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Colloidal gels formed by colloid-polymer mixtures with intermediate volume fraction (φc ≈ 0.4) are investigated by confocal
microscopy. In addition, we have performed Monte Carlo simulations based on a simple effective pair potential that includes a
short-range attractive contribution representing depletion interactions, and a longer-ranged repulsive contribution describing the
electrostatic interactions due to the presence of residual charges. Despite neglecting non-equilibrium effects, experiments and
simulations yield similar gel structures, characterised by, e.g., the pair, angular and bond distribution functions. We find that the
structure hardly depends on the strength of the attraction if the electrostatic contribution is fixed, but changes significantly if the
electrostatic screening is changed. This delicate balance between attractions and repulsions, which we quantify by the second
virial coefficient, also determines the location of the gelation boundary.

1 Introduction

Competing short-range attractive and long-range repulsive in-
teractions between macromolecules are encountered in a vast
number of systems in biology, medicine and materials science,
namely, protein solutions1–3, therapeutic monoclonal anti-
bodies4–7, colloidal gels8,9 and nanoparticle suspensions10,
among others.

Mixtures of spherical colloids and non-adsorbing polymers
dispersed in a solvent are often used as experimental models
to investigate the behaviour of more complex systems with
competing interactions. This is due to the fact that each con-
tribution of the interaction potential can be tuned through
the polymer concentration and size11, as well as the particle
charge and salt concentration12, i.e., the degree of electrostatic
screening. The short-range attractions arise due to entropy
effects mediated by a second component13,14, i.e., the poly-
mers, whereas long-range repulsions are caused by residual
charges on the particle surface. In the presence of short-range
attractions, fluid phases, fluid-crystal coexistence and crys-
talline phases can be observed in equilibrium15,16, while gels
and glassy structures are found under non-equilibrium condi-
tions8,11,16,17. In contrast, by reducing the degree of screening,
additional states are observed, like fluids of clusters, gels and
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Wigner glasses18,19.
Gels are amorphous solids in which mechanical stability is

achieved through the self-assembly of a load-bearing network
structure. Since gels are non-equilibrium states, their proper-
ties depend on the preparation history. Different paths to the
non-equilibrium gel states have been discussed. In the limit
of purely attractive interactions, for example, arrested phase
separation20, glass-like arrest21,22, rigidity percolation23 and
the formation of locally favoured structures24 have been pro-
posed. In the presence of electrostatic interactions, cluster
aggregation into a percolating network19,25–27 has been sug-
gested, with recent results indicating the importance of di-
rected rather than continuous percolation28.

A common feature of the gel state is structural hetero-
geneity with a characteristic length scale, which depends
on the colloid volume fraction φc, the parameters control-
ling the interaction potential and, due to non-equilibrium
conditions, the preparation procedure. Structures of clus-
ter fluids and colloidal gels have been reported over a broad
range of φc and potential parameters, both in the moderately
screened19,25–27,29–31 and strongly screened8,20,22,32–34 cases.
For small φc, the structures observed in confocal microscopy
experiments20,28,35,36 were satisfactorily modelled using ei-
ther an Asakura-Oosawa (AO) potential13,14 in the strongly
screened case20 or a combination of the AO and Yukawa po-
tentials in the moderately screened case28,35,36. Nevertheless,
recent experimental results show that effects of anisotropic
charge screening might lead to deviations from the behaviour
predicted on the basis of this combination of potentials37.
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However, at intermediate and large φc > 0.2, a direct compar-
ison between simulations or theory and experiments has only
been reported by Shah and coworkers38, where no satisfac-
tory agreement between PRISM theory calculations and ex-
perimental structure factors could be obtained in the gel state.
Hence, gelation in colloids with competing interactions has
been studied extensively in the last few years28,35,36, but at in-
termediate and large concentrations several aspects can com-
plicate a description of the structural properties of gel states
in terms of the underlying interparticle potential that still are
not fully understood. For instance, the possible importance
of three-body interactions, the effects of crowding, as well as
concentration effects on the polymer size have to be taken into
account. Furthermore, the influence of the route leading to the
final (non-equilibrium) gel structure might be important and
hence, at the same sample composition, different gel struc-
tures might occur. In addition, typical experimental colloidal
systems are polydisperse. Under these non-equilibrium con-
ditions, only a description based on an effective interparticle
interaction potential is possible and, furthermore, the poten-
tial is hard to accurately determine39 through, for example,
reverse Monte Carlo and integral equation techniques. In par-
ticular, these techniques have not been established yet for con-
centrated polydisperse colloidal systems.

In this contribution, we address the relation between the ef-
fective interparticle interactions and the structure of the gel.
As far as we are aware, here we provide for the first time a
quantitative description of the effective interaction between
particles that determines the local properties of the dispersion
under non-equilibrium conditions. In particular, a combina-
tion of a short-range attraction and longer-ranged repulsion
has been used to describe the effective interaction potential
in intermediate volume fraction colloidal fluids and gels with
φc ∼ 0.40. The parameters of the potential have been ob-
tained by fitting only the simulated radial distribution func-
tion, g(r), to the measured g(r). Based on the determined
potential, we have calculated further quantities describing the
structure, such as the angular distribution function P (θ) and
the nearest-neighbour distribution function P (nb), as well as
the state diagram. As mentioned above, despite of the difficul-
ties to determine an effective interaction potential under non-
equilibrium conditions, the structures of the colloidal fluids
and gels appear accurately described based on the competing
short-range attractive and longer-ranged repulsive interaction
potential. We furthermore demonstrate that the short-range
depletion attraction induced by the polymers can be repro-
duced by a short-range square-well potential, following the
extended law of corresponding states40. Moreover, it is crucial
to consider the electrostatic repulsion to properly reproduce
the structure and morphology of the gel structure although the
investigated experimental systems were located in the regime

between moderate and strong screening. The delicate balance
between the attractive and repulsive contributions in the effec-
tive pair potential has a significant effect on the location of the
gelation boundary.

2 Materials and Methods

2.1 Experimental details

We have investigated mixtures of polymethylmethacrylate
(PMMA) hard-sphere like particles fluorescently labelled
with 7-nitrobenzo-2-oxa-1,3-diazole-methylmethacrylate
(NBD-MMA) and linear polystyrene (PS, from Polymer
Laboratories). The average diameter of the PMMA particles,
σ = 1720 nm, and their polydispersity of about 7% were
determined by static and dynamic light scattering using very
dilute samples. The radius of gyration of the PS (molecular
weight Mw = 3 × 10

6 g/mol with Mw/Mn = 1.17) in the
solvent mixture used was estimated to be rg = 65.4 nm41.
In a dilute solution, this implies a polymer-colloid size ratio
ξ = 2 rg/σ = 0.076. The effective polymer-colloid size ratio
ξ
∗ (Table 1) was calculated according to the Generalised

Free Volume Theory (GFVT)42,43, taking into account the
concentration dependence of the radius of gyration and mesh
size of the polymer in the semidilute regime.

The particles and polymers were dispersed in a solvent
mixture of cis-decalin and cycloheptylbromide, which closely
matched the refractive index and the density of the colloidal
particles. The density difference ∆ρ = ρc − ρs between the
colloidal particles and the solvent mixture was estimated to
be ∆ρ/ρc ≲ 10

−3, as no sedimentation was observed after
centrifuging the sample for 24 h with 3500 rpm correspond-
ing to an acceleration of about 1800 g with g the acceleration
due to gravity. From this density difference, the gravitational
Peclet number Pe ≡ vs σ/(2D), with the sedimentation ve-
locity vs and the free diffusion coefficient D, was estimated to
be Pe ≲ 7 × 10

−3 at 23 ◦C. In this solvent mixture, colloidal
particles acquire a small charge, which is partially screened
by the addition of tetrabutylammoniumchloride (TBAC)12,44.
TBAC was added to the solvent mixture before preparing col-
loid and polymer stock solutions. Then, the solvent mixture
was put on a flask shaker for at least 3 days to dissolve the
salt.

The colloid stock solution was prepared by diluting a spun-
down sediment, for which we initially assumed a volume frac-
tion φc = 0.64. Subsequently, the actual volume fraction
of the samples was determined by confocal microscopy us-
ing the Voronoi construction to estimate the average volume
fraction φc. Polymer stock solutions were prepared by adding
the solvent mixture to dry polymer and the polymer concentra-
tion cp (mass/volume) of the solution was calculated from the
weighed masses of the solvent and polymer, and their corre-
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Sample φ
exp
c cs [mM] cp [c∗] c

free
p [c∗] ξ

∗

Set A
1 0.39 4.9 0.0 0.0 –
2 0.41 4.5 0.8 1.51 0.04
3 0.39 4.5 1.0 1.75 0.03
4 0.39 4.5 1.1 1.81 0.03
5 0.40 4.5 2.0 3.37 0.02

Set B
6 0.44 4.8 0.0 0.0 –
7 0.40 4.8 0.0 0.0 –
8 0.43 5.3 0.1 0.23 0.08
9 0.38 5.3 0.1 0.23 0.08
10 0.43 5.2 1.4 2.84 0.03
11 0.44 5.3 1.4 3.25 0.02
12 0.42 5.2 1.7 3.38 0.02

Table 1 Colloid-polymer samples analysed in this work. φexp
c is the

colloid volume fraction determined from the particle coordinates
(via confocal microscopy) using the average diameter, cs and cp the
concentrations of salt and polymer, respectively, cfree

p the polymer
concentration in the volume not occupied by the colloids and ξ∗ the
resulting effective polymer-colloid size ratio, both estimated by
Generalised Free Volume Theory 42,43. Note that the two sets were
prepared independently and might thus reflect different preparation
paths.

sponding densities. The polymer overlap concentration c∗p has
been estimated by c∗p = 3Mw/4πNAr

3
g with Avogadro’s num-

ber NA. Colloid-polymer mixtures were prepared by mixing
appropriate amounts of colloid and polymer stock solutions.
Subsequently, samples were vigorously mixed using a vortex
shaker and then homogenised in a flask shaker. The compo-
sitions of the samples are reported in Table 1. Note that the
two sets A and B are prepared independently and hence the
composition and age of the solvent mixtures and in particular
the particle charges and effective dissolved salt (TBAC) con-
centrations might actually be different as well as the details of
the preparation path.

Microscopy measurements were performed within an hour
after mixing to avoid effects due to ageing. Samples of set A
were observed using a VT-Eye confocal unit (Visitech Inter-
national) mounted on a Nikon Ti-U inverted microscope with
a Nikon Plan Apo VC 100× (NA=1.40) oil immersion objec-
tive. Samples of set B were imaged with a Nikon A1R-MP
confocal unit on an inverted Nikon Ti-E microscope with a
Nikon Plan Apo VC 60× (NA=1.40) oil immersion objective.
Between 25 and 30 stacks of 151 slices of 512 × 512 pix-
els each were recorded in z-steps of 200 nm corresponding to
54 × 54 × 30 µm

3 in the bulk of the sample. The stacks were
acquired in less than 20 s per stack. Typically, the observation
volume contained about 14, 000 particles. Particle coordinates
were obtained from images using standard routines45, includ-

ing an algorithm to refine the particle coordinates46. Only par-
ticles whose centres were at least 4σ from the edges of the ob-
servation volume were considered in order to avoid boundary
effects.

2.2 Effective interaction potentials and computer simu-
lations

Attractive depletion interactions induced by non-adsorbing
polymers were modelled using a short-range square-well
(SW) potential47,48. This is simpler than the well-known
Asakura-Oosawa (AO) potential13,14. Based on the extended
law of corresponding states proposed by Noro and Frenkel40,
we have shown that the phase diagrams obtained with the AO
and SW potentials are similar48 and can also be used to de-
scribe the phase behaviour of more complex systems, such as
proteins49,50. The SW potential has the following form47,48,

u
SW
ij (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞ r < σij
−ε σij ≤ r ≤ λσij
0 r > λσij ,

(1)

where r is the centre-centre distance between colloids of di-
ameters σi and σj , with σij = (σi + σj)/2, ε is the well depth
given in units of the thermal energy kBT and λ characterises
the attraction range. The latter can be related to the effec-
tive polymer-colloid size ratio ξ∗ of the experimental system,
λ ≈ σij/σ + ξ∗ (Table 1).

The colloidal particles carried a net charge, which was
screened by adding salt51–53. When the degrees of freedom
of the small counterions are integrated out, the pure Coulom-
bic interaction between colloids is replaced by a renormalised
interaction potential of the Yukawa form51–53,

u
sC
ij (r) = Z2

ij

exp [−κ(r − σij)]
r/σij

, (2)

where κ is the inverse of the Debye length51–53 and Z2
ij is the

strength of the repulsion between the particles i and j in units
of kBT ,

Z
2
ij =

Q
eff
i Q

eff
j

(1 + κσij/2)2

λB

σij
, (3)

withQeff
i,j the net charge of species i or j in units of the electron

charge and λB the Bjerrum length51–53. The definitions of the
pair potentials, Eqs. (1) and (2), allowed us to include the size
polydispersity54.

The total interaction between pairs of particles is described
by a combination (not the sum) of the contributions in Eqs.
(1) and (2). For separations larger than λσij , the interaction is
purely repulsive and is given by Eq. (2). At short distances,
lower than λσij , we assume that the interaction is dominated
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Fig. 1 Number fraction xi of particles with diameter σi following a
Schulz distribution (solid line) and discrete distribution with five
populations used in the Monte Carlo simulations (symbols),
respectively.

by the attractive depletion interaction, which we model with a
SW, Eq. (1). Our choice of this simple effective model poten-
tial does not represent the true potential of the physical sys-
tems we are investigating. However, as will be shown, it is
able to reproduce the experimental structures and allows us to
separately study the contribution of the repulsion and of the
attraction.

We have performed Monte Carlo (MC) computer simula-
tions in the canonical ensemble (NV T ) for systems with
N = 2916 particles having 7% of polydispersity. The latter
was taken into account by considering five populations of par-
ticles whose size and number fraction follow a discrete Schulz
distribution54,55, see Fig. 1. The number fraction, xi = Ni/N ,
is the relative population of particles with diameter σi; Ni and
N are the number of particles of species i and the total number
of particles in the system, respectively. The standard Metropo-
lis algorithm was used to generate and accept new particle
configurations56,57. We ran MC simulations for 5 × 10

8 MC
steps to reach a steady-state and additional 5 × 10

8 MC steps
to measure the structure. In both stages, new configurations
were accepted with a probability of 30%. In all simulations,
thermal equilibrium was reached after a few millions of MC
steps.

3 Results

3.1 Structure of the fluids without polymer

The spatial arrangement of particles around a central one is
characterised by the radial distribution function, g(r). Fig.
2a shows the experimental g(r) determined for samples with-
out polymer (samples 1, 6 and 7, see Table 1). In all cases,
it shows the structural characteristics of a fluid, i.e., a first
peak roughly corresponding to the average particle distance
(π/6φc)1/3

σ ≈ 1.08σ, and successive peaks that correspond
to further shells of neighbours, until correlation is lost at larger
distances where g(r) tends to 1.

The experimental g(r) is compared to MC simulations for
hard-spheres with a polydispersity of about 7%. Simulating
hard-sphere systems at high concentrations is difficult because
non-overlapping initial configurations need to be generated. In
a monodisperse system, one can initiate simulations with par-
ticles in a crystalline array, which melts during the simulation
with no overlaps occurring between particles. In a polydis-
perse system, however, some big particles might be difficult
to place in a non-overlaping configuration. To overcome this
technical problem, the hard-sphere potential has been replaced
by the potential uHS

ij (r) = (r/σij)−10000, where the large ex-
ponent results in a hard-sphere-like interaction. Fig. 2a shows
that the agreement between simulations and experiments is not
satisfactory, especially at short separations, r ≈ σ. The av-
erage distance, described by the position of the first peak in
g(r), is about σ in the simulations, while it is slightly larger
in the experiments. This indicates that the effective size of
the particles is larger than σ. This can result from residual
charges. Therefore, we have also performed MC simulations
including a repulsive Yukawa potential, see Eq. (2). The pa-
rameters of the Yukawa potential were estimated using the
Poisson-Boltzmann equation and assuming that all particles
have the same diameter51. This led to a prefactor Z2

ij = 6.0
and screening parameter κσ = 15 and 30, corresponding to an
effective charge Qeff

≈ 273 and 514, for sets A and B, respec-
tively, see Table 2. This effective charge is consistent with pre-
vious measurements36. The screening κσ differs by a factor
of 2, although the salt concentration cs in both sets is similar.
This might be related to the fact that the dissolution of salt in
the solvent mixture is limited and slow, and therefore a differ-
ent amount of salt might actually be dissolved in the two sets,
despite of the added salt concentrations cs being comparable.
Furthermore, differences in the dissolution process imply dif-
ferent preparation paths which might affect the observed gel
structure. Nevertheless, the excellent agreement between ex-
periments and simulations (Fig. 2b) indicates that the amount
of particle charge has an important effect on the structure of
the dispersion due to the long range of the electrostatic inter-
actions in organic solvents having small relative permittivities.
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Fig. 2 a) Radial distribution function g(r) for a) polymer-free
samples 1, 6 and 7 (symbols, Table 1) and MC simulation results for
polydisperse hard-spheres (solid lines). b) Same as in a) but with
simulation results for charged polydisperse particles interacting
through a Yukawa pair potential (Eq. (2)). c) Samples 8 and 9 with
low polymer concentration (symbols, Table 1) and simulation results
for particles interacting through a SW (Eq. (1)) and Yukawa pair
potential (Eq. (2)) (solid lines). Curves are vertically shifted for
clarity.

The electrostatic interaction also affects the subsequent peaks,
which are now well-reproduced. This indicates the need to
include the electrostatic contribution (Eq. (2)) together with
the hard-sphere interaction to correctly represent the repulsive
interactions between colloids.

We assume that the parameters of the Yukawa potential re-
main constant upon addition of polymer, although at larger
polymer concentrations the high packing of particles in the
gels might modify the charge distribution. However, the very
good agreement obtained between experiments and simula-
tions shown below supports the validity of this assumption.

3.2 Structure of the fluid at low polymer concentrations

The structure of samples containing a small amount of poly-
mer, cp/c∗p = 0.1 (samples 8 and 9, Fig. 2c), was also experi-
mentally determined. Due to the presence of polymer, attrac-
tive interactions are present and result in a non-zero, although
very small, ε. Nevertheless, g(r) is very similar to that of
the purely repulsive systems without polymer. This suggests
that repulsive interactions dominate at low polymer concen-
trations. In fact, g(r) can be well reproduced in simulations
using only the repulsive Yukawa potential with the same pa-
rameters as for the case without polymer (except ε = 0; data
not shown).

3.3 Structure of the gel at high polymer concentrations

3.3.1 Radial distribution function g(r). Fig. 3 shows
g(r) for samples with high polymer concentrations cp/c∗p ≥

0.8. The presence of significant attractions completely
changes the shape of g(r) compared to the samples without
and with only a small amount of polymer (Fig. 2). The first
peak becomes sharper. The position of the first minimum of
g(r), which appears at r/σ ≈ 1.1, can be linked to the effec-
tive range of the attraction, characterised by λ − 1; the min-
imum is less pronounced for set B than for set A. The broad
second peak is a typical feature of gels and is related to the
broad distribution of distances to particles in the second shell
caused by the heterogenous structure of the local clusters29,32.
Beyond the second maximum, i.e. for distances beyond about
2.5σ, g(r) quickly approach unity, whereas the oscillations
extend to much larger r for the samples without or with less
polymer.

In MC simulations, the effective interparticle interactions
were modelled through the attractive SW potential, Eq. (1),
and repulsive Yukawa potential, Eq. (2). The values of the
parameters characterising the Yukawa contribution are taken
from the samples without polymer (κσ = 15 and 30, Qeff

≈

273 and 514 for sets A and B, respectively, see Table 2). For
the range of the attractions, average values ξ∗ ≤ ξ

′
≤ ξ are

taken resulting in a constant λ = σij/σ+ξ′ for each set (Table
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Fig. 3 Radial distribution function g(r) for samples with high
polymer concentrations (as indicated, Table 1), obtained in
experiments (symbols) and MC simulations (solid lines). Curves are
vertically shifted for clarity.

2). Several simulations have been performed with different
values of the depth of the square well ε to find the best fit
to the experimental g(r). Samples with high polymer con-
centrations cannot be accurately simulated using an average
diameter σ = 1720 nm but, to match the experimental g(r), a
slightly smaller effective diameter σc was considered, which
is within the uncertainties of the experimental value and the
chosen size distribution. The reduction of the effective diame-
ter in the gels seems to indicate a certain degree of softness of
the particles. We have hence considered a soft-core potential
represented by (r/σc)−9 to model this degree of softness. The
stronger reduction of the diameter in set A than B is associated
with less screening of the electrostatic interaction, possibly in-
dicating a relation between the two quantities. The fitted val-
ues of σc and ε are reported in Table 2. With these values, the
MC simulations agree well with the experimental results over
the whole range of r values. This indicates that the effective
potential reproduces the experimental structure at short and
long interparticle separations. Table 2 also indicates that the

Sample σc/σ ε λ Q
eff

κσ B
∗
2

Set A
1* 1.0 0.0 – 514 30 1.25
2 0.93 0.83 1.03 273 15 0.64
3 0.93 0.83 1.03 273 15 0.64
4 0.93 0.91 1.03 273 15 0.58
5 0.93 1.11 1.03 273 15 0.40

Set B
6* 1.0 0.0 – 514 30 1.25
7* 1.0 0.0 – 514 30 1.25
8* 1.0 0.0 – 514 30 1.25
9* 1.0 0.0 – 514 30 1.25
10 0.97 1.33 1.07 514 30 -0.31
11 0.97 1.33 1.07 514 30 -0.31
12 0.97 1.43 1.07 514 30 -0.44

Table 2 Values used in the MC simulations to describe the
experimentally determined g(r) for the samples given in Table 1.
Average effective hard-sphere diameter σc, attraction strength ε,
attraction range λ, effective charge Qeff and inverse screening
length κ. The (∗) indicates that the interaction between particles
was modelled by a pure repulsive potential, resulting in B∗

2 values
larger than 1.

well depth ε is a function of polymer, cp, and, to some extent,
colloid, φc, concentration.

3.3.2 Effective colloid-colloid interaction potential
u(r). The interactions in the colloid-polymer mixtures were
approximated by a combination of a SW and Yukawa poten-
tial, given by Eqs. (1) and (2), respectively, where the hard-
sphere infinite repulsion at contact in the SW potential has
been slightly softened due to technical issues as discussed
above. The parameters of the potentials have been determined
by fitting the corresponding g(r) to the experimental data
(Figs. 2, 3 and Table 2). Note that these are effective interac-
tion potentials. They depend on the sample compositions but,
due to the non-equilibrium nature of gels, are also affected by
the preparation histories. A different sample preparation pro-
cedure might lead to a different gel structure, here character-
ized by g(r), and hence a different effective interaction poten-
tial, although the final sample composition might be identical.
The dependence on the preparation path is, at least partially,
responsible for the different fit parameters of sets A and B,
although their compositions are not very different.

The combination of SW and Yukawa potential is compared
to the potential of mean force, w(r) = −kBT ln g(r) (Fig.
4a). This potential is an accurate representation of the effec-
tive potential between pairs of colloidal particles, u(r), in a
low concentration system58. At higher concentrations, w(r)
is a crude approximation of the effective potential u(r) but
gives some insights on its features. The main features of w(r)
are reproduced by the combination of a SW and Yukawa po-
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Fig. 4 a) Square well uSW(r) (solid line), Eq. (1), and Yukawa
u

sC(r) (dashed line), Eq. (2), potentials and potential of mean-force
w(r) = −kBT ln g(r) (dashed-symbol) of sample 5. b) Effective
colloid-colloid interaction potentials u(r)/kBT in samples 5 (solid
line) and 12 (dashed line), see Table 1.

tential.
As an example, Fig. 4b displays the optimum effective po-

tentials that describe the local structures of samples 5 (set A)
and 12 (set B), respectively. The potential used for sample 5
shows a larger barrier and longer-ranged repulsion compared
to sample 12. This illustrates the different amounts of resid-
ual charges and screening in the two sets as well as a possible
effect of the preparation procedure (Table 2).

3.3.3 Angular distribution function P (θ). In addition
to g(r), it is interesting to determine the angular distribution
function P (θ). This function considers the angle θ between
the centre-centre lines of three nearest neighbours. Particles
are considered nearest neighbours if their centre-centre dis-
tance is smaller than the distance to the first minimum of g(r),
which is r = 1.1σ. The experimentally obtained P (θ) are
shown in Figs. 5 together with the corresponding simulation

Fig. 5 Angular distribution function P (θ) for samples with high
polymer concentrations (as indicated, Table 1) obtained in
experiments (symbols) and MC simulations (solid lines). Curves are
vertically shifted for clarity.

results. The peak at θ ≈ 60
◦ indicates that particles tend to

form structures with a triangular geometry. We have shown in
previous work that in the presence of short-range attractions
and long-range repulsions, these structures are energetically
favoured over others59. A second smaller peak is located at
θ ≈ 120

◦, a value that corresponds to a structure where parti-
cles lie on two triangles that share an edge.

3.3.4 Nearest-neighbour distribution function P (nb).
To gain more insight into the local structural features of the
gel and its heterogeneity, we have also determined the nearest-
neighbour distribution P (nb); it represents the probability for
a particle to have nb neighbours being closer than the cutoff
distance r = 1.1σ. The average value ⟨nb⟩ quantifies how
crowded the local environment of a particle is. Previously, it
was shown23 that in a purely attractive system ⟨nb⟩ = 2.4 at
the gel transition.

The nearest-neighbour distributions P (nb) are shown in
Figs. 6a and 6b. One observes that for samples with a high
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Fig. 6 Distribution of the number of nearest-neighbours, P (nb), for
samples of a) set 1 and b) set 2 as obtained by experiments
(symbols) and MC simulations (solid lines). c) Snapshots of slices
of samples 1 (left) and 5 (right) as obtained by simulations. The
number of neighbours or coordination number is indicated by the
colour of the colloids.

polymer concentration, cp/c∗p ≥ 0.8, the shape of the distri-
bution is essentially identical and ⟨nb⟩ ≈ 5, i.e., larger than
the one found in purely attractive (sticky) particles23. This
indicates local clusters with a highly compact shape. This
also implies that the competing interaction potential plays a
twofold role: first, the short-range attraction induces particle
clustering and, second, the long-range repulsion stabilises the

clusters towards network formation, i.e., limits their size, and
avoids nucleation and subsequent crystallisation59. In con-
trast, in the presence of only a small amount of polymer, as
in samples 8 and 9, the structure is characterised by a small
number of neighbours, ⟨nb⟩ ≈ 2 (data not shown). It is in-
teresting to note that the neighbour distributions of sets A and
B are comparable, despite the structural differences indicated
by g(r) and P (θ). The aforementioned trends can also be
seen in snapshots of samples 1 (no polymer) and 5 (highest
polymer concentration), displayed in Fig. 6c, with the num-
ber of neighbours indicated by the colour. Sample 5 contains
a percolated network, i.e., a colloidal gel, whereas there is no
network in sample 1. Fig. 6c also illustrates the heterogeneity
of the particle distribution in the sample.

The structure of a system can also be visualised by the back-
bone or network formed by the nearest neighbours. In Fig.
7, slices with thickness 4σ of samples 1, 2 and 5 are con-
sidered and nearest neighbours are connected by a line. In
sample 1, the connectivity is very low, as expected in the ab-
sence of attractions. In samples 2 and 5, particles form tri-
angular structures that are connected into a sample spanning
network, as previously reported25. Besides, applying the same
criterium as the one proposed in Ref.28, we found evidence
that the structures of samples 2 and 5 represent directly per-
colated networks, as recently proposed for gels with a lower
colloid concentration28 and a smaller ⟨nb⟩. Samples 9 and 12
show similar results to samples 1 and 5: Sample 9 presents a
liquid-like structure, as indicated in Fig. 3, whereas a back-
bone is present in sample 12, which corresponds to a directed
percolated network and presents components that form also
triangular structures (data not shown).

3.4 State diagram

Since gels are out of equilibrium states, their structure also de-
pends on the kinetic path followed to reach the gel state. It is
therefore interesting to consider how the samples we studied
can be located with respect to the equilibrium and the non-
equilibrium state diagrams available from literature, and ob-
tained for the specific parameters of our system. Note, how-
ever, that care has to be taken when state diagrams based on
parameters determined under equilibrium conditions are com-
pared with state diagrams based on parameters of effective in-
teraction potentials determined under non-equilibrium condi-
tions, as in the present case.

We start considering the state diagram of colloid-polymer
mixtures with purely attractive interactions11,16,48. The topol-
ogy of the state diagram in the cp/c∗p vs φc plane depends on
the polymer-colloid size ratio ξ; we only consider ξ ∼ 0.1
(Fig. 8) and φc ≤ 0.5, which are the parameters relevant for
our study. Previous studies showed that while at small poly-
mer concentrations the system is in a fluid state, with increas-
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Fig. 7 Network of nearest neighbours as obtained by MC
simulations. The centres of nearest neighbours are connected by
lines. Samples a) 1, b) 2 and c) 5 are shown.

ing polymer concentration a coexistence between fluid and
crystal is observed (solid line represents the fluid/solid co-
existence boundary for ξ = 0.08

16). Gas-liquid coexistence
occurs within the fluid-solid coexistence region16: We report
in Fig. 8 the binodal line (double-dotted–dashed line), calcu-
lated using the Generalised Free Volume Theory42,43 for the
size ratio of our samples, ξ = 0.076. We additionally re-
port the boundaries to non-equilibrium gel states determined
by different experiments and theories. For small volume frac-
tions (φc < 0.2), we show the gelation boundary obtained by
Lu et al.20 (large-dashed line, ξ = 0.059): in this work it is
proposed that frustrated gas-liquid phase separation leads to
the gel transition, and hence the gel states are expected inside
the spinodal line. Furthermore, we show predictions of mode-
coupling theory from Bergenholtz and coworkers for the gel
boundary21 extending over the whole φc range (dashed-dotted
line, ξ = 0.08). The theory results are complemented by ex-
perimentally determined gel boundaries obtained by Shah and
coworkers for ξ = 0.061 and 0.09038, and Poon and cowork-
ers for ξ ∼ 0.06

60. Finally, we also plot the boundary between
fluid and attractive glass determined by Pham and cowork-
ers for ξ = 0.09

61. As can be observed, the gel boundaries
predicted by theory and observed in experiments are all lying
close to or above the binodal line. This finding apparently sup-
ports the scenario in which arrested spinodal decomposition

Fig. 8 State diagram of a colloid-polymer mixture with a size ratio
ξ ∼ 0.1 in the polymer concentration, cp/c∗p, vs. colloid volume
fraction, φc, plane. Region covered by our samples (■: set 1, ●: set
2) is highlighted by a yellow background (Table 1), ‘F’ indicates
fluid states and ‘G’ gel states, ⭐, ⭑: additional simulation results
for cp/c∗p = 1.0 and different φc where open (full) symbols indicate
fluid (gel) states. Binodal line obtained using the Generalised Free
Volume Theory 42,43 for ξ = 0.076 ( ). For comparison, data
sets from literature are included: equilibrium fluid-solid coexistence
for ξ = 0.08

16 ( ), experimentally determined gelation points in
purely attractive systems with ξ = 0.061

38 (◂), ξ = 0.090
38 (▸),

ξ = 0.06
60 (▴), ξ = 0.059

20 ( ) and in systems with
competing interactions with ξ = 0.021

18 (▾), ξ = 0.13
25 ( ),

ξ = 0.19
19 ( ), experimentally observed attractive glasses with

ξ = 0.09
61 (⬩), Mode-Coupling predictions for the gelation

boundaries for ξ = 0.08
21 ( ).

leads to gel formation20. However, recent studies indicate that
this scenario is correct at low particle concentrations, while
the role of rigidity percolation might be important at higher
φc

59,62. Moreover, we can observe that generally the tran-
sition from equilibrium fluid states to non-equilibrium solid
states, either gel or glass, occurs at low polymer concentra-
tions in systems where the interactions are purely attractive.

In comparison, systems with competing interactions exhibit
a richer and more complex behaviour that also depends on the
range and strength of the repulsive interaction. If a repulsive
barrier is present, the binodal tends to disappear and a clus-
ter fluid phase is found instead3,25,63. In systems of highly
charged colloids, at low concentrations φc < 0.17 also other
states are present, such as Wigner glasses and glassy cluster
states19, while at moderate concentrations 0.15 < φc < 0.30
gel states are still being observed. In Fig. 8 we report the
experimentally determined depletion boundaries for colloids
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with competing interactions from Campbell and coworkers,
for ξ = 0.13, κσ ≈ 1.55 and Z

2
= 30

25, from Klix and
coworkers for ξ = 0.19, κσ ≈ 1 and Z2

= 15
19, and from

Sedgwick and coworkers for ξ = 0.021
18 (values for the repul-

sive interaction could not be estimated in this case). In these
and other studies38,60 a cluster phase is observed in the same
interval 0.03 ≤ cp/c∗p ≤ 2.0, but at lower φc. We observe that
the effect of the additional repulsive interaction is that of shift-
ing the gel boundary to higher φc and larger cp values when κ
decreases and hence the range of the electrostatic interactions
increases.

The values of κσ, ξ and Z2 of our potential are even larger
than those of the work of Campbell and coworkers25. We can
therefore expect that the gel boundary lies at relatively low
polymer concentrations and approaches that of purely attrac-
tive systems. This seems to be confirmed by the experimen-
tal data (Fig. 8), where, in the absence of polymer and at
small polymer concentration, we observe fluid states close to
the gelation boundaries of the purely attractive systems and
the data of25, if extrapolated to larger φc. At the same time,
gel states are found well below the gelation boundary of19.

We have also performed simulations at constant cp/c∗p =

1.0 and different volume fractions, with the potential param-
eters describing sample 3, indicate that the gelation boundary
is slightly shifted compared to the data in25 (Fig. 8), and espe-
cially that gel states are not observed at small φc, in contrast
with the purely attractive case. Snapshots of the simulations
are shown in Fig. 9, where only particles participating in clus-
ters with at least 5 particles are shown. At φc < 0.15 small
clusters are dispersed throughout the volume (these states are
indicated as empty stars in Fig. 8). At φc = 0.20 larger clus-
ters are formed, probably percolated, which indicates that the
system is close to the gelation boundary, and at higher concen-
trations, φc ≥ 0.25, large clusters dominate, consistent with
the state diagram (these states are indicated as filled stars in
Fig. 8).

We can therefore conclude that, even if our effective poten-
tial is strongly screened, the state diagram of our system does
not seem to be fully compatible with that of a purely attractive
system, but rather indicates the effects of competing attractive
and repulsive interactions.

3.5 Second virial coefficient

The effective colloid–colloid interaction potential is charac-
terised by a short-range attraction and a longer-ranged repul-
sion. This interplay determines the arrangement of the par-
ticles. However, due to the large volume fractions 0.38 ≤

φc ≤ 0.44 (Table 1) crowding also plays a significant role.
To quantify the different contributions to the interactions, for
all samples with cp/c∗p > 0.1 (Table 2) we have calculated the

Fig. 9 Snapshots of systems at cp/c∗p = 1 for different colloidal
volume fractions φc obtained from simulations with the size of the
clusters in which the particle participates indicated by the colour of
the particle. These systems are indicated by open (non-percolated
states) and filled (percolated states) blue stars in Fig. 8.

reduced second virial coefficient B∗
2 ≡ B2/BHS

2
48,59, where

B2 is the second virial coefficient and BHS
2 the one of hard-

spheres. For set A, B∗
2 > 0, which indicates a strong effect

of the repulsive component, while for set B, B∗
2 < 0, which

means that the attractive contribution dominates. Thus, the gel
structure in our samples is determined by crowding combined
with either dominantly repulsive (set A) or dominantly attrac-
tive (set B) interactions. A theoretical analysis of the binodal
for ξ = 0.076 nevertheless suggests that all gel samples stud-
ied here are well inside the phase separation region (Fig. 8).
However, none of the samples, particularly the ones in set A
(where repulsion dominates), reach the value B∗

2 = −1.5
64.

This value has been associated with the proximity of phase
separation in systems with attractive pair potentials. This re-
quires that the attractions are short-ranged, ξ < 0.15, and
hence many-body effects are excluded? , which is the case in
our samples. Thus, a more complex mechanism seems to be
responsible for the gel transition at intermediate colloid vol-
ume fractions and especially in the presence of electrostatic
repulsion.

4 Discussion and Conclusions

The results presented in the previous section can be sum-
marised to obtain a general picture of the system under investi-
gation: In the absence of polymers (cp = 0.0), the structure of
the samples, namely homogeneously distributed particles in a
colloidal fluid, can be described by a repulsive Yukawa poten-
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tial, which is due to the residual charges (Fig.2a,b) . The addi-
tion of a small amount of polymers (cp/c∗p = 0.1) induces the
formation of a few small clusters due to depletion attractions.
However, the electrostatic repulsion dominates and the sys-
tems remain fluid and essentially homogeneous (Fig.2c). In-
stead, with increasing amount of polymer (0.8 ≤ cp/c∗p ≤ 2.0),
the attractions become more pronounced, as shown by the ef-
fective potentials obtained (Table 2) and clusters are formed
which merge into a network gel structure. The radial distribu-
tion functions indicate for all gel samples a strong and short-
ranged correlation between particles. However, even if the
interaction potential is different, the g(r) of the gels is rela-
tively similar within each set of samples (Fig.3, for sets A and
B), but a flatter region around the minimum is observed for
samples of set B. Similarly, the angular distribution functions
also indicate comparable internal cluster structures within one
set, with particles forming triangular and tetrahedral structures
as indicated by peaks at 60◦ and 120◦. The nearest-neighbour
distributions are also similar within one set, but set B presents
higher average numbers of neighbours. These results sug-
gest that the structure of the gels is not particularly sensitive
to variations in the strength of attractions at fixed screening
(i.e., within a set), where the attraction strength ranges from
0.8 kBT to 1.4 kBT , i.e. around the thermal energy. In con-
trast, the structural differences between the two sets A and B
suggest a stronger influence of the electrostatic interactions,
which also cover a larger range (Fig. 4b). These observations
were complemented by calculations of the second virial coef-
ficient for samples of the two sets (Table 2): we observed that,
in addition to crowding, for set A gel formation is dominated
by repulsion and for set B by attraction. These results indicate
that the variation of the electrostatic contribution, which also
induces variations in the effective attraction at short distances,
is crucially affecting the gel structure.

By comparison with previous work on state diagrams of
colloid-polymer systems, and our own calculations of the bin-
odal line, we could additionally confirm that even if the re-
pulsive electrostatic interactions are strongly screened, the
structures that we observe are compatible with the state di-
agrams expected and observed for colloid-polymer mixtures
with competing interactions.

In conclusion, we were able to describe the non-equilibrium
structures of intermediate volume fraction gels observed in ex-
periments by using a simple effective pair interaction poten-
tial although non-equilibrium effects are not explicitly consid-
ered. The effective interaction potential thus not only depends
on the sample composition, but also the preparation history.
Therefore, if the preparation path and hence maybe the gel
structure are changed, also the effective interaction potential
will change. Nevertheless, the effective interaction potentials
and their parameters, which were determined by comparing
the radial distribution function g(r) obtained by experiments

and simulations, respectively, were successfully used to pre-
dict other structural features, such as the angular distribution
function P (θ) and the nearest-neighbour distribution function
P (nb), as well as the state diagram. The effective interaction
potential contains a short-range attraction modelled through
a square-well and longer-ranged electrostatic repulsion mod-
elled though a Yukawa form. Through the parameters of the
potential we can assess the relative contribution of the attrac-
tive and the repulsive component on the gel structure. We
found that the degree of screening of the electrostatics has an
important influence on the structural organisation since it sig-
nificantly affects the balance between repulsive and attractive
interactions. Due to that, we observed different gel structures
which are dominated by either repulsion or attraction.
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