In the first part of the study we used the known drug target to build gene sets representing the 

physical and functional environment of the targeted molecular processes. The drug target was 

known for most of the cases (178 of the drugs had one or more known targets, while the 

remaining 87 drugs were associated to the description of the cellular processes hit by the drug)4. 

We used the STRING database24 to build networks centered around the known drug target and 

including up to first (direct interactions, P1 gene sets), second and third degree interactors 

(indirect interactions, respectively P2 and P3 gene sets). We selected only experimentally 

obtained physical protein-protein interactions with STRING scores higher than 0.9. The target 

proteins were annotated only for 178 drugs out of 265, for which the described gene sets were 



created. The remaining drugs, for which only the general affected cellular processes (e.g. DNA 

replication) were described, were not considered in this particular analysis. In order to build the 

functional (and partly physical) neighbors of the drug targets, we used the REACTOME 

database25, selecting the genes involved in the pathways of the 178 drug targets (F1 gene sets for 

single pathways and F2 gene sets for merged pathways associated to the same drug target). These 

gene sets are reported in the Supplementary Table S1A. We then used two different approaches 

to select genes that could better describe the drug response regardless of the annotated known 

targets. 

  

Selection of drug-unspecific genes 

Genes were ranked according to their variance in gene expression across the cancer cell line 

dataset were selected and the top genes were selected. An equal number of random genes were 

selected as control. We selected an optimal number of feature genes by exploring different sizes 

of the gene sets for a Random Forest learning method: 25, 100, 1000, 5000 and 10000. We tested 

the learning method in a 10 random split cross validation where 90% of the data was used for 

training and the remaining 10% was used as test for the prediction of the IC50 values; both the 

number of selected genes and the variance threshold were treated as hyper-parameters and the 

best combination was chosen in a validation set inside the training set with a 5-fold cross-

validation. Results were evaluated in terms of Pearson correlation between predicted and 

observed IC50 (Rpred-obs). The selected genes were then clustered by Pearson correlation (with a 

threshold of 0.8) of their gene expression profiles across the cell lines (complete gene list is 

reported in Supplementary Table S2A). 

  



Drug-unspecific gene-based machine learning 

The 4804 selected drug-unspecific genes are then used as features in a 10 random split cross 

validation, using Support Vector Regression (SVR)42, where 90% of the data was used for 

training and the remaining 10% was used as test; again, the best combination of model 

hyperparameters were chosen in a validation set inside the training set. Performance was 

estimated through Pearson correlation between the predicted and observed IC50 values and drugs 

with significantly better performances were identified with a t-test with 0.05 as significance 

threshold. 

  

Selection of drug-specific genes 

In an alternative approach, for each drug, we selected the genes whose pre-treatment expression 

profile correlated, or anticorrelated, with the drug IC50 profile (Pearson correlation equal or 

higher than +0.4 or equal or lower than -0.4). In order to select a gene as informative for a 

particular drug we sorted the expression profile matrix and selected only 10% of cell lines with 

the highest expression of the considered gene and 10% with the lowest expression of the same 

gene. We then correlated the expression profile of the analyzed gene in this selected 20% of the 

cell lines with the IC50 profile of the considered drug in the same cell lines. In this case, each 

screened drug was associated to a specific set of informative genes (Supplementary Table S4A) 

that are involved in the response mechanisms (drug-specific gene set, termed DSG). 

  

Drug-specific gene-based machine learning 

We used the Elastic Net Regression (ENR), using the glmnet R package43 for the drug-specific 

gene sets, a model also described in a previous work by Iorio et al.4. Gene expression values 



were scaled to have zero mean and unit standard deviation. In order to make a fair comparison 

between the ENR in this study and the original work by Iorio et al. we selected 80% of the 

dataset to train the model and 10% for the test and prediction of the IC50 values of a given drug, 

as the remaining 10% was originally used for the parameters optimization. We performed 10000 

permutations of the cell lines in the panel before the training and test phases in order to avoid 

biases in the initial dataset. The selection of the DSG genes has been performed each time on the 

cell lines belonging to the training set only, removing redundancy between training and test set. 

Finally, we compared the predicted and experimentally observed IC50 using the Pearson 

correlation. 

  

Functional enrichment 

The functional enrichment analysis was made using GOrilla44 and Revigo45. We focused on 

Biological Process and Cellular Component GO term categories, providing the whole genome as 

background. We then used REViGO to summarize and visualize the enriched GO terms 

identified with GOrilla. 

  

Drug similarity 

The chemical structures of the drugs were collected using the identifiers provided in the original 

paper by Iorio et al. Drug names were converted in Compound identification number (CID) 

using the PubChem database46. SMILES chemical representations and sdf files were downloaded 

using PubChem programmatic access option. We used different approaches for the estimation of 

similarity between drugs. Structural similarity between drugs was calculated through the 

Tanimoto and Tversky  coefficients based on atom pair descriptors, atom pair fingerprints and 



Mismatch Tolerant Maximum Common Substructure Detection using ChemmineR47 and drug 

effectiveness similarity has been estimated through Pearson correlation, with complete 

observations, of the IC50 profiles of the two compared drugs on 1001 cell lines.  

  

Binarization of the predicted drug response 

Our predicted IC50 response values were converted into binarized values (e.g. 0 and 1 values for 

cell lines respectively resistant and sensible to a particular drug) in order to provide a fair 

comparison with a binary drug-response classifier developed by Nguyen et al.18. The 

classification was done by using the median value of the drug’s IC50 distribution on 1001 cell 

lines as reference. IC50 values higher than the median were labeled as resistant and lower values 

labeled cell lines as sensible. 

  

Drug-unique genes identification 

We have selected a set of "unique" genes for each drug from its pool of drug-specific genes. 

Given a gene, the number of cell line permutations in which the gene is selected as informative 

for each drug in the panel is calculated (Supplementary Table S4A) and normalized as z-score. 

The z-scores of all the drugs in the panel are then sorted and the gene is deemed "unique" for the 

first ranked drug if its z-score is equal or higher than 3 and if the second-ranked drug has a z-

score that is lower than 3. 
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FIGURE LEGENDS 

Figure 1. Association of drug response with pathogenic variants in the known targets and 

their physical and functional context. A) Correlation between IC50 of 178 drugs (Y axis) and 

the gene expression of their known targets (the correlations for multiple targets of the same drug 

have been averaged). Drugs for which at least one gene mutation can discriminate resistant and 

sensible cell lines (Mann-Whitney U test, adjusted p<0.05) have been highlighted with different 

colors: drugs targeting cell cycle proteins (orange), drugs targeting the EGFR signaling pathway 

(blue) and drugs targeting ERK-MAPK signaling pathways (green). B) Performance of the ENR-

based predictive model, measured as the Pearson correlation between the predicted and observed 

IC50, of different selections of genes (the mean number n of genes across the permutations is 

reported inset) in predicting the IC50 of 178 drugs in the whole cell line dataset; no gene set 

could be selected for the remaining drugs due to uncertain drug targets. The initial dataset has 

been permuted before the 10-fold cross validation reaching a total of 10000 training and test sets, 

whose results are averaged out for each drug and reported in the colored distributions. The 

performance of the whole genome4 is colored in purple, known drug targets plus their direct 

interactors in yellow (P1), their interactors up to second-degree neighbors in orange (P2) and 

third degree neighbors in green (P3). The performance of the genes associated to the pathways in 

which the known drug targets are involved are colored in blue (F2). The vertical dashed line 

represents the average performance of the whole genome. The dashed curves represent the 

average Pearson correlation obtained with sets of random genes of the same size as the real 

selection of genes. 

Figure 2. Experimental design of the DSG and DUG approaches. The Drug-Specific Genes 

(DSG) approach selects genes associated to the response of a particular drug, the gene expression 



of these genes are then used to train an Elastic Net Regression Model (DSG are selected in the 

training set only during the 10-fold cross-validation phase). The Drug-Unspecific Genes 

approach selects genes from initial dataset depending on the variance of their expression. 

Different number of genes to be used as features and different machine learning methods have 

been tested selecting the Support Vector Regression as the best method evaluated with a 10-fold 

cross-validation (hyperparameters are tuned in a validation set inside the training set). For both 

approaches the performance is evaluated with the Pearson correlation between the predicted and 

observed IC50 values (Rpred-obs). 

Figure 3. Comparison of different methods/approaches in predicting drug response. A) 

Performance of different approaches in the prediction of drug response (IC50) measured as 

Pearson correlation between the experimentally measured and predicted IC50; TANDEM9 

performance is colored in light grey, method described in Iorio et al.4 in dark grey, ENR-based 

DSG and SVR-based DUG approaches in yellow and blue respectively. Significantly different 

distributions of Pearson correlations are marked with a star (Mann-Whitney U test, p<0.05). B) 

Precision-Recall curve for the binarized drug response prediction for 120 drugs with the ENR-

based DSG approach (colored in yellow), SVR-based DUG approach (colored in blue) and the 

method described in Nguyen et al.18 (colored in light grey), the performance of the three methods 

are reported in the inset boxplots as Precision, Recall, Specificity and Matthews Correlation 

Coefficient (MCC). C) Schematic representation of Lapatinib and Parthenolide DSG localization 

in different cellular components; drugs are colored in orange and their known targets in green. 

Proteins belonging to the drug target pathways and selected as DSG are grouped by pathway and 

localization, "drug-unique" proteins are outlined with a golden color. Proteins are colored in blue 

or red if their gene expression has a respectively negative or positive correlation with the IC50 



profile of the drug. The proteins in grey are known membrane transporters associated with the 

drug import or export (respectively blue and red)26. 

Figure 4. Breakdown of different method’s performance at single drug and drug class level. 

Performance (measured as Pearson correlation between experimentally measured and predicted 

IC50) of different methods for each analyzed drug in the dataset; TANDEM9 performance is 

colored in light grey, method described in Iorio et al.4 in dark grey, DSG and DUG approaches in 

yellow and blue respectively. Drugs are grouped in 21 functional groups (defined in the original 

study), and ordered by performance of the best method; for each drug the performances of the 

methods are ranked and displayed as overlapping barplot, in this way the improvement of the 

best methods are visible. The 21 groups are ranked clockwise by the average best prediction by 

the best methods, which is displayed by the inner circle (colored in a green to blue gradient). The 

red circle represents the results of the leave-one-out experiment (colored in a light to dark red 

gradient). 

 


