
International Journal of Solids and Structures 168 (2019) 58–72 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Numerical size estimates of inclusions in Kirchhoff–Love elastic plates 

Antonio Bilotta 

a , Antonino Morassi b , Edi Rosset c , Emilio Turco 

d , ∗, Sergio Vessella 

e 

a Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, via P. Bucci 39/C, Rende 87030(CS), Italy 
b Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, via Cotonificio 114, Udine (UD) 33100, Italy 
c Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Valerio 12/1, Trieste (TS) 34127, Italy 
d Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, via Garibaldi 35 - Asilo Sella, Alghero, (SS) 07041, Italy 
e Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni, 67/a, Firenze (FI) 50134, Italy 

a r t i c l e i n f o 

Article history: 

Received 5 November 2018 

Revised 4 March 2019 

Available online 13 March 2019 

Keywords: 

Non-destructive tests 

Kirchhoff-Love plates 

Inclusions 

Size estimates 

a b s t r a c t 

The size estimates approach for Kirchhoff–Love elastic plates allows to determine upper and lower 

bounds of the area of an unknown elastic inclusion by measuring the work developed by applying a 

couple field on the boundary of the plate. Although the analytical process by which such bounds are 

determined is of constructive type, it leads to rather pessimistic evaluations. In this paper we show by 

numerical simulations how to obtain such bounds for practical applications of the method. The com- 

putations are developed for a square plate under various boundary loads and for inclusions of different 

position, shape and stiffness. The sensitivity of the results with respect to the relevant parameters is also 

analyzed. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Diagnostic methods based on non-destructive testing lead to a

class of inverse problems of great interest in several fields of me-

chanical and civil engineering Bonnet and Constantinescu (2005) .

Their use is of importance to prevent possible failure of a compo-

nent or structural member and, more generally, to setup a main-

tenance plan for a mechanical system. Vibrational-based methods

are probably the most common class of non-destructive tech-

niques, particularly for applications on large full-scale structures,

such as bridges, buildings and dams Morassi and Vestroni (2008) ;

Lee et al. (2003) . However, there are structural systems important

in real-life applications in which static tests can be easily arranged

and can provide valuable information for diagnostic purposes

Caddemi et al. (2018) ; Liu and Lin (1996) . 

In this paper we are concerned with the determination, within

an elastic isotropic thin plate, of the possible presence of an

inclusion made by different elastic material by static boundary

measurements. This inverse problem describes various situations

occurring in engineering applications, such as the appearance of

diffuse cracking in reinforced concrete plates or corrosion phenom-

ena in metallic plates, which are usually described by local varia-
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ion of the elastic coefficients of the material in the regions subject

o the degradation, see, for instance, Cornwell et al. (1999) and

i et al. (2002) . 

More precisely, if w denotes the transversal displacement of

he middle surface � of the plate, one wishes to recover a sub-

et D ⊂⊂� in the fourth order Kirchhoff–Love equation 

iv ( div ((χ�\ D P + χD ̃
 P ) ∇ 

2 w )) = 0 , in �, (1)

rom the knowledge of one pair of Cauchy data taken on the

oundary ∂� of �, on which - under the assumption of C 1,1 regu-

arity of ∂� - the following two boundary conditions hold ( Fichera,

972; Ciarlet, 20 0 0 ): 

(P ∇ 

2 w ) n · n = − ̂ M n , on ∂�, (2)

iv (P ∇ 

2 w ) · n + ((P ∇ 

2 w ) n · τ ) , s = ( ̂  M τ ) , s , on ∂�. (3)

ere, P is the given fourth order plate tensor describing the re-

ponse of the material in the reference plate, whereas ˜ P denotes

he corresponding tensor for the inclusion D . Our analysis is re-

tricted to a reference plate made by isotropic material (see consti-

utive equation (42) ). Moreover, in the equations above, χD is the

haracteristic function of the set D; n, τ are the unit outer normal

nd the unit tangent vector to ∂�, respectively; ̂ M τ , ̂ M n denote re-

pectively the twisting moment and bending moment applied on

�. 

The inverse problem described above is severely ill-posed. Even

he uniqueness issue, that is, whether a single boundary measure-

ent of Neumann { ̂  M τ , ̂ M n } and Dirichlet { w, w, n } data allows
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Table 1 

Comparison for the case study (i)–(iv) between the slopes defining the lines for the 

theoretical lower and upper bounds, L t and U t respectively, and the numerical ones, 

L n and U n for soft inclusions ( f = 0 . 2 ). 

case L t U t L n U n 

(i) 0.2500 2.3552 0.3995 0.6400 

(ii) 0.1606 1.5125 0.3853 1.1300 

(iii) 0.1346 1.2682 0.6236 1.0353 

(iv) 0.0641 301.48 0.4450 55.0 0 0 
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o uniquely determine the unknown inclusion D , is a challenging

pen problem. In fact, despite the extensive research developed

n this field in the last two decades, a general uniqueness result

s not yet available even in other contexts arising, for example,

n electrical impedance tomography or in linear elasticity, which

nvolve a second order elliptic equation or system, respectively.

e refer, among other contributions, to Alessandrini (1999) and

sakov (1998) for an extensive reference list. 

Basing on the above considerations, and following a line of re-

earch initiated in electric conductivity ( Alessandrini et al., 1998;

ang et al., 1997; Alessandrini et al., 20 0 0 ) and linear elasticity

 Ikehata, 1998; Alessandrini et al., 2002 )), in the last years a rel-

tive modest, but realistic, goal has been pursued in the identifica-

ion of inclusions in elastic plates: to find efficient and stable es-

imates of the area of the unknown inclusion from a single static

xperiment. The basic idea relies on comparing the work W, W 0 

xerted by applying a given couple field 

̂ M at the boundary ∂�

f the plate in a possibly defected and in the reference state, re-

pectively. When the reference plate is made by isotropic material,

nd some slight a priori assumptions on the unknown inclusion

re satisfied, the following upper and lower bounds of the area of

 D | have been found in Morassi et al. (2007) : 

 1 

∣∣∣W − W 0 

W 0 

∣∣∣ ≤ area(D) ≤ C 2 

∣∣∣W − W 0 

W 0 

∣∣∣, (4) 

here the constants C 1 , C 2 only depend on the a priori data. Exten-

ions to Kirchhoff–Love plates whose material belongs to a suitable

lass of anisotropy are given in Cristo et al. (2013a) . The limit cases

f rigid inclusions or cavities require a specific analysis and were

onsidered in Morassi et al. (2013) . We refer also to Cristo et al.

2013c,b) for analogous results obtained for shell structures and to

orassi et al. (2018) for an extension to thick elastic plates de-

cribed within the Mindlin–Reissner’s theory. For the sake of com-

leteness, we recall that an alternative approach to the evaluation

f the volume of inclusions has been developed in Capdeboscq and

ogelius (2003) in the conductivity framework in case of small in-

lusions and considering multiple boundary measurements. 

In our size estimates (4) , the area of D is estimated in terms

f the normalized work gap | W −W 0 
W 0 

| . It is worth noticing that this

uantity can be easily measured in experiments, since both W and

 0 are determined in terms of boundary measurements (see ex-

ressions (59) and (60) below). However, the concrete evaluation

f the constants C 1 , C 2 appearing in (4) is a crucial aspect for con-

rete applications. In fact, previous studies in electrical conductiv-

ty Alessandrini et al. (2007b) and in two and three-dimensional

inear elasticity ( Alessandrini et al., 20 05, 20 07a ) show that, al-

hough the analytical procedure by which such constants are deter-

ined is indeed of constructive type, it leads to rather pessimistic

stimates. Therefore, it is significant and useful for practical appli-

ations to estimate these constants by means of numerical simu-

ations. The present paper is a first contribution to this issue for a

irchhoff–Love plate. 

We have performed an extended series of numerical simu-

ations for a rectangular reference plate made by homogeneous

sotropic material and subject to various sets of Neumann data. The

onfiguration considered is rather simple, but it reproduces, among

thers, the classical bending and torsional tests which are fre-

uently used in quality control of plate specimens. Numerical anal-

sis was based on the implementation of a finite element model

ased on three-nodes Specht’s triangular element Specht (1988) .

he outcomes of simulations confirm the validity of the theo-

etical result (4) , and show that the points (| W −W 0 
W 0 

| , | D | ) are lo-

ated inside an angular sector defined by two straight lines pass-

ng through the origin. The comparison between theoretical and

umerical estimates of the constants C 1 , C 2 appearing in the size

stimates (4) and shown in Table 1 further confirms that the an-
lytical process through which such constants are derived leads

o highly pessimistic evaluations. Other aspects have been inves-

igated in numerical simulations, such as the effect caused by in-

lusions stiffer or softer with respect to the background material,

nd the influence of the minimum distance assumed between D

nd the boundary of �. 

Finally, it is important to note that, although very common in

pplications, the choice of considering a plate with rectangular

hape poses additional difficulties in the mathematical formula-

ion of the equilibrium problem due to the presence of corners.

t is well known, since the celebrated paper by Lamb (1889) , that

he presence of corners on the boundary of the plate, implies the

ccurrence of additional conditions which involve point-wise val-

es of second order derivatives up to the boundary. A rigorous

athematical justification of the strong formulation of the Neu-

ann equilibrium problem in this context seems not completely

et available, therefore in our analysis we have assumed that the

ransverse deflection w of the plate belongs to the Sobolev space

 

4 ( �). We refer to Section 2 for more details on this issue. 

The plan of the paper is as follows. In Section 2 we introduce

ome notation and the variational formulation of the direct prob-

em for a Kirchhoff–Love plate with piecewise-regular boundary.

he size estimates results are recalled in Section 3 . The results

f numerical simulations are reported and discussed in Section 4 .

ome concluding remarks are collected in Section 5 . 

. The direct problem 

.1. Notation 

Throughout this paper we shall consider a bounded domain �

n R 

2 having Lipschitz boundary ∂� with constants ρ0 , A 0 , that

s, ∂� is locally the graph of a Lipschitz continuous function with 

ipschitz constant A 0 in a disc of radius ρ0 . Moreover, the bound-

ry ∂� is assumed to be a finite union of closed C 1,1 curves ω q ,

 = 1 , . . . , Q, where 

 q ∩ ω q +1 = V q +1 , (5)

ith ω Q+1 = ω 1 , V Q+1 = V 1 . 

For any q , q = 1 , . . . , Q, let us define as positive the orien-

ation of ω q associated to the arclength parametrization ϕ(s ) =
(x 1 (s ) , x 2 (s )) , s ∈ [0, 	 ( ω q )], such that ϕ(0) = V q and ϕ 

′ (s ) =
(ϕ(s )) . Here, 	 ( ω q ) denotes the length of ω q , and τ is the unit

angent at ω q given by 

= e 3 × n, (6) 

here n is the unit outer normal to ∂�, × denotes the vector

roduct in R 

3 , and { e 1 , e 2 , e 3 } is the canonical basis in R 

3 . 

We shall refer to a plane domain � satisfying all the above

roperties as a piecewise-regular domain with constants ρ0 , A 0 . 

We denote by w , α , w , s , w , n the derivatives of a function w

ith respect to the x α variable, to the arclength s , and to the nor-

al direction n , respectively, and similarly for higher order deriva-

ives. 
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For every 2 × 2 matrices A, B and for every L ∈ L (M 

2 , M 

2 ) , we

adopt the standard notation 

(L A ) αβ = L αβγ δA γ δ, (7)

A · B = A αβB αβ, (8)

| A | = (A · A ) 
1 
2 , (9)

A 

sym = 

1 

2 

(
A + A 

T 
)
, (10)

where A 

T is the transpose matrix of A and summation over re-

peated indexes is implied. Moreover, given L , ˜ L ∈ L (M 

2 , M 

2 ) , we

shall say that ̃  L ≤ L if and only if 

 L A · A ≤ L A · A (11)

for every 2 × 2 symmetric matrix A . 

The norms of all the functions defined either in � or on ∂� are

normalized such that their terms are dimensionally homogeneous

with the argument of the norm and coincide with the standard

definition when ρ0 = 1 . 

2.2. Variational formulation of the direct problem 

Let � × [ − h 
2 , 

h 
2 ] be a thin elastic plate, whose middle surface �

is a piecewise-regular domain with constants ρ0 , A 0 . We shall also

assume that, for some positive constant A 1 , 

| �| ≤ A 1 ρ
2 
0 . (12)

The plate is made of nonhomogeneous linearly elastic material,

with elastic tensor C (x ) ∈ L (M 

2 , M 

2 ) , and body forces inside � are

absent. On the tensor C , we assume: 

(i) Regularity : 

C ∈ L ∞ (�, L (M 

2 , M 

2 )) ; (13)

(ii) Symmetry conditions : 

 αβγ δ = C γ δαβ = C γ δβα α, β, γ , δ = 1 , 2 , a.e. in �, (14)

where C αβγ δ are the cartesian components of the elasticity tensor

C ; 

(iii) Strong convexity : 

C A · A ≥ ξ0 | A | 2 , a.e. in �, (15)

for every 2 × 2 symmetric matrix A and for some positive constant

ξ 0 . 

The plate tensor P = P (x ) is defined by 

P = 

h 

3 

12 

C . (16)

Let ̂ M = ( ̂  M 2 , 
̂ M 1 ) ∈ H 

− 1 
2 (∂�, R 

2 ) (17)

be a couple field acting on the boundary, satisfying the compati-

bility conditions ∫ 
∂�

̂ M α = 0 , α = 1 , 2 . (18)

The energy functional associated to the deformation of the plate

under the action of the boundary couple field 

̂ M is given by 

J : H 

2 (�) → R , J(v ) = 

1 

2 

a (v , v ) − l(v ) , (19)

where 

a (v , u ) : H 

2 (�) × H 

2 (�) → R , a (v , u ) = 

∫ 
P ∇ 

2 v · ∇ 

2 u, (20)

�

(v ) : H 

2 (�) → R , l(v ) = 

∂�

̂ M 2 v , 2 − ̂ M 1 v , 1 . (21)

he transversal displacement w = w (x 1 , x 2 ) of the middle surface

f the plate �, induced by the application of the couple field 

̂ M at

he boundary, is a minimizer of the energy functional J , which at-

ains a unique minimum up to addition of an affine function of the

ariables x 1 , x 2 , see, for instance, Morassi et al. (2007) (Proposition

.4). In order to univocally determine w , we impose the following

ormalization conditions 
 

�
w = 0 , 

∫ 
�

w, α = 0 , α = 1 , 2 , (22)

nder which we have 

 w ‖ H 2 (�) ≤ Cρ2 
0 ‖ ̂

 M ‖ 

H 
− 1 

2 (∂�, R 2 ) 
, (23)

here C > 0 only depends on h, A 0 , A 1 and ξ 0 . 

The strong formulation of the equilibrium problem for a plate

ith corners is a very delicate matter. The boundary conditions

or the Neumann problem are usually derived in mechanical lit-

rature (see for instance Ne ̌cas and Hlaváček (1981) ) assuming a

riori further regularity of the solution. On the other hand, Gris-

ard and Nazaret pointed out delicate aspects of this theory in

risvard (1992) and Nazaret (1998) . 

In order to give an idea of the arguments which lead to the

erivation of the Neumann boundary conditions, let us assume

ere that w ∈ H 

4 ( �). 

The first variation of the energy functional J at the solution w

s given, for every h ∈ H 

2 ( �), by 

J(w )[ h ] = −
∫ 
�

M αβ (w ) h, αβ −
∫ 
∂�

(− ̂ M 1 h, 1 + ̂

 M 2 h, 2 ) , (24)

here the 2 × 2 matrix M of the contact couples ( M αβ ), α, β = 1 , 2 ,

s given by 

 = −P ∇ 

2 w. (25)

ntegrating by parts in (24) and noticing that, in local coordinates,

, α = n αh, n + ταh, s , in ∂� \ ∪ 

Q 
i =1 

V i , (26)

e have 

−
∫ 
�

M αβ, αβ (w ) h + 

∫ 
∂�

M αβ, β (w ) n αh 

−
∫ 
∂�

h, n (M αβ (w ) n αn β − ̂ M n ) 

−
∫ 
∂�

h, s (M αβ (w ) n βτα + 

̂ M τ ) = 0 , (27)

or every h ∈ H 

2 ( �), where the bending moment ̂ M n and the twisting

oment ̂ M τ are given by ̂ 

 n = 

̂ M 1 n 1 − ̂ M 2 n 2 , 
̂ M τ = 

̂ M 1 n 2 + 

̂ M 2 n 1 . (28)

y integrating by parts the last integral in (27) , we have ∫ 
∂�

h, s (M αβ (w ) n βτα + 

̂ M τ ) 

= 

Q ∑ 

q =1 

∫ 
ω q 

(
h (M αβ (w ) n βτα + 

̂ M τ ) 
)
, s 

−
Q ∑ 

q =1 

∫ 
ω q 

h (M αβ (w ) n βτα + 

̂ M τ ) , s (29)

ow, let us evaluate 

(ω q ) = 

∫ 
ω q 

(
h (M αβ (w ) n βτα + 

̂ M τ ) 
)
, s (30)
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iven a point P q interior to the curve ω q , let us split ω q as the

nion of the subarcs ω q ,1 , ω q ,2 , having end points V q , P q and P q ,

 q +1 , respectively. For any sufficiently small ε > 0, let P εq = ϕ(ε) ∈
 q, 1 , P 

ε
q +1 

= ϕ(	 (ω q ) − ε) ∈ ω q, 2 , and let ω 

ε
q, 1 

and ω 

ε
q, 2 

be the sub-

rcs of ω q having end points P εq , P q and P q , P 
ε
q +1 

, respectively. 

We have that 

(ω q ) = I(ω q, 1 ) + I(ω q, 2 ) . (31)

et us consider, for example, I ( ω q ,1 ). Since w ∈ H 

4 ( �), M αβw ∈
 

3 
2 (ω q ) ⊂ W 

1 , 1 (ω q ) , so that h (M αβ (w ) n βτα + 

̂ M τ ) is an absolutely

ontinuous function and we may write 

(ω 

ε
q, 1 ) = 

(
h (M αβ (w ) n βτα + 

̂ M τ ) 
)
(P q ) 

−
(
h (M αβ (w ) n βτα + 

̂ M τ ) 
)
(P εq ) 

ince the function h (M αβ (w ) n βτα + 

̂ M τ )) , s is integrable over ω q ,1 ,

here exists lim ε→ 0 I(ω 

ε
q, 1 

) = I(ω q, 1 ) . Therefore there exists also 

(h (M αβ (w ) n βτα + 

̂ M τ ))(V 

+ 
q ) 

≡ lim 

ε→ 0 

(
h (M αβ (w ) n βτα + 

̂ M τ ) 
)
(P εq ) 

= 

(
h (M αβ (w ) n βτα + 

̂ M τ ) 
)
(V q ) − I(ω q, 1 ) . (32) 

y applying the same arguments to ω q ,2 , and summing up over

 = 1 , . . . , Q, expression (29) becomes ∫ 
∂�

h, s (M αβ (w ) n βτα + 

̂ M τ ) 

= 

Q ∑ 

q =1 

(
h (M αβ (w ) n βτα + 

̂ M τ ) 
)| V −q +1 

V + q 

−
∫ 
∂�\∪ Q 

q =1 
V q 

h (M αβ (w ) n βτα + 

̂ M τ ) , s (33) 

y the arbitrariness of the test function h, h ∈ H 

2 ( �), by inserting

33) in (27) , we obtain the strong formulation of the equilibrium

roblem 

 αβ,αβ (w ) = 0 , in �, (34) 

 αβ (w ) n αn β = 

̂ M n , on ∂�, (35) 

 αβ,β (w ) n α + (M αβ (w ) n βτα) , s = −( ̂  M τ ) , s , on ∂� \ ∪ 

Q 
q =1 

V q , 

(36) 

 M αβ (w ) n βτα + 

̂ M τ � (V q ) = 0 , q = 1 , . . . , Q, (37) 

here, for any function f , f : ∂� → R , the jump of f at a point

 q ∈ ∂� is denoted by � f � (V q ) . 

By recalling (25) , the equilibrium problem (34) –(37) for the

late with corners can be rewritten in a compact form as 

iv ( div (P ∇ 

2 w )) = 0 , in �, (38) 

(P ∇ 

2 w ) n · n = − ̂ M n , on ∂�, (39) 

iv (P ∇ 

2 w ) · n + ((P ∇ 

2 w ) n · τ ) , s = ( ̂  M τ ) , s , on ∂� \ ∪ 

Q 
q =1 

V q , 

(40) 

 (P ∇ 

2 w ) n · τ − ̂ M τ � (V q ) = 0 , q = 1 , . . . , Q . (41) 

et us notice that, once we are able to produce a function

 ∈ H 

4 ( �) which satisfies (34) –(37) in the strong sense, then we

an retrace backwards the steps described above, obtaining that
 is a weak variational solution to the equilibrium problem, and

herefore is determined up to the addition of an affine function. In

ur test problems (see Section 4 ), this regularity condition is in-

eed satisfied. 

. The inverse problem 

Let us assume that the plate contains a possible inclusion D ×
 − h 

2 , 
h 
2 ] , where D is a measurable subset of �. 

We consider the case when the background material is of Lamé

ype, with plate tensor P ∈ L ∞ (�, L (M 

2 , M 

2 )) defined by 

 A = B [(1 − ν) A 

sym + ν(trA ) I 2 ] , (42) 

or every 2 × 2 matrix A , where I 2 is the 2 × 2 identity matrix and

r( A ) denotes the trace of A . Here, as standard notation, B is the

ending stiffness of the plate, 

 (x ) = 

h 

3 

12 

(
E(x ) 

1 − ν2 (x ) 

)
, (43) 

here the Young’s modulus E and the Poisson’s coefficient ν are

iven in terms of the Lamé moduli as 

(x ) = 

μ(x )(2 μ(x ) + 3 λ(x )) 

μ( x ) + λ(x ) 
, ν( x ) = 

λ( x ) 

2( μ( x ) + λ(x )) 
. (44) 

n this case, the strong convexity condition (15) becomes 

(x ) ≥ α0 > 0 , 2 μ(x ) + 3 λ(x ) ≥ γ0 > 0 , a.e. in �, (45) 

nd, in terms of the Young’s modulus E and the Poisson’s ratio ν ,

t becomes 

(x ) > 0 , −1 < ν(x ) < 

1 

2 

, a.e. in �. (46) 

We further assume that P is of C 1,1 class, that is, there exists

 2 > 0 such that 

 λ‖ C 1 , 1 ( �) + ‖ μ‖ C 1 , 1 ( �) ≤ A 2 . (47) 

he plate tensor inside the inclusion is denoted by ˜ P , ˜ P = 

h 3 

12 ̃
 C ,

here ˜ C satisfies conditions (13) –(15) , The material of the inclu-

ion might be either stiffer or softer than the background material,

nd we require the following jump conditions: 

Either there exist η > 0 and δ > 1 such that 

P ≤ ˜ P − P ≤ (δ − 1) P , a.e. in D, ( stiff inclusion ) , (48) 

r there exist η > 0 and 0 < δ < 1 such that 

P ≤ P −˜ P ≤ (1 − δ) P , a.e. in D, ( soft inclusion ) . (49) 

et us consider the plate problem with or without inclusion: 

iv ( div ((χ�\ D P + χD ̃
 P ) ∇ 

2 w )) = 0 , in �, (50) 

(P ∇ 

2 w ) n · n = − ̂ M n , on ∂�, (51) 

iv (P ∇ 

2 w ) · n + ((P ∇ 

2 w ) n · τ ) , s = ( ̂  M τ ) , s , on ∂� \ ∪ 

Q 
q =1 

V q , 

(52) 

 (P ∇ 

2 w ) n · τ − ̂ M τ � (V q ) = 0 , q = 1 , . . . , Q, (53) 

nd 

iv ( div (P ∇ 

2 w 0 )) = 0 , in �, (54) 

(P ∇ 

2 w 0 ) n · n = − ̂ M n , on ∂�, (55) 
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Fig. 1. Specht’s triangular finite element: nodes ( i, j, k ), edge lengths ( 	 i , 	 j , 	 k ) and 

area partitions ( ξ i A, ξ j A, ξ k A ). 

Fig. 2. Finite element discretization of level η = a/t for a square domain ( η = 8 in 

this case). 

Fig. 3. Computed error on normalized maximum displacements w max b/qa 4 − 1 , in 

percentage, with respect to the number of the nodes n N of the mesh. 

 

 

Fig. 4. Computed normalized strain energies W 0 /W 

∗
0 with respect to the number of 

nodes n N of the mesh. 
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div (P ∇ 

2 w 0 ) · n + ((P ∇ 

2 w 0 ) n · τ ) , s = ( ̂  M τ ) , s , on ∂� \ ∪ 

Q 
q =1 

V q , 

(56)

� (P ∇ 

2 w 0 ) n · τ − ̂ M τ � (V q ) = 0 , q = 1 , . . . , Q . (57)
 I  
he solutions w and w 0 are uniquely determined by imposing the

ormalization conditions (22) . 

Our size estimates are given in terms of the normalized work

ap 

W − W 0 

W 0 

∣∣∣, (58)

here 

 = −
∫ 
∂�

̂ M τ,s w + 

̂ M n w, n = 

∫ 
�
(χ�\ D P + χD ̃

 P ) ∇ 

2 w · ∇ 

2 w, (59)

 0 = −
∫ 
∂�

̂ M τ,s w 0 + 

̂ M n w 0 ,n = 

∫ 
�

P ∇ 

2 w 0 · ∇ 

2 w 0 . (60)

he analytical bounds of the area of D are stated in (Morassi et al.,

007, Theorem 4.1) . 

heorem 3.1. Under the above assumptions, let D be a measurable

ubset of � satisfying 

ist (D, ∂�) ≥ d 0 ρ0 (61)

nd 

rea ( { x ∈ D | dist{ x, ∂D } > h 1 } ) ≥ 1 

2 

area (D ) (62)

or given positive constants d 0 , h 1 . 

If (48) holds then we have 

1 

δ − 1 

C + 1 ρ
2 
0 

W 0 − W 

W 0 

≤ | D | ≤ δ

η
C + 2 ρ

2 
0 

W 0 − W 

W 0 

. (63)

f, conversely, (49) holds then we have 

δ

1 − δ
C −1 ρ

2 
0 

W − W 0 

W 0 

≤ | D | ≤ 1 

η
C −2 ρ

2 
0 

W − W 0 

W 0 

, (64)

here C + 
1 

, C −
1 

only depend on A 0 , A 1 , d 0 , α0 , γ 0 , A 2 and C + 
2 

, C −
2 

only

epend on the same quantities and, in addition, on h 1 and on the

atio of norms 
‖ ̂  M ‖ 

L 2 (∂�) 

‖ ̂  M ‖ 
H 

− 1 
2 (∂�) 

. 

The proof of this theorem is mainly based on two steps.

n the first one it is shown that ∫ | ∇ 

2 w | 2 is comparable to
D 0 
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Fig. 5. Case (i). Plate subject to constant distribution of bending moments on the 

boundary (a); normalized work gap (W − W 0 ) /W 0 in terms of the position of a sin- 

gle 1 × 1 square inclusion, with f = 0 . 2 , | D | / | �| = 6 . 25 · 10 −4 and mesh based on a 

40 × 40 grid (b). 
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Fig. 6. Case (i). Plate subject to a constant distribution of bending moments on 

the boundary: influence of the geometrical parameter d for soft square inclusions 

( f = 0 . 2 ) on a mesh based on a 26 × 26 grid. 
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∇
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∇

 W − W 0 | . More precisely, we have the following proposition, see

Morassi et al., 2007, Lemma 5.1) . 

roposition 3.2. Under the above assumptions, if (48) holds, then 

ηξ0 

δ

∫ 
D 

| ∇ 

2 w 0 | 2 ≤ W 0 − W ≤ (δ − 1) ξ1 

∫ 
D 

| ∇ 

2 w 0 | 2 ; (65) 

f, instead, (49) holds, then 

ξ0 

∫ 
D 

| ∇ 

2 w 0 | 2 ≤ W − W 0 ≤ 1 − δ

δ
ξ1 

∫ 
D 

| ∇ 

2 w 0 | 2 , (66) 

here ξ0 = 

h 3 

12 min { 2 α0 , γ0 } , ξ1 = 

h 3 E 
12(1 −ν2 ) 

max { 1 − ν, 1 + ν} . 
The second step consists in controlling the integral ∫ D | ∇ 

2 w 0 | 
2 

n terms of the measure of D . In particular, the more difficult as-

ect consists in estimating from below ∫ D | ∇ 

2 w 0 | 
2 , and this task

nvolves refined quantitative estimates of unique continuation for

he reference solution w 0 , see Morassi et al. (2007) for details. 

. Numerical simulations 

In this section we present and discuss the results of a series

f numerical simulations aimed to the evaluation of the constants
ppearing in Theorem 3.1 . We restrict our attention to some model

roblems, significant for applications, in which explicit expressions

f ∇ 

2 w 0 are available. For these cases, we compare the theoretical

rediction with the results of the corresponding numerical simula-

ion. 

.1. Test problems 

In our numerical experiments we consider a Kirchhoff–Love

quare plate, with side a = 0 . 25 m and thickness h = 0 . 005 m.

he Lamé parameters of the material are λ = 118 , 846 MPa and

= 79 , 231 MPa, typical of a mild steel ( ν = 0 , 3 ). The inclusion

s a connected subset of � and is made of Lamé material, with

late tensor 

 

 = f P , (67) 

here f > 0 is the stiffness ratio . All the simulations refer to ̂ M =
00 Pa. Under this choice of the parameters, we have ξ0 = B (1 −
) , ξ1 = B (1 + ν) . 

We first consider three cases in which the Hessian matrix ∇ 

2 w 0 

oes not vanish in �. They correspond to the following Neumann

oundary conditions: (i) bending moments along all the edges; (ii)

ending moments along two opposite edges; (iii) torsional mo-

ents along two opposite edges, see Figs. 5 (a), 10 (a) and 14 (a). 

( i) Bending moments along all the edges: 

n x 2 = 0 , ̂ M = − ̂ M e 1 , on x 2 = a, ̂ M = 

̂ M e 1 , 

n x 1 = 0 , ̂ M = 

̂ M e 2 , on x 1 = a, ̂ M = − ̂ M e 2 . 

y using the strong formulation (54) –(57) , we obtain the Hessian

atrix of the solution w 0 in [0, a ] × [0, a ]: 

 

2 w 0 = 

̂ M 

B (1 + ν) 

∣∣∣∣1 0 

0 1 

∣∣∣∣. (68) 

(ii) Bending moments along two opposite edges: 

n x 2 = 0 , ̂ M = 0 , on x 2 = a, ̂ M = 0 , 

n x 1 = 0 , ̂ M = 

̂ M e 2 , on x 1 = a, ̂ M = − ̂ M e 2 , 

 

2 w 0 = 

̂ M 

B (1 − ν2 ) 

∣∣∣∣1 0 

0 −ν

∣∣∣∣. (69) 
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Fig. 7. Case (i). Plate subject to constant distribution of bending moments on the 

boundary: influence of the stiffness ratio f for square inclusions with d/a = 0 . 115 

and mesh based on a 26 × 26 grid; stiff (a) and soft (b) inclusions. 
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Fig. 8. First three families of inclusions generated from the center of the plate (re- 

peated patterns are shown using light color). 
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( iii) Torsional moments along two opposite edges: 

on x 2 = 0 , ̂ M = 0 , on x 2 = a, ̂ M = 0 , 

on x 1 = 0 , ̂ M = − ̂ M e 1 , on x 1 = a, ̂ M = 

̂ M e 1 , 

∇ 

2 w 0 = 

̂ M 

2 B (1 − ν) 

∣∣∣∣0 1 

1 0 

∣∣∣∣. (70)

Let us notice that δ = f, η = | f − 1 | , ∫ D |∇ 

2 w 0 | 2 = | D ||∇ 

2 w 0 | 2 , and

computing 

 0 = 

Eh 

3 

12(1 − ν2 ) 

(
(1 − ν) |∇ 

2 w 0 | 2 + ν(tr(∇ 

2 w 0 )) 
2 
)| �| , 

we can apply Proposition 3.2 obtaining, in the case of stiff inclu-

sion (see (48) ) [
(1 − ν) |∇ 

2 w 0 | 2 + ν(tr(∇ 

2 w 0 )) 
2 

( f − 1)(1 + ν) |∇ 

2 w 0 | 2 
]

W 0 − W 

W 0 

≤ | D | 
| �| 
≤
f 
(
(1 − ν) |∇ 

2 w 0 | 2 + ν(tr(∇ 

2 w 0 )) 
2 
)

( f − 1)(1 − ν) |∇ 

2 w 0 | 2 
W 0 − W 

W 0 

, (71)

nd 

 

f 
(
(1 − ν) |∇ 

2 w 0 | 2 + ν(tr(∇ 

2 w 0 )) 
2 
)

(1 − f )(1 + ν) |∇ 

2 w 0 | 2 
] 

W − W 0 

W 0 

≤ | D | 
| �| 

≤
[

(1 − ν) |∇ 

2 w 0 | 2 + ν(tr(∇ 

2 w 0 )) 
2 

(1 − f )(1 − ν) |∇ 

2 w 0 | 2 
]

W − W 0 

W 0 

(72)

or soft inclusion (see (49) ). 

The non-vanishing of the Hessian matrix can be a restrictive

ssumption in practical applications. For this reason, it is worth-

hile to investigate cases in which this condition is not satisfied.

herefore, let us consider the function w (x 1 , x 2 ) = (x 1 − a 
2 ) 

3 which

olves Eq. (54) in [0, a ] × [0, a ], for any homogeneous isotropic ma-

erial and whose Hessian matrix vanishes along the line x 1 = 

a 
2 .

ore precisely, 

( iv) Hessian vanishing along x 1 = 

a 
2 : 

n x 2 = 0 , ̂ M = −Bν(6 x 1 − 3 a ) e 1 , 

on x 2 = a, ̂ M = Bν(6 x 1 − 3 a ) e 1 + 6 Bae 2 , 

n x 1 = 0 , ̂ M = −6 Bx 2 e 1 − 3 aBe 2 , 

on x 1 = a, ̂ M = 6 Bx 2 e 1 − 3 aBe 2 . 

(73)
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Fig. 9. Case (i). Plate subject to constant distribution of bending moments on the 

boundary: comparison between square inclusions (mesh based on a 26 × 26 grid, 

d/a = 0 . 115 ) and inclusions of generic shape (mesh based on a 18 × 18 grid, d/a = 

0 . 115 ) with f = 0 . 2 (a); influence of the normalized isoperimetric deficit I d (b). 

∇
W

W

∫
F  

b

a

Fig. 10. Case (ii). Plate subject to constant distribution of bending moments along 

two opposite edges (a); normalized work gap (W − W 0 ) /W 0 in terms of the posi- 

tion of a single 1 × 1 square inclusion, with f = 0 . 2 , | D | / | �| = 6 . 25 · 10 −4 and mesh 

based on a 40 × 40 grid (b). 

Fig. 11. Case (ii). Plate subject to constant distribution of bending moments along 

two opposite edges: influence of the parameter d for square inclusions, with f = 0 . 2 

and mesh based on a 26 × 26 grid. 
 

2 w 0 = 

∣∣∣∣6 

(
x 1 − a 

2 

)
0 

0 0 

∣∣∣∣. (74) 

e can compute 

 0 = 

h 

3 E 

12(1 − ν2 ) 

∫ 
�

|∇ 

2 w 0 | 2 = 

h 

3 E 

4(1 − ν2 ) 
a 2 | �| , (75) 

 

D 

|∇ 

2 w 0 | 2 ≤ 9 a 2 | D | . (76) 

rom Proposition 3.2 , (75) and (76) , we have the following lower

ounds for the relative measure of stiff inclusions 

| D | 
| �| ≥

(
1 

3( f − 1)(1 + ν) 

)
W 0 − W 

W 0 

, (77) 

nd soft inclusions 

| D | 
| �| ≥

(
f 

3(1 − f )(1 + ν) 

)
W − W 0 

W 0 

, (78) 
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Fig. 12. Case (ii). Plate subject to constant distribution of bending moments along 

two opposite edges: influence of the stiffness ratio f for square inclusions, with 

d/a = 0 . 115 and mesh based on a 26 × 26 grid; stiff (a) and soft (b) inclusions. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Case (ii). Plate subject to constant distribution of bending moments along 

two opposite edges: comparison between square inclusions (26 × 26 mesh, d/a = 

0 . 115 ) and inclusions of generic shape (18 × 18 mesh, d/a = 0 . 115 ), with f = 0 . 2 (a); 

influence of the normalized iso-perimetric deficit I d (b). 
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respectively. 

In order to obtain an upper bound for | D | 
| �| , and in absence of a

positive pointwise lower bound of | ∇ 

2 w 0 |, we look for an integral

lower bound. Keeping fixed the area of the inclusion D , the min-

imum of ∫ D | ∇ 

2 w 0 | 
2 is reached for the rectangle D 

∗ = [ a 2 − γ , a 2 +
γ ] × [0 , a ] , where | D | = 2 aγ . A trivial computation gives ∫ 

D 

|∇ 

2 w 0 | 2 ≥ 3 

| D | 3 
| �| . (79)

Therefore, from Proposition 3.2 , (75) and (79) , we have the follow-

ing upper bounds for the relative measure of stiff inclusions 

| D | 
| �| ≤

(
f 

( f − 1)(1 − ν) 

) 1 
3 (W 0 − W 

W 0 

) 1 
3 

, (80)

and soft inclusions 

| D | 
| �| ≤

(
1 

(1 − f )(1 − ν) 

) 1 
3 
(

W − W 0 

W 0 

) 1 
3 

, (81)

respectively. These estimates are a numerical confirmation of

the optimality of the Hölder character of the size estimates

from above, which were obtained in an abstract setting in

(Morassi et al., 2009, Theorem 3.1) 
In fact, in our simulations, we consider inclusions which belong

o specific discrete families: they are either squares obtained as

nion of elementary squares of side a 
26 or more general sets ob-

ained as union of the triangles described in Fig. 2 , which have

athetus of length 

a 
18 . Standard computations show that the mini-

um of ∫ D | ∇ 

2 w 0 | 
2 is reached in the former case, obtaining that 

 

D 

|∇ 

2 w 0 | 2 ≥ 12 

26 

2 
a 2 | D | . (82)

herefore, from Proposition 3.2 , (75) and (82) , we have the follow-

ng upper bounds for the relative measure of stiff inclusions 

| D | 
| �| ≤

(
169 f 

( f − 1)(1 − ν) 

)
W 0 − W 

W 0 

, (83)

nd soft inclusions 

| D | 
| �| ≤

(
169 

(1 − f )(1 − ν) 

)
W − W 0 

W 0 

, (84)

espectively. 
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Fig. 14. Case (iii). Plate subject to constant distribution of twisting moments along 

two opposite edges (a); normalized work gap (W − W 0 ) /W 0 in terms of the posi- 

tion of a single 1 × 1 square inclusion, with f = 0 . 2 , | D | / | �| = 6 . 25 · 10 −4 and mesh 

based on a 40 × 40 grid (b). 
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Fig. 15. Case (iii). Plate subject to constant distribution of twisting moments along 

two opposite edges: influence of the stiffness ratio f for square inclusions, with 

d/a = 0 . 115 and mesh based on a 26 × 26 grid; stiff (a) and soft (b) inclusions. 
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.2. Finite element model for Kirchhoff–Love plate 

In order to numerically assess the capabilities of the energy gap

n the estimation of the inclusion size, a series of finite element

nalysis have been performed. The choice of the optimal finite el-

ment derives from the balance between the computation cost re-

ated to the large of numerical simulations to be performed and

he accuracy in the evaluation of the work gap. This choice arises

rom the following considerations: 

1. triangular elements have to be preferred since they are capable

to better describe general shape inclusions; 

2. appropriate plate elements have to be able to impose C 1 inter-

element continuity, at least in relaxed form; 

3. moderately fine meshes have to be anyway used in order to

represent as accurate as possible the considered inclusion. 

Consequently, all the problems considered in the numeri-

al experimentation have been discretized on the basis of a

hree-node triangular element defined in the Specht’s paper, see

pecht (1988) for an in-depth discussion, useful for general appli-

ation to elastic Kirchhoff–Love plates. 

Specht’s element is a refinement of a triangular finite element

hich uses polynomial displacement basis for the three-node

late bending element, proposed initially by Zienkiewicz and

aylor (20 0 0) and improved successively by Bergan (1980) ,
btained by relaxing the C 1 inter-element continuity. In this way

he Specht’s element overcomes the patch test without paying

he price of more sophisticated, therefore more expensive in

omputational terms, elements. 

This finite element is defined by the out-of-plane displacements

nd by the two rotation of the nodes collocated in the triangle ver-

ices in such a way that these nine parameters describe univocally

he transversal displacement of the plate by means of a polyno-

ial expansion complete up to the second order plus three terms

aking into account the third- and fourth-order contributions. More

recisely, the Ritz interpolating space is defined as follows: 

 = 

{
ξ1 , ξ2 , ξ3 , ξ1 ξ2 , ξ2 ξ3 , ξ3 ξ1 , 

2 
1 ξ2 + 

1 

ξ1 ξ2 ξ3 (3(1 − μ3 ) ξ1 − (1 + 3 μ3 ) ξ2 + (1 + 3 μ3 ) ξ3 ) , 

2 
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Fig. 16. Case (iii). Plate subject to constant distribution of twisting moments along 

two opposite edges: comparison between square inclusions (26 × 26 grid, d/a = 

0 . 115 ) and inclusions of generic shape (18 × 18 grid, d/a = 0 . 115 ) with f = 0 . 2 (a); 

influence of the normalized isoperimetric deficit I d (b). 

 

 

 

 

 

 

 

 

 

Fig. 17. Case (iv). Plate with Hessian vanishing along x 1 = a/ 2 : geometry and 

boundary conditions (a) and normalized work gap (W − W 0 ) /W 0 in terms of the 

position of a single 1 × 1 square inclusion with f = 0 . 2 , | D | / | �| = 6 . 25 · 10 −4 and 

mesh based on a 40 × 40 grid (b). 
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b  
ξ 2 
2 ξ3 + 

1 

2 

ξ1 ξ2 ξ3 (3(1 − μ1 ) ξ2 − (1 + 3 μ1 ) ξ3 + (1 + 3 μ1 ) ξ1 ) , 

ξ 2 
3 ξ1 + 

1 

2 

ξ1 ξ2 ξ3 (3(1 − μ2 ) ξ3 − (1 + 3 μ2 ) ξ1 + (1 + 3 μ2 ) ξ2 ) 

}
, 

(85)

where ξ i , ξ j , ξ k are the area coordinates of the element ( ξi + ξ j +
ξk = 1 ), see Fig. 1 , the parameters 

μ1 = 

	 2 3 − 	 2 2 

	 2 
1 

, μ2 = 

	 2 1 − 	 2 3 

	 2 
2 

, μ3 = 

	 2 2 − 	 2 1 

	 2 
3 

(86)

depend from the lengths 	 i , 	 j , 	 k of the triangle edges and A is the

area of the element, see again Fig. 1 . 

The finite element just defined, beyond to overcome the patch

test, is characterized by a good computational performance as is

reported in Specht (1988) . Generally speaking, few elements allow

to reach a reasonable accuracy. However, it necessary to point out

that in our simulations the mesh grain is surely more refined than
he necessary in order to have the resolution necessary to highlight

he considered inclusion size. 

The finite element implementation used in the numerical sim-

lations has been tested on the basis of some standard thin plate

roblems. The analyses concern a square plate uniformly loaded

nd subjected to the following boundary conditions: 

Problem 1 simply-supported on all edges; 

Problem 2 simply-supported on two opposite edges and built-

in for the other ones; 

Problem 3 built-in on all edges. 

For the considered problems a indicates the edge length of the

late, h its thickness, q the applied uniform load and B = 

Eh 3 

12(1 −ν2 ) 

he bending stiffness of the plate in terms of the Young’s modu-

us E and the Poisson’s ratio ν . The used meshes are based on the

ubdivision of each field, with t size of a regular grid, in two parts,

ee Fig. 2 . In this way the mesh is uniquely determined by the

rain mesh parameter η = a/t which give immediately the num-

er of elements, equal to 2 η2 , and the numbers of nodes n , equal
N 
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Fig. 18. Case (iv). Hessian vanishing along x 1 = a/ 2 : influence of the stiffness ratio 

f for square inclusions with d/a = 0 . 115 and mesh based on a 26 × 26 grid; stiff (a) 

and soft (b) inclusions. 
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Fig. 19. Case (iv). Hessian vanishing along x 1 = a/ 2 : comparison between square 

inclusions (26 × 26 mesh) and inclusions of generic shape (18 × 18 mesh), with f = 

0 . 2 (a); influence of the normalized isoperimetric deficit I d (b). 
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l  
o (η + 1) 2 . Fig. 3 reports the error, in percentage, for normal-

zed values of the maximum displacement w max B/qa 4 − 1 of the

lates and Fig. 4 shows the convergence of the strain energy of

he plate W 0 to the exact value W 

∗
0 as reported in Timoshenko and

oinowski-Krieger (1987) . Results reported in Figs. 3 and 4 fur-

ished the guidelines to choice of the mesh size for the following

imulations. 

.3. Description of the results 

.3.1. Case (i): Bending moments along all the edges 

Fig. 5 reports, besides the sketch of the problem and its bound-

ry conditions ( Fig. 5 (a)), the normalized work gap (W − W 0 ) /W 0 

ith respect to the position of a single 1 × 1 square inclusion. The

raph has been obtained by interpolating the discrete values of the

ap, assigned on the centroids of the inclusions, and highlights that

he position of the inclusion slightly affects the energy gap. The

act that the work gap is rather insensitive with respect to the po-
ition of such small inclusions is consistent with the predictions

f the topological derivative approach, see, among other contribu-

ions, Novotny et al. (2005) and Sales et al. (2015) . Similar con-

iderations apply to next cases (ii) and (iii), see Figs. 10 and 14 ,

espectively. Fig. 6 shows the results obtained for three choices of

he parameter d , which represents the minimal distance between

nclusions and boundary. In particular, the choices d/a = 0 . 038 and

/a = 0 . 115 correspond to the removal of one and three rows of

quare elements near the boundary, respectively. 

Fig. 7 shows the effect of different values of the stiffness ra-

io f relative to square stiff inclusions, Fig. 7 (a), and square soft

nclusions, Fig. 7 (b). Results have been obtained by using a mesh

ased on a 26 × 26 grid and d/a = 0 . 115 . According to the theory,

nd noticing that hypothesis (62) is obviously satisfied, the points

( | W − W 0 | /W 0 , | D | / | �| ) belong to the angular sector defined by

he two straight lines representing the analytical bounds (71) and

72) , for stiff and soft inclusions, respectively. 

The study of inclusions of more general shape involves a very

arge number of simulations and therefore it would require an
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Fig. 20. Case (iv). Hessian vanishing along x 1 = a/ 2 : blow-up of the comparison 

between square inclusions (26 × 26 mesh) and inclusions of generic shape (18 × 18 

mesh), with f = 0 . 2 . 
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T

Fig. 21. Case (iv). Hessian vanishing along x 1 = a/ 2 : pattern of in
xcessive computational burden. Therefore, to make the numeri-

al analysis sustainable in practice, we have implemented an au-

omatic generator of subdomains. Specifically, the inclusions have

een generated starting from a triangular element placed at the

enter of the plate and adding adjacent elements to obtain fam-

lies with a given area | D |, see, for example, Fig. 8 for inclusions

ade by one, two and three triangular elements. The analysis has

een restricted to a mesh based on a 18 × 18 grid and the auto-

atic generation has been extended up to the family with 16 tri-

ngular elements. In spite of this coarse mesh, the number of in-

lusions to be considered is significantly high. Indeed, the plot of

ig. 9 (a), in which a comparison with the case of square inclusion

s proposed, required 63 , 365 simulations. In Fig. 9 (b) the data are

ollected on the basis of the normalized isoperimetric deficit of the

nclusion defined as 

 d = 

P 2 − 4 πA 

4 πA 

, (87)

here P and A are, respectively, the perimeter and the area of

he inclusion. It should be recalled that I p = 0 and I p = 0 . 273 for

 disc and a square, respectively. In Fig. 9 we have also drawn the

wo straight lines whose slope represents the numerical value of

he constants appearing in the theoretical size estimates. It clearly

merges that the theoretical bounds are rather pessimistic, see also

able 1 . 
clusions which produce extremal values of the work gap. 
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.3.2. Case (ii): Bending moments along two opposite edges 

In this case, bending moments of constant amplitude are

pplied along two opposite edges of the plate, see Fig. 10 (a).

ig. 10 (b) shows the variation of the normalized energy gap (W −
 0 ) /W 0 with respect to the position of a square inclusion of fixed

ize. The effect of the geometrical parameter d has been high-

ighted in Fig. 11 for stiffness ratio f = 0 . 2 , whereas Fig. 12 shows

he influence of different choices of f . The latter two analyses have

een performed for square inclusions in a mesh based on a 26 × 26

rid. Finally, Fig. 13 (a) reports the results for inclusions of general

hape, and Fig. 13 (b) highlights the role of the normalized isoperi-

etric deficit I d . 

Overall, the results are qualitatively similar to the previous

nes, the only significant difference being that the sector obtained

or soft inclusions of generic shape (with f = 0 . 2 ) is wider than the

orresponding sector obtained in case i); compare Figs. 9 (a) and

3 (a). 

.3.3. Case (iii): Twisting moments along two opposite edges 

The normalized work gap (W − W 0 ) /W 0 with respect to the po-

ition of a square inclusion of fixed size is reported in Fig. 14 (b)

or f = 0 . 2 and a mesh based on a 40 × 40 grid. 

The effect of the stiffness ratio f is investigated in Fig. 15 .

ig. 16 summarizes the result obtained for inclusions of general

hape. Compared to the previous cases (i) and (ii), the results of

he numerical simulations seem to show a lower sensitivity of the

ork gap for soft inclusions. The opposite happens for rigid inclu-

ions. 

.3.4. Case (iv): Hessian vanishing along x 1 = a/ 2 

As for the foregoing cases, Fig. 17 reports the boundary condi-

ions ( Fig. 17 (a)) and the normalized work gap (W − W 0 ) /W 0 eval-

ated for a single 1 × 1 square inclusion ( Fig. 17 (b)), with f = 0 . 2

nd a mesh based on a 40 × 40 grid. Fig. 17 (b) shows that the nor-

alized work gap is minimal and close to zero when the 1 × 1

quare inclusion is adjacent to the line x 1 = a/ 2 . The effect of the

tiffness ratio f is investigated in Fig. 18 . 

Fig. 19 compares the result obtained for square and general

hape inclusions. The influence of the isoperimetric deficit I d is

nalysed in Fig. 19 (b). Fig. 20 , in particular, is a blow-up of

ig. 19 (a) near the origin, which is useful for estimating the up-

er bound of the size estimates. 

Fig. 21 shows the results obtained by considering generic

hapes formed by groups of n elements with n = 1 , . . . , 9 . Only

or the groups with n = 4 , . . . , 9 , shapes which give the maximum

nd minimum values of the energy gap are highlighted. This fig-

re points out that the presence of an inclusion near the zeroes

f ∇ 

2 w 0 gives rise to small normalized work gap, which could ob-

truct its identification. It is worth noting how the condition of a

ero contribution to the elastic energy for the points of the plate

elonging to the line x = a/ 2 forces the elements of the groups

ith the minimum energy gap to take a position on both sides

f this line. 

. Concluding remarks 

In this paper we tested by numerical simulations the size es-

imates approach for the identification of inclusions in Kirchhoff-

ove elastic plates. In previous works ( Morassi et al., 2007; Cristo

t al., 2013a ) it was shown how upper and lower bounds of the

rea of an unknown elastic inclusion inside a thin elastic plate can

e obtained in terms of the difference between the work exerted

y a boundary couple field when the inclusion is present or ab-

ent. The analytical procedure behind these theoretical estimates

ypically leads to rather pessimistic evaluations of the constants
ppearing in the size estimates. Therefore, with a view to practi-

al applications of the size estimates approach as diagnostic tool,

n this paper we focused on the quantitative evaluation of such

onstants in some test cases. 

An extended series of numerical simulations has been carried

ut on a square plate subject to different sets of boundary con-

itions. The results of the tests performed confirm that the theo-

etical predictions of the bounds are rather pessimistic. Moreover,

he numerical analysis allowed to quantify how the constants ap-

earing in the lower and upper size estimates are influenced by

ome significant parameters of the problem, such as the position,

he shape and the stiffness of the inclusion. Another important as-

ect emerging from computations concerns the role played by the

oad distribution applied on the boundary of the specimen. It has

een verified that when the boundary couple field produces re-

ions of vanishing strain energy inside the plate, the upper bound

eteriorates. This may give a useful indication on the choice of the

oading distribution for practical applications of the method. 
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