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Introduction

Since its first developments in the Twenties of the past century, Quantum Mechanics
(QM) has established itself as a fundamental physical theory, although at the same
time it has begun to raise a large amount of questions since its very early appear-
ances. The issue of its interpretation is as old as the theory itself, and it is still subject
of intense debate among scientific community members. Apart from the intrigu-
ing and neverending discussions about its ultimate significance in describing reality,
QM is a tremendously successful theory: whenever it predicts something it seems to
work and it has been verified experimentally to an extremely high degree of accu-
racy. Quantum theory has hereinbefore a history of about a hundred years, but it has
become very active recently our ability to manipulate matter in situations where QM
is important, not just at the atomic scale, but also at some large scale. The technolog-
ical progress has made necessary a deeper comprehension of how we, macroscopic
objects, can establish a dialogue with the quantum world of the microscopic ones, in
order to interact and exert control upon small quantum devices. In fact, the analysis
of the quantum evolution of a system interacting with its macroscopic environment
has made clear that it is indeed in the peculiarities of one such evolution that the
most debated issues in the theory of QM might find their solution. This is the case, in
particular, of what is usually dubbed as the emergence of classicality, i.e., the mech-
anism that makes us to observe a classical reality, despite the fundamental laws of
physics being quantum mechanical. Indeed, the passage from a quantum and coher-
ent world to the classical non-coherent one which people experience in everyday life
remains obscure, though great effort have been done in this sense.

Besides these conceptual difficulties, every system - apart from the whole Uni-
verse - is never completely isolated, since the very same possibility of texting its
existence relies on the fact that it interacts with some external world, i.e., with some
environment. Given an “all-along” isolated system S = A + B its exact descrip-
tion is provided by the Open Quantum Systems formalism, which considers a purely
quantum physical system interacting with its equally quantum environment. The
compound system S is in a pure state described by a ket |Si, while the notion of state
for each subsystem can be recovered through the reduced density matrix approach,
%A = TrB [|SihS|] and %B = TrA [|SihS|] respectively. It is indeed in such axiomat-
ically exact representation that the very peculiar property of QM can be described,
i.e., the entanglement can be defined. To tackle the problems related to the difficul-
ties in managing the many variables by which the environment is usually represented,
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2 Introduction

people often exploit effective descriptions where the physical quantum system is de-
scribed by a local Hamiltonian ĤA(t; {qi}), acting only on its own Hilbert space and
depending on external possibly time-dependent parameters (t; {qi}), whose presence
testifies the existence of a surrounding environment. In such description the quantum
system is usually referred to as “closed”; its state is described by a ket |�A(t; {qi})i,
and at the heart of this approach stands the approximation that the environment is
classical, so that the operators acting on its Hilbert space are replaced by some field
f(t; {qi}). Actually some authors dub as “closed”, quantum systems which interact
with a classical environment, but are in a mixed state. The most typical example is
the so called “thermal state” describing a quantum system put into a thermal bath,
acting indeed as its classical environment; in this case the closed system is described
by a density matrix %(�) depending on the external parameter � = 1/T with T the
temperature of the bath. However, what takes place in this formalism are the ge-
ometrical effects of the parameters (t; {qi}), � indeed testifying the environmental
existence. Quoting from the famous work by W. H. Zurek [1], “The idea that “open-
ness” of quantum systems may have anything to do with the transition from quantum
to classical was resolutely ignored for a very long time, probably because in classical
physics problems of fundamental importance were always settled in isolated systems,
[...] and the understanding of how the environment distills the classical essence from
quantum systems is more recent.” In fact, from the above brief comparison between
the exact whole quantum world and the effective quantum-classical one, it emerges
that profound differences appear according to the description one decides to assume
for the environment, being it quantum or classical, and, on the other hand, a proper
connection between the two approaches is still missing.

In what follows, we focus indeed on the role taken on by the environment, always
considering quantum environments which potentially exhibit an emergent classical
behaviour in some limit. Having in mind that the fundamental interactions ruling
the world are quantum and that classical mechanics is just an approximation of QM
related to the human experience, words as “quantization” have no sense, as far as this
thesis is conceived.

Both the environment and the open system can either be made of a unique sys-
tem, or by several subsystems respectively. In the latter case, one can for example
analyse both the effects of the environment on the properties of the open system, and
the role played by the environment in determining the behaviour of each subsystem;
whether the interaction between the open system and the environment be relevant
or not depends on the setting and on the specific focus of the analysis one aims to
develop. Notice, however, that by adopting the terms “open quantum system” and
“environment”, an asymmetry between the twos is suggested. As a matter of fact,
the former is usually referred to as “principal system”, whereas the environment is
often left in the back, and considered as something which only complicates the anal-
ysis, to which get rid off as soon as it is possible. Nevertheless, beyond the already
mentioned fundamental role the environment has in determining the different pos-
sible representations of the open and closed systems, it is today clear that all those
situations where we want to understand the way quantum systems can be used and
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controlled for conveying or extracting information, require a thorough analysis of
how they interact with their, no matter how big, environment. Therefore, the es-
sential role of the environment is completely restored, since its analysis matches the
importance of the description of the principal system itself. In this context, there is
no point in dubbing the open system the “principal” system, if not that of aligning
ourselves with the common convention, as indeed we will do in this thesis as well.

The thesis is structured as follows:

• in Chapter 1 we gather all the formal aspects and mathematical tools pertain-
ing to the development of the approach we will use to define a proper classical
limit of quantum theories and to combine quantum and classical formalism. In
particular, we discuss the difference between macroscopicity and classicality,
and design the minimal theoretical structure to move towards a classical limit.
The fundamental role played by the generalized coherent states is introduced
and their fundamental properties outlined. We then describe the parametric
representation with environmental coherent states, and its use in the analysis
of open quantum systems.

• Chapter 2 is devoted to study hybrid schemes, which represent those particu-
lar situations where it is important to keep trace of the quanticity of the macro-
scopic, potentially classical, environment so that it is possible to develop a sen-
sible description of the interaction with its quantum companion. We initially
aim to understand 1) if, 2) to what extent, and possibly 3) how the evolution of
the former testifies to the coupling with the latter. To this purpose we consider
a magnetic environment made of a large number of spin-1/2 particles, coupled
with a quantum mechanical oscillator, and we focus on the analysis of the so
called back-action, i.e., the effects of the presence of the principal system on
the way its environment evolves. We then address the dynamics of a bosonic
system coupled to either a bosonic or a magnetic environment and derive a
set of sufficient conditions that allow to describe the dynamics in terms of the
effective interaction with a classical fluctuating field.

• Chapter 3 aims to study the case of an environment acting effectively as a
measuring apparatus. We consider a quantum principal system, with an envi-
ronment made of N elementary quantum components. We demonstrate that
whenever this behaves according to an effective classical theory such theory
emerges from the quantum description of a measuring apparatus in the large-
N limit, regardless of the actual interaction between the environment and the
principal system.

• In Chapter 4 we investigate if it is possible for an environment to act as a clock
for its quantum companion. We deal therefore with the issue of properly defin-
ing time in quantum theory, seeking for a possible explanation of how it always
emerges in the equations of motions as a classical parameter. Presuming that
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what we sense as time is due to the internal interactions of the different subsys-
tems of the Universe, we show that it is possible to obtain a von Neumann-like
equation for any quantum system, once the classical limit of its environment is
implemented.

• Chapter 5 recapitulates the purposes of the thesis and sketches some further
possible goals. In particular, having in mind to enlarge the environment as
much as it is possible, applying the approach used through this thesis to (quan-
tum?) gravity, we start from the Black Hole Information paradox, resulting
indeed in the attempt of combining QM and General Relativity. We present an
information theoretic model to deal with it, focusing on the role which has an
external observer related with the quantum measurement process.

• Finally, in the Appendices, we present an algebraic algorithm to construct the
generalized coherent states starting from the knowledge of the group associ-
ated to a quantum system, and discuss in detail their properties. Moreover,
we provide the formal definition of the quantum measure and of the minimal
interpretation of the QM measurement postulate.



Chapter 1

What A Wonderful (Quantum) World

Beyond the perception that we can have in our everyday life, our World is a quantum
World. Real physical systems living in it are quantum systems, which continuously
get in touch with each other. Open quantum systems (OQS) are non-isolated quantum
systems whose description takes into account the interaction with quantum surround-
ings. Analysing such systems takes a significant role, since any physical realisation
of a quantum system requests at least the presence of an environment which verifies
its existence. However, although the modeling of any OQS inherently implies the one
of its surroundings, knowing the quantum structure of the total Hamiltonian, includ-
ing the details of the couplings between the principal system and its environment,
does not usually suffice to develop a simple and meaningful model of the overall
system. This is generally due to the environment being made of a very large number
N of quantum components, a fact that indeed we will hereafter take as integrant to
the definition itself of environment.

In this chapter we provide the fundamental tools employed in this thesis. We will
deal with finding proper methods to move in a sort of twilight zone of a (quantum) en-
vironment, that, becoming macroscopic, can potentially exhibit a classical behaviour.
In Sec. 1.1 macroscopic quantum systems are introduced, and the difference between
macroscopicity and classicality is discussed. In Sec. 1.2 we present the general for-
malism, reviewing some fundamental works that have particularly inspired us, as
far as the moving towards a classical limit of a quantum theory is concerned. A
very special role is played by generalized coherent states, since they have some pe-
culiar properties which allow us to formally define the classical limit, and Sec. 1.3
highlights indeed which are their major features used in this thesis. Sec. 1.4 is then
devoted to present a theorethical method specifically designed for tackling OQS with
macroscopic environments, and, lastly, the chapter ends with some comments, re-
ported in Sec. 1.5, about the structure previously designed in Sec. 1.2.
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6 What A Wonderful (Quantum) World

1.1 Macroscopic quantum systems

A physical system is macroscopic when it is made of a large number of components.
Since each component of any physical system is inherently quantum, we can also
state this: a macroscopic system is a quantum system with many degrees of free-
dom. Whether the quantum properties of such a system manifest themselves or not,
it depends on the specific case one is considering. As a first intuition, one can think
that a macroscopic system displays a distinctly quantum behaviour when the Hilbert
space effectively explored by the system during its evolution is finite. To make this
sentence more explicit, let us consider the paradigmatic case of a macroscopic mag-
netic system, i.e., a spin-ring made of N particles of spin-1

2
, each described by its

Pauli matrices �̂i ⌘ (�̂x

i
, �̂y

i
, �̂z

i
). Let Ŝ ⌘ 1

2

P
N

i
�̂i be the total spin of the ring and

|Ŝ|2 = S(S + 1), with S ranging from 0 to N

2
if N is even, or from 1

2
to N

2
if N

is odd. When |Ŝ|2 commutes with the system Hamiltonian, the total spin quantum
number S is a conserved quantity, as in Fig. 1.1. The two extremal cases, of min-

Figure 1.1: Graphical representation of a magnetic system made of distinguishable
particles, distributed on a ring-shaped lattice (referred to as a “spin-ring” in the text).
The total spin S is constant if, for instance, the spins are coupled amongst them-
selves via a homogeneous, isotropic (or Heisenberg) nearest-neighbour interaction,
j
P

i
�̂i · �̂i+1.

imum and maximum S, are not equivalent, as a profound difference can emerge in
the behaviour of the system depending indeed on the value of S. While in the first
case the spin-ring inherently behaves as a quantum system no matter how large N is,
in the latter case it can behave as a classical system if N becomes large. In fact, the
portion of the Hilbert space effectively explored by a magnetic system has dimension
2S + 1, and hence a classical-like dynamics is expected when S ⇠ N ! 1. As
disclosed above, it can be thus qualitatively understood that what actually matters, as
far as the wiping of quantum features is concerned, it is the dimension of the portion
of Hilbert space effectively explored by the state of the system during its evolution:
if this dimension is large, a classical behaviour can emerge.

Nevertheless, the solution based on the clear statement that microscopic elements
obey quantum rules while macroscopic objects follow the classical ones, it is by now
unsatisfactory. We have learnt that macroscopic objects may well exhibit a distinc-
tive quantum behaviour, and many are the examples theorized and discovered in the
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last decades: in 1957 Bardeen, Cooper and Schrieffer assembled their BCS theory of
superconductivity [2], in the 80s the topological order was understood [3], the con-
densation firstly predicted by Bose and Einstein in 1924-1925 [4, 5] was observed in
the 90s when the first gaseous condensates were produced in the lab, and, in more
recent years, magnetic properties of large molecules with spin S = 1/2 have been
observed [6], as well as quantum effects in biology have started to be studied [7]. In
any case, it is nowadays clear that the large-N condition is not sufficient for a system
made of N quantum particles to behave classically.

As a matter of fact, there are assumptions which isolate the minimal structure any
quantum theory should possess if it is to have a classical limit, as we will examine in
depth in the next section. Although they have been variously expressed depending on
the approach adopted by different authors, these assumptions imply precise physical
constraints on the original quantum theory that describes a macroscopic quantum
system if this has to behave classically.

1.2 Minimal structure towards a classical limit

Before introducing the general approach we are going to adopt, some useful notions
should be recalled. A quantum description of a physical system, or a quantum the-
ory Q for short, is based on the introduction of (i) a Hilbert space H1, (ii) a Lie
product [·, ·], defining the commutation rules between the operators on H, and (iii) a
Hamiltonian Ĥ . Trace class operators on H representing physical observables usu-
ally make up a vector space; this space, together with the above Lie product, is the
algebra g of the theory. The expectation values of Hermitian operators Ô acting on
H, O(⇤) ⌘ h⇤|Ô|⇤i 2 R, are the (only) physical outputs of the theory, i.e., the
experimentally accessible properties of the system. On the other hand, a classical
description of a physical system, or a classical theory C2 for short, is defined by (i) a
phase space C, (ii) a Poisson bracket {·, ·}, and (iii) a Hamiltonian h(⇣), with ⇣ rep-
resenting the set of conjugate variables of the classical phase space C. Real functions
defined on C are the (only) physical outputs of the theory, in the same sense as above.

As mentioned in the previous section, a physical system made by a large number
N of quantum elements does not necessarily obey to the rules of classical physics,
and the problem of whether or not a system made by quantum particles can be de-
scribed by a classical theory has been extensively studied in the last decades of the
last century, especially in the context of quantum-field theory (see for instance the
thorough discussion on the relation between large-N limits and classical theories de-
veloped in Sec.VII of Ref. [8]). In every physical theory known to have a sensible
large-N limit, the expectation values of any product ÂB̂ of physical observables on
physical states satisfy the factorization relation, i.e., hÂB̂i = hÂihB̂i + O(1/N),

1The Hilbert space of a quantum theory is separable, meaning that its dimension is finite or in-
finitely countable, and, hence, H is spanned by a set of states whose cardinality is that of the integer
numbers.

2More accurately, this is the definition of a Hamiltonian classical theory, but not all classical
theories are Hamiltonian. Anyway, this kind of theories will be the only one considered in this thesis.
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so that quantum fluctuations become irrelevant in the classical limit. Apart from the
original framework to which many works were devoted, among them, we have been
particularly inspired by the fundamental work by L. G. Yaffe, included in the review
“Large-N limit as classical mechanics” [8]. This paper, in turn, generalizes previous
results by other authors, amongst which we particularly mention that of E. H. Lieb
“The classical limit of quantum spin systems” [9], specifically referring to spin sys-
tems indeed. In his work of 1982, Yaffe aims at finding a bridge from an arbitrary
quantum theory Q to a classical theory C, starting from the question “Can one find
a classical system whose dynamics is equivalent to the N ! 1 limit of a given
quantum theory?”, that is the same to ask if it be possible to find classical mechanics
as the large-N limit of a given quantum theory. The answer, shown by many authors,
is that a general scheme can be built if the quantum theory satisfies a small set of
assumptions, which to be verified needs some essential ingredients.

First of all, the quantum theory must exhibit a global symmetry X(N), i.e., a sym-
metry whose transformations do not leave invariant subspaces in the Hilbert space H
of the corresponding system. If, for instance, Q describes N spin-1/2 particles in-
teracting via an isotropic Heisenberg-like magnetic exchange, as in the example of
the spin-ring in Sec. 1.1, one such symmetry can be the one defined by operators that
rotate the spin of each particle of the same angle. If one takes instead N particles
whose interaction depends only on their distance, the symmetry might be defined by
the same spatial translation of each particle. As for non-interacting, identical, but
yet distinguishable particles, a possible global symmetry might be defined by the
permutation operators. In any case the global symmetry is a key feature, since it is
the ultimate responsible of the drastic reduction of the physical observables of the
system analysed, and, thus, of the resulting treatment of the many N components of
a macroscopic object as a whole.

What is then essential in order that a classical theory C surface from Q, is the
possibility of defining the set of Generalized Coherent States (GCS), which are, in
fact, the only states for which a proper classical limit can be formally defined, as
they naturally provide the identification of a classical phase space C. It is indeed
through the set of GCS that the conditions, needed to find the classical limit C from
Q, emerge. In extreme short, their construction goes as follows (see appendix A for
explicit examples of the following procedure). Associated to any quantum system,
depicted by a quantum theory Q, there is a Hilbert space H and a dynamical group
G, i.e., the group containing all the propagators that describe possible evolutions of
the system (quite equivalently, G is the group corresponding to the Lie-algebra g to
which all the physical Hamiltonians of the system belong). The arbitrary choice of
a reference state |Ri 2 H defines the subgroup F of the operators f̂ acting trivially
on |Ri, i.e., such that f̂ |Ri = ei�f |Ri. F is usually referred to as the maximum
stability subgroup, and taking the coset of G over F , we get the coset space G/F .
Given these three inputs, H, G and |Ri, the GCS can be constructed, according for
instance to the procedure described in Ref. [10] or [11]. By acting on the reference
state with operators ⇤̂ belonging to G/F , we get

|⇤i ⌘ ⇤̂ |Ri , (1.1)
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that is the general group definition of the GCS. The operators ⇤̂ 2 G/F are the
elements of G that do not belong to the maximum stability subgroup F , and are
called displacement operators. A useful representation of the algebra g is provided
by the Cartan decomposition {Ĥi , Ê↵ , Ê�↵}, according to

[Ĥi, Ĥj] = 0 , [Ĥi, Ê↵] = ↵iÊ↵ ,

[Ê↵, Ê�↵] = ↵iĤi , [Ê↵, Ê�] = c↵�Ê↵+� . (1.2)

In every irreducible representation, it is possible to choose the operators Ĥi diagonal
and Hermitian, i.e., Ĥ†

i
= Ĥi, while the representatives of (Ê↵, Ê�↵) become shift-

up and shift-down operators such that Ê†
↵

= Ê�↵. The diagonal operators have
the reference state among their eigenvectors, whereas the shift ones appear in the
displacement operators, ⇤̂, reading

⇤̂ = exp

 
X

�

⇤�Ê� � ⇤⇤

�
Ê†
�

!
, (1.3)

where the parameters ⇤� are complex numbers that can be recognized as the co-
ordinates of a point ⇤ on a differentiable manifold M. As a matter of fact, the
definition (1.1) guarantees that the GCS be in one-to-one correspondence with the
operators ⇤̂ 2 G/F . Moreover, as the quotient space G/F can be associated to a
differentiable manifold M, their construction actually establishes also a one-to-one
correspondence between each coherent state |⇤i and a point ⇤ on M, or, which is
the same, between any such point and a displacement operator ⇤̂ 2 G/F . Therefore,
the GCS preserve all the algebraic and topological properties of G/F and, hence, of
M. It is indeed the manifold M that readily provides us with the classical phase
space C needed to define C, when the bridge between the theories Q and C is in the
running. A measure dµ(⇤̂) on G/F is also provided, and a resolution of the identity
on H is available in the form

Z

G/F

dµ(⇤̂) |⇤i h⇤| = ÎH , (1.4)

meaning that GCS are an overcomplete set on H, where the prefix “over” is due
to their being non-orthogonal. Neither M nor dµ(⇤̂) depend on the choice of the
reference state, as choosing a different one is tantamount to changing the origin of the
reference frame used to identify each point on M by a set of coordinates. Moreover,
dµ(⇤̂) is invariant under the action of any element ĝ of G, i.e., dµ(⇤̂) = dµ(ĝ⇤), and,
through the one-to-one correspondence between |⇤i and ⇤ 2 M, a measure dµ(⇤)
on M is consistently associated to the above introduced dµ(⇤̂), so that requiring
GCS to be normalized, i.e., h⇤|⇤i = 1, implies

h⇤|⇤i = h⇤|
Z

G/F

dµ(⇤̂0) |⇤0i h⇤0|⇤i =
Z

M

dµ(⇤0)|h⇤0|⇤i|2 = 1 . (1.5)

Once these ingredients are known, we are ready to identify which is the set of as-
sumptions that we are looking for.
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Let us consider a quantum theory Qk, characterized by some parameter k, as-
sumed to take positive values including the limiting k = 0 one. The k ! 0 limit of
Qk is actually the one which we are interested in, being k the real positive number,
referred to as the quanticity parameter, such that all the commutators of the theory
(or anticommutators, in the case of a fermionic one) vanish with it. Be Gk and gk
a representation of the dynamical Lie group G and of its associated Lie algebra g
defining the quantum theory3. There exists a minimal set of conditions, emerging in
terms of GCS built from the dynamical group Gk

4, that Qk must fulfill to guarantee
that its k ! 0 limit be a classical theory C.

Assumption 1 There must be no non trivial subspaces of Hk left invariant under the action of
all elements of Gk, i.e., each representation Gk of the dynamical group G acts
irreducibly on the corresponding Hilbert space.

The irreducibility of Gk automatically provides us with the completeness relation

ck

Z

G/F

dm(⇤̂) |⇤i h⇤| = ÎHk
, (1.6)

where the constant ck depends on the normalization of the group measure and must
be computed explicitly. Notice that, looking at Eq. (1.4), the following relation holds

dµ(⇤̂) ⌘ ckdm(⇤̂) , (1.7)

with the footprint of the quanticity of the theory contained in ck through k.
For any operator Âk acting on Hk, let us now define its symbol Ak(⇤), by

Ak(⇤) = h⇤| Âk |⇤i , (1.8)

that, in words, means that a symbol of an operator is the set of GCS expectation
values.

Assumption 2 Zero ;̂k is the only operator whose symbol identically vanishes, i.e., s.t.
h⇤| ;̂k |⇤i = 0.

This assumption implies that two different operators cannot have the same symbol,
otherwise their difference would violate it. Therefore, any operator may be uniquely
recovered by its symbol, which in turn implies that it is sufficient to study the be-
haviour of the symbols of the various operators to characterize the theory completely.

3Notice that the abstract group G and its algebra g do not depend on k, which instead enters Gk

and its algebra gk, because of the k dependence of the Hilbert space Hk.
4Sometimes Gk is dubbed coherence group, as for example in Ref. [8]. Nevertheless, whenever

the Hamiltonian Ĥk can be written as a linear combination of generators of a Lie algebra, which is the
case in all quantum theories will be interested in, there is a one-to-one correspondence between the
elements of the coherence group and those of the dynamical group, used above according to Ref. [10]
or [11], as a starting point for the construction of the GCS.
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Clearly, an arbitrary operator does not need to have a sensible limit when k goes
to 0. We thus focus our attention on a restricted class K of operators, which can be
identified requiring that their k ! 0 limits be well defined, yielding

lim
k!0

h⇤|Âk|⇤0i
h⇤|⇤0i < 1 8 ⇤̂, ⇤̂0 2 Gk/Fk . (1.9)

Such operators are named classical operators, and, in relation, two coherent states
|⇤i and |⇤0i are said to be classically equivalent if

lim
k!0

Ak(⇤) = lim
k!0

Ak(⇤
0) , 8Âk 2 K. (1.10)

Hereafter, we will use the symbol ⇠ to indicate the classical equivalence, writing
⇤ ⇠ ⇤0 for short.

Assumption 3 Classically inequivalent states become orthogonal when k ! 0.

Specifically, we require that

lim
k!0

h⇤|⇤0i = e� limk!0
�(⇤,⇤0)

k , (1.11)

where limk!0�(⇤,⇤0) exists 8 ⇤̂, ⇤̂0 2 Gk/Fk and

i) Re�(⇤,⇤0) > 0 if ⇤ ⌧ ⇤0 ,

ii) Re�(⇤,⇤0) = 0 if ⇤ ⇠ ⇤0 . (1.12)

This shows that if⇤ ⌧ ⇤0, their overlap h⇤|⇤0i decreases exponentially in the small-k
limit. From the above property it follows5

lim
k!0

1

k
|h⇤|⇤0i|2 = �(⇤� ⇤0) , (1.13)

that is a most relevant properties of GCS, i.e., that they become orthogonal in the
classical limit. Thus, for any classical operator Âk 2 K, h⇤|Âk|⇤0i becomes highly
peaked about ⇤ ⇠ ⇤0 as k ! 0, otherwise Âk will not be a classical operator.
Assumption 3 allows us to prove also that the factorization

lim
k!0

[(AB)k(⇤)� Ak(⇤)Bk(⇤)] = 0 (1.14)

holds for any pair of operators Â, B̂ 2 K.
Lastly, to control the k ! 0 limit completely, we have to put some restraint on

the dynamics, and the fourth assumption places indeed a condition on the quantum
Hamiltonian.

Assumption 4 kĤk is a classical operator,
5We use the Dirac-� representation �(x� y) = lim✏!0(1/✏) exp{(x� y)2/✏}.
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hence ensuring that the coupling constants in the Hamiltonian be scaled in such a
way that a sensible dynamics be guaranteed as k ! 0. This restraint could seem
artificial, but it is not. In fact, by requiring kĤk 2 K one avoids that the Hamiltonian
diverge or vanish, that is perfectably reasonable if one considers that, experimentally,
infinite energies do not exist.

The four assumptions listed above suffice to show that the complete quantum
theory reduces to classical mechanics when k ! 0. In particular, it is possible to
demonstrate that a classical phase space C exists. Being the Lie algebra g a linear
space, its dual space g⇤ is well defined, and coadjoint orbits6 on g⇤ naturally provide
the symplectic structure that we need to consistently define the Poisson brackets
on the manifold M, furnished inherently by GCS. The classical dynamics is then
determined by the classical Hamiltonian h, gained through

h = lim
k!0

kĤk . (1.15)

We underline that proving any form of necessity for the above assumptions appears
to be a very difficult task. Nevertheless, by this formalism, once bridged the k ! 0
limit with the large-N limit from which we started, one can show that for a vast class
of theories, including essentially all known theories with sensible large-N limit, the
N ! 1 limit is a classical limit [8, 9, 12].

Let us now go back to the quantum theory QN describing the macroscopic sys-
tem. Considering its dynamical group GN we can construct the GCS |⇤Ni, which,
by definition, provide us with a differentiable manifold MN , and, exploiting them,
find the classical limit C of QN . Theoretically the general scheme works, but in
practice dealing with the large-N limit of any given theory is really hard, because of
the difficulties one encounters in managing a vast amount of variables. Here is where
the existence of the global symmetry X(N) emerges as a necessary ingredient, since
it guarantees that the dimensionality of the representation gk be significantly smaller
than that of gN . As a matter of fact, the two theories QN and Qk are related because
their respective Lie algebras, gN and gk, are representations with different dimen-
sionality of the same abstract algebra g. The quantum many-body theory QN is the
microscopic quantum theory that would exactly describe the macroscopic physical
system, were we able to determine the details of its internal interactions. Any such
QN defines a Qk, by this meaning that the latter can be explicitly defined from the
former, such that k = 1/N↵, with ↵ a positive real number depending on specific
features of QN . Indeed, the global symmetry guarantees the existence of the simpler
theory Qk (with k the real parameter defined by N ) whose k ! 0 limit, hereafter
indicated by Qk!0, is physically equivalent to the large-N limit, QN!1, of QN , by
this meaning that each expectation value that stays finite in the latter limit can be
obtained as some expectation value provided by Qk!0. Resulting from the above
is the following: to each |⇤i, coherent state for Qk, is associated a set {|⇤Ni}⇠ of
coherent states for QN such that

lim
N!1

h⇤i

N
| ÂN |⇤i

N
i = lim

k!0

h⇤| Âk |⇤i ⌘ Acl(⇤) , (1.16)

6A coadjoint orbit is the set of points generated by the action of elements of the group G on a
given element of the dual space g⇤.
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for all |⇤i

N
i 2 {|⇤Ni}⇠ and any Hermitian operator Âk 2 K. Operators Âk and

ÂN are formally related, though it is not possible to express such relation in general,
and Acl is a real function on C, with Acl(⇤) its value on the point that univocally
corresponds to |⇤i, according to the one-to-one correspondence characteristic of the
GCS. Elements of the same set are related by |⇤i

N
i = Û ij |⇤j

N
i, with Û ij any unitary

X(N)-symmetry transformation, and are dubbed classically equivalent, while oper-
ators ÂN such that their symbol keeps finite in the N ! 1 limit are called classical
operators, as in the definition (1.9) for Qk. On the other hand, if the four assumptions
for Qk hold, Qk!0 is also a well defined classical theory C, with phase space C and
classical Hamiltonian h(⇣), that therefore provides an effective classical description
of the original many-particles quantum system in its macroscopic limit, through the
chain QN!1 = Qk!0 = C. Therefore, we have the following scheme, graphically
represented in Fig. 1.2: there is an exact quantum theory QN whose large-N limit
defines a classical theory C, that is the same classical limit that we get from an effec-
tive theory Qk when k goes to 0. Again, it is thanks to the X(N) symmetry that we
can reverse the logic, exploiting the k ! 0 limit in Qk to study the N ! 1 limit of
QN , otherwise completely not-accessible. Summarizing, we can state that the large-
N limit of Q implies a classical behaviour of the macroscopic system it describes
IF N ! 1 implies k ! 0. However, for the sake of clarity, we will not hereafter
use the vanishing of the quanticity parameters, but rather refer to the N ! 1, or
large-N , limit.

Figure 1.2: Graphical representation of the relation between microscopic and effec-
tive theories, QN and Qk, from which the same classical theory C stems.

1.3 Generalized Coherent States in the large-N limit

In consideration of the cited results, it may appear now clear that GCS constitute a
precious tool for the kind of situations that we are going to analyse. Amongst the
above properties of GCS, that are better discussed in App. A, the one that will play
a key role in this thesis regards quantities of the form h⇤|⇠i, whose square modulus
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represents the probability that a system ⌅ in some generic pure state |⇠i be observed
in the coherent state |⇤i, when ⌅ becomes macroscopic. These overlaps never vanish
for finite N , due to the overcompleteness of GCS: as a consequence, if one considers
two orthonormal states, say |⇠0i and |⇠00i, there will always be a finite probability for
a system in a GCS |⇤i to be observed either in |⇠0i or in |⇠00i. This formally implies
that, defined S⇠ the set of points on the manifold M where |h⇤|⇠i| > 0, it generally
is S⇠0 \ S⇠00 6= 0. On the other hand, the quantity

lim
N!1

|h⇤|⇠i|2 (1.17)

features some very relevant properties depending on the specific |⇠i considered. It is
for instance known that it converges to the Dirac-delta distribution �(⇤ � ⇤0) if |⇠i
is another GCS |⇤0i, as we learnt from Assumption 3 (see Eq. (1.13)). Moreover,
we have demonstrated the following. Given two elements, say |⇠0i and |⇠00i, of any
orthonormal basis {|⇠i}H for the Hilbert space H of the system for which GCS have
been constructed, it can be shown that

lim
N!1

S⇠0 \ S⇠00 = ; . (1.18)

Indeed, being |⇠0i and |⇠00i orthonormal, using the resolution of the identity (1.4) and
Eq. (1.7), it is

�⇠0⇠00 = h⇠0|⇠00i = ck

Z

M

dm(⇤)h⇠0|⇤ih⇤|⇠00i , (1.19)

implying

lim
k!0

ck

Z

M

dm(⇤)h⇠0|⇤ih⇤|⇠00i = �⇠0⇠00 8 |⇠0i , |⇠00i 2 {|⇠i}H . (1.20)

The constant ck keeps the footprint of the quanticity of the theory, that is supposed
to vanish as k ! 0, or, equivalently, N ! 1. Even if it depends on the normaliza-
tion of the group measure dµ(⇤̂) and should be computed on a case-by-case basis,
the normalization of GCS (1.5) is guaranteed by construction, and from Eq.(1.13) it
follows |h⇤|⇤0i|2 ! k�(⇤� ⇤0) as k vanishes, so that

lim
k!0

ckk

Z

M

dm(⇤0)�(⇤� ⇤0) = 1 , (1.21)

which implies ck = 1

k
, as readily verified in those cases where an explicit form of

GCS is available. Therefore, we observe that the only possibility to keep Eq. (1.19)
meaningful in the large-N limit is that the product of the overlaps contained in the
integral vanish 8⇤ 2 S⇠ ⇢ M, so that the result (1.20) hold true. In fact, due to
the homogeneous divergence of ck, and the requirement that the above result hold for
whatever pair |⇠0i , |⇠00i of whatever orthonormal basis {|⇠i}H, the only possibility
for it to hold is indeed that the two overlaps entering the integral are never simulta-
neously finite on M or, more precisely, on a set of finite measure. In other terms,
Eq. (1.20) implies Eq. (1.18), and vice-versa - which is trivial. Since result (1.18)
will be essential in this thesis, we here discuss its actual meaning with two explicit
examples.
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(a) N = 1 (b) N = 50 (c) N = 1000

Figure 1.3: |h↵|ni|2 with n = 1 for N = 1, 10, 1000 (left to right): Contourplot on
part of M, which is now the complex plane C. Colours increasing from blue to red.

1.3.1 Field Coherent States
Consider a system ⌅ whose Lie algebra is h4, i.e., the vector space spanned by
{â, â†, n̂ ⌘ â†â, Î}, with Lie-brackets [â, â†] = Î , [â, n̂] = â , [â†, n̂] = �â†; its
GCS are the well known field coherent states |↵i, with |0i : n̂ |0i = 0 the reference
state, and M the complex plane C. The eigenstates of the diagonal operators {Î, n̂}
are the Fock states |ni, and D̂(↵) ⌘ exp{↵â � ↵⇤â†} is the displacement operator
such that |↵i = D̂(↵) |0i. The invariant measure defined by the GCS can be written
as

dµ(↵) =
1

⇡~d
2↵ , (1.22)

with ↵ complex parameters on the plane C. The quanticity parameter k is defined
in such a way that the theory becomes classical as k ! 0. The easiest way to
determine its relation with N is to examine the Lie-brackets of the theory and find the
condition that makes them vanish in the large-N limit. In the case of bosonic theories,
this procedure is made less direct by the use of operators whose commutators are
either numbers or proportional to ~, which is a finite constant. People sometimes
speak of the ~ ! 0 limit to refer to the bosonic classical limit, understanding ~
as the quanticity parameter of the theory, which is quite a no-sense being its value
fixed. However, one can restore dimensionful ladder operators, â(†) !

q
2~
M!

â(†),
and observe that all the commutators vanish in the large-M limit. Further taking
M / N it is easily found that k ⇠ 1/N . Since ~ always appears in dividing M , or
N , one gets the same results letting ~ vanish, so that, loosely speaking, the ~ ! 0
limit is a classical limit.

We are interested in evaluating quantities h↵|n0ihn00|↵i, with h↵|ni given in App. A.
First of all, we notice that the support of limN!1 |h↵|ni|2 does not shrink into the
neighbourghood of a point on M, as is the case for limN!1 |h↵|↵0i|2 = �(↵ � ↵0),
but rather into that of the circle |↵|2 = n, as shown in Fig. 1.3. In other terms, more
field coherent states overlap with the same Fock state, but the reverse does not hold
true in the large-N limit. In Fig. 1.4 we show |h↵|ni|2 as a function of |↵|2, for
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Figure 1.4: |h↵|ni|2 as a function of
p
↵↵⇤, for n = 1 (left) and n = 4 (right), for

N = 1, 10, 1000 (bottom to top).

(a) N = 1 (b) N = 50 (c) N = 1000

Figure 1.5: Sum |h↵|n0i|2 + |h↵|n00i|2 with n0 = 1 and n00 = 4 for N = 1, 10, 1000
(left to right): Contourplot on part of C. Colours as in Fig. 1.3.

(a) N = 1 (b) N = 10 (c) N = 1000

Figure 1.6: Product |h↵|n0ih↵|n00i|2 with n0 = 1 and n
00
= 4 for N = 1, 10, 1000

(left to right), on part of the complex plane C.
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Figure 1.7: Sum |h↵|+i|2+ |h↵|�i|2 with |±i = (|1i±|2i)/
p
2, for N = 1, 10, 1000

(left to right): Contourplot on part of the complex plane C. Colours increasing from
blue to red.

n = 1, 4 and different values of the quanticity parameter, which is proportional to
1/N in this case. If the theory keeps its quantum character, Sn0 \Sn00 6= ;, while it is
seen that Sn0 \Sn00 ! ; when N ! 1, as we can also observe in Fig. 1.5, where we
show the sum |h↵|n0i|2+|h↵|n00i|2. This means that the product between the overlaps
vanishes, unless n0 = n00, as shown in Fig 1.6. Lastly, we observe that this picture
holds not only for Fock states, but, as expressed by Eq. (1.19), for any set of orthonor-
mal states. In Fig. 1.7, for instance, we contour-plot the sum |h↵|+i|2+ h↵|�i|2 with
|±i ⌘ (|1i ± |2i)/

p
2: in this case S+ and S� are disjoint already for N = 1, and

keep shrinking as N increases.

1.3.2 Spin Coherent States
A very similar scenario appears when studying a system ⌅ whose Lie algebra is
su(2), i.e., the vector space spanned by {Ŝ+, Ŝ�, Ŝz}, with Lie-brackets [Ŝ+, Ŝ�] =
2Ŝz , [Ŝz, Ŝ±] = ±Ŝ±, and |Ŝ|2 = S(S + 1); its GCS are the spin (or atomic)
coherent states |⌦i, with the reference state |0i : Ŝz |0i = �S |0i, and M the unit
sphere S2. The eigenstates of the diagonal operator Ŝz are the states |mi : Ŝz |mi =
(�S +m) |mi, and the displacement operators are D̂(⌦(⇣)) = exp{⇣Ŝ� � ⇣⇤Ŝ+},
with ⇣ = #

2
ei', and # 2 [0, ⇡),' 2 [0, 2⇡) the spherical coordinates. The invariant

measure defined by the GCS can be written as

dµ(⌦) =
2S + 1

4⇡
d⌦ , (1.23)

where d⌦ = sin#d#d' is the solid-angle volume element at (#,') on the sphere
S2. The quanticity parameter for a spin system is readily recognized as 1/S writing
Ŝ = Sŝ, so that for instance [ŝ+, ŝ�] / 1

S
ŝz, implying that, as S goes to infinity, the

“normalized” spin operators become classical variables and the magnetic system is
described by a classical vector of unitary modulus. Further taking S / N it is easily
found that k ⇠ 1/N .

The product of overlaps in Eq. (1.19) is now h⌦|m0ihm00|⌦i, with the analytical
expression for h⌦|mi available (see App. A). Notice that, as seen in the bosonic case,
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(a) S = 5 (b) S = 50 (c) S = 500

Figure 1.8: |h⌦|mi|2 with m/S = 0.8 for S = 5, 50, 500 (left to right): Densityplot
on part of M, which is now the unit sphere S2. Colours increasing from blue to red.
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Figure 1.9: |h⌦|mi|2 as a function of ✓, for m/S = 0.8 (left) and 0.4 (right), for
S = 5, 50, 500 (bottom to top).

(a) S = 5 (b) S = 50 (c) S = 500

Figure 1.10: Sum |h⌦|m0i|2 + |h⌦|m00i|2 with m0/S = 0.8 and m
00
/S = 0.4, for

S = 5, 50, 500 (left to right): Densityplot on part of the unit sphere S2. Colours as in
Fig. 1.8.
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(a) S = 5 (b) S = 50 (c) S = 500

Figure 1.11: Product |h⌦|m0ih⌦|m00i| with m0/S = 0.8 and m00/S = 0.4, for S =
5, 50, 500 (left to right): Densityplot on part of the unit sphere S2. Colours as in
Fig. 1.8.

the support of limN!1 |h⌦|mi|2 does not shrink into the neighbourghood of a point
on the sphere, as is the case for limN!1 |h⌦|⌦0i|2 = �(⌦ � ⌦0), but rather into that
of the parallel cos ✓ = m/S (Fig. 1.8). In Fig. 1.9 we show the sum |h⌦|m0i|2 +
|h⌦|m00i|2 for m0/S = 0.8 and m00/S = 0.4 as densityplot on the unit sphere, for
different values of the quanticity parameter, which is now proportional to 1/S, and
hence to 1/N . Again, we see that if the theory keeps its quantum character, Sn0 \
Sn00 6= ;, whereas Sm0 \ Sm00 ! ; as N ! 1, as evident in Fig. 1.10 where we
show the sum |h⌦|m0i|2 + |h⌦|m00i|2, and the product in Eq. (1.19) vanishes, unless
m0 = m00, as shown in Fig. 1.11.

1.4 Open Quantum Systems: combining MACRO with micro

The work done in the second half of the last century on the N ! 1 limit of quantum
theories is quite comprehensive, but it neglects the case when the large-N system is
the big partner of a principal quantum system, that only indirectly experiences such
limit. In fact, the large-N theories extensively developed and used in quantum-field
theory, including the works by Yaffe and Lieb to which we particularly referred in
Sec. 1.2, are not trivially applicable when the large-N system is not isolated, and,
unless one decides that the quantum system is not “principal” at all and hence can be
neglected, several foundational issues arise in this setting, due to the difficult coexis-
tence of quantum and classical formalisms, possibly made worse by the presence of
thermal baths or stochastic agents. On the other hand, this is an exemplary situation
in quantum technologies and the research field of OQS, for which reason we must
develop some proper tools to deal with those cases where “MACRO” and “micro”
need to be combined, making classical and quantum coexist.

Consider a quantum environment ⌅made by N quantum components, interacting
with a principal system �. Whereas the latter stays intrinsically quantum, the former
will be charactherized by the assumptions of Sec. 1.2, so as to guarantee it, and it
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alone, feature a classical behaviour in the large-N limit, actually through the emer-
gence of the effective theory Qk and the k ! 0 limit of the quanticity parameter. We
want to analyse what happens in the twilight zone of the quantum environment that
is becoming classical. Therefore, a method is required such that a large-N limit for ⌅
can be defined, without affecting �. We identify one such method in the Parametric
Representation with Environmental Coherent States (PRECS), a theoretical tool
that has been introduced [13, 14] to specifically address those bipartite quantum sys-
tems where one part, on its own, shows an emerging classical behaviour in becoming
macroscopic. As the name suggests, the PRECS makes use of GCS for the system
intended to become macroscopic, and we call them Environmental Coherent States
(ECS), since they are relative to a system, ⌅, which is the environment of a principal
system, �.

Before introducing the method, let us observe that the parametric representation
pertains to the principal system, but, being exact, the information provided is suffi-
cient to reconstruct the state of the whole system, �+ ⌅. Exact parametric represen-
tations of OQS can always be constructed, providing an option to the reduced density
matrix approach. This means that it is possible to adopt a parametric representation
for � and yet keep a meaningful definition of the possible entanglement between �
and ⌅7. In fact, parametric representations provide an exact formalism for studying
a composite, bipartite, quantum system in such a way that � is not represented by
a density operator, but rather by a collection of pure states, each labelled by a pa-
rameter that univocally specifies a possible configuration for ⌅. The possibility of
defining a parametric representation relies on two assumptions:

• The composite, global system  = �+ ⌅ is isolated, and hence described by
a pure state.

• It is possible to define a resolution of the identity operator on H⌅ in terms of
projectors onto normalized states.

Parametric representations can be discrete or continuous depending on whether the
above identity resolution on H⌅ is given as a discrete sum or a continuous integral. Of
course, for the pursuit of interpolating the fully quantum treatment of an OQS with
that of closed ones, the appropriate candidates appear to be the continuous parametric
representations, and, particularly, the PRECS, which indeed strongly relies on the
special role played by GCS, as far as the classical limit of any quantum theory is
concerned.

7To this respect, we observe that entanglement finds no position in those approaches where an
OQS � with an environment ⌅ is described as a “closed” one, i.e., as a quantum system interacting
with a classical environment (there cannot be entanglement between a quantum and a classical sys-
tem). Nevertheless, such representations have some relevant advantages, since representing ⌅ by a
small number of parameters proves extremely useful; this choice indeed characterizes essential for-
malisms, such as the quantum statistical mechanics in the canonical ensemble, where the density
matrix %� parametrically depends on temperature, or the Born-Oppenheimer formalism for describ-
ing molecules, where electrons are described in terms of pure states parametrically dependent on the
nuclear positions.
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1.4.1 The Parametric Representation with Environmental Coher-
ent States

Let us consider a bipartite, isolated system  = � + ⌅ with Hilbert space H =
H� ⌦H⌅ in the pure state

| i =
X

�⇠

c�⇠ |�i ⌦ |⇠i with
X

�⇠

|c�⇠|2 = 1 , (1.24)

where {|�i}� and {|⇠i}⌅ are local orthonormal bases for H� and H⌅ respectively.
The dependence of the coefficients c�⇠ on both � and ⇠ evidences that | i is en-
tangled. Once ECS are available, according to the procedure briefly introduced in
Sec. 1.2 and discussed in App. A, the PRECS of whatever pure state | i of  is ob-
tained by inserting an identity resolution in the form (1.4) into any decomposition of
| i with respect to the partition  = �+ ⌅. Explicitly, we can write the state (1.24)
as

| i =
X

�⇠

c�⇠ |�i
✓Z

G/F

dµ(⇤̂) |⇤i h⇤|
◆
|⇠i =

Z

M

dµ(⇤)
X

�

f�(⇤) |�i |⇤i ,

(1.25)
with the symbol ⌦ understood - as hereafter done whenever convenient- and

f�(⇤) =
X

⇠

c�⇠h⇤|⇠i . (1.26)

In order to get a normalized state for �, we define

�(⇤) =

sX

�

|f�(⇤)|2 , (1.27)

which is a real function on M, and write

| i =
Z

M

dµ(⇤)�(⇤) |�(⇤)i |⇤i , (1.28)

such that h�(⇤|�(⇤)i = 1 8⇤. Notice that, due to the normalization of | i, it is
Z

M

dµ(⇤)�(⇤)2 = 1. (1.29)

From Eqs. (1.26), (1.27) and (1.28),

• We define the PRECS of �, relative to  = � + ⌅ in the state | i, the set
{|�(⇤)i ,�(⇤)2}| i

⇤2M
.

The parametric dependence of the pure, normalized �-states |�(⇤)i on the environ-
mental parameter ⇤ is the fingerprint that � has an environment with which it may
be possibly entangled. In fact, it is easily seen that if | i were separable no such



22 What A Wonderful (Quantum) World

dependence would survive. Moreover, we notice that �(⇤) does not depend on �
and, from the property (1.29), a nice physical picture emerges: a parametric repre-
sentation of an OQS derived from the pure state of a composite system is a collection
of pure parametrized (and normalized) states {|�(⇤)i 2 H�} whose occurrence is
ruled by the probability distribution �(⇤)2 on M, that can be interpreted, thanks to
the one-to-one correspondence between points on M and coherent states |⇤i, as the
probability for ⌅ to be in the state |⇤i when  is in | i. This interpretation is further
justified by noticing that the square of the real function �(⇤) is the Husimi function
of the environmental reduced density matrix %⌅ ⌘ Tr�[| ih |], i.e.,

�(⇤)2 = h⇤| %⌅ |⇤i , (1.30)

that, being a well-behaved probability distribution on M, uniquely identifies %⌅8.
Let us now compare the PRECS and the reduced density matrix formalism: it is

%� ⌘ Tr⌅ [| ih |] =
Z

M

dµ(⇤)�(⇤)2 |�(⇤)ih�(⇤)| , (1.31)

and hence, for whatever local observable Ô�, one finds

Tr�
h
%�Ô�

i
=

=

Z

M

dµ(⇤)
X

�00

h�00|
"
X

�

f�(⇤) |�i
X

�0

f�0(⇤)
⇤ h�0| Ô�

#
|�00i

=

Z

M

dµ(⇤)
X

�00

X

�

f�(⇤)h�00|�i
X

�0

f�0(⇤)
⇤ h�0| Ô� |�00i

=

Z

M

dµ(⇤)

 
X

�0

f�0(⇤)
⇤ h�0|

!
Ô�

 
X

�

f�(⇤) |�i
!

=

Z

M

dµ(⇤)�(⇤)2 h�(⇤)| Ô� |�(⇤)i , (1.32)

consistently with the above interpretation of the set {|�(⇤)i ,�(⇤)2}| i
⇤2M

as a statis-
tical ensemble.

1.5 About the Global Symmetry

We end the chapter with some further considerations about the global symmetry.
Amongst the analysed assumptions, being invariant under a global symmetry is key
for the drastic reduction of physical observables characterizing a system made of a
large number of quantum components w.r.t. those featured by one single macroscopic

8In fact, a Husimi function is in principle defined on a classical phase space, while M is a differ-
ential manifold with a simplectic structure that should not be considered a phase space yet, i.e., before
the large-N limit is taken; however, it is quite conventional to extend the term to the expectation value
of density matrices % on GCS.
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object that behaves classically. Think again to the paradigmatic case of the spin-ring
of Sec. 1.1: we started from assuming the total spin S to be constant, that is the same
to say that we started from a symmetry property of the physical system considered. In
fact, the central role of symmetry was indeed a primary lesson of the 20th century’s
first half physics: the essential point is that in QM theorems about the conservation of
all kinds of quantities are related to the symmetries of the system, and the conserved
quantities are typically the observables that we want, and we are able, to analyse.
Therefore, as far as our aim is to investigate which kind of macroscopic quantum
systems properties can emerge in our classical world, it is not surprising at all that
the symmetry properties of the physical systems play an important role.

We stated that a global symmetry X(N) is a symmetry which does not leave
invariant subspaces in the Hilbert space H of the corresponding system. This latter
requirement means that there must exist a group of unitary operators, each acting
nontrivially on all of the N constituents, that leave the physical observables of the
theory invariant. Putting in the other way around, we can define a collective physical
quantity ÂN representing a global property of the system such that

[ÂN , Û ] = 0 8 Û 2 X(N) , (1.33)

where the unitary operators Û acting on H are the transformations of the symme-
try group, i.e., the transformations under which the system is invariant defining the
symmetry itself. The conservation laws produced by the above mechanism are some-
times dubbed superselection rules, and represent selection rules for composite sys-
tems [15]. A superselection rule can be generally thought to stem from two slightly
different origins:

· A sort of “golden rule”, defining a priori the system itself: for instance, the
electron e� is defined as the elementary particle with mass me� , charge �e
and spin 1/2;

· A collective operator that commutes with all the operators describing the sys-
tem (namely, with all its sensible observables), and that defines a conservation
law holding for each system component.

These “second kind” superselection rules are the ones to which we will refer in
this thesis, as they come from collective operators defining global properties for the
macroscopic quantum system and satisfying Eq. (1.33). Via the symmetry transfor-
mations Û 2 X(N) we can identify equivalence classes {|⌅i

N
i}⇠ of states |⌅j

N
i 2 H

with 1  i, j  dimH such that

Û |⌅j

N
i = |⌅i

N
i 8 Û 2 X(N) and h⌅j

N
| ÂN |⌅j

N
i = h⌅i

N
| ÂN |⌅i

N
i . (1.34)

States belonging to the same equivalence classes are dubbed symmetry equivalent
states, i.e., translating in words Eq. (1.34), states connected by symmetry transfor-
mations and giving the same expectation value of the global property ÂN . Once
defined the symmetry equivalence classes, we want to focus on what happens if we
implement the large-N condition, and we discover that there are some symmetry
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equivalent states that become classically equivalent states when N goes to infinity.
Such states, |⇤i

N
i, are those symmetry equivalent states (1.34) for which the expecta-

tion value of the global property ÂN has a well defined large-N limit, Acl(⇤), reading

lim
N!1

h⇤i

N
| ÂN |⇤i

N
i = Acl(⇤) < 1 . (1.35)

Looking this expression, we immediately recognize Eqs. (1.9) and (1.16): indeed, the
special states satisfying Eqs. (1.34) and (1.35) are GCS, as we could expect thinking
about the special role they play in dealing with large-N limits.



Chapter 2

Large Environment as part of an hy-
brid quantum scheme

Several physical realizations of OQS are being considered in the literature, usually
modeled in terms of bibartite isolated systems  = � + ⌅, with Hilbert space
H = H� ⌦ H⌅. The two subsystems act respectively as the principal system �
and its environment ⌅, usually implying by this choice that dimH� ⌧ dimH⌅. In
fact, although there is no general necessity for this condition to hold, a very large
dimH⌅ most often stands as an actual definition of what is really meant by environ-
ment - see Chap. 1. Since ⌅ usually needs to be described by a very large number
N of quantum components, the modeling of an effective description of ⌅, and of
its influence of �, usually stems from intuitive and phenomenological arguments, or
even from an arbitrary choice, rather than from a formal derivation. During almost
all of last century, the problem of how a principal quantum system behaves when
interacting with a macroscopic environment has been considered assuming the latter
to be a classical system. If this is the case, a quantum analysis of how the two subsys-
tems evolve due to their reciprocal interaction is hindered, and this is quite a severe
limitation being indeed macroscopic environments the tools by which we ultimately
extract information about, or exercise control upon, any microscopic quantum sys-
tem [16, 17, 18, 19, 20]. For example, the effects of the presence of � on the way
⌅ evolves, often referred to as back-action in the literature, have no place in the de-
scription, and entanglement between the twos is completely neglected (there cannot
be entanglement with a classical system).

Recently, however, hybrid schemes in which micro- and macroscopic systems
coexist in a quantum device have been considered in different frameworks, from the
analysis of foundational issues via optomechanical setups, to quantum thermody-
namics or nanoelectronics [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. These
situations are peculiar since two different levels of quanticity are present within the
same system, and often semi-classical techniques, as for instance perturbative meth-
ods, involve the system as a whole, flattening unavoidably the quanticity difference,
that is nevertheless fundamental, and must hence be preserved, in hybrid schemes.
In fact, it is not completely clear why one should renounce a quantum description of

25
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a macroscopic system: after all, this is nothing but a system made of many quantum
particles that, for one reason or another, can be described regardless of its internal
structure as if it was a single object with its own effective Hilbert space, as we pointed
out in Chap. 1. Again, the exemplary case of such a situation is when ⌅ is the spin-
ring made of a large number N of spin-1

2
particles, featuring a global symmetry that

guarantees the total spin S to be a constant of motion. No matter how large N is, the
corresponding magnetic environment behaves, in general, like a quantum system,
as it is clearly seen if its total spin equals, say, S = 1/2 or S = 1. On the other
hand, when S ⇠ N ! 1 a classical-like dynamics is expected [9], while large-S
approximations are ideal tools for studying macroscopic, and yet quantum, magnetic
systems. In general, models that are hybrid in the sense explained above must be
studied with the toolkit of OQS enriched by specific accessories for dealing with the
macroscopicity of some of their elements, so that they become the most typical ex-
ample of a possible situation for which the PRECS introduced in Sec. 1.4.1 has been
specifically designed [13, 34].

This Chapter is devoted to the analysis of environments which compose hybrid
systems, and which hence need to keep trace of their quantum character to allow a
sensible description of the interaction with their quantum companion1. In Sec. 2.1
we consider a magnetic environment ⌅, made of a large number N of spin-1

2
parti-

cles, with the total spin S that is a constant of motion. As we mentioned above, until
S is finite, such magnet is the prototype of a system that exhibits a distinct quantum
behaviour despite being macroscopic (N � 1). The microscopic companion of the
magnet is assumed to be a quantum mechanical oscillator �, and the Hamiltonian that
describes the interaction between � and ⌅ allows for energy-exchange between the
system and its environment. Addressing the time evolution of the composite system
� + ⌅, we obtain for the propagator a factorized expression that allows us to focus
on the back-action of the principal system on its environment. In Sec. 2.2 we study
a bosonic system � coupled to either a bosonic or a magnetic environment ⌅, inves-
tigating if be possible describing its dynamics by an effective Hamiltonian acting on
� only, given that its environment is macroscopic. In particular, we critically inspect
the conditions for the validity of this hypothesis as a tool to understand whether it
stems from ⌅ being macroscopic, or the temperature being high, or from enforcing
some other specific condition. Taking a general viewpoint, we show that any quan-
tum environment can be described by classical fields whenever global symmetries
lead to the definition of environmental operators that remain well defined when the
dynamical variables of the environment increase. Finally, in Sec. 2.3 we gather the

1The results here presented have been published in two works, reported in Secs. 2.1 and 2.2 re-
spectively:

• “Quantum dynamics of a macroscopic magnet operating as an environment of a mechanical
oscillator”, C. Foti, A. Cuccoli, and P. Verrucchi, Phys. Rev. A 94, 062127 (2016);

• “Effective description of the short-time dynamics in open quantum systems”, M. Rossi, C.
Foti, A. Cuccoli, J. Trapani, P. Verrucchi, and M. Paris, Phys. Rev. A 96, 032116 (2017).
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results obtained in this chapter.

2.1 A macroscopic magnet dancing with a quantum partner

Let us start considering a physical system ⌅ to be the spin-ring introduced in the
first chapter and mentioned also above. Be Ŝ ⌘ 1

2

P
N

i
�̂i its total spin and |Ŝ|2 ⌘

(Ŝx)2 + (Ŝy)2 + (Ŝz)2 = S(S + 1) its modulus, with S ranging from 0 to N/2 if
N is even (from 1/2 to N/2 if N is odd). As we will always understand ~ to be
finite, we can hereafter set ~ = 1. When |Ŝ|2 commutes with the propagator, the
value S stays constant and ⌅ can be seen as one single physical system described by
the spin operators closed under the su(2) commutation relations [Ŝ↵, Ŝ�] = i"↵��Ŝ� ,
with ↵(�, �) = x, y, z. Notice that taking |Ŝ|2 conserved implies assuming that a
global symmetry exists in the Hamiltonian acting on ⌅, according to what we learnt
in Chap. 1. Once it is guaranteed that the total spin has a constant value S, we can
consider that a spin system displays a classical-like behaviour when S � 1. In
fact, the quantum-to-classical crossover of a magnetic system can be naively under-
stood by the following argument: defining the normalized spin operator ŝ⌘Ŝ/S, it is
[ŝ↵, ŝ�] = i"↵�� ŝ�/S, so that ŝ becomes a classical vector in the S ! 1 limit. We
already used this simple reasoning, below Eq. (1.23) in Sec. 1.3.2, to point out the
quanticity parameter of a magnetic system, i.e., 1/S, and in Sec. 2.1.2 we will show
how to introduce a large-S approximation essentially based on the above argument.

Figure 2.1: Graphical representation of a spin-ring coupled with a quantum mechan-
ical oscillator and whose components are independent of each other.

The spin-ring is now identified as the magnetic environment ⌅ of a quantum
mechanical oscillator � - see Fig. 2.1. We choose the Hamiltonian of the overall
system of the form

Ĥ = !n̂+
f

2

NX

i

�̂z

i
+

1

2

NX

i

gi(â�̂
+

i
+ â†�̂�

i
) , (2.1)

where ! is the (angular) frequency of the quantum oscillator, f is an external field
defining the z axis, and �̂±

i
⌘ �̂x

i
±i�̂y

i
; the different gi are the couplings between each
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spin of the ring and the oscillator, and, being ~ = 1, for the bosonic operators de-
scribing the principal system it holds that [â, â†] = Î. The Hamiltonian that describes
the interaction between � and ⌅ goes beyond the pure-dephasing model [35, 36],
allowing for energy-exchange between the system and its environment and, possibly,
dissipation - it will indeed describe the “exchange case” in Sec. 2.2. In order for
the model (2.1) to describe a system whose environment can be made macroscopic,
we need to guarantee the existence of a global symmetry such that the total spin is
conserved. This can be accomplished by implementing different conditions, amongst
which we choose gi = g 8i, leading to the Tavis-Cummings (TC) model [37, 38, 39]

Ĥ = g(âŜ+ + â†Ŝ�) + (!n̂+ fŜz) = Ŷ + X̂ , (2.2)

where we have defined the free, X̂ ⌘ !n̂+fŜz, and interacting, Ŷ ⌘ g(âŜ++â†Ŝ�),
terms. This is an exactly solvable model [37], and analytic expressions for its eigen-
vectors and eigenvalues exist; however, these expressions are useless if one aims at
writing the propagator in a form that lends to the recognition of different components
in the overall dynamics, which is indeed our goal. In fact, the TC model is usually
studied by taking the bosonic mode as the environment, for a principal system which
is, in a way or another, described by the spin operator Ŝ [40, 41]. If one tries to over-
turn the picture, analysing the TC dynamics regarding the magnetic system as the
environment, formal problems due to the spin-operators algebra for large S immedi-
ately emerge. This is the reason why such choice most often trails behind itself that
of a completely classical treatment of the environment, resulting in the replacement
of the Hamiltonian’s spin-operators with a classical field f(t), that displays “ad hoc”
time dependences [19, 42, 43, 44, 45, 46]. In this respect, we notice that describ-
ing a quantum system via a time-dependent Hamiltonian implies assuming that an
environment exists, which is not, however, sensitive to the presence of the principal
system itself. In fact, the time dependence of the field f(t) is arbitrarily chosen and
does not change with the principal system’s evolution, a condition that defines the
so called no back-action approximation. On the other hand, if one aims at studying
specifically the back-action that the environment experiences because of its interac-
tion with the principal system, it is necessary to consider the TC model with the spin
system described as a genuinely quantum, magnetic environment.

2.1.1 The propagator
The evolution induced by the TC Hamiltonian is severely involuted, since not only
the free X̂ and interacting Ŷ terms of Eq. (2.2) do not commute, but also the spin-
commutation relations further prevent us from obtaining usable expressions via the
BCH formula. In fact, it is quite clear that, as far as the coupling g in Eq. (2.2) is
finite, any attempt to disentangle the propagator exp(�iĤt), by taking out factors
separately acting on � and ⌅, will face the problem of dealing with infinitely nested
commutators.

We take on the problem of studying the evolution

| (t)i = e�iĤt | (0)i = e�(Ŷ+X̂) | (0)i , (2.3)
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with � ⌘ �it, by means of the left-oriented version of the Zassenhaus formula, so
as to make the free term X̂ act directly on the initial state | (0)i, as will be done in
Sec. 2.1.4. The left oriented Zassenhaus formula can be written [47] as

e�(Ŷ+X̂) = · · · e�n eCn · · · e�3 eC3e�
2 eC2e�Ŷ e�X̂ , (2.4)

where eCn = (�1)n+1Cn with n � 2, and the Zassenhaus operators Cn are given in
terms of commutators involving X̂ and Ŷ

ad0
X̂
Ŷ = Ŷ , ad

X̂
Ŷ = [X̂, Ŷ ] , adk

X̂
Ŷ = [X̂, [X̂ ... [X̂| {z }

k�times

, Ŷ ]...]] , (2.5)

and the same for X̂ $ Ŷ . In particular it is

Cn+1 =
1

n+ 1

X

i0, i1, ... , in

(�1)i0+i1+···+in

i0!i1! · · · in!
adin

Cn
· · · adi2

C2
adi1

Ŷ
adi0

X̂
Ŷ , (2.6)

where each (n+ 1)-tuple of non negative integers (i0, i1, ... , in) must satisfy

i0 + i1 + 2i2 + ...+ nin = n

and (2.7)
i0 + i1 + 2i2 + ...+ jij � j + 1, for j = 0, ..., n� 1 .

We underline that, as demonstrated in Ref. [47], the commutators defining the sepa-
rate terms of the sum in Eq. (2.6) are all linearly independent; this means that, once
the commutator defined by a certain (n + 1)-tuple has been determined, it is guar-
anteed that no other (n + 1)-tuple will give the same operator. Moreover, we notice
that the time dependence of each exponential in Eq. (2.4) follows the ordering of the
Zassenhaus terms in powers of t, so that tm exclusively multiplies eCm, for all m. As
for the order in g, it is easily seen that each commutator in Eq. (2.6) is proportional
to gl, where l is the number of operators Ŷ entering its definition. These features
allow us to monitor the validity of the approximation scheme hereafter adopted, as
extensively discussed at the end of the next section.

2.1.2 Large-S approximation
We have underlined that one of the features that characterizes a system as environ-
ment is that of being macroscopic, and when dealing with an environment described
by spin operators, one can consistently implement macroscopicity by choosing a
large value of S. On the other hand, if we take a large S and still want to mantain
the original picture of a quantum system � interacting with its equally quantum en-
vironment ⌅, we must require that the interaction Hamiltonian stay finite for S � 1,
implying that the coupling g in Eq. (2.2) scales as 1/S2. Therefore, we take gS

2It might seem that the same reasoning should hold for the external field f , but that is actually a
different issue: the role of f is that of defining an energy scale for the magnetic system only, and the
free Hamiltonian stays physical also in the S ! 1 limit.



30 Large Environment as part of an hybrid quantum scheme

constant setting gS = 1 in what follows, and posit

gm
n<mY

i=1

Ŝ↵i ⇠ 0 , (2.8)

with the symbol “⇠” that will be hereafter used to explicitly remind that condition
(2.8) is assumed. We notice that this large-S approximation is utterly different from
those required for making spin-boson transformations tractable by truncating square
roots of operators, as done when using the Holstein-Primakoff or Villain transforma-
tions [48]. In those cases, in fact, the spin sphere S2, i.e., the isomorphic manifold of
the su(2) algebra, is projected onto a plane or a cylinder, respectively, parametrized
by the usual conjugate coordinates. This implies that the algebra of the analysed
quantum system is substantially altered. On the contrary, Eq. (2.8) keeps the spin-
character of the magnetic operators without modifying their associated geometry, so
that terms like axial, planar, pole, equator, ... simultaneously mantain their meaning.

Let us now get back to Eq. (2.4). In order to obtain the operators eCn, we define

� ⌘ (! � f) and Ŷ ⌘ g(âŜ+ � â†Ŝ�) , (2.9)

use

[X̂, Ŷ ] = �Ŷ , [X̂, Ŷ ] = �Ŷ , [Ŷ , Ŷ ] = �2g2(2â†âŜz + Ŝ+Ŝ�) , (2.10)

and find that, due to condition (2.8), only two types of commutators survive

[X̂, [X̂ ... [X̂| {z }
n�times

, Ŷ ]...]] ⌘ ad n

X̂
Ŷ = g�n

⇣
âŜ+ + (�1)nâ†Ŝ�

⌘
(2.11)

and

[Ŷ , [X̂, [X̂ ... [X̂| {z }
(n�1)�times , n even

,Ŷ ]...]]] ⌘ ad
Ŷ
ad n�1

X̂
Ŷ = �2g2�n�1Ŝ+Ŝ� . (2.12)

Consequently, referring to conditions (2.7), only the following (n+1)-tuples remain
in the sum entering Eq. (2.6), i.e.,

i0 = n with ik = 0 8k 6= 0 ,

i0 = n� 1 , i1 = 1 with ik = 0 8k 6= 0, 1 . (2.13)

Therefore, defining Ŷ + ⌘ gâŜ+ and Ŷ � ⌘ gâ†Ŝ�, the Zassenhaus operators are
found to be

eC2m+1 = C2m+1 ⇠
1

(2m+ 1)!
�2m(Ŷ + + Ŷ �) +

2m

(2m+ 1)!
�2m�1(�2g2Ŝ+Ŝ�)

eC2m = �C2m ⇠ 1

(2m)!
�2m�1(Ŷ + � Ŷ �) . (2.14)
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We underline that eC2 and eC3 only contain commutators of the form (2.11)-(2.12),
meaning that expressions (2.14) are exact for m = 1. Finally, based on condition
(2.8), we will hereafter use

[Ŷ +, Ŷ �] = [gâŜ+, gâ†Ŝ�]

⇠ g2Ŝ+Ŝ� ⇠ g2Ŝ�Ŝ+ (2.15)

⇠ g2
h
S(S + 1)� Ŝ2

z

i
, (2.16)

and
[[Ŷ +, Ŷ �], Ŷ ±] ⇠ [[Ŷ +, Ŷ �], hŜz] ⇠ 0 , (2.17)

yielding, as far as the evaluation of the propagator (2.3) is concerned,

eŶ
+
+Ŷ

� ⇠ eŶ
+
eŶ

�
e�

1
2g

2
Ŝ
+
Ŝ
�
. (2.18)

We underline that [Ŷ +, Ŷ �] does not vanish, despite condition (2.8) being enforced,
because of the non-commutativity of â and â†, an evidence that we will comment on
further at the end of Sec. 2.1.3.

We now get back to Eq. (2.3) and, by the repeated use of Eq. (2.18), proceed as
follows.
i) Isolate e�X̂ :

exp
h
�(Ŷ + X̂)

i
⇠ · · · exp


�n(�)n

n!�
(Ŷ + � (�1)nŶ �)

�
· · · exp

h
�(Ŷ + + Ŷ �)

i

⇥ exp
⇣
�2g2K1�(�)Ŝ

+Ŝ�

⌘
exp

⇣
�X̂
⌘
, (2.19)

with

K1�(�) =
1

�2

X

m�1

2m

(2m+ 1)!
�2m+1�2m+1 =

1

�2
(�it� cos t� + i sin t�) . (2.20)

ii) Factorize the exponentials containing both Ŷ + and Ŷ �:

exp
h
�(Ŷ + X̂)

i
⇠ · · · exp

✓
�n�n

n!�
Ŷ +

◆
exp


�(��)n�n

n!�
Ŷ �

�
· · ·

⇥ exp
⇣
�Ŷ +

⌘
exp

h
�(��)Ŷ �

i

⇥ exp
⇣
�2g2K2�(�)Ŝ

+Ŝ�

⌘
exp

⇣
�X̂
⌘
, (2.21)

where

K2�(�) = K1�(�)�
1

4�2

X

n�1

(�1)n
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accounts for the commutators introduced via Eq. (2.18), while factoring all the expo-
nentials of Ŷ + and Ŷ �.
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iii) Group together the operators Ŷ + (Ŷ �), performing the necessary Ŷ + $ Ŷ �

permutations in the infinite product of exponentials entering Eq. (2.21):
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2Ŝ+Ŝ�

i
exp

⇣
�X̂
⌘
,

(2.23)

where ��(�) is the coefficient resulting from the commutators [Ŷ +, Ŷ �], introduced
while moving all the Ŷ � to the right.

In order to determine ��(�), we consider
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�
+⇡Ŷ
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+
eµŶ
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so that the expression from which we will get ��(�) (see Eq. (2.23)) reads
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We then need to exchange every ⇡nŶ + with all the µ`Ŷ � of the following orders,
i.e., such that n > `; after the first permutation, we get
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and one can easily check that successive permutations give the terms

e�µ2⇡1g
2
Ŝ
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Therefore, we get
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(2.29)

yielding
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We are now in the position of summing up the series in Eq. (2.30), which are equal
to (e±�� � 1), and finally get the global propagator in the form
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where the real time t = i� is back, f�(t) ⌘ (e�it� � 1)/�, and the function G�(t) ⌘
K3(�it) � |f�(t)|2/2 is pure imaginary. In fact, since � = �it, we notice that
�� = �⇤ and, setting x = ��, x⇤ = �⇤�, the last two terms of Eq. (2.29) can be
written as
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where f�(�) ⌘ (e�� � 1)/�, i.e., the function defined in Eq. (2.31), and
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The propagator (2.30) is then
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where in the last step we used Eq. (2.15) and
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Looking at Eq. (2.31), we therefore have

G�(�) = K3�(�)�
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|f�(�)|2 = �2K1�(�) +M�(�) . (2.36)

In order to show that this is a pure imaginary function we notice that K1�(�) 2 =,
and concentrate upon M�(�). Restoring x = �� and x⇤ = �⇤� for the sake of a
lighter notation, it is
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and one can easily verify that the first and the third terms sum up to zero. We get
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and, noticing that the above expression is the sum of � 1
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its complex conjugate, M(x) 2 =. This in turn implies that, looking at the exponents
n+ ` as powers of t�, only the odd terms survive in the sum of the two series above.
Finally, Eq. (2.36) becomes
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which evidently is a pure imaginary quantity. This is the back-action term defined in
Eq. (2.31), upon which we will concentrate in the next section.

Before moving forward in our analysis, the conditions under which the final form
of the propagator (2.31) holds should be determined. Since according to condition
(2.8) products of n spin operators have been neglected if multiplied by gm with m >
n, it must be g ⌧ 1, consistently with the large-S assumption with gS finite. As for
the time dependence, we remind that condition (2.8) does not affect eC2 and eC3, and
Eq. (2.4) with Zassenhaus coefficients given by Eqs. (2.14) is exact up to the third
order in T. Moreover, we notice that, through steps (i)-(iii), terms linear in whatever
spin-operator Ŝ⇤ appear as gntnŜ⇤ and are kept only for n = 1, which is a valid
choice if gt ⌧ 1. Since we have set gS = 1, this is tantamount to say t ⌧ S. On the
whole, the condition t ⌧ S, with S large, defines the proper time-scale in which our
results hold true.
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2.1.3 The back-action
The final form of the propagator given by expression (2.31) most relevant feature
is the appearance of the term g2G�(t)Ŝ+Ŝ� which has no equivalent in the original
Hamiltonian and, despite regarding the magnetic system only, is effectively gener-
ated, as made evident by its being proportional to the square of the coupling, by its
interaction with the mechanical oscillator, thus standing as the type of back-action
we were actually aiming at describing. In fact, if one reviews the way the above
term is obtained, it becomes clear that condition (2.8) can be enforced without wip-
ing the back-action off the global dynamics, if and only if [â, â†] does not vanish, as
we pointed out below Eq. (2.18). In other terms, it is the quantum character of the
oscillator that keeps the back-action alive in the large-S limit, i.e., when the magnet
becomes macroscopic.

In order to better understand the effects of the Ŝ+Ŝ� term, we notice that Eq. (2.17)
ensures that [g2G�(t)Ŝ+Ŝ��itX̂] commutes with itself at different times, and set

g2G�(t) = �i

Z
t

0

A�(⌧) d⌧ , (2.40)

with A�(t) real, being G�(t) 2 =. This allows us to define the effective time-
dependent free Hamiltonian
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Notice that an effective Hamiltonian for ⌅ that contains a term proportional to Ŝ+Ŝ�

is also found in Ref. [39], where, however, different approximations are considered
that do not encompass any time dependence for such an effective term. As for the
interaction term, we notice that despite being f�(t) = �i

R
t

0
d⌧ e�i�⌧ one is un-

able to find an effective time-dependent interaction Hamiltonian, Ŷ e↵

�
(t) analogous

to X̂e↵

�
(t), as the argument of the first exponential in Eq. (2.42) does not commute

with itself at different times, unless � = 0. If this is the case, however, f0(t) = �it
and such exponential transforms into the propagator generated by g(âŜ+ + â†Ŝ�).
Moreover, from the general form of G�(t) (2.39), one easily finds G0(t) = 0, im-
plying that a genuine interaction picture for  emerges. In other terms, when the
free evolutions of � and ⌅ are resonant (� = 0 , ! = f ) there is no back-action
whatsoever, and information is not transferred from one system to the other.

2.1.4 Effective evolution of the environment

The operator X̂e↵

�
(t) can be interpreted as the sum of the original free Hamiltonian

for the bosonic mode, Ĥ� = !â†â, plus an effective time-dependent environmental
one

Ĥe↵

⌅
(t) ⌘ fŜz + A�(t)Ŝ

+Ŝ� ⇠ fŜz � A�(t)(Ŝ
z)2 � ✏�(t) , (2.43)
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where we have used Eqs. (2.15)-(2.16) and set ✏�(t) = A�(t)S(S + 1). In this
way, we see that the presence of � makes the environment feel an effective mag-
netic anisotropy �A�(t)(Ŝz)2 that favours or hinders the alignment of its spin along
the quantization axis, depending on the sign of A�(t). The time dependence of A�(t)
represents the continuous updating of the back-action, which is ruled by the energy
exchange between � and ⌅. In particular, it is A�(t) / t2 + O(t4) [from Eq. (2.40)
and the analytical expression of G�(t) (2.39)], meaning that there exists an initial
time-interval during which the environment is not affected by the presence of � in
any way other than that due to their explicit interaction. After some time, how-
ever, the energy exchange implied by that very same interaction becomes so costly
as to cause a reaction that switches on the back-action, in the form of a magnetic
anisotropy. We analyse this phenomenology in details with the help of some figures,
where lines fade if the conditions that guarantee the validity of our results (t ⌧ S)
are not rigorously met.

In Fig. 2.2 we show the time evolution of the effective anisotropy A�(t) for S =
10 and some negative values of �. We see that A�(t) initially works against the
magnetic field, favoring the spread of the environmental magnetic moment on the
xy-plane. As time goes by, however, A�(t) changes its sign (for t ' 1/|�|), thus
preventing the dynamics from freezing by reverting its character into an easy-axis
one. As for the dependence on the detuning, we observe that A�(t) stays negative for
longer time and displays a deeper minimum for smaller values of |�|; we understand
this evidence by noticing that small values of the detuning entail energy scales for
the two subsystems comparable to each other, which implies that the environment
closely follows the beat of its quantum partner for a longer time interval.

In Fig. 2.3 we set � = �0.5 and consider different values of S: we find that
|A�(t)| decreases as S increases, to represent the growing inefficacy of � in alter-
ing the dynamics of its environment as this becomes macroscopic, thus approaching
a classical system. In fact, as briefly discussed at the beginning of the chapter, a
classical-like dynamics, with no back-action at all, must characterize the magnetic
environment when S ! 1, which conforms to the vanishing of the anisotropy ob-
served for large S in the plot.

0.5 1.0 1.5 2.0
t
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-0.001
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δ =-0.1
δ =-0.5
δ =-1
δ =-2
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Figure 2.2: Effective anisotropy A�(t) as a function of T, for S = 10 and different
values of negative �, as indicated.
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Figure 2.3: Effective anisotropy A�(t) as a funcion of T, for � = �0.5 and different
values of S, as indicated. The curve for S = 7 fades when the validity of the results
is not fully under control.
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Figure 2.4: Effective anisotropy A�(t) as a function of �, for t = 0.1 and different
values of S, as indicated.

In the above comments, and Figs. 2.2 and 2.3, we have considered the case of
negative detuning, f < !. The opposite case, f > !, trivially follows from A�(t) =
�A��(t), as seen from the expression of G�(t) in the Appendix, as well as from
Fig. 2.4, where we see that the effective anisotropy at a given time is an odd function
of �, for all values of S.

Observe now how the factorized form of the propagator (2.31) allows us to iden-
tify, amongst the overall effects of the interaction between � and ⌅, those that do
not generate entanglement between the two. This is better seen and understood con-
sidering the evolved state for the entire system  = � + ⌅, assuming that its initial
state | (0)i is separable, i.e., | (0)i = |�i ⌦ |⌅i (we will hereafter understand the
symbol ⌦ whenever possible). From Eq. (2.42) we get
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where |�(t)i = e�i!n̂t |�i and |⌅̃(t)i = exp[�i
R

t

0
X̂e↵

⌅
(⌧) d⌧ ] |⌅i describe the free

evolution of the bosonic system and the effective free evolution of the magnetic one,
respectively. We have used the notation |⌅̃(t)i to underline that while |�(t)i does
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not depend on the interaction between � and ⌅, the evolution of |⌅̃(t)i is induced
not only by the free environmental Hamiltonian fŜz, but also by the back-action
g2G�(t)Ŝ+Ŝ� that follows from its coupling with �.

In the above expression (2.44) we can recognize a sort of interaction picture with
two distinct rotating frames, one for the principal system and one for the environ-
ment, that do not move independently. In particular, it is the latter that changes its
pace according to the continuous update of the non-commuting components of the
environmental magnetic moment implied by an interaction of the TC form. It is
worth noticing, in this respect, that the spin commutation relations, that in our case
constitute the obstacle to the adoption of an exact interaction picture and the reason
why an approximation scheme must be adopted, effectively manifest themselves in
the non trivial time dependence of the back-action, to represent their essential role in
the quantum dynamics generated by the Hamiltonian (2.2).

Reminding that G is pure imaginary, in Fig. 2.5 we plot g2|G�(t)| as a function
of time for � = �0.5 and S = 3, 10. Its behavior qualitatively shows that the
back-action has its maximum effect, at least as far as the time-interval where our
approximation holds, for t ' 1/|�| and vanishes for t & 1/|�|, no matter the value of
S.

Figure 2.5: The back-action g2|G�(t)| for � = �0.5 and different values of S; the
inset shows the S = 3 case in its proper plot-range. The curve for S = 3 fades when
the validity of the results is not fully under control.

Focus finally the attention on the environmental reduced density matrix. Writing
the projector %(t) = | (t)i h (t)| and tracing out the �-degrees of freedom, we get
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where we have defined the operators

Ô�

⌅
(t) ⌘ Ô�
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and {|�i}H� is an orthonormal basis on H�. The set of operators {Ô�

⌅
(t)} acting on

the Hilbert space of the environment can be interpreted as one possible set of Kraus
operators [49], since the completeness relation

X
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Ô�†
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(t)Ô�

⌅
(t) = Î⌅ (2.47)

holds for all t, as one can easily verify via
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Notice that, as the symbol “⇠” reminds us, the results above holds in the limit of our
approximation (2.8). The fact that the emerging Kraus operators do not depend on
G�(t) is fully consistent with the fact that the back-action does not generate entangle-
ment, as commented above, and rather dynamically renormalizes the environmental
free Hamiltonian Ĥe↵

⌅
(t). We do also notice that, in order for the back-action to have

a non-trivial effect on the environment, the initial state |⌅(0)i must be different from
whatever eigenstate of Ŝz, to avoid the anisotropy term in X̂e↵

�
(t) to affect |⌅̃(t)i

only by a phase factor.
We report in Sec. 2.3 the concluding remarks about the analysis of the TC model

(2.2) so far developed.

2.2 Effective description of quantum environments as classical
fields

In this second part of the chapter, we scrutinize the general idea that the dynamics of
a quantum system with a macroscopic environment may be effectively described by
a non-autonomous, i.e., time-dependent, Hamiltonian acting on the principal system
only. More specifically, we analyse the situation where a principal quantum system
� interacts with an equally quantum environment ⌅, put into contact with a further
external system T (see Figs. 2.6(a) and 2.6(b)). If ⌅ is macroscopic and T is a
thermal bath at high temperature, it may appear intuitive, and naively understood,
that � effectively evolves as if it were under the influence of a classical fluctuating
field. This statement, however, has the nature of an ansatz as far as it is not formally
inferred, and conditions ensuring its validity are not given.

Several OQS have been indeed investigated to appraise whether an effective de-
scription is viable; general arguments valid also for bipartite systems have been dis-
cussed [50, 51, 52], and the effects of the interaction with a classical field have been
studied in detail [53, 54, 43, 55, 56, 57, 58]. Parametric representations have also
been used to show that classical variables can emerge in quantum Hamiltonians as
environmental degrees of freedom [59, 60, 61, 62, 63].

We here study two specific models that go beyond pure dephasing and whose
analysis will also serve as an explicit guidance for the most abstract approach that we
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(a) (b)

Figure 2.6: Graphical representation of the model. In panel (a) the system is made
of a principal system � and an environment ⌅; in panel (b) the system � + ⌅ is put
into contact with a further system T.

will adopt in Sec. 2.2.3. In particular, we consider the case where � is a bosonic mode
coupled with an equally bosonic environment, hereafter called B, which is made of
N distinguishable modes that do not interact amongst themselves. The Hamiltonian
reads

Ĥ = ⌫â†â+
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where [â, â†] = 1 and [b̂k, b̂
†
k0 ] = �kk0 , with ⌫,!k 2 R and �1k,�2k 2 C, 8k. Also,

we have set ~ = 1, as done throughout this thesis as far as it is not explicitly pointed
out. This model has a sibling that describes the case of a spin environment, hereafter
called S, made by N distinguishable spin-1

2
particles that do not interact amongst

themselves. Its dynamics is described by the Hamiltonian

ĤS = ⌫â†â+
NX

i

(g1iâ
† + g2iâ)�̂

�

i
+

NX

i

(g⇤
1i
â+ g⇤

2i
â†)�̂+

i
+

NX

i

fi�̂
z

i
(2.50)

where [�̂+

i
, �̂�

i0 ] = 2�ii0 �̂z

i
, [�̂z

i
, �̂±

i0 ] = ±�ii0 �̂±

i
, fi 2 R and g1i, g2i 2 C, 8i. Despite

the differences between the two cases, essentially due to the specific algebras of
bosonic and spin operators, we study the evolution of the reduced density matrix for
the principal system, and we show that the short-time dynamics, defined by Eq. (2.49)
and Eq. (2.50) respectively, can be properly described by an effective Hamiltonian
Ĥe↵

�
(⇣) acting on � only, for the two cases both. The functions ⇣ embody the rem-

nants of B or S in the form of classical, possibly fluctuating fields, depending on
external parameters such as time and temperature.
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2.2.1 Bosonic environment
We consider the Hamiltonian (2.49), for either 1) �2k = 0, with �k ⌘ �1k finite
(linear exchange), or 2) �1k = 0, with �k ⌘ �2k finite (parametric hopping), 8k, i.e.,

Ĥ1 = ⌫â†â+
X

k

!kb̂
†
k
b̂k +

X

k

⇣
�⇤
k
âb̂†

k
+ �kâ

†b̂k
⌘
, (2.51)

Ĥ2 = ⌫â†â+
X

k

!kb̂
†
k
b̂k +

X

k

⇣
�⇤
k
â†b̂†

k
+ �kâb̂k

⌘
. (2.52)

We hereafter use the index j = 1, 2 to refer to the exchange and hopping case,
respectively. The Heisenberg equations of motion (EOM) for the mode operators are

Exchange: ˙̂a = i[Ĥ1, â] = �i⌫â� i
X

k

�kb̂k , (2.53a)

˙̂bk = i[Ĥ1, b̂k] = �i!kb̂k � i�⇤
k
â , (2.53b)

Hopping: ˙̂a = i[Ĥ2, â] = �i⌫â� i
X

k

�⇤
k
b̂†
k
, (2.54a)

˙̂b†
k
= i[Ĥ2, b̂

†
k
] = i!kb̂

†
k
+ i�kâ . (2.54b)

If the spectrum of the environment is narrow enough to write !k ' ! 8k, the above
EOM can be written as

Exchange: ˙̂a = �i⌫â� i⇤b̂ , ˙̂b = �i!b̂� i⇤â , (2.55)

Hopping: ˙̂a = �i⌫â� i⇤b̂† , ˙̂b† = i!b̂† + i⇤â , (2.56)

where the bosonic operator b̂ is defined as

b̂ ⌘ 1

⇤

X

k

�kb̂k , with ⇤2 ⌘
X

k

|�k|2 . (2.57)

The above Eqs. (2.55-2.56) are the same EOM that one would obtain starting from
the two-mode bosonic Hamiltonians

Exchange: ⌫â†â+ !b̂†b̂+ ⇤(âb̂† + â†b̂) , (2.58)

Hopping: ⌫â†â+ !b̂†b̂+ ⇤(â†b̂† + âb̂) , (2.59)

describing two oscillators, with different frequencies ⌫ and !, exchanging quanta
through a linear interaction. Notice, though, that such direct relation only exists if
!k ⇠ !, 8k, a condition to which we will refer as defining a narrow energy spectrum.
Both systems of Eqs. (2.55) and (2.56) can be solved by Laplace transform, using the
rule ˜̇a(s) = sã(s) � a(0) to obtain algebraic equations from differential ones. Few
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calculations lead us, after back-transforming and recalling that the index j = 1, 2
refers to the exchange and hopping respectively, to the solutions

â(t) = e�iĤjt â eiĤjt =
h
µj(t) â+ ⇡j(t) B̂j

i
e�i!jt ,

B̂j(t) = e�iĤjt B̂j e
iĤjt =

h
(�)j⇡⇤

j
(t) â+ µ⇤

j
(t) B̂j

i
e�i!jt , (2.60)

where B̂1 = b̂, B̂2 = b̂†,

µj(t) = cos(�jt)� i
�j
�j

sin(�jt) , (2.61a)

⇡j(t) = �i
⇤

�j

sin(�jt) , (2.61b)

with

�j =
1

2

�
⌫ + (�)j!

�
, (2.62a)

!j =
1

2

�
⌫ � (�)j!

�
, (2.62b)

�2

j
= |�2

j
� (�)j⇤2| , (2.62c)

and we have used µ⇤

j
(t) = µj(�t). The overall phase factors in the rightmost terms of

Eqs. (2.60) suggest that a natural interaction picture exists, corresponding to frames
rotating at frequency !j . We will use these frames in the following, so as to omit
those phase factors. Further notice that |µj(t)|2 � (�)j|⇡j(t)|2 = 1, ensuring that
[â(t), â†(t)] = [b̂(t), b̂†(t)] = 1, 8t and also that |µj(t)|2 + (�)j⇡2

j
(t) = 1, meaning

that the evolutions correspond to rotations in the rotating frames.
Our goal is now to obtain an effective Hamiltonian Ĥe↵

�
(⇣), acting on � only,

without renouncing to the quantum character of its companion B. This means that
we can consider nothing but the time dependence of the reduced density matrix for
the principal system �

⇢�(t) = TrB
h
e�iĤjt⇢� ⌦ ⇢B eiĤjt

i
⌘ Ej[⇢�](t) , (2.63)

with the notation ⇢X ⌘ ⇢X(0) used hereafter. In particular, as already implied by
Eq. (2.63), we want to derive the explicit form of the dynamical map Ej[⇢�] upon
assuming that at t = 0 the system � + B is in a factorized state ⇢� ⌦ ⇢B. Moreover,
we specifically take B initially prepared in the state at thermal equilibrium

⇢B =
1

1 + nT

✓
nT

1 + nT

◆b
†
b

, (2.64)

where nT = (e!/T � 1)�1 is the thermal number of photons, and we have set the
Boltzmann constant equal to 1. This implicitly means that B further interacts with a
third system T, that is specifically a thermal bath due to the choice of the state (2.64).
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We can then positively move towards the derivation of the field ⇣ entering Ĥe↵

�
, and

of its possible dependence on some external parameter. To this aim we first write the
initial state of �+ B using the Glauber formula,

⇢� ⌦ ⇢B =

ZZ
d2�0d2�00

⇡2
�[⇢�](�

0)�[⇢B](�
00)D̂†

a
(�0)⌦ D̂†

b
(�00) , (2.65)

where �[⇢](�) = Tr[⇢ D̂(�)] is the characteristic function of the state ⇢, and D̂x(�) =
exp{�x̂† � �⇤x̂}, with [x̂, x̂†] = 1, is the bosonic displacement operator. In order to
get the argument of the partial trace in Eq. (2.63), we use Eqs. (2.60) to write the
evolution of the displacement operators entering Eq. (2.65),

e�iĤjtD̂†
a
(�0)⌦ D̂†

b
(�00) eiĤjt = D̂†

a
[µ⇤

j
(t)�0 + ⇡⇤

j
(t)�00]⌦ D̂†

b
[⇡⇤

j
(t)�0 + µj(t)�

00] .
(2.66)

We then perform the partial trace using Tr
h
D̂(�)

i
= ⇡�(2)(�), so as to get

Ej[⇢�](t) =
Z

d2�0

⇡
�[⇢�](�

0)�[⇢B]

✓
�
�0⇡⇤

j
(t)

µj(t)

◆
D̂†
✓

�0

µj(t)

◆

=

Z
d2�

⇡
|µj(t)|2 �[⇢�](�µj(t))�[⇢B](��⇡⇤

j
(t)) D̂†(�) , (2.67)

where, in the last step, we made the substitution �0 ! �µj(t). Upon expanding the
coefficients (2.61) for �jt ⌧ 1,

µj(t) ' 1� i�jt+O(t2) , (2.68a)
⇡j(t) ' �i⇤t+O(t2) , (2.68b)
|µj(t)|2 ' 1 +O(t2) , (2.68c)

and using the explicit form of the characteristic function of the thermal state, �[⇢B](�) =
exp{�|�|2(nT + 1

2
)}, we finally write

⇢�(t) = Ej[⇢�](t) =
Z

d2�

⇡
�[⇢�](�)e

�|�|
2
�
2
(t) D̂†(�) , (2.69)

with �2(t) = ⇤2t2(nT + 1

2
). We now wonder whether the above map is realized by

some known unitary evolution involving the interaction with a classical environment
only. Indeed, by first noticing that for any state % it is

�[%](�)e�|�|
2
�
2
= �[%GN ](�) , (2.70)

with

%GN ⌘
Z

d2↵

⇡�2
e�

|↵|2

�2 D̂(↵)% D̂†(↵) , (2.71)
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we recognize in Eq. (2.71) the Kraus decomposition corresponding to a Gaussian
noise (GN) channel, namely a random displacement with Gaussian modulated am-
plitude 3. The same map [64, 46] describes the evolution of a bosonic system in the
presence of a classical fluctuating field, i.e., governed by a non-autonomous Hamil-
tonian of the form

Ĥstoc(t) = ⌫â†â+ â⇣⇤(t)ei!⇣t + â†⇣(t)e�i!⇣t , (2.72)

where ⇣(t) is a random classical field described by a Gaussian stochastic process
⇣(t) = ⇣x(t) + i⇣y(t) with zero mean [⇣x(t)]⇣ = [⇣y(t)]⇣ = 0 and diagonal structure
of the autocorrelation function

[⇣x(t1)⇣x(t2)]⇣ = [⇣y(t1)⇣y(t2)]⇣ = K(t1, t2) , (2.73a)

[⇣x(t1)⇣y(t2)]⇣ = [⇣y(t1)⇣x(t2)]⇣ = 0 . (2.73b)

The function �(t) in Eq. (2.70) is in this case

�(t) =

Z
t

0

Z
t

0

dt1dt2 cos[�⇣(t1 � t2)]K(t1, t2) , (2.74)

where �⇣ = !⇣ � ⌫ is the detuning between the natural frequency ⌫ of � and the
central frequency !⇣ of the classical field ⇣(t). The map (2.70) may be obtained, for
instance, upon considering the classical environment fluctuating according to a Gaus-
sian Ornstein-Uhlenbeck stochastic process [65] characterized by the autocorrelation
function

KOU

⌧
(t1 � t2) =

G

2⌧
e�

1
⌧ |t1�t2| , (2.75)

where ⌧ is the correlation time, and G is the amplitude of the process. In the short-
time limit, one easily finds that

�(t) =
G

2⌧
t2 . (2.76)

In conclusion, we have shown that, as far as t ⌧ |�j|�1, the effective Hamiltonian
Ĥe↵

�
(⇣(t)) equals Ĥstoc(t), meaning that

Ĥe↵

�
(⇣(t)) = ⌫â†â+ â⇣⇤(t)ei!⇣t + â†⇣(t)e�i!⇣t , (2.77)

with the field ⇣(t) as from Eqs. (2.73)-(2.76), and G = 2⌧⇤2(nT + 1

2
). Notice that the

dynamical map for � in the short-time limit, Eq. (2.69), is the same in the exchange
and hopping cases. However, due to the j dependence of �j , the condition defining
the above short-time limit is different in the two cases. In fact, the difference is

3To prove the equivalence in Eq. (2.70), start from Tr[⇢GN D̂(�)], insert the definition of ⇢GN, use
the composition rule D̂

†(↵)D̂(�)D̂(↵) = D̂(�)e↵
⇤���⇤↵ and perform the resulting Fourier trans-

form.
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removed when the number of environmental modes becomes large, and the effective
coupling ⇤ =

pP
k
�2
k

increases accordingly, so that

t ⌧ 1p
|(⌫ ⌥ !)2 ± ⇤2|

�!
large-N

t ⌧ 1

⇤
, (2.78)

which establishes a relation between the short-time constraint and some large-N con-
dition that will be further discussed later on. Overall, we have that the interaction
(either exchange or hopping) of an oscillator with a bosonic environment induces a
dynamics that is amenable to a description in terms of the interaction with a fluctu-
ating classical field if the following conditions can be, at least approximately, met:

(i) narrow environmental energy spectrum (!k ' ! 8k)

(ii) short interacting times

(iii) environment at thermal equilibrium.

It is worth noticing that, if conditions (i)-(iii) hold, the above description in terms of
classical fields is valid at all temperatures.

2.2.2 Magnetic environment
We now consider the situation described by the Hamiltonian (2.50), i.e., that of a
bosonic mode � interacting linearly with a magnetic system S, made of N spin-1

2

particles, each described by its respective Pauli matrices (�̂x

i
, �̂y

i
, �̂z

i
) ⌘ �̂i. As in

Sec. 2.2.1, we consider both the exchange and the hopping case. Setting 1) g2i = 0,
with gi ⌘ g1i finite, and 2) g1i = 0, with gi ⌘ g2i finite, 8i, from Eq. (2.50) we get

ĤS
1
= ⌫â†â+

X

i

fi�̂
z

i
+
X

i

(g⇤
i
â�̂+

i
+ giâ

†�̂�

i
) , (2.79)

ĤS
2
= ⌫â†â+

X

i

fi�̂
z

i
+
X

i

(g⇤
i
â†�̂+

i
+ giâ�̂

�

i
) , (2.80)

where the superscript S refers to the magnetic nature of the environment. Setting
fi = f , 8i, and further choosing f > 0, the EOM in the Heisenberg picture are

Exchange: ˙̂a = i[ĤS
1
, â] = �i⌫â� i

NX

i=1

gi�̂
�

i
, (2.81a)

˙̂��

i
= i[ĤS

1
, �̂�

i
] = �if �̂�

i
+ iâg⇤

i
2�̂z

i
, (2.81b)

Hopping: ˙̂a = i[ĤS
2
, â] = �i⌫â� i

NX

i=1

g⇤
i
�̂+

i
(2.82a)

˙̂�+

i
= i[ĤS

2
, �̂+

i
] = if �̂+

i
� iâgi2�̂

z

i
, (2.82b)

where we have related the index of the Hamiltonians ĤS

1,2
with the exchange and

hopping cases, respectively. Despite that Eqs. (2.81)-(2.82) have the same form as
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Eqs. (2.53)-(2.54) of the bosonic case, they cannot be solved exactly, due to the
different algebra of the spin operators. However, restricting ourselves to physical
situations where the operator Ŝz ⌘

P
N

i=1
�̂z

i
can be replaced by some reasonable

expectation value hŜzi ⌘ N

2
h�̂zi ⌘ �N

2
m (with m > 0, due to f being positive), we

can rewrite the above EOM in the form

Exchange: ˙̂a = �i⌫â� i⇤S ˆ̃S� , (2.83a)
˙̃̂
S� = �if ˆ̃S� � i⇤S â (2.83b)

Hopping: ˙̂a = �i⌫â� i⇤S ˆ̃S+ , (2.84a)
˙̃̂
S+ = if ˆ̃S+ + i⇤S â , (2.84b)

with g =
qP

N

i=1
|gi|2, ⇤S = g

p
2m, and

ˆ̃S+ =
1

⇤S

X

i=1

gi�̂
+

i
, ˆ̃S� = ( ˆ̃S+)† . (2.85)

In fact, these equations can be derived from the Hamiltonians

Exchange: ⌫â†â+ fŜz + ⇤S (â ˆ̃S+ + â† ˆ̃S�) , (2.86)

Hopping: ⌫â†â+ fŜz + ⇤S (â† ˆ̃S+ + â ˆ̃S�) , (2.87)

upon further assuming that the commutation relations

[ ˆ̃S+, ˆ̃S�] = �1 , [Ŝz, ˆ̃S+] = ˆ̃S+ , [Ŝz, ˆ̃S�] = � ˆ̃S� ,

hold, meaning that the spin algebra is simplified into a bosonic one. Notice that
replacing the total spin operator

P
i
�̂z

i
with an expectation value hŜzi = N

2
h�̂zi we

imply that the field f selects the same expectation value h�̂zi for every spin-1/2,
in the spirit of the usual random phase approximation. Once linearized, the EOM
(2.83)-(2.84) can be solved as in the bosonic case, to get solutions formally analogous
to Eqs. (2.60) for the operators â and ˆ̃Sj , with the replacement B̂j(t) ! ˆ̃Sj(t) with
ˆ̃S1 = ˆ̃S�, ˆ̃S2 = ˆ̃S+, and ! ! f in the magnetic expressions corresponding to
Eqs. (2.62). Whatever follows Eq. (2.60) in Sec. 2.2.1 can be easily retraced until
the choice of the initial environmental state ⇢S appears into the equation defining the
evolution of the reduced density matrix of the principal system, i.e.,

⇢�(t) = TrS
h
e�iĤ

S
j t⇢� ⌦ ⇢S e

iĤ
S
j t

i
⌘ ES

j
(⇢�) . (2.88)

Assuming that S is initially prepared in a state at thermal equilibrium, we take

⇢S =
1

1 + nS
T

✓
nS
T

1 + nS
T

◆S̃
+
S̃
�

, (2.89)
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with nS
T ⌘ N

2
(1�m). Despite the formal analogy with Eq. (2.64), it is important to

notice that the temperature dependence of nS
T , and hence that of the dynamical map,

is generally different from what we get in the bosonic case, where the thermal number
of photons is nT =

�
exp{!

T
}� 1

��1. We can, for example, suppose that the magnetic
environment thermalizes with the thermal bath so that hŜzi = �sign(f)ŜBS(x) =
�N

2
sign(f)m, where S = N/2 and BS(x) = m is the Brillouin function

BS(x) =
2S + 1

2S
coth

✓
2S + 1

2S
x

◆
� 1

2S
coth

⇣ x

2S

⌘
, (2.90)

with x = S|f |/T . With this choice, it is nS
T ⌘ S (1� BS(x)) and the dependence on

T of the bosonic model is only recovered when T ! 0, being BS(x) ! 1� e�x the
low temperature limit of Eq. (2.90). Notice that, in order for the above representation
to stay meaningful in the large-S limit, temperature must scale as T ⇠ S so as to
guarantee a finite x. Performing the large-S limit, the Brillouin function turns into
the Langevin one L(x) = coth(x) � 1

x
, indeed the classical limit of Eq. (2.90).

We observe that the approximations introduced for the spin system are consistent
with our aim of finding an effective classical description for the environment. As a
matter of fact, once the total spin is guaranteed a constant value S, a classical-like
behaviour is expected for a spin-system when S � 1, and the bosonic expansion
given by the Holstein-Primakoff transformation can be safely truncated at its lowest
order Ŝ+ ⇠ b̂† (if f > 0, b̂† being a generic bosonic creation operator) [66]. We
can now write the initial state ⇢� ⌦ ⇢S using the Glauber formula as in Eq. (2.65),
with the spin displacement operator defined as D̂

S̃
(�) = exp{� ˆ̃S+ � �⇤ ˆ̃S�} due to

the choice f > 0, and hence h�̂zi < 0 (had we taken f < 0 it would be D̂
S̃
(�) =

exp{� ˆ̃S���⇤ ˆ̃S+}). Using the solutions of the EOM (2.83)-(2.84), one can write the
evolution of the displacement operators and proceed as done in the previous section
up to Eq. (2.69), obtaining that the dynamical map in the magnetic case does also
correspond to a Gaussian noise channel. With the additional requirement of a random
phase approximation, an effective Hamiltonian of the form of Eq. (2.77) can thus be
written again, allowing us to conclude that the set of conditions sufficient to find an
effective classical description is the same as in the bosonic model, the only difference
being in the temperature dependence of the standard deviation �2, due to the different
definition of nS

T in the magnetic case.

2.2.3 Deriving the classical fields
Upon inspecting the dynamics of both systems in order to retrace the derivation of
the short-time dynamics, we notice that no explicit condition on the value of N is
involved. This is somehow surprising, given that B and S are named environment
insofar as the number N of their quantum components is large, virtually infinite in
the case of a macroscopic environment. Therefore, in order to understand whether a
relation exists between a large value of N and the assumptions of short-time and nar-
row energy spectrum !k ' ! used in Secs. 2.2.1-2.2.2, we take on the model (2.49)
from a more abstract viewpoint. More specifically, we generalize the procedures for
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deriving classical theories as large-N limit of quantum ones [8, 9], to the case of com-
posite quantum systems, and find that replacing quantum operators by classical fields
for N ! 1 requires that environmental operators stay well defined in such limit.
This, in turn, implies that the environment must feature some global symmetry, as we
know it has to be if a classical limit of Q exists. Our aim is to understand whether the
emergence of an effective Hamiltonian Ĥe↵

�
(⇣(t)), as in Eq. 2.77, is a general feature

of OQS with macroscopic environments. We also aim at further clarifying the mean-
ing of the conditions (i)-(iii) given at the end of Sec. 2.2.1, and the reasons why they
seem to be utterly necessary in order to obtain an effective Hamiltonian description.
Thinking also to what we learnt from the analysis developed in the first part 2.1 of
this chapter, the main idea is to show that the emergence of Ĥe↵

�
(⇣) is related to the

crossover from a quantum to a classical environment, possibly observed when the
number of components becomes very large. In fact, were the environment described
by a classical theory, its effects on the system would naturally be represented by the
classical field ⇣ .

According to the procedure described in Sec. 1.2 for deriving the classical theory
C that formally represents QN!1, the first step is that of identifying gN , exploiting
the knowledge of the Hilbert space H = ⌦N

i
Hi, the Lie product, and the Hamiltonian

ĤN (we will equip quantities with the index N to indicate their being relative to the
QN theory). As the Hamiltonian ĤN represents a physical observable, an effective
strategy to identify gN is that of writing ĤN as a linear combination of operators, and
see if they belong to some minimal set that generates a representation gN of some ab-
stract Lie algebra g. The second step of the procedure is that of finding an irreducible
representation gk of gN , which stands as the Lie algebra for Qk (notice that this most
often implies that an explicit expression for Ĥk does also become available). Here
is where the existence of the global symmetry emerges as a necessary ingredient. In
fact, the way gk can be most often identified, is writing the original Hamiltonian as
a linear combination of some global (i.e., acting non trivially upon each subsystem
of the Hilbert space of the theory) operators that are invariant under the symmetry-
operations, and generate a representation of the same abstract algebra g which is also
represented by gN .

In order to be used in the framework of OQS dynamics, this procedure and the
results described in Sec. 1.2 need to be generalized, as we deal with the quantum
theory of a bipartite system where just one of the two components, namely the en-
vironment, is intended to become macroscopic. However, due to the linear structure
of the interactions entering Eq. (2.49), the procedure mentioned above can still be
applied as follows. Keeping in mind that we have to deal with physically meaninfgul
Lie algebras, we first notice that the coupling terms in Eq. (2.49) can be written as
â(â†) tensor-times some sum over k of operators acting on HB iff either �1k = �2k
or �1(2)k = 0, for all k. Taking one or the other of the above conditions true is quite
equivalent, as far as the following construction is concerned. For the sake of clarity,
and at variance with what done in Secs. 2.2.1-2.2.2, we specifically choose �2k = 0
and set �k ⌘ �1k finite, for all k, meaning that we explicitly consider the exchange
case only. Further taking !k = ! 8k, as done in Secs. 2.2.1-2.2.2, we can define the
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global operators

Ê ⌘ 1

N

NX

k

b̂†
k
b̂k and B̂ ⌘ 1p

N⇤2

NX

k

�kb̂k , (2.91)

with ⇤2 ⌘
P

N

k
|�k|2 as in Eq. (2.57), and write the Hamiltonian (2.49) as

Ĥ = ⌫â†â+N


⇤p
N
(â†B̂ + âB̂†) + !Ê

�
. (2.92)

The way N enters Eqs. (2.91)-(2.92) is designed to recognize 1

N
as the parameter

to quantify quantumness of the environment B, and let all the operators, no matter
whether acting on �, B, or �+B, independent of the number of environmental modes.
The operators (2.91), together with the identity, are easily seen to generate an algebra
h4 on HB, being

[B̂, B̂†] =
1

N
, [B̂, Ê] =

1

N
B̂ , [B̂†, Ê] = � 1

N
B̂† . (2.93)

However, this cannot be regarded as the Lie algebra gN of some environmental the-
ory, due to the presence of non commuting operators acting on � in Eq. (2.92), unless
the N ! 1 limit is taken, as shown below. We now introduce the set of antihermi-
tian operators

{L̂(✏, �) ⌘ iN(✏Ê + �⇤B̂ + �B̂†)} , (2.94)

where � 2 C, with |�| / 1
p
N

, while the coefficients ✏ 2 R do not depend on N . In
the large-N limit, where terms which are bilinear in � and �⇤ can be neglected due to
their dependence on N , it is [L̂1, L̂2] = L̂3, with L̂i ⌘ L̂i(✏i, �i), �3 = i(✏1�2�✏2�1),
and ✏3 = 0, meaning that the set (2.94) is a Lie Algebra. This is indeed the algebra gN
whose recognition represents the first step towards the large-N limit of the quantum
theory that describes B. It is easily checked that a possible representation gk, of the
same abstract algebra represented by gN , is given by the 2⇥ 2 matrices

⇢
`(✏, �) ⌘ i

✓
0 �⇤

0 ✏

◆�
, (2.95)

being [`1, `2] = `3, with `i ⌘ `i(✏i, �i), and �3, ✏3 as above. We underline that the
choice of a representation gk that contains only either � or �⇤ is the simplest way
to make the presence of non-commuting operators on H� in the Hamiltonian (2.92)
harmless, as far as the following construction is concerned. The matrices `(✏, �)
allow us to write


L̂,

✓
1
B̂

◆�
⌘
✓
[L̂, 1]
[L̂, B̂]

◆
=

✓
0

�i(✏B̂ + �⇤)

◆
(2.96)

as 
L̂,

✓
1
B̂

◆�
= `†

✓
1
B̂

◆
, (2.97)
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with `† ⌘ (`⇤)t, and, quite equivalently,
h
L̂,
�
1 B̂†

�i
=
�
1 B̂†

�
` . (2.98)

Let us now consider the unitary operators Û(✏, �) ⌘ exp{L̂(✏, �)}. Given that, for
any pair of operators Ô and P̂ , it holds

e�P̂ ÔeP̂ =
X

n

(�1)n

n!
[P̂ , [P̂ , [...[P̂ ,| {z }

n�times

Ô]...]]] , (2.99)

from Eqs. (2.97) and (2.98) it follows

Û�1

✓
1
B̂

◆
Û = u(�, ⇣)

✓
1
B̂

◆
and Û�1

�
1 B̂†

�
Û =

�
1 B̂†

�
u†(�, ⇣) ,

(2.100)
with

u(�, ⇣) ⌘
✓
1 0
⇣ �

◆
, (2.101)

where
� = ei✏ and ⇣ =

�

✏

�
ei✏ � 1

�
(2.102)

are obtained by explicitly summing the series in Eq. (2.99).
The fact that the set (2.94) is a Lie algebra in the large-N limit reflects upon the

unitary operators Û(�, ⇣), in that they form a group in the same limit. This is just the
Lie group corresponding to gk, sometimes dubbed dynamical [10] or coherence [11]
group, that defines, together with the arbitrary choice of a reference state |0i 2 HB,
the GCS |u(�, ⇣)i ⌘ Û(�, ⇣) |0i for the theory Qk (see App. A). In fact, GCS for
Qk, hereafter indicated by |ui 2 Hk, enter the procedure in the third step due to
their being in one-to-one correspondence with points u on a manifold Mk, whose
cotangent bundle is a classical phase space C. As we know from Sec. 1.2, each GCS
|ui of the theory Qk defines a point u 2 Mk and a set of conjugate variables ⇣ 2 C,
and Qk!0 is a classical theory C, with phase space the above cotangent bundle C,
and Hamiltonian h(⇣) = hu|Ĥk|ui/N . The last step of the procedure is that of deriv-
ing, possibly without knowing the explicit form of the GCS, the exptectation values
hu|Ĥk|ui, and finally obtain the effective classical Hamiltonian describing the orig-
inal quantum system in the N ! 1 limit. Notice that the role of the parameters N
and k, which has been here understood, becomes evident when explicitly employing
the procedure, as in the case here considered where it is k = 1/N .

Getting back to our model, the operators B̂ and Ê transform, as N goes to in-
finity, into B(u) ⌘ hu|B̂|ui/N and E(u) ⌘ hu|Ê|ui/N , respectively, since they
necessarily are classical operators as far as a sensible classical limit of the theory
QN is concerned, implying hence Assumption 4 of Sec. 1.2 hold true. Therefore, in
order to find the large-N limit of the Hamiltonian (2.92), we now only need to eval-
uate B(u) and E(u), even without knowing the explicit form of the GCS, to obtain
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He↵

N
(⇣) from

Ĥ !
N!1

⌫â†â+N


⇤p
N

�
â†B(u) + âB⇤(u)

�
+ !E(u)

�
⌘ Ĥe↵

N
(⇣) , (2.103)

where the relation between |ui and ⇣ is made explicit below. To proceed accordingly,
we choose the reference state for the GCS to be |0i = ⇧k |0ik, with |0i

k
such that

b̂k |0ik = 0. This implies, given the separable structure of the operators Û(�, ⇣), that
the states |ui are tensor products of single-mode pure states. As a consequence, it
is hu|B̂B̂†|ui = hu|

P
k0k b̂k0 b̂

†
k
|ui = hu|

P
k
b̂kb̂

†
k
|ui = NE(u), which allows us to

determine B(u) and E(u) via

hu|
✓
1
B̂

◆
⌦
�
1 B̂†

�
|ui = N

✓
1 B⇤(u)

B(u) E(u)

◆
, (2.104)

and finally obtain, by Eqs. (2.100) and again neglecting terms bilinear in � and �⇤,

h0| u(�, ⇣)
✓
1
B̂

◆
⌦
�
1 B̂†

�
u†(�, ⇣) |0i =

= h0|
✓

1 ⇣⇤ + �⇤B̂†

⇣ + �B̂ ⇣⇣⇤ + ⇣�⇤B̂† + ⇣⇤�B̂ + ��⇤B̂B̂†

◆
|0i

=

✓
1 ⇣⇤

⇣ 1

◆
, (2.105)

i.e., E(u) = 1/N and B(u) = ⇣/N .
The above result implies that the original Hamiltonian (2.92) formally transforms,

according to Eq.(2.103), as

Ĥ �!
N!1

Ĥe↵

�
(⇣) = (⌫â†â+ !) + ⇣⇤â+ ⇣â† , (2.106)

where we have rescaled ⇣ ! ⇣⇤/
p
N and (⇣, ⇣⇤) 2 R2 is any point of the classical

phase space MB with canonical variables q ⌘ (⇣ + ⇣⇤)/2 and p ⌘ (⇣ � ⇣⇤)/(2i).
Notice that |⇣| / ⇤/

p
N , which is independent of N by definition. Once Eq. (2.106)

is obtained, we can maintain with confidence that the Hamiltonian (2.49), originally
acting on � + B, formally transforms, as N ! 1, into one that exclusively acts on
�. However, the presence of the classical field ⇣ is the remnant of the underlying
quantum interaction between � and the huge number of elementary constituents of
B, namely the bosonic modes {b̂k}Nk=1

. To this respect, notice that the Hilbert space
HB = ⌦kHbk

is replaced by a two-dimensional classical phase space, MB ⌘ C, with
C the complex plane, implying an impressive reduction of dynamical variables. This
reduction is the most striking consequence of the global symmetry that the quantum
theory for B must exhibit in order to flow into a well defined classical theory when
B is macroscopic. In our case, although we did not explicitly used it, the symmetry
is that under permutation of the bosonic modes b̂k, and that is why we have set !k =
! 8k. In fact, one can easily check that this is an essential condition for the very
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same definition of global operators obeying commutation rules of the form (2.93),
which on their turn are necessary to proceed to the definition of the Lie Algebra, and
all the rest.

At this point, we notice that !k = ! 8k is just the “narrow environmental energy-
spectrum condition” (i), discussed at the end of Sec. 2.2.1. In fact, it immediately
strikes that the effective Hamiltonian in Eq. (2.106) has the same structure of that in
Eq. (2.77), given that the latter refers to an interaction picture that hides the environ-
mental frequency !. On the other hand, it is somehow puzzling that time does not
enter the above construction, which leave us clueless, so far, concerning the relation
⇣ ! ⇣(t)e�i!⇣t. Looking for the possible origin of a time dependence in the classical
field ⇣ , we reckon that the results of this section imply the following. Suppose there
exists another macroscopic system T that is not coupled with �, but interacts with B
in such a way that the global symmetry between � and B is preserved. The presence
of T manifests itself in terms of some parameter ⌧ (think about time and/or temper-
ature, for instance) upon which ⇣ depends, according to the rule ⇣ = ⇣(⌧) provided
by the classical theory describing B + T. This dependence can be safely imported
into the effective description of � via ⇣ ! ⇣(⌧) in Ĥe↵

�
(⇣), Eq. (2.106), as far as the

direct interaction between � and T can be neglected, at least on the time scales one
is interested in, defining the evolution of � induced by B.

Finally, we notice that the detuning ⌫ � ! does not play any role in this section,
which brings us back to Eq. (2.78) and the possible relation between the large-N
condition here enforced and the short-time approximation previously adopted.

2.3 Conclusions

The case where the (large) environment of an OQS is part of an hybrid quantum
scheme has been considered here.

In the first part of the chapter, we specifically referred to a magnetic environment
⌅, made of a large number N of spin-1/2 particles, coupled with a quantum mechan-
ical oscillator �, and studied its dynamics by a large-S approximation that represents
the macroscopicity of ⌅, since N > 2S holds, without totally wiping its quantum
character, since S is finite. Moreover, such an approximation allowed us to obtain a
factorized expression for the propagator of the composite system and find that, due
to the coupling between � and ⌅, a specific term appears, effectively representing
the back-action of the principal system on its environment. In fact, as mentioned at
the beginning of the chapter, if ⌅ is the measuring instrument used for getting infor-
mation on, or exert our control upon, the quantum system �, a strategy that makes
the dynamics of ⌅ the most sensitive to its interaction with � might reveal details, or
allow a steering precision, otherwise inaccessible. In this respect, the lessons learnt
in Sec 2.1 are as follows.

(1) Detuning: � = ! � f must be finite if one wants to observe footprints of �
into an effectively-free evolution of ⌅, i.e., without further interacting with � itself.
Off-resonance is a necessary condition for the back-action to switch on.
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(2) Timing: Depending on the value of � and S, there is a finite time interval,
that can be well within the range of validity of our results as shown in Figs. 2.2-2.5,
where the back-action is stronger, meaning that effects of � on the dynamics of ⌅
could be more pronounced.

(3) Magnetic properties: Although our results are obtained in the large-S ap-
proximation, it is important that S stays finite, to avoid the disentangled dynamics
of ⌅ being just a silent Larmor precession. For the same reason, it is important that
⌅ be prepared in an initial state which is not an eigenstate of Ŝz; significantly, we
have seen [67] that spin coherent states [9, 68, 66] might be a particularly significant
choice.

We conclude the report on Sec 2.1 by mentioning that the method here used for
implementing the large-S approximation, i.e., making explicit the dependence of
the spin algebra on the quanticity parameter 1/S, and then requiring the interaction
Hamiltonian to stay finite as such parameter drops, is general and might turn use-
ful in studying other quantum systems with several interacting components, amongst
which is a macroscopic one, furthermore preserving the geometry of the spin sphere.

In the second part of the chapter, we have addressed the dynamics of a bosonic
system � coupled to either a bosonic B or a magnetic environment S. In particular,
we have discussed the conditions under which the dynamics of the system � may be
described in terms of the effective interaction with a classical fluctuating field.

Our results show that for both kinds of environments an effective, time-dependent,
Hamiltonian description may be obtained for short interaction time and environments
with a narrow energy spectrum at thermal equilibrium. The corresponding dynamics
is described by a Gaussian noise channel independently of the kind of environment,
their magnetic or bosonic nature entering only the form of the noise variance. More-
over, exploiting a general treatment based on the large-N limit of the environment,
we have clarified the origin and the meaning of the narrow-environmental-spectrum
and short-time conditions. In fact, we find that !k ' ! 8k is needed for a global sym-
metry to emerge and characterize the environment, which is a necessary ingredient
for the environment to be described by a small number of macroscopic variables. On
the other hand, the large energy scale implied by whatever coupling with a macro-
scopic environment limits any effective description to short times only. Overall, the
results obtained in Sec. 2.2 indicate that quantum environments may be described
by classical fields whenever global symmetries allows one to define environmental
operators that remain well defined when increasing the size, i.e., the number of dy-
namical variables, of the environment. This is a quite general criterion that may
serve as a guideline for further analysis, e.g. for fermionic principal systems and/or
environments compound of both bosonic and spin parts.
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Chapter 3

Large environment as measuring ap-
paratus

There are two closely-related questions about the quantum mechanical nature of our
universe that keep being intriguing: why we do not experience states superpositions,
and why we all observe the same world around us. Whether these questions be open
or not depends on the viewpoint one takes on the answers that have been proposed
in decades of thought processing. It is a fact, however, that the subject of both ques-
tions is “we”, which underlines the importance of being big as we are, and that the
verbs are experience and observe, which brings into the play the quantum measure-
ment process. Indeed, the reason why we cannot even see states superposition when
observing quantum systems, is somehow assumed to be due to the continuous mea-
surement process acted upon by the environment they interact with. However, despite
often considered as a satisfactory answer, this argument is not a formal result, with
attempts to make it as such only recently proposed [69, 70]. Indeed, the most re-
cent analysis of the quantum measurement process [71], its hamiltonian description
[72, 34], as well as its characterization in the framework of the OQS dynamics [73]
has revealed the qualitative nature of the above argument, thus making it ever more
urgent a rigorous approach to the original question, which is in fact what we aim at
providing in this chapter.

We have already highlighted that macroscopicity and classicality go together,
since there cannot be the latter without the former, but they are not the same thing,
since macroscopic quantum systems do actually exist, implying that the large-N con-
dition is not sufficient per-sé for a system made of N quantum particles to behave
classically - see the discussion of Sec. 1.1. In what follows the assumptions, isolat-
ing the minimal structure that any quantum theory should possess if it has to have a
classical limit, will formally characterize the quantum environment, so that its large-
N limit embody its macroscopic and classical limit in unison. On the other hand,
since we want to investigate around the observation of quantum systems, the princi-
pal system needs to stay intrinsically quantum, a fact that immediately sets us again
on one of those examplary situations to which this thesis is indeed devoted and for
which the PRECS presented in Sec. 1.4.1 has been designed. Exploiting the results
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of Secs. 1.2 and 1.3 for the large-N limit of quantum theories in the framework of
the OQS dynamics, we here show that details of the interaction between a quantum
principal system � and its environment ⌅ are irrelevant in determining the state of ⌅
at any time ⌧ in the large-N limit, as long as such limit implies a classical behaviour
for ⌅ itself1. If this is the case, in fact, such state can always be recognized as the
one of an apparatus that measures some observable of the principal system, and this
observable is the same for each macroscopic subsystem into which one can think ⌅
to be divided. The relation between our findings and the two questions that open this
section is evident.

The chapter is structured as follows. In the first section we describe the mea-
surement process focusing on its dynamical description. In Sec. 3.2 we define the
dynamical maps characterizing the different evolutions that we aim at comparing,
goal that we get in Sec. 3.3 exploiting the large-N limit for the environment. In
Sec. 3.4 we report some comments about the results obtained and the assumptions
made, and finally we sum up the meaning of what we will find in this chapter in
Sec. 3.5.

3.1 Measure-like dynamics

A measurement is an operation performed on a quantum system � to produce a set of
results, once assumed the existence of a quantum apparatus ⌅ that, interacting with
�, allows us to obtain the results themselves (see App. B for the formal definition).
To build a consistent theory of the quantum measurement process, one needs there-
fore to fit the OQS framework in order to define the scheme suitable for defining a
proper dynamical process. Such scheme was originally introduced by von Neumann
[74] and later characterized by Ozawa [72] under the name of conventional mea-
suring process of non-degenerate sharp observables2. In this picture the measuring
apparatus plays the role of the quantum environment ⌅ of the observed system � and
the interaction between the two is considered quantum as well. Before describing it,
notice that although the Ozawa’s scheme allow us to understand many of the process
features, the discontinuous change of the �-state vector, due to the measurement of a
physical quantity and usually named collapse of the state, clashes with the otherwise
unitary dynamics of the overall isolated system � + ⌅ and it is not included in such
description. In fact, this part of the measurement process is still debated, together
with the so called output production, i.e., the mechanism through which only one
result is ultimately selected among the many ones simultaneously available. One
possibility, exploiting the PRECS to describe the measurement process [34], is that
of understanding them as due to a mechanism of global symmetry breaking ruled by

1The results here presented have been mainly reported in

• “Whenever a quantum environment emerges as a classical system, it behaves like a measuring
apparatus”, C. Foti, T. Heinosaari, S. Maniscalco, P. Verrucchi, arXiv:1810.10261.

2An observable is called sharp when associated to a projective measure.
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the macroscopic character of the measuring apparatus. In any case, the collapse and
the output production are different processes with respect to the dynamical evolution
described by the conventional model, and, albeit representing its natural continua-
tion, they are not included in the minimal interpretation described in App. B. We will
not further consider them in this thesis.

The key players of the measurement process are exactly those we have dealed
with so far, i.e., a principal system � and its environment ⌅. It is understood that ⌅
represents the measurement apparatus and � the system to be measured, both taken
as genuinely quantum. In what follows we will use the symbol “!” to indicate the
transformation caused by the measurement process.

Consider now a state of the total system  = �+⌅ that before the measurement
takes place (t  0) be separable, i.e., such that 8 t  0 be

| (t  0)i = |�i |⌅i , (3.1)

so that the result of the measurement can be ascribed to the system � in the pure state
|�i. According to von Neumann, we then postulate the existence of a preferred basis
{|pi}H� for �, such that its elements are not disturbed by the measurement, yielding

|pi |⌅i ! |pi |⌅pi 8 |pi 2 {|pi}H� . (3.2)

We assume that what holds just for one state of {|pi}H� holds also when a linear
combination of |pi is taken, so that for every initial separable state of � + ⌅ we can
always write |�i =

P
p
ap |pi, and get

|�i |⌅i =
X

p

ap |pi |⌅i !
X

p

ap |pi |⌅pi . (3.3)

Finally, assuming the orthogonality of the states {|⌅pi}, a one-to-one correspon-
dence between elements of the preferred basis and states of ⌅ is established. Notice
that the final state appearing in the above relation (3.3) is a fictious state, in no way
accessible, and, since the last step of extracting the relevant information from the ap-
paratus ⌅ is not considered, such state is often named unselected measurement, while
the corresponding stage of the measurement process is the premeasurement process.
This scheme not only needs to assume the existence of a preferred basis, but also
its behaviour according to relation (3.3), which seems quite a top-down assumption
and that is why it is considered a problem, namely the problem of the preferred basis
[16]. In order to translate the transformation “!” into a dynamical description, as
originally done by Ozawa [72], let us consider a projective measurement (PVM) with
measurement operators {|⇡ih⇡|} acting on H�. According to the Ozawa’s model, the
first step corresponds to a unitary evolution of , that is determined by the propagator
exp[�itĤM], with

ĤM = gÔ� ⌦ Ô⌅ + Î� ⌦ Ĥ⌅, (3.4)

where g is the coupling constant, Ô� =
P

⇡
!⇡ |⇡ih⇡| is the hermitian operator on H�

associated to the measured observable, while Ô⌅ is the operator on H⌅ conjugate to
the one which is usually referred to as the pointer observable - see App. B; moreover,
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Ĥ⌅ acts on H⌅ only, being Î� the identity on H�. The Hamiltonian (3.4) defines
the standard model [71] for describing premeasurements as dynamical processes.
Writing the initial state of � in the basis {|⇡i}H� of the Ô� eigenvectors, |�i =P

⇡
a⇡ |⇡i, from Eq. (3.4) we get

| (t  0)i = |�i |⌅i ! | (t)i = e�itĤ
M |�i |⌅i =

X

⇡

a⇡ |⇡i |⌅⇡(t)i , (3.5)

at any time during the premeasurement 0  t < T with T representing the time of
the output production, where we have defined the environmental states

|⌅⇡(t)i ⌘ e�iĤ
⇡
⌅ |⌅i , (3.6)

and
Ĥ⇡

⌅
⌘ g!⇡Ô⌅ + Ĥ⌅ . (3.7)

In what follows, we will name the evolution (3.5) measure-like dynamics and the
Hamiltonian ĤM, defined in Eq. (3.4), measure-like Hamiltonian. Despite the formal
analogy of Eqs. (3.3) and (3.5), in order that the latter evolution correspond to the
transformation idealized by von Neumann, the states |⌅⇡(t)i need to be orthogonal.
This is not true in general, but the time dependence of the states |⌅⇡(t)i allows us to
require that such condition hold in a specific time interval from which we will then
take the instant t. From Eq. (3.5) we have that the reduced density matrix of � at a
generic time t is

%�(t) = Tr⌅

"
X

⇡⇡0

a⇡a
⇤

⇡0 |⇡i h⇡0|⌦ |⌅⇡(t)i h⌅⇡0
(t)|
#
=

=
X

⇡

|a⇡|2 |⇡ih⇡|+
X

⇡⇡0

a⇡a
⇤

⇡0 |⇡i h⇡0| h⌅⇡(t)|⌅⇡0
(t)i , (3.8)

and, thus, requiring the orthogonality of the states |⌅⇡(t)i implies that the off-diagonal
terms of %�(t) in the basis {|⇡i}H� be null. On the other hand, the cancellation of
such terms embodies the well known phenomenon of the decoherence with respect to
the basis {|⇡i}H� , corresponding to the information loss about the phase relationship
between the components of the initial state |�i written as a linear combination of the
elements of the basis {|⇡i}H� [75, 1]. This is the reason why decoherence plays a
fundamental role in the measurement process, since indeed it is such phenomenon
that allows us to identify the time interval prior of the output production as the one
during which the observed system does not show coherence with respect to the ba-
sis {|⇡i}H� , that in other words means the interval during which decoherence has
already occured.

Getting back to the final state in Eq. (3.5), we notice that if more operators Ô�i
appear in ĤM, they must satisfy

[Ô�i , Ô�j ] = 0 8 i, j . (3.9)
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This condition implies that a basis {|⇡i}H� of common Ô�-eigenvectors does actu-
ally exist, so that to guarantee the process does not imply the simultaneous measure-
ment of non-commuting observables, and a one-to-one correspondence between ⇡
and |⌅⇡(t)i is still univoquely established. In fact, the possibility of extracting in-
formation about � reporting on ⌅, relies on such correlation, i.e., on the dynamical
entanglement generation induced by the interaction gÔ� ⌦ Ô⌅, if and only if |⌅i is
not an eigenvector of Ô⌅. On the other hand, the measuring apparatus is expected to
be in a stationary state before the above interaction is switched on. Therefore, it is
usually taken Ĥ⌅ |⌅i = E⌅ |⌅i and [Ô⌅, Ĥ⌅] 6= 0.

From the above description the von Neumann scheme is recognized as a unitary
evolution of the overall isolated system  , and the preferred basis {|pi}H� naturally
emerges as that of the eigenvectors of the �-operators entering the interaction be-
tween � and the measuring apparatus. The problem of the preferred basis is shifted
thus in the choice of such operators. However, this is not a further logic problem for
the theory, since this latter choice is inherently dictated by the choice of the phys-
ical observable one wants to measure, which is indeed a legitimate decision of the
observers.

We end this section mentioning that giving a hamiltonian description of more
general quantum measurement processes, i.e., identifying the appropriate propagator
for the dynamics of such processes up to the output production, it is a very relevant
problem that has recently attracted the interest of several authors, including people
from my research group and myself.

3.2 Dynamical maps

Let us now consider the unitary evolution of an isolated bipartite system  = �+⌅,
with Hilbert space H� ⌦H⌅; being  isolated, it is

| (t)i = e�itĤ | i , (3.10)

where ~ = 1 and Ĥ is any Hamiltonian, describing whatever interaction between �
and ⌅, as long as physically meaningful. The state | i is assumed separable

| i = |�i |⌅i , (3.11)

meaning that we begin studying the evolution at a time t = 0 when both � and ⌅ are
in pure states. This is not a neutral assumption, and we will get back to it in Sec. 3.4.
The evolution described by Eq.(3.10) will be hereafter dubbed true, by this referring
to its being determined by the actual Hamiltonian Ĥ .

Consider now that, at any fixed time ⌧ , it exists a Schmidt decomposition of the
state (3.10),

| (⌧)i =
X

�

c� |�i |⇠�i , (3.12)
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with � = 1, ..., �max  dimH�, c� 2 R+ and
P

�
c2
�
= 13. The states {|�i}H� , and

{|⇠ji}H⌅ with j = 1, ... dimH⌅, make up what we will hereafter call the ⌧ -Schmidt
bases, to remind that the Schmidt decomposition is state-specific and therefore de-
pends on the time ⌧ appearing in the left hand side of Eq.(3.12) (in whose right hand
side we have instead understood the ⌧ -dependence of c� , |�i, and |⇠�i, for the sake
of a lighter notation). Consistently with the idea that ⌅ is a macroscopic system, we
take �max < dimH⌅: therefore, the states {|⇠�i}H⌅ entering Eq. (3.12) are a subset
of the pertaining ⌧ -Schmidt basis. Given that |�i is fully generic, the unitary evo-
lution (3.10) defines, via %⌅ = Tr�% , the CPTP linear map (from �- to ⌅-states)

E : |�ih�| ! %⌅ =
X

�

c2
�
|⇠�ih⇠�| . (3.13)

In principle, being the output %⌅ a convex sum of orthogonal projectors, Eq. (3.13)
might describe a projective measurement acted upon by ⌅ on the principal system
�, by what is often referred to as measure and prepare (m&p) map in the literature.
However, for this being the case, the probability reproducibility condition must also
hold (see the last section in App. B), meaning that, written

|�i =
X

�

a� |�i , (3.14)

it should also be c2
�
= |a�|2, 8�, which cannot be generally true, if only for the ⌧ -

dependence of the Schmidt coefficients {c�} which is not featured by the set {a�}.
In fact, a dynamical model exists for which |c�|2 = |a�|2, 8 � and 8 ⌧ : the Ozawa’s
model for projective measurements described in the previous section. Such model is
defined by the Hamiltonian (3.4), that is not generic, but it is identified by condition
(3.9), i.e., that of containing operators acting on � which must commute. This is

3A very useful tool for studying composite systems is provided by the famous Schmidt decompo-
sition theorem, an important result that pertains the tensor product structure and that can be proven
using standard linear algebra [76, 49].

Theorem (Schmidt decomposition). If | i is a vector of a composite system H = H�⌦H⌅, there
always exist an orthonormal basis {|i�i}H� for H�, an orthonoraml basis {|i⌅i}H⌅ for H⌅, and non
negative real numbers {ri} satisfying

PN
i=1 ri

2 = 1, such that

| i =
NX

i=1

ri |i�i |i⌅i ,

where N ⌘ min{dimH�, dimH⌅}.

The bases {|i�i}H� and {|i⌅i}H⌅ are called Schmidt bases, while the coefficients {ri} are called
Schmidt coefficients. Notice that the Schmidt decomposition is state dependent and ensures that,
given a state | i, there exists a canonical local basis in each subsystem Hilbert space thanks to which
the double sum, usually appearing in a generic state of a bipartite system | i =

P
�,⇠ c�⇠ |�i |⇠i,

is replaced by a single sum that, moreover only involves, at most, a number of elements equal to
the dimension of the smallest Hilbert space in the tensor product. The number of non-zero Schmidt
coefficients is called Schmidt rank and in some sense quantify the amount of entanglement between �
and ⌅; a state is separable iff its rank is equal to 1.
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the reason why we specifically labeled it ĤM, with the apex M hinting at the corre-
sponding measurement process, and distinguishing it from the generic Hamiltonian
defining the true evolution (3.10).

Once established that Eq. (3.13) does not define a m&p map, we can nonetheless
use the elements provided by the Schmidt decomposition as ingredients to construct
a measure-like Hamiltonian ĤM, whose corresponding m&p map EM : |�ih�| ! %M

⌅

be the “nearest” possible to the actual E defined in Eq. (3.13).
To this aim, we first use the ⌧ -Schmidt bases, {|�i}H� and {|⇠ji}H⌅ , to define the

hermitian operators

Ô� =
X

�

"� |�ih�| , Ô⌅ =
X

j

Ej |⇠jih⇠j| , (3.15)

with "�, Ej arbitrary real numbers, and the interaction Hamiltonian

ĤM = gÔ� ⌦ Ô⌅ , (3.16)

according to the form (3.4) prescribed by the Ozawa’s model. Further using the
Schmidt coefficients, we construct the separable state

| Mi = |�i |⌅Mi , (3.17)

where |�i is the same as in Eq. (3.11), while |⌅Mi =
P

�
c� |⇠�i, with c� and |⇠�i as

in Eq. (3.12). Finally, we define

| M
⌧
i ⌘ e�i⌧Ĥ

M | Mi , (3.18)

that reads, using Ô� |�i = "� |�i, Ô⌅ |⇠�i = E� |⇠�i, and |�i =
P

�
a� |�i,

| M
⌧
i = e�i⌧Ĥ

M X

�

a� |�i
X

�0

c�0 |⇠�0i =
X

�,�0

a� |�i c�0e�i'��0 |⇠�0i , (3.19)

with '��0 ⌘ ⌧g"�E�0 2 R.
Given that |�i is fully generic, equation (3.18) defines, via %⌅ = Tr�% , the

CPTP map from �- to ⌅-states

EM: |�ih�| ! %M
⌅
=
X

��0�00

|a�|2c�0c�00ei('��00�'��0 ) |⇠�0ih⇠�00 | . (3.20)

Comparing Eqs. (3.20) and (3.13) we see that EM has the right coefficients {|a�|2}
but the wrong form, i.e., it is not a sum of orthogonal projectors, while E has the
correct form but with the wrong coefficients, {c2

�
}. In fact, were these two maps

equal in some limit, it would mean that, for each time ⌧ , it exists an observable for �
such that the state into which ⌅ has evolved due to its true interaction with � is the
same, in such limit, as if ⌅were some measuring apparatus proper to that observable,
which is quite a statement. On the other hand, being E and EM linear, they are the
same map iff the output states %⌅ and %M

⌅
are equal for whatever input |�i. We can

therefore concentrate upon the structure of such output states, which we do in the
next section by the PRECS.
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3.3 A macroscopic environment that behaves classically

One important aspect of the GCS construction, that we have seen in Sec. 1.2, is
that it ensures the Husimi function h⇤|%|⇤i for whatever state % is a well-behaved
probability distribution on M that uniquely identifies % itself. As a consequence,
studying h⇤|%|⇤i on M is fully equivalent to perform a state-tomography of % on the
Hilbert space. In other terms, once GCS are available one can analyse any state % of
the system by studying its Husimi function on M, which is what we will do in the
following.

The PRECS of whatever pure state is given by Eq. (1.28), that we rewrite here
for convenience

| i =
Z

M

dµ(⇤)�(⇤) |�(⇤)i |⇤i , (3.21)

where |�(⇤)i is a normalized state for � that parametrically depends on ⇤ and �(⇤)
is the real function on M, whose square �(⇤)2 = h⇤|%⌅|⇤i is the environmental
Husimi function relative to %⌅ = Tr�[| ih |].

In particular, for the states (3.12) and (3.19), it is

�(⇤)2 =
X

�

c2
�
|h⇤| ⇠�i|2 , (3.22)

and
�M(⇤)2 =

X

��0�00

|a�|2c�0c�00ei('��00�'��0 ) h⇤| ⇠�0i h⇠�00 |⇤i , (3.23)

respectively. Comparing �(⇤)2 and �M(⇤)2 is equivalent to compare %⌅ and %M
⌅

, and
hence the maps (3.13) and (3.20), defining the true and the measure-like evolutions
respectively. However, despite the very specific construction leading to | M

⌧
i, the

only thing to say about �(⇤)2 and �M(⇤)2 at this level is that they are different. On
the other hand, we still have to exploit the fact that the environment is doomed to be
big and behave classically, which is why ECS turn out to be so relevant to the final
result (remeber that when GCS are relative to a system ⌅ which is the environment
of a principal system �, we call them environmental coherent states).

We have demonstrated in Sec. 1.3 that

h⇠0|⇠00i = �⇠0⇠00 , lim
N!1

S⇠0 \ S⇠00 = ; , (3.24)

meaning that orthonormal states are put together by distinguishable sets of GCS. In
other terms, the large-N limit makes it emerge a one-to-one correspondence between
elements of any orthonormal basis {|⇠i}H and disjoint sets of GCS, in such a way that
the distinguishability of the former is reflected into the disjunction of the latter. We
already revealed the relevance of this property, whose meaning has been discussed
through the examples in Secs. 1.3.1 and 1.3.2, and here it is where we will explicitly
exploit Eq. (3.24).

In fact, getting back to Eq. (3.23), the states |⇠0
�
i and |⇠� 00i are othonormal by

definition, being elements of the ⌧ -Schmidt basis {|⇠ji}H⌅ introduced in Sec. 3.2.
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Therefore, Eq. (3.24) holds, implying

lim
N!1

h⇤|⇠�0ih⇠�00 |⇤i = lim
N!1

|h⇤|⇠�0i|2��0�00 , (3.25)

and hence
lim

N!1

�M(⇤)2 =
X

��0

|a�|2c2�0 lim
N!1

|h⇤|⇠�0i|2 . (3.26)

Using
P

�
|a�|2 = 1, and replacing �0 with � for the sake of a lighter notation, we

finally obtain
lim

N!1

�M(⇤)2 = lim
N!1

�(⇤)2 , (3.27)

which is the result to which we were aiming, namely that the the dynamical maps
of the true evolution (3.13) and of the measure-like one (3.20) are equal when ⌅ is
a quantum macroscopic system whose behaviour can be effectively described clas-
sicaly. Echoing what we learnt in Sec. 1.2, we will express the equality (3.27) by
saying that E and EM, are classically equivalent.

3.4 Discussion and Development

Aim of this section is to comment upon some specific aspects of our results, with
possible reference to the way other authors have recently tackled the same subject.
We then set the bases for a work in progress regarding the objectivity of outcomes,
that is a fundamental aspect of Quantum Darwinism, i.e., why many observers do
actually get the same results when looking at the world.

Let us first consider the assumption that the initial state (3.11) of the total system
 = � + ⌅ be separable. If this is not the case, as it may happen, one must look
for the different partition  = A + B, such that | i = |Ai ⌦ |Bi. If this parti-
tion is still such that the subsystem B is macroscopic and behaves classically, the
change is harmless and the whole construction can be repeated with A the quantum
system being observed and B its observing environment. On the other hand, if the
new partition is such that neither A nor B meet the conditions for being a classical
environment, then the problem reduces to the usual one of studying the dynamics of
two interacting quantum systems, for which any approach based on effective descrip-
tions is incongrous, as details of the true Hamiltonian will always be relevant. Notice
that this analysis is fully consistent with the results presented in Ref. [70], which are
embodied into inequalities whose meaning wears off as dimHB decreases. The case
when  is not initially in a pure state is similarly tackled by enlarging  ! e as
much as necessary for e to be in a pure state: a proper choice of a new partition of
e will then follow.

We then want to clarify in what sense the Hamiltonian (3.16) is said to induce a
“measure-like” dynamics or, which is quite equivalent, the channel (3.20) to define
a “meaure and prepare” map: the quotes indicate that the actual output production,
which happens at a certain time according to some process whose nature we do not
discuss, is not considered and it only enters the description via the requirement that
the probability, for each output to occur, be that predicted by the Born’s rule. To this
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respect, one might also ask what is the the property of � which is observed by ⌅: this
is the one associated with the operator Ô� by the Ozawa’s model, and it therefore
depends on the true evolution via the Schmidt decomposition of the evolved state.
Put it the other way, details of the interaction do not modify the measure-like nature
of the dynamics in the large-N limit, but they do affect what actual measurement is
performed by the environment.

We finally close this Section discussing the connection between our results and
Quantum Darwinism [69, 70]. As we know from Chap. 1, a sufficient condition for a
quantum theory to have a large-N limit which is a classical theory is that of featuring
a global symmetry. In fact, a few simple examples show that quantum theories with
different global symmetries can flow into the same classical theory in the large-N
limit: in other words, different quantum theories can be classically equivalent. More-
over, from this chapter, we have learnt that any quantum theory with a proper classi-
cal limit can be effectively described by a theory defining a measure-like dynamics,
when such limit is considered. If one further argue that amongst classically equiv-
alent quantum theories it always exists a free theory, describing N non-interacting
environmental subsystems, we believe it is possible to show that each macroscopic
fragment of ⌅ can be effectively described as if it were the same measurement appa-
ratus. From this observation we get a clue, and we therefore start by the following
side implication: given any theory QM

k
with a well defined classical limit C, describ-

ing a measure-like evolution as the label M specifies, we show that we can always
find a Qfree

N
theory, describing a measure-like dynamics for N non-interacting envi-

ronmental subsystems, whose classical limit corresponds to C. Restoring the abstract
scheme of Sec. 1.2 and App. A, we want a theory whose dynamical group be defined
as

GN = {Û =
NO

`=1

e�i
P

i b
`
iX̂

`
i } , (3.28)

where ` runs over each subsystem ⇠` of the environment, that indeed we now assume
to be made of N subsystems, namely ⌅ = +N

`=1
⇠`. Choosing a separable reference

state |Ri = |R1i ⌦ · · ·⌦ |RNi, the GCS obtained by applying elements of the group
(3.28) will be separable as well. In fact, such a dynamical group can correspond to a
measure-like Hamiltonian

ĤM free
N

⌘ Ô� ⌦ Ôfree
⌅

=

= Ô� ⌦
NX

`=1

Î⇠1 ⌦ · · · g`Ô⇠`
...⌦ Î⇠N + Î� ⌦

NX

`=1

Î⇠1 ⌦ · · · Ĥ⇠`
...⌦ Î⇠N ,

(3.29)

which in turn defines a family of environmental theory, one 8 �, with Hamiltonians

Ĥ free � ⌘
NX

`=1

Î⇠1 ⌦ · · · Ĥ�

⇠`
({X̂`

i
}) · · ·⌦ Î⇠N , (3.30)

where in every Ĥ�

⇠`
we have included the interaction term between � and each ⇠`,

and the local term acting on ⇠` only; moreover, notice that each Ĥ�

⇠`
depends on the
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set of operators {X̂`

i
} in such a way that the global symmetry be still preserved. An

Hamiltonian of the form (3.29) pictures a model where � interacts with all the ⇠` sub-
systems, which instead do not interact amongst themselves. This is the reason why
the environmental theory defined by Ĥ free � is labelled free and is indeed associated to
Qfree

N
. Notice that the choice of the reference state |Ri = |R1i ⌦ · · · ⌦ |RNi is con-

sistent with the form (3.30), since the initial state |⌅i must be separable, being not
interaction between the different subsystems of ⌅. In addition to assume ⌅ = +N

`=1
⇠`,

we hereafter take the subsystems ⇠` identical and interacting with � via the same set
of operators {X̂`

i
}, even if with arbitrary coupling constants. We do not think that

this is a necessary condition, but we implement it for the sake of a lighter notation.
Therefore, to every subsystem we can associate the same Lie algebra spanned by
{X̂`

i
} with commutation relations

[X̂`

i
, X̂`

j
] =

X

k

ck
ij
X̂`

k
8` . (3.31)

If we suppose the existence of g generators in each {X̂`

i
}, the dynamical group GN

in Eq. (3.28) will be associated to the algebra

gN = �N

`=1
{X̂`

1
, ... , X̂`

g
} . (3.32)

Let us now consider the effective theory QM
k
, whose classical limit C for k ! 0 is the

same of that defined by Qfree
N!1

. Its Lie algebra gk is nothing, but the algebra spanned
by

gk = {X̂1, ... , X̂g} , (3.33)

with dynamical group Gk and GCS |⇤i built from a reference state |R⇤i. Therefore,
the algebra of the free theory (3.32) can be written as

gN ⌘
NM

`=1

g`
k
, (3.34)

where each ` labels a subsystem ⇠` of ⌅. Its Hamiltonian will consistently be of the
form (3.30), and defining for each i = 1, ... , g the ⌅-operator

X̂i =
NX

`=1

X̂`

i
, (3.35)

the set {X̂1, ... , X̂g} is still the algebra gN , since the Hamiltonian of the theory Qfree
N

can be rewritten in terms of its elements. We thus have defined a free theory with an
algebra gN representation of the abstract algebra g whose gk is a representation too.
Taking as reference state

|Ri =
NO

`=1

|R⇤i` , (3.36)

the same holds for the dynamical group GN and Gk, so that the theories Qfree
N

and QM
k

are classical equivalent, according to the scheme outlined in Sec. 1.2. In particular,
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Figure 3.1: Graphical representation of the relation between classically equivalent
theories: given a set of classically equivalent theories 1QN , ... ,j QN , there always
exists a theory Qfree

N
, which is connected to the effective theory QM

k
by a double arrow

to symbolise that we can explicitly build Qfree
N

from QM
k
, where the latter represents

the measure-like dynamics effectively describing any generic dynamics of an OQS
in the classical limit.

the differentiable manifold MN will be the Cartesian product of N differentiable
manifold Mk.

We think that the theory Qfree
N

that we built from the theory QM
k
, could be the mi-

croscopic theory that allows us to analyse the evolution of the different subsystems
⇠`. In fact, we recognize in it the idea that each ⇠` component evolve with � accord-
ing to a measure-like dynamics. For construction, Qfree

N
represents indeed a theory

where each subsystem ⇠` of ⌅ is described by an effective theory QM
k
, and, moreover,

from the results here found, it can be considered classical equivalent to an original
theory QN , that is a generic microscopic theory characterized by whatever dynamics
where the environmental subsystems generally interact. We thus think that through
this connections - illustrated in Fig. 3.1 - one can show that, in the large-N limit,
several observers perform the same measurement on �, independently of their actual
interaction with � itself, that can be possibly different from a measure-like one. Such
statement is easily understood as tantamount to the objectivity of outcomes, included
in the Quantum Darwinism.

The work on this last point is still in progress, based on the preliminary analysis
above reported, on the quantum de Finetti theorem (see for instance Ref. [77]), and
some results of Refs. [70, 78].

3.5 Conclusions

We have here analysed the case in which the environment doomed to be large, turns
out to be a measuring apparatus.
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Using the dynamical maps for OQS, we considered a generic interaction between
a principal system and its environment, proposing a possible interpretation of the fact
that we do not observe states superpositions due to the continual measurement acted
upon by whatever macroscopic envinroment. This idea is crucial for making sense
of our everyday experience w.r.t. the quantum description of nature. However, the
formal analysis of this idea has been unsatisfactory for decades, due to several rea-
sons, amongst which we underline the following. First of all such analysis requires
a clean procedure for taking the large-N limit of the quantum theory that describes
the environment in a way such that it formally transforms into a proper classical one.
Moreover it must be possible to implement such limit only upon the environment,
without affecting the microscopic nature of the principal quantum system. Finally,
the analysis must not imply assumptions on the state of the observed system before
the interaction starts, or on the form of the interaction itself.

The above three issues have been addressed here combining approaches from
quantum field theory, formally describing the conditions for a classical theory to
emerge as the large-N limit of a quantum one, with tools of OQS theory, such as the
dynamical map description of the environmental evolution. In particular, exploiting
the PRECS, we take the large-N limit so that a comparison between different evo-
lutions of the environment, totally independent on the initial state of the principal
system, becomes possible in terms of environmental dynamical maps.

Our approach allows us to tackle the so-called quantum to classical crossover [16]
by a rigorous mathematical formulation that provides a physically intuitive picture
of the underlying dynamical process. In fact, we have to keep in mind that not every
theory has a proper defined classical limit. Indeed, we did not want to show that
a measure-like dynamics always emerges whenever the environment of an OQS be-
comes macroscopic, rather than a measure-like dynamics can emerge for any generic
dynamics if some conditions occur, which are indeed the ones assuring that a classi-
cal limit does actually exist when the large-N limit is taken. In other words, if some
dynamics emerges in the classical world, it necessarily is a measure-like one.

We already mentioned the phenomenon known as Quantum Darwinism, intro-
duced in [69] and recently considered in [70] from an information theoretic view-
point. Our work provides a way of understanding Quantum Darwinism as a dynam-
ical process, and its generality as deriving from the versatilility of the Hamiltonian
model for the quantum measurement process, and the loss of resolution inherent in
the classical description.

Lastly, we stress again the relevance of the classical limit, that in our proposal
inherently emerges as a fundamental ingredient via the PRECS, and that, in any case,
we should expect to be essential given the scenario with which we dealed throughout
these sections.
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Chapter 4

Large environment as clock

The idea of time is so deeply settled in the way we sense the nature, that it seems
obvious for us describing every experience we have of the world, either about our
everyday life or concerning the models of the Universe, as events that follow one after
the other and happen at certain times. Time, with space1, is certainly established as
a foundational concept in the human perception of reality. Nevertheless, its profound
essence has still to be understood. Physically, it is a relative quantity, defined by
the method used to measure it, and the problem of its measurement has intrigued
the scientists for centuries, from both a philosophical and a practical points of view.
This raises the issue of what time really is in a physical model, whether it is an actual
phenomenon, a property, an observable or a parameter to which we can not attribute
a further interpretation.

In Classical Mechanics time appears in the laws of dynamics down from above,
as an extrinsic parameter external to the physical system which evolves. The same
happens in conventional Quantum Mechanics, where time still enters the formalism
as a classical parameter, a priori given with a certain value. This comes together
with an even deeper problem: time is not a quantum observable, and yet quantum
observables depend on it. In fact, the question of an energy-time uncertainty prin-
ciple has been one of the earliest issues in QM. As well known, whereas time is
indeed a classical parameter, the energy of a quantum system is represented by a
hermitian operator. The Hamiltonian Ĥ generates the evolution of the states through
unitary operators that take the well known form Û = exp(� i

~Ĥt). Indeed, many
authors tried at first to look for some operator T̂ conjugate to the Hamiltonian with
eigenvalues exactly those t, appearing in the propagators, that we call instants and
interpret as time. However, there is apparently no operator T̂ canonically conjugate
to Ĥ , in the sense of a commutation relation of the form [Ĥ, T̂ ] = �i~, from which
a corresponding uncertainty relation can be derived [80].

A different and fascinating approach stems from the idea that time and dynamics
must be some elemental properties of the systems, and should come out not because

1There is a profound asymmetry between the two “building blocks” of our Universe [79], and
whereas people have been able to satisfactorily understand space, updating its representation during
the evolution of different physical theories, the story of time is completely different.

69
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related to some external coordinate, rather because dependent on more fundamental
elements that work as some internal clock time. This is the “timeless approach to
time” and it was firstly proposed in the 1960s, at the early stage of the research
on quantum gravity, by the physicist B. DeWitt, who states “Other times are just
special cases of other Universes”. Only twenty years later, in 1983, D. Page and W.
Wootters formalized the timeless approach in [81], introducing the so called Page and
Wootters (PaW) mechanism. Nothing in their construction relies on defining a time
operator, and at its core there is the idea that both time and dynamics can emerge as
entanglement properties. Thus, as beautifully said in [82], quantum theory supplies
the tools to solve the problem of time via one of its most profound properties, i.e.,
permitting entanglement between subsystems of the Universe. In 2013, at the Istituto
Nazionale di Ricerca Metrologica in Turin, E. Moreva et al. implemented the first
experimental test of Page and Wootters ideas, confirming the validity of the PaW
mechanism [83].

Having this issue in mind, we here take the clue from the timeless approach as
interpreted by Page and Wootters, and we show that it is possible to reproduce the
dynamic evolution of a quantum system as dependent upon some internal clock read-
ings. In particular, exploiting once again the peculiar properties of GCS, we focus
on the reason why time always emerge as a classical parameter, and on the resulting
necessity of a well-defined classical limit that allow us to understand time as a coor-
dinate on a classical phase space.

In this Chapter we tackle the problem of time, whose features, that must be pre-
served seeking its proper quantum origin, are summed up in Sec. 4.1. In the second
section we define the internal clock and show how the concept of time can emerge
from the measurement process. In Sec. 4.3 we present our proposal to formalize the
PaW mechanism, and show how a von Neumann-like equation is naturally obtained
through the PRECS, once the classical limit is implemented. In Sec. 4.4 we discuss
the assumptions made, reporting the final comments in Sec. 4.5.

4.1 Towards a Quantum Time

The PaW mechanism consists in promoting all the physical variables present in a
model to operators, among which there will be one operating on the Hilbert space
of a quantum system that act as an internal clock. The evolution of a (sub)system
emerges thus without evolution, since the temporal behaviour we observe comes
from the entanglement between the rest of the system and the clock. Infact, despite
the whole Universe being isolated and in a stationary state of the total Hamiltonian Ĥ
that describes its energy, i.e., despite the Universe not evolving, an internal observer
will describe the evolution of the (sub)system through the probabilities of getting
certain results from measures conditioned on a reading of the clock that gives as
result the value t. In other words, the dynamical evolution requires a partition of
the Universe to emerge, so that we can interpret time in relation to the observation
of a system, i.e., through a measurement process on it. The key point introduced
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by the timeless approach is indeed that time is relational. As mentioned, what we
detect as time is the change due to the internal quantum correlations of different
subsystems of the Universe with respect to each other, and what does actually make
sense it is not the flow of time, rather the values t at which different measurements
are performed. It is indeed when we detect such relative changes that time emerges
to our senses: whenever we measure, we build a temporal order, whereas time does
not go by between different measurements. Therefore, the scheme to describe this
scenario is again that of the OQS; we will consider a principal system �, whose
evolution has to be observed, and its environment, that in this chapter will act as a
clock and will be thus named C. The evolution of any state is described according to
a label which changes, while the state is changing in turn. As a consequence, the �
state will be parametrized by a clock label receptive to the environmental dynamics.
This apparently nested picture becomes instead clear if one takes into account that
the time evolution of � loses importance if its environment is stuck. In fact, such
situation would be rather bizarre; suppose to observe - like in a movie - the main
character dancing, walking down the street, acting, whereas all the people around
her are frozen in a fixed world: we would immediately recognize an anomalous
situation, and probably we would not by chance think to the lack of time flow.

Before moving towards a quantum time, the features of what time is should be
gathered, in order to understand which are the properties we must require for a sensi-
ble description. In the equations of motion time is a label “t”. It is thus quite natural
starting from parametric representations to describe it, since first of all time is a i)
parameter. Moreover, time is ii) continuous, and many are the continuous paramet-
ric representations developed in different contexts to analyse physical systems. The
most famous parametric representations are probably the momentum and position
representations of QM; another one is, for instance, the parametric representation
with field coherent states often exploited by Walter T. Strunz and collaborators to
study several OQS dynamics, as in Refs. [84, 85, 86, 87, 88]. Recently, a new con-
tinuous parametric representation has been introduced by V. Giovannetti, S. Loyd
and L. Maccone [89] precisely in the attempt of giving a consistent description of
quantum time, based, as our will be, on the PaW mechanism. Nevertheless, we must
also consider that time is lastly iii) classical. As mentioned, time indeed appears in
the laws of dynamics, classical and quantum both, like a label featuring the properties
i) � iii). The attentive reader will have already got to the point: as a matter of fact,
all the features required for a sensible description of time are inherently provided by
the PRECS, which appears hence once again to be a good tool for our aim.

Our proposal to formalize the PaW mechanism is presented in Sec. 4.3; in the
next section we focus instead on the role played by the internal clock, which is indeed
at the heart of the timeless approach.

4.2 The Internal Clock

Time in QM cannot be considered an observable, since it does not exist a measure,
i.e., a set of positive operators {M̂(T )}, which, acting on the same system, gives as
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results the values t understood by us as values of time. The operators representing
system properties which can be observed are Hermitian and commute with the system
Hamiltonian Ĥ - see App. B. On the other hand, when a projective measure M
corresponding to the operator M̂� is performed on the system � and a specific result
� is obtained, the system state reduces itself to the state |�i, which is an eigenstate of
M̂� and Ĥ simultaneously, and thus stationary. If we then perform another measure
M on this state, the result will always be �, being |�i stationary. So, a spontaneous
question arises: why do we observe a dynamics in the observable properties of the
quantum systems? The solution offered by the timeless approach is that the observed
time-dependence is not related to an external coordinate, but rather to the state of
a system belonging to a compound system  = � + C. This is indeed the system
to which we will refer to as internal clock. By internal clock we mean a system
whose state can vary, and with respect to which we describe the change of the other
subsystems states.

Consider now an isolated bipartite system  = �+ C, in a separable state | i =
|�i |Ci. Suppose we want to measure the observables E and T on the systems � and
C. Their possible results are {"i} and {⇠j} respectively, and we exploit the PVM

M(E) : {"i} ! {|iihi|
�
⌦ ÎC} (4.1)

M(T ) : {⇠j} ! {Î� ⌦ |jihj|C} . (4.2)

By the minimal interpretation, the probability that the measurement of E and T on
the total state | i give as result the couple ("`, ⇠k) is

pE,T

| i
("`, ⇠k) = h�| hC| (|`ih`|

�
⌦ ÎC)(Î� ⌦ |kihk|C) |�i |Ci =

= h�| hC| |`ih`|
�
⌦ |kihk|C |�i |Ci . (4.3)

Defining the state

| �(⇠k)i ⌘ Chk|Ci |�i
|Chk|Ci|

, (4.4)

Eq. (4.3) becomes

pE
| �(⇠k)i

("`) = h �(⇠k)|`ih`| �(⇠k)i = |�h`| �(⇠k)i|2 , (4.5)

that can be read as the probability that the measurement of E related to the system �
on the state | �(⇠k)i give as result the value "` at the “time” ⇠k.

Notice that the state reduction does not play any role in what stated above. In
fact, if the initial state of the system  is not separable, then the probability that the
measurement of E and T on the entangled state |�i give as result the couple ("`, ⇠k)
is

pE,T

|�i
("`, ⇠k) = h�| (|`ih`|

�
⌦ ÎC)(Î� ⌦ |kihk|C) |�i , (4.6)

and the state

|��(⇠k)i ⌘ Chk|�i
|Chk|�i|

, (4.7)
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can be interpreted as the state of � at the “time” ⇠k. We can therefore still recognize
the probability that the measurement of E on the state |��(⇠k)i give as result the
value "` at the “time” ⇠k, in the expression

pE
|��(⇠k)i

("`) = h��(⇠k)|`ih`|��(⇠k)i = |�h`|��(⇠k)i|2 . (4.8)

From this discussion, it seems that the parameter time can emerge from the measure-
ment process as a parameter related indeed to the internal clock, whose state allows
us to observe the change of all the rest. As mentioned, Page and Wootters were the
first to develop this idea, and we refer the reader to Sec. II of Ref. [81] for an explicit
example of the above construction.

4.3 Evolution without evolution by the PRECS

Once recognized that our perception of time stems during the measurement process,
through which we realise and quantify the change observed in a quantum system,
we want to investigate whether the evolution of the subsystem � can be understood
indeed as the change related to another subsystem, chosen as the internal clock. In
particular, we want to study if this kind of evolution can always reproduce the evolu-
tion of � as obtained by the equations of motion.

Let us consider an isolated bipartite system  = �+C with Hilbert space H =
H� ⌦HC, where � is the system whose dynamics is under analysis, and C the clock
system. Suppose  be in the state | ii 2 H 

2, that we rewrite using the Schmidt
decomposition as

| ii =
X

�

c� |�i |⇠�i (4.9)

with � = 1, ..., �max  dimH�, c� 2 R+,
P

�
c2
�
= 1. The sets {|�i}H� and {|⇠ji}HC

with j = 1, ..., dimHC are the Schmidt bases, as we know from Sec. 3.2. Suppose the
chosen partition be the one where the two subsystems � and C do not dynamically
interact with each other, so that we can consider the operator

Ĥ = Ĥ� ⌦ ÎC + Î� ⌦ ĤC , (4.10)

where Ĥ� and ĤC act locally on H� and HC respectively. In particular, we take Ĥ�
as the free Hamiltonian of �, and we define ĤC as the hermitian operator

ĤC ⌘
X

j

Ej |⇠ji h⇠j| with Ej 2 R , (4.11)

determined by the Schmidt decomposition (4.9), in a way similar to what we did in
Sec. 3.2 of the previous chapter. Additionally, we assume ĤC bounded from below,
so that the operator (4.10) be bounded from below as well. Noticing that Ĥ is also
hermitian, we can thus understood it as the total Hamiltonian of the composite system

2We preserve in this chapter the double-ket notation introduced in [89] to remind us that | ii is
defined on H = H� ⌦HC.
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 . We then suppose that the state (4.9) be an eigenvector of the total Hamiltonian,
i.e.,

Ĥ | ii = 0 , (4.12)

and from the hermiticity of Ĥ we get

h⌘| Ĥ | iihh |⌘i = 0 , h⌘| iihh | Ĥ |⌘i = 0 , (4.13)

where |⌘i is an ECS of the set {|⌘i}HC built for the clock, according to the procedure
described in App. A, through an algebra whose Cartan decomposition includes ĤC

as a diagonal operator. The operation h·|·ii is formally defined by

h·|·ii : H� ⌦HC ! H� . (4.14)

Using Eqs. (4.9) and (4.10), we get

0 = h⌘| Ĥ | iihh |⌘i =
= Ĥ�

X

�,�0

c�c�0 |�i h�0| h⌘|⇠�ih⇠0�|⌘i+
X

�,�0

c�c�0 |�i h�0| h⌘| ĤC |⇠�i h⇠�0 |⌘i =

= Ĥ�%̃�(⌘) +
X

�,�0

c�c�0 |�i h�0| h⌘| ĤC |⇠�i h⇠�0 |⌘i

| {z }
a

, (4.15)

and similarly

0 = h⌘| iihh | Ĥ |⌘i = %̃�(⌘)Ĥ� +
X

�,�0

c�c�0 |�i h�0| h⌘|⇠�i h⇠0�| ĤC |⌘i

| {z }
b

, (4.16)

where we defined

%̃�(⌘) =
X

�,�0

c�c�0 |�i h�0| h⌘|⇠�ih⇠0�|⌘i . (4.17)

Notice that %̃�(⌘) is not the reduced density matrix of �, since, for instance, its trace
is not equal to 1. To explicitly write Eqs. (4.15) and (4.16) we need to work on the
overlaps h⌘| ĤC |⇠�i and h⇠0

�
| ĤC |⌘i.

For this purpose, consider the Cartan decomposition {Ĥi, Ê↵, Ê†
↵
}, introduced

in Sec. 1.2, for the algebra describing the environmental theory, i.e., the clock; as
mentioned, the operator ĤC appearing in Ĥ is such that ĤC 2 {Ĥi}, being a diagonal
operator itself, and, in particular we remind

[ĤC , Ê↵] = ↵C Ê↵ , [ĤC , Ê
†
↵
] = �↵C Ê

†
↵
, (4.18)

according to the commutation rules (1.2) reported in the first chapter. Then, assum-
ing that there is only one couple of shift-up/shift-down operators (Ê↵, Ê†

↵
), a generic
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ECS |⌘i can be obtained acting with the displacement operator on the chosen refer-
ence state |Ri ⌘ |0i, and, exploiting the BCH formula - see App. A and Ref. [10] -,
we get

|⌘i = e⌘Ê
†
↵�⌘

⇤
Ê↵ |0i = e⌧Ê

†
↵e

P
i �iĤie�⌧

⇤
Ê↵ |0i = e

P
i �i"ie⌧Ê

†
↵ |0i , (4.19)

where ⌧ is a function of ⌘ 2 C, Ê↵ |0i = 0 and Ĥi |0i = "i
0
|0i. Consequently, it is

h⌘| ĤC |⇠�i = h0| e
P

i �iEie⌧
⇤
Ê↵ĤC |⇠�i = h0| e

P
i �i"i

X

k

(⌧ ⇤Ê↵)k

k!
ĤC |⇠�i , (4.20)

and similarly

h⇠0
�
| ĤC |⌘i = h⇠0

�
| ĤC e

P
i �i"ie⌧Ê

†
↵ |0i = h⇠0

�
| ĤC

X

k

(⌧ Ê†
↵
)k

k!
e
P

i �i"i |0i , (4.21)

where in the last steps of the above equations we used the Taylor expansion of the
exponential. Via Eq. (4.18), we make Êk

↵
and ĤC commute, yielding

Êk

↵
ĤC = ĤC Ê

k

↵
� ↵C kÊ

k

↵
, ĤC Ê

† k
↵

= Ê† k
↵
ĤC � ↵C kÊ

† k
↵

, (4.22)

so that
X

k

(⌧ ⇤Ê↵)k

k!
ĤC = ĤC e

⌧
⇤
Ê↵ � ↵C ⌧

⇤Ê↵e
⌧
⇤
Ê↵ , (4.23)

and analogously

ĤC

X

k

(⌧ Ê†
↵
)k

k!
= e⌧Ê

†
↵ĤC � ↵C ⌧ Ê

†
↵
e⌧Ê

†
↵ . (4.24)

The assumption of a single couple of shift-up/shift-down operators (Ê↵, Ê†
↵
) implies

that the parameter ⌘ appearing in the displacement operator is a complex number,
that can thus be written as ⌘ = ⌘ei� with ⌘ representing the modulus and � its phase.
Through the relations between ⌘ and ⌧ - see Eqs. (A.37) and (A.38) of App. A -,
it follows ⌧ = ⌧(⌘)ei�, i.e., the modulus of ⌧ appearing in the BCH formula is a
function of the modulus ⌘ only, whereas the phase � is the same. Therefore, being

d

d�
e⌧

⇤
Ê↵ = �i⌧ ⇤Ê↵e

⌧
⇤
Ê↵ , (4.25)

the overlaps (4.20) and (4.21) can be rewritten as derivative of �, i.e.,

h⌘| ĤC |⇠�i = h0| e
P

i �i"i

✓
ĤC e

⌧
⇤
Ê↵ � i↵C

d

d�
e⌧

⇤
Ê↵

◆
|⇠�i =

=

✓
E0 � i↵C

d

d�

◆
h⌘|⇠�i , (4.26)
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and similarly

h⇠0
�
| ĤC |⌘i =

✓
E0 + i↵C

d

d�

◆
h⇠�0 |⌘i , (4.27)

where we used ĤC |0i = E0 |0i, following from the fact that, being ĤC one of the
diagonal operators of the Cartan decomposition, |0i is one of its eigenvector, namely
|0i 2 {|⇠�i}HC as we supposed that the eigenbasis of ĤC is the Schmidt basis, i.e.,
Eq. (4.11). Inserting the above relations in the terms a and b defined in Eqs. (4.15)
and (4.16) respectively, we get

a� b =
X

�,�0

c�c�0 |�i h�0|
✓

�i↵C

d

d�
h⌘|⇠�i

◆
h⇠�0 |⌘i+ h⌘|⇠�i

✓
�i↵C

d

d�
h⌘|⇠�i

◆�
=

= �i↵C

d

d�

X

�,�0

c�c�0 |�i h�0| h⌘|⇠�ih⇠�0 |⌘i =

= �i↵C

d

d�
%̃�(⌘) . (4.28)

Thus, subtracting Eq. (4.16) from Eq. (4.15), it is

0 = Ĥ�%̃�(⌘)� %̃�(⌘)Ĥ� � i↵C

d

d�
%̃�(⌘) , (4.29)

i.e.,

i↵C

d

d�
%̃�(⌘) = [Ĥ�, %̃�(⌘)] . (4.30)

This expression resembles the von Neumann equation - also known as the Liou-
ville–von Neumann equation -, which describes how a density operator evolves in
time. Nevertheless, we must notice that, first of all, %̃�(⌘) is not well-defined as
a reduced density matrix, being not normalized - see comments below Eq. (4.17).
Moreover, we would like to recognize � as time, implying that the parameter on
which a proper � density matrix should depend is (only) � itself. In fact, the von
Neumann equation reads

i~ d

dt
%S(t) = [ĤS, %(t)] (4.31)

where %S(t) is a well-defined density matrix of a generic system S with Hamiltonian
ĤS . However, we know by the PRECS that %̃�(⌘) must be divided by �(⌘)2 to be
normalized. Therefore, we multiply and divide Eq. (4.29), yielding

0 = �(⌘)2{[Ĥ�, |�(⌘)i h�(⌘)|]� i↵C

1

�(⌘)2
d

d�
%̃�(⌘)} , (4.32)

with |�(⌘)ih�(⌘)| ⌘ %̃�(⌘)/�(⌘)2. Notice that we keep �(⌘)2 out the derivative,
being, in general, d

d�
�(⌘)2 6= 0.

In order to go forward in the calculations, we should be able to show instead that
�(⌘)2 exclusively depends on the modulus ⌘, at least if the assumptions hereinbefore
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considered hold true. Although we think that this can be done in general, we here
report two specific examples, postponing to future work the general demonstration.

Consider the two cases where {|⌘i}HC represents the sets of field coherent states
{|↵i} and of spin coherent states {|⌦i}, respectively introduced in Secs. 1.3.1-1.3.2
and described in App. A. In other words, we consider the two paradigmatic cases of
a bosonic and a magnetic clock.

If C is a bosonic system, ĤC in Eq. (4.10) is the number operator n̂ ⌘ â†â, and
the Schmidt basis {|⇠�i}HC = {|n�i}HC with |n�i the Fock states. The field CS
are built acting with the displacement operator on the vacuum, i.e., |Ri = |0i, the
complex parameter ↵ can be parametrized by polar coordinates, i.e.,

↵ = ↵e�i arctan(=(↵)
<(↵)) , (4.33)

and, through the PRECS,

�(↵)2 =
X

�

c2
�
h↵|n�ihn�|↵i =

X

�

c2
�
e�↵

2 ↵2

n�!
, (4.34)

where in the last step we used the overlap hn|↵i reported in Sec. A.2 of App. A.
When C is instead a magnetic system, ĤC in Eq. (4.10) is Ŝz, and the Schmidt

basis {|⇠�i}HC = {|m�i}HC with |m�i the Ŝz-eigenvectors. Acting with the dis-
placement operator on the reference state |Ri = |�Si, one gets the spin CS, and
the complex parameters ⇣ , labeling points on the two-dimensional sphere S2, can be
rewritten by the usual polar angles # 2 [0, ⇡],' 2 [0, 2⇡), according to

⇣ =
#

2
e�i' . (4.35)

Through the PRECS, we get

�(⌦)2 =
X

�

c2
�
h⌦|m�ihm�|⌦i =

X

�

c2
�

✓
2S

m�

◆✓
cos

#

2

◆4S�2m�
✓
sin

#

2

◆2m�

,

(4.36)
where in the last step we used the overlap hm|⌦i reported in Sec. A.3 of App. A.

Looking at Eqs. (4.34) and (4.36), it is evident that �(↵)2 and �(⌦)2 are both
independent of the phases appearing in Eqs. (4.33) and (4.35) respectively, that is,
they are both independent of the time �. The derivative in Eq. (4.32) does not thus
affect the normalization �(⌘)2, so that we can rewrite Eq. (4.32) with |�(⌘)ih�(⌘)|
in the second term too.

For what concerns the parametric dependence of the � density matrix, we would
like to define the analogous of %S(t), i.e., %�(�). Thus, in order to remove the mod-
ulus dependence, we integrate Eq. (4.32) in d↵/⇡ for the case of the bosonic clock,
and in 2S+1

4⇡
sin#d# for the case of the magnetic one, yielding

0 =

Z
d↵

~⇡�(↵)
2{[Ĥ�, |�(↵)i h�(↵)|]� i↵C

d

d'
|�(↵)ih�(↵)|} , (4.37)
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and, analogously,

0 =
2S + 1

4⇡

Z
sin#d#�(⌦)2{[Ĥ�, |�(⌦)ih�(⌦)|]�i↵C

d

d'
|�(⌦)ih�(⌦)|} . (4.38)

At this point, another important feature of time must be considered: in fact, to be
finally able to recognize � as a classical continuous parameter, we still have indeed
to take the classical limit. Through the properties of GCS [14], and considering what
we learnt in Chap. 1, it is thus

lim
N!1

�(↵)2

~⇡ =
X

�

c2
�
�(↵�↵�) and lim

N!1

2S + 1

4⇡
sin#�(⌦)2 =

X

�

c2
�
�(#�#�) ,

(4.39)
so that Eqs. (4.37) and (4.38) in the large-N limit become

0 =
X

�

c2
�
{[Ĥ�, %��(�)]� i↵C

d

d�
%�
�
(�)} , (4.40)

with � = arctan
⇣

=(↵)

<(↵)

⌘
and � = ' for the bosonic and the magnetic clock, respec-

tively; %�
�
(�) is the projector |�(⌦)ih�(⌦)| integrated and, hence, with the variable

conjugate to � fixed by the delta function of Eq. (4.39).
Noticing that Tr� [%

�

�
(�)] = 1, we are finally allowed to state that every �-

component of the sum in Eq. (4.40), evolves in time according to a properly defined
von Neumann equation. Concluding, once the classical limit is taken, it is indeed the
phase �which can be understood as the temporal parameter time inherently emerging
through the PRECS as a classical continuous parameter, in both cases.

4.4 Discussion

This section is devoted to comment upon some specific aspects of our results and on
the assumptions made.

Let us start by the state | ii of the isolated system, i.e., in a sense, of our Uni-
verse. We used the Schmidt decomposition, that, as already highlighted, is state de-
pendent. However, notice that this is a peculiar situation, since, being the state | ii
unique, the Schmidt decomposition (4.9) is actually fixed. Moreover, the coefficients
c� 6= 0 must be more than one, as we want to show that the evolution of the system
� is indeed induced by the entanglement with the internal clock C. This is well un-
derstood through the PRECS: indeed, the parametric representation is meaningful if
and only if the two subsystems are entangled, otherwise there would not be any clock
label on the � states. It should then be stressed that the assumption of an entangled
state of two subsystems which do not further interact, it is not at all too exotic. Think
for example to the Bell experiments [90, 91, 92], specifically designed to test the the-
ory of QM. They usually start with the preparation of two atoms with spin 1/2 both,
combined in a molecule singlet state - or, quite equivalently, two generic spin-1/2
particles in a singlet state. The two particles are then separated, without influencing
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the angular momentum, and they do not interact any longer; a similar scenario is the
one supposed here for the two subsystems � and C. Moreover, we can also think that
if there is a third system whose state is factorized with respect to  = � + C, i.e.,
if there exists a system � such that its state is | ii ⌦ |�i, separable from | ii, we
simply have no way to detect it: it would than represent a sort of another Universe,
with which we cannot communicate in any way and that would be therefore invisible
to our observations.

Secondly, notice that the form (4.10) of the total Hamiltonian with the request of
a stationary state (4.12) implies that the energy of the two subsystems are inherently
bound together: fixing the energy of � is tantamount to establish a temporal scale,
i.e., the energy of C, and viceversa. In other words, a posteriori we can state that
the temporal resolution, with which an event is observed, determines which is the
state of the diagonal operator ĤC selected in Eq. (4.9). In fact, the diagonal operator,
associated to the variable conjugate to the time �, and the shift-operators are maxi-
mally non-commuting, so that the uncertainty principle hold true. For example, in
the case of the magnetic clock, it is �#�' � 1/S, with # the variable associated
to �Sz ⌘ hŜzi. From the constraint (4.12), it then follows �Sz + �E� = 0, with
�E� ⌘ hĤ�i. Putting together these two relations we get thus �E��' � 1/S, that
can be understood as a time-energy uncertainty relation.

About the assumption of considering an eigenstate of Ĥ , we agree with the pic-
ture provided by Page and Wootters: since any isolated system interacts only with
itself by definition, there does not exist an external observer according to whom a
sort of global external time can be defined. In addition, any isolated system is in
an eigenstate of energy, which, however, cannot be meaningfully named station-
ary, as a global external time translation is indeed completely unobservable. Apart
from the fascinating philosophical discussions, for which we refer the reader to
Refs.[81, 89, 82], notice that General Relativity demands the Hamiltonian of the
whole system to be null, in order to guarantee the general covariance of the system.
This implies that “nothing moves around”, i.e., that “there is no time”, and Eq. (4.10)
can be understood as a sort of Wheeler-DeWitt equation [93].

We also assumed that there is only one couple of shift-up/shift-down operators
(Ê↵, Ê†

↵
). This implies that the manifold M provided by the GCS has dimM = 2,

so that the parameter emerging as time is unaivodably one-dimensional, as it should
be. Indeed, besides the usual way that we have to represent time, considering it as
a one-dimensional parameter allows us to directly find a connection with thermody-
namics and the consequent definition of the so called thermodynamic arrow of time,
provided by the second law3. Nevertheless, although the introduction of a single

3The arrow of time is the concept of the one-way direction or asymmetry of time, beautifully
described in the book The Nature of the Physical World by Arthur Eddington, who first developed it:
“Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the random
element in the state of the world, then the arrow is pointing towards the future; if the random element
decreases the arrow points towards the past. That is the only distinction known to physics. This
follows at once if our fundamental contention is admitted that the introduction of randomness is the
only thing which cannot be undone. I shall use the phrase ‘time’s arrow’ to express this one-way
property of time which has no analogue in space.”
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couple (Ê↵, Ê†
↵
) simplifies the problem a lot, we do not think it is a necessary con-

dition for the definition of time as a parameter inherently provided by the PRECS.
For instance, given a manifold M with arbitrary dimension, one could identify on it
a curve, which by definition is associated to a one-dimensional parameter, no matter
how large is dimM.

Lastly, observe that, in the large-N limit, a von Neumann equation is derived for
every single �-component of the state | ii. Although we think that a deeper analysis
of the meaning of this result can be worth and could possibly open the scenes to
fascinating theories such as the Many Worlds one, it suffices here to notice that which
is the actual � that describes the evolution of the observed system � is utimately
determined by the state (4.9) of the Universe.

4.5 Conclusions

The large environment is here considered to act as an internal clock C for a physical
system �, whose evolution we want to describe.

We used the PRECS to parametrize �, through the ECS defined for the quantum
system which embodies the internal clock. Such choice allows the parameter that we
call time to naturally emerge in the laws of dynamics when we perform the classical
limit of the clock.

In particular, we considered the two paradigmatic cases of a bosonic and a mag-
netic clock, respectively described by the sets of field coherent states {|↵i} and spin
coherent states {|⌦i}, already encountered in this thesis.

Our proposal to formalize the PaW mechanism understands the phase � of the
ECS as the temporal parameter. Indeed, being the Universe isolated, a global exter-
nal time coordinate does not exist, and any observed dynamical evolution needs a
partition of the Universe to stem. What we sense as the flow of time is the change
that takes place in the different subsystems, related to the subsystems themselves and
due to the internal quantum correlations. Since we detect time through changes, it is
straightforward that measurement processes play a key-role: this is indeed the only
way we have to observe any change, and in QM observation and measurement are
tightly tied together. Different, successive measurements build a temporal order, so
that time does not go by if any measurement is performed.

We end this chapter stressing once again the fundamental role of the ECS: via the
PRECS a proper von Neumann equation can be defined to describe all the possible
evolutions of � represented by the index � and parametrically depending by a clock
label, which inherently emerges, once the large-N limit is performed, as a classical
continuous parameter that can be consequently properly understood as time.



Chapter 5

Large environment... at most!

Leitmotif of this thesis is the analysis of macroscopic quantum environments, which
potentially exhibit a classical behaviour. Combining the tools of the OQS theory
with approaches from quantum field theory, formally describing the conditions for
a classical theory to emerge as the large-N limit of a quantum one, we deal with
the fundamental issue of the quantum-to-classical crossover and we investigate the
general idea that a classical environment is a macroscopic quantum environment.

As the World is inherently quantum, we need a scheme that makes the classical
one emerge, yet such that simultaneously allows us to preserve the quantum origin
of the analysed systems: indeed, we want to keep trace of the quantum interactions
from which ultimately our classical effective descriptions of the phenomena we ob-
serve everyday stem. Having this issues in mind, we initially faced the problem of
identifying the proper mathemathical instruments to interpolate the quantum and the
classical formalisms. We analysed the very peculiar properties of the generalized
coherent states, finding out that they play a very essential role in this framework,
and we discussed what is the minimal structure to define a proper classical limit of
a quantum theory. We thus concluded and formally showed that macroscopicity is a
necessary - but not sufficient - condition to make classicality emerge.

According to this general idea, we studied three different situations, each cor-
responding to a different role taken on by the environment. We firstly considered
the environment as part of an hybrid quantum scheme, focusing on two different as-
pects: i) the study of the back-action, i.e., of the environmental dynamics induced
by the interaction with the quantum principal system; ii) the analysis of the effective
description of macroscopic quantum environments as classical fields. Secondly, the
environment was assumed as a measuring apparatus, or, more precisely, the reason
why a classical environment can always be assumed as tantamount to a measuring
apparatus was investigated. Thirdly, we looked at the environment acting as a clock,
in order to deal with the intriguing question of a proper quantum definition of time.

In all the situations and the models considered, we provided formal analyses and
we presented possible solutions to some general questions, often naively taken for
granted. Notice however that, beyond the fascinating fundamental aspects of the con-
nection between the quantum and classical worlds, recent developments in quantum
technologies increasingly require a deeper comprehension of how we, as “macro-

81
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scopic objects”, can achieve a higher level of control upon small quantum devices,
so that to better discern the quantum-to-classical crossover acquires also an increas-
ingly practical aim. In fact, reversing the point of view, the technological progress
has made also necessary a deeper understanding of those mechanisms that might
cause quantum features to be spoiled by the presence of some environment: indeed
from the theoretical ongoing investigation on the OQS dynamics, there emerge sev-
eral ways of approximately accounting for the environment, that evidently ease the
above understanding.

In the last decade, one set of fundamental applications that has recently emerged
as a far-reaching application for Quantum Information is to Quantum Gravity. There
is now a variety of different connections between the two theories that have been
explored and people coming from different communities have started to talk [94,
95, 96]. By the background of OQS, the very first consideration we can make is
the following: there is only one system really isolated, the Universe. Addressing
the problem of time in Chap. 4, we already mentioned this idea, and we started in-
deed to deal with the largest possible environments. In the future, we would like
to enlarge the environment at most and to apply the tools presented in this thesis to
approach the research of quantum gravity. Translating in our language, this implies
to seek for a quantum theory whose proper classical limit is a classical theory whose
Poisson brackets be tantamount to the Einstein field equations of GR, or similarly,
according to the scheme here followed, a quantum theory classically equivalent to
GR. For example, inspired by the results of Chap. 4, we aim to investigate the role of
the parametrization used to make time emerge as a classical continuous parameter de-
fined on the manifold provided by the ECS of the clock. The parametrization we used
is profoundly asymmetric: one variable, i.e., the modulus associated to the energy of
the system, runs from zero to infinity1, while the other one, i.e., the phase, is limited
in the interval [0, 2⇡). Althought this all hereinbefore is only speculation, we stress
that, beyond easing our understanding of the emergence of time, this parametrization
could hide a deeper physical meaning. In our analysis it could be indeed recognized
an implicit use of the so called action-angle coordinates, that could pave the way for
the definition of a manifold whose classical parameters are associated to 1) time, that
we have already recognized as the phase, i.e., potentially the angle, and 2) tempera-
ture, that we could maybe associate to the modulus, i.e., potentially to the action, and
which is indeed defined as a positive quantity running from zero to infinity. In this
picture, the space would be what actually determines the partition between what is in
that point that we observe - the principal system � - and all the rest - the environment
⌅ to which the clock C belongs.

Having these issues in mind as perspectives for future work, we conclude this
thesis devoting the second part of this chapter to what is presented as one of the
biggest open challenge in modern physics, i.e., the Black Hole Information Paradox.
In Sec. 5.1 we introduce the paradox, briefly recalling some features of these special

1Remember that for the magnetic clock the classical limit is defined by the large-S condition and
Ŝ
z-eigenvalues can be defined in [0, 2S].
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objects named Black Holes (BHs). In Sec. 5.2 we remind the tools of Classical and
Quantum Information Theory. In particular we focus on the connection between
thermodynamics and information provided by the Landauer principle, analysing the
resolution of the Maxwell dæmon paradox. In Sec. 5.3 we introduce the concept
of the Hawking radiation and then we calculate its von Neumann entropy, related
to the concept of the evaporation and to the consequent BH Information Paradox
respectively. In Sec. 5.4 we develop our information theorethic model for describing
the evaporation of a BH, aiming to discuss the role of an observer in the paradox.
Lastly, we report the concluding remarks in Sec. 5.5.

5.1 When the Maxwell dæmon stares at an event horizon

When we talk about a paradox, we generally mean a situation that gives seemingly
contradictory results, though based on postulates considered well defined and which
work in other contexts. Such situations are usually not paradoxical at all, and their
resolutions consist quite often in finding the gap of the ill-defined or self-referring
concepts from which they actually stem. Many times, in the history of physics,
paradoxes arose in the attempt of unifying different theories and their crossing gave
birth to deep scientific revolutions.

The Black Hole Information Paradox was formulated by Stephen Hawking in
1975 and, since its very first appearance, has been considered one of the most im-
portant open questions that fundamental physics has to face today. The issue sprouts
from a clash between General Relativity (GR) and QM, whose reconciliation is in-
deed one of the main goal of modern physics. According to Hawking’s calculations,
a BH emits a thermal radiation that makes it evaporate; such process, named evap-
oration, seems to correspond to a non-unitary evolution of the states describing the
emitted particles, and, thus, to a violation of the evolution postulate of quantum me-
chanics.

Before discussing the paradox, some history and properties of the classical BH
will be briefly revised. The concept of a body so massive to create a gravitational
field such intense that neither light can escape, was firstly proposed at the end of the
18th century by the English natural scientist Reverend John Michell. It took however
more than a whole century before Karl Schwarzschild formally described the BHs
as geometrical objects, in the framework of GR. Despite the initial resistance of the
community, including Einstein himself, with respect to these too much exotic objects,
from the second half of the last century the BHs have become very popular, largely
thanks to astrophysical discoveries and improved simulations of collapsing matter
which made the scientific community strongly believe in their existence. As a matter
of fact, further investigations have then followed and people have started to focus
on them, as they could play a key-role in the attempt of unifying QM and GR. It is
indeed in the presence of a BH that the effects of quantum gravity are supposed to
manifest themselves.

The BHs represent very special regions of the spacetime, from which nothing is
able to escape. The boundary of this region is named event horizon, which, according
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to Schwarzschild metric, is placed at distance r = rS from the actual singularity of
the spacetime at r = 0, ultimately generating the BH. The quantity rS ⌘ 2GM/c2

is the Schwarzschild radius, where G is the universal gravitational constant, M the
mass of the matter considered and c the vacuum speed of light. The boundary is not
a physical surface, and if a person fell through the event horizon - before being torn
apart by tidal forces -, she would not notice any physical surface at that position; it is
indeed only a mathematical surface, significant in determining the BH’s properties2.
The area of a BH never decreases, and, moreover, there exists the so called no-hair
theorem guaranteeing that we just need to know three features in order to recover the
information about the nature of a collapsing body which originally formed a BH: its
mass, its electric charge and its angular momentum. Thinking about this result, there
is a resemblance with the statistical description of an object at thermal equilibrium,
for which it is indeed sufficient to define a few macroscopic parameters. At the
beginning of the 1970s, people have actually realised that the laws ruling the BHs
behaviour are incredibly similar to the four fundamental laws of thermodynamics
[97, 98]. In particular, this resemblance led to the view that a quantity of the BH,
named surface gravity k, is a measure of its temperature TBH ⇠ k/2⇡, and that the
event horizon area, A, is a measure of the BH entropy SBH ⇠ A/4. Nevertheless, it
is not yet completely clear if the analogy between the two theories is just formal or
if it hides a deeper physical meaning. A step forward in trasforming such perception
was done indeed when in 1975 Stephen Hawking discovered that a BH emits as
a black body with temperature TBH [99]; from that moment, the possible scenarios
that have been uncovered are still being extensively studied. By Hawking’s result, our
understanding of BHs physics has dramatically changed with respect to the classical
view. Firstly, we learn that there is this radiation, so a BH is not so “black” after

2The Schwarzschild metric is the most general spherically symmetric vacuum solution of the Ein-
stein field equations, and it describes, indeed, the gravitational field outside a spherical mass, on the
assumption that its electric charge, its angular momentum, and the universal cosmological constant
are all equal to zero. Introducing the coordinates (t, r,#,'), the lenght element for the Schwarzschild
metric takes the form

ds
2 = �

⇣
1� rS

r

⌘
dt

2 +
1�

1� rS
r

�dr2 + r
2(d#2 + sin2 #d'2) ,

with t and r having the meaning of time and radius only asymptotically, i.e., where the spacetime
becomes flat. Nevertheless, fixed r and t, the surface of a sphere S

2 is 4⇡r2, so that the meaning
of the radius r is recovered in a sense. Notice that this metric has two singularities, in r = 0 and
in r = rS . Anyway, their nature is profoundly different, since the latter depends on the choice of
coordinates not able to recover the region r  rS and it is hence removable changing the coordinate
system, while the former is an actual spacetime singularity, where the curvature of the metric diverges.
When the solutions described are related to little dense astronomical objects, such as stars or planets,
the two singularities do not disturb, since the Schwarzschild metric is valid only outside the field
source and r > rS in these situations. When instead gravitational collapses take place, ending with
the formation of superdense objects, whose radii are smaller than rS , the Schwarzschild metric needs
to be modified in order to describe the spacetime geometry for r  rS . The results of these collapses,
with indeed a physical singularity at r = 0, form the BHs. A Schwarzschild BH, or static BH, is a
BH that has neither electric charge nor angular momentum. A Schwarzschild BH is described by the
Schwarzschild metric, and cannot be distinguished from any other Schwarzschild BH except by its
mass M .



5.2 Information Theory 85

all; secondly, it is not clear what is the meaning of SBH , since classically a BH has
only one state - the state described by its mass, its electrical charge and its angular
momentum -, and, consequently, its entropy should be null. Moving to a quantum
scenario, some things can be interpreted, but even deeper questions arise, and among
them the BH information paradox takes arrogantly the principal role.

In the following sections, we will discuss the presence of an observer looking at
the Hawking radiation, focusing on the resulting connection with the measurement
process of QM. As we want to analyse the paradox from an informative theoretic
point of view, some useful definitions should be reminded.

5.2 Information Theory

The foundations of what we name today theory of information were laid in 1948
by C. E. Shannon, who built a formal apparatus to deal with problems concerning
the signals codification and transmission [100]. The source is the system used to
generate information, and it can be thought as a mechanism able to emit an element,
called the symbol x, once having choosen it among a set of symbols, the alphabet X.
A source is discrete if the alphabet is a numerable set, continuous otherwise. A string
of lenght n is a sequence of n symbols emitted by the source. The symbol x of the
i-th emission is chosen with probability pi(x), where the subscript i, running from 1
to n, indicates that the function could depend from the whole history of the source.
If instead the choice of every symbol is independent from the previous emission, the
source is called memoryless. In this case the probability associated to a generic string
(x1, . . . , xn) is simply

p(x1, . . . , xn) = p(x1) · · · p(xn) , (5.1)

where all the p(x) are equal, but they give different values being valued for different
symbols. We will refer always to discrete memoryless sources in what follows.

To formalize how a definite quantity of information can be storaged in the shortest
string possible, the information and the entropy associated to a symbol, a string or a
source must be introduced. Consider a source emitting symbols x of an alphabet X
with probability pi(x). The information associated to the choice of every symbol, or,
similarly, the surprise that we feel reading the single emission of the source, is

i(x) = � log
2
pi(x) . (5.2)

This expression vanishes in the case of a certain emission, and it takes arbitrarily
high values in the case of a rare emission. The basis of the logarithm stands for the
choice of a information measurement unit. In Eq. (5.2) we used 2, according to the
analysis that will follow in the next sections, based indeed on binary choices. As we
will always adopt such convention, we will omit the 2 hereafter. The information is
additive for symbols emitted by a memoryless source, being

i(x1, x2) = � log p(x1, x2) = � log (p(x1)p(x2)) = (5.3)
= � log p(x1)� log p(x2) = i(x1) + i(x2) . (5.4)
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Given a generic string s = (x1, x2, . . . , xn), we can define the information contained
in it as

i(s) ⌘
X

x2s

i(x) . (5.5)

Then, the entropy of a source ⌃ is the mean quantity E of emitted information, or,
analogously, the uncertainty that we have about its emission, i.e.,

H⌃ = E[i] =
X

x2X

p(x)i(x) = �
X

x2X

p(x) log(p(x)) . (5.6)

with 0 6 H⌃ 6 logM , where M is the alphabet dimension, that is the number of
symbols forming the alphabet. In other words, Eq. (5.6) defines a semipositive func-
tion which takes null value in the case of certain emission and its maximum value
in the case of uniform emission (p1 = . . . = pM = 1/M). When Shannon intro-
duced this quantity, initially named uncertainty, he did not immediately recognize
the resemblance with the expression representing the thermodynamic entropy ST of
an isolated system at the thermodynamic equilibrium, i.e.,

ST = �kB
X

i

pi log pi , (5.7)

where pi are the probabilities that the system is in the i-th configuration and kB is
the Boltzmann constant. For many years people wondered if such correspondence
was only formal or if it was hiding a deeper physical meaning, exactly as in the more
recent case of the analogy between the classical thermodynamics and the BH thermo-
dynamics previously mentioned. The doubt was solved in 1961 by Landauer [101],
via the development of his principle, which states that any logically irreversible ma-
nipulation of information must be accompanied by a corresponding entropy increase
of the information-processing apparatus, or of its environment. In order to erase a
bit, the corresponding entropy increase is, for instance,

ST = kB log 2 . (5.8)

Year after year, the Landauer principle has taken on a more and more important role,
both from a practical viewpoint, since it establishes an inherent heat production by
real machines for the elaboration of information, and from a theoretic viewpoint,
since it promotes the information theory, considered for decades a mathematical the-
ory, to the status of physical theory.

5.2.1 The Maxwell dæmon stares at the box
It was only thanks to the Landauer principle that the link between thermodynamics
and information theory was definitely established, and the Maxwell dæmon paradox,
which has provoked debate and theoretical work extending to the present day, was
finally solved. The analysis of this issue is so general, that we will refer to it for the
BH information paradox, as we will report in Sec. 5.4. Let us now revise the paradox
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Figure 5.1: Graphical representation of the Szilard machine, with the Maxwell dæ-
mon staring at the box.

formulation according to the Szilard machine model as presented in [102], which is
quite different from the original one, proposed by Maxwell in 1872.

Suppose to have a box with a unique molecule of gas inside it - Fig. 5.1 a).
Assume the existence of a dæmon able to divide through a moving wall the box in two
sides, A and B, and to recognize where the molecule is, if in A or in B. Once realized
the particle position, the dæmon can hang a weight to the wall - Fig. 5.1 b), and,
putting the box in contact with a heat source, he can make the gas expand through an
isothermal process. If the gas is perfect, this process produces work, according to

W = kBT log
Vinitial

Vfinal

= kBT log
V

V/2
= kBT log 2 , (5.9)

so that it is possible to lift the weight - Fig. 5.1 c). When the expansion is finished,
the gas comes back at its initial condition and a new cycle can be started, shaping
therefore a process which can convert heat into work completely. This apparently
violates the second principle of thermodynamics, stating that it is impossible to devise
a cyclically operating machine, the sole effect of which is to produce work absorbing
heat from a single thermal reservoir. Looking for the possible glitch from which the
paradox stems, one realizes that the point here is not having included the dæmon in
the picture. In fact, in order to really close the cycle after the gas expansion, going
back at the initial condition of the system, the memory of the dæmon needs to be
erased - Fig. 5.1 d) - as it was empty when the cycle started - Fig. 5.1 a). This
operation is an irreversible one and it entails a heat dissipation of

QL = STT = kBT log 2 , (5.10)

as the Landauer principle (5.8) thought us. The work produced through the cycle is
hence exactly the same that the system has to absorb in the form of heat to erase the
dæmon memory, i.e.,

�W = W �QL = 0 . (5.11)

Therefore, through the erasure, not only the cycle is an actual thermodynamic trans-
formation between two identical states, but also it is not possible to create a thermal
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machine capable of generating work via a single thermal reservoir, since the work
produced by the process (5.11) is null. In other words, considering the real total sys-
tem, which inherently includes the dæmon as an essential part, there is no paradox at
all and, hence, the problem is solved.

5.2.2 Quantum Information Theory
Moving to a quantum world, some concepts of the classical picture introduced in
the previous section need to be extended in order to define the Quantum Information
Theory, that in the last decade entered the scene as one of the leading branches of
modern physics, from a theoretical and a practical point of view both [49, 103]. A
quantum source ⌃ is a system defined by the statistical ensemble {|'yi , p(y)} able
to prepare a physical system, with Hilbert space H, in the states |'yi 2 H, each with
probability p(y). To deal with composite quantum systems, it is useful to introduce
the density operator formalism, defining an operator which represents the expectation
value of the prepared states |'yi, i.e.,

%⌃ = E{|'yi h'y|} =
X

y

p(y) |'yi h'y| , (5.12)

where E is the expectation value associated to the statistical ensemble. Notice that
the states |'yi are not necessarily orthogonal and, therefore, not necessarily distin-
guishable. Nevertheless, since %⌃ is hermitian by construction, there always exist a
diagonal form in which we can rewrite it, yielding

%⌃ =
X

x2X

p(x) |xi hx| , (5.13)

where the states {|xi}x2X form an orthonormal basis of H. Thanks to this transfor-
mation, the states of the ensemble {|xi , p(x)} are distinguishable, so that we can
restore the Shannon picture of the information, associating to each state a different
symbol of a classical alphabet. In fact, given the density operator %⌃, its von Neu-
mann entropy can be defined,

S ⌘ �Tr (%⌃ log %⌃) , (5.14)

and using the diagonal form (5.13), we get

S = �Tr (%⌃ log %⌃) = �
X

x2X

p(x) log p(x) , (5.15)

so that the von Neumann entropy associated to the ensemble of quantum states
{|'yi , p(y)} is equal to the Shannon entropy associated to the ensemble of classical
values {x, p(x)}. As the latter, also the first one is a semipositive defined function
and it takes its values in the range

0  S  logN , (5.16)
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where the two extreme cases correspond respectively to a pure state | i 2 H that has
null S, and to the so called maximum mixed state, i.e., a state of the form (5.13) with
all the p(x) = 1/N being N the dimension of H. Typical schemes in Information
Theory regard composite systems made of independent subsystems. If this is the
case, the density operator can be factorized in a tensor product of the density opera-
tors acting on the respective Hilbert subspaces, and, thus, the von Neumann entropy
can be written as the sum of the entropies of the different subsystems. This means
that, if we have a system S = +Ai, with i = 1, . . . , N labelling the i-th subsystem,
we get

S
�
+N

i=1
Ai

�
=

NX

i=1

S(Ai) , (5.17)

which is the additivity property of the von Neumann entropy, and it will be funda-
mental for our exposition of the BH information paradox.

5.3 Hawking radiation

The Hawking radiation is an outgoing flux of particles emitted by a BH as a con-
sequence of particles creation connected to the formation of the BH itself. Such
production is probably the most famous among the effects arising by the application
of quantum field theory on curved spacetimes. In GR, the gravitational field is in-
deed associated to the curvature of the spacetime metric, so that it is not possible to
describe the spacetime like flat in the presence of a BH. Performing this analysis,
one learns that a time-dependent gravitational field creates particles and such pro-
duction can not be ignored in the case of a BH, because of the rapid time-variation
of the metric describing the spacetime near the event horizon. Just to give a naive
idea of the phenomenon, we here present a simpler version in terms of ordinary QM,
referring the interested reader to the several works presented in the Literature which
properly describe the Hawking radiation [104, 105, 106, 107]. Consider a one dimen-
sion harmonic oscillator with frequency !(t) and mass m. The system Hamiltonian
is

Ĥ = ~!(t)
✓
n̂+

1

2

◆
, (5.18)

and if the system is described by the eigenstate | i such that n̂ | i = n | i, the
expression (5.18) can be seen whether as the energy of a single quantum harmonic
oscillator in the n-th energy level, or as due to the presence of n particles in the unique
excited state available, i.e., the state at energy ~!(t). In the latter interpretation
it is the number operator n̂ itself which tells us how many particles are detectable
and, therefore, existent. Notice that this procedure of using a physical observable to
evaluate the existence of a particle seems here to be quite logical: nevertheless, it is
not a smooth point and we will go back to it in Sec. 5.4 about the discussion on the
information paradox. Taking the !(t) time-dependence as

!(t) = !#(�t) + !̃#(t) , (5.19)
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Figure 5.2: Energy spectrum before (t < 0) and after (t > 0) the variation of the
potential: we chose !̃ = 1

5
! in the figure, so that to have an exact correspondence

between the ground state for t < 0 and the second excited level for t > 0. In this
case we will say that the time dependence of the potential creates 2 particles.

with #(t) the Heaviside function, we get a potential that suddenly changes from
V (x) = 1

2
m!2x2 to Ṽ (x) = 1

2
m!̃2x2 at t = 0. Since its physical observables can

not vary in a discontinuous way, the physical system keeps the energy at the value
it had at t < 0 for longer time than the time needed to the potential to vary (that is
equal to zero in our case, since the potential variation is assumed istantaneous). This
very quick variation represents the opposite case to what generally follows from the
adiabatic theorem, which describes the evolution of states when the potential changes
slowly, and it is so drastic that the system is not able to evolve according to it. Thus,
if the system at t < 0 has an energy corresponding after the variation to one of the
new stationary energy levels, it will set on that level at t > 0. Assume that the energy
of the system is due to the presence of n particles; then, the measure of n̂ will give a
result that changes istantaneously at t = 0, as well as the number of current particles.
For example, if the frequency of the harmonic oscillator istantaneously decreases, as
in Fig. 5.2, after the potential variation the number of particles increases with respect
to the one at t < 0: we will say that these new extra particles have been therefore
created by the time dependence of the potential.

Through a similar mechanism, couples of particles are continuously created on
the BH event horizon, i.e., at distance r = rS from the singularity lying at r = 0 and
ultimately generating the BH itself. Then, because of the continuous “stretching” of
the spacetime that goes on in the horizon vicinity, the particles can be pulled apart
from each other. In fact, due to the peculiar BH geometry, if a particle is created
at distance r = rS , the particle stays on the horizon, but, if the particle is created
slightly inside/outside the horizon, it falls/escapes inexorably towards smaller/bigger
r; lastly, if the two particles of the couple are created by the same side of the horizon
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Figure 5.3: Graphical sketch of the particles production near the horizon. Couples
created on the same side of the horizon quickly annihilate with each other; couples
created with a particle per side inherently separate and the escaping one - on the right
side of r = rS in the figure - forms the Hawking radiation.

they immediately annihilate with each other. With the locution Hawking radiation
we name the set of particles which fly away from the event horizon, once separated
from their partner that is instead created a little inside of r = rS - Fig.5.3.

5.3.1 Hawking radiation’s entropy
Every couple of particles is created by the metric variation from the vacuum. This is
the reason why its state is usually represented by some superposition of eigenstates
of a binary physical observable that assumes opposite values in the particle and an-
tiparticle states of the couple, so that it sums up to zero when the couple is considered
as a whole. Using the computational basis {|0i , |1i}, the couple state | i

pair
can be

for example written as

| i
pair

=
1p
2
(|0i

b
|0i

a
+ |1i

b
|1i

a
) , (5.20)

where the subscripts a and b refer to the outside (r > rS) and the inside (0 < r < rS)
BH regions respectively. Being the two regions causally disconnected, the Hilbert
space of the couple is Hpair = Hb ⌦ Ha, and operators acting locally on Hb and
Ha commute with each other. This state is usually introduced thinking about two
electrons at different locations, with |0i and |1i representing the eigenvalues ±1/2
of the spin z-component operator; we follow such assumption, but underlining that,
as we stated, we can actually consider any other binary observable and the created
particles are not necessary electrons [108]. Notice that Eq. (5.20) represents one of
the four Bell’s states, i.e., one of the maximum entangled states available for a qubit,
and it makes the entangled nature of the couple evident. As time goes by, new couples
are produced until there will be N couples each in the state (5.20), composed by one
particle detactable as Hawking radiation and the other one confined inside the BH
region. During the evaporation the spacetime around the horizon keeps to stretch, so
that every couple, being created very far away from the rest, is slightly influenced
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by the others, and the state describing all the particles can be therefore written as the
tensor product of N pair states, each identified by the apex i of the i-th couple, i.e.,

| i =
NO

i=1

1p
2
(|0i

bi
|0i

ai
+ |1i

bi
|1i

ai
) . (5.21)

The total state of the BH contains then the matter whose collapse originally formed
it. Since the event horizon is well separated from the singularity at r = 0, we can
suppose with good approximation that the matter interact very weakly with the cou-
ples generated on it. If we then presume that the matter has never interacted with the
region complementary to the BH, and that, thus, the whole state of the BH is isolated,
we can consider it described by a pure state |T i, with density operator

% = |T i hT | ⇠ |Mi hM |⌦ | i h | , (5.22)

where |Mi is the state of the matter collapsed in the singularity and | i the state
(5.21) of the N couples. Being interested in the Hawking radiation, we need to get
its reduced density operator %rad performing two partial traces, both on the Hilbert
space of the matter, HM , and on the Hilbert space associated to all the particles
inside the BH, i.e., HB ⌘

N
i
Hbi . The first operation goes straightforward and,

from Eq. (5.21), it is

% = TrM(%) = TrM (|Mi hM |) | i h | = (5.23)

=
1

2N

NO

i=1

(|00i
i
+ |11i

i
) (h00|

i
+ h11|

i
) ,

where we introduced the compact notation |�↵i
i
⌘ |�i

bi
|↵i

ai
. The state of the

particles flying away from the event horizon and constituting the Hawking radiation,
will then be given by

%rad = TrB (% ) , (5.24)

so that the Hawking radiation entropy can be finally written applying definition
(5.14), i.e.,

Srad = �Tr (%rad log %rad) . (5.25)

In order to explicitly calculate it, let us focus on the contribution of the first couple
generated. The state (5.22) reads hence % = |Mi hM |⌦ | i

pair
h |, and, through the

traces over HM and HB, we get the density operator of the first flying away particle,
as

%(1)
rad

=
1

2
(|0i

a
h0|+ |1i

a
h1|) = 1

2


1 0
0 1

�
, (5.26)

where in the last step we used the basis {|0i
a
, |1i

a
}, so that from Eq. (5.25) it follows

straightforward

S(1)

rad
= �

✓
1

2
log

1

2
+

1

2
log

1

2

◆
= log 2 . (5.27)
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Since we supposed that each couple is independent from the others, the generaliza-
tion of Eq. (5.27) to the case of an arbitrarily high number of created couples is
directly provided by the additivity property (5.17). When N couples are formed it is
thus

Srad = N log 2 , (5.28)

simply summing every contribution tantamount to %(1)
rad

.
In this result, it is already contained the essence itself of the BH information

paradox. A very wide number of particles is generated by the Hawking mechanism,
and half of it is emitted in the region external to the BH in the form of an observable
radiation. Until the BH exists, Eq. (5.28) can be understood as the entanglement
entropy of the radiation particles with their inside partners. Nevertheless, Hawking’s
famous result proposes a dramatic modification in our expectation for the ultimate
fate of a BH [109]: the evaporation suggests indeed that the BH, loosing energy and
correspondingly decreasing in mass, can disappear in a finite amount of time. There
are hence two possibilities:

1) The BH evaporates away completely and the Hawking radiation ends up in a
mixed state %rad;

2) The evolution stops when the BH mass reaches a certain value mrem, that rep-
resents the mass of a small set of stable objects, the remnants, arbitrarily highly
entangled with far away systems.

The first possibility entails a loss of unitarity and a consequent violation of the time
evolution postulate of QM, since only a non-unitary dynamics allows an initial pure
state to evolve to a final mixed state. On the contrary, the second one preserves QM
postulates, but it opens the doors to a new unknown physics, that should be rather
unusual. In fact, in order to solve the paradox and encode all the information about
the initial state, the remnants should allow a very large number of possible states, i.e.,
n � N , so that they could have an entanglement entropy (5.28) with the Hawking
radiation. Estimating mrem from considerations about the scales at which the effects
of quantum gravity are expected to become relevant, one concludes that a small ob-
ject with mass of order of the Plank’s mass - ⇡ 2 ⇥ 10�5g - should have the same
number of possible internal states of the original mass M collapsed to form the BH,
that of course can be as large as one can imagine. This is not at all the expected
behaviour for quantum systems and such unusual thermodynamical properties that
these remnants should possess, make usually people consider this solution not feasi-
ble [110]. Therefore, we focus on the first case, excluding the possibility of remnants
hereafter. However, we underline that Hawking’s argument does not say which of the
two possibilities 1) or 2) can occur, since the so called niceness conditions, on which
he based his calculations, are violated near the endpoint of the BH evolution.

Before presenting our proposal, let us notice that the result (5.28), which includes
indeed the core of the paradox, is derived at the leading order, since we have con-
sidered the pairs to be independent from each other and not entangled neither with
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respect to themselves or to the original mass M . Many people have therefore tried to
introduce corrections to these assumptions, consequently adjusting the state (5.22).
Discussing this point goes beyond the scope of this thesis, but it is possible to prove
that Hawking’s problem is not solved by small corrections. The paradox will persist
unless an order unity modification is made to the leading order, but this is forbidden
by the whole scheme of GR itself. Moreover, although it is true that some delicate as-
pects of the classical theory, e.g., giving an accurate description of BH singularities,
are expected to be solved by quantum gravity, the dispute about the fate of informa-
tion during the Hawking evaporation of a BH seems to endure in that framework as
well [108].

5.4 The Maxwell dæmon stares at the evaporation

In this section we build a model to descibe the evaporation of a BH from a informatic
point of view, inspired by the solution of the Maxwell dæmon paradox provided by
the Szilard machine.

Imagine the Schwarzschild spacetime as a box whose left wall identifies r = 0,
while the event horizon is represented by a moving wall, initially placed at distance
r = r(0)

S
from the singularity - Fig. 5.4 a). Suppose then the existence of a dæmon

able to look inside the right part of the box. On the contrary, the left part of the
box is not accesible, being causally disconnected by the right side of the box, which
represents indeed the region of the spacetime external to the BH. The BH evaporation
is due to the particles emission, in this model depicted as the particles addition in the
right part of the box with the resulting pulling back of the moving wall; every time
that a particle is emitted appearing in the right part, the dæmon updates its memory
in order to account for the variation of the particles number. Figs. 5.4 b) and 5.4 c)
correspond to the emission of the first and of the second particle respectively. Be
the mass of the particles m ' M/N : at every emission the event horizon, i.e., the
moving wall, will back up of the quantity

� =
2Gm

c2
, (5.29)

and after N emissions we will have

r(N)

S
=

2GM

c2
�N� ' 0 , (5.30)

that identifies the moment at which the BH fades out completely. At this point we will
say that the BH is evaporated away, since admitting that it can disappear completely
implies that the partition of the spacetime, provided by the event horizon, vanishes
as well. In our model this means that the moving wall reaches the left one, so that it
is not possible to distinguish between the left and the right side of the box any longer
- see Fig. 5.4 d) 3.

3We here considered only massive particles; however, even if the particles would be massless,
we could apply the same argument invoking the mass-energy equivalence, at least at this level of the
analysis.
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Figure 5.4: Graphical representation of the Maxwell dæmon staring at the BH evap-
oration.

As seen in Sec. 5.3.1, the Hawking radiation, i.e., the N particles in the right
side of the box, end up in a maximally mixed state with entropy Srad = N log 2.
Nevertheless, exactly as in the case of the Maxwell dæmon paradox, we must re-
member to include the entropy contribution given by the information that the dæmon
acquires, while it is observing the radiation and, particle after particle, registering
its existence. The only way that the dæmon has to realise the actual presence of
a particle is via the measurement of a physical observable characterizing the parti-
cle itself, and, therefore, given the state (5.20), it necessary has to resort to the spin
z-component operator - or to the arbitrary binary observable whose eigenstates are
{|0i , |1i} - to get such awareness. Assume now the BH be a classical source of in-
formation emitting a string chosen from an alphabet X = {|0i , |1i} with probability
p(|0i) = p(|1i) = 1/2. From Eq. (5.2), the information acquired by the dæmon
through the observation of the radiation is

irad = N log 2 , (5.31)

and its corresponding Shannon entropy is

H = N

✓
p(|0i) log 1

p(|0i) + p(|1i) log 1

p(|1i)

◆
= N log 2 (5.32)

as follows from Eq. (5.6), where the sum runs indeed on the whole alphabet. Al-
though the radiation evolves from a state with zero entropy to a state with maximum
entropy, from Eq. (5.32) the entropic balance results null for the whole process, both
during the evaporation and at its end, as soon as we include the dæmon in the de-
scription of the total system. In fact, naming S the total entropy, we get

S = Srad �H = 0 , (5.33)

which implies that the total system, compound of both the radiation and the dæmon,
remains in a state with S = 0, i.e., in a pure state, during the whole evolution, so that
the paradox disappears.
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5.5 Conclusions

In this last chapter we reported our concluding remarks and sketched some ideas for
possible future perspectives. Having (quantum) gravity in mind, we then focused on
the BH information paradox, resulting from the combination of QM and GR.

Exploiting the tools provided by the Information Theory, both classical and quan-
tum, we presented our proposal inspired by the Maxwell dæmon paradox in the Szi-
lard machine formulation. The evaporation model developed in Sec. 5.4 shows an
entropic balance always equal to zero thanks to the dæmon presence, as expressed
by Eq. (5.33). This result made us think about the importance of the observer in
the Hawking radiation process. As a matter of fact, in our model the measurement
of an observable is not only the mechanism through which we acquire information
about a certain property of the system, but it is also the unique way that we have to
empirically confirm the possible existence of the system itself.

The key-role played by the observer, that taking a set of measurements becomes
aware of the existence of the radiation and, thus, of the actual evaporation of the BH,
led us to ascribe the non-unitarity of the information paradox to the measurement
process effectuated by the dæmon. Even though a non-unitary evolution represent a
problem in the absence of an observer, these kinds of processes not only are envis-
aged by QM, but also establish the foundation of such theory, being intrinsic to the
measurement postulate itself. It is not a mistery that one of the deepest difference
between the classical and the quantum description of the world lays exactly in the
measurement representation: if in the first case it is possible to conceive an ideal ob-
server who acquires information about a physical system without modifying it, in the
latter case such option is not even contemplable and every time that we want to look
at a physical system to extract information from it, we have to consider the neces-
sary interaction required by the theory itself between the system and some measuring
apparatus. Therefore, the total isolated system for which we must expect a unitary
evolution that starting from a pure state ends in a pure state, is the one that includes
the observer as an essential subsystem of it. In other words, a correct analysis of
the information paradox demands the introduction of an active observer and a formal
description of the measurement process. We underline that, although the traditional
approach to the problem does not consider the instrumental character of quantum the-
ory, this aspect arised in recent years as fundamental to realize a complete analysis
of the paradox according to several authors [111, 112, 110].

We conclude with a brief consideration about our description: whereas the formu-
lation of the Maxwell dæmon paradox is independent from the classical or quantum
setting in which it is presented, our proposal is exclusively quantum. We indeed
built it on the importance of the quantum measurement process and on the active role
played in it by the observer, as well as on the quantum formalism itself. Finding a
classical corresponding for our description of the information paradox could be in-
teresting, as it would allow to ponder about the connections between classical and
BH thermodynamics.
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Appendix A

Generalized Coherent States

As the name itself suggests, Generalized Coherent States (GCS) are an extension of
the field coherent states, firstly introduced by Glauber in 1963 to study the electro-
magnetic correlation functions of the harmonic oscillator [113, 114]. Yet, the idea of
what is now called “coherent state” was conceived well before: back in 1926, imme-
diately after the birth of QM, Schrödinger first proposed the concept in a pioneering
paper that was indeed applicated only more than thirty-five years later. Lastly, af-
ter additional ten years, the complete construction of the GCS of Lie groups was
achieved in two works, independently developed by Gilmore [68] and Perelomov
[11], connecting the CS with the dynamical group for each physical problem one can
consider, so that they no longer needed to be restricted to the harmonic oscillator. The
construction based on Lie groups makes one important property arise: all GCS are
inherently in one-to-one correspondence with the coset-space, that can be defined by
the group itself. Since coset spaces are known to have geometrical properties, GCS
must also be naturally endowed with geometry.

A.1 From algebra to geometry, and back

From the above considerations already, one can imagine why GCS play such a spe-
cial role when classical limits are concerned. As a matter of fact, we need a bridge
from the algebraic world of quantum mechanichs to the geometrical one of classi-
cal physics, so that GCS, being provided by construction with both algebraic and
geometrical tools, appear to be the right candidates. Quoting from J. R. Klauder,
“Coherent states are the natural language of quantum theory”. In particular, as the
reality is inherently quantum, we want to let the C theory emerge from the Q theory,
and this means that we have to start from the algebra.

An algebra without a qualifier is just a vector space. In physics the relevant
algebras are the Lie algebras, to which we will refer here and to which we referred
through all this thesis. A Lie algebra is a vector space g over a field F with a binary
operation [·, ·] : g⇥ g ! g, named Lie bracket, satisfying the following axioms:

• Bilinearity,
[aX + bY, Z] = a[X,Z] + b[Y, Z] , [Z, aX + bY ] = a[Z,X] + b[Z, Y ]
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for all scalars a, b 2 F and all X, Y, Z elements of g;

• Alternativity,
[X,X] = 0 8X 2 g;

• Anticommutativity,
[X, Y ] = �[X, Y ] 8X, Y 2 g;

• Jacobi identity,
[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 8X, Y, Z 2 g.

Given a certain Lie algebra, physicists always work with its representations, that are
a way of writing the Lie algebras as sets of matrices (or endomorphisms of a vector
space) in such a way that the Lie bracket be given by the commutator. In other words,
one looks for a vector space V together with a collection of operators on V satisfying
some fixed set of commutation relations, as for instance in the case of the algebra
su(2) characterizing the angular momentum operators. Let gl(V ) denote the space
of endomorphisms of V , i.e., the space of all linear maps of V to itself. Be gl(V ) a
Lie algebra with Lie bracket defined by the commutator [X, Y ] = XY � Y X . Then
a representation of g on V is a Lie algebra homomorphism % : g ! gl(V ), that is
% assigns to each X in g an operator %(X) on V , with preservation of linearity and
bracket. Explicitly, this means that % must be a linear map and must satisfy

%([X, Y ]) = %(X)%(Y )� %(Y )%(X) 8X, Y 2 g . (A.1)

The most basic example, although very important, of a Lie algebra representation is
the adjoint representation, denoted by the symbol ad, of a Lie algebra g on itself, i.e.,
such that the vector space on which g operates is g itself:

ad : g ! gl(g) , X ! adX , adX(Y ) = [X, Y ] . (A.2)

There is a very common use of g as if it were one g its representation, so that we
say that a representative Ô of g belongs to the algebra g itself. Associated to any Lie
algebra there is then a Lie group, that is exactly what we need to go from algebra to
geometry, and, thus, from Q to C. A set G with an operation “·”, named multiplica-
tion, combining two elements a and b of the set, is a group (G, ·), hereafter indicated
as G, if the following axioms are satisfied:

• Closure, 8 a, b 2 G, a · b is also in G;

• Associativity, 8 a, b, c 2 G, (a · b) · c = a · (b · c);

• Identity element, 8a 2 G 9! e 2 G s.t. a · e = e · a = a;

• Inverse element, 8a 2 G 9! b 2 G, usually denoted as a�1, s.t. a · b = b · a = e.

A Lie group is a group in which the operations of multiplication and inversion are
smooth maps, i.e., they have the derivatives of all orders well defined in their whole
domain. Lie groups are said to be “groups which are also differentiable manifolds”.



A.1 From algebra to geometry, and back 101

A differentiable manifold M is a topological manifold1 equipped with an equiva-
lence class of atlases whose transition maps are all differentiable. The way to move
from the Lie group G to the manifold M is provided by the action. A group action
'G of G on M is a function ' : G ⇥M ! M, usually denoted (g, x) ! 'G(x) that
satisfies the following axioms:

• Compatibility, 8g, k 2 G and x 2 M it is 'g · 'k(x) = 'gk(x)

• Identity, 8x 2 M it is 'e(x) = x, where e denotes the identity element of the
group G.

The group G is said to act (left) on M, and from the two axioms above it follows
that for every g 2 G, the function which maps x 2 M to 'g(x) is a bijective map
from M in M, with its inverse given by the function which maps x into 'g�1(x).
In other words, the action of a group G on M is a group homomorphism from G to
the group of all the bijections from M to M itself. Moreover it is possible to prove
that smooth, free and proper group actions always lead to smooth manifolds as orbit
spaces. The Quotient Manifold Theorem states that

Theorem (Quotient Manifold Theorem). If K is a Lie group acting smoothly, freely
and properly on a smooth manifold M, then the topological quotient space M/K
is a topological manifold of dimension equal to dimM � dimK and has a unique
smooth structure with the property that the projection ⇡ : M ! M/K is a covering
map.

This theorem guarantees that the quotient space of the Lie group, from which
the generalized construction of GCS starts, is a topological manifold providing us
with the orbit space that can be ultimately recognized as the classical phase space
of a classical theory. Thus, thanks to this result, we can identify the one-to-one
correspondence typical of GCS between states and points on the manifold, provided
by the quotient space. It is indeed such property that award to GCS a very special role
in the classical limit of quantum theories, since it contains the connection between
algebra and geometry we are looking for.

As a matter of fact, through the Lie group-Lie algebra correspondence, we can
study geometric objects, i.e., Lie groups, in terms of linear ones, i.e., Lie algebras,
and vice-versa. The typical map that one defines from the Lie algebra g of a Lie
group G to the group, is the exponential map exp : g ! G. Given A 2 g and a scalar
a 2 F, we have

exp(aA) ⇠ I+ aA+ ... , (A.3)

where on the left side the exponentiation of A is an element of G, while on the right
side we are back to linear elements of g. The expression above can be understood
as a description of the group starting by an open neighbourhood of the identity. In
fact, the number of parameters that we need to describe the open neighbourhood are
the same needed for describing the whole group itself, and, being all the elements of

1A topological space is a set of points, each with its neighbourhood, with axioms relating points
and neighbourhoods. A manifold is a topological space locally homeomorphic to a Euclidean space.
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the group equivalent from a geometric point of view, we can start from the identity.
To move instead from the group to the Lie algebra, we need the so called Baker-
Campbell-Hausdorff (BCH) formula, which is the solution to the equation

Z = log
�
eX · eY

�
, (A.4)

where X, Y are elements of g and · denotes the multiplication of G. This formula
expresses the logarithm of the product of two Lie group elements as an infinite sum
of elements of g. Notice that, since the infinite series may or may not converge, Z is
not defined as an actual element of g. Whenever the solution of this form is defined,
the multiplication in the group can be expressed entirely in Lie algebraic terms. It
is possible to express the BCH formula as a combinatorial formula, where the first
terms are well known:

Z(X, Y ) = X+Y+
1

2
[X, Y ]+

1

12
([X, [X, Y ]] + [Y, [Y,X]])� 1

24
[Y, [X, [X, Y ]]]+· · · ,

(A.5)
with all higher-order terms involving [X, Y ] and commutators nesting thereof, thus in
the Lie algebra g. Let us notice that if the hamiltonian of a physical system belongs to

Figure A.1: Graphical representation of the relations between the quantum algebraic
picture and the classical geometrical one.

a Lie algebra. i.e., if Ĥ 2 g, as indeed it is in all the cases of physical interest, then the
corresponding propagator belongs to the associated Lie group, i.e., exp(�iĤt) 2 G.
In other words, the dynamical group, that is the group of all possible propagators
describing the dynamics of a physical system, is a Lie group. Summarizing, the
scheme for moving from the quantum algebraic world to the classical geometric one,
must involve the connections depicted in Fig. A.1.

After the framework is set, we are ready to introduce the group construction of
the so called Generalized Coherent States (GCS), i.e., the CS for any physical sys-
tem. Time by time, we must find the specific CS that properly suit the system of our
interest, making the generalization of the concept of CS to different systems a nec-
essary prerequisite for our analysis. As mentioned at the beginning of the Appendix,
Gilmore [68] and Perelomov [11] independently developed the general recipe for
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their construction. Here we will mainly adopt Gilmore’s procedure, following the
review made by Zhang, Feng and Gilmore himself [10]. We will start explicitly con-
sidering two paradigmatic cases: the case of a bosonic system, for which the field
coherent states are defined, and the case of a magnetic system, for which the spin
coherent states are set.

A.2 Field Coherent States

According to Glauber [115], field coherent states can be defined in three equivalent
ways: the best known is that the set {|↵i} of CS is the set of eigenstates of the an-
nihilation operator â describing a quantum mechanical oscillator, i.e., â |↵i = ↵ |↵i,
where being â not Hermitian ↵ is a complex number. Another definition is that CS
are the quantum states for which holds the equality in the minimum-uncertainty prin-
ciple, i.e., s.t. �q �p = }

2
, where the coordinate and momentum operators (q̂, p̂) are

q̂ =
1p
2
(â + â†) and p̂ = 1

i
p
2
(â � â†). This second definition is by no means

unique, as the minimum-uncertainty relation does not provide a unique solution for
(�q,�p). Nevertheless the definition paving the way to the generalization of CS to
arbitrary dynamical systems, is that the states |↵i are the states obtained by applying
the displacement operator D̂(↵) to the Fock vacuum |0i:

|↵i ⌘ D̂(↵) |0i , D̂(↵) ⌘ e↵â
†
�↵

⇤
â . (A.6)

The idea underlying the extension of the concept of CS, yielding their construction
for whatever quantum dynamical system, consists in resorting to a group-theoretic
framework, where the expression (A.6) enters as the last defining step of a self-
consistent procedure (or “algorithm” as dubbed by Gilmore himself). Such procedure
only needs the specification of a dynamical system, in the sense that a Hamiltonian
acting on some Hilbert space is given. Glauber’s and Sudarshan’s CS are just a
particular case of Gilmore’s and Perelomov’s construction, based on the Lie algebra
spanned by the operators {â, â†, n̂ ⌘ â†â, Î}, and denoted as h4. Hamiltonians de-
scribing bosonic systems are usually linear combinations of n̂, â† and â: for instance,
in the case of a single mode field interacting with some external time dependent
source ⇣(t) it is

Ĥ = !n̂+ ⇣(t)â† + ⇣⇤(t)â . (A.7)

The corresponding Lie Group is the Heisenberg-Weyl group H4, induced by the ex-
ponentiation of all possible linear combinations of the h4 generators. This implies
that H4 is actually induced by the exponentiation of all possible system Hamilto-
nians, and, hence, that is the group of all possible propagators, generally dubbed
dynamical group. In order to proceed towards the definition of GCS via the group-
theoretic algorithm, we need to set a last ingredient into place, the reference state
|Ri, that can be choosen as any state of the Hilbert space considered. In the case of
the harmonic oscillator, a common, although not mandatory, choice is that of taking
|Ri as the ground state of the number operator n̂, i.e., |Ri ⌘ |0i s.t. n̂ |0i = 0. We
then get the field CS in three steps:
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a) Maximum stability subgroup. This is the subgroup of H4 which leaves |Ri
unchanged up to a phase factor, i.e., the subgroup U(1)⌦ U(1) whose algebra
is spanned by {n̂, Î}, and that consists of all operators of the form

ĥ = ei(�n̂+⌘Î) . (A.8)

b) Coset space. The coset H4/U(1) ⌦ U(1) is the set of elements D providing
a unique decomposition of any element g 2 H4 in the form g = hD, with
h 2 U(1)⌦ U(1). Its generic element can be represented by

D̂(↵) = exp(↵â† � ↵⇤â) , (A.9)

with ↵ 2 C.

c) Coherent states. Acting on |Ri with coset elements, we get the H4 CS, labelled
by the complex parameter ↵, yielding

|↵i ⌘ D̂(↵) |0i = e(↵â
†
�↵

⇤
â) |0i , (A.10)

where we recognize Eq. (A.6) and D̂(↵) as the displacement operator.

In the case of h4 the BCH formula (A.5) simplifies a lot, and decoupling the displace-
ment operator we get

|↵i = e(↵â
†
�↵

⇤
â) |0i = e�

|↵|2
2 e↵â

† |0i , (A.11)

as the field CS are usually written. GCS inherently provide us with a geometric
structure, that in this case is got by the homomorphism between the coset space
H4/U(1) ⌦ U(1) and the complex plane C. This implies that there is a one-to-
one correspondence between the CS |↵i and points ↵ 2 C. The field CS form an
overcomplete set, since they provide a resolution of the identity being not orthogonal
even if normalized. The overlap between two field CS is

h↵|↵0i = exp

✓
↵⇤↵0 � 1

2
|↵|2 � 1

2
|↵0|2

◆
, (A.12)

from which h↵|↵i = 1, and a common useful resolution can be written as
Z

H4/U(1)⌦U(1)

d↵d↵⇤

⇡~ |↵i h↵| = Î . (A.13)

Lastly, sometimes it can be useful expanding field CS in terms of the Fock states |ni,
yielding

|↵i =
1X

n=0

hn|↵i |ni , (A.14)

where the overlap between a generic Fock state and |↵i is given by

hn|↵i = e�
1
2 |↵|

2 ↵n

p
n!

. (A.15)
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A.3 Spin Coherent States

The spin coherent states, often called also atomic coherent states, are the CS defined
for a magnetic system, i.e., when the physical system under analysis is described by
single-spin operators. Be H the Hilbert space of the system and Ĥ its Hamiltonian,
constituted by a linear combinations of spin angular momentum operators {Ŝ± =
Ŝx ± iŜy, Ŝz}, which span the su(2) algebra, obeying the commutation relations

[Ŝ+, Ŝ�] = 2Ŝz , [Ŝz, Ŝ±] = ±Ŝ± . (A.16)

The dynamical group is thus SU(2) and the Hilbert space has dimension dimH =
2S + 1, with S the spin modulus. A common, although not mandatory, choice is
that of taking the reference state |Ri as one of the two extremal states of the Ŝz-
eigenvectors, i.e., |Ri ⌘ |0i and |Ri ⌘ |2Si such that Ŝz |0i = �S |0i and Ŝz |0i =
S |2Si. We here choose the lowest one, setting |Ri = |0i . Again, we then can get
the spin CS in three steps:

a) Maximum stability subgroup. The subgroup of SU(2) which leaves |Ri un-
changed up to a phase factor, is the subgroup U(1) whose elements are gener-
ated by Ŝz, and that consists of all operators of the form

ĥ = ei�Ŝ
z
, (A.17)

i.e., the rotations around the direction identified by z.

b) Coset space. The coset SU(2)/U(1) is the set of elements D such that g 2
SU(2) can be uniquely decomposed in the form g = hD, with h 2 U(1). Its
generic element can be represented by

D̂(⌦(⇣)) = exp(⇣Ŝ� � ⇣⇤Ŝ+) , (A.18)

with ⇣ a complex parameter.

c) Coherent states. Acting on |Ri with coset elements, we get the SU(2) CS,
labelled by the complex parameter ⌦, yielding

|⌦i ⌘ D̂(⌦(⇣)) |�Si = e(⇣Ŝ
�
�⇣

⇤
Ŝ
+
) |�Si , (A.19)

where D̂(⌦(⇣)) is the displacement operator.

The geometric structure is provided by the homomorphism of the coset space SU(2)/U(1)
with the two dimensional sphere S2, so that there exists a one-to-one correspondence
between the spin CS |⌦i and points ⌦ 2 S2. We can then parametrize S2 in spheri-
cal coordinates, setting ⇣ = #

2
ei', with # 2 [0, ⇡],' 2 [0, 2⇡). The resolution of the

identity can then be written as

2S + 1

4⇡

Z

SU(2)/U(1)

d⌦ |⌦i h⌦| = Î , (A.20)
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where d⌦ = sin#d#d' is the solid-angle volume element at (#,') on the sphere S2.
The spin CS are not orthogonal, and the overlap reads

h⌦0|⌦i =

cos

#

2
cos

#0

2
+ sin

#

2
sin

#0

2
ei('�'

0
)

�2S
. (A.21)

Expanding in terms of the Ŝz-eigenvectors

|mi : Ŝz |mi = (�S +m) |mi withm = 0, ... , 2S , (A.22)

often named Dicke states, we get

|⌦i =
2SX

m=0

hm|⌦i |mi , (A.23)

where the overlap between a generic Ŝz-eigenvector and |⌦i as function of (#,') is
given by

hm|⌦i =
✓
2S

m

◆ 1
2
✓
cos

#

2

◆2S�m✓
sin

#

2

◆m

e�i'm . (A.24)

A.4 The general recipe

Once the group-theoretic arguments above are generalized to an arbitrary dynamical
group G induced by the generators entering the system Hamiltonian (or, which is the
same, its algebra g), one is naturally led to the notion of generalized coherent states.
We emphasize that in Gilmore’s construction G not needs to be a Lie-group. Never-
theless, since in practice G is most often a Lie group, we will adopt such restriction
in the following. Considering an arbitrary quantum system, its Hamiltonian Ĥ can
be generally written in the abstract form

Ĥ = Ĥ({X̂i}), X̂i 2 g , (A.25)

where, in practical applications, g is a closed Lie algebra so that G is a Lie Group.
The Lie algebra g is characterized by the commutation relations

[X̂i, X̂j] =
X

k

ck
ij
X̂k , {X̂i} 2 g (A.26)

where the coefficient ck
ij

are the structure constants. For a given Hamiltonian the
physical states are described as vectors in a (separable) Hilbert space H carrying
a unitary irreducible representation of the dynamical group G. Lastly, we need to
choose a reference state |Ri 2 H, s.t. hR|Ri = 1. It is important to stress that such
choice is arbitrary, since, although their structure strongly depends on it, GCS posess
the same properties regardless of which state is chosen as |Ri [11]. Provided with
these three inputs (the dynamical group, the Hilbert space and the reference state),
the group-theoretic procedure gives us GCS in three steps:
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1. Maximum stability subgroup: one first finds the maximum stability subgroup
F ⇢ G, that is the set of group elements f̂ which leave the reference state
invariant up to a phase factor, i.e., such that

f̂ |Ri = ei�f |Ri . (A.27)

2. Quotient or coset space: one can then determine the coset space G/F so that
every ĝ 2 G can be written as a unique decomposition of two group elements,
one belonging to F and the other to G/F :

ĝ = ⇤̂f̂ with ĝ 2 G, f̂ 2 F , ⇤̂ 2 G/F . (A.28)

3. Generalized coherent states: GCS are finally obtained applying a generic group
element ĝ to the reference state, yielding

ĝ |Ri = ⇤̂f̂ |Ri = |⇤i ei�f , (A.29)

and
|⇤i ⌘ ⇤̂ |Ri (A.30)

is the general group definition of coherent states.

The definition (A.30) establishes a one-to-one correspondence between CS |⇤i and
elements ⇤̂ of the coset space G/F : this is the reason why GCS preserve by con-
struction all the algebraic and topological properties of the coset G/F . To be pre-
cise, Eq. (A.30) defines the mapping ⇡ : G ! M̃ where M̃ is the fiber bundle the
base of which is M = G/F with fiber F . It is worth to notice that this mapping is
continuous, i.e., for any given ", there exists a "0 such that

| |⇤i � |⇤0i | < "0 (A.31)
if |⇤� ⇤0| < " , (A.32)

where the distances are determined with respect to the intrinsic metrics. The metric
in Eq. (A.31) is thus determined from the Hilbert space inner product, whereas the
one in Eq. (A.32) is determined from the metric in the manifold M, associated to
G/F .

If the Lie algebra g associated to G is semisimple, the generators can be written
in the so called Cartan basis {Ĥi , Ê↵ , Ê�↵}, with commutation relations

[Ĥi, Ĥj] = 0 , [Ĥi, Ê↵] = ↵iÊ↵ ,

[Ê↵, Ê�↵] = ↵iĤi , [Ê↵, Ê�] = c↵�Ê↵+� . (A.33)

Therefore, if the Hamiltonian (A.25) is linear in the generators and g is a semisimple
Lie algebra, we get

Ĥ =
X

i

✏iĤi +
X

↵

⇣
�↵Ê↵ + �⇤

↵
Ê�↵

⌘
, (A.34)
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where the part containing the generators Ĥi is usually associated to the free term,
while the generators Ê↵, Ê�↵ embody the perturbations. From the theory of repre-
sentation, it is possible to choose Ĥi diagonal and Hermitian, i.e., such that Ĥ†

i
= Ĥi,

while the representatives of (Ê↵, Ê�↵) become shift-up and shift-down operators
such that Ê†

↵
= Ê�↵. Every group element ĝ 2 G can be written as the exponential

of an anti-Hermitian complex linear combination of Ĥi and Ê↵. The general expres-
sion of the representation ⇤̂ can then be put in the generalized displacement operator
form

⇤̂ ⌘ D̂(⇤) = exp

⇢ 0X

�

�
⇤�Ê� � ⇤⇤

�
Ê��

��
, (A.35)

with the sum
P

0

�
running over those shift-up operators which do not annihilate the

reference state, and the complex parameters ⇤� coordinates on the differentiable
manifold M. Coherent states can thus be explicity expressed as

|⇤i ⌘ D̂(⇤) |Ri = exp

⇢ 0X

�

�
⇤�Ê� � ⇤⇤

�
Ê��

��
|Ri , (A.36)

where we recognize the generalized expression corresponding to Eqs. (A.10) and
(A.19) in the case of g = h4 and g = su(2) respectively.

A.4.1 General properties
For the sake of simplicity, let us now consider the case of a single couple of shift-
up/shift-down operators, i.e., � = 1 in Eq. (A.36), so that there exists a unique
complex parameter ⇤1, hereafter indicated as ⇤ 2 C. We can use other coordinates
systems such as

8
><

>:

z = ⇤ sin
p
⇤⇤⇤

p
⇤⇤⇤

if M is compact;

z = ⇤ sinh
p
⇤⇤⇤

p
⇤⇤⇤

if M is noncompact,
(A.37)

where the two solutions - a sine function and a sine hyperbolic function - manifest
the compactness and noncompactness of the respective geometry of the coset spaces
G/F for a compact and a noncompact Lie group G respectively. If we instead intro-
duce a complex projective representation of G/F , it is

⌧ = z(1⌥ z⇤z)�1/2 , (A.38)

where the � and + signs correspond to the compact and noncompact cases respec-
tively. Notice that here all the parameters ⇤, z, ⌧ are complex numbers for the sake
of simplicity. We refer the reader to Ref. [10] for the general case. It is then possible
to show that the manifold M is endowed with a natural metric structure, inherited
by the dynamical group G, so that it is possible to define a canonical volume form on
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it, in the sense that such form is invariant under reparametrization. The correspond-
ing volume element, namely the measure, can be written for whatever coordinates
system as [116]

dµ(⇤) = const · detmdzdz⇤ , (A.39)

where m is the metric tensor and the constant follows from the normalization of
CS. Moreover, from the definition (A.36), CS have a natural symplectic structure,
so that M can be considered as a phase space over which Poisson brackets can be
defined; indeed, under general assumptions, M turns out to be the phase space of the
classical system corresponding to the quantum system once a proper classical limit is
taken. All GCS share two important properties, which follow from the irreducibility
of the representation of G on H. First, the CS are complete, since any state can be
obtained by superposing CS. They actually form an overcomplete set, being much
more numerous than the elements of an orthonormal set would be, and thus they are
not orthogonal and do in general overlap. Second, the CS provide a resolution of the
identity, in the form Z

G/F

dµ(⇤̂) |⇤i h⇤| = ÎH , (A.40)

where the group invariant measure dµ(⇤̂) is defined by opportunately choosing the
constant prefactor in Eq. (A.39). Because of the CS overcompleteness, for any oper-
ator B̂ acting on H, it is

TrB̂ =
X

⇠

h⇠| B̂ |⇠i =
X

⇠

Z

M

dµ(⇤)dµ(⇤0)h⇠|⇤0i h⇤0| B̂ |⇤i h⇤|⇠i =

=

Z

M

dµ(⇤)dµ(⇤0)
X

⇠

h⇤|⇠ih⇠|⇤0i h⇤0| B̂ |⇤i =

=

Z

M

dµ(⇤)h⇤|
Z

M

dµ(⇤0) |⇤0i h⇤0| B̂ |⇤i =
Z

M

dµ(⇤) h⇤| B̂ |⇤i , (A.41)

where {|⇠i}H is an orthonormal basis for H. This relation tells us that the CS basis
is sufficiently overcomplete that any operator can be completely represented by its
diagonal matrix elements alone.

Finally, we specify a general feature related to GCS dynamics. A consequence
of their construction algorithm can be resumed by the motto “Once a coherent state,
always a coherent state”. In other words, whatever be the system Hamiltonian, a
coherent state remains a coherent state evolving under the dynamics defined by the
dynamical group. It is indeed because of this property that G is named dynamical
group, and note that, being basically of kinematical origin, it is not supposed to
be a symmetry group. In fact, if the system Hamiltonian is a linear combination of
generators of the Lie algebra g and the initial state | (t0)i is one of the corresponding
GCS, i.e. | (t0)i = |⇤0i, then the time-dependent Schrödinger equation

i~ d

dt
| i = Ĥ | i , (A.42)
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can be exactly solved by

| (t)i = |⇤ti = ⇤̂t |⇤0i ei'(t) , (A.43)

where

'(t) = i

Z
t

t0

h⇤0| ⇤̂†
⌧

✓
i~ @
@⌧

� Ĥ

◆
⇤̂⌧ |⇤0i d⌧ , (A.44)

and

⇤̂t = exp

⇢ 0X

�

⇤�(t)Ê� � ⇤⇤

�
(t)Ê��

�
(A.45)

with ⇤�(t) determined by classical equations of motion, describing orbits on M.
These results establish that in this special case the quantum and the classical dynam-
ics can be described by the same equation, once the suitable set of GCS is provided.
However, when the Hamiltonian is a non-linear combination of generators of the al-
gebra, it is in general difficult to obtain the exact solution of Eq. (A.42), and some
approximate methods must be developed in order to proceed.



Appendix B

Measures

A specific experimental observation, repeated many times on the same physical sys-
tem always assumed to be in the same state %, produces a collection of results {x}⌦,
where ⌦ labels the set to which the results belong. Since each result represents an
observable value, the elements x will be open intervals in the set of the real numbers.
We define the probability of getting such results through the definition of a measure-
ment on ⌦, as follows [71]. Let B be a family of ⌦ subsets satisfying the following
conditions:

• ; ✓ B, with ; the empty-set, and ⌦ ✓ B;

• If x 2 B, then so its complement, ⌦/x 2 B;

• If x1, ... , xn 2 B, then [n

i=1
xi 2 B.

The couple (⌦,B) forms a measurable space that we will name space of the results.
Being L(H) the vector space of the trace class positive operators acting on the Hilbert
space H, we define Positive Operator Valued Measure (POVM) the application

M : B ! L(H) , (B.1)

which connects to every element x an operator M̂(x) 2 L(H) such that

• M̂(x) � 0 8 x 2 B;

• M̂([ixi) =
P

i
M̂(xi) for disjoint elements of B;

• M̂(⌦) = Î.

Moreover, if the following relation holds

M̂(x \ y) = M̂(x)(̂y) 8 x, y 2 B , (B.2)

the measure is said Projector-Valued Measure (PVM), or projective measure. Indeed,
from Eq.(B.2) we get

M̂(x) = M̂(x \ x) = M̂(x)2 8 x 2 B , (B.3)

and thus it is M̂(x) = |xihx|, for all x.
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B.1 Minimal Interpretation

Let us now define the application pM
%

: B ! [0, 1], such that

pM
%
(x) ⌘ Tr

h
M̂(x)%

i
. (B.4)

Through the properties of the measure M , the linearity of the trace and the condition
Tr[%] = 1 holding 8 % 2 H, one can show that pM

%
is a measure on (⌦,B) with values

in [0, 1] for each state %. The minimal interpretation of QM states that

The number pM
%
(x) is the probability that the experimental observation

associated to the measure M give a result in x when the system is in the
state %.

Such interpretation is called minimal to highlight that hereinbefore all the other in-
terpretations of QM contain it. The minimal interpretation includes as a particular
case the Born rule, that is shared by all the interpretations developed so far1.

The notion of observable is introduced in QM to briefly represent all the possible
results of a specific experimental observation on a system, independently of its state.
Thanks to this reason and to the minimal interpretation, an observable can be defined
as, and identified with, a measure M on the space of the results (⌦,B). The observ-
ables whose measure is a PVM, are uniquely associated to Hermitian operators act-
ing on the Hilbert space of the observed system, making the usual formalism of QM
arise. In fact, let us consider a PVM whose space of results (⌦,B) be formed by dis-
crete and countable values {x1, ... xn}. This defines the projectors M̂(xi) = |⇡iih⇡i|,
through which we can build the operator

ÔM =
X

i

!(xi) |⇡iih⇡i| =
X

i

!i |⇡iih⇡i| , (B.6)

where !(x) is an invertible function. Being the results xi 2 R, and given that !(x)
is invertible, the values !i will be real in turn, so that Eq. (B.6) describe an hermitian
operator. On the other hand, each hermitian operator ÔM defines a PVM through its
spectral decomposition. Notice that each operator is uniquely associated to a measure
M , but more hermitian operators can be associated to the same PVM. Moreover,
different observables associated to the same PVM commute, being

M̂(xi)M̂(xj) = M̂(xi \ xj) = M̂(xj \ xi) = M̂(xj)M̂(xi) . (B.7)

Therefore, the terms observable and measure are often used indistinctly when PVM
are considered.

1To find the Born rule, one can simply consider a PVM on a pure state | i, and, calculating the
trace in Eq. (B.4) on a basis of H containing | i, one gets

p
M
| i(x) = Tr

h
M̂(x) | ih |

i
= h |M̂(x)| ih | i = h |xihx| i = |h |xi|2 . (B.5)
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B.2 Measurements

We now describe the measurement process performed on a system � through an
apparatus ⌅, and be the compound system  = � + ⌅ isolated. Suppose that � be
initially in a pure state, so that the measurement be performed on a well defined state.
Being  isolated, this implies that also ⌅ be in a pure state. Before the beginning
of the measurement, i.e., 8 t  0, the total state is therefore | (t  0)i = |�i |⌅i,
that is � and ⌅ are initially not entangled. We then need to assume that the numbers
that will be read on the apparatus at the end of the process, i.e., the actual result
of the measurement, form a measurable space (⌦⌅,B) connected with the space
(⌦,B) associated to the observable M via the correlation function f : ⌦⌅ ! ⌦. The
function f is invertible and it is sometimes dubbed calibration function.

A POVM ⇧⌅ on (⌦⌅,B) will be finally the observable, named pointer observ-
able, that will provide us with the probability pM

|�ih�|
(X). In fact, given the apparatus

⌅, its Hilbert space H⌅, its initial pure state |⌅ih⌅|, the pointer observable ⇧⌅, and
the calibration function f , the minimal interpretation allows us to understand the
measure

p⇧⌅
%⌅(t)

(f�1(x)) , (B.8)

as the probability that a measurement of ⇧⌅ performed when ⌅ is in the state %⌅(t)
give us a result correlated with X . Notice that, even though the state %⌅(t) appearing
in Eq. (B.8) is totally generic, we would like to understand it as the time evolution of
the initial state |⌅ih⌅|, as we have indeed illustrated in Sec. 3.1 of the third chapter.
Suffice here to say that to describe the measurement process we need now to ask that
the time evolution guarantee the existence of a time T such that

pM
|�ih�|

(x) = p⇧⌅
%⌅(T )

(f�1(x)) , (B.9)

for all initial state |�i 2 H� and |⌅i 2 H⌅. This condition, called probability repro-
ducibility condition [71], is at the heart of the measurement process, being the actual
connection through which the information about � is transfered to the apparatus ⌅,
thanks to the calibration function f and to the map Et such that Et[|⌅ih⌅|] = %⌅(t).
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thesis, Università degli Studi di Firenze, 2012.

[15] E. Cattaruzza, E. Gozzi, and C. Pagani. Entanglement, superselection rules
and supersymmetric quantum mechanics. Physics Letters A, 378(34):2501 –
2504, 2014.

[16] M. Schlosshauer. Decoherence and the Quantum-To-Classical Transition. The
Frontiers Collection. Springer, 2007.

[17] A. Rivas and S.F. Huelga. Open Quantum Systems: An Introduction. Springer,
2012.

[18] H. P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford
University Press, 2002.

[19] E. Paladino, L. Faoro, G. Falci, and R. Fazio. Decoherence and 1/f noise in
josephson qubits. Phys. Rev. Lett., 88:228304, 2002.

[20] D. Nuzzi, A. Cuccoli, R. Vaia, and P. Verrucchi. Quantum correlations be-
tween distant qubits conveyed by large-s spin chains. Phys. Rev. B, 96:054449,
2017.

[21] A. Cuccoli, D. Nuzzi, R. Vaia, and P. Verrucchi. Getting through to a qubit by
magnetic solitons. New Journal of Physics, 17(8):083053, 2015.

[22] R. Lo Franco, B. Bellomo, S. Maniscalco, and G. Compagno. Dynamics
of quantum correlations in two-qubit systems within non-markovian environ-
ments. Int. J. Mod. Phys. B, 27:1345053, 2013.

[23] J.-S. Xu, K. Sun, C.-F. Li, X.-Y. Xu, G.-C. Guo, E. Andersson, R. Lo Franco,
and G. Compagno. Experimental recovery of quantum correlations in absence
of system-environment back-action. Nat Commun, 4:2851, 2013.

[24] N. Matsumoto. Classical Pendulum Feels Quantum Back-Action. Springer
Theses. Springer, 2015.

[25] T. J. Kippenberg and K. J. Vahala. Cavity optomechanics: Back-action at the
mesoscale. Science, 321(5893):1172–1176, 2008.

[26] E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, and T. J. Kippenberg.
Quantum-coherent coupling of a mechanical oscillator to an optical cavity
mode. Nature, 482(7383):63–67, 2012.



BIBLIOGRAPHY 117

[27] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk. The role of quan-
tum information in thermodynamics—a topical review. Journal of Physics A:
Mathematical and Theoretical, 49(14):143001, 2016.

[28] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz. Nanoscale
heat engine beyond the carnot limit. Phys. Rev. Lett., 112:030602, 2014.

[29] Luis A. Correa, J. P. Palao, D. Alonso, and G. Adesso. Quantum-enhanced
absorption refrigerators. Scientific Reports, 4:3949 EP –, 2014. Article.

[30] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt. Cavity optomechanics.
Rev. Mod. Phys., 86:1391–1452, 2014.

[31] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, and J. Shang et al. Non-
classical correlations between single photons and phonons from a mechanical
oscillator. Nature, 530(7590):313–316, Feb 2016. Letter.

[32] Y. Chen. Macroscopic quantum mechanics: theory and experimental con-
cepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical
Physics, 46(10):104001, 2013.

[33] P. Meystre. A short walk through quantum optomechanics. Annalen der
Physik, 525(3):215–233, 2013.

[34] P. Liuzzo Scorpo, A. Cuccoli, and P. Verrucchi. Parametric description of
the quantum measurement process. EPL (Europhysics Letters), 111(4):40008,
2015.

[35] G. M. Palma, K.-A. Suominen, and A. K. Ekert. Quantum computers and dis-
sipation. Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 452(1946):567–584, 1996.

[36] F. M. Cucchietti, J.-F. Zhang, F. C. Lombardo, P. I. Villar, and R. Laflamme.
Geometric phase with nonunitary evolution in the presence of a quantum crit-
ical bath. Phys. Rev. Lett., 105:240406, 2010.

[37] M. Tavis and F. W. Cummings. Exact solution for an n-molecule–radiation-
field hamiltonian. Phys. Rev., 170:379–384, 1968.

[38] B. M. Garraway. The dicke model in quantum optics: Dicke model revisited.
Phil. Trans. R. Soc. A, 20(3), 2011.

[39] S.D. Bennett, N.Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin.
Phonon-induced spin-spin interactions in diamond nanostructures: Applica-
tion to spin squeezing. Phys. Rev. Lett., 110:156402, 2013.

[40] K. Härkönen, F. Plastina, and S. Maniscalco. Dicke model and environment-
induced entanglement in ion-cavity qed. Phys. Rev. A, 80:033841, 2009.



118 BIBLIOGRAPHY

[41] M. Feng, Y.P. Zhong, T. Liu, L.L. Yan, W.L. Yang, J. Twamley, and H. Wang.
Exploring the quantum critical behaviour in a driven tavis-cummings circuit.
Nat Commun, 6:7111, 2015.

[42] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler. 1/f noise: Impli-
cations for solid-state quantum information. Rev. Mod. Phys., 86:361–418,
2014.

[43] C. Benedetti, F. Buscemi, P. Bordone, and M.G.A. Paris. Dynamics of quan-
tum correlations in colored-noise environments. Phys. Rev. A, 87:052328,
2013.

[44] H. J. Wold, H. Brox, Y. M. Galperin, and J. Bergli. Decoherence of a qubit
due to either a quantum fluctuator, or classical telegraph noise. Phys. Rev. B,
86:205404, 2012.

[45] D. Crow and R. Joynt. Classical simulation of quantum dephasing and depo-
larizing noise. Phys. Rev. A, 89:042123, 2014.

[46] J. Trapani, M. Bina, S. Maniscalco, and M. G. A. Paris. Collapse and revival
of quantum coherence for a harmonic oscillator interacting with a classical
fluctuating environment. Phys. Rev. A, 91:022113, 2015.

[47] M. N. F. Casas, A. Murua, and M. Nadinic. Efficient computation of the
zassenhaus formula. Computer Physics Communications, 183(11):2386 –
2391, 2012.

[48] D. C. Mattis. The theory of magnetism - Vol I. Springer-Verlag, 1981.

[49] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information (Cambridge Series on Information and the Natural Sciences).
Cambridge University Press, 1 edition, 2004.

[50] C. Benedetti. Decoherence, non-Markovianity and quantum estimation in
qubit systems subject to classical noise. PhD thesis, Università degli Studi
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