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Abstract

Most of the dams around the world were designed before the introduction of seismic regula-

tions and without concerns about their dynamic behaviour. The failure of a large concrete

gravity dam might have catastrophic e�ects and its partial or total collapse can give rise

to uncontrolled water releases, putting at risk a large number of human lives, not counting

the considerable economic consequences. However, existing concrete gravity dams are an

important source of energy impossible to give up to, hence their preservation, also against

seismic events, is a fundamental task for our society. Since there are no case histories of

concrete gravity dams failed after seismic events, numerical models assume great impor-

tance for the evaluation of the seismic performance of such structures. If integrated in a

Structural Health Monitoring (SHM) system, numerical models are also a powerful tool to

control the structural behaviour of the dam during its regular use, and to detect possible

damage after seismic events.

Several di�erent sources of uncertainty are involved in concrete gravity dams modelling,

e.g. geometrical uncertainties, epistemic uncertainties related to the material constitutive

models, Soil-Structure-Interaction modelling approach. The e�ects of epistemic uncertain-

ties related to the material constitutive models can be reduced by exploiting all available

information about the dam. For this purpose, material test results are fundamental source

of information, even though they are not su�cient to properly calibrate a reliable FE model

of the dam. Measurements recorded on the dam body, e.g. displacements or ambient vi-

brations, represent important sources of information to calibrate the parameters of dam

twin models used to reproduce a particular Quantity of Interest (QI) of the dam.

In this research work two probabilistic SHM frameworks, de�ned in the Bayesian setting, for

concrete gravity dams are proposed. The �rst procedure allows calibrating the parameters

of a static twin model of the dam by using static displacement records and environmental

measurements. In this way, epistemic uncertainties related to the mechanical parameters



of the materials are reduced. The calibrated static twin model is integrated in a SHM

system in order to control the dam behaviour during its regular use.

The second proposed SHM framework allows both calibrating the parameters of a dynamic

twin model of the dam, by using ambient vibrations thus reducing the e�ects of the epis-

temic uncertainties, and controlling the health state of the structure. In particular, the

proposed procedure exploits the results of Operational Modal Analysis (OMA) techniques

which allows determining the experimental modal characteristics of the system by elabo-

rating ambient vibrations. The use of modal characteristics as reference QI in the updating

process allows reducing the computational burden. However, in this context the coherence

between experimental and numerical modes must be ensured. For this purpose a modi-

�ed version of the numerical algorithm Markov Chain Monte Carlo (MCMC) is proposed.

Indeed, by considering a reordering criterion within MCMC the numerical modes can be

matched to the experimental ones, discarding those with no correlation. The resulting

calibrated dynamic twin model of the dam is used to predict the seismic behaviour of the

structure through the fragility curves calculation. The reduction of epistemic uncertainties,

obtained using the proposed procedure allows improving the reliability of the fragility esti-

mation of the dam. The predictive model of the dam mode shapes is integrated in a SHM

system for damage detection purpose. Indeed, by exploiting the sensitivity of mode shapes

with respect to damage, the predictive model allows detecting anomalous phenomena.

Finally, a procedure, based on the Optimal Bayesian Experimental Design (OED), which

allows designing the SHM system layout maximizing the probability of damage detection,

is proposed. Moreover, by exploiting the relationship between damage development and

strength parameters of materials constitutive models, these latter can be updated.

Probabilistic procedures are generally expensive in terms of computational cost, which

becomes prohibitive when complex FE models are involved. Therefore in this research

work, meta models based on the general Polynomial Chaos Expansion (gPCE) technique

are widely used to reduce the computational burden.

A study of the main modelling issues in the seismic analysis of concrete gravity dams has

been done in order to recognize the main uncertainty sources whose reduction is neces-

sary. In particular, the e�ects of the choice of the material constitutive models of the SSI

modelling approach and of the FSI modelling approach on the seismic analysis result are

investigated.

A wide literature review on the seismic fragility assessment of concrete gravity dams and

the use of SHM system records for model parameters calibration is presented in order to

contextualize the present research work. Moreover, the theoretical background behind the



statistical tools used in this work is introduced in order to provide the reader with the

basic knowledge for understanding the present research work.

In the last part of the thesis, two real Italian concrete gravity dams are analysed in order

to test the proposed procedures. The numerical results highlight the possibility to apply

the procedures developed in this research work to real cases, thus improving both the

estimation of the structural fragility and the dam control.
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Chapter 1

Introduction

1.1 General overview of the topic and motivations

Concrete gravity dams are an important resource for our community due to their use

for energy production, �oods control, industrial and agricultural purposes and much else.

However, due to economical and environmental constraints, in developed countries new

dams are no longer being built. The largest part of the existing concrete gravity dams

have been built before the introduction of seismic regulations or they have been designed

without concerns about their dynamic behaviour. The existing ones are ageing and their

deterioration levels are reaching critical values. The American Society of Civil Engineers

(ASCE) 2013 report card for America's infrastructure (American Society of Civil Engineers

2013), which categorized the hazard related to US dams, classi�ed 14'700 dams as high risk,

12'400 as signi�cant risk, 59'000 low risk and 1300 as undetermined. The number of high-

hazard dams is increased by nearly 40% over the past decade (USACE - U.S Army Corps

of Engineers 2015). Following the Association of State Dam Safety O�cials (ASDSO)

report by 2020, the 70% of the US dams will be over 50 years old (ASDSO 2011) and most

of them are unlikely to safely withstand current design guidelines for potential maximum

�oods (PMF) and maximum credible earthquakes (MCE).
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As for Europe, and in particular high seismic areas as Italy, some similarities with the

American case can be found. Around 500 dams of di�erent typologies are in this country

and among them about 90% have been built before the 1980s and mainly designed following

static concepts.

Considering only the concrete gravity dams, none of them has ever collapsed after seismic

events, neither in Italy or in other parts of the world, as reported by Hall (1988) and Zhang

et al. (2016). However, due to the important role of such structures and the catastrophic

e�ects, in terms of human and economic losses, that the collapse of a dam could lead to, the

preservation and control of concrete dams are important tasks of our society. Numerical

models are powerful tools to understand and to investigate the seismic behaviour of concrete

dams, in particular because of the absence of case histories. Moreover, numerical models

can be used within a Structural Health Monitoring (SHM) system to predict the dam

behaviour, thus improving its control.

Several di�erent sources of uncertainty, which are usually categorized as epistemic and

aleatory, in�uence the numerical model results. Pragmatically, the main di�erence between

epistemic and aleatory uncertainties is the possibility of the analyst to reduce them once

new information are available, in the case of espitemic ones, or the impossibility to update

the state of knowledge, in the case of aleatory uncertainty, due to their randomness nature

(Der Kiureghian and Ditlevsen 2009). In the �eld of modelling for seismic assessment of

existing concrete gravity dams, once a particular deterministic model has been de�ned,

the main source of aleatory uncertainty is the seismic action, while the main epistemic

uncertainty sources can be categorized as:

� Geometric uncertainty: related to di�erences between the project and its devel-

opment.

� Material constitutive models: materials behaviour in the deterministic model.

� Model Parameters: material constitutive models parameters, boundary condi-

tions, damping etc..

Moreover, the choice of analysis method and veri�cation criteria leads to other uncertain-

ties in the �nal result. Regarding this point, international codes and scienti�c community

propose di�erent approaches. The scienti�c community, in recent years, has been devel-

oping reliable procedures to assess the structural fragility of concrete gravity dams by

using analysis methods generally developed for other kind of structures (Hariri-Ardebili

and Saouma 2016c). The second approach is proposed by regulations, that suggest the
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use of deterministic biased models which are corrected by safety factors related to speci�c

kind of analyses.

Epistemic uncertainties need to be reduced as much as possible by using all available

information on the structure. The observations recorded by the monitoring system are

important information on the structural behaviour and they can be used not only to assess

the health of the structure but also to calibrate the model parameters (ICOLD 2000). The

typology, the quality, as well as the devices position, lead to acquire di�erent kind of infor-

mation and the possibility to update the state of knowledge about di�erent uncertainties.

By introducing the information coming from the SHM into the structural analysis, twin

models of the dam can be calibrated. These models can be used to predict the structural

behaviour during its regular use or during seismic events, thus improving the structural

safety.

Only few applications of SHM to concrete gravity dams can be found in the literature, the

majority of which are performed in a deterministic setting.

The main aim of this thesis is the de�nition of suitable SHM systems for concrete dams by

combining structural analysis, statistical tools, static and dynamic records, with the aims

to control the structural behaviour and to calibrate twin models of the dam. Regarding

this latter purpose, a calibrated twin model of the dam can be used both to improve the

reliability of the SHM systems themselves or to improve the estimation of the structural

fragility. Indeed in this context, a twin model is a mathematical expression which simulates

the structural behaviour, static or dynamic, as a function of some parameters. Finite Ele-

ment model as well as probabilistic predictive models can be considered as twin, and they

can be used in di�erent way as real time structural control or dam behaviour prediction.

Statistical tools as Bayesian inference are used to set up a robust framework to reduce the

uncertainties. However, probabilistic procedure are computationally expensive and they

become prohibitive if applied in context where complex FE models are commonly used, as

in dam engineering �eld. Therefore, in this research work meta models are used to reduce

the computational burden, thus speeding up the proposed procedures.

Two real Italian concrete gravity dams are analysed in order to test the proposed pro-

cedures. In both examples real measurements recorded on the dam bodies are used to

update the state of knowledge. Since there are no information about the behaviour of

the damaged dams, it is simulated through high-�delity models of the structures. In this

context, a high-�delity model is a very detailed numerical model of the dam which allows

accurately simulating the structural behaviour.
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1.2 Objectives

The aim of this research work is the de�nition of a suitable SHM framework for static and

dynamic control of concrete dams, by combining structural analysis, monitoring systems

and statistical tools. The �nal SHM framework should be able both to assess the structural

health of the dam and to reduce the epistemic uncertainties of the twin models. Since the

twin models are used to predict the dam behaviour, the reliability of the SHM and the

estimation of the structural fragility are improved. The proposed research work, framed in

a probabilistic setting, aim to:

� Static SHM system: calibrate the parameters of the dam predictive model in order

to simulate the structural behaviour during normal operations, and control its health

state.

� Dynamic SHM system: calibrate the parameters of the dam predictive model in

order to simulate the structural behaviour during seismic events, thus improving the

estimation of its seismic fragility and controlling its health state during and after

seismic events.

� Devices Optimization for dynamic SHM : optimise the dynamic SHM system in order

to both maximize the probability of damage detection and acquire information for

the reduction of epistemic uncertainties.

Probabilistic procedures based on Bayesian inference have been developed using static and

dynamic measurements recorded by the monitoring system as source of information.

The application to real cases highlights the e�ectiveness of the proposed methodologies in

reducing the epistemic uncertainties involved in the seismic assessment of existing concrete

gravity dams.

1.3 Novelties of the work

The novelties of this research work are the following.

� The development of a procedure within a Bayesian framework, to calibrate the model

parameters using displacements recorded during normal operations, environmental

data and results of materials tests. The calibrated model can be employed to control

the health status of the dam and its daily behaviour. The procedure is applied to a

real large Italian dam, as case of study.
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� The development of a procedure within a Bayesian framework, in order to calibrate

the model parameters using ambient vibrations and results of materials tests. The

calibrated model can be used to predict the behaviour of the dam during seismic

events. In this way the epistemic uncertainties in the fragility analysis are reduced.

The procedure is applied to a real large Italian dam as case of study.

� The development of a procedure based on the Optimal Bayesian Experimental Design

(OED), to optimise the monitoring system layout with respect to the damage detec-

tion and, to the acquisition of information useful for material strength parameters

updating.

In this context, the general Polynomial Chaos Expansion (gPCE) technique is used to

reduce the computational burden, which is usually prohibitive when complex FE models

are involved.

1.4 Structure of the thesis

This thesis consists in 9 Chapters. The main contents of each Chapter is summarized as

follows:

� Chapter 1

A general overview of the topic with the motivations is presented. The basic concepts

and the main novelties regarding the seismic assessment of concrete gravity dams

developed in this work, are brie�y introduced.

� Chapter 2

An overview of the literature contributions on the seismic assessment and Structural

Health Monitoring of concrete gravity dams is provided.

� Chapter 3

The main modelling issues in the seismic analysis of concrete gravity dams are

shown. This includes a study of the in�uence of material constitutive models, the

soil-structure interaction and the �uid-structure interaction on the model output.

� Chapter 4

The theoretical background of the statistical tools used to develop the present re-

search work is introduced. In particular, the Bayesian inference, the gPCE technique

and the Optimal Bayesian Experimental Design are discussed.
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� Chapter 5

The proposed static SHM framework, based on data recorded by the monitoring

system during normal operations of the dam, is described.

� Chapter 6

The proposed method to calibrate the dynamic model parameters using ambient

vibration data is presented.

� Chapter 7

The proposed dynamic SHM framework and the optimization procedure for designing

it are presented.

� Chapter 8

The analysis of two case studies are presented.

� Chapter 9

This part collects conclusions of the thesis. The main goals achieved in the thesis

are summarised and suggestion for future developments are given.

6



Chapter 2

Literature background and main

contributions

2.1 Introduction

Among the infrastructures being part of the assets of a country, dams are fundamental due

to their use for energy production, �ood control and agricultural-industrial sustenance.

However, they are characterized by a high-risk level against seismic events since the largest

part of them have been designed without concerns about their dynamic behaviour. Because

of their importance for the community, existing concrete gravity dams must be preserved.

In this regard numerical models are a powerful tool since they can be used to control

the structural behaviour and to predict it during seismic events. However, epistemic and

aleatory uncertainties are involved in this process. Therefore, the aims of this research

project are: the development of probabilistic SHM systems which allows reducing the epis-

temic uncertainties and to control the structural behaviour. This research work can be

inserted in the research �eld of dam engineering and SHM. The present Chapter aims to

review the main research contributions related to the seismic assessment of concrete grav-

ity dams and the applications of SHM, static or dynamic, to concrete gravity dams.
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With the main objective of framing the problem by identifying the major research trends,

the Chapter is organized as follows:

Section 2.2 analyses the main issues related to the structural fragility assessment of existing

concrete gravity dams and how in literature those problems are usually faced.

Section 2.3 describes how monitoring systems of existing concrete gravity dams can be

used to control the structural behaviour and to detect damage. Regarding the latter point,

a review of the most common damage indexes available in literature for concrete gravity

dams is presented.

Section 2.4 illustrates the literature gap in the �eld of seismic assessment of existing con-

crete gravity dams.

2.2 Seismic fragility analysis of concrete gravity dams

2.2.1 Introduction

One of the main motivations of this work is the improvement of the existing concrete

gravity dams control by performing FE twin models which can be used to predict the

structural behaviour during its regular use and during seismic events. This last aspect can

be collocated in the research line of seismic fragility assessment of existing concrete gravity

dams.

The literature review presented in this section focuses the attention on the application

of common fragility assessment methodology to the case of concrete gravity dams, with

particular emphasis on the choice of the analysis typology, the epistemic and aleatory

uncertainties and de�nition of the limit state functions.

2.2.2 Fundamental concepts

In this section the fundamental idea behind the fragility assessment of structures is pre-

sented. The concept of structural fragility can be de�ned in a non technical way as "the

quality of a structure or a structural component, of being easily broken or damaged". The

introduction of fragility function in the seismic engineering �eld is due to Kennedy et al.

(1980). The authors de�ned a fragility function as a probabilistic relationship between

frequency of failure of a component of a nuclear power plant and peak ground acceleration

in an earthquake. In the �eld of seismic engineering the fragility function can be de�ned

as a mathematical relation which expresses the probability that some undesirable events
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occurs, i.e. the structure or a structural component reaches a limit state (LS), as a func-

tion of a measurable characteristic of the earthquake (IM), i.e. peak ground acceleration,

magnitude and so on. Alternatively, a fragility function can be de�ned as the cumulative

distribution of the capacity of a structure to resist an undesirable limit state (Porter 2003).

The previous de�nitions justify the use of fragility functions, not only to assess the struc-

tural vulnerability, but also to predict the structural behaviour during seismic events.

Moreover, fragility functions allow working in a probabilistic setting considering both epis-

temic and aleatory uncertainties. As discussed in Porter (2003), fragility functions are

commonly used to assess the structural vulnerability, as shown in �gure 2.1. Once a par-

Fig. 2.1: Analytical methods for estimating seismic vulnerability of a single asset (Porter
2003).

ticular LS has been de�ned as well as the IM, the fragility function FLS , related to the

selected LS, can be de�ned as

FLS (im) = P [LS|IM = im] , (2.1)

where im is a particular value if IM. Alternatively, by de�ning a demand parameter D and

the structural capacity CLS associated with the given LS, the fragility function Fd becomes

Fd (im) = P [D ≥ d|IM = im] , (2.2)

where d is a particular value of D. In some real applications multiple fragility functions

must be de�ned, since a structure or its components could experience several di�erent limit

states, sequentially, simultaneously or in a mutual exclusive way (Porter 2017).

Usually the probability of failure is assumed to be log-normally distributed (it is not the

only possible assumption or the best one or the more coherent with the reality, but it is

9
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just the most common one). In this way the Cumulative Density Function (CDF) can be

written as

FLS (im) = P [LS|IM = im] = Φ

[
ln (im)− ln (η)

β

]
, (2.3)

where Φ [·] is the standard normal CDF, β is the logarithmic standard deviation (also called

dispersion) and η is the median of the fragility function.

Fragility functions can be derived based on one of the following approaches (Porter 2017):

� Empirical: An empirical fragility function is created by �tting a function to the

observation recorded during experimental tests or in the real world. Usually, this

kind of fragility functions are built starting from the observations acquired during

post-earthquake survey, obviously this fragility functions lack of generality (Muntasir

Billah and Shahria Alam 2015).

� Analytical: An analytical fragility function is based on the results of numerical

models. In this case particular attention must be placed on the choice of the analysis

typology and how uncertainties are considered in the model.

� Heuristic: A heuristic fragility function is based on expert judgements, a pool of

experts guess or judge failure probability as a function of environmental excitation.

This approach is useful when empirical observations are very limited (ATC-13 1985).

� Hybrid: The above approaches can be combined to build fragility functions, reduc-

ing the computational e�ort but controlling the bias.

in the context of analytical fragility functions the choice of the analysis typology is a

fundamental aspect. In particular the analysis typology should be chosen balancing the

computational burden and the accuracy of the result.

Following Hariri-Ardebili and Saouma (2016c), the analysis typologies can be categorized

in a progressive way, �gure 2.2, in every analysis typology the uncertainties play a di�erent

role and so they have a di�erent weight.

In the application of the analytical de�nition of the fragility functions, equation 2.3, the

calibration of η and β, by �tting the analytical data point is fundamental. Therefore the

choice of the �tting methodology is an important aspect as indicated in Baker (2015).

The combination of aleatory and epistemic uncertainties in the seismic assessment of struc-

ture is one of the biggest issue. In this context, the epistemic uncertainties are these related

to the parameters of material models, while the aleatory ones are related to the record-

to-record variation. The best approach would suggest to use methods able to account for
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Fig. 2.2: Progressive analysis methodology for concrete dams (Hariri-Ardebili et al. 2014).

both uncertainties, like sampling based methods (Celarec and Dol²ek 2013) or spectral ap-

proach (Xiu 2010). In this regard, some examples are available in the literature, Celik and

Ellingwood (2010) analysed non-ductile reinforced concrete frames by using a sampling

based method to incorporate aleatory and epistemic uncertainties, the authors proposed

a con�dence bounds on the fragilities as a measure of their accuracy. However, these

methods lead to a high computational cost, so if complex numerical models are involved

these methods become prohibitive. Therefore, simpli�ed methods have been proposed in

literature. Usually these methods face this issue either by simplifying the deterministic

model or combining the mean values and the variances calculated separately for epistemic

and aleatory uncertainties. The combination is related to some measure of the gradient of

each random variable, likewise the First Order Reliability Method (FORM) and the First

Order Second Moment (FOSM) reliability method (Ditlevsen and Madsen 2007). Several

examples are available in literature, Dol²ek (2012) considered epistemic uncertainties by

using non linear static analyses, which were incorporated with the aleatory ones by using

incremental dynamic analysis (IDA) performed on an equivalent single degree of freedom

(SDOF) model of the structure. Vamvatsikos and Fragiadakis (2010) compared the fragility

curves obtained by using: (a) a Monte Carlo simulation with Latin Hypercube sampling,

(b) point estimate and (c) FOSM technique, showing the di�erence in the �nal results.

In the same work, as well as in Cornell et al. (2002) and Celarec and Dol²ek (2013), the

two uncertainty sources were combined through the well known square-root-sum-of-square
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rule,

βRU =
√
β2
R + β2

U . (2.4)

In equation 2.4, βR is the dispersion related to the aleatory uncertainty, βU is related to

the epistemic uncertainty and the βRU is their combination. Liel et al. (2009) developed

two simpli�ed methods, one which reduces the computational burden by approximating

the model output through a response surface. Whereas, the second method estimates

the gradients related to the epistemic uncertainties with a variational approach similar to

the FOSM. This latter is explained in detail since it has been used in this work. The

approach called Approximated Second Order Second Moment (ASOSM) method allows

calculating the fragility curve considering both epistemic and aleatory uncertainty as a

combination of the curves calculated considering only the record-to-record variation or

the uncertainty in the model parameters. Once the fragility curve related only to the

aleatory uncertainty is calculated, the shifts in terms of mean values and dispersions, due

to the epistemic uncertainties, are determined by perturbing every random variables ±1.7σ(
X+
i = Xi + 1.7σ X−i = Xi − 1.7σ

)
. Likewise FOSM, the gradients represent the average

slope about the mean

∂g (X)

∂Xi
=

∆µln,Sa,col
∆Xi

=
µln,Sa,col

(
X+
i

)
− µln,Sa,col

(
X−i
)

X+
i −X

−
i

(2.5)

where g (X) is the collapse capacity and µln,Sa,col is the mean value of the log-normal

collapse capacity. Once the gradients are de�ned, the dispersion related the epistemic

uncertainties σ2
ln,mod can be computed,

σ2
ln,mod =

 n∑
i=1

n∑
j=1

[
∂g (X)

∂Xi

∂g (X)

∂Xj

]
ρi,jσiσj

 . (2.6)

In equation 2.6, ρi,j is the correlation coe�cient between the variables i-th and j-th, σi
and σj are the standard deviations of the random variables i-th and j-th. The dispersion

σ2
ln,mod is combined with the one related to the record-to-record variation, following the

SRSS rule

σ2
ln,total = σ2

ln,mod + σ2
ln,RTR. (2.7)

The response asymmetry is given by the parameter ∆+/∆−,

∆+/∆− =
m̂+/m̂

m̂/m̂−
, (2.8)
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where m̂ is the median capacity of the model with mean model parameters and

m̂+ =
1

n

n∑
i=1

mXi+σi m̂− =
1

n

n∑
i=1

mXi−σi (2.9)

represent the average of the median collapse capacities when the model random variables

are perturbed, and n is related to the analysis number, equal to the number of the model

random variables. The mean value of the fragility curve which accounts for both aleatory

and epistemic uncertainties m̂mod is obtained by multiplying the mean value of the curve

related only to the record-to-record variability with the coe�cient ∆+/∆−.

Usually, incremental dynamic analysis with multi-records are used in order to properly

consider the record-to-record variation, this analysis is characterised by a high computa-

tional burden.

In the next section, the most signi�cant applications on fragility analyses of concrete grav-

ity dams are presented.

2.2.3 Review of the existing applications

One of the �rst work about probabilistic analysis of concrete gravity dams was presented

in Milton De Araiijo and Awruchb (1998). In this paper both the aleatory uncertainty,

due to seismic excitation, and the epistemic ones, related to the materials characteristics,

were considered and combined by using a Monte Carlo simulation. The seismic excitation

was generated as non-stationary stochastic process with two basic random variables: the

acceleration amplitude and the phase angles. In particular the acceleration amplitude

was modelled as a Gaussian random variable, while the phase angles were considered

independent uniform random variables. In this paper the concrete compressive strength was

assumed as base random variable to generate, through deterministic relation, the tensile

strength, the concrete Young's modulus and the adhesion of the dam-foundation interface.

The authors calculated the safety factor against slide at the base, concrete crushing at the

toe and tensile cracking at the heel, for 50 simulations. In �gure 2.3 the CDF of the safety

factor against cracking at the heel is shown assuming corresponding both to a Gaussian

random variable and to a log-normal one. Finally, the authors used the Anderson-Darling

(AD) test (Anderson and Darling 1954) to determine the most appropriate distribution,

discovering that the log-normal one better �ts the observations.

Tekie and Ellingwood (2003) analysed the e�ects of epistemic and aleatory uncertainties

in the fragility assessment of the Bluestone dam in West Virginia (US). The probabilistic

analysis was done through a Monte Carlo simulation with LHS sampling method in order
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Fig. 2.3: CDF of the safety factor against cracking, adapted from Milton De Araiijo and
Awruchb (1998).

to reduce the computational burden. The deterministic numerical model was composed by

rigid blocks in which the shear transfer between them occurred by friction. Whereas, the

dam-foundation interface was characterized by a perfectly plastic Mohr-Coulomb friction

law. The free �elds records were deconvolved and applied at the base of the foundation,

while the �uid structure interaction was modelled by using the simpli�ed two parameters

Darbre's model. In this work, the aleatory uncertainty was the random earthquake, after

a seismic hazard analysis 12 records were used. The epistemic uncertainties were:

� Uniform distribution: drain e�ectiveness, grout curtain e�ectiveness, tail water el-

evation, e�ective water elevation, e�ective uplift area, angle of friction, cohesion,

dilation angle of foundation, mass and sti�ness proportional to Rayleigh damping.

� Normal distribution: concrete compressive strength.

Moreover, four LSs were considered:

� LS1 Cracking of the neck: this LS was achieved when tensile stress at the neck

exceeded the concrete tensile strength.

� LS2 Foundation material compressive failure at the toe: this LS was assumed to be

achieved when: 1) the plastic strains around the toe were higher than 104 or 2) when

plastic strains of 103 dominated the non-linear behaviour of the foundation.

� LS3 Sliding at the dam-foundation interface: the authors considered that 1) a slippage

of 3 mm was the onset of sliding, 2) slippage of 13 mm a�ected the performance of
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the drainage system and 3) slippage of 152 caused di�erential movements between

adjacent monoliths.

� LS4 De�ection at the crest with respect to the heel: the authors considered two

values: 8 and 15 mm which correspond respectively to 0.0014% and 0.0028% of the

dam height.

Finally, in �gure 2.4 the fragility curves at di�erent LSs are shown, they were calculated

as log-normally distributed and it is apparent that LS1 and LS2 are less likely to occur

than LS3 and LS4.

(a) LSs 1 and 2.

(b) LSs 3 and 4.

Fig. 2.4: Seismic fragility curves with four LSs, adapted from Tekie and Ellingwood (2003).

Lin and Adams (2007) presented a set of empirical seismic fragility curves for concrete

dams, located in eastern and western Canada, based on the work ATC-13 (1985). According

to ATC-13 (1985) the curves were derived in terms of damage states, this was possible due

to the similar design codes, construction methods and seismic condition between California
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and western Canada. Therefore, the fragility curves were derived by �tting the optimal log-

normal CDF to discrete points of damage states; �gure 2.5 illustrates the relation between

a group of fragility curves and a column of damage state.

Fig. 2.5: Relationship between continuous fragility curves and DPM, adapted from (Hariri-
Ardebili et al. 2014).

Finally, the previous fragility curves (�gure 2.5) were modi�ed to consider the di�erent

characteristics of seismic motion between California and Canada, just by shifting left or

right the original curves. The resulting fragility curves were considered as "standard",

the authors proposed to obtain fragility curves for old dams (designed/constructed in the

1900s) by dividing the PGA value by
√

2, and by multiplying by
√

2 to obtain the curves

for "new" dams (designed/constructed in the 2000s).

Mirzahosseinkashani and Ghaemian (2009) presented a work where only record-to-record

uncertainty was considered, while the epistemic uncertainties were neglected. The authors

analysed the Pine Flat dam through a FE model, assuming an elastic massless soil, and a

smeared crack model for the concrete. Two LSs have been considered:

� LS1: crack length at the base of the dam.

� LS2: total cracked area on the dam face.

Figure 2.6 shows the resulting fragility curves, the authors wrote that the fragility curves

were based on log-normal CDF, while Hariri-Ardebili et al. (2014) revealed this was not

possible and so two di�erent log-normal CDFs were determined.

Lupoi and Callari (2012) presented a new probabilistic procedure for the fragility assess-

ment of existing concrete dams which considered separately epistemic and aleatory uncer-

tainties. By de�ning the external actions y and the structural uncertainty x, the i-th LS

is characterized by the limit state function gi (x,y), which can be expressed as

gi (x,y) = Ci (x)−max
t

[Di (x,y, t)] , (2.10)

16



Chapter 2 Literature background and main contributions

Fig. 2.6: Seismic fragility curves with two LSs, adapted from Mirzahosseinkashani and
Ghaemian (2009), by Hariri-Ardebili et al. (2014).

where Di is the structural demand and Ci is the corresponding capacity. Since the random

variables are separated, the computational burden can be reduced by analysing the vari-

ability of Di using few analysis varying the seismic action and keeping constant the value

of the epistemic uncertainties. This leads to an approximation, by a linear expansion, of

Di

Di (x,y, t) ' Di (x̄,y, t) +
∑
j

∂Di (x,y, t)

∂xj

∣∣∣∣∣∣
x̃

(xj − x̃j) , (2.11)

where ∂Di(x,y,t)
∂xj

∣∣∣
x̃
is the Jacobian. Regarding the capacity Ci, the authors used a de-

terministic semi-empirical model calibrated with expert judgements. Finally, the system

reliability problem was characterized in a general cut-set formulation, and the probability

of failure calculated by using a Monte Carlo simulation. The authors applied the proposed

procedure to the case of the Kasho gravity dam, using an elastic FE model in which the

�uid structure interaction was modelled by using displacement-based �uid elements. Only

operational LSs were considered:

� Crest displacements with respect to the heel (without threshold).

� Cracking at the base of the neck, by controlling the tensile stress on selected groups

of nodes.

� Base sliding governed by tangential stress.

� Cracking at the upstream face, as in the case of the neck.
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Only two model parameters were treated as random variables (epistemic uncertainties):

the concrete strength and the soil strength. Whereas, two aleatory uncertainties were con-

sidered: the seismic action and the water level. The resulting fragility curves are shown

in �gure 2.7, the authors did not use any distributional model to �t empirical data, but

according to the results series components increases the probability of failure compared to

the parallel arrangements. Moreover, the parallel arrangements are more sensitive to the

uncertainties since the slopes of the related curves are slightly less than in the case of series

components.

(a) Parallel arrangement for components.

(b) Series arrangement for components.

Fig. 2.7: Seismic fragility curves for HW = 36 m, adapted from Lupoi and Callari (2012).

Yao and Jiang (2011) studied an arch dam considering only the record-to-record variation.

However, 3 of the 25 vertical contraction joints were modelled with non-linear contacts,

while the concrete was assumed to be linear elastic. Westergaard's added masses (West-

ergaard 1933) were used to model the hydrodynamic pressures, and 18 ground motions

divided in 3 groups, de�ned with regard to the scaled PGAs, were selected. The authors
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did not de�ne the LSs and they did not derive the fragility curves.

Hebbouche et al. (2013) used the procedure proposed by Tekie and Ellingwood (2003) in

order to consider both epistemic and aleatory uncertainties in the fragility calculation.

The authors assumed a linear behaviour for the dam body while the soil was modelled as

perfectly plastic material with Mohr-Coulomb yield criteria. The dam-soil interface was

governed by Coulomb's friction law. The LHS method was used to sample from the six

uncorrelated random variables:

� Uniform distribution: friction angle, cohesion, foundation dilatation angle, elasticity

modulus of concrete, and Young's modulus of soil.

� Normal distribution: concrete compressive strength.

Moreover,four LSs were considered, assuming three di�erent thresholds:

� LS1: Tensile stress at the neck with thresholds: 1.0, 1.5 and 2.0 MPa.

� LS2: Sliding at the dam-foundation interface with thresholds: 5.0, 10.0 and 20.0 mm.

� LS3: Crest relative horizontal displacement to heel, with thresholds: 5.0, 20.0 and

40.0 mm.

� LS4: Compressive stress at the dam heel, with thresholds: 1.0, 3.0 and 6.0 MPa.

Moreover, six near-fault ground motions were used and scaled with regard to the pseudo-

spectral acceleration (PSA) from 0.2 to 2 g. The resulting fragility curves are shown in

�gure 2.8.

Ju and Jung (2015) analysed a weir over�ow with steel reinforcements considering the

record-to-record variability only. A 2D linear elastic model was performed and the following

actions were applied: self-weight, hydrostatic and hydrodynamic pressures, uplift pressure,

slit pressure and seismic action. Moreover, 30 far-�eld and 30 near-�eld ground motions

records were selected and scaled to 7 PGA levels as: 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.5 g.

Five LSs were considered:

� LS1: Compressive stress at the weir and stilling basin, with threshold 0.25fweirc .

� LS2: Tensile stress at the weir body and stilling basin, with threshold 0.42
√
fweirc .

� LS3: Compressive stress at the mass concrete block, with threshold 0.25f blockc .

� LS4: Tensile stress at the mass concrete block, with threshold 0.42
√
f blockc .
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(a) Stress-related LS.

(b) Deformation-related LS.

Fig. 2.8: Seismic fragility curves, adapted from Hebbouche et al. (2013).

� LS5: crest displacement, with threshold 10 mm.

Log-normal CDFs were �tted to empirical points in order to build the fragility curves,

which are shown in �gure 2.9. Figure 2.9 shows that near-�eld ground motions lead to

higher probability of failure for most of the LSs. Moreover, comparing the fragility curves

of the weir and those of the concrete block, the latter show higher probability of failure.

Ghanaat and his co-authors studied di�erent concrete gravity dams developing the relative

fragility curves, providing important contributions in this area. The authors used sam-

pling approach based on the LHS method assuming both material parameters and seismic

input as random variables. In their �rst work (Ghanaat et al. 2011) the authors anal-

ysed the seismic performance of the Mühleberg's gravity dam, including: a weir structure,

turbine building and an administration building. An accurate model was performed and

non-linearity steamed in the contact surface between dam and foundation. The authors
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Fig. 2.9: Seismic fragility curves of the weir structure, adapted from Ju and Jung (2015).

considered the following uncertainties:

� Log-normal distribution: concrete elastic modulus, concrete damping, rock elastic

modulus, rock elastic modulus.

� Other distribution: cohesion and friction angle, a logic tree analysis was performed

in order to determine the most appropriated distribution.

Through a series of deterministic analyses, the authors discovered that the failure was

governed by the turbine building section. Therefore, they performed seismic analyses with

30 three-components ground motion records scaled seven times: two to higher intensities

and �ve to lower intensities. Given the high computational cost, they stopped each analysis

when the �rst convergence failure occurred, i.e. collapse, in this way the concept of possible

"resurrection" at higher intensity was discarded. In the end, a log-normal CDF was �tted

through the data points using the least-square approach, thus obtaining the fragility curve

shown in �gure 2.10.

In Ghanaat et al. (2012) a simpli�ed version of the previous method was presented. In this

case the authors used only 10 trial analyses to combine epistemic and aleatory uncertainties

instead of 30 as in the previous work. Moreover, a di�erent scaling approach and di�erent

directional factors were used, and the fragility curve was calculated by considering aWeibull

distribution instead of a log-normal one. Therefore, this approach was applied to the tallest

non-over�ow section of a gravity dam (geometrically similar to the Folsom dam). A 3D

model of the dam was performed, again the non-linearity steamed in the dam-foundation

interface and in an upper lift joint at the neck. This time the authors considered two
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Fig. 2.10: Seismic fragility curve, adapted from Ghanaat et al. (2011).

failure modes, i.e. local and global failure modes. The elastic modulus and the damping

of the dam concrete were treated as random variables as well as the rock elastic modulus.

Regarding the non linear joints, the tensile strength, friction angle and cohesion were

considered random variables. In �gure 2.11 the resulting fragility curves are shown for the

lower seismic intensities the probability of having sliding at the base joint is higher than

the on at the upper lift joint, and vice versa.

Fig. 2.11: Seismic fragility curve, adapted from Ghanaat et al. (2012).

In Ghanaat et al. (2015) the authors applied a procedure similar to the previous one, but

in this case the over�ow section had a completely non-linear behaviour and joints elements

were applied at the base of the dam. Thirty ground motions were selected and scaled

in order to achieve �ve LSs. Each analysis was performed twice, treating the following

parameters as RVs in one case and as deterministic in the second one:

� Concrete: elastic modulus (Log-normal), compressive strength (Log-normal), tensile
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strength (Log-normal), maximum aggregate size (Log-normal).

� Dam-foundation joint: rock modulus (Log-normal), tensile strength (Log-normal),

cohesion (Triangular), friction angle (Triangular).

� Pier reinforcing steel: yield strength (Triangular), Strain-hardening slope (Log-normal),

rapture strain (Log-normal).

� Others: Drain e�ciency (Triangular), damping (Log-normal).

The obtained results were �tted through a log-normal CDF as shown in �gure 2.12. The

�gure shows the e�ects of epistemic uncertainties on the fragility curve, the mean values

and the variances of the distributions change signi�cantly.

Fig. 2.12: Seismic fragility curve, adapted from Ghanaat et al. (2015).

Kadkhodayan et al. (2015) analysed an arch gravity dam by using a non-linear IDA. How-

ever, the non-linearity steamed only in the contraction joints. The percentage of over-

stressed area on the dam faces A%
OS (originally proposed by Ghanaat (2004)) was assumed

as DI, the relation between DI and IM is shown in �gure 2.13. This approach leads to

a brittle behaviour, since this damage is not incrementally captured, e.g. for IM<im1 or

IM>im2, so this criterion is not optimal for an IDA. Moreover, the authors used a 5th order

polynomial expansion for the regression analysis of the relation IM-A%
OS , instead the clas-

sical cubic polynomial spline or logarithmic model. A 3D FE model was performed, where

only the contraction and peripheral joints had non-linear behaviour; a massless elastic soil

was assumed. Therefore, nine three-components ground motion records were selected and

three potential IMs considered: PGA, PGV and Sa (T1). Three LSs were de�ned based

on the relative damage level. Figure 2.14 shows the resulting fragility curves, the use of

a normal distribution leads to a non zero probability of failure for zero IM, that problem
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could be alleviated by using a log-normal CDF. Moreover, the LSs de�ned according to

the damage level lead to the intersection of two fragility curves.

Fig. 2.13: Evolution of the overstressed area on dam face under increasing IM, adapted from
(Hariri-Ardebili et al. 2014).

Hariri-Ardebili and Saouma introduced modern fragility curves and surfaces for concrete

gravity dams in their publications series. In their publication Hariri-Ardebili et al. (2016b),

for the �rst time Multiple Stripe Analysis (MSA) was used to assess the seismic fragility

of concrete gravity dams. A total of nine ground motions were selected and used for three

di�erent intensity levels, thus resulting in 27 transient analyses. The authors performed

a set of 27 linear elastic analyses and a set of non-linear analyses where the non-linearity

was modelled rotating smeared crack and Mohr-Coulomb based joints. However, only the

record-to-record variability were considered, neglecting the epistemic uncertainties. The

fragility curves were derived considering di�erent DI, in the case of linear analyses:

� Demand Capacity Ratio (DCR): the ratio between the value of the tensile stress and

the tensile strength.

� Cumulative Inelastic Duration (CID): which is the total duration of the stress or
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(a) PGA-based.

(b) PGV-based.

Fig. 2.14: Seismic fragility curve for dam upstream face, adapted from Kadkhodayan et al.
(2015).

strain excursion beyond a threshold value associated with a DCR.

� Cumulative Inelastic Area (CIA): which is the integral of stress time history for a

given DCR.

� Damage Spatial Distribution Ratio (DSDR): ratio of the overstressed region to total

dam area for a given DCR.

Whereas, in the case of non-linear analyses:

� Joint opening damage index: DIopening= max
(
δopening

)
.

� Joint sliding damage index: DIsliding= max
(
δsliding

)
.

� Crack-based damage index: DIcracking= Ac
AT

, i.e the ratio of the cracked to the total

area.
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An arch dam was analysed, even though the authors proposed criteria for the limit of

acceptability for di�erent dams typologies. Figure 2.15a shows the fragility curves in the

linear case considering three indices with thresholds CID=0.4 s and DSDR=20 %. The

spread of the curves is due to the di�erent spatial coverages since the CID is a local

indicator while the DSDR is a local one. In �gure 2.15b the results of the non-linear case

are shown the linear and the non-linear fragility curves are nearly identical in terms of

dispersion, while a shift between them can be observed.

(a) Need for nonlinear analysis.

(b) Linear vs. nonlinear correlation for SIL 3.

Fig. 2.15: Seismic fragility curve for an arch dam, adapted from Hariri-Ardebili et al. (2016b).

Hariri-Ardebili and Saouma (2016b) used for the �rst time the Cloud Analysis (CLA)

for the seismic assessment of concrete gravity dams. The authors analysed the tallest

non-over�ow monolith of a 122 m high dam by performing a 2D model the only source

of non-linearity was the interface between dam and foundation. Uplift pressures were

automatically adjusted in terms of crack lengths. Epistemic uncertainties related to the

model parameters were neglected but a large set of ground motions, around 100 records,
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was considered. Moreover, the authors considered 70 di�erent IMs to develop fragility

curves and surfaces, in order to compare them and identify the optimal one. The optimal

ones were found to be:

� Structure-dependent spectral IMs: i.e. Sa (T1), Sv (T1) and Sd (T1).

� Ground motion-dependent scalar IMs: i.e. PGA and PGV.

� Structure-independent spectral IMs: i.e. API and EPA.

The authors highlighted that the combined acceleration response spectra including the

e�ective mass S1−to−N
a was the best IM. Figure 2.16a shows the fragility curves for joint

opening and sliding at dam-foundation interface, considering three LSs: initiation of open-

ing or sliding 2 mm, propagation of opening or sliding 5 mm and near collapse condition 8

mm. For every LS, joint sliding has the highest probability of exceedance. This results can

be generalized for continuous values of EDPs obtaining the fragility surface (�gure 2.16b),

even though it is a challenging task (Gehl et al. 2013).

The �rst application of IDA to the seismic assessment of concrete gravity dams can be

found in Hariri-Ardebili and Saouma (2016a). The authors performed a model similar to

the one used in Hariri-Ardebili and Saouma (2016b), but in this case the concrete non-

linearity was accounted also through the use of smeared crack model. Two ground motions

combinations were used, horizontal component only or horizontal and vertical components.

Two di�erent loading scenarios were assumed, empty and full reservoir. 21 ground motions,

scaled by 14 SILs, were applied for each combination of loading scenarios and shaking mo-

tion assumptions. Finally, for each of the four cases, a log-normal CDF was �tted through

the model outputs using di�erent approaches:

� Method of moments (MOM): the CDF parameters are calculated assuming that the

functional relationship and the discrete data points have same moments.

� Sum of squared error (SSE): the CDF parameters are determined by the minimization

of the sum of the squared errors between functional relationship and discrete data

points.

� Maximum likelihood estimation (MLE): the CDF parameters are determined by the

maximization of the likelihood function.

The authors turned out that the best �tting procedure was the simplest one, i.e. MOM,

according to the evaluation procedure suggested by Lilliefors (1967). The resulting fragility
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(a) Based on joint opening/sliding.

(b) 3D fragility function.

Fig. 2.16: CLA-based seismic fragility curve and surface for a gravity dam, adapted from
Hariri-Ardebili and Saouma (2016b).

curves, �gure 2.17, shows a higher probability of failure when the vertical components of the

ground motion is considered. Moreover, also in the case where the reservoir is considered

full, the probability of failure increases.

Hariri-Ardebili and Saouma (2016d) derived the fragility curves for a concrete gravity dam

through the Endurance Time Analysis (ETA) method. However, since only one ETA was

performed, the aleatory uncertainty related to the record-to-record variation was neglected.

A 2D model was developed, and the non-linearity was concentrated in an interface between

dam and foundation. The random variables considered in this work were:

� Interface joint : tangential sti�ness, normal sti�ness, tensile strength, cohesion, fric-

tion angle, dilatancy angle, speci�c mode I fracture energy and speci�c mode II

fracture energy.

� Concrete and rock : concrete modulus of elasticity and Poisson's ratio, foundation
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Fig. 2.17: IDA-based seismic fragility curves for a gravity dam, adapted from Hariri-Ardebili
and Saouma (2016a).

modulus of elasticity.

All RVs were modelled with a truncated normal distribution, with mean values derived

from expert judgements and covariances arbitrarily set at 10-20%. Moreover, two prob-

abilistic analyses were performed through Monte Carlo simulations, with LHS sampling,

one considering correlated RVs and one without correlation. Finally, log-normal CDFs

were �tted through the deterministic results by using the MLE approach in order to build

the fragility curve shown in �gure 2.18. Figure 2.18(a) shows the fragility curves for the

correlated RVs, considering 4 LSs. In this case the DI is the ratio between crack length at

the base and the total length. Finally, in �gure 2.18(b) the fragility curves built consid-

ering both aleatory and epistemic uncertainties are shown, the combination was done by

the root sum squared.

Another important contribution of Hariri-Ardebili and Saouma was the seismic analysis

of a gravity dam treating the concrete elastic modulus as a random �eld (Hariri-Ardebili

et al. 2018). In this work the Koyna dam was analysed and two cases were compared. In

the �rst case the dam concrete was considered homogeneous, and the elastic parameters

were treated as random variables. In the second case the dam concrete was considered het-

erogeneous and the elastic parameters were treated as random �eld. A 2D elastic model

was used assuming a massless soil and the structural safety was evaluated during a post-

process step, in which several performance index were considered: DCR, CID, CIA and

DSDR. The authors varied the correlation length of the random �eld showing the e�ect

on the model output in terms of crest and neck displacement, principal stress at the base

and performance index. The results showed that the response of the heterogeneous model

and the one of the homogeneous model were very similar, thus the heterogeneity had little
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(a) Accounts only for MM uncertainty.

(b) Accounts for both MM and RTR uncertain-
ties.

Fig. 2.18: ETA-based seismic fragility curves with epistemic uncertainty for a gravity dam,
adapted from Hariri-Ardebili and Saouma (2016d).

in�uence with respect to the previous parameters. Increasing the correlation length of the

random �eld, in the heterogeneous case, the COV of the output increased. Finally, the

seismic intensity measure and the record-to-record variability were considered. In both

cases, the results are highly in�uenced by the record-to-record variability. In the end the

authors did not build the fragility curves, but this paper represent one of the �rst applica-

tion of random �eld to the seismic analysis of concrete gravity dams.

Bernier et al. (2014) and Bernier et al. (2016a) analysed a concrete gravity dam using a 3D

�nite element model. The non-linearity of the model steamed only in the dam-foundation

interface and in a lift-joint placed at the neck of the dam. Both epistemic and aleatory un-

certainties were considered, in particular the ground motion was applied also in the vertical

direction, by scaling the horizontal component with a random factor between 0.5 and 0.8.

Moreover, the parameters of the non-linear interfaces were treated as random variables. In

30



Chapter 2 Literature background and main contributions

particular the cohesion, tensile strength and friction angle have been assumed uniformly

distributed. Whereas, the damping ratio was modelled as log-normal random variable.

Two LSs were considered:

� sliding at dam-foundation interface.

� sliding at lift-joint interface.

Considering the following damage levels:

� Minor or slight damage: incipient sliding.

� Moderate damage: sliding equal to 25 mm, which leads to a moderate damage of the

drain system with an increase of the uplift pressure.

� Severe and extensive damage: sliding equal to 50 mm, which leads to an ine�ciency

of the drain system.

� Major damage: sliding equal to 150 mm at the base or to 100 mm at the neck, which

leads to unacceptable di�erential movements between adjacent monoliths.

Once the deterministic results were calculated, the authors compared the use of three dis-

tributional models, e.g. normal, log-normal and Weibull applying two �tting methods: the

SSE and the MLE. Finally, also the e�ect of the spatial variation of the friction angle in

dam-foundation interface, was investigated. This last e�ect could be linked to construction

phenomena or to the heterogeneous nature of the concrete. The resulting fragility curves

are shown in �gure 2.19. A particularly interesting thing is the e�ect of the friction angle

spatial variation, which a�ects more the higher damage level than the lower ones, though

its e�ect is very small.

In Bernier et al. (2016b), the authors repeated the previous investigation applying the

MSA method and the conditional spectrum (CS) instead the uniform hazard one (UHS).

All analyses were repeated using IDA, and a log-normal CDF was used to �t the discrete

data points. Finally, the fragility curves for 4 LSs were constructed considering or not the

e�ects of the epistemic uncertainties, as shown in �gure 2.20. The median and dispersion

parameters of the curves were signi�cantly higher using MSA, than a lower probability of

exceedance for the same value of Sa (T1). Finally, the authors shown that the e�ects of

epistemic uncertainties become less signi�cant when using the CS method.
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(a) Spatially invarient assumption.

(b) Impact of spatial variation of angle of fric-
tion at dam-foundation interface with correlation
length equal to the base.

Fig. 2.19: Seismic fragility curves calculated with a 3D FE model, adapted from Bernier
et al. (2016a).

2.3 Structural Health Monitoring and damage indices for

concrete dams

2.3.1 Introduction

Structural Health Monitoring (SHM) indicates the process of assessing the state of health

of a structure through the analysis of measurements recorded on the structure itself. The

complete development of a SHM system involves several di�erent aspects: sensor technol-

ogy, materials technology, numerical modelling and computational mechanics (Gopalakr-

ishnan et al. 2011). This implies that both hardware components, composed by sensors and

the associated instrumentation, and software components, composed by damage modelling
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(a) MSA-based fragility curves.

(b)MSA vs. IDA for incipient sliding at the base.

Fig. 2.20: MSA seismic fragility curves, adapted from Bernier et al. (2016b).

and damage detection algorithms, constitute the SHM system. These two aspects strongly

interact with each other, so an adequate SHM system can be de�ned only by considering

these aspects together. In this context, the choice of the structural Quantity of Interest

(QI), which must be monitored, and the de�nition of damage levels is fundamental. By

simplifying, they respectively represent the "structural behaviour" and its "threshold", this

latter related to a particular damage state. The former should be both very sensitive to

damage development (high value of information embedded in the QI), and easy to mea-

sure with a good degree of accuracy. The threshold must be de�ned in order to re�ect

a particular damage, and in this context it can be de�ned with respect to a Limit State

(LS) or Damage Index (DI). Moreover, the de�nition of a threshold should consider the

measurement error and the error of the prediction used to determine the structural health

state.

SHM can be thought as composed by two steps, the Diagnosis and the Prognosis. On the
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one hand, the diagnosis step aims to determine the state of the materials of di�erent parts,

and of the full assembly of them constituting the structure as a whole. Indeed, the diagno-

sis checks the presence of damage, such as cracks, their location and dimension. Moreover,

the diagnosis step can be divided in two category: active diagnosis or passive diagnosis. In

the passive diagnosis process, passive sensor measurements are used to assess the structural

health, while the active diagnosis is based on actuator induced sensor measurements.

On the other hand, the prognosis aims to compute the e�ect of damage on the structure

and its residual life. The probabilistic SHM frameworks proposed in this research work

contribute to both the diagnosis and prognosis steps. From the diagnosis point of view,

it allows detecting and localizing damage. From the prognosis side, it allows reducing

the epistemic uncertainty of the structural model which in�uences the estimation of the

residual life expectancy of the dam.

Structural Health Monitoring is an important aspect in the control process of concrete

dams, this is shown by international and national guidelines (ICOLD 2000) developed in

the recent years. The traditional procedure to assess the dam integrity is through vi-

sual inspection. However, visual inspections have various shortcomings as high manpower

demand, insu�cient frequency and inaccessibility of critical part of the structure. The con-

sequential lack of information could lead to erroneous evaluation of the structural integrity

and hence wrong decisions regarding the maintenance of the dam. For this purpose, static

and dynamic monitoring systems can be used to control the structure.

In this section, a review of the most signi�cant research in this area is presented.

2.3.2 Interpretation of the dam structural behaviour from monitoring

data

The surveillance of a large concrete gravity dam during normal operations is usually based

on the monitoring of displacements caused by the storage level and seasonal thermal vari-

ations (ICOLD 2000). Upstream-downstream crest movements of the dam are generally

measured by a pendulum system, whether it is direct or inverted. The opening - closing

of the joints is mainly measured by removable mechanical strain gauges. At the same

time, boundary conditions, such as rainfall, water and air temperatures and storage level

are daily gathered, while uplift pressures and water losses through seepages are generally

recorded weekly.

Safety monitoring of dam has the dual purpose of highlighting anomalous operations and

understanding structural behaviour through the de�nition of a predictive model of the

structure. All the procedures for the model parameters calibration are based on the as-
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sumption of linearity of the model and materials. It allows applying the principle of

superposition, so that the upstream-downstream displacement δ of a point on a dam can

be considered additively composed by the hydrostatic contribution δH , the thermal con-

tribution δT and a third term δK which takes into account unexpected behaviours, creep

and other phenomena. δH , which mainly depends on the mechanical characteristics of the

materials, both concrete and foundation rock, is usually approximated in the literature

through a polynomial expansion. Displacements δT , which mainly depends on the thermal

characteristics of the materials, are simulated by a periodic function in time, similar to that

of the average water and air temperatures. Generally, they cannot be neglected because

they constitute the greatest part of δ. In this �eld the two most widespread methods are

the observational approach and the functional approximation approach.

On the one hand, the observational approach is based on the constancy of the system

response. It makes use of statistical procedures which correlate input variables such as

temperature and water level values with the outputs such as crest displacement during

normal operations. It aims to �nd the contribution of external loads to the structure de-

formation and to identify irreversible components in the structural response. An analytical

formulation provides the upstream�downstream crest displacement as the sum of the three

di�erent terms de�ned above regarding temperature change, hydrostatic pressure and any

term which takes into account unexpected behaviour. The model's parameters in this case

are the coe�cients of the three analytical functions. They can be determined through

regression procedures based on the least square method, to obtain a good �t between the

recorded measurements and their functional representation.

On the other hand, understanding the structural functioning requires a model based on a a-

priori scheme which relates input variables and structural response. Upstream-downstream

displacements reconstruction through FE models requires identi�cation procedures in or-

der to provide information on the mechanical characteristics of materials. The variables

are physical and mechanical parameters such as density and elastic moduli of the mate-

rials. In addition, by correlating crest displacements with the opening-closing movements

of vertical contraction joints, the actual relationship between adjacent monoliths can be

deduced and the reliability of the selected geometrical model can be evaluated. However,

displacements reconstruction is a particularly di�cult task because of the large number

of unknown parameters and because of the complexity of thermal analyses whose results

depend on the thermal response of dam concrete. Furthermore, the e�ects of tempera-

ture variations, unlike those of water level variations, do not occur simultaneously with

the cause. They occur in time intervals which depend on the thermal characteristics of
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concrete, its porosity and saturation level.

To identify the model parameters while avoiding burdensome thermal analyses, it is nec-

essary to separately analyse δH by subtracting δT from δ, through appropriate regression

procedures. For this purpose, it is necessary to set the functions that represent the di�erent

displacement quotas.

The advantages of this methodology are implementation easiness and the small number of

analyses needed. On the other hand, the result is a�ected by a high degree of uncertainty

and subjectivity mainly due to the selection of the analytical functions describing the out-

put variables.

Dynamic monitoring system are less frequent than the static ones, in this kind of approach

accelerations, velocity or displacements are recorded. Dynamic measurements are obtained

using either forced vibration tests or ambient vibration data. Therefore, these measure-

ments are elaborated through Experimental Modal Analysis (EMA) techniques (Worden

and Tomlinson 2000), or Operational Modal Analysis (OMA) techniques (Brincker and

Ventura 2015), in order to determine the modal proprieties of the system, namely the nat-

ural frequencies, mode shapes and damping ratio. Forced vibration tests are usually very

expensive and and di�cult to implement. Whereas, ambient vibration tests are cheap and

easy to implement because only the record devices installation is needed. The results of

the EMA or OMA are used to calibrate the FE model parameters, in order to reach a good

�tting between experimental and numerical behaviour. No applications related to concrete

dams available in the literature is set up in a probabilistic framework or aims to set up a

suitable dynamic SHM system.

2.3.3 Health monitoring of concrete dams

2.3.3.1 Static monitoring

Bianchi and Bremen (2001) presented procedures to investigate the long-term behaviour of

concrete dams and they studied the Ferden and Roggiasca dams in Switzerland. The aim

of the study was to detect any changes of the structural behaviour both before the snowfall

and after the break period. The authors used environmental measurements to calibrate

a deterministic tool (MIC) suitably developed for this work, based on deterministic and

probabilistic procedure. Furthermore, the calibrated model was used to predict the dam

behaviour in terms of crest displacements over a long period (20 years). Finally, the au-

thors concluded that the presented deterministic tool can be used to control the structural

behaviour by continuously comparing the recorded and predicted behaviour.
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Behrouz (2002) in his dissertation analysed strain data collected for 17 months from Idukki

dam in India. The recorded information were used to calibrate the hydrostatic-season-time

(HST) model, and multiple linear regression analysis was used to detect the dependency of

maximum strains with the reservoir level, time and environmental temperatures. There-

fore, the calibrated model was used to predict the future strains of the dam. In the end

the author concluded that HST model was able to accurately predict the future structural

behaviour.

Pytharouli and Stiros (2005) analysed horizontal and vertical displacements, extrapolated

by geodetic monitoring data, for long term behaviour (30 years) of the Landom dam in

Greece. The authors used Discrete Fourier transform and Lomb normalized period-gram

methods to understand if both dam deformation and reservoir level variation corresponded

to periodic functions of the same period. They calibrated a predictive model based on the

previous data, concluding that, for a period greater than 30 years, the structural integrity

and deformations were kept at low levels.

Chouinard et al. (2006) applied a multivariate statistical analysis (HST) to the study of

Daniel Johnson dam, in order to predict the long term (9 years) behaviour of the struc-

ture in terms of irreversible displacements. Moreover, they investigated the dependency

between displacements and the environmental measurements through the principal compo-

nents analysis. The results showed that displacements are mainly due to: thermal e�ects,

water level variation and irreversible phenomena.

De Sortis and Paoliani (2007) compared statistical and structural identi�cation techniques

in dam monitoring. The authors analysed the Ancipa dam considering air mean daily

temperature, water level variation and crest displacements spanning over 40 years. The

authors performed a structural identi�cation in order to calculate the relationship between

external loads and dam displacement by using numerical model. The results showed a bet-

ter accuracy of the structural identi�cation procedure, than the statistical method, in the

approximation of the thermal part of the total displacement. Therefore, they concluded

that structural identi�cation procedure can successfully used to predict and control the

dam behaviour in a long-term period.

Perner and Obernhuber (2010) developed a hybrid model, which combined structural anal-

yses and statistical models, to predict the deformations of the Zillergrund arch dam. Reg-

istrations of the deformations recorded in a period of 19 years were used to train the model,

and structural models were used to identify the relationship between displacements and

environmental measurements, as water level and temperature. The authors concluded that

the hybrid model was better than statistical approach since it could be trained with a small
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number of observations.

Mata (2011) compared the use of two statistical models, namely multiple linear regression

(MLR) and neural network (NN) models to predict the structural behaviour, in terms of

crest displacement, of the Alto Robago dam subjected to environmental loads. The two

models were calibrated using a 25-year crest displacement, temperature and basin level.

The results showed how NN is more �exible and capable to simulate local extreme be-

haviour due to particular combinations of environmental loads.

Loh et al. (2011) developed a suitable statistical approach to extract trends from long-term

structural health monitoring data in order to set an early warning threshold level. The au-

thors analysed the Fei-Tsui dam for which displacements and temperatures were available

within a period of 22 years. Several di�erent statistical methods were used and compared,

in particular: the singular spectrum analysis with auto regressive model (SSA-AR) and

the non-linear principal component analysis (NPCA) using auto-associative neural network

method (AANN). The results showed that AANN was able to capture periodic variations

(temperature, season) as well as the trend which they supposed to be related only to creep

phenomena. Therefore, the authors concluded that AANN is better than SSA-AR model

in the long-term prediction of the structural behaviour.

Popescu (2011) analysed the deformations and environmental conditions of the Vidrau

dam, with the aim to �nd how they e�ect the dam behaviour. The authors also aimed to

separate the deformation related to the environmental conditions and the time e�ects. In

order to do that, the authors applied a second order blind source separation (BSS) algo-

rithm to dam monitoring and surveillance data. The results showed that BSS successfully

recognized the contribution of each phenomena to the total dam deformation.

Henriques et al. (2012) analysed the Cabril dam, recording 2 days data of temperature,

reservoir level and inclination. These data were elaborated with regression in order to

understand the relationship between the di�erent e�ects, and in fact the results showed a

correlation between inclination, temperature and basin level variation. Finally, the authors

noted that some variations in the dam behaviour cannot be explained by the regression

model used in this work.

Demirkaya and Balcilar (2012) compared the use of two statistical models, namely multiple

linear regression (MLR) and multiple layer perception (MLP) models, to build a predictive

model of the displacements of the Schlegeis arch dam. The two models were trained using

water level, air temperature, concrete temperature recorded in 6 points on the dam and

displacements, acquired during 8 years. According to the results, MLR showed better per-

formance with regard to the criteria of R2, than MLP. Finally, results indicated that linear
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regression provided the most appropriate solution in of linear problems and acceptable in

static dam monitoring.

Mata et al. (2013) analysed the Alto Lindoso dam identifying the e�ect of the daily varia-

tion of air temperature on the structural deformation. The Short Time Fourier Transform

(STFT) was used to recognize the in�uence of air temperature variations on the horizon-

tal displacements, and tracking its variation as function of time which can be used to

forecast the future behaviour of the dam. The amplitude of the horizontal displacement

was modelled as a function of the air temperature amplitude by a linear regression model.

Moreover, the parameters of the statistical model were identi�ed by using the observations

recorded from October 2008 to November 2011. The results showed that a better correla-

tion between amplitudes of air temperature and the one of horizontal displacement can be

reached when a phase of displacements is regular.

Kao and Loh (2013) used neural networks to build a predictive model of the static be-

haviour of the dam, which coe�cients were trained with the observations acquired by the

static monitoring system. The authors studied the Fei-Tsui arch dam comparing three

di�erent kinds of Arti�cial Neural Networks (ANNs) with increasing non-linearities. The

authors showed that all of the three ANNs were able to accurately follow the observed

behaviour.

Mata et al. (2014) proposed multiple linear regression models for arch dam displacements,

whose coe�cients were calibrated by regression on the recorded observations. In particu-

lar, the authors analysed the use of di�erent models to approximate the thermal part of

the displacement, one based on sinusoidal functions and two based on the real recorded

temperatures. The analysis of the Alto Lindoso dam proved that the procedure proposed

in that work allowed accurately reproducing the static behaviour of the dam.

Su et al. (2016) proposed a Support Vector Machine-based (SVM) model to reproduce

the static behaviour of the dam. The authors analysed the most in�uential parameters

to be inserted in the SVM model in order to obtain a good �tting between recorded and

predicted dam behaviour. The authors proposed also a procedure for real-time calibration

of the SVM model itself.

Kang et al. (2017) proposed a Extreme Learning Machine-based (ELM) predictive model

of dam displacements for structural health monitoring purposes. The authors analysed the

performance of the proposed model by comparing it with the Multiple Linear Regression

model and the Back Propagation neural network approach. The study of the the Feng-

man dam showed the good agreement between records and predictions calculated with the

ELM-based model.
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Salazar et al. (2017) presented a predictive model of the dam displacements based on

boosted regression trees for damage detection purposes. The authors compared both

Causal and Non-Causal models in the study of the Baells dam proving that the second

was more e�cient in the damage detection. Indeed, they simulated damage of the dam

through numerical models, highlighting that the proposed model could be successfully used

for real-time control purposes.

Shao et al. (2018) proposed a dam displacement model based on panel data in order to

solve the issue of linear relationship between in�uence factors, which is a feature of statis-

tic models commonly used in dam engineering �eld. The authors studied a hydro-power

station located on Yalong river, showing the good performance of the proposed approach.

Prakash et al. (2018) proposed a framework to build predictive models of the dam static

behaviour, e.g. displacements, strains. The use of principal component analysis allowed

reducing the model dimension. The coe�cients of the predictive models were calibrated by

using least squares method, while the threshold of abnormal behaviour was continuously

calibrated with the new observations in order to avoid erroneous warnings. The study of

an arch dam located in Bulgaria showed the applicability of the proposed procedure.

Su et al. (2018) proposed the combination of Dempster-Shafer Theory of evidence (DST)

and Set Pair Theory (SPT) in order to build an approach for health control and deci-

sion making in dam engineering �eld. The proposed method allowed merging multi-source

space-time information coming from di�erent parts, e.g. monitoring system and inspection.

The study of an hydro-power station built in 1953 proved the e�ective of the method both

to track the structural behaviour and to help decision maker to �nd the best retro�tting

intervention.

Wei et al. (2018a) proposed a predictive model for static dam displacements which consid-

ered also lag e�ects, e.g. reservoir level and rainfall lag e�ects, and ageing phenomenon of

RCC. Firstly, the lag parameters were calculated by using a genetic algorithm. Secondly,

a regression analysis was performed in order to calculate the combination parameters. Fi-

nally, multilevel-recursive method and regression were applied in order to �nd time varying

parameters. The study of a RCC gravity dam showed that the proposed method leaded to

a �tting with observed data better than the one obtained with the statistical method.

Hu et al. (2018b) studied the leakage problem for the Shimantan Reservoir dam, a concrete

dam which showed penetrating cracks. The authors showed that systematic �eld inspec-

tions were fundamental in order to understand the causes of leakage problems. Moreover,

they proposed a predictive model of dam displacements based on the modi�cation of the

Navier-Stokes equation, which was suitable for dam with leakage problems and penetrating
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cracks.

Hu et al. (2018a) proposed a method to identify anomalies related to foundation uplift.

The elaboration of time series of reservoir levels and uplift pressures with the Dynamic

Time Warping (DTW) method and the Local Outlier Factor (LOF) allowed recognising

similarities on dependent and independent variables, and to �nd anomalous causes. The

study of the Xixi dam proved the e�ective of the method.

Dai et al. (2018) studied a RCC gravity dam by applying the statistical model of the dis-

placement and Random Forest Regression (RFR) in order to determine its combination

coe�cients. The research work showed that the proposed approach reduced the bias of the

prediction.

Wei et al. (2018b) proposed a hybrid predictive model of the dam displacements. The

statistical model commonly used in dam engineering �eld to replicate displacements was

modi�ed in its hydrostatic component by using FEA. The authors also considered the

chaotic residual errors in order to improve the �tting between observations and predic-

tions. The study of a RCC dam showed that the proposed approach leaded to a better

�tting than the other methods commonly used in dam engineering �eld.

Lin et al. (2019) proposed a method to separate dam displacements into two parts: one

related to the dam behaviour and one related to the foundation. The idea of partitioned

FEM was used to de�ne hybrid equations which allowed separating the two contributions.

The observations recorded by the static SHM were used within the procedure in order to

obtain the mechanical parameters of the materials. The study of a concrete dam was used

to verify the validity of the separation method.

In conclusion, the research works related to static SHM system of concrete dams avail-

able in the literature are characterised by the use of di�erent kind of numerical models

and statistical or numerical tools. All methods are calibrated using environmental and

observations recorded during the regular use of the dam, in order to perform predictive

models of the future behaviour. The largest part of the research works aim to improve the

�tting between predictions and observations by adding new parameters with no-physical

meaning to the predictive models. Usually, the stability of the models, the uncertainties

which a�ect the solution, and error are not discussed, thus making di�cult the evaluation

of the goodness of the �nal result.

Focusing the attention only on the �tting between observations and predictions, adding

new components to the predictive model could lead to a paradox. Indeed, also the stability

of the solution must be checked. A too complex model, with regard to the amount and

typology of information, could lead to an over-�tting between predictions and observa-
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tions. In this way, the predictive model would show good performance if compared with

the observations used for training it but a big error otherwise. This concept is also known

as Bayesian Ockham Razor (Beck 2010).

2.3.3.2 Dynamic monitoring

The dynamic monitoring of concrete dams can be based on forced vibration tests or am-

bient vibration. One of the �rst studies of forced vibration tests on concrete dams can

be found in Severn et al. (1980), who studied the Wimbleball buttress dam with the aim

to quantify the e�ects of the water level variation on the structural behaviour. Rotat-

ing eccentric mass placed in the upper part of the dam was used to excite the structure.

Resonant frequencies in the range of 8.9-9.6 Hz were estimated from resonant peaks. The

authors found that an increasing water level caused a fall in resonant frequencies, and they

also found that buttress did not act independently from each other for small amplitude of

the motion.

Clough et al. (1986) used the results of forced vibration test campaign, executed on the

Xiang Hong Dian dam, to calibrate the parameters of a FE model of the structure. The

vibration was induced by an eccentric mass shaker, and accelerometers were placed on both

the dam crest and the foundation on the downstream face of the dam. 12 fundamental

modes, in the range 4-12 Hz, were identi�ed from Frequency Response curve calculated

with the test results. Finally, the authors concluded that experimental measurements well

�tted analytical predictions.

Cantieni et al. (2004) studied the Norsjo dam, they created and updated a FE model of

the structure using the results of forced vibration tests. A servo hydraulic shaker was used

as exciter, and the structural behaviour in terms of accelerations was measured in three

directions at the dam crest. The least square complex exponential (LSCE) algorithm was

used to determine the resonant frequencies in the rage 3.55-12.9 Hz.

Due to economical and practical reasons, usually the execution of forced vibration tests on

concrete dams is di�cult. Therefore, ambient vibration tests which not require an exciter

become a powerful tool to identify the modal properties of the system. One of the �rst

application of ambient vibration test on concrete gravity dam can be found in Brownjohn

et al. (1986). The aim of the work was to investigate the feasibility of the installation of a

dynamic monitoring system. The authors studied the Contra dam placing accelerometers

on the upper part of the structure. Natural frequencies were determined by peaking the

peaks on the auto-spectrum of the signals, while the mode shapes were extracted from the

output only transfer functions. They identi�ed 8 eight upstream-downstream modes in the
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frequency range 1.8-4.2 Hz. Finally, the results showed a direct relationship between the

ambient vibration and the electricity generation activity.

Brownjohn (1990) studied the safety and stability of Hermitage Dam, a concrete gravity

dam located in Jamaica. Ambient vibrations were used to determine natural frequencies

in the range 7-30 Hz, by picking the peaks on the auto-spectrum. The results were used to

calibrate the parameter of a FE model of the structure, needed to evaluate the structural

safety. The results showed discrepancy between tests �eld data and mathematical model

prediction, but the authors concluded that these discrepancies were too small to invalidate

the numerical model.

Loh and Wu (1996) analysed the Fei-Tsui dam, obtaining the dynamic properties of the

system by using both ambient vibration and seismic response data. In particular, random

decrement method and least-squares method were used to estimate modal parameters of

the dam. The results showed a good agreement between the parameters obtained by using

ambient vibration and those from seismic excitation.

Kemp (1996) evaluated the structural safety of the Ruskin dam, a concrete gravity dam

located in Canada. The dynamic properties of the numerical model were calibrated on the

basis of the experimental results obtained by ambient vibration test. Natural frequencies,

in the range 6.5-14 Hz for the maximum reservoir level, and 8.5-14.5 Hz for lower level,

were obtained from the peaks of average normalized power spectral density.

Daniell and Taylor (1999) used the results of ambient vibration test in order to calibrate

the numerical model parameters of the structure. The registrations were acquired by using

accelerometers placed in the dam crest, natural frequencies were picked from the peaks of

average normalized power spectral densities. The authors were able to identify 6 modes

in a frequency range 6.1-11.8 Hz. Finally, numerical and experimental results showed a

good agreement, demonstrating that ambient vibration can successfully substitute forced

vibration tests.

Darbre et al. (2000) studied the Mauvoisin dam, an arch dam located in Switzerland. The

aim of the work was the analysis of the relationship between basin level variation and shift

of the natural frequencies. Seven ambient vibration tests between 1995 and 1996 were

carried out, and an automated system, which recorded twice daily for six month, was set

up. Natural frequencies were obtained by peaking the peaks on normalised power spectral

densities of individual accelerations. The results showed that the natural frequencies ini-

tially increased with rising the water level. However, after a particular level the natural

frequencies started decreasing, this e�ect was due to two competing phenomena: the in-

creasing mass water which participate to the motion (reduction of the natural frequencies)
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and dam sti�ening related to closing of vertical construction joints.

Mivehchi et al. (2003) analysed two concrete arch dams in Iran: the Shahid-Rajaee and

Saveh dams. Ambient vibration tests were conducted from winter of 1999 to autumn 2000,

with the aim to validate the results of numerical models. Partial and rapid opening and

closing of the bottom outlet gates of the dam body provided an arti�cial external excitation

during the tests, in order to excite also weak modes. The modal parameters of both dams

were extracted by the auto-spectrum of the signals obtaining natural frequencies between

1.46-3.58 Hz for Shahid-Rajaee dam, and 3.91-7.91 Hz for the Saveh dam.

A continuous dynamic monitoring system was installed on the Cabril arch dam after the

ambient vibration tests carried out between 200 and 2003 (Oliveira et al. 2004). The results

of these tests were used form di�erent purpose:

� Demonstrate that ambient vibration can be used to characterize the dynamic be-

haviour of arch dams with good precision (Mendes et al. 2004).

� Investigate the in�uence of contraction joints in the dynamic behaviour of arch dams

(Mendes et al. 2007).

� Study the in�uence of an intake tower on the modal characterization of a dam

(Mendes and Oliveira 2009).

The modal characteristics of the system were extracted by using Frequency Domain De-

composition (FDD) and Stochastic Subspace Identi�cation (SSI) techniques. The authors

showed how a continuous ambient monitoring system can lead to a good calibration of

numerical model of the dam.

Okuma et al. (2008) used the data of long term ambient vibration monitoring system for

damage detection purpose. The authors analysed the Hitotsuse dam, the measuring sys-

tem was set up in order to continuously record at a sampling rate of 200 Hz and to store

measurements every 30 minutes. The natural frequencies were determined from the cross

spectrum of autoregressive moving average models. The �rst results showed a good agree-

ment between natural frequencies, estimated with ambient vibration, and those obtained

with earthquake observations. Moreover, a strong correlation between the �rst three modes

and the water level was found.

Moyo and Oosthuizen (2010) analysed two arch dams, Roode Elsberg and Kouga dams,

performing ambient vibration survey trials, in order to determine the modal characteristics

of the two systems, and to use them as baseline measurements for long term dam safety

monitoring. Four tests were carried out on Roode Elsberg dam from December 2008 to
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April 2010, while only one test was done on the Kouga dam in September 2009. Several

operational modal analysis techniques were applied for comparison reasons, as reported

in Bukenya et al. (2012b) and Bukenya et al. (2012a). The natural frequencies of Roode

Elsberg and Kouga dams were in the range 3-7.70 Hz and 3.72-8.30 Hz, respectively. Re-

garding the OMA techniques comparison, the results showed that none of them was better

than the others.

Ellis et al. (2010) performed ambient vibration tests on the Gem Lake dam, in order to

identify the modal properties of the system. Spectral analysis technique, which included

the Fast Fourier Transformation and the maximum entropy method, coupled with water-

fall plot analyses, were used to elaborate the measurements. Natural frequencies in the

range 13.18-27.71 Hz were found. Therefore, a calibrated FE model of the structure was

developed in order to deeply understand the dynamic dam behaviour and to develop a

suitable �eld test procedure.

Sevim et al. (2010) analysed the Berke arch dam developing ambient vibration tests, whose

results were used to calibrate a numerical model of the structure. Therefore, ambient vibra-

tion tests were performed, during which, wind and water pressures were the most important

sources of excitation. Eight natural frequencies between 2.74 to 9.66 Hz were found by

using enhanced frequency decomposition (EFDD). Finally, the parameters of a FE model

of the dam were calibrated in order to �t the experimental results.

Cheng et al. (2015) proposed a health monitoring method for concrete dams based on

ambient vibrations in which the Kernel Principle Analysis (KPA) was used to remove the

e�ect of changes in the environmental conditions. In the proposed method, damage was

detected by comparing the L2 norm of the error of the KPCA calculated during normal

condition, with the one calculated for the current state of the dam. After the detection, the

COMAC indicator was used to localize damage. The authors did not tackle the problem

of the mode coherence and they did not de�ne a probabilistic framework.

Hariri-Ardebili et al. (2019) studied the modal behaviour of an arch dam, showing the

in�uence of the uncertainties of the mechanical parameters on the results. The authors

proposed a calibration procedure which allowed determining the model parameters once

experimental modal characteristics were gathered. However, they did not mention the use

of such procedure within a SHM framework.

In the last decade the use of ambient vibration tests on concrete dams has gained great

interest, with two main purposes: the calibration of FE models and structural control.

These two aspects are strictly related since the structural control, or damage detection,

needs reliable numerical model of the dam. Usually model parameters are calibrated by
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using minimization techniques in a deterministic setting, neglecting the estimation of the

model error, as well as in the static monitoring case. The coherence between recorded and

predicted modes is an important aspect of SHM systems based on ambient vibrations, for

both model updating and structural control. Due to uncertainties in the predictions or in

the records, or to a change of the structural behaviour, experimental and numerical modes

can have di�erent order. If they are not reordered coherently, di�erent modes are compared

leading to false warning or wrong results in the updating process. Usually, this problem is

solved by introducing the concept of System Modes as additional variables of the problems

(Beck et al. 2001). However, in dam engineering �eld this is not su�cient. Indeed, the

Soil-Structure Interaction (SSI) must be considered in order to perform reliable numerical

models. The presence of the SSI leads to a large number of numerical modes with no ex-

perimental correlation, thus giving even more importance to the coherence problem. The

largest part of the contributions available in the literature which consider this problem did

not ensure the mode coherence but they check it a posteriori through the use of synthetic

indicator, such as MAC MACEC and so on.

2.3.4 Damage Indices

2.3.4.1 Introduction

The de�nition of damage indices (DIs) is a fundamental aspect of the structural health

monitoring and of the seismic assessment process. A damage index and its threshold ex-

press in a synthetic way the damage state of the structural components or of the whole

building allowing the structural control. Usually DIs are bounded between 0 and 1, where

0 indicates a healthy state, while 1 indicates a completely damaged structure. In the �eld

of concrete gravity dams several di�erent damage indices have been de�ned in literature.

However, since the main collapse mechanisms of such structures are sliding and rocking

along a lift joint, all proposed damage indices are similar. In this section some considera-

tion about damage indices for concrete gravity dams are reported.

Following Hariri-Ardebili and Saouma (2015), a damage index can be de�ned as a function

of damage variables (DV ). Any structural response which can be used as indicator of dam-

age is de�ned as damage variable. If the multiplication is used to express the relationship

among damage variables, by de�ning the the upper bound DV i
u and the lower one DV i

0

(threshold) of the i-th damage variable DV i, the damage index can be written as

DI =
∏
i

(
DV i −DV i

0

DV i −DV i
u

)κi
, (2.12)
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where κi is an exponent related to the change in DI at di�erent stages of DV i.

As mentioned before, a damage index can be classi�ed in di�erent way:

� Local or Global : a local DI is an indicator of damage in a member, portion or

limited part of a structure, while a global DI capture the damage state of the whole

structure. Global DI can be de�ned as a weighted summation of local DIs.

� Single-variable or Multi-variable: a DI can be de�ned as a function of only one

variable or as a combination of more than one variables.

� Cumulative or Non cumulative: a cumulative DI is able to track the accumulation

of damage during the time, while a non-cumulative DI expresses the damage state

in particular time.

� Deterministic or Stochastic: the material variability (epistemic uncertainty) within

the dam body can be considered by using a stochastic DI, or neglected by de�ning

a deterministic DI.

� Structural or Economical : damage index can be de�ned in terms of structural pa-

rameters or in terms of economical ones.

The de�nition of a damage index starts from the study of potential failure modes of the

structure under control, in the case of concrete gravity dams three potential failure modes

are usually considered:

� Over-stressing: usually both tensile and compressive stresses are checked.

� Sliding: sliding along cracks inside the dam body or planes of weakness as dam-

foundation interface or lift joints.

� Overturning: this phenomena usually appears with the sliding, the rotation pole

lies on the sliding plane.

The potential dam failure is due to a combination of the previous phenomena, but their

classi�cation is important for the de�nition of damage indices. Under severe ground mo-

tions a typical gravity dam may su�er tensile cracks, usually located at the base and near

the upper downstream face discontinuity (Zhang et al. 2013). Usually, the uppers cracks

initiate from the upstream or downstream face and propagate with an angle toward the

opposite side of the dam. The main consequence of cracking, if they reach a critical length,

is the formation of a weak surface which can lead to sliding or rotational instability. More-

over, the cracking could lead to an increase in uplift pressure, accelerating the instability
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phenomena. When cracks due a ground motion start from the upstream surface of the dam

they are usually concentrated at the heel. Whereas when the cracks start from the other

direction they are usually localised around the slope discontinuity and near to the toe of

the dam. Figure 2.21 shows failure mechanisms of concrete gravity dams under increasing

ground motions (Léger 2007). Figure 2.21 shows some critical location of cracks:

Fig. 2.21: Potential failure modes of a typical concrete gravity dam, critical location and
crack paths, adapted from Léger (2007).

� A: neck area at the change of the downstream face slope.

� B: along lift joints at various elevations.

� C: along dam-foundation interface at the toe and heel of the dam.

� D: horizontal, vertical or inclined cracking at the foundation in near-�eld of the dam.

Several applications of DI, de�ned for other kind of structures and applied to the study

of concrete dams, are available in literature. The most commonly used are: cumula-

tive displacement-based indices (�Seismic safety of reinforced concrete members and struc-

tures�), cumulative force-based indices (�Reinforced concrete hysteresis model based on

the damage concept�), cumulative hysteretic energy-based indices (Cosenza and Manfredi

2000) or a combination of them.
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2.3.4.2 Speci�c damage indices for concrete gravity dams

Interesting examples of DIs speci�cally de�ned for concrete dams are those of Hariri-

Ardebili and Saouma (2015) and Ansari and Agarwal (2016). In the former case the

authors proposed a cumulative multi-variable DI, which handled local, intermediate and

global damage states. The damage index was de�ned in terms of crack length Lc, dissipated

energy EH and maximum drift umax. The dam failure was assumed to be reached when a

thorough crack occurs. Therefore, a DI for each of the critical areas shown in �gure 2.21

was de�ned as weighted ratio of cracked length over the estimated local path,

DIji = β∆ ×
Lci
LTi

. (2.13)

In the previous equation DIji is the damage index related to the i-th crack path in the

j-th critical area, Lc and LT are the cracked and total lengths, respectively, while β∆ is

the controlling coe�cient based on umax. Furthermore, ψji the ratio of dissipated energy

along a crack path (EH)i with respect to total energy EH ,

ψji =
(EH)i
EH

, (2.14)

is introduced and combined with DIji . Finally, considering n crack paths, the area damage

index

D̄I
j

=
n∑
i=1

DIji × ψ
j
i (2.15)

can be de�ned, while the DI for the whole structure is

¯̄DI =
m∑
j=1

D̄I
j (2.16)

where m is the total number of critical areas. Furthermore, the authors studied the Koyna

dam using 2D and 3D models of the non-over�ow section, and considering plastic material

models for both soil and dam concrete. They studied the evolution of the proposed DI

showing that it can be successfully used to assess the damage state of concrete gravity

dams. Special attention must be placed on the de�nition of LT , if the crack pre-exists,

so the length of LT is deterministic since it can be measured. Whereas, if the section is

partially cracked, LT can be estimated on the basis of �gure 2.21 accounting for the fact

that a crack will propagate with a minimum energy dissipation.
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Ansari and Agarwal (2016) proposed two global damage indices, one as a combination of

crest displacement and cumulative damage energy dissipation DId, and another based on

factor of safety against sliding DIFSS . The former was de�ned as

DId =


0, if di ≤ dy0

dyiEyi−dy0Ey0
dyfEyf−dy0Ey0 , if dy0 < di ≤ dyf
1, if di ≥ dyf ,

(2.17)

where dy0 is maximum crest displacement at initial yield, dyf is maximum crest displace-

ment at �nal yield, Ey0 is cumulative energy dissipated up to initial yield point, Eyf is

cumulative energy dissipated up to �nal yield point, dyi is maximum crest displacement

during any cycle between initial and �nal yield points, and Eyi is cumulative energy dis-

sipation corresponding to the cycle. The damage index related to the sliding DIFSS was

based upon the residual factor of safety against sliding due to cracks occurred during a

seismic event. It was de�ned as

DIFSS =

[(∑n
i=1 (DIFSSi)base/body

)
+ 0.5 (DIFSSi)neck

]
n+ 1

, (2.18)

where DIFSSi =

√(
1− FSSi

FSSf

)
is the partial damage index for any speci�c crack path,

FSSi is the safety factor against sliding at any intermediate crack, while FSSf is total

safety factor against sliding at no damage state. Finally, the authors analysed a concrete

gravity dam by using a 2D model, calculating the fragility curves of the structures for each

damage state.

2.4 Literature gap

This Chapter presents the main research works on the seismic assessment of existing con-

crete gravity dams and the application of SHM in dam engineering. Most of the contribu-

tions related to the seismic assessment focus the attention on the application of method-

ologies developed for other kinds of structures, and the evaluation of the di�erences due to

the use of di�erent LSs. There are no contributions which try to face the problem of the

epistemic uncertainties reduction, using real measurements. Some applications regarding

the calibration of the model parameters have been presented in section 2.3, using either

static or dynamic measurements, but none of these develops a real SHM framework in a
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probabilistic setting. As mentioned before, the available works on static SHM focus their

attention on the improvement of the �tting between predictions and observations with no

concerns about the stability of the solution or the estimation of the error, thus not re-

ally implementing a static SHM system for concrete dams. Regarding the application of

dynamic SHM for concrete gravity dams, most of them neglect the coherence problem be-

tween numerical and experimental modes. Moreover, none of them de�nes a probabilistic

SHM framework. Summing up, the main gaps in the literature are:

� Seismic fragility assessment of concrete dams: there are no contributions which

try to introduce procedure for epistemic uncertainties reduction.

� Static SHM: there is no probabilistic static SHM framework which allows estimating

the error of the prediction itself.

� Dynamic SHM: there is no probabilistic dynamic SHM framework which allows

estimating the error of the prediction itself. None faces the problem of coherence

between experimental and numerical modes in dam engineering, with particular at-

tention to the SSI.

The aim of this work is the de�nition of a static and a dynamic SHM frameworks, based on

the Bayesian inference, able to reduce the epistemic uncertainties in the predictive models

of the dam behaviour thus improving both the structural control (Diagnosis step) and the

estimation of the seismic fragility of the dam itself (Prognosis step). The calibrated twin

models of the structure can be used to control its behaviour during the regular activity

or to predict its behaviour during seismic events, thus assessing the structural fragility

or controlling the dam behaviour in a more reliable way. In the last part of this work a

procedure to design the dynamic monitoring system is proposed. The procedure is based

on the Optimal Experimental Design. This technique has been already used to design the

optimal monitoring system for concrete dams (Lahmer 2011), with the aim to optimize the

damage detection, but in this work the procedure is also used to maximize the information

gain with respect to the strength parameters. Therefore, the monitoring system is designed

with the double aim of damage detection and strength parameters updating.

The use of the Bayesian inference in SHM is not a novelty (Chatzi 2016) and recently it

gains even more attention as shown by the number of papers published about its application

to civil structures (Huang et al. 2018). This is mainly due to possibility of transforming

an ill-posed problem, as the model calibration, to a well-posed one through the Bayesian

inference (Marwala 2010). This can be done by inserting prior information about the pa-

rameters. However, the computational cost associated with these kind of procedures is
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particularly high, so its application to complex models is still limited. The only available

applications of Bayesian updating, in dam engineering �eld, are related to the calibration

of capacity and demand models for the reliability analysis, as reported in Andreini et al.

(2016) and Peter et al. (2018). These make use of simpli�ed models in order to reduce the

computational burden. In this work the use of meta models allows reducing the compu-

tational burden thus making possible the application of Bayesian inference to the SHM of

dams.
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Modelling issues in the seismic

analysis of concrete gravity dams

3.1 Introduction

Whenever one deals with physical models, regardless their nature, he or she should account

for the uncertainties, aleatory or epistemic, which are always involved. Obviously, this

is true also for the seismic analysis of existing concrete gravity dams, as discussed in

Chapter 2.2. The main source of aleatory uncertainty is the ground motion, while the

epistemic uncertainties are mainly related to the model itself, both the assumption needed

to build it and the parameters. More speci�cally, some assumptions are needed in order to

de�ne a deterministic model, for instance the choice of materials constitutive models, mesh

dimension, interaction and so on. These decisions in�uence the model output and a better

knowledge about the system would leads to reduction of their bias, then this uncertainty

has epistemic nature. The most signi�cant sources of uncertainties, related to the choices

needed to de�ne the deterministic model in dam engineering �eld, are:

� Material constitutive models: the choice of the material constitutive models is a

fundamental step in the deterministic model de�nition, both for dam concrete and
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foundation soil.

� Soil-Structure Interaction (SSI): this is an important aspect which must be faced

when big structures are analysed.

� Fluid-Structure Interaction (FSI): in dam analysis, the FSI modelling approach is a

fundamental choice which in�uences all the analyses.

The e�ects of these three main sources of uncertainties are analysed and discussed in this

Chapter.

Once a deterministic model has been de�ned other epistemic uncertainties arise mainly re-

lated to the model parameters. The quanti�cation and reduction of these last uncertainties

are the objects of Chapters 5 and 6.

3.2 Material constitutive models

3.2.1 Introduction

The main object of this section is the quanti�cation of the uncertainties due to the choice

of the concrete constitutive model and the variation of the strength parameters. Not only

the material parameters could be unknown, which is easily understandable, but also the

behaviour of the concrete due to its particular characteristics. The so called �dam con-

crete� is characterized by big size aggregates and an extrapolation from common concrete

to dam concrete cannot be directly done, as discussed by Brühwiler and Wittmann (1990).

Important e�orts have been undertaken from the past in order to study, both theoretically

and experimentally, the behaviour of concrete under high loading as reported in U§urlu

(2007) and Wu et al. (2016). During an earthquake, several parts of the dam may expe-

rience tensile loading with subsequent crack formation. The safety of these structures is

thus controlled by the tensile behaviour of the material (Brühwiler and Wittmann 1990).

The upper cracks usually initiate from the upstream or downstream face of the dam and

they propagate horizontally, or at an angle towards the opposite face. The consequence

of cracking, if extended through the dam section, may be sliding or rotational instability

of the separated blocks (Ghanaat 2004) (Zhu and Pekau 2007). The rocking stability of

a gravity dam with penetrated cracks was �rst studied by Saini and Krishna (1973), for

the highest monolith of the Koyna Dam. Traditionally, a no-tension stress criterion has

been used in the design of concrete dams (Council 1990). However, micro-cracking is al-

ways present in concrete and the acceptance of moderate tensile cracking that does not

54



Chapter 3 Modelling issues in the seismic analysis of concrete gravity dams

impair the function of a dam may be a realistic point of view (Council 1990). Several

approaches to model the complicated stress-strain behaviour of the concrete are available

(Akköse and �im³ek 2010), some of which are based on plasticity models and some oth-

ers on fracture mechanics. In this context elastic-plastic models (Lee and Fenves 1998a)

can be useful to overcome over-stressing problems encountered in the linear analysis of a

concrete dam and may predict a more realistic stress distribution in the monoliths during

earthquake ground motion. Moreover, plastic regions approximately indicates the critical

areas of the structure. In recent years, the non-linear dynamic response of gravity dams

under earthquake actions, including cracking of concrete, has attracted more attention of

engineers (Hariri-Ardebili et al. 2016a). Stress and crack response of concrete dams may be

analysed by means of many non-linear models, commonly applied in most of engineering

analysis as reported in Ghrib and Tinawi (1995), Ghaemian and Ghobarah (1999) and

Guanglun et al. (2000). Cracking may be modelled by using numerous approaches, which

can be classi�ed into two macro-categories: the geometrical approach, that considers the

crack a geometrical entity and, if needed, allows updating discretization model with cracks

growth; and the non-geometrical one, which only updates the constitutive relationship dur-

ing the propagation of cracks, the mesh remaining unchanged (Ingra�ea 2007). The �rst

one, concerning the discrete cracks, contains two main groups, the linear elastic fracture

mechanics (LEFM) and the non-linear fracture mechanics (NLFM). Regarding the latter,

there are two basic procedures of modelling cracks commonly used in numerical analy-

sis: the �ctitious crack model (FCM), presented by Hillerborg et al. (1976) and the crack

band model (CBM), proposed by Baºant and Cedolin (1979) and Baºant and Oh (1983),

both of which take the e�ects of strain softening into account. The FCM overcomes the

limitation of LEFM and a non-linear constitutive relation can be introduced in fracture

analysis according to the strain-softening mechanism. In this regard, in Pan et al. (2014)

a general investigation is presented, in order to evaluate whether the non-linear responses

of concrete dams obtained from di�erent fracture modelling approaches are comparable in

terms of crack propagation and failure modes.

The second macro-category regards the continuum models and includes smeared cracks

and damage mechanics. In this category, two groups may be identi�ed, the constitutive

methods and the kinematic ones. The continuum damage model (CDM), belonging to the

constitutive methods, o�ers the possibility of modelling areas where damage causes a multi-

tude of micro-cracks that are not necessarily localized. In particular, in the CDM approach

introduced by Rashid (1968), the coalescence of one or more cracks in a volume will result

in a deterioration of the sti�ness and strength of this volume. The Extended FE Method
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(XFEM) approach belongs to the kinematic methods and describes the crack geometry,

independently from the background mesh, by enriching the standard displacement-based

FE approximation with some pre-knowledge of the physics of crack.

The crack is represented, either in the material constitutive model or in the kinematic

model, as an intense localization of strain. In this context, Roth et al. (2015) proposed

a crack model that combines the damage mechanics approach and the XFEM in order to

predict the propagation of the crack path within the dam section. The CDM (in this case,

it comes of a rotating anisotropic damage model) o�ers the possibility of modelling areas

where damage causes a multitude of micro-cracks that are not necessarily localized. It

can e�ciently predict and continuously adjust crack directions during their evolution. The

cohesive XFEM instead, allows a discontinuous displacement �eld to be well-represented

across a localized crack. The use of the CDM allows any initial misprediction of the crack

direction to be corrected as a crack grows.

In this section three constitutive models have been considered and compared: an elas-

tic perfectly plastic material with Drucker-Prager yield criteria (Ibrahimbegovic 2009), an

elastic plastic damaged model with Lee-Fenves yield criteria (Lee and Fenves 1998b) and a

model constituted by non-linear material with damage formulation and a direct limitation

of the shear stresses, called "masonry-like" material model (Lucchesi et al. 2017a).

3.2.2 Elastic perfectly plastic material with Drucker-Prager yield crite-

ria

The �rst considered constitutive model is an elastic perfectly plastic material with Drucker-

Prager yield surface (Ibrahimbegovic 2009). The yield function Fy can be de�ned in terms

of the �rst invariant of the stress tensor I1 and the second invariant of the deviatoric stress

tensor J2. In this space, the expression of the criteria becomes a line (equation 3.1), as

shown in �gure 3.2.

Fig. 3.1: Drucker-Prager failure domain.
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F (σ) =
√
J2 + αI1 − k (3.1)

The parameters α and k in equation 3.1 de�ne the yield surface and they can be de�ned

w.r.t. the strength parameters of the material,

α =
1√
3

Rc −Rt
Rc +Rt

(3.2)

k =
2√
3

RcRt
Rc +Rt

. (3.3)

In the equation 3.2 and equation 3.3 Rc and Rt are respectively the compressive and the

tensile strength of the material. Finally, the line intersections with the axes, x̄ and ȳ can

be easily determined,

x̄ =
−
√

3k

3
√

3α
(3.4)

ȳ =
√

3k. (3.5)

In this context, x̄ and ȳ have been treated as random variables to parametrize the yield

criteria. Their distributions can be determined starting from the distributions of the ma-

terial strengths parameters, which can be de�ned based on the results of tests or on the

data available in literature.

The de�nition of a plastic constitutive model requires the assumption of a �ow rule, which

describes the relationship between the increment of the plastic strain tensor ε̇p and the

current state of stress σ. In the �eld of small plastic strain the direction of the plastic

strain increment is de�ned as

ε̇p = λ
∂Qp
∂σ

. (3.6)

Where λ is the plastic multiplier, which depends on the current state of stress and load

history, and Qp is the plastic potential. The direction of the plastic strain increment ε̇p

is perpendicular to the surface de�ned by the plastic potential so the plastic multiplier is

determined by the complementary condition,

λ ≥ 0, Fy ≤ 0, λFy = 0. (3.7)

When plastic potential and yield function coincide (Qp = Fy) the �ow rule is called asso-

ciated. In this case an associated �ow rule has been used.
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3.2.3 Elastic-plastic damage model with Lee-Fenves yield criteria

The plastic damage model for cyclic loading of concrete structure, proposed by Lee and

Fenves (1998b), is one of the most used constitutive material model for the non-linear

analysis of concrete dams. This material constitutive model allows considering both the

hardening-softening behaviour and the degradation due to damage evolution.

In this section the most important features of the model are introduced. The evolution

equations for hardening variables must be de�ned for the general multi-axial condition,

since 3D FE model has been used in this thesis. Based on Lee and Fenves (1998b) the

equivalent plastic strain rates, in tension ˙̃εpt and compression ˙̃εpc , are evaluated according

to the expressions

˙̃εpt = r
(
ˆ̄σσσ
)

ˆ̇εpmax,

˙̃εpc = −
(
1− r

(
ˆ̄σσσ
))

ˆ̇εpmin,
(3.8)

where ˆ̇εpmax and ˆ̇εpmin are respectively the maximum and minimum eigenvalues of the plastic

strain rate tensor ε̇p and

r
(
ˆ̄σσσ
)

=

∑3
i=1〈ˆ̄σi〉∑3
i=1 |ˆ̄σi|

, 0 ≤ r
(
ˆ̄σσσ
)
≥ 1 (3.9)

is a stress weight factor that is equal to one if the principal stresses ˆ̄σi are positive and

equal to zero if they are negative. Whether, the eigenvalues of the plastic strain rate tensor
ˆ̇εpi are ordered, then the evolution equation for general multi-axial stress conditions can be

expressed in the following matrix form.

˙̃εεεp =

 ˙̃εpt

˙̃εpc

 = ĥ
(
ˆ̄σσσ, ε̃εεp

)
ˆ̇εεεp, (3.10)

where

ĥ
(
ˆ̄σσσ, ε̃εεp

)
=

r (ˆ̄σσσ) 0 0

0 0 −
(
1− r

(
ˆ̄σσσ
))
 , (3.11)

and

ˆ̇εεεp =


ˆ̇εp1

ˆ̇εp2

ˆ̇εp3

 . (3.12)
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The plastic damage concrete model assumes that the elastic sti�ness degradation is isotropic

and characterised by a single scalar variable d which modi�es the initial undamaged elastic

sti�ness of the material Del
0 obtaining the damaged one Del,

Del = (1− d)Del
0 , 0 ≤ d ≤ 1. (3.13)

The scalar degradation variable dmust be consistent with the uni-axial monotonic response

of the material, and it should capture the complexity associated with the degradation

mechanisms under cyclic loading. Therefore, two independents uni-axial damage variable

dt and dc, function of the plastic strains and �eld variables, and two restoration functions

of the stress state st and sc, which represent the sti�ness recovery e�ect associated with

stress reversal, are de�ned,

(1− d) = (1− stdc) (1− scdt) , 0 ≤ st, sc ≤ 1,

st = 1− wt ˆ̄σσσ, 0 ≤ wt ≤ 1,

sc = 1− wc
(
1− ˆ̄σσσ

)
, 0 ≤ wc ≤ 1.

(3.14)

The weight factors wt and wc, which are assumed to be material properties, control the

recovery of the tensile and compressive sti�ness upon load reversal. Since tensile damage

is considered, the plastic strains in tension ε̃pt are de�ned as a function of the damage

variable dt and the cracking strains ε̃ckt ,

ε̃
p
t = ε̃ckt −

dt
(1− dt)

σt
E0
. (3.15)

In equation 3.15 σt are the tensile stresses and E0 is the undamaged elastic modulus of the

material.

The plastic damage concrete model uses a yield criteria based on the yield function pro-

posed by Lubliner et al. (1989), and incorporates the modi�cations proposed by the authors

to account for di�erent evolution of strength under tension and compression. Therefore,

the yield function in terms of e�ective stresses σ̄σσ = σσσ
(1−d) takes the form

F (σ̄σσ, ε̃εεp) =
1

1− α
[
q̄ − 3αp̄+ β (ε̃εεp) 〈ˆ̄σmax〉 − 〈−ˆ̄σmax〉γ

]
− σ̄c (ε̃pc) , (3.16)

where α and γ are dimensionless material constants,

p̄ =
1

3
σ̄σσ : I (3.17)
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is the e�ective hydrostatic pressure,

q̄ =

√
1

3
S̄ : S̄ (3.18)

is the Mises equivalent e�ective stress,

S̄ = p̄I+ σ̄σσ, (3.19)

is the deviatoric part of the e�ective stress tensor σ̄σσ and ˆ̄σmax is the algebraically maximum

eigenvalue of σ̄σσ. The function β (ε̃εεp) is given as

β (ε̃εεp) =
σ̄c (ε̃pc)

σ̄t (ε̃pt )
(1− α)− (1 + α) , (3.20)

where σ̄t and σ̄c are the e�ective tensile and compressive cohesion stresses, respectively.

As mentioned before, α and γ are material constant, the former related to biaxial and

uni-axial stresses, while the latter de�nes the shapes of failure domain in the principal

stresses space.

Finally, this material constitutive model assumes non associated �ow rule. The Drucker-

Prager hyperbolic function is used as plastic potential,

Qp =

√
(εσt0 tan (ψ))2 + q̄2 − p̄ tanψ, (3.21)

where, ψ is the dilatation angle, σt0 is the uni-axial tensile stress at failure, ε is the eccen-

tricity parameter which de�nes the rate at which the function approaches the asymptote.

The model parametrization has been directly done on the values of the tensile and com-

pressive strengths, assuming that the values of the cohesions were equal to them (Lee and

Fenves 1998b). In this way, as indicated in �gure 3.2, the domain vertices P1 and P2 move

along the diagonal keeping constant the shape.

3.2.4 Extended "masonry-like" material

The "masonry-like" model, in its original concept, is a no-tension normal material devel-

oped for the study of masonry structures (Lucchesi et al. 2008). In recent years, several

authors have contributed to its extension limiting the tensile strength, and bounding the

shear stress (Lucchesi et al. 2017b). In this section this material constitutive model is

brie�y described. Being a normal material model, the constitutive relation is fully de-

scribed once the tensor of the elastic modulus C and the space of the admissible tensions
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Fig. 3.2: Concrete damage plasticity failure domain.

K are speci�ed. In particular, K is a closed and convex subset of Sym, which is the space

of all symmetric second order tensors. Once the strain tensor E has been assigned, the

stress tensor T is obtained by projecting C · E on K, with respect to the complementary

energy norm. When K is a polyhedron, an explicit expression of these projections can

be determined (Lucchesi et al. 2017b). In this context, the polyhedral shape of K is de-

�ned assuming that the principal stresses belong to the interval [−Rc, Rt], where Rc is the
compressive strength and Rt is the tensile strength. The maximum allowed value of the

tangential component of the stress τ depends on each plane on the normal component σ,

|τ | = τ0 − σ tan (φ) . (3.22)

Where τ0 and φ are positive material parameters. Here they have a role analogous to the

ones played by the cohesion and the friction angle in the theory of soil plasticity (Chen

2007). Finally, in Lucchesi et al. (2017c) and De Falco et al. (2017) a softening law for the

tensile strength, is introduced.

One of the most interesting feature of the "masonry-like" constitutive model is the explicit

calculation of the cracking strain, which makes the computational burden very low. As-

suming an isotropic behaviour of the material, the relationship among the stress tensor T,

the total strain tensor E and the inelastic part of the strain tensor Ea, is

T = C (E−Ea) =
E

1 + ν
(E−Ea) +

νE

(1 + ν) (1− 2ν)
tr (E−Ea) I, (3.23)

where E is the Young modulus and ν the Poisson's coe�cient of the material. Moreover,

T, E and E are coaxial tensors with common eigenvectors ei and corresponding eigenvalues
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dented by ti, ei and ai, respectively. Therefore, the constrain of the stresses, previously

speci�ed, make a quadrilateral failure domain, shown in �gure 3.3, with vertices,

T1 ≡ (Rt, Rt) (3.24)

T2 ≡
(
Rt (1 + sin (φ))− 2τ0 cos (φ)

1− sin (φ)
, Rt

)
(3.25)

T3 ≡
(
−Rc,

2τ0 cos (φ)−Rc (1− sin (φ))

1 + sin (φ)

)
(3.26)

T4 ≡ (−Rc,−Rc) . (3.27)

In the same way, the elastic strain range in the space of the principal strains is a quadri-

lateral (�gure 3.3), with vertices,

E1 ≡
(

εt
1 + ν

,
εt

1 + ν

)
(3.28)

E2 ≡
(
εt ((1 + sinφ)− ν (1− sinφ))− 2τ0 cosφ

(1− ν2) (1− sinφ)
,
εt ((1− sinφ)− ν (1 + sinφ)) + 2ντ0 cosφ

(1− ν2) (1− sinφ)

)
(3.29)

E3 ≡
(
εc (ν (1− sinφ)− (1 + sinφ))− 2ντ0 cosφ

(1− ν2) (1 + sinφ)
,
εc (ν (1 + sinφ)− (1− sinφ)) + 2τ0 cosφ

(1− ν2) (1 + sinφ)

)
(3.30)

E4 ≡
(
−εc

1 + ν
,
−εc

1 + ν

)
, (3.31)

where εt and εc are the strain values for which the material strengths in tension and

compression, respectively, are reached.

Therefore, since the elastic domains K and E are a priori de�ned, the principal strains

space E can be partitioned. In this way, a general strain state is projected to a segment of

the elastic domain in the space E and the relative stress state is easily determined through

the elastic tensor C.
In this application, the parametrization of the failure domain K has been done by moving

the positions of the vertices, as shown in �gure 3.4. The positions of the vertices of

the polyhedral domain depend on the values of the material strengths parameters, in

particular T1 and T4 depend on the values of the tensile and compressive strengths, so

their distributions may be directly obtained from the distributions of Rt and Rc. The

positions of T2 and T3 depend not only on the values of Rt and Rc but also on the values

of the tangential stress parameters, τ0 and φ. The available information about τ0 and φ
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Fig. 3.3: "masonry-like" constitutive model: partition of the strain plain and projection,
adapted from Lucchesi et al. (2017b).

are usually very poor, so the segments s and b have been modelled as random variables,

using uniform distributions.

Fig. 3.4: "masonry-like" failure domain.

3.2.5 Comparative analysis

The Koyna Dam, a 103-m-high concrete gravity dam in India, is a benchmark problem

which has been widely examined by several researchers in the �eld of dam modelling. This

case is particularly interesting due to the e�ects registered after the seismic event occurred

in the dam area in 1967. Based on a seismic coe�cient of 0.05, uniform with the height, the
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earthquake forces were expected to cause no tensile stresses. However, the 1967 earthquake

caused signi�cant cracking in the dam. The higher monolith of the non-over�ow section

su�ered the worst damage during the seismic event, endangering its stability during future

shocks. It is believed that this exaggerated damage resulted from an elevator tower that

extended 15 meters above the top of the block and it was therefore subjected to greatly

increased inertial forces.

From the computational point of view, the presence of smooth vertical contraction joints

enables the use of 2D plane stress models of individual monoliths to predict the seismic

behaviour of the structure. Among the many studies of the Koyna dam, the most inter-

esting works are those presented in Gioia et al. (1992), Ghrib and Tinawi (1995) and Roth

et al. (2015) in which a static analysis of the dam was performed on cases of reservoir

over�ow, using fracture mechanics and plasticity-based models. Moreover, Omidi et al.

(2013) studied the seismic behaviour of the Koyna dam, varying the damping mechanism

in a plastic-damage model. De Falco et al. (2017) compared the results presented by Roth

et al. (2015) with those obtained using a simpli�ed discrete-sliding-face model and the

extended masonry-like material model with bounded shear stress. In this section the com-

parative analyses have the main aim to show the in�uence of the choice of the material

constitutive model on the output, and to highlight how the epistemic uncertainties related

to the material model parameters, of each of them, lead to a variation of the results.

Starting from the results of material tests, the tensile and the compressive strengths have

been modelled as RVs, assuming log-normal distributions as indicated in table 3.1. The

other mechanical parameters, needed for the analysis, have been de�ned according to the

literature (Omidi et al. 2013). The General Polynomial Chaos expansion (GPCe) tech-

Table 3.1: Distribution of the concrete strength parameters

Parameter Mean Value Standard deviation

Rc (MPa) 25.31 6.33

Rt (MPa) 2.23 0.56

nique, introduced in Chapter 4.4, has been used to speed up the procedure, reducing the

analyses number, which in this work is equal to 150. The polynomial coe�cients have been

determined based on the results of the FE model, which is a plane stress model composed

by 658 four-nodes elements and 706 joints. The e�ect of the soil-structure interaction has

been considered by using an appropriate Rayleigh coe�cient, and a portion of foundation

soil, properly calibrated in terms of sti�ness. The e�ect of the water-structure interaction

has been considered by applying the added-masses approach, which allows modelling the
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hydrodynamic pressure only by adding lamped masses properly calibrated (Westergaard

1933). The model is subjected to gravity, hydrostatic pressure, of a full reservoir level,

and the horizontal ground acceleration components of the 1969 seismic events, while water

pressure inside the cracks is neglected.

The results are presented in terms of crest displacements and base shear, highlighting the

Fig. 3.5: Koyna horizontal ground acceleration.

e�ect of the strength parameters uncertainty, and comparing the results obtained with the

three di�erent constitutive models.

The results of the three models, in terms of crest displacements and base shear, are shown

in �gures 3.6, 3.7 and 3.8. In all cases, the crest displacements are more sensitive to the

strength parameters variation and this fact is underlined by a bigger variance with respect

to the base shear.

Referring again to �gures 3.6, 3.7 and 3.8, and comparing the mean values, several dif-

ferences can be observed, in particular the displacements are more sensitive to the model

choice. The "masonry-like" material shows a di�erent behaviour, if compared to the other

two models, both in terms of base shear and displacement. By analysing the collapse

mechanisms of the dam the reason of these di�erences can be found in the direct control

of the shear stresses. In fact, this particular constitutive model allows the cracks growing

in the proximity of the downstream face due to the direct control of the shear stress.

The maximum values of the relative error of the gPCE in terms of mean values and vari-

ances are indicated in table 3.2. The base shear relative errors are smaller than those of

the crest displacement and the reason of this fact is that the base shear is usually less
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(b) Crest displacement. (c) Base shear.

Fig. 3.6: FEA results considering the Elastic-perfectly plastic material model.

(a) Crest displacement. (b) Base shear.

Fig. 3.7: FEA results considering the Concrete Damage Plasticity material model.

(a) Crest displacement. (b) Base shear.

Fig. 3.8: FEA results considering the "Masonry-like" material model.

in�uenced by the strength parameters variation, as can be noted in �gures 3.6, 3.7 and

3.8.

66



Chapter 3 Modelling issues in the seismic analysis of concrete gravity dams

Table 3.2: Relative errors

Maximum Relative error mean value variance

Perfectly plastic material, crest displacement 5.15e-3 0.13

Concrete damage plasticity, crest displacement 3.96e-6 0.10

Extended "masonry-like" material, crest displacement 3.55e-7 0.21

Perfectly plastic material, base shear 1.77e-15 0.33

Concrete damage plasticity, base shear 2.55e-16 0.27

Extended "masonry-like" material, base shear 1.08e-15 0.31

3.2.6 Concluding remarks

In this section the e�ects on the dam model related to the uncertainty of the material

strength parameters are shown, highlighting how they play di�erently varying the material

constitutive model. It is worth noting that the best model can be selected only with regard

to the available information. Indeed, the Bayesian Ockham Razor (Beck 2010) shows that

the model class selection is a trade-o� between data-�t and model complexity. This aspect

must always be considered when a numerical model is performed.

3.3 Soil-structure interaction (SSI)

3.3.1 Introduction

One of the biggest issues, and source of uncertainty, related to existing dams modelling

is the soil-structure interaction (SSI). In this regard, SSI was addressed by many authors

who were searching for a reliable simulation of wave propagation in a semi-in�nite medium.

Nowadays, the Finite Elements method is the most common for a coupled study using both

structural and acoustic elements, and it can also simulate the unboundedness of both ter-

rain and reservoir.

In this section, the SSI is considered for existing concrete gravity dams, investigating its

e�ects numerically on 2D FE plane strain models under ground motion. More speci�cally,

the advantages of modelling half-unbounded domains are shown performing frequency re-

sponse analyses under di�erent boundary conditions and modelling approaches.
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3.3.2 Modelling approach

During ground shaking, the dam-reservoir-foundation system must be considered a coupled

system. To date models seldom take into account full interaction e�ects, because of the

lack of adequate numerical implementations or computational resources required by three

dimensional detailed models. SSI is described to have two main components: kinematic

and inertial interaction (�Dynamic soil-structure interaction, John P. Wolf, Prentice-Hall,

Englewood Cli�s, N.J., 1985. No. of pages: ¿466. Price: ¿61.45�). The former is governed

by soil �exibility. In this regard, the massless foundation model proposed by Clough in

1980 (Clough 1980) has been extensively used in seismic analysis of dam-foundation prob-

lems. In this model, recorded displacements are imposed at the boundaries of the domain

and the input motion reaches instantaneously the base of the dam. Wave velocity in foun-

dation becomes in�nite and the structure takes all kinetic energy. These assumptions seem

in general unrealistic (Tan and Chopra 1995).

Inertial interaction is generated by elastic waves that develop under dynamic loads, promot-

ing the energy transport through the soil volume. Such a phenomenon, that carries energy

away from the structure, is often referred as �radiation damping�. So, while in static SSI

analysis the simple truncation of the far �eld with setting of appropriate boundary con-

ditions gives very often good results, in dynamic cases it makes results to be erroneous

because of re�ection waves.

Recently, SSI for concrete retaining structures has been addressed by many authors, search-

ing for a reliable simulation of wave propagation in a semi-in�nite medium, by modelling

the far �eld part of the foundation. Some interesting methods are: Lysmer boundary con-

ditions (Lysmer and Kuhlemeyer 1969), hyper-elements (�A technique for the analysis of

the response of dams to earthquakes�), in�nite elements (Kim and Yun 2000), (Yun et al.

2000), rational boundary conditions (Feltrin 1997), boundary element method (Yazdchi

et al. 1998), scaled boundary element method (Song and Wolf 2000) and high order non-

re�ecting boundary conditions (Givoli 2004).

Among the previous approach particularly interesting and widely used are the PML, the

in�nite elements and the non-re�ecting boundary conditions. PML is a technique able to

absorb incident waves under any angle and frequency, preventing them from returning back

to the medium after incidence to the model boundaries (Johnson 2008). The procedure,

�rst introduced by Berenger in 1994 (Berenger 1994), may be applied to di�erent physical

problems. It comes to a complex coordinate stretching of the domain to introduce a de-

cay of the oscillation without any re�ection in the source domain, simulating a perfectly

absorbing material. The rational scaling of PML is expressed by the following function of
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the dimensionless coordinate (Berenger 1994)

fr (ζ) = sζ

(
1

3p (1− ζ) + 4
− i

3p (1− ζ)

)
, (3.32)

where p is the curvature parameter and s the scaling parameter.

In�nite Elements (IEs), used to incorporate unbounded domains into the �nite element

method, have a formulation similar to those of FE, except for the in�nite extent of the

element region and shape function in one direction. In�nite elements method is based on

a function which maps the global to the local coordinate system,

f (ζ) =
ζ

γ − ζ
δp, (3.33)

where δp is the pole distance, γ = δs+δp
δs and δs is the scaled thickness (Zienkiewicz et al.

1983).

Finally, the low re�ecting boundary condition is obtained by imposing a mechanical impedance

on the foundation boundary of the model, following the equation

T · n = −Ddu

du
, (3.34)

where, u is the displacements vector, T the stress tensor, n the unit vector of the boundary

tangent plane and D is the impedance matrix (Holzapfel 2000),

D =
cp + cs

2
I

cp =

√
K + 4

3G

ρ

cs =

√
G

ρ
,

(3.35)

where K is the bulk modulus, G the shear modulus and ρ the density.

In order to understand the necessity of considering both solid and �uid domains as un-

bounded, three di�erent modelling options are explored in this section: the rigid soil, the

Perfectly Matched Layer (PML) technique and the massless soil.
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3.3.3 Frequency response analysis

A frequency response analysis is �rst performed in order to evaluate di�erent modelling

approaches for the coupled system regarding the �uid part of the model, the soil and its

unboundedness. The case study is an Italian concrete gravity dam 65 meters high.

Three models were set up by using COMSOL Multiphysics® (COMSOL Multiphysics

2009) software (�gure 3.9). The �rst reference model simulates the dam on rigid terrain

(�gure 3.9a), the second model includes the standard massless foundation in a bounded

region (�gure 3.9b) and the third model accounts for foundation soil as unbounded half-

space provided with mass �gure 3.9. Regarding dam and soil domains, the standard Solid

Mechanics equations are applied. The solid mesh is made of default second-order serendip-

ity elements: 453 for model 1, 3146 for model 2 and 3692 for model 3. The material setting

of the three plane-strain models is reported in table 3.3.

As for the �uid subsystem (full reservoir), it has been simulated both by Westergaard

Fig. 3.9: a) model 1: rigid soil; b) model 2: massless soil; c) model 3: in�nite terrain model.
a1) added mass model; a2) �uid-structure interaction model.

added mass model (Westergaard 1933) and by the Helmoltz equation derived from the full

Navier-Stokes equation assuming small vibrations and neglecting viscosity. In this con-

text, the e�ects of considering coupling and unboundedness of �uid and solid domains are

evaluated. PMLs were applied at the bottom and on both sides of the terrain domain and

also at the upstream side of the �uid region, in order to simulate the unboundedness of

both domains, when explicitly modelled. The PML mesh element sides are directed along

the radiation path. In addition, according to Kuhlemeyer and Lysmer (1973), the spatial

element size must be smaller than approximately one-eighth of the wavelength associated

with highest input frequency.
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Table 3.3: Materials parameters

Concrete Foundation rock

Density ρ
[
kg/m3

]
2450 2300

Young modulus E [MPa] 20500 22000

Poisson modulus ν 0.2 0.2

Damping coe�cient ξ 0.05 0.05

In this case, the frequency sweep ranges between 0 Hz and 25 Hz and the maximum mesh

size is 5 m. The analysis has been conducted under both the hypotheses of empty and full

reservoir. In this latter case, the basin is simulated using both the simpli�ed Westergaard

(Westergaard 1933) added mass model (�gure 3.9 a1) and the full acoustic coupling (�gure

3.9 a2). When acoustic water domain is modelled, a zero pressure boundary condition is

set at the free surface and a rigid boundary condition at the bottom. Base shear has been

obtained for a total of nine cases, in order to detect the soil e�ect.

To make the three soil models comparable to each other, the same horizontal harmonic

acceleration has to be provided at the base of the dam. In particular, in models 1 and 2,

a horizontal acceleration with peak amplitude of 1 [m/s2] is applied to the green and the

red contours, respectively.

Unfortunately, the application of PMLs on the exterior boundaries of the terrain model

makes them no longer available for a displacement boundary condition. Similarly, by ap-

plying the kinematic condition to the interface between the dam and the soil, the outgoing

waves are blocked since the �eld variable u is �xed. This problem is overcome by leaving

the displacement unconstrained, a distributed force load was applied at the bottom PML

blue interface �gure 3.9 and its value was �tuned�, frequency by frequency, by a global

equation, enforcing an average unit acceleration condition at the dam base.

The results in terms of frequency response for base shear are displayed in all cases of empty

reservoir, added masses and full interaction in �gure 3.10. The in�nite terrain model (blue

curves), shows a downward frequency shift with respect to the rigid soil model (green

curves) in both cases of Fluid Structure Interaction and added masses. Moreover, it dis-

plays a noticeable reduction of the peak response in comparison to the massless case, due

to radiation damping. In the case of FSI, the �rst eigenmode of the reservoir remains well

visible, at

f =
c

4h
=

1483 [m/s]
4 · 60 [m]

= 6.17 [Hz] (3.36)
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where c is the speed of sound in the water and h is the height of the basin. The reservoir

driven resonances can be easily identi�ed, due to their very narrow bandwidth and their

frequency location. The �uid pressure and the solid displacement colour maps for models

b) and c) in �gure 3.9 under a 10 Hz frequency excitation are reported in �gure 3.11.

The streamlines represent the acoustic energy �ux within the �uid and the mechanical en-

ergy �ux within the solid that originate from the bottom of the soil domain. A remarkable

di�erence between the two systems can be observed. The massless model displays a circu-

latory streamlines pattern that becomes curly when frequency increases, without a de�ned

incoming wave front. The in�nite soil model, instead, displays a well-de�ned energy �ux

direction, as well as a lower amount of energy transmitted to the basin with respect to the

former case.

(a) Interaction.

(b) Added masses.

Fig. 3.10: Frequency response curves of the base shear for di�erent approaches.
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Fig. 3.11: Displacement, pressure and energy �ux streamlines plot for massless soil (left) and
unbounded soil (right).

3.3.4 Parametric analysis

In order to evaluate the e�ect of the change in sti�ness and density of the soil, a parametric

study is performed on a model in the case of empty and full reservoir, allowing a deeper

understanding of the terrain contribution. In �gure 3.12 response curves in term of base

shear are shown for empty reservoir and full reservoir, varying the soil sti�ness Eg and

density ρg. The corresponding parameters of concrete are kept unchanged (table 3.3).

The graphs are expressed in function of the logarithm of the ratio between the terrain

parameter and the corresponding concrete value in table 3.3. Soil parameters are varied

one at a time, on a wide range of values, well beyond a realistic distribution, to emphasize

the di�erent e�ects of each one. It may be deduced that

� For increasing values of the terrain sti�ness, both the frequency and the amplitude

of the peak response increase.

� For increasing values of the terrain density, the peak response decreases while its

frequency location remains unchanged.

� If the terrain has some �exibility, the system's resonant frequency is always lower

than the rigid case, regardless of terrain density.

� In case of full reservoir, the peak of the �rst frequency of the basin is always evident

and even more noticeable with increasing density and decreasing sti�ness.

73



Chapter 3 Modelling issues in the seismic analysis of concrete gravity dams

As expected, the asymptotic response for very sti� terrain converges to the rigid foundation

model (black dashed line). Results obtained from the response analysis in terms of crest

acceleration display the same features as the base shear curves.

Fig. 3.12: Parametric variation of base shear response curve with soil relative sti�ness and
density � full reservoir (on the left), empty reservoir (on the right).

3.4 Fluid-structure interaction (FSI)

3.4.1 Introduction

Hydrodynamic forces evaluation on water retaining structures during earthquakes is a chal-

lenging issue. In the past, hydrodynamic loads exerted by the reservoir on the upstream

face of the dam were obtained from simpli�ed theories, such as Westergaard's (Westergaard

1933) and Zangar's (Zangar 1953), dating back to the �rst half of the twentieth century.

Such theories, initially based on very simplistic hypotheses and successively developed by

Chopra (Chopra 1967), are nowadays the base of main international codes and guidelines.

The well-known Westergaard simpli�ed theory was developed in 1933 and originated the

widespread added masses approach. This useful simpli�cation adopted in highly sophisti-

cated and irregular 3D models could however lead to inaccurate predictions. The possible
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di�erences are estimated in this section.

The physical phenomenon has been investigated using Finite Element models by remov-

ing some of the simpli�cations underlying the aforementioned theories. Hydrodynamic

pressures on an Italian large gravity dam have been calculated using di�erent modelling

approaches. The analysis has been carried out using two and three-dimensional models,

and a parametric variation of boundary conditions has been performed.

3.4.2 Analytical solution

Westergaard's paper (Westergaard 1933) dating back to 1933 is considered as the milestone

for the evaluation of hydrodynamic loads on water retaining structures, given its simple

yet elegant solution and physical interpretation of the phenomenon. The key assumptions

of his solution are the following:

1. small displacements of water particles, neglecting global mass �ow;

2. non-viscous �uid;

3. in�nite upstream extension of the water reservoir;

4. no surface waves;

5. perfect waves re�ection of the reservoir bottom;

6. horizontal and rigid water reservoir bottom surface;

7. rigid, sinusoidal motion of the dam;

8. plane symmetry of the problem;

9. earthquake dominant period higher than dam natural vibration period.

The �rst three hypotheses allowed obtaining a substantial simpli�cation of the Navier-

Stokes equation. These equations, valid for general �uid motion, turn into the more man-

ageable linear wave equation, namely D'Alembert's equation

∇2p− 1

c2

∂2p

∂t
= 0 (3.37)

where p is the pressure and c is the speed of sound in the medium equal to
√
K/ρ, where k

is the water bulk modulus and ρ its density. The solution is expressed as particle horizontal
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and vertical displacement, provided by Fourier series. The vertical displacements tend to

in�nity as the excitation period reaches the values:

Tn =
4h

c · n
(3.38)

where h is the water height. If that is the case, resonance occurs and the corresponding

values of frequency fn = 1/Tn are de�ned as reservoir eigenfrequencies. The solution of

equation 3.37 can be accomplished both in the time and in the frequency domain, through

the well-known Fourier transform.

In the same paper, Westergaard also introduced a simpli�ed expression for the displacement

and a physical interpretation of the hydrodynamic forces. Their e�ect can be estimated

by neglecting their dependence on the vibration period and by approximating the pressure

distribution by a parabolic expression. If one accepts the trade o�, their behaviour is

identical to that of a mass distribution m (y) rigidly attached to the upstream face of the

dam, according to the following distribution along the height y, measured downwards from

the free surface

m (y) =
7

8
ρ
√
hy (3.39)

In a later paper, Chopra (Chopra 1967) extended Westergaard's solution to the whole range

of frequencies, by removing hypothesis 9, providing an analogous and more complicated

Fourier series solution.

Analytical solutions of the problem did not have any major improvement over the decades,

mainly because of the increasing availability of computing resources. Westergaard's solu-

tion remained the benchmark and the reference for the international codes up to modern

days. In this section the last three hypotheses are removed, and the arising consequences

are analysed.

3.4.3 Case study

3.4.3.1 Introduction

The aforementioned investigation is developed by means of a case study regarding an ex-

isting Italian dam. The structure is an ordinary concrete gravity dam made up of 27

concrete monoliths, with a maximum height of 65 m, a straight shape in plan, a vertical

upstream face and a downstream face with a slope of 0.72. Concrete material parameters

are summarized in table 3.4 while water level is supposed at maximum allowed of 60 m.
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Table 3.4: Concrete materials parameters.

Density ρ
[
kg/m3

]
2450

Young modulus E [MPa] 20550

Poisson modulus ν 0.18

Damping coe�cient ξ 0.05

3.4.3.2 FEM analyses of 2D and 3D dam models

2D and 3D �nite element models have been performed in COMSOL Multiphysics 5.3

software (COMSOL Multiphysics 2009), as illustrated in the �gures 3.13 and 3.14. Each

of the two models is studied under di�erent hypotheses

� Full reservoir, added masses: hydrodynamic actions are introduced according to

Westergaard's simpli�ed expression 3.39 for equivalent masses rigidly connected to

the structure. The correct implementation of such masses requires their value to be

assigned only to the horizontal degree of freedom of the corresponding mesh element,

leaving the vertical contribution to inertial forces unmodi�ed.

� Full reservoir, �uid-structure interaction: the �uid domain is explicitly modelled and

an acoustic-structural interface is introduced at the dam upstream face.

� Full reservoir, rigid structure: this hypothesis is investigated mainly for comparison

and interpretation of the previous models.

� Empty reservoir : the acoustic part of the model is ignored. This model is used for

comparison purposes only, to appreciate the structural e�ects of the hydrodynamic

force.

The 2D model (�gure 3.13) is made up of 300 triangular second order Serendipity elements

for the solid mechanics part and 624 quadrilateral second order Lagrange elements for

the acoustics part, for a total of 841 nodes. The 3D model (�gure 3.14) is made up of

8837 tetrahedral second order Serendipity elements for the solid mechanics part and 42384

tetrahedral second order Lagrange elements for the acoustics part, for a total of 17086

nodes.

The two models are analysed by performing a frequency domain study under harmonic

base acceleration excitation. Regarding the boundary conditions, on the solid mechanics

component, a unit, horizontal acceleration is imposed at the dam base nodes, considering

a rigid foundation motion. As for the acoustic component, a zero pressure condition is
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Fig. 3.13: 2D model, Fluid Structure Interaction.

Fig. 3.14: 3D model, Fluid Structure Interaction.

imposed at the water free surface and a rigid wall condition at the bottom of the reservoir.

The �uid-structural interaction condition at the interface between the two domains is the

following −n
(

1
ρ∇p

)
= −n · utt

FA = p · n
(3.40)

where n is the unit vector normal to the interface, FA is the acoustic force on the structure

and utt is the solid acceleration. The �rst equation transfers the structural acceleration to

the �uid, while the second applies the �uid pressure load on the structure. Such a system

of equations expresses a fully coupled problem, where the solid and the acoustic parts have

to be solved simultaneously.

The original Westergaard formulation of semi-in�nite domain is a reasonable practical as-

sumption of a su�ciently long reservoir. This implies that none of the upstream waves is

ever re�ected back to the structure during the seismic event. It follows that a non-re�ecting

boundary condition is necessary in the upstream direction, namely the well-known Som-

merfeld radiation condition. This can be accomplished in a �nite element model through

the Perfectly Matched Layer (PML) (Berenger 1994). It consists in a complex coordinate

stretching function fr (ζ) of an auxiliary absorbing domain as introduced in section 3.3,

equation 3.32. In the present case an auxiliary PML domain has been added on the up-
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stream side of the reservoir (�gure 3.13) in the FE models.

The 2D model introduces the deformability of the structure and extends the excitation fre-

quency to the whole range of interest for seismic study purposes, thus removing hypotheses

3 and 9. The results are displayed in the form of acoustic pressure magnitude, being a

complex quantity in a frequency domain solution. In �gure 3.15 the pressure modulus is

plotted over the domain.

The hydrodynamic load distribution along the dam upstream face is represented by the

Fig. 3.15: 2D model response for 0.1 Hz (upper image) and 5.7 Hz (lower image). The
linear distributed forces on the upstream face are represented in red, in comparison with
Westergaard's solution (black curve).

red curves and compared with Westergaard's theory prediction (black curves).

By examining the pressure distributions, it can be clearly seen that Westergaard's solution

is reproduced only for frequency values tending to zero (top image). In fact, in this case

the pressure distribution on the upstream face follows the theoretical quarter-wave shape,

in good agreement with Westergaard's parabolic assumption. Higher excitation frequency

values (bottom image) lead to the development of higher mode shapes for the pressure dis-

tributions as in the lower image, where a near three-quarter-wave distribution is displayed.

The hydrodynamic load distribution on the dam face is computed also for the 3D model,

thus removing hypothesis 8 of planar behaviour. In �gure 3.16, in analogy with �gure

3.15, the blue surface represents the equivalent distributed load on the upstream face of
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the dam deduced by inertial added mass forces, while the red one is the acoustic pressure

load obtained from the FE interacting model.

The 3D case displays a signi�cant pressure variation along the cross valley direction,

Fig. 3.16: 3D model response for 0.1 Hz (upper image) and 5.7 Hz (lower image): pressures
relative to the FS interaction (red surface) are shown, in comparison to the equivalent added
masses inertial load (blue surface).

which is impossible to be captured in a 2D modelling context. In addition, a signi�cant

phase di�erence between pressures on each monolith reduces the overall synchronism of

hydrodynamic load and thus the ampli�cation of its overall action on the structure.

Model response is evaluated by plotting the amplitude of hydrodynamic resultant forces for

the tallest monolith. The plots in �gure 3.17 and �gure 3.18 show a noticeable di�erence

between the 2D and 3D analyses; the main di�erences are the following.

� The frequency of the resonance peaks in the 3D case is higher than in the 2D case;

a reasonable explanation could be found in the higher degree of constraint given by

the adjacent, shorter monoliths, providing additional sti�ness to the structure and

the corresponding minor water depth.

� A slightly higher intensity of the hydrodynamic resultant force for the 2D model is

observed.
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� In the 2D case the response for near-zero frequencies of the added masses model

tends to the same value as the FSI analysis, matching the theoretical solution. This

does not occur in the 3D case, where the di�erence is still noticeable, being roughly

20% higher. This results may induce to believe that a direct added masses model

transposition to three dimensional analysis be arbitrary and lead to errors.

� The added masses simpli�ed model provides a reasonable estimation of the �rst

resonant frequency, while it does not match the FSI analysis for superior modes,

providing a much higher ampli�cation.

� In the 2D case the rigid barrier peaks (blue curve) are still visible in the FSI anal-

ysis, meaning that speci�c reservoir dynamic properties are let unmodi�ed by the

structural coupling. In fact, the theoretical reservoir eigenfrequencies deduced from

equation 3.38 are equal to 6.17 Hz and odd multiples in 2D, which are not a�ected

by the structure. The phenomenon can be explained by noticing that at a certain

distance from the dam, a local pressure variation at the upstream face does not in�u-

ence the far-�eld response. In fact the latter is governed only by the reservoir depth

itself, which is constant in 2D. In the 3D model such e�ect is less evident.

Fig. 3.17: Hydrodynamic force - 2D central monolith model.

In Figures �gure 3.19 and �gure 3.20 the 3D model pressure contours are plotted for

di�erent excitation frequencies. The �gures clearly display the variability of pressure dis-

tribution along the cross valley direction, even for low excitation frequency values.

Since Westergaard's expression is strictly valid in 2D cases, its extension to 3D can be

accomplished in di�erent ways: both by �xing h in equation 3.39 as the overall reservoir

maximum depth, or by continuously varying it along the cross valley direction. The �rst so-

lution leads to major errors in estimating both peak frequencies and response magnitudes.

The second solution, adopted in this case, is quite adequate in matching the FSI simulation
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Fig. 3.18: Hydrodynamic force - 3D model, central monolith.

for low frequency ranges. Nevertheless, it remains inappropriate for higher modes, where

pressure variations in the cross valley direction are signi�cant due to excitation of superior

longitudinal harmonics.

The same �gures also plot the streamlines for acoustic intensity, de�ned as I = p · v,
with p is the �uid pressure and v the particle velocity. By comparing the �gures for a

low and a high value of excitation frequency, a remarkable di�erence is observed, and the

energy �ux is at least two orders of magnitude greater for high frequencies. This energy

is radiated upstream of the reservoir and it is thus subtracted from the dam body. Such

e�ect is equivalent to consider an additional damping, referred to as acoustic radiation

damping. The acoustic intensity is integrated over the upstream model boundaries and

Fig. 3.19: Hydrodynamic pressure contours and acoustic intensity streamlines - 3D model -
excitation of 0.1 Hz.

the total radiated power is plotted in �gure 3.21 on a semi logarithmic scale for 2D and 3D

models. It can be observed that the radiated energy for excitation frequencies below the

�rst eigenfrequency of the reservoir is substantially negligible, compared to that for higher

frequencies. The �rst reservoir eigenfrequency may thus be interpreted as a cut-o� limit

for energy radiation upstream of the reservoir. It is also shown that the 2D FSI models
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Fig. 3.20: Hydrodynamic pressure contours and acoustic intensity streamlines - 3D model -
excitation of 20 Hz.

provides a dissipation throughout the whole range which is orders of magnitude lower than

the rigid barrier case. This behaviour is not replicated in the 3D case, where the rigid and

FSI values are comparable.

Fig. 3.21: Total reservoir radiated power (semi-logarithmic scale) for 2D (left) and 3D model
(right).

The reasons for the di�erent response between 2D and 3D models in terms of peak fre-

quency and resultant force intensity has been investigated through a parametric study

involving the shape of the canyon and the angle between lateral dam embankments. Such

investigation is performed on two simpli�ed 3D study models.

The �rst simple FE 3D model simulates the basin between the lateral embankments. It

is a cylindrical sector of angle 2α with a deformable dam on the downstream side and an

auxiliary PML domain on the upstream side. The mesh of the �uid domain has a maximum

of 11346 tetrahedral quadratic Lagrange elements and 3158 nodes. The mesh of the solid

domain has 477 tetrahedral second order Serendipity elements with 161 nodes. The cross-

valley shape is rectangular and it remains unmodi�ed as α varies. Figure 3.22 displays
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the hydrodynamic force, varying the angle 2α in the range (0, 75). One can observe that

the hydrodynamic load decreases as α increases. In addition, the peak frequency value is

practically unmodi�ed with α. This is reasonable, since the peak frequency depends only

on the reservoir depth.

Fig. 3.22: The 3D simpli�ed model with pressure contours for 0.1 Hz frequency (upper �gure);
Frequency response of the idealized 3D model for di�erent values of α - semi-logarithmic scale
(lower �gure).

The second simple FE 3D model is a trapezoidal prism, whose lateral walls have slope β.

On the downstream side there is a rigid barrier and on the upstream side an auxiliary PML

domain is added. The mesh of the �uid domain has at most 2261 tetrahedral quadratic

Lagrange elements and 1600 nodes. Figure 3.23 shows the e�ects of the variation of β

on the total hydrodynamic force, while the barrier maintains constant area. The results

demonstrate that even a small deviation of the side walls from the vertical (β = 90) pro-

duces a frequency shift to higher values. The peak values tend to in�nite, because no

sediment absorption is considered.

An attempt to obtain a quick estimation of reservoir natural frequency is performed by

de�ning an equivalent depth ĥ. By averaging the reservoir depths at each monolith using

the corresponding added mass as weight, one obtains

ĥ =

∑
i hi ·maddi

maddi

(3.41)
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where hi is the generic monolith height and maddi is the added mass calculated for hi and

width b, as illustrated in �gure 3.24. By doing so, the equivalent depth is found to be 50.75

m, which corresponds to a �rst frequency of 7.78 Hz, close to the FEM analysis result in

the case of rigid barrier. This simple calculation provides an insight on the nature of the

phenomenon. The combined e�ect of these two parameters varying within a realistic range

con�rms the di�erences between the 2D model and the more accurate 3D model.

Fig. 3.23: Pressure contours for 0.1 Hz frequency (upper �gure), Frequency response of the
idealized 3D model for di�erent values of β (linear scale) (lower �gure).

Fig. 3.24: Equivalent reservoir depth de�nition.

As a last step, the global e�ects of hydrodynamic loads on the structural response are

evaluated in term of base shear force. Results are displayed in �gure 3.25, for di�erent

modelling approaches, including the case of empty reservoir for reference purposes. It can

be noted that, for very low frequencies, the hydrodynamic action increases the response
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of the dam only by nearly 30% in both 2D and 3D, while at the resonance condition the

shear is nearly doubled. By comparing the di�erent approaches, it can be observed that:

� the �rst peak frequency of the model of interaction is very close to the one of added

masses, while higher frequency peaks di�er greatly;

� in the 2D case the rigid barrier model displays a resonance at a higher frequency;

� the 3D model does not display an explicit reservoir resonance peak in the case of

rigid barrier.

Fig. 3.25: Base shear for 2D model for central monolith (left) and 3D model for the entire
dam (right).

3.4.4 Concluding remarks

The comparison between di�erent approaches shows noticeable di�erences on the overall

hydrodynamic response if the excitation frequency is higher than the �rst mode, both for

a simple 2D model of the tallest monolith and the full dam 3D model of a case study. As

a result of the subsequent parametric study, some di�erences between 2D and 3D have

been observed. More speci�cally, in the 3D model the increase of the angle between lateral

embankments induces a drastic reduction on the overall response amplitude, while the slope

of reservoir walls modi�es its frequency content. Such behaviour cannot be reproduced by

a 2D plane model. Finally, it can be concluded that a realistic 3D geometry of the reservoir

makes the �uid behaviour highly complex and, in 3D, the added mass model may produce

even more di�erent results from the full FSI modelling. Therefore, a high �delity model

can be only performed by modelling as precisely as possible the geometry of the system:

dam, soil and basin.
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3.5 Conclusion

In this Chapter, the main sources of uncertainty involved in the seismic analysis of concrete

gravity dams have been introduced and analysed. Some basic assumptions are needed in

order to de�ne a deterministic model of the dam; these are mainly related to the constitu-

tive materials models, the Fluid-Structure Interaction and the Soil-Structure Interaction.

Once a deterministic model is de�ned other epistemic uncertainties mainly related to the

model parameters arises. One of the aims of this research work is the development of pro-

cedures able to reduce the epistemic uncertainties by using all available information about

the dam. Particularly interesting is the use of static and dynamic measurements directly

recorded on the dam body, because they allows the calibration of predictive models which

can be integrated in the monitoring system.

The development of probabilistic procedure requires the use of statistical tools, as for in-

stance the de�nition of probabilistic models, Bayesian inference, proxy models. Therefore,

Chapter 4 introduces all of these tools, providing a review of theoretical background.

For the sake of simplicity, every Chapter which introduces one of the three procedures,

developed to reduce the epistemic uncertainties, discusses also the nature of the reference

measures used in the updating process and the development of the probabilistic model.

The calibrated predictive models, obtained with the proposed procedures, are indicated as

twin model of the dam, because they reproduce the structural behaviour with respect to

a particular Quantity of Interest (QI). The calibrated dam twin model are used to predict

the structural behaviour during its regular use or during seismic events.
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Chapter 4

Statistical analysis

4.1 Introduction

The development of SHM framework suitable for concrete dams, which allows both reduc-

ing the uncertainties and controlling the structural behaviour, requires the use of statistical

tools. In particular, the procedures proposed in this research work are set up in a Bayesian

framework, which is one of the topics introduced in this Chapter. However, the �rst topic

introduced in this work is the development of probabilistic models whose de�nition is fun-

damental in order to correctly develop an updating procedure.

Moreover, since probabilistic procedures are computationally expensive due to the large

number of solutions of the deterministic model required in the proposed procedures the

computational burden is highly reduced by using meta models which approximate the

solution of the FE Analysis (FEA). The general Polynomial Chaos Expansion (gPCE)

technique is used, so it is described in this Chapter.

In the last part of this thesis a procedure to design a SHM system able to acquire in-

formation both to detect damage and update the strength parameters of the materials is

introduced. This last procedure is set up in a Bayesian framework by using the Optimal

Bayesian Experimental Design, introduced in the last section of this Chapter.
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Therefore the Chapter is organized as follows:

Section 4.2 describes the fundamental concepts of probabilistic models.

Section 4.3 introduces the concept of the Bayesian inference.

Section 4.4 describes the general polynomial chaos expansion technique, which has been

widely used in this work both to solve the forward problem and to build meta model of

the FE analysis outputs.

Section 4.5 introduces the main idea behind the Optimal Bayesian Experimental Design,

which has been used to develop the procedure for the devices layout optimization of the

structural monitoring system.

4.2 Probabilistic model

4.2.1 Introduction

In structural engineering deterministic biased models are usually used to predict the be-

haviour of a building or that of its structural components. Together with these models

some "calibrated" coe�cients are used, in order to obtain a safe estimation of the structural

behaviour, but they do not explicitly consider the uncertainties involved in it. Determin-

istic models like the one previously described are di�usely used to design new buildings

and for the assessment of existing structures. However, in structural reliability unbiased

predictive models, which directly consider the main uncertainty sources, are needed. Since,

the aim of this research work is the development of procedures to calibrate the parameters

of concrete gravity dams models, probabilistic models assume great importance.

In this section, the probabilistic models used in this work are described, rather than de-

veloping new probabilistic models existing ones have been used extending their use to real

applications. In particular, following Gardoni et al. (2002a), corrected additive models

have been used and described in this section. Di�erently from others probabilistic mod-

els, in the considered ones correction terms which allows one to properly account for the

inherent bias and uncertainties are added. In its general version a correction term is a

combination of a set of basis explanatory functions, which allows modelling the role of

each uncertainty source. In Chapters 5 and 6 the probabilistic models introduced in this

section are specialized for the dam case.
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4.2.2 Probabilistic additive model

In the context of this work a "model" is a mathematical expression which relates one or

more QI, i.e. deformations, displacements structural components capacities and so on, to

a set of measurable variables x related to a particular class of deterministic model C, and
other random parameters collected in ΘΘΘ. The main purpose of the probabilistic model is to

provide a means for predicting the quantities of interest for given deterministic, or random

values, of the variables collected in x and ΘΘΘ. The model is called uni-variate when only

one QI is predicted, or multi-variate if more than one QI are considered.

For the sake of simplicity the uni-variate model is �rst introduced, then the idea is general-

ized to obtain the multi-variate one. The uni-variate model can be expressed in its general

form as

C = C (x,ΘΘΘ) , (4.1)

where C is the selected QI while the function C (x,ΘΘΘ) can have a general form, involving

integrals, derivative and so on, but it should be derived from mechanical principles. As

mentioned before, following Gardoni et al. (2002a) the adopted additive probabilistic model

is corrected by a correction term γ (x,θθθγ) which is a function of some explanatory functions,

explained before, and combination coe�cients collected in θθθγ . Therefore, equation 4.1 can

be written as

C (x,ΘΘΘ) = ĉ (x,θθθm) + γ (x,θθθγ) + σε, (4.2)

in this context ΘΘΘ = (θθθm,θθθγ , σ), where σ is the global error standard deviation of the

probabilistic model, ĉ (x,θθθm) is the selected deterministic model, θθθm is the vector of un-

known model parameters and ε is a normal random variable with zero mean and unite

variance. Therefore, for given x, θθθm, θθθγ and σ, the variance of the probabilistic model is

Var [C (x,ΘΘΘ)] = σ2.

The additive model correction form is valid under the following assumptions:

� Homoskedasticity assumption: the model standard deviation σ is independent of x,

� Normality assumption: the model error is normally distributed,

� Additive assumption: the error can be added to the probabilistic model.

Since these three assumptions are usually not satis�ed, a variance stabilizing transforma-

tion is used to approximately satisfy them within the range of data. Therefore, given the

parameters vector λλλ, it can be used to de�ne the variance stabilizing transformation within
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a family of possible transformations. For this purpose, the dual power transformation func-

tions, proposed by Yang (2006), has been used in this work,

fλ (·) =


(·)λ−(·)−λ

2λ , if λ 6= 0.

ln (·) , if λ = 0.
(4.3)

The inverse functions are

f−1
λ (·) =


(
λ (·) +

√
1 + λ2 (·)2

) 1
λ

, if λ 6= 0.

e(·), if λ = 0.

(4.4)

Such functions show properties similar to the well-known Box and Cox (1964) power trans-

formation, but without the long-standing truncation problem. In this case, λ = λλλ.

The correction term γ (x,θθθγ) corrects the bias of the deterministic model ĉ (x,θθθm), but

since the deterministic model is usually approximated, the true form of γ (x,θθθγ) is un-

known. Therefore, the sources of bias can be explored by using a set of p explanatory basis

functions hi (x), with i = 1, ..., p, whose combination express the bias correction term,

γ (x,θθθγ) =

p∑
i=1

θihi (x) . (4.5)

Moreover, by studying the posterior distributions of the coe�cients θi, the most signi�cant

explanatory functions can be identi�ed.

Finally, the previous consideration can be extended in order to de�ne the multi-variate

form of the uni-variate probabilistic model. Let is considered a q-dimensional multi-variate

additive corrected probabilistic model, to predict q quantity of interest, equation 4.2 can

be extended as

Ck (x,θθθm,θθθγ,k,ΣΣΣ) = ĉk (x,θθθm) + γk (x,θθθγ,k) + σkεk, k = 1, ..., q. (4.6)

and the correction term becomes

γk (x,θθθγ,k) =

pk∑
i=1

θkihki (x) , k = 1, ..., q. (4.7)

With the exception of ΣΣΣ, all terms in the above equations have the same meanings as in

the case of the uni-variate probabilistic model. In this context, ΣΣΣ is the covariance matrix
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of the variables σkεk, and its (k, l) element is ρklσkσl where ρkl is the correlation coe�cient

between εk and εl. Considering the symmetry of ΣΣΣ, it includes q unknown variances σ2
k,

with k = 1, ..., q, and q (q − 1) /2 unknown correlation coe�cients ρkl, with k = 1, ..., q− 1

and l = k + 1, ..., q. Therefore, the number of the parameters, objects of the updating

procedure, considerably increase.

4.2.3 Uncertainty in the probabilistic model

The nature of uncertainties, and then how to treat them, is an open issue among scientist

and philosophers since statistic has become a fundamental part of modern science (Lindley

2000). However, the scienti�c community agrees that the nature and the character of the

uncertainty depends on the context in which they are analysed.

Engineering problems are solved in the context of model universe, and in this �eld the un-

certainties are usually categorized as aleatory or epistemic (Der Kiureghian and Ditlevsen

2009). The term aleatory derives from the Latin alea which means the rolling of the dice,

the aleatory uncertainty is one that is presumed to be the intrinsic randomness of a phe-

nomenon. The word epistemic derives from the Greek επιστηµη (episteme), which means

knowledge. Thus an epistemic uncertainty is one that is presumed as being caused by lack

of knowledge. Their general de�nition expresses how their concept in practice applications

is vague. However, in the context of physical modelling, these two de�nitions assume a

meaning and greater concreteness. Pragmatically, in this context, epistemic uncertain-

ties can be reduced once new information are gathered, while aleatory ones cannot be

reduced. This aspect involves the subjectivity of the analyst, who will decide which of the

uncertainties of his model are random and which epistemic, depending on the problem,

his own experience, and the available information. An interesting example of this idea is

reported in Faber (2005). Thinking about the concrete strength, if an existing building is

considered, it can be de�ned as epistemic uncertainty since new specimens can be tested,

improving the knowledge about them, thus reducing the uncertainty. On the other hand,

the uncertainty in the concrete strength should be categorized as aleatory, if a future build-

ing is considered. In the words of the author, the character of the aleatory uncertainty

"transforms" into epistemic uncertainty as the building is realized.

In the context of the present probabilistic model, two sets of parameters have been de�ned:

x and ΘΘΘ = (θθθm,θθθγ , σ). The set x represents the known parameters, while θθθm is the set of

the unknown parameters of the deterministic model, which are treated as random. Once

new observations are available the knowledge about θθθm is updated these parameters are

considered epistemic uncertainties. The other parameters collected in ΘΘΘ are added to the
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deterministic model in order to improve the �tting between model outputs and observa-

tions, so the nature of these parameters is epistemic for de�nition and they can be updated

as well.

Finally some of the most common uncertainties related to structural engineering proba-

bilistic models are described below.

� Model uncertainty : as mentioned before mathematical models are used to described a

physical phenomenon of the real world, but models are approximated. For instance,

when a structure is analysed, a particular constitutive model is chosen in order to

describe the material behaviour, or a seismic input which derives from a study where

assumptions and approximations are involved. Therefore, some modelling hypothesis

have to be assumed and this leads to an approximation. Since every mathematical

model is an idealization of the real world, then it is uncertain and a�ected by an

implicit error. The only way to assess and reduce this uncertainty is by comparing

the model predictions with real world observations. Considering the notation used

in this work, this uncertainty arise in the approximation of the deterministic model

ĉ (x,θθθm), and two main sources can be recognized: error in the model form, e.g. linear

approximation of the deterministic model and missing variables, or x and θθθm contain

only a subset of the variables which in�uences the QI. In this context, the error

in the model can be partially compensated by adding the correction term γ (x,θθθγ),

while the error term σε represents the in�uence of the missing variables, as well

as the remaining model form error. Moreover, the in�uence of missing variables is

completely random, that component of ε can be de�ned aleatory, while the component

representing the inexact model form has an epistemic nature. As discussed before,

assuming an aleatory or epistemic nature of ε is a di�cult task.

� Measurements error : uncertainty arises from errors inherent in laboratory or �eld

measurements. This error is related to both the observation of the QI C and the

model parameters x which cannot be directly measured. This error can be modelled

by adding error terms to the assumed true QI Ci = Ĉi + eCi and to the assumed

true parameters set xi = x̂i + exi , of the i-th observation. In particular, Ĉi is

the i-th measured QI and x̂i is the i-th measured set of model parameters, while

eCi and exi are the respective measurements errors. These errors can be reduced

by using more e�cient devices, so their related uncertainty is epistemic in nature.

Moreover, the mean values of the errors represent the biases in the measurements,

while their variances represent the uncertainties inherent the measurements. Usually,
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in engineering problems these two errors are considered statistically independent and

they are modelled as normally distributed random variables.

� Statistical uncertainty : this uncertainty arises from the sparseness of collected data,

and increasing the number of observations it can be reduced, so it can be indicated as

epistemic uncertainty. This error regards not only the values of the statistics, which

de�ne the assumed distribution, but also the choice of the distribution itself. This

uncertainty increases by moving toward the tails of the distributions.

Concluding this section, the epistemic part of the presented uncertainty sources can be

reduced once new observations are available, and it can be done by using the Bayesian

inference, described in the section 4.3.

4.3 Bayesian inference

4.3.1 Introduction

In the �eld of mathematical modelling the determination of parameters values which allows

one to achieve the best �tting between output and recorded behaviour of the structure is

called inverse problem. This name is in contrast to the forward problem, whose main aim

is the prediction of the model output given certain inputs parameters. Since the available

information are usually not su�cient to uniquely determine the model parameters, the in-

verse problem is an ill-posed problem. The inverse problem can be solved in a deterministic

setting by minimizing an objective function. Being an optimization problem it requires a

regularization procedure (Vogel 1987). In a probabilist setting the inverse problem becomes

a well-posed problem by adding new information regarding the prior knowledge about the

model parameters.

In the context of data analysis based on probabilistic models, three principal approaches

are available: frequentist, Bayesian and likelihood.

The frequentist approach is based on the frequentis interpretation of the probability, namely

the result of a particular experiment can be seen as one of an in�nite sequence of possible

repetitions of the same experiment. Therefore, the probability distribution of the observed

data conditional to the unknown parameters is obtained by sampling directly from a par-

ticular model, the likelihood.

In the Bayesian approach the sampling technique and the prior distributions of the model

parameters are needed, the posterior knowledge about the parameters is a combination of

the prior knowledge and the likelihood function, which contains the new information about
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the system.

Finally, in the likelihood, or Fisherian, approach the inference is based only on the like-

lihood function, which is sampled as in the Bayesian approach but without needing the

prior distributions.

Di�erently to the frequentis approach in the Bayesian and Fisherian ones the experiment

is implicitly assumed to be unrepeatable.

In this work the Bayesian approach is widely used to updated the prior knowledge on the

model parameters by using the measurements recorded on the structure. In this part of

the thesis the Bayesian approach is presented.

4.3.2 Synopsis of Bayesian inference

The well known Bayes' theorem allows updating the prior knowledge about the system

prior distributions once new data are collected and incorporated within the likelihood

function, getting a new state of knowledge described through the posterior distributions.

The Bayes' theorem is usually de�ned in terms of conditional probabilities and in text books

is generally reported in the Laplace form. Considering the probability space de�ned by the

triplet (Ω,F,P), where Ω is the space of all events, F is the σ-algebra and P the probability

measure. Therefore, by assuming ΘΘΘ as the vector of the unknown model parameters and

P (ΘΘΘ) as the prior knowledge about them, once new observation y = (y1, ..., yk)
T are

available the prior knowledge can be updated getting the posterior one

P (ΘΘΘ|y) =
P (y|ΘΘΘ)

P (y)
P (ΘΘΘ) if P (y) > 0, (4.8)

where P (y|ΘΘΘ) is the likelihood and P (y) is the evidence. As mentioned before equation 4.8

is usually de�ned in terms of conditional probabilities, by de�ning p (ΘΘΘ) as prior distribu-

tion, p (ΘΘΘ|y) as posterior, p (y|ΘΘΘ) as likelihood and p (y) as evidence, the Bayes' theorem

can be written as (Box and Tiao 1992)

p (ΘΘΘ|y) =
p (y|ΘΘΘ) p (ΘΘΘ)

p (y)
if p (y) > 0. (4.9)

Moreover, following Fisher (1922) equation 4.9 can be rewritten introducing the likelihood

function L (ΘΘΘ|y) as

p (ΘΘΘ|y) = κL (ΘΘΘ|y) p (ΘΘΘ) , (4.10)
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where κ =
[∫
L (ΘΘΘ|y) p (ΘΘΘ) dΘΘΘ

]−1
is the normalizing factor which ensures that the posterior

distribution integrates or sums to one. Moreover, every time new observations become

available the state of knowledge can be updated. Assuming that y1 is the �rst set of

available information, the posterior distribution can be calculated as,

p (ΘΘΘ|y1) ∝ p (ΘΘΘ)L (ΘΘΘ|y1) (4.11)

Once new observation y2 are recorded, they can be introduced in the updating procedure,

p (ΘΘΘ|y1,y2) ∝ p (ΘΘΘ)L (ΘΘΘ|y1)L (ΘΘΘ|y2)

p (ΘΘΘ|y1,y2) ∝ p (ΘΘΘ|y1)L (ΘΘΘ|y2)
(4.12)

The same updating process can be repeated for m sets of independent observations, with

m as big as one wants

p (ΘΘΘ|y1, ...,ym) ∝ p (ΘΘΘ|y1, ...,ym−1)L (ΘΘΘ|ym) . (4.13)

Equation 4.13 can be seen as a learning process where the prior knowledge about ΘΘΘ is

updated every time that new observations are available.

Turning back to equation 4.8, in case of continuous random variables could happen that

the observation set y has a p (y) = 0 leading to an indeterminate form, namely 0/0, of the

Bayes' rule, so some form of limiting procedures is needed. Several di�erent procedures for

doing that are available, as for example the so-called Borel-Kolmogorov paradox.

Following Matthies et al. (2016), in the special case where y and ΘΘΘ have a joint pdf

p (y,ΘΘΘ), equation 4.8 can be reformulated in terms of conditional expectation overcoming

the indeterminate form. In the context of this work, y is essentially a function of ΘΘΘ,

through ε, so a conditional pdf between random variables and the observation exists. The

conditional expectation is de�ned as

E (Ψ|y) :=

∫
Ω

Ψ (ΘΘΘ) p (ΘΘΘ|y) , (4.14)

where Ψ is any measurable function of ΘΘΘ. Another way to de�ne conditional expectation

is through orthogonal projection. Considering the sub-σ-algebra B ⊂ F and assuming

that random variables have �nite variance, so SB := L2 (Ω,B,P) is a closed sub-space of

S := L2 (Ω,F,P), and hence a continuos orthogonal projection PB : S → SB (Bobrowski

2005). The conditional expectation of a RV r ∈ S with respect to B is an orthogonal
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projection

E [r|B] := PB (r) ∈ SB. (4.15)

As reported in Bobrowski (2005), the unconditional expectation E [·] can be seen as a con-

ditional expectation with respect to the minimal σ-algebra B = {∅, ω}. Since conditional
expectation is an orthogonal projection it minimises the squared error

E
[
|r − E [r|B] |2

]
= min

{
E
[
|r − r̃|2

]
: r̃ ∈ SB

}
, (4.16)

from which the orthogonality relation can be derived

∀r̃ ∈ SB : E [r̃ (r − E [r|B])] = 0, (4.17)

and one has a form of Pythagora's theorem

E
[
|r|2
]

= E
[
|r − E [r|B] |2

]
+ E

[
|E [r|B] |2

]
(4.18)

Therefore, the conditional expectation is a form of minimum mean square error (MMSE)

estimator. Given the conditional expectation the conditional probability is completely

de�ned, e.g. for A ⊂ Ω, A ∈ B by

P (A|B) := E [χA|B] , (4.19)

where χA in a unit random variable if ω ∈ A and vanishes otherwise, so having E [·|B] allows

knowing everything about the conditional probability, then the conditional or posterior

density is not needed, overcoming the previously described paradox.

4.3.3 Prior distributions

Historically, the selection of the prior distribution which really re�ects the state of prior

knowledge was one of the biggest issue related to the Bayesian inference. By citing Box

and Tiao (1992), in scienti�c problems we would like the data "to speak for themselves", so

scientists should avoid the use of prior which distorts or dominates "what data are trying to

say". This aspect gave rise to several disputes, and the Bayes approach was often criticized

as subjective and too sensitive to the choice of the prior. For these reasons the necessity to

construct a right prior distribution, when little is known a priori, became a fundamental

aspect, so much that Bayes himself tried to give some indications about how to face this

problem.
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The Bayes' idea was to use uniform distribution as prior in the case of lack of knowledge,

this is usually referred to as "Bayes's postulate". Anyway, the inconsistency of this idea can

be easily showed by thinking about the parametrization of the random variable. Indeed, if

a locally uniform distribution of ΘΘΘ is used, the distribution of a transformation of ΘΘΘ, e.g.,

ΘΘΘ−1 and ln (ΘΘΘ) would not be locally uniform.

Moreover, if a moderately large number of new observations are available, the in�uence

of a drastic change in the prior leads to small variation in the posterior. The procedures

developed in this work are based on the possibility to record an increasing number of data

over time, leading to a small in�uence of the prior. Finally, as remarked by Box and

Tiao (1992) we can never be in a complete state of ignorance and the statement "knowing

little a priori" has only a relative meaning if compared with the information content of an

experiment.

These reasons highlight the importance of the prior distribution, in particular when little

is known about some parameters, then non-informative prior distributions are explored in

this section since in this work they have been widely used. An exhaustive description of

the non-informative prior distribution can be found in Box and Tiao (1992), in particular

the authors start from very simple cases to complex ones in order to highlight the in�uence

of a prior on the �nal result.

Particularly interesting are the cases where y = (y1, ..., yn)T is assumed to be sampled

from a normal distribution N ∼
(
θ, σ2

)
with in the �rst case only θ unknown and in the

second one only the standard deviation σ considered unknown.

In the former case, the authors show a fundamental concept for which in the case that only

the mean value is unknown, the new observation should change only the position of the

likelihood. Therefore, if we are in a state of prior ignorance the corresponding distribution

should give no information about that position, it means that a non informative prior must

be locally uniform, as in �gure 4.1a. However, if the object of the statistical analysis is a

transformation of θ, e.g. ξ = θ−1, for which the new observation y changes not only the

position of the likelihood but also the shape. As shown in �gure 4.1b, the corresponding

prior for ξ is not uniform. Therefore, it is possible to assume that θ can be expressed in

terms of a metric φ (θ) so that the corresponding likelihood is data translated. This means

that the likelihood for φ (θ) is completely determined a priori, except for its location, which

depends on y, and the prior distribution is non informative if φ (θ) is locally uniform. In

the case where φ (θ) = θ a non informative prior is locally uniform in θ itself if

p (θ|σ) ∝ constant, (4.20)
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it is shown in �gure 4.2a. Since,

p (ξ|σ) = p (θ|σ) |dθ
dξ
| = p (θ|σ) θ2 ∝ ξ−2 (4.21)

the corresponding non informative prior for ξ is not uniform but proportional to θ2, as

sown in �gure 4.2b. In general, the non informative prior should be locally uniform in φ (θ)

and the corresponding non informative prior in θ is proportional to |dφ/dθ|, assuming a

one to one transformation. In this regard is very important to understand which is the

metric for which the prior must be uniform.

(a) The normal mean θ. (b) Reciprocal of the normal mean ξ =
θ−1.

Fig. 4.1: Non informative prior distributions (dotted line) and standardised likelihood curves
(solid lines) for the normal mean θ and ξ = θ−1.

(a) The normal mean θ. (b) Reciprocal of the normal mean
ξ = θ−1.

Fig. 4.2: Non informative prior distributions (dotted line) and standardised likelihood curves
(solid lines) for the normal mean θ and ξ = θ−1 seen over a wider range of parameter values.

This principle can be extended to the latter case, in which θ is supposed to be known

while σ is unknown, in this case the likelihood in the original metric σ are clearly not data
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translated as shown in �gure 4.3a. However, if ln (σ) is considered as metric, the likelihood

are data translated, as shown in �gure 4.3b, so a non informative prior should be locally

uniform with regard to ln (σ). Following the previous consideration the non informative

prior distribution with respect to σ can be de�ned as,

p (σ|θ) ∝ |d log (σ)

dσ
| = σ−1. (4.22)

(a) Normal standard deviation σ. (b) log of normal standard deviation,
log (σ).

Fig. 4.3: Non informative prior distributions (dotted line) and standardised likelihood curves
(solid lines) for the normal standard deviation σ and log (σ).

Therefore, a general rule can be derived from the above discussion: given a one to one

transformation between θ and φ (θ) a prior distribution of θ locally proportional to |dφ/dθ|
is non informative for θ if the likelihood curve is data translated in terms of φ. This means

that only the location of the likelihood L (φ|y) changes with the new observations. A data

translated likelihood can be mathematically expressed by the following relation,

L (θ|y) = g [φ (θ)− f (y)] , (4.23)

where g (·) is a known function independent of y, while f (y) is a function of the new

observations.

In the previous two examples, related to the normal distribution N
(
θ, σ2

)
, the de�nition

of the metric φ was simple (φ (θ) = θ in the former case, and φ (σ) = ln (σ) in the latter

one). Usually, in real cases, the de�nition of a φ that allows the likelihood to be expressed

as in equation 4.23 is not so easy, or even possible. In these cases an approximated data-

translated likelihood can be built. Assuming that y is sampled by a distribution p (y|θ),

following Johnson (1967) under some regularity conditions on p (y|θ), if the number of
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samples is su�ciently large, the likelihood is function of θ, it is approximately normal,

and it remains normal under approximate one to one transformation of θ. Moreover, the

logarithm of the likelihood is approximately quadratic

l (θ|y) = ln [L (θ|y)] = ln
n∏
i=1

p (yi|θ) ≈ l
(
θ̂|y
)
− n

2

(
θ− θ̂

)2
(
− 1

n

∂2l

∂θ2

)
θ̂

, (4.24)

where θ̂ is the maximum likelihood estimate of θ, so that(
∂l

∂θ

)
θ̂

= 0. (4.25)

Moreover, the function

J
(
θ̂
)

=

(
− 1

n

∂2l

∂θ2

)
θ̂

(4.26)

is positive for a given n and it is only a function of θ̂. Moreover, the logarithm of a normal

density function p (y) assumes the following form,

ln p (y) ∝ −1

2

(y − µ)2

σ2
(4.27)

it is completely described by the location parameter µ and σ. By comparing equa-

tion 4.24 and equation 4.27 the standard deviation of the likelihood is approximately

n−1/2J−1/2
(
θ̂
)
. Moreover, assuming that φ (θ) is one to one transformation the following

relation can be derived,

J
(
φ̂
)

=

(
− 1

n

∂2l

∂φ2

)
φ̂

=

(
− 1

n

∂2l

∂θ2

)
θ̂

(
dθ

dφ

)2

θ̂

= J
(
θ̂
)(dθ

dφ

)2

θ̂

, (4.28)

by choosing φ
(
θ̂
)
such that

|dθ
dφ
|
θ̂
∝ J−

1
2

(
θ̂
)
, (4.29)

J
(
θ̂
)
will be a constant independent of φ̂ and data translated in φ. This means that the

metric for which the non informative prior has to be locally uniform can be derived as

dφ

dθ
∝ J1/2 (θ) or φ ∝

∫ θ

J1/2 (t) dt (4.30)
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where, the integral is improper evaluated in θ, the corresponding prior for θ is

p (θ) ∝ |dφ
dθ
| ∝ J1/2 (θ) . (4.31)

At this point the previous conclusions can be extended to more general cases, in fact

usually the quantity in equation 4.25 is a function of all data y and p (y|θ) is not of the

form p (y|θ) = h (y)w (θ) exp [c (θ)u (y)], so by noting that given θ,

− 1

n

∂2l

∂θ2
= − 1

n

n∑
u=1

∂2 ln p (yu|θ)

∂θ2
(4.32)

is the average value of n function of the components of y. Moreover, assuming θ0 as true

value of θ, and so y are sampled from p (y|θ0), for n → ∞ the average in equation 4.32

converge to the expected value, assuming that it exists,

Ey|θ0

[
−∂

2 ln p (y|θ)

∂θ2

]
= −

∫
∂2 ln p (y|θ)

∂θ2
p (y|θ0) dy = a (θ|θ0) , (4.33)

and θ̂ converges to θ0. Therefore, approximately,(
− 1

n

∂2l

∂θ2

)
θ̂

≈ a
(
θ̂, θ0

)
≈ a

(
θ̂, θ̂
)

= J
(
θ̂
)
, (4.34)

where J = a (θ, θ) is

J (θ) = Ey|θ

[
−∂

2 ln p (y|θ)

∂θ2

]
. (4.35)

Using this expression to approximate 4.25,the metric φ (θ) for which a locally uniform prior

is approximative non informative, such that

dφ

dθ
∝ J 1/2 (θ) or φ ∝

∫ θ

J 1/2 (t) dt (4.36)

and the corresponding non informative prior for θ is

p (θ) ∝ J 1/2 (θ) . (4.37)

The quantity J (θ) in equation 4.35 is known as Fisher's measure of information about θ

in a single information y, as explained in Fisher (1922)and Fisher (1925), which can be
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de�ned in a more general way,

J n (θ) = Ey|θ

[
− ∂

2l

∂θ2

]
, (4.38)

with expectation respect to p (y|θ). Moreover, when y is randomly sampled J n (θ) =

nJ (θ) and equation 4.37 can be expressed by the Je�rey's rule, for which the prior distri-

bution for a single parameter θ is approximately non informative if de�ned proportional

to the square root of the Fisher's information measure.

Finally, the previous result can be extended to the case of multiple parameters, that �nal

part is particularity important since that kind of non informative prior has been used in

the applications presented in the following Chapters. Considering a vector of observation

y with dimension q having a multi-normal distribution

y|µµµ (θθθ) ,ΣΣΣ ∼ N [µµµ (θθθ) ,ΣΣΣ] , (4.39)

where µµµ (θθθ) = [µ1 (θθθ1) , ..., µq (θθθq)] is a vector of function of unknown parameters θθθ =

(θθθ1, ..,θθθq), where θθθk = (θki, i = 1, ..., pk), k = 1, ..., q and ΣΣΣ is a q × q covariance matrix.

Therefore, assuming that ΘΘΘ = (θθθ,ΣΣΣ) with θθθ and ΣΣΣ approximately independent,

p (ΘΘΘ) ≈ p (θθθ) p (ΣΣΣ) , (4.40)

and the parametrization of θθθ is such that it is appropriate consider θθθ locally uniform

p (θθθ) = constant, (4.41)

the non informative prior distribution of the q (q + 1) /2 matrix ΣΣΣ elements can be de-

rived from the previous consideration. Therefore, following Gelman et al. (2004) the non

informative multi-variate Je�rey's prior density is

p (ΣΣΣ) ∝ |ΣΣΣ|−(q+1)/2 (4.42)

or equivalently

p (ΣΣΣ) ∝ |R|−(q+1)/2
q∏
i=1

1

σi
, (4.43)

where σ2
i is the variance, R is the q×q correlation matrix and | · | denotes the determinant.

These results are valid for multi-parameter models with multi-normal observable vector, if
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other distributions are considered non informative prior can be derived by extending the

Je�rey's rule (Box and Tiao 1992).

4.3.4 Likelihood function

The likelihood function expresses the relationship between prior and posterior knowledge,

embedding the new information, then it depends on the type and form of the observations.

In this part of the thesis only the construction of a likelihood function for a set of n q-variate

observations without censored data is considered. Assuming that for given θθθ = (θθθ1, ...,θθθq)

and covariance matrix ΣΣΣ, the vector error is

ei =



σ1ε1i

.

.

.

σkεki

.

.

.

σqεqi



=



y1i − µ1i (θθθ1)

.

.

.

yki − µki (θθθk)

.

.

.

yqi − µqi (θθθq)



, i = 1, ..., n (4.44)

distribute as the q-variate normal Nq (0,ΣΣΣ), then the n q-variate observations are inde-

pendent. Furthermore, the joint distribution of the n errors vectors e = (e1, ..., en)T with

ei = (ei1, ..., eiq)
T , is

p (e|θθθ,ΣΣΣ) =
n∏
i=1

p (ei|θθθ,ΣΣΣ) −∞ < eki <∞, k = 1, ..., q, i = 1, ..., n

= (2π)−qn/2 |ΣΣΣ|−n/2 exp

(
−1

2

n∑
i=1

eTi ΣΣΣ−1ei

) (4.45)

The previous equation can be simpli�ed by introducing the q × q matrix S (θθθ) de�ned as

S (θθθ) = [Skl (θθθk,θθθl)] (4.46)

104



Chapter 4 Statistical analysis

with

Skl (θθθk,θθθl) =
n∑
i=1

ekieli, (4.47)

and �nally, by using equation 4.45 the likelihood becomes

L (θθθ,ΣΣΣ|y) ∝ p (e|θθθ,ΣΣΣ) ∝ |ΣΣΣ|−n/2 exp

[
−1

2
tr
(
ΣΣΣ−1

)
S (θθθ)

]
. (4.48)

The de�nition of the likelihood functions used in this work are based on the previous

equation, in every application equation 4.48 has been specialized.

4.3.5 Posterior distribution

Once the prior distribution (equation 4.42) and the likelihood function (equation 4.48)

have been de�ned, the posterior distribution for the parameters (θθθ,ΣΣΣ) of the multi-variate

normal model can be calculated as

L (θθθ,ΣΣΣ|y) ∝ |ΣΣΣ|−(n+q+1)/2 exp

[
−1

2
tr
(
ΣΣΣ−1

)
S (θθθ)

]
, (4.49)

where each parameter of θθθ can vary from −∞ to ∞. Box and Tiao (1992) show that for

n ≥ q the marginal posterior distribution of θθθ is given by

p (θθθ|y) ∝ |S (θθθ) |−n/2, (4.50)

and in particular this equation is valid even when the expectation functions are not linear

in the parameters space. Moreover, assuming a uni-variate probabilistic model and making

the assumption of linearity of the expectation function in the unknown parameters θθθ, it

can be written as

y = Hθθθ+ σεεε, (4.51)

where y is the n× 1 vector of observations, H is a n× k matrix of known regressors, εεε is

a n× 1 vector of normally distributed random variables with zero mean and unit variance

and σ is the standard deviation of the probabilistic model error. As shown in Box and

Tiao (1992), if n > k, the posterior distribution of
(
θθθ, σ2

)
can be written as

p
(
θθθ, σ2|y

)
∝ p

(
θθθ, σ2

)
p
(
s2|σ2

)
p
(
θ̂θθ|θθθ, σ2

)
, (4.52)
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where

θ̂θθ =
(
HTH

)−1
HTD

s2 =
1

η
(y − ŷ)T (y − ŷ)

η = n− k

ŷ = Hθ̂θθ.

(4.53)

Moreover, assuming a non informative prior with θθθ and ln (σ) approximately independent

and locally uniform, i.e.

p
(
θθθ, σ2

)
= p (θθθ) p

(
σ2
)
∝ σ−2 (4.54)

the joint posterior in equation 4.52 can be rewritten as

p
(
θθθ, σ2|y

)
∝ p

(
σ2|s2

)
p
(
θθθ|θ̂θθ, σ2

)
. (4.55)

Furthermore, under the normality assumption of εεε, the marginal posterior of σ2 is ηs2χ−2
η

and the marginal posterior distribution of θθθ is the following multi-variate t distribution

tk

[
θ̂θθ, s2

(
HTH

)−1
, η
]
,

p (θθθ|y) =
Γ
(
η+k

2

)
|HTH|1/2s−k[

Γ
(

1
2

)]k
Γ
(η

2

) (√
η
)k
1 +

(
θθθ− θ̂θθ

)T
HTH

(
θθθ− θ̂θθ

)T
ηs2


−(η+k)/2

−∞ < θi <∞, i = 1, ..., k.

(4.56)

In the previous equation θ̂θθ is the mode and the mean of θθθ and its covariance matrix is

ηs2
(
HTH

)−1
/ (η − 2), and the mean and variance of σ2 are respectively

ηs2/ (η − 2)

2η2s4/
[
(η − 2)2 (η − 4)

]
.

(4.57)

4.3.6 Computation of posterior statistics using Monte Carlo Markov

Chain (MCMC)

The closed form solution presented in the previous section is not usually applicable to

real problems, as those discussed in this work. Several di�erent reasons could lead to the

impossibility to determine the posterior distribution of ΘΘΘ using a closed form solution, for
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instance the presence of censored data, an error distribution di�erent to the normal one,

integrations on manifolds and so on. However, assuming that the posterior statistics of ΘΘΘ

exist, their calculation could be generally very di�cult, as well as the normalizing constant

κ which it implies manifold integration over the Bayesian kernel L (ΘΘΘ) p (ΘΘΘ). These reasons

justify the use of di�erent approaches to calculate the posterior distribution, in this work

the Markov Chain Monte Carlo (MCMC) technique, in the Metropolis-Hastings formula-

tion, has been used (Gamerman and Lopes 2006a). The choice of this algorithm is mainly

due to its versatility which allows one to apply it to a large number of di�erent problems.

On the other hand, MCMC is a sampling method so it is computationally expensive and

its application, when FE models with a large number of Degrees of Freedom (DoF) are

involved, could become prohibitive. Therefore, in this work the computational burden has

been signi�cantly reduced by using surrogate models. In this section MCMC technique

in the Metropolis-Hastings version is brie�y described, referring to specialized texts for a

detailed study, for instance Gamerman and Lopes (2006a) and Gelman et al. (2004).

The Monte Carlo Markov Chain approach, in its general formulation, is powerful and ver-

satile because can draw samples from any target probability density function π, for the

uncertain parameters ΘΘΘ, requiring only that this density can be calculated at ΘΘΘ. The al-

gorithm makes use of a proposal density function q (ΘΘΘ∗|ΘΘΘi), which depends on the current

state of the chain ΘΘΘi, to generate new proposed parameter samples ΘΘΘ∗. The proposal ΘΘΘ∗

can be accepted as the next state of the chain ΘΘΘi+1 = ΘΘΘ∗, with acceptance probability

α (ΘΘΘi,ΘΘΘ
∗), or rejected otherwise with probability 1−α. The speci�cation of the probability

α allows generating a Markov chain with desired target density π. In algorithm 1 MCMC

is shown.

Due to practical reasons, a symmetric distribution is chosen as proposal Gamerman and

Lopes (2006b).

q (ΘΘΘi|ΘΘΘi−1) = q (ΘΘΘi−1|ΘΘΘi) (4.58)

As explained in Tierney (1994), if the regularity conditions of aperiodicity, irreducibility,

and positive recurrence of the Markov chain (Tweedie 1975) are satis�ed, the distribution

of the sampling sequence ΘΘΘi converges to the target posterior distribution regardless of

the starting point. Nevertheless, diagnostics convergences criteria are applied because of

checking of the compliance with the previous conditions could be very di�cult in real

problems.

Convergence diagnostics is used to determine whether the samples generated by MCMC are

representative of the underlying target distribution. In this research work, the diagnostics

metric proposed by Brooks and Gelman (1998) has been employed. The convergence
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Algorithm 1 Metropolis-Hastings algorithm

1: procedure MHA (p (ΘΘΘ) , q (ΘΘΘ∗|ΘΘΘi) , N)
2: draw initial value ΘΘΘ0 from the prior p (ΘΘΘ)
3: for i = 1 to N do

4: draw ΘΘΘ∗ from the proposal distribution q (ΘΘΘ∗|ΘΘΘi−1)
5: solve the deterministic model for ΘΘΘ∗

6: compute the residual vector ri
7: evaluate the probability of acceptance

8: α = min
{

1, π(ΘΘΘ∗)q(ΘΘΘi−1|ΘΘΘ∗)
π(ΘΘΘi−1)q(ΘΘΘ∗|ΘΘΘi−1)

}
9: accept the next step with probability α

10: ΘΘΘi = ΘΘΘ∗

11: or rejected with probability 1− α
12: ΘΘΘi = ΘΘΘi−1

end for

13: end procedure

of Markov Chain simulation has been reached when inferences for quantities of interest

do not depend on the starting point. Monitoring convergence is obtained by comparing

several inferences performed with di�erent starting points. The diagnostics metric is based

on the calculation of the Multivariate Potential Scale Reduction Factor (MPSRF) R̂p in

the multivariate case. In general, MPSRF is de�ned as the ratio between total variance

and within-sequence variance, and represents the upper bound of the maximum of the

univariate Potential Scale Reduction Factor (PSRF) statistics R̂ among ΘΘΘ variables. When

the convergence is reached, the between-sequence variance should be negligible obtaining

R̂p = 1. Usually, R̂p = 1.1 is considered as acceptable, but when the dimension of the

problem increases, a convergence criterion R̂p = 1.5 is allowed. Therefore, R̂p can be

de�ned as

R̂p = max
a

aT V̂a

aTWa
(4.59)

where V̂ is the total variance extended to the multivariate case, W is the within-sequence

variance extended to the multivariate case, and a is a vector used to achieve the maximum

value of the ratio in equation 4.59.
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4.4 general Polynomial Chaos Expansion (gPCE)

4.4.1 Functional approximation

The main aim of this work is the development of procedures for the updating of concrete

gravity dam model parameters by using measurements recorded on the structure. In this

context FE models characterized by a high number of DoF assume great importance to sim-

ulate the structural behaviour. Moreover, a large number of analyses must be performed

in order to solve the inverse problem thus making the use of these kinds of procedures

prohibitive in real cases. Therefore, surrogate models have been used in order to reduce

the computational burden, reproducing the model output. Indeed, surrogate models can

be used within the updating procedure instead of the real numerical models. In partic-

ular, the general Polynomial Chaos Expansion (gPCE) techniques (Xiu 2010) has been

widely used in this work, because it also allows one both to solve the forward problem in

a straightforward manner and to easily perform a sensitivity analysis.

The gPCE is a technique which propagates the uncertainties due to some unknown parame-

ters, through a deterministic model. Moreover, gPCE allows building a proxy model, called

response surface, which can be used in the updating procedure to reproduce the model re-

sponse, and to reduce the computational burden. The uncertain structural response u (ω)

can be described in a probabilistic space de�ned by the triplet (Ω,F,P): where Ω is the

space of all events, F is the σ-algebra and P the probability measure. Assuming that u (ω)

is smooth enough to be represented in terms of some simple random variables θθθ (ω) (e.g.

Gaussians, uniform, etc.) corresponding to the Askey scheme (Xiu and Karniadakis 2002),

via the PCE (Wiener 1938), the structural response can be approximated by uP (θθθ (ω))

de�ned as

u (θθθ (ω)) ≈ uP (θθθ (ω)) =
∑
α∈I

u(α)Ψα (θθθ (ω)) . (4.60)

The random variables collected in the vector θθθ (ω) represent the unknown model param-

eters. In the previous equation Ψα (θθθ (ω)) represents the multivariate orthogonal polyno-

mials with degree up to P and with �nite multi-index set I, and u(α) are the polynomial

coe�cients.

Given N samples of u (ω) the equation 4.60 can be rewritten in a more practical way,

u (θθθ (ωi)) ≈ uN (θθθ (ωi)) =
∑
α∈I

u(α)Ψα (θθθ (ωi)) i = 1, ..., N. (4.61)
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Denoting P the cardinality of the polynomial expansion, s := [u (ωi)] ∈ RN , ΨΨΨ :=

[Ψα (θθθ (ωi))] ∈ RNxP and v :=
[
u(α)

]
∈ RP , equation 4.61 can be written in matrix-vector

form

s = ΨΨΨv , (4.62)

which is equivalent to the more robust projected version

d := ΨΨΨTu = ΨΨΨTΨΨΨv =: Wv . (4.63)

Finally, the choice of the polynomial family depends on the probability distributions of

the random variables, as accurately described in Xiu (2010). Moreover, the choice of

the maximum polynomial degree and the analyses number must be done balancing the

accuracy of the result and the computational burden.

4.4.2 gPCE statistics

As mentioned before, one of the most important features of the gPCE is the easy calcu-

lation of the output statistics, by exploiting the orthogonality condition. Given a general

polynomial expansion with degree P ,

QP (θ) = aPθ
P + aP−1θ

P−1 + ...+ a1θ+ a0, aP 6= 0, (4.64)

the system of polynomials {QP (θ) , P ∈ N} is orthogonal with respect to a real positive

measure η if the following relation is satis�ed,∫
S
Qn (θ)Qm (θ) dα (θ) = γnδmn, m, n ∈ N, (4.65)

where S is the support of α, δmn is the Kronecker delta function, and γn are positive con-

stant, usually called normalization constants. Regarding γn, if it is unitary the polynomial

system is called orthonormal, and it is noteworthy that the system can be orthonormalized

by de�ning Q̃n (θ) = Qn (θ) /
√
γn. Therefore, exploiting the orthogonality condition, the

statistics can be easily derived, as in the case of the expected value

E [u (θθθ)] ≈ E [uP (θθθ)] =

∫ ∑
α∈I

u(α)Ψα (θθθ) dFθθθ (θ) = u0, (4.66)
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and the variance,

Var (u (θθθ)) = E
[
(u (θθθ)− E [u (θθθ)])2

]
≈
∑
α∈I

(
u(α)

)2
E
[
Ψ2
α (θθθ)

]
. (4.67)

In conclusion, using the gPCE, once the coe�cients have been calculated, the model re-

sponse statistics can be calculated in few simple algebraic steps.

4.4.3 Coe�cients calculation via sparse Bayesian approximation

The system in equation 4.63 is usually undetermined, in particular when expensive solvers

are involved, so a regularization criteria is needed in order to determine the polynomial co-

e�cients collected in v . The problem can be tackled following several di�erent approaches

(Ghanem and Spanos 1991), as the regularized least square

v = arg min

(
1

2
||W v − d ||22 +

λ

2
||v ||22

)
, (4.68)

and the basis pursuit denoising

v = arg min

(
1

2
||W v − d ||22 +

λ

2
||v ||1

)
(4.69)

methods, also known respectively as l2 and l1 minimisation procedures. These are composed

by the squared error part used to enforce closeness of v to the data and the regularization

term enforcing the smoothness of v . The coe�cient λ is used to balance the previous two

terms, which also represent the noise variance, and it is known to be an uneducated guess

whose optimal value is di�cult to �nd. In the case where λ > 0, l1 is preferable since it

promotes the sparsity of the solution. On the other hand, from the computational point

of view l2 is easier to solve since the solution v is linear in the data b. Therefore, from the

numerical point of view, several di�erent approaches are available as discussed by Lorenz

et al. (2015). In this work the procedure proposed by Rosi¢ and Matthies (2017) has

been used to calculate the coe�cients v . This approach faces the coe�cients calculation

problem in a Bayesian setting, considering the sparsity of the solution particularly e�cient

for non-linear problem as the elastic-plastic one. Since the calculation of the polynomial

coe�cients is an ill-posed problem, the main idea behind this approach is to interpret

the samples as measurement data. Therefore, it can be regularized in a Bayesian setting.

In particular, using the objective function indicated in equation 4.69, the sensing matrix

W must satisfy the restricted isometry property (Tillmann and Pfetsch 2014) in order to
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recover the sparse solution. To ensure that, the principle of random projection (Donoho

2006) is used in order to project d , of equation 4.63, onto a basis that consist of random

linear combination of basis function in ΨΨΨ. Therefore, the equation 4.63 can be rewritten

as

b := Wd = WΨΨΨTΨΨΨv = Av (4.70)

where W denote the carefully chosen random sensing matrix. In a probabilistic inter-

pretation of equation 4.63 the unknown coe�cients are priorly modelled as independent

random variables vf , de�ned in the probabilistic space (Ωζ ,Fζ ,Pζ). Moreover, their joint

probability density function is

pf (v) =
∏
α∈I

p
(
v(α)

)
, (4.71)

where p
(
v(α)

)
are the pdfs of the individual parameters. Therefore, equation 4.70 becomes

uncertain and is described by prediction

bf (ζ) = Avf (ζ) . (4.72)

Given the new data, namely the samples, the coe�cients pdf can be updated following the

Bayes's rule

π (v |b) ∼ p (b|v) pf (v) (4.73)

where π (v |b) is the posterior density and p (b|v) is the likelihood. Therefore, assuming a

normally distributed prior

pf (v) ∼ exp

(
−1

2
||v ||22

)
(4.74)

as well as the likelihood, then the posterior pdf assumes the form

π (v |b) ∼ exp

(
−1

2
||Av − b||22

)
exp

(
−1

2
||v ||22

)
. (4.75)

The maximum aposteriori (MAP) estimate of π (v |b) is the minimiser of the objective

function in equation 4.68. Following the same assumptions, and only taking the prior to

follow the Laplace distribution

pf (v) ∼ exp

(
−1

2
||v ||1

)
(4.76)
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the posterior MAP estimate is the minimiser of the objective function given in equation

4.69. As in the deterministic case the computation of the posterior distribution by us-

ing the Gaussian prior is easier than in the Laplace case, since in the former case the

prior and likelihood are conjugated the minimization of l1 requires a sampling based ap-

proach as Monte Carlo Markov Chain algorithm. This problem can be avoided using a

hierarchical prior distribution able to mimic the Laplace behaviour, but easier to evalu-

ate. Therefore, following Tipping (2001), the polynomial coe�cients can be considered

normally distributed

p (v |w) =
∏
α

N ∼
(
0, w−1

α

)
(4.77)

with zero mean and the precision (inverse variance) w distributed according to the Gamma

distribution. Therefore, the posterior distribution becomes

p (v ,w |y) ∝ p (y |v ,w) p (v |w) p (w) (4.78)

which cannot be computed directly, so it is rewritten as

p (v ,w |y) = p (v |y ,w) p (w |y) . (4.79)

In equation 4.79 the term p (v |y ,w) follows the normal posterior distribution, while the

second term is approximated by the delta function at its modes. This kind of approach

requires the marginalization of the hyper-parameters, which has been avoided in the work

of Rosi¢ and Matthies (2017) by introducing a �lter as brie�y described below. The up-

dating problem can be written in the more fundamental Kolmogorov's approach, then the

conditional expectation can be considered as a projection onto the subspace generated by

the σ-algebra of data

E (v |b) = Pσ(b)v . (4.80)

Considering an orthogonal projection, the conditional exception matches the minimum

mean square estimate (Matthies et al. 2016)

minE
(
||v − E (v |σ (b)) ||2

)
(4.81)

which implies an orthogonal decomposition

v = Pσ(b)v +
(
I − Pσ(b)

)
v . (4.82)
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Since the direct computation of Pσ(b)b is di�cult, following the Doob-Dynkin lemma an

optimal measurable function ϕ, such that

E (v |b) = Pσ(b)v = ϕ (b) , (4.83)

can be de�ned. In this way equation 4.82 becomes

v = ϕ (b) + (v − ϕ (b)) . (4.84)

The �rst part of equation 4.84 is the projection altered by the new data, while the orthog-

onal part remains unchanged, since it represents the prior knowledge. This leads to the

�ltering equation

va (ζ) = vf (ζ) + (ϕ (b)− ϕ (bf (ζ))) . (4.85)

Assuming a linear �lter as optimal, the previous equation reduces to the well known Gauss-

Markov-Kalman �lter

va (ζ) = vf (ζ) +K (b − bf (ζ)) . (4.86)

In this context the factor K is the Kalman gain

K = covvf ,bf
(
covbf + covε

)†
(4.87)

where † represents the pseudo-inverse, while the covariance functions are de�ned as

covq,y := E ((q − E (q))⊗ (y − E (y))) . (4.88)

The error ε related to the truncation of equation 4.70 is introduced in equation 4.87. The

linear �lter could be non optimal in non linear case, but a higher polynomial order or the

iterative version of equation 4.86 can be used to better account for non-linearity. In the

latter case, the non-linear measurement operator Y (v) in b := Y (v) + ε is approximated

as

Yλ (v) = M (v − v̌) + a = Mṽ + a , (4.89)

where ṽ := v − v̌ is the �uctuating part of the random variable v considering E (v) = v̌ ,

andM is the linear measurement matrix. Therefore, an iterative formula can be designed

v (i+1)
a = vf +K

(i)
λ

(
b − a (i) −M (i)

(
vf − v̂ (i)

)
− ε
)
. (4.90)
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In equation 4.90, M (i) and a (i) can be the exact Jacobian and a := Y (E (vf )), or the

inexact Jacobian and a := E (Y (vf )) in the case of unbiased estimate. The equation

4.90 becomes particularity interesting if seen in a functional approximation scheme, for

which, instead of sampling, the random variables are expanded by the polynomial chaos

approximation leading to a deterministic algebraic equation

∑
β∈J

v (β)
a ΓΓΓβ (ζ) =

∑
β∈J

v
(β)
f ΓΓΓβ (ζ) +K

∑
β∈J

b(β)ΓΓΓβ (ζ)−
∑
β∈J

b
(β)
f ΓΓΓβ (ζ)

 (4.91)

where ΓΓΓ denotes the polynomial corresponding to the distribution of the polynomial coef-

�cients. The third part in equation 4.91 corresponds to the deterministic measurements,

so it is a non-zero mean term. By projecting equation 4.91 onto polynomial basis ΓΓΓb one

can get

va = vb + K (b− bf ) (4.92)

where vf :=
[
v

(β)
f

]
β∈J

=
[
v

(α,β)
f

]
α∈I,β∈J

. Finally, the Kalman gain K can be calculated

using the algebraic expression of the covariance matrix

C vf = Eζ ((v̂f − v̄f )⊗ (v̂f − v̄f )) =
∑
α,β∈Ip

Eζ (ΓΓΓαΓΓΓβ) v
(α)
f ⊗ v

(β)
f − v̄ ⊗ v̄ (4.93)

where v̄ := Eζ (vf ). Equation 4.93 can be written in a matrix form

C vf = Ṽ f∆∆∆Ṽ
T
f (4.94)

where (∆∆∆)αβ = Eζ (ΓΓΓαΓΓΓβ) = diag (α!) and Ṽ f is equal to vf :=
(
..., v

(α)
f , ...

)T
without

the mean part.

Performing only the l2 minimization 4.92 does not lead to the sparsity of the solution, so

a constraint has to be added

min E
(
||v − E (v |σ (b)) ||2

)
such that ||E (v |σ (b)) ||1 ≤ ε

(4.95)

Finally, equation 4.95 is non-linear, and its sub-gradient (equation 4.81) can be rewritten

as the pseudo-measurement equation

Z (v) := H (v) v − ε = 0, (4.96)
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where H (v) := sign (v) and ε is the tolerance with the covariance C ε chosen as regular-

ization parameter. Finally, the algorithm consists of a sequential estimation in which the

�rst update is obtained by using real measurements and and equation 4.86, thus by using

the pseudo-one and the iterative formula 4.90.

4.4.4 Sensitivity analysis

In the modelling �eld, whether they are FE or probabilistic models, the comprehension

of the solution variation varying the input parameters is a crucial aspect. In problems

which involve RVs, the sensitivity aspect becomes even more important. In this context,

the Sensitivity Analysis (SA) is fundamental, because it allows studying how the model

output is a�ected by di�erent uncertainty sources. Therefore, SA is used to determine the

most contributing input variables to an output behaviour, as the non-in�uential inputs,

or ascertain some interaction e�ects within the model (Saltelli et al. 2008). Moreover, the

objectives of a sensitivity analysis are numerous:

� identify and prioritize the most in�uential inputs,

� identify non-in�uential parameters, this aspect assumes great importance if seen in

a probabilistic setting because those parameters can be �xed to nominal values,

� map the output behaviour varying the input parameters and, if necessary, by focusing

the SA only on a speci�c region of the model parameters space,

� calibrate some model inputs using available information (inverse problem).

Historically, the �rst developed SA methods were the local approaches, namely determin-

istic method based on the perturbation of model inputs. Usually the perturbation occurs

around the mean values of the input parameters, and the sensitivity of the model is as-

sessed by calculating the partial derivatives of the outputs in speci�c points of the solution

domain. Local methods are a�ected by several drawbacks, in particular the linearity and

normality assumptions and the local variation. Therefore, a new class of methods was

developed in a statistical framework (Iooss and Lemaître 2014) in order to overcome the

previous problems. In contrast to the local methods, this new approach was named "global

sensitivity analysis", because it considers the whole variation range of the model parame-

ters. Several di�erent global methods have been developed in the recent 30 years. In this

Chapter only the functional decomposition of the variance is brie�y described since it has

been used in this work, while a wide description of the methods is reported in Saltelli et al.
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(2008).

In the general case of a non-linear, non-monotonic model, the decomposition of the output

variance is still de�ned and it can be used for the SA. De�ning f (·) a square-integrable

function,de�ned on the unit hypercube [0, 1]d, it can be represented as a sum of elementary

function (Hoe�ding 1948),

f (θθθ) = f0 +
d∑
i=1

di (θi) +
d∑
i<j

fi,j (θi, θj) + ...+ f1,2,...,d (θθθ) . (4.97)

This expansion is unique under conditions (Sobol 1993),∫ 1

0
fi1,...,is (θi1 , ...,θis) dθik = 0, 1 ≤ k ≤ s, {i1, ..., is} ⊆ {1, ..., d} , (4.98)

this implies that f0 is a constant. In the SA framework f (·) is the deterministic solver,

θθθ = (θ1, ...,θd)
T is the vector of the mutually independent random variables and u = f (θθθ)

is the model outputs. Therefore, a functional approximation, usually called ANOVA (Efron

and Stein 1981), can be de�ned

Var (u) =
d∑
i=1

Di (u) +
d∑
i<j

Di,j (u) + ...+D1,2,...,d (u) , (4.99)

where Di (u) = Var [E (u|θi)], Di,j (u) = Var [E (u|θi, θj)] − Di (u) − Dj (u) and so on.

Therefore, the variance based sensitivity indices, also called Sobol' indices (Sobol 1993),

are de�ned as

Si =
Di (u)

Var (u)
, Sij =

Dij (u)

Var (u)
, ... (4.100)

The Sobol' indices indicate the share of variance of u that is due to a given input or a

combination of inputs. The number of indices grows exponentially with the dimension d,

there will be 2d−1 indices. Therefore, usually, for practical reasons indices of order higher

than two are not estimated. Other important measures to asses the model sensitivity are

the so-called "total indices" or "total e�ects", introduced by Homma and Saltelli (1996),

STi = Si +
∑
i<j

Sij +
∑

j 6=i,k 6=i,j<k
Sijk + ... =

∑
l∈#i

Sl (4.101)

where #i is the subset of {1, ..., d} including i. Usually, when d is large only the main e�ects

and the total ones are calculated, giving a good information on the model sensitivity.
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Usually, to estimate Sobol's indices sampling based methods are used. These methods are

particularly versatile and they can be used to approach every kind of problem. However,

sampling methods become very expensive from the computational viewpoint, in particular

when complex numerical models are involved. By using gPCE, the calculation of Sobol'

indices becomes very easy. Following Sudret (2008) the PCE Sobol decomposition can be

de�ned as

uP (θθθ) = u0 +
d∑
i=1

∑
α∈I1

u(α)Ψα (θi) +
∑

1≤i1<i2≤d

∑
α∈Ii1,i2

u(α)Ψα (θi1 , θi2) +

...+
∑

1≤i1<...<is≤d

∑
α∈Ii1,...,is

u(α)Ψα (θi1 , ...,θis) + ...+
∑

α∈I1,2,...,d

u(α)Ψα (θ1, ...,θd) .

(4.102)

For seek of clarity, in the above equation the dependence of each polynomial to the

each subset of input parameters has been highlighted. Since every term of the form∑
α∈Ii1,...,is

u(α)Ψα (θi1 , ...,θis) is a polynomial function depending, on all input param-

eters, then the summands in the Sobol' decomposition of uP (θθθ) (see 4.97) is

ui1,...,is (θi1 , ...,θis) =
∑

α∈Ii1,...,is

u(α)Ψα (θi1 , ...,θis) . (4.103)

Due to the uniqueness of the representation in equation 4.97 the equation 4.102 is the

Sobol' decomposition of the gPCE.

In the end, the derivation of the sensitivity indices is very simple: once the PC expansion of

the model is available, the polynomial coe�cients are gathered according to the dependency

of each basis polynomial, square-summed and normalized,

Si1,...,is =

∑
α∈Ii1,....is

(
u(α)

)2 E [Ψ2
α

]
Var

[∑P−1
j=0 u

jΨj (θθθ)
] . (4.104)

In the same way also the total sensitivity indices can be calculated, by having a given

integer sequence Ij1,...,jt = {(i1, ..., is) , (j1, ..., jt) ⊂ (i1, ..., is)}, the total indices are

STj1,...,jt =
∑

(i1,...,is)∈I(j1,...,jt)

Si1,...,is . (4.105)

In conclusion, once the PCE of the model has been done, the Sobol' indices can be calcu-

lated without additional cost.
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4.5 Optimal Experimental Design (OED)

4.5.1 Introduction

The aim of the last part of the thesis is the development of a procedure both to design

the structural health monitoring system and to record information useful to update the

material strength parameters. For this purpose, the Optimal Experimental Design (OED)

has been used, since it can be de�ned in a Bayesian setting. In this section of the thesis

the main concepts behind the OED are introduced.

4.5.2 Experimental design formulation

The experimental design relies on the construction of a design criterion, or objective func-

tion, that re�ects how relevant or valuable an experiment is expected to be. Therefore,

the �rst fundamental step is the de�nition of the experiment goal. The objective function

must be de�ned in order to embody this request, then in a Bayesian setting it could be

related to the probabilistic model or to the posterior distribution.

Once the experimental goal has been decided, the design criterion must be de�ned. In

this context, following Huan and Marzouk (2013) the design criteria has been de�ned in

a Bayesian setting. By de�ning the design variable d ∈ Rnd which represents the experi-

mental condition and considering θθθ, the vector of unknown parameters and y the vector

of the new observations, then equation 4.9 can be rewritten as

p (θθθ|y,d) =
p (y|θθθ,d) p (θθθ|d)

p (y|d)
. (4.106)

All the probability densities are a function of the design variable d. Usually, the prior

knowledge expressed through p (θθθ|d) is assumed independent to d, leading to the approxi-

mation p (θθθ|d) = p (θθθ). Following Lindley (1956) and Lindley (1972), an objective function

for experimental design should have the following form,

U (d) =

∫
Y

∫
Ω
u (d,y,θθθ) p (θθθ,y|d) dθθθdy

=

∫
Y

∫
Ω
u (d,y,θθθ) p (θθθ|y,d) p (y|d) dθθθdy,

(4.107)

where U (d) is the expected utility, u (d,y,θθθ) is the utility function, Ω is the support of θθθ

and Y is the support of p (y|d). The utility function expresses the usefulness of an exper-

iment characterised by the the condition d given θθθ and y. Since the precise value of θθθ is

119



Chapter 4 Statistical analysis

unknown as the result of an experiment y before performing it, the expectation of u over

the joint distribution of θθθ and y is used.

Following Lindley (1956), the relative entropy from the posterior to the prior, or the

Kullback-Leibler divergence, is used as utility function. Considering two generic distribu-

tion A and B, then KL divergence is de�ne as

DKL (A||B) =

∫
Ω
pA (θθθ) ln

[
pA (θθθ)

pB (θθθ)

]
dθθθ = EA

[
ln
pA (θθθ)

pB (θθθ)

]
. (4.108)

This quantity is non-negative, non-symmetric and re�ects the di�erence in information car-

ried out by two distributions (Cover and Thomas 2005). Equation 4.108 can be specialised

for the inference problem writing the KL divergence from the posterior to the prior,

u (d,y,θθθ) ≡ DKL (pθθθ (·|y,d) ||pθθθ (·)) =

∫
Ω
p
(
θ̃θθ|y,d

)
ln

p
(
θ̃θθ|y,d

)
p
(
θ̃θθ
)

 dθ̃θθ = u (d,y) .

(4.109)

In the previous equation θ̃θθ is a dummy variable representing the parameters, thus given

the internal integration over the parameter space equation 4.109 is not a function of θθθ.

Finally, by substituting equation 4.109 in equation 4.107, and by using θθθ instead of θ̃θθ the

�nal form of expected utility U in a Bayesian setting, and called expected information gain

in θθθ, can be written as

U (d) =

∫
Y

∫
Ω
p (θθθ|y,d) ln

[
p (θθθ|y,d)

p (θθθ)

]
dθθθp (y|d) dy

= Ey|d [DKL (p (θθθ|y,d) ||p (θθθ))] .

(4.110)

A large KL divergence from posterior to prior implies that the data y decreases entropy

in θθθ and those data are more informative for parameters inference.

Finally, the expected utility U (d) expressed in equation 4.110 must be maximized over

the design space D in order to �nd an optimal experimental design.

d∗ = argmax
d∈D

U (d) . (4.111)

4.5.3 Experimental design calculation

Typically, the expected utility in equation 4.110 has no closed form solution, so it must be

approximated. The simplest, but very expensive, approach is that one proposed by Huan

and Marzouk (2013), which is based on the Monte Carlo sampling. First equation 4.110
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must be rewrite by applying the Bayes' theorem to the quantities both inside and outside

the logarithm,

U (d) =

∫
Y

∫
Ω
p (θθθ|y,d) ln

[
p (θθθ|y,d)

p (θθθ)

]
dθθθp (y|d) dy

=

∫
Y

∫
Ω

ln

[
p (y|θθθ,d)

p (y|d)

]
p (y|θθθ,d) p (θθθ) dθθθdy

=

∫
Y

∫
Ω
{ln [p (y|θθθ,d)]− ln [p (y|d)]} p (y|θθθ,d) p (θθθ) dxdy.

(4.112)

Therefore, the integral in the previous equation can be estimated by using the Monte Carlo

sampling,

U (d) ≈ 1

nout

nout∑
i=1

{
ln
[
p
(
y(i)|θθθ(i),d

)]
− ln

[
p
(
y(i)|d

)]}
, (4.113)

where θθθ(i) are drawn from the prior p (θθθ), y(i) are drawn from the conditional distribution

p
(
y|θθθ = θθθ(i),d

)
i.e. the likelihood and nout is the sample number in the outer Monte Carlo

estimate. The evidence p
(
y(i)|d

)
evaluated at y(i) typically does not have an analytical

form, so it can be estimated using another importance sampling estimate:

p
(
y(i)|d

)
=

∫
Ω
p
(
y(i)|θθθ,d

)
p (θθθ) dθθθ ≈ 1

nin

nin∑
j=1

p
(
y(i)|θθθ(i,j),d

)
, (4.114)

where θθθ(·,j) are drawn from the prior p (θθθ) and nin is the samples number in the inner

Monte Carlo estimate. The combination of equation 4.113 and 4.114 allows the calculation

of the biased estimator Û (d) of U (d). Furthermore, the variance of this estimator is

proportional to A (d) /nout + B (d) /noutnin, where A and B are terms which depend

only to the distributions at hand. Whereas the bias of the estimator is proportional to

C (d) /nin, then nin controls the bias while nout controls the variance.

Once the expected utility related to a particular value of d has been calculated, according

to equation 4.111, U (d) must be maximized, or in other words, the optimal experimental

layout d∗ must be determined. Several di�erent approaches are available in literature but in

recent years the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm

has received considerable attention. The SPSA algorithm, proposed by Spall (1998a),

uses �nite di�erence estimates of the gradient calculated on the basis of only two random

perturbations regardless of the problem's dimension:

dk+1 = dk − akgk (dk) , (4.115)
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gk (dk) =
Û (dk + ck∆∆∆k)− Û (dk − ck∆∆∆k)

2ck



∆−1
k,1

∆−1
k,2

.

.

∆−1
k,nd


, (4.116)

where k is the iteration number,

ak =
a

(A+ k + 1)α
, ck =

c

(k + 1)γ
, (4.117)

and a, A, α, c and γ are algorithm parameters, with recommended values available in

literature (Spall 1998b). Moreover, ∆∆∆k is a random vector whose components are i.i.d.

draws from a symmetric distribution with �nite inverse moment, in this work Bernoulli

distribution has been used. An intuitive justi�cation of the SPSA is that the error in

the gradient "average out" over a large number of iteration (Spall 1998a). Moreover,

randomness introduced through the noisy objective function Û and the �nite-di�erence-

like perturbations allows for a global convergence property. Finally, constraints in SPSA

are introduced by projection: if the current state is infeasible under all possible random

perturbations, then it is projected to the nearest point that does satisfy these conditions.

In the context of the present work, this last feature is particularly important because it

allows inserting geometrical constraints for the de�nition of the design domain. Since

SPSA is a gradient based method, it takes advantage of any regularity of the objective

function, requiring only two function evaluations per step to estimate the gradient, and

thus reducing the computational burden. However, a high noise level can lead to slow

convergence or the stagnation of the algorithm in local minima.

Finally, it is worth of noting that SPSA is an expensive algorithm if complex numerical

models are involved. However, the use of surrogate models, as the gPCE, allows reducing

the computational burden, and therefore making possible the use of SPSA in this context.
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Probabilistic framework for static

SHM of concrete gravity dams

5.1 Overview

In this Chapter a probabilistic framework for static SHM of concrete gravity dams is shown.

As introduced in Chapter 1 the SHM frameworks proposed in this research work have two

aims: control the structural health (diagnosis step) and reduce the uncertainties in the

estimation of the structural fragility (prognosis step). The static SHM system is based on

the measurements acquired during the regular use of the dam, i.e. displacements and en-

vironmental conditions. In dam engineering �eld this kind of monitoring system, which is

the most widespread, is usually called static monitoring system because in this context the

deformation of the dam is mainly due to seasonal temperature variations and changes in

the level of the reservoir. Since displacements vary slowly, the problem can be approached

as static.

Figure 5.1 shows the �owchart of the SHM system proposed in this Chapter. Three steps

can be recognised, the �rst one is related to the acquisition of environmental data and

displacements. These observations are used to updated the predictive model of the dam
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displacements through the Bayesian inference. In this context, the measurable variables

collected into the vector x, introduced in Chapter 4.2, are the environmental conditions

recorded by the monitoring system, namely the reservoir levels and the temperatures. The

presence of both thermal and mechanical actions requires coupled analyses, which are com-

putationally demanding, in particular when complex FE models are involved. Moreover,

probabilistic procedures for inverse problem solution require a large number of analyses.

For this reason, meta models are used to build the predictive model of the dam dis-

placements. In particular, the gPCE (Chapter 4.4) is used to approximate the FE model

response for the water level variation δHi . Following the same idea, thermal displacements

δTi are approximated through Fourier series, in order to avoid expensive thermal analyses

(Noorzaei et al. 2006). Following the literature (Chapter 2), the well-known drift term

δKi is modelled by using a linear function in time, i.e. δKi = θKt. In this way, the set of

unknown parameters θθθm introduced in Chapter 4.2 can be thought as composed by the

gPCE random variables, collected in θθθgPCE, the combination coe�cients of the Fourier

analysis θθθFA, and the coe�cient of the drift term θK, that is θθθm = [θθθgPCE,θθθFA, θK]T .

The prior distributions of the mechanical parameters are based on the results of materi-

als tests. Whereas, the prior distributions of parameters with no physical meaning and

for which little is known a priori are de�ned by using non-informative prior distributions,

according to Chapter 4.3.3. Once calibrated, the proposed predictive model for dam dis-

placements can be used to control the health state of the structure by comparing the

predictions with the observations. This last aspect is called Control step.

It is worth noting that the calibrated twin model of the dam can be used also to assess

the structural fragility against extreme events. Indeed, the reduction of the e�ects of the

epistemic uncertainty leads to a better estimation of the structural fragility.

The architecture of the proposed SHM allows building a reliable predictive model of the

dam displacements which does not need FE coupled analyses. Therefore, the predictive

model proposed in this Chapter is characterised by high processing speed and thus it can

be used to control in real time the dam behaviour. In this regard, the de�nition of the

threshold beyond which the dam behaviour is considered abnormal is a crucial aspect.

The estimated global error standard deviation σ can be used to set a threshold, once a

study to assess the correlation between damage and static displacement variation has been

performed.

Every time new observations are available the state of knowledge can be updated, im-

proving the reliability of the procedure and the validity of the predictive model of static

displacements. Therefore, due to the large amount of data, possible approximations, in
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Fig. 5.1: Static SHM system for concrete gravity dams.
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the de�nition of the predictive model are mitigated.

Di�erently from the static SHM system discussed in Chapter 2, the one proposed in this

work introduces the following novelties:

� The static SHM is de�ned in the Bayesian setting.

� It allows estimating the global error standard deviation which can be used to set a

threshold.

� The predictive model has high computational speed because it is a hybrid combina-

tion of meta models, so it does not need FE analyses.

� The Bayesian inference allows continuously improving the reliability of the prediction.

� The posterior distributions of the mechanical parameters of the materials can be used

to reduced the e�ect of epistemic uncertainties in the fragility assessment of the dam.

In the following the components of the proposed static SHM framework are discussed in

detail.

5.2 De�nition of the proxy model for hydrostatic displace-

ments through general Polynomial Chaos Expansion

In this work the gPCE has been used to approximate the displacements of the dam due

to the basin level variation calculated through a FE model of the structure. Materials

during the normal operation of a dam may be considered linear elastic. The mechanical

behaviour of elastic material is thoroughly described by the elastic constitutive matrix C
(Timoshenko and Goodier 1986), whose components may be treated as random variables in

a Bayesian updating procedure in the most general case of anisotropic material. Modelling

material as anisotropic is convenient only when it is strictly necessary and measurements

which are able to infer all the components of the constitutive matrix C are available. In the

case of dams, it would be worthwhile to update the parameters of an orthotropic material

by using a multivariate probabilistic model only if displacements in upstream-downstream

direction and in the cross-valley direction are recorded.

Conversely, when only upstream-downstream measurements are available, an isotropic ma-
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terial is the best choice. For an elastic isotropic material, matrix C is as follows

C =



K + 4G/3 K − 2G/3 K − 2G/3 0 0 0

K − 2G/3 K + 4G/3 K − 2G/3 0 0 0

K − 2G/3 K − 2G/3 K + 4G/3 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G


. (5.1)

Uncertainties parametrization for elastic materials done by selecting the bulk modulus K

and the shear modulus G as random variables is a particularly convenient choice, since they

are statistically independent and the components of the tensor C are linear with respect

to K and G. Therefore, in this context the bulk and the shear modulus of the materials

are respectively collected in θθθgPCE,K and θθθgPCE,G, then θθθgPCE =
[
θθθTgPCE,K ,θθθ

T
gPCE,G

]T
.

5.3 De�nition of the proxy model for thermal displacements

through Fourier analysis

The response of the structure caused by the basin level variation is related to the values of

materials mechanical parameters. Whereas, the response of the structure due to thermal

e�ects is related to thermal materials parameters and it is relatively una�ected by me-

chanical parameters variation. Anyway, thermal displacements are the largest part of total

displacements, so they cannot be neglected. Since thermal displacements are characterized

by a periodic trend over the years (Léger and Seydou 2009), they can be approximated

through a Fourier analysis (FA). Using the Fourier series and de�ning the vector of the

combination coe�cients θθθFA =
[
θθθTFA,a,θθθ

T
FA,b

]T
, the target function s (t,θθθFA) is approxi-

mated by sM (t,θθθFA), which is the sum of simple sine waves (Davis 2016). Usually, it is

expressed as

sM (t,θθθFA) =

M∑
m=1

[θFA,am cos (2πmtω) + θFA,bm sin (2πmtω)] , (5.2)

where the combination coe�cients θFA,am and θFA,bm are respectively collected in the

vectors θθθFA,a and θθθFA,b. Moreover, t is the time and ω is the frequency of the wave. All

combination coe�cients are treated as random variables in the same way as the mechanical
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parameters, while the number of harmonics is chosen in order to reach the best �tting

between recorded and simulated behaviour. In this context, air and water temperatures

are used only to set the frequencies of the waves, which are usually close to 1
365 if the time

is expressed in days.

5.4 De�nition of the probabilistic model for total displace-

ments

In this section, the probabilistic model response ĉ (x,θθθm) (equation 4.2), written for the

case of concrete gravity dam displacements is de�ned. In this context, the i-th simulated

displacement of a point on the dam can be written as

δ̂i (x,θθθm) = δ̂
gPCE
i (x,θθθgPCE) + δ̂FAi (θθθFA) + δ̂Ki (θK) , (5.3)

where δ̂i (x,θθθm) is the i-th simulated total displacement, δ̂gPCEi (x,θθθgPCE) is the part

related to the basin level variation approximated through the gPCE, δ̂FAi (θθθFA) is the

thermal term approximated by the Fourier analysis and δ̂Ki (θK) is the drift term.

As reported in Chapter 4.2, a transformation of the reference quantity is needed to satisfy

the assumption at the base of the additive model. Speci�cally, the normal logarithmic

function is used to de�ne C (x,ΘΘΘ) and ĉ (x,θθθm). Therefore, translation l of the reference

system is needed to obtain positive values of displacements,

ĉ (x,θθθm) = ln
(
δ̂i (x,θθθm) + l

)
. (5.4)

Finally, the proposed probabilistic model for the static displacements of a concrete gravity

dam can be determined by combining the equations 4.2, 5.3 and 5.4, obtaining

ln (δi (x,ΘΘΘ) + l) = ln
(
δ̂i (x,θθθm) + l

)
+ γ (x,θθθγ) + σε =

= ln
(
δ̂
gPCE
i (x,θθθgPCE) + δ̂FAi (θθθFA) + δ̂Ki (θK) + l

)
+ γ (x,θθθγ) + σε.

(5.5)

Once the parameters collected in ΘΘΘ have been calibrated, the equation 5.5 can be directly

used to predict the dam behaviour.
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5.5 Model correction

Several kinds of uncertainties are involved in this model. The greatest uncertainty source

is the time interval between cause and e�ect for the di�erent measured quantities, i.e. tem-

perature variation and thermal displacement. Other phenomena can be considered, such

as the unknown behaviour of vertical joints, whose opening-closing movement is related to

thermal variations, time-dependent phenomena of mechanical parameters and the accuracy

of measuring instruments.

Explanatory functions γ (x,θθθγ) (equation 4.2) are introduced to reduce the bias, by taking

into account phenomena which cannot be directly considered in the model.

To capture the potential bias, which is independent of the parameters x and θθθm, the func-

tion h1 = 1 is considered. In this case, θ1 represents the previously discussed shift between

the reference systems. When using more than one explanatory function (Gardoni et al.

2002b; Andreini et al. 2016), a stepwise deletion process can be performed in order to

identify those functions which really contribute reducing the bias.

5.6 Prior distribution de�nition

The results of in-situ and laboratory tests on the dam's concrete and on the foundation rock

are usually available, then the prior distributions of the model parameters θθθgPCE, θθθgPCE,K
and θθθgPCE,G can be deduced from these data. In this context, the other random variables

collected in the vector θθθFA and θθθγ and θK have no physical meaning, except for θ1, and

there is no prior information about them. The same consideration is valid for the global

error standard deviation σ. For this reason, a set of non-informative prior distributions,

introduced in Chapter 4.3.3, are selected.

As demonstrated in Chapter 4.3.3 a non-informative prior distribution is locally uniform

near the likelihood function. In this way, the inference is not a�ected by information

external to the observations. Therefore, in the present case the parameters θθθFA, θθθγ , θK
and σ are considered approximately independent, so

p (θθθFA, θK,θθθγ , σ) ∼= p (θθθFA) p (θK) p (θθθγ) p (σ) . (5.6)

Moreover, by assuming a parametrization of θθθFA, θK and θθθγ such that is appropriate to take

them locally uniform, the non informative prior distribution of the global error standard

deviation becomes

p (σ) ∝ σ−1. (5.7)
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Finally, the other prior distributions become

p (θθθFA, θK,θθθγ) ∝ p (θθθFA) p (θK) p (θθθγ)

σ
. (5.8)

Given the large amount of data recorded by the monitoring system, any reasonable choice

of prior estimate has little in�uence on the posterior estimates of the parameters.

5.7 Likelihood function

Once the prior distributions of the unknown parameters are de�ned, the posterior ones

must be calculated by using the Bayes's rule, as described in Chapter 4.3. In particular,

equation 4.48 can be specialized for the uni-variate case of dam displacements, obtaining

L (x,ΘΘΘ) ∝
n∏
i=1

{
1

σ
ϕ

[
ri (x,θθθm,θθθγ)

σ

]}
, (5.9)

where ri (x,θθθm,θθθγ), is the i-th residual which represents the discrepancy between the

measurement and its prediction

ri (x,θθθm,θθθγ) = ln (δi (x,ΘΘΘ) + k)− ln
(
δ̂i (x,θθθm) + k

)
− γ (x,θθθγ) , (5.10)

and ϕ (·) is the probability density function of a standard normal distribution. In this

context, the vector of the unknown parameters is ΘΘΘ = [θθθm,θθθγ , σ]T .

The presented procedure uses the Metropolis-Hastings algorithm which requires, as previ-

ously described, the de�nition of the proposal distributions and the starting point. Normal

distributions whit zero mean have been used as proposals. Their variances have been em-

pirically de�ned in order to �nd a good agreement between calculation time and solution

accuracy. The initial values of the random variables have been selected in order to maxi-

mize the likelihood function (Owen 2001).

The convergence of the probabilistic analysis has been checked as explained in para-

graph 4.3.6, by performing two chains for each problem starting from di�erent initial

values. Every chain was stopped when an appropriate value of the acceptance ratio was

reached, as indicated in literature (Gelman et al. 2004).
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5.8 Final Remarks

The predictive model presented in this Chapter reproduces the displacements of a single

point in only one direction. As mentioned before, more than one point or one direction

can be considered by extending the proposed predictive model to the multi-variate case.

In particular, every direction of every point would be a component of the multi-variate

model, which would be a function of the position of the point itself. Moreover, the error

terms would be correlated through a covariance matrix, thus de�ning a random �eld. With

regard to the model proposed in this section, from the practical view point, the coe�cient

of the polynomial expansion u(α), the combination coe�cients of the Fourier series θθθFA,

the combination coe�cient of the drift term θK and the error term σε would be functions

of the point coordinates.

Another important assumption of the predictive model de�ned in this Chapter is that there

is no statistical correlation in time among displacements. This assumption is based on the

quasi-static nature of the dam displacements during normal operations. Therefore, the

distribution of the error term does not vary during time and thus it is possible to sample

from the same error distribution. From the physical point of view, the thermal component

is the only one which varies in time (Chapter 5.3).
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Chapter 6

Hierarchical Bayesian model for

dynamic parameters updating via

ambient vibrations

6.1 Overview

In this Chapter the probabilistic procedure for dynamic model parameters updating of con-

crete dams is described. This procedure, based on the Bayesian inference, allows reducing

the epistemic uncertainties of a dynamic twin model of the dam. It can be used either

to control the health state of the structure, if integrated in a SHM system, or to improve

the estimation of the structural fragility, via the fragility curves calculation (Chapter 2.2).

The concepts introduced in this Chapter are at the base of the dynamic SHM framework

introduced in Chapter 7.

Figure 6.1 shows the proposed method. In this context, the reference dynamic measures

are the modal characteristics of the system, i.e. frequencies and mode shapes, determined

through the Operational Modal Analysis (OMA). As discussed in Chapter 2.3, ambient

vibrations can be used as source of information in the updating process following two

132



Chapter 6 Hierarchical Bayesian model for dynamic parameters updating

di�erent approaches. On the one hand, they can be directly used as reference measure,

leading to a simpli�cation from the measure point of view as no elaborations in this step

are needed, but several complications from the computational side arise (Chapter 2.3). On

the other hand, ambient vibrations can be elaborated through OMA techniques in order

to determine experimental frequencies and mode shapes of the system. In the presented

procedure the results of the OMA are used in order to reduce the computational burden

and to avoid the previously discussed drawbacks connected to the direct use of ambient

vibrations. However, as mentioned in Chapter 2.3 and discussed with more detail in this

section, the use of modal characteristics as source of information within a probabilistic

setting leads to complications related to the coherence between experimental and numer-

ical modes. Experimental and numerical modes could be di�erently ordered, due to the

variation of material characteristics, model error, measurement noises and so on. In dam

engineering �eld this problem is even more evident because of the SSI in the numerical

models. Indeed, by considering a particular frequency range, due to the SSI a large number

of numerical modes related to the soil motion and with no experimental correlations are

calculated. In this research work a modi�ed version of the numerical algorithm MCMC is

proposed in order to solve the coherence problem. More speci�cally, MCMC is modi�ed

by introducing a criterion which allows reordering the numerical modes coherently with

the experimental ones. This also allows considering the SSI because the modes with no

experimental correlation, can be recognized by the algorithm and discarded.

Since the reference measurements are modal characteristics, the main assumption is the

linear elastic behaviour of the materials. Therefore, the aim of the procedure is the updat-

ing of the bulk and shear modulus, K and G, of the materials.

The gPCE is used to approximate the results of FEA in order to reduce the computational

burden. More speci�cally, the eigenfrequencies collected in the vector f and the related

mode shapes collected in the matrix ΦΦΦ are simulated through the gPCE 4.4. In this way,

the set of unknown parameters θθθm introduced in Chapter 4.2.1 can be thought as composed

by the gPCE random variables θθθgPCE, that is θθθm = θθθgPCE.

The modal behaviour of a structure, both in terms of frequencies and mode shapes, is in-

�uenced by ambient conditions (Azzara et al. 2018). In the case of concrete gravity dams,

water level, temperatures and humidity rates are the most in�uential factors. Therefore in

this context, the measurable variable collected in the vector x of the probabilistic model

(Chapter 4.2.1) are the environmental conditions.

In this case, a hierarchical Bayesian model is used to solve the inverse problem. This allows

updating both the mean values and the standard deviations of the model parameters, thus

133



Chapter 6 Hierarchical Bayesian model for dynamic parameters updating

reducing the uncertainties at more levels. Therefore, with the aim to use the proposed

procedure also to update a dynamic twin model of the dam for the calculation of fragility

curves, this architecture of the probabilistic framework allows obtaining a more reliable

estimation of the structural fragility.

The prior distributions of the mechanical parameters of the materials are de�ned starting

from the results of material tests, while those related to model parameters with no-physical

meaning are supposed non-informative, as reported in Chapter 4.3.3.

Fig. 6.1: Dynamic model parameters updating of concrete gravity dams.

The integration of the procedure within a SHM is needed to reduce the global error of the

predictive model. Indeed the large amount of data continuously recorded could be used to

update the proposed displacements model. Moreover, the use of a hierarchical Bayesian

model allows introducing information in di�erent levels, e.g. if new informations about the

materials are available they can be inserted separately in terms of mean and variance.

Di�erently from the research works available in the literature (Chapter 2), the proposed

approach is characterised by the following novelties:

� The proposed model is de�ned in a hierarchical way.

� The proposed modi�ed version of MCMC allows directly solving the problem of

coherence between experimental and numerical modes without using the concept of

system mode shapes or objective functions.

� The proposed approach allows directly constructing a predictive model of the eigen-
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frequencies and mode shapes. In this way, also the errors of the predictive models

can be separately estimated.

� The use of gPCE-based meta models allows reducing the computational burden, thus

making possible the application of the proposed procedure even when complex FE

models are involved, or making possible its integration within a SHM framework.

6.2 The use of ambient vibration data as source of informa-

tion in the model parameters calibration process

In Chapter 2.3.3.2 a literature review on the use of ambient vibration data as source of

information for model parameters updating is introduced. The information embodied in

ambient vibration are particularly important for seismic assessment purpose, since they

can be used to calibrate dynamic parameters.

Ambient vibrations can be used directly for the model parameters updating or they can

be used to determine the modal characteristics of the system, i.e. frequencies and mode

shapes, which are used in the updating procedure. Both approaches have di�erent advan-

tages and disadvantages. On the one hand, the direct use of ambient vibrations within a

probabilistic procedure leads to a grater computational burden, because transient analysis

are needed. Moreover, modelling the unknown action which produces the vibration is a

trivial task. Since ambient vibrations are just displacements, velocities or accelerations,

then their errors can be easily characterised leading to a simpli�cation from the measure

viewpoint.

On the other hand, the use of OMA results allows de�ning the probabilistic problem in

terms of modal characteristics. In this way, the modal analysis can be used thus reducing

the computational time. However, in this case the reference QIs are derived quantities

because experimental frequencies and mode shapes are a results of a post-process of the

records. Therefore, the quanti�cation of an error is di�cult. The procedure proposed in

this Chapter is de�ned with regard to the OMA results mainly for two reasons. First, the

calibrated predictive model of the modal characteristics can be used for structural health

monitoring purpose, because mode shapes are particularly sensitive to structural damage.

The second reason is the idea to embody the proposed procedure within a SHM system,

the continuous acquisition of information leads to a mitigation of the error related to the

OMA.

In the context of OMA, ambient vibration data are measures of displacements, velocities or
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accelerations recorded on a structure due to an unknown excitatory action. By assuming

that the unknown action is a white noise, its power spectral density matrix is constant, the

power spectral density matrix of the output and the frequency response function matrix

are linked through a constant. Starting from this assumption the modal characteristics of

the system can be easily determined (Brincker and Ventura 2015). Several di�erent OMA

techniques are available, some de�ned in the time domain and others in the frequency do-

main, in the recent years also OMA techniques set up in a Bayesian framework (Au et al.

2013) have been developed. The procedure introduced in this Chapter focuses the atten-

tion on the use of OMA results, rather than the development of new technique. However,

since the guiding principle behind this work is the inclusion of the updating procedure in

a SHM, some considerations about the nature of the reference information (OMA results)

and the way in which they should be recorded and elaborated must be formulated. First,

a dynamic monitoring system records continuously ambient vibrations, these records must

be analysed in automatic way. Therefore, automated OMA techniques (Brincker and Ven-

tura 2015) are preferable. Moreover, despite the in�uence of the measurement error on the

result is mitigated by the large number of observations, OMA methods characterised by a

higher level of accuracy are preferable.

In the last years several papers have been written on the use of OMA results as source

of information for the model parameters calibration, most of them highlight the problem

related to the coherence between numerical and experimental frequencies, regardless the

deterministic or probabilistic nature of the updating procedure.

In the literature (Tsogka2017; Huang et al. 2018; Marwala 2010) two main solution strate-

gies have been proposed: one is based on the concept of system mode shapes (Beck et al.

2001) and the other on the de�nition of objective functions (Kodikara2016; Jaishi and

Ren 2005; Bassoli et al. 2018), containing a modal coherence criterion (Allemang 2003).

Objective functions can be easily implemented, and the introduction of coherence crite-

ria can help solve the coherence problem without increasing the dimension of the inverse

problem. However, the error in this case is relative to the entire objective function, rather

than to the QI. With the aim to de�ne the predictive models directly in terms of modal

characteristics, whose variation is sensitive to damage (Gopalakrishnan et al. 2011), the

estimation of the error in term of QI is fundamental to avoid false warning. Conversely, the

strategy based on the system mode shapes allows the predictive models to be de�ned di-

rectly in terms of the modal QI and for the coherence problem to be solved. However, since

system mode shapes are treated as additional variables, the use of this strategy leads to an

increase of the inverse problem dimension. In practical application, where the number of
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the random variables is already high due to the parameters of the predictive models and

the measurements are noised, further increase the dimension of the probabilistic problem

by applying the system mode shapes approach could lead to numerical instability or low

convergence rate.

The development of a robust procedure which accounts for the modes coherence is needed

also with the prospect of controlling the health state of the structure, because a possi-

ble damage would a�ect the mode shapes, or their derivatives, more than the frequencies

(Gopalakrishnan et al. 2011). For the same purpose the direct use of frequencies and mode

shapes, instead objective functions, seems to be more appropriate, because it allows build-

ing directly a predictive model for the modal characteristics.

For the previous reasons the presented procedure is based on a multi-variate probabilistic

model (Chapter 4.2.2) of the frequencies and mode shapes. They are de�ned and cali-

brated separately, even though in the same framework, in order to compare their di�erent

sensitivity with respect to the model parameters.

6.3 De�nition of the proxy model for modal characteristics

through general Polynomial Chaos

In the proposed procedure the gPCE is used to approximate the FEA results in terms of

both frequencies f and mode shapes ΦΦΦ. Due to the nature of the modal analysis, the aim

of the procedure is the calibration of the elastic parameters of materials K and G. With

regard to the notation introduced in Chapter 4 θθθgPCE = [θθθgPCE,K ,θθθgPCE,G]T .

Conceptually the meta model is created in the same way as explained in Chapter 4.2.2 and

5.2, but in this case the gPCE is used to approximate the components of both the vector

and the matrix. Therefore, the polynomial coe�cients and the basis are function of the

spatial coordinates z and the considered mode %. That is, u(α) (z, %) and ΨΨΨα (z, %).

6.4 De�nition of the probabilistic model for frequencies and

mode shapes

In this section, the probabilistic model response ĉk (x,θθθm) (equation 4.6) is specialised for

the frequencies and mode shapes of concrete gravity dams.

The i-th value of the k-th numerical frequency approximated through the gPCE is

f̂k,i (x,θθθm) = f̂gPCEk,i (x,θθθgPCE) , (6.1)
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where f̂gPCEk,i (x,θθθgPCE) is the meta model created through the gPCE.

A transformation of the reference quantity is needed to satisfy the assumption at the base

of the additive model, as reported in Chapter 4.2. Speci�cally, the normal logarithmic

function is used to de�ne C (x,ΘΘΘ) and ĉ (x,θθθm),

ĉk (x,θθθm) = ln
(
f̂k (x,θθθm)

)
. (6.2)

Finally, the proposed probabilistic model for eigenfrequencies of a concrete gravity dams

can be determined by combining equations 4.6, 6.1 and 6.2, thus obtaining

ln (fk,i (x,θθθm,ΣΣΣf )) = ln
(
f̂k,i (x,θθθm)

)
+ σfkεfk,i =

= ln
(
f̂gPCEk,i (x,θθθgPCE)

)
+ σfkεfk,i ,

(6.3)

where fk,i (x,θθθm,ΣΣΣf ) is the i-th observation of the k-th experimental frequency and σfkεfk,i
are the error terms collected in ΣΣΣf .

In the same way the probabilistic model for the mode shapes can be de�ned. Before

starting with the development of the probabilistic model, the transformation of the mode

shapes matrix into a vector is a convenient choice from the computational point of view.

More speci�cally, by considering q modes of a system with m dynamic degrees of freedom

(with q ≤ m), the k-th mode shape vector φφφk has dimension m× 1, and the mode shapes

matrix ΦΦΦ = [φφφ1, ...,φφφk, ...,φφφq] has dimension m × q. Therefore, by collecting every mode

shape vector φφφk in only one column, a total vector φφφtotal with dimension m · q × 1 can be

obtained. By de�ning a global index h, with 1 ≤ h ≤ m · q, the meta model of the mode

shapes becomes

φ̂h,i (x,θθθm) = φ̂gPCEh,i (x,θθθgPCE) , (6.4)

where φ̂gPCEh,i (x,θθθgPCE) is the i-th value of the h-th component of the numerical mode

shapes vector approximated through the gPCE.

By combining equations 4.6 and 6.4, the predictive model for the mode shapes of the dam

becomes

φh,i (x,θθθm,ΣΣΣφ) = φ̂h,i (x,θθθm) + σφh,iεφh =

= φ̂gPCEh,i (x,θθθgPCE) + σφh,iεφh ,
(6.5)

where φh,i (x,θθθm,ΣΣΣφ) is the i-th observations of the h-th component of the experimental

mode shapes and σφh,iεφh are the error terms collected in the covariance matrix ΣΣΣφ.

The components of each the predictive model are correlated through the covariance matrix
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(Chapter 4). With the assumption of correlation among the components of the predic-

tive models, the dimension of the inverse problem increases considerably because also the

error terms are objects of the updating process. By analysing the nature of the physical

phenomenon and how the predictive models are used, some assumptions can be �xed in

order to reduce the computational burden. Damage detection is based on the comparison

between experimental and numerical modal characteristics, mode by mode, thus the com-

ponents of a particular mode shape φφφi must be assumed correlated, while the assumptions

of correlation between di�erent modes is not needed.

Therefore, the eigenfrequencies collected in f are uncorrelated and the related covariance

matrix ΣΣΣf has the form

ΣΣΣf =


σ2
f1

0 0 . . . 0

0 σ2
f2

0 . . . 0
...

...
...

. . .
...

0 0 0 . . . σ2
fq

 , (6.6)

where q is the number of considered modes.

Whereas, the covariance matrix ΣΣΣφ of the mode shapes has the form

ΣΣΣφ =




, (6.7)

where the blocks indicate the covariance matrices of each mode, otherwise the value is zero.

Despite the number of terms within the correlation matrix ΣΣΣφ is strongly reduced, it could

be still too high leading to an excessive computational burden. Therefore, the terms of

each block within ΣΣΣφ are approximated through covariance functions with the form

COV (φi, φj) =
1

λm
exp

[
−
(
wmd dφi,φj

)]
, (6.8)

where i and j are indices related to components within the same block, i.e. belonging to

the same mode shape m. Moreover, dφi,φj is the Euclidean distance between φi and φj .

Finally, λm and wmd are combination coe�cients, which are unknown and updated in the

139



Chapter 6 Hierarchical Bayesian model for dynamic parameters updating

proposed procedure. In this way, the number of random variables strongly decreases, since

only two parameters for each mode are needed to describe the covariance matrix ΣΣΣφ. The

correlation function has been de�ned after a sensitivity analysis on some case studies, as

shown in Chapter 8.3.7.

For the sake of simplicity, the unknown parameters λm are collected in the vector λλλ and wmd
are collected in the vector wd. These vectors have dimension 1xq, where q is the number

of considered modes.

6.5 Hierarchical Bayesian updating and likelihood function

de�nition

One application of the procedure proposed in this Chapter is the calibration of the dynamic

twin model parameters of the dam, in order to improve the prediction of the structural

behaviour during seismic events. In particular, this last purpose can be reached by calcu-

lating the fragility curves, which, as explained in Chapter 2, account for both epistemic

and aleatory uncertainties. With regard to this last aspect, both the mean values and the

standard deviations of the model parameters distributions must be updated. Therefore,

the presented procedure is de�ned in a hierarchical Bayesian framework. Conceptually

a hierarchical Bayesian model has the same meaning of a normal one, and all properties

described in Chapter 2 are still valid. In a hierarchical Bayesian model di�erent levels

are de�ned, each level is linked to the previous and the successive through statistical re-

lationship. In other words, in a level the parameters governing the pdf of the successive

level can be found. For instance, suppose that a random variable Y follows a normal

distribution with mean θ and standard deviation equal to 1, that is Y ∼ N (θ, 1). More-

over, suppose that θ is normally distributed with mean µ and standard deviation 1, that

is θ ∼ N (µ, 1). Finally, assuming that µ is normally distributed with 0 mean and unit

variance, µ ∼ N (0, 1), than the hierarchical model is de�ned because each level is linked

to the next one with a statical relation.

Two important concepts in a hierarchical Bayesian model are the hyper-parameters and

hyper-prior distributions. The hyper-parameters are the parameters of the prior distribu-

tion, as µ in the previous example. Whereas, the hyper-prior distributions are the pdf of

the hyper-parameters (Gelman et al. 2004).

A hierarchical Bayesian model is needed when the entire prior distribution must be up-

dated, i.e. when also the variance is in�uential, as in case of statistical structural analysis,

i.e. when uncertainties are considered through their distributions. Moreover, hierarchical
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model are important when the possibility of collecting information able to infer at di�erent

levels is available.

In the context of this procedure two levels are set up: the �rst one collecting the model

parameters ΘΘΘ, and the second one collecting the hyper-parameters ΞΞΞ, as indicated in the

following list.

� Level 1, Model Parameters ΘΘΘ:

� θθθm: unknown model parameters,

� ΣΣΣf : components of the covariance matrix of the frequencies probabilistic model,

� λλλ: coe�cients λm of the covariance function of ΣΣΣφ,

� wd: coe�cients wmd of the covariance function of ΣΣΣφ,

� Level 2, Hyper-parameters ΞΞΞ:

� ξξξµm: hyper-parameters of the mean values of the unknown model parameters

θθθm,

� ξξξσm: hyper-parameters of the standard deviation of the unknown model param-

eters θθθm.

With the aim to improve the estimation of the structural fragility, only the parameters

θθθm play a fundamental role, thus only their distributions are fully updated. The previous

parametrization re�ects this idea, in fact the hyper-parameters are only related to θθθm.

In the context of a hierarchical Bayesian model, the prior distribution p (ΘΘΘ,ΞΞΞ) = p (ΘΘΘ|ΞΞΞ) p (ΞΞΞ)

is updated in order to obtain the posterior distribution p (ΘΘΘ,ΞΞΞ|y). Equation 4.10 becomes,

p (ΘΘΘ,ΞΞΞ|y) = κL (x,ΘΘΘ,ΞΞΞ|y) p (ΘΘΘ|ΞΞΞ) p (ΞΞΞ) . (6.9)

Moreover, following equation 4.48, once n new observations collected in the vector y are

recorded, the likelihood function for the eigenfrequencies of the dam is

L (x,θθθm,ΣΣΣf ,ΞΞΞ) ∝
n∏
i=1

exp
[
−1

2r
f
i

T
(x,θθθm,ΞΞΞ)ΣΣΣ−1

f r
f
i (x,θθθm,ΞΞΞ)

]
√
|2πΣΣΣf |

. (6.10)

Where rfi (x,θθθm,ΞΞΞ) =
[
rf1,i, ..., r

f
k,i, ..., r

f
q,i

]T
represents the discrepancy between the i-th

vector of experimental frequencies and the related numerical prediction. They assume the

form

rfk,i = ln (fk,i (x,ΘΘΘ,ΞΞΞ))− ln
(
f̂k,i (x,θθθm,ΞΞΞ)

)
. (6.11)
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Following the same idea, the likelihood function for the mode shapes of a concrete gravity

dam can be de�ned as

L (x,θθθm,ΣΣΣφ,ΞΞΞ) ∝
n∏
i=1

exp
[
−1

2r
φ
i

T
(x,θθθm,ΞΞΞ)ΣΣΣ−1

φ r
φ
i (x,θθθm,ΞΞΞ)

]
√
|2πΣΣΣφ|

. (6.12)

In this case rφi (x,θθθm,ΞΞΞ) =
[
rφ1,i, ..., r

φ
h,i, ..., r

φ
q·m,i

]T
represents the discrepancy between the

i-th observation of the experimental mode shape and related experimental one,

rφh,i = φh,i (x,ΘΘΘ,ΞΞΞ)− φ̂h,i (x,θθθm,ΞΞΞ) . (6.13)

In the next sections the de�nition of the hyper-prior distributions and the modi�ed version

of MCMC are treated.

6.6 Hyper-prior distribution de�nition

The results of in-situ and laboratory tests on the dam's concrete and on the foundation rock

are usually available. Starting from these results, the distributions of the hyper-parameters

ΞΞΞ of the mechanical parameters θθθm can be de�ned. Whereas there are no information about

the parameters related to the error term, i.e. the elements of ΣΣΣf , λλλ and wd. For these

random variables non informative prior distribution, as introduced in Chapter 4.3.3, are

selected. Assuming that the parameters collected in ΘΘΘ are approximately independent, the

prior distribution p (ΘΘΘ,ΞΞΞ) becomes

p (ΘΘΘ,ΞΞΞ) = p (ΘΘΘ|ΞΞΞ) p (ΞΞΞ) ∼= p (θθθm|ΞΞΞ) p (ΞΞΞ) p (ΣΣΣf ) . (6.14)

Therefore, as discussed in Chapter 4, the non-informative prior distribution of the compo-

nents of ΣΣΣ can be written as

p (ΣΣΣ) ∝ |ΣΣΣ|−(q+1)/2. (6.15)

Equations 6.15 can be directly used to de�ne the prior distributions of the components of

ΣΣΣf .

Since the components of ΣΣΣφ are approximated through covariance functions, the prior dis-

tributions of λλλ and wd must be de�ned so that equation 6.15 is satis�ed.

Nevertheless, when a large number of new data are collected, the choice of the prior dis-

tribution has little in�uence on the �nal result. Therefore, if the presented procedure
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is integrated in a SHM system the procedure would lead to posterior distributions not

in�uenced by the prior ones.

6.7 Modi�ed Markov Chain Monte Carlo with Modal Assur-

ance Criteria

The use of experimental modal characteristics, i.e. frequencies and mode shapes, as refer-

ence measure in the updating procedure involves the problem of modes matching. More

speci�cally, the results of the deterministic model for a particular sample set Θ̄ΘΘ could be

characterised by modes with a di�erent sequence with respect to the experimental ones,

leading to the comparison of frequencies related to di�erent modes. Moreover, in the

particular case of concrete gravity dams, considering the SSI in the numerical model, a

large number of modes related only to the soil can be found in a selected frequency range.

Usually, the largest part of these soil modes have no experimental correlation because the

devices are installed only on the dam body or close to it. Therefore, alongside the need

to guarantee the modes coherence, considering the SSI involves the need to discard the

numerical modes which have no experimental correlation.

In the presented procedure the previous issues are solved by introducing a reordering cri-

terion in the numerical algorithm MCMC. In particular, it changes the position of the

numerical modes in order to ensure the coherence with the experimental ones, discard-

ing numerical modes with no experimental correlation. Mode shapes, experimental and

numerical ones, are used as reference information in the reordering criterion, through the

calculation of the Modal Assurance Criterion (MAC) matrix. The MAC is a statistical in-

dicator, a least squares based form of linear regression analysis which leads to an indicator

that is most sensitive to the largest di�erence between experimental and numerical mode

shapes (Allemang 2003). Therefore, by considering the i-th experimental mode shape φφφi
and the j-th numerical mode shape φ̂φφj , the component (i, j) of the MAC matrix is

MAC (i, j) =
|φφφTi φ̂φφ

∗
j |2(

φφφTi φφφ
∗
i

) (
φ̂φφ
T

j φ̂φφ
∗
j

) . (6.16)

Where the superscripts T and ∗ indicate respectively the transposed vector and the complex

conjugated vector. Even when the eigenvectors are complex the MAC is real. The value

of a MAC ranges from 0, in the case of no correlation, to 1, in the case of full correlation.

The Metropolis-Hastings version of MCMC (algorithm 1) is modi�ed by inserting the

143



Chapter 6 Hierarchical Bayesian model for dynamic parameters updating

calculation of the MAC matrix and the reordering criterion, as shown in algorithm 2. In

particular, at every step of the algorithm the solution of the deterministic model is used

to calculate the MAC matrix between numerical and experimental results. Therefore,

numerical frequencies and mode shapes are reordered in order to move the higher values

of the MAC coe�cient toward the diagonal of the matrix. Whereas the numerical modes

with no experimental correlation are discarded. In this way the coherence of the modes is

ensured. This step needs the de�nition of a threshold beyond which the numerical mode is

assumed equivalent to an experimental one. There are no rules to calibrate the threshold,

but a preliminary sensitivity analysis could give helpful information. In the case of concrete

gravity dams, as shown in the case study (Chapter 8), the modes are well de�ned, thus

the MAC matrix is characterised by high values for coherent modes and small ones for the

incoherent. Therefore, a threshold equal to 0.9 is set. A too high value of the threshold

could lead to a stagnation of the algorithm. In fact, due to approximations both in the

OMA, i.e. in the experimental results calculation, and in the numerical model, a perfect

coherence, i.e. a MAC=1, is impossible to achieve.

The numerical algorithm, used in this procedure, needs a starting point in the space of the

random variables, and the de�nition of proposal distributions (Chapter 4). The starting

point of the chain is selected in order to maximize the likelihood function (Owen 2001),

while normal distribution with zero mean and variance empirically calibrated are chosen.

The calibration of the proposal distribution is a fundamental aspect, since it allows tuning

the balance between calculation burden and accuracy of the results. The use of a meta

model within the algorithm, instead of the real FE model, allows speeding up the procedure,

thus several di�erent calibration trials can be studied.
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Algorithm 2 Metropolis-Hastings algorithm with MAC

procedure (p (ΘΘΘ|ΞΞΞ) , p (ΞΞΞ) , q (ΘΘΘ∗|ΘΘΘi) , N)
draw hyper-parameter ΞΞΞ0 from the hyper-prior p (ΞΞΞ)
draw parameter ΘΘΘ0 from the prior p (ΘΘΘ|ΞΞΞ0)
for i = 1 to N do

draw ΞΞΞ∗ from the proposal distribution q (ΞΞΞ∗|ΞΞΞi−1)
draw ΘΘΘ∗ from the proposal distribution q (ΘΘΘ∗|ΘΘΘi−1)
calculate the numerical frequencies and mode shapes by using ΘΘΘ∗

for j = 1 to # experimental modes do
for z = 1 to # numerical modes do

calculate the MAC (j, z) (equation 6.16) by comparing the j-th experimen-
tal mode shape with the z-th numerical one

for j = 1 to # experimental modes do
for z = 1 to # numerical modes do

if MAC (j, z) >= treshold then
the z-th numerical mode is assumed correlated to the j experimental

one
else

the z-th numerical mode is assumed uncorrelated to the j experimental
one, so it is discarded

reorder the numerical modes coherently to the numerical ones, the higher values
of the MAC coe�cients are moved to the diagonal

compute the residual vector ri
evaluate the probability of acceptance

α = min
{

1, π(ΞΞΞ∗,ΘΘΘ∗)q(ΞΞΞi−1,ΘΘΘi−1|ΞΞΞ∗,ΘΘΘ∗)
π(ΞΞΞi−1,ΘΘΘi−1)q(ΞΞΞ∗,ΘΘΘ∗|ΞΞΞi−1,ΘΘΘi−1)

}
accept the next step with probability α
ΞΞΞi = ΞΞΞ∗ and ΘΘΘi = ΘΘΘ∗

or rejected with probability 1− α
ΞΞΞi = ΞΞΞi−1 and ΘΘΘi = ΘΘΘi−1
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Chapter 7

Probabilistic framework for dynamic

SHM and devices optimization

procedure

7.1 Overview

In this Chapter the proposed probabilistic framework for dynamic SHM of concrete grav-

ity dams is shown. The �rst part of the Chapter is dedicated to the description of the

methodology, while the last part focuses on the optimization procedure for the designing

of the SHM layout.

The proposed probabilistic framework for dynamic SHM of concrete gravity dams is shown

in �gure 7.1. Through the elaboration of ambient vibrations and the use of predictive mod-

els of the dam behaviour, the presented SHM allows both detecting a possible damage and

updating the parameters of the predictive models themselves. This last feature, as in the

static case, allows reducing the epistemic uncertainties involved in the dam twin model,

thus obtaining a more reliable SHM and a better estimation of the structural fragility.

These two goals are achieved thanks to the architecture of the SHM, which is composed
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by three phases based on structural analysis of the dam and Bayesian inference:

� Training Phase

� Detection Phase

� Updating Phase

The Training Phase is considered activated when the dam operates correctly, in this step

the recorded ambient vibrations are used to update the parameters of the mode shapes

predictive model described in Chapter 6. In this way a reliable predictive model of the

undamaged dam is built. During the Training Phase, and coherently with Chapter 6, the

measurable variables x represent the environmental conditions and the random variables

θθθm are related to the elastic mechanical parameters, i.e. bulk and shear modulus. For

the sake of simplicity, in this step the mode shapes predictive model is labelled with the

superscript U, in order to indicate the undamaged behaviour of the dam, while the vector

of unknown parameters θθθm is indicate with θθθel, because K and G describe the elastic

tensor.

The Detection Phase can be activated both during the regular used of the dam or when a

seismic event occurs. In both cases a time window which balance recorded data and control

must be de�ned. The aim of this step is to determine the presence and the position of

a possible damage by comparing the experimental mode shapes with those obtained with

the calibrated predictive model of the undamaged behaviour (previous step).

The Updating Phase is activated only when a seismic event occurs. The aim of this phase

is the updating of the state of knowledge about the strength parameters of the materials,

by exploiting the relationship between: damage, action and strength parameters. A second

predictive model is used in this step to predict the possible damage of the structure, i.e. the

mode shapes of the damaged dam. This predictive model is labelled with the superscript

D. As further discussed, the damage propagation within a dam depends on the strength

parameters of the materials, collected in θθθs, and the action which produces the damage

itself. In this context, the parameters which de�ne the seismic action (IMs) are collected

in the vector $$$. Therefore, the predictive model of the damaged behaviour is function of

θθθs and $$$, while the elastic parameters are those calibrated in the training phase, i.e. θθθel.

At the end of the Chapter a procedure to design the monitoring system is presented. The

Optimal Bayesian Experimental Design (OBED), introduced in Chapter 4.5, is used to

design the monitoring system of ambient vibrations. More speci�cally, the devices position

is determined in order to maximize the acquisition of useful information with regard to
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Figure 7.1: Dynamic SHM for concrete gravity dams.
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the damage detection and to the updating of the material constitutive models strength

parameters.

The gPCE-based meta models are used within the proposed SHM in order to reduce

the computational burden, thus speeding up the whole procedure. This computational

speed is an important feature of a SHM system, because the use of gPCE-based motel is

fundamental.

The literature review presented in Chapter 2.3 shows that in dam engineering �eld there

are only few examples of dynamic monitoring systems for structural control purpose. Most

of the available research works face the problem of modes matching by using objective

functions or by applying the system mode shapes concept, which are inappropriate in dam

engineering �eld, because of the SSI in the numerical models. The probabilistic dynamic

SHM framework proposed in this Chapter introduces the following novelties:

� the proposed SHM is directly based on the predictive model of the mode shapes of

the dam.

� the predictive models are based on FE models of the system and calibrated by using

recorded data.

� gPCE-based meta models are used instead of the FEA outputs, thus speeding up the

procedure.

� the proposed framework allows both detecting the damage and updating the mechan-

ical parameters of the materials of the predictive models, thus improving the SHM

itself.

� the proposed optimization procedure allows designing the devices positions in order to

maximize both the possibility of damage detection and the acquisition of information

useful to infer the material strength parameters.

In the next sections, each step of the proposed SHM framework is described in detail, spe-

cialising the likelihood function and by specifying the parameters objects of the updating.

7.2 The training phase

The Training Phase is activated when the dam is regularly working. In this step the

measurements recorded by the monitoring system are used to update the parameters of

the predictive model of the undamaged mode shapes through the Bayesian Inference. In
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particular, since the material behaviour is assumed linear during the regular use of the

dam, the elastic parameters of the predictive model are updated, i.e. θθθel. For the sake of

simplicity, the covariance matrix, whose components are updated in this step, is indicated

as ΣΣΣφU , in the same way the combination coe�cients of the covariance function (Equation

6.8) are collected in λλλU and wU
d .

The predictive model of the mode shapes of the undamaged dam are expressed by the

equation

φUh,i
(
x,θθθel,ΣΣΣφU

)
= φ̂Uh,i (x,θθθel) + σUφhεφUh,i

, h = 1, ...,m · q i = 1, ..., l. (7.1)

In this context the likelihood function becomes

L
(
x,θθθel,ΣΣΣφU ,ΞΞΞel

)
∝

l∏
i=1

exp

[
−1

2r
φU

i

T
(x,θθθel,ΞΞΞel)ΣΣΣ−1

φU
r
φU

i (x,θθθel,ΞΞΞel)

]
√
|2πΣΣΣφU |

, (7.2)

where rφ
U

i (x,θθθel,ΞΞΞel) =
[
rφ

U

1,i , ..., r
φU

h,i , ..., r
φU

q·m,i

]T
are the residuals which express the di�er-

ence between the i-th observation of the experimental mode shapes and related numerical

ones

rφ
U

h,i = φUh,i (x,θθθel,ΣΣΣφ,el)− φ̂Uh,i (x,θθθel,ΞΞΞel) . (7.3)

The computational burden related to the calculation of φ̂Uh,i (x,θθθel), within the resolu-

tion numerical algorithm, is strongly reduced by the use of the gPCE. In this phase the

gPCE based meta model is built on the results of the FEA analysis of the undamaged dam.

The predictive model de�ned in this section is used for damage detection purposes. Whereas,

the posterior distributions of the elastic parameters θθθel are used within the second predic-

tive model in the Updating Phase.

7.3 The detection phase

The Detection Phase is activated both during the regular use of the dam and when a

seismic event occurs. In particular, it aims to detect a possible damage by comparing the

experimental mode shapes, determined through the elaboration of ambient vibrations with

OMA, with those simulated by the calibrated predictive model of the undamaged mode

shapes. The processing speed, due to the use of a gPCE based meta model instead of

the FE one, allows using the proposed predictive model for on-line structural control. A
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suitable time window for the acquisition of the observations and the related parameters

updating should be de�ned in order to optimise the performance of the SHM itself.

In this step two fundamental aspects must be discussed: the determination of experimental

mode shapes from ambient vibrations and the de�nition of the threshold beyond which the

dam behaviour is considered anomalous.

The experimental modal characteristics are determined through the elaboration of ambient

vibrations by using OMA. Several di�erent techniques are available, and in this context

automatic ones are preferable because of practical reasons. However, the scope of this

research work is the de�nition of the SHM framework rather than the selection of the best

OMA techniques in dam engineering �eld.

The de�nition of the threshold of a particular damage level involves considerations on

the physical phenomenon and the accuracies of both observation and prediction. From

this latter point of view the proposed framework can facilitate the task. Indeed, it allows

updating the covariance matrix ΣΣΣφU of the error terms, which are composed by di�erent

contributions. In the end, they give us an estimation of the degree of belief on the discrep-

ancy between recorded and predicted QI. These indications are particularly important to

de�ne the threshold. Moreover, the continuous �ow of information allows updating the co-

variance matrix, thus improving the capacity of the system itself in the damage detection.

The study of the physical phenomenon is needed to correlate a variation of the monitored

QI with a particular damage level and the e�ects of the damage itself on the dam per-

formance. This aspect is particularly important from the practical point of view where

numerical studies and expert judgements assume great importance, due to the absence

of case histories. Moreover, each dam has di�erent features which can lead to di�erent

thresholds. Therefore, in every case a speci�c study of the correlation between damage,

variation of the QI and dam performance should be set up. Also this aspect is out from

the aims of this work.

Another important aspect related to damage detection is the relationship between minimal

damage level and number of devices, which are strictly linked. Indeed �xing a minimal

level of damage beyond which the SHM system must detect it, the optimization proce-

dure presented in this Chapter could be used to optimize the minimum number of devices

needed to detect the minimal damage. However, the de�nition of such threshold is very

complicated, the procedure can be used to �nd the best devices layout once the minimum

number of instrument is de�ned.
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7.4 The updating phase

The Updating Phase is activated only when a seismic event occurs. It aims to updated the

strength parameters of the dam concrete collected in θθθs by comparing the recorded mode

shapes with those obtained with the predictive model of the damaged system. This is an

important feature of the proposed framework because it allows improving the estimation of

residual life expectancy of the dam after seismic event, for instance through the calculation

of the fragility curves. Indeed, in this way the epistemic uncertainties related to the

strength parameters are reduced, thus improving the estimation of the dam behaviour

during seismic events. The damage propagation depends on the strength parameters of

the concrete θθθs as well as the action which produces the damage itself, in this context the

seismic one. With the aim to de�ne a statistical relationship between QI, observations and

error terms, a parametrization of the seismic input is needed. It is important to highlight

the aleatory nature of the uncertainty related to the seismic action. Therefore, the state

of knowledge about the seismic parameters can not be updated, they are needed only to

consider the seismic action within the probabilistic model. For the sake of simplicity, the

parameters of the seismic input are collected in the vector$$$. As for the other uncertainties

involve in this work the parametrization is a fundamental aspect, so sensible IMs of the

seismic action must be selected. Indications about the di�erent IMs in the case of concrete

gravity dams can be found in the literature (Chapter 2).

In this phase, the predictive model of the mode shapes of the damaged dam is expressed

by the equation

φDh,i
(
x,$$$,θθθs,ΣΣΣφD

)
= φ̂Dh,i (x,$$$,θθθs) + σDφhεφDh,i

, h = 1, ...,m · q i = 1, ..., l. (7.4)

As in the previous case the likelihood function is assumed normally distributed as the

error term. Therefore, by indicating the covariance matrix as ΣΣΣφD the likelihood function

becomes

L
(
x,$$$,θθθs,ΣΣΣφD ,ΞΞΞs

)
∝

l∏
i=1

exp

[
−1

2r
φD

i

T
(x,$$$,θθθs,ΞΞΞs)ΣΣΣ−1

φD
r
φD

i (x,$$$,θθθs,ΞΞΞs)

]
√
|2πΣΣΣφD |

. (7.5)

In the previous equation r
φD

i (x,$$$,θθθs,ΞΞΞs) =
[
rφ

D

1,i , ..., r
φD

h,i , ..., r
φD

q·m,i

]T
are the residuals

which express the di�erence between the i-th value of the experimental mode shapes and
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the related numerical one,

rφ
D

h,i = φDh,i
(
x,$$$,θθθs,ΣΣΣφD ,ΞΞΞs

)
− φ̂Dh,i (x,$$$,θθθs,ΞΞΞs). (7.6)

The use of the gPCE for the construction of the meta model of φ̂Dh,i (x,$$$,θθθs,ΞΞΞs) allows

strongly reducing the computational burden. In this phase the gPCE based meta model

is trained on the FEA results of the damaged dam. Therefore, a high-�delity model must

be used to simulate the damage of the system and the behaviour of the damaged dam. An

important aspect, from the computational point of view is how to train the gPCE with

respect to the seismic input. According to the literature the IMs, as those collected in $$$,

are not su�cient to fully describe the variability of the seismic motion. Also the frequency-

content parameters play a fundamental role. This problem can be solved by considering

a set of seismic inputs as in the case of Multi-Record IDA. Therefore, for every analysis

de�ned to train the meta model, a set of IMs is sampled from the prior distributions of $$$

and a seismic event is sampled from the set of recorded motions. Afterwards, the seismic

event is scaled until its IMs are equal to the sampled ones, this step is illustrated in �gure

7.2. Due to the aleatory nature of the earthquake, the prior distribution of $$$ and the set

of reference seismic events must de�ned following practical concepts. In particular, the

reference earthquakes must be chosen with regard to the site characteristics as in the case

of MR-IDA. Whereas, the prior distributions of $$$ should be selected in order to reduce

as much as possible the computational burden. This can be done by avoiding the analysis

which do not lead to the damage of the dam. Preliminary analyses can be helpful to select

the ranges of variation of the IMs.

In this phase, as in the previous one, only two parameters for each mode are needed to

de�ne the correlation matrix. For the sake of simplicity these are collected in the vectors

λλλD and wD
d .

Finally, it is worth noting that even no damage, after a seismic event, is an important

information. Indeed, if the prior mean values of the material strengths is too small, and

for that the prediction would lead to a damaged structure for a particular seismic event,

but no damage are determined on the real structure, the posterior distribution will be

moved toward highest value. The possibility to determine the posterior distributions of the

parameters collected in θθθs allows improving the estimation of the residual life expectancy

of the structure, this step falls in the prognosis phase.

In this context, the seismic input, which is parametrised by$$$, in�uences the damage as well

as the strength parameters. Therefore, once an earthquake occurs must be characterised,

determining the parameters of the vector $$$, which are usually de�ned with regard to the
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Figure 7.2: Seismic action modelling in the Updating Phase.

bed rock. Usually, dam are built on rock soil, then it could be su�cient to install devices

on the ground around the dam in order to characterise the seismic event. Once the seismic

input is characterised, the vector $$$ is de�ned and it can be �xed in the predictive model

of equation 7.4. In this way, only the strength parameters θθθs remain unknown.

Since the quantities of interest are the mode shapes, the problems related to the SSI and

the experimental numerical coherence arise. Therefore, the modi�ed version of MCMC,

proposed in Chapter 2, must be used to solve these problems.

Finally, �gure 7.3 shows the procedure presented in this Chapter.
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Fig. 7.3: Flowchart of the material constitutive models strength parameters updating.

7.5 Hyper-prior distributions de�nition

The probabilistic dynamic SHM proposed in this Chapter requires the de�nition of the

hyper-prior distributions. In particular those of the mechanical parameters of the materi-

als, namely p (θθθel,ΞΞΞel) = p (θθθel|ΞΞΞel) p (ΞΞΞel) and p (θθθs,ΞΞΞs) = p (θθθs|ΞΞΞs) p (ΞΞΞs), can be de�ned

starting from the results of material tests. Whereas there are usually no prior information

about the parameters λλλU, wU
d , λλλ

D and wD
d , thus for which non-informative prior distribu-

tions must be used.

155



Chapter 7 Probabilistic framework for dynamic SHM and devices optimization procedure

7.6 Devices layout optimization through Optimal Bayesian

Design of Experiment

The last part of the presented research works aim to de�ne a robust procedure for designing

the SHM layout. In particular, the one proposed in this Chapter is based on the Optimal

Bayesian Experimental Design (Chapter 4.5) and it allows de�ning the devices position in

order to maximize both the damage detection, and the acquisitions of information useful

to infer the strength parameters of the materials. This double aim can be achieved by

exploiting the relationship between damage development and strength parameters.

The predictive model of the damaged dam (Equation 7.4) and the relative likelihood func-

tion (Equation 7.5) are used within the optimization procedure. Also in this context,

particular attention must be placed to guarantee the coherence of modes when Equation

4.113 is solved. Indeed, Equation 4.113 can be solved with a double Monte Carlo proce-

dure for which the sampling from the likelihood function is needed both in the external and

internal calculation of Monte Carlo estimator. Before the likelihood function construction,

and in particular before the residual calculation, the MAC matrix is determined and the

numerical modes reordered coherently with the experimental ones. More speci�cally, in

this context the experimental modes are unknown a priori, so they are simulated within

the algorithm and indicated as y. The proposed algorithm is shown in algorithm 3.

An important aspect of the Optimal Bayesian Experimental Design is the parametrization

of the design variable d, as discussed in Chapter 4.5. Assuming that the devices can be

installed only on the downstream face of the dam, the use of polar coordinates r and α is a

convenient choice to parametrize the devices position, as shown in �gure 7.4. However, the

FEA solution is calculated only in few points of the design domain, which can be thought

as the mesh nodes. Therefore, the gPCE is trained only in these solution points. An

interpolation procedure must be set up within the numerical algorithm in order to ensure

the continuity of the design domain. In this way once r and α are sampled, a candidate

P of the devices position is selected. The quantity of interest can be determined by inter-

polating the values of the element nodes in which the candidate point lies. The de�nition

of a maximum and minimum value of r and α is needed in order to limit the domain.

Despite this parametrization, some areas can be outside the design domain. A control on

the candidate point position is added in the numerical algorithm 3. If the candidate point

P lies outside the design domain, it is projected onto the closest edge. It is noticeable that

this projection procedure is possible thanks to the use of the SPSA algorithm, as discussed

in Chapter 4.5.3.
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Fig. 7.4: Design variable d for the SHM system optimization.

The SPSA algorithm, described in Chapter 4.5.3, is used to maximize the expected util-

ity, so to �nd the best position of a device. Since more than one device can be used, a

sequential Bayesian optimal experimental design is set up. Once the device position in

the i-th step is determined, the reference predictive model is changed in order to consider

this last device. Therefore, in the next step, U (di+1) is calculated considering a layout

composed by the devices determined in the previous steps, plus the one sampled by the

procedure in the current step i + 1. In other words, once a device position is determined

through SPSA the prior knowledge is updated to embodied the information related to the

new device. This updated state of knowledge becomes the prior knowledge of the next

step. The optimization of the SHM system is shown in �gure 7.5.

The whole algorithm, implemented in MATLAB® R2017A (Mathworks 2016), is shown

in algorithm 3. Despite the use of the gPCE to speed up the procedure, it still requires

long calculation time because of the presence of a double loop within the optimization

algorithm. Moreover, as discussed in Chapter 4.5.3, the number of steps of the outer and

inner loops can not be reduced too much, because they control the bias and the variance

of the expected utility. Therefore, the algorithm is parallelized exploiting the features of

MATLAB® R2017A.
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Fig. 7.5: Flowchart of the SHM system optimization procedure.
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Algorithm 3 Double Monte Carlo estimator algorithm for OED

1: procedure OED M,N, p (θθθm)
2: for i = 1 to M (max number of devices) do
3: select the initial candidate point di,0 = (ri,0, αi,0)
4: if di,0 is inside allowed areas then
5: di,0 = di,1
6: else

7: di,0 is projected onto the closest edge and that point becomes di,1
end if

8: for j = 1 to N (max number of steps in the SPSA algorithm) do
9: calculation of the SPSA parameters aj , cj ,∆∆∆j

10: dplus,j = di,j + cj∆∆∆j and dminus,j = di,j − cj∆∆∆j

11: if dplus,j is inside allowed areas then
12: dplus,j = dplus,j
13: else

14: dplus,j is projected onto the closest edge and that point becomes dplus,j
end if

15: if dminus,j is inside allowed areas then
16: dminus,j = dminus,j
17: else

18: dminus,j is projected onto the closest edge and that point becomes dminus,j
end if

19: for k = 1 to nout (sample number in the outer Monte Carlo estimate) do
20: draw θθθkm from the prior distribution p (θθθm)
21: calculation of the reference measure y(k)

22: calculation of φ̂Dh,i
(
x,$$$,θθθks ,dplus,j

)
23: MAC matrix calculation and mode shapes reordering
24: calculation of the residual
25: calculation p

(
y(k)|θθθkm,dplus,j

)
26: for h = 1 to nin (sample number in the inner Monte Carlo estimate) do

27: draw θθθ(k,h)
m from the prior distribution p (θθθm)

28: calculation of φ̂Dh,i

(
x,$$$,θθθ

(k,h)
s ,dplus,j

)
29: MAC matrix calculation and mode shapes reordering
30: calculation of the residual
31: calculation p

(
y(k)|θθθ(k,h)

m ,dplus,j

)
end for

32: calculation of p
(
y(k)|dplus,j

)
end for

33: U (dplus,j) calculation
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34: for k = 1 to nout (sample number in the outer Monte Carlo estimate) do
35: draw θθθkm from the prior distribution p (θθθm)
36: calculation of the reference measure y(k)

37: calculation of φ̂Dh,i
(
x,$$$,θθθks ,dminus,j

)
38: MAC matrix calculation and mode shapes reordering
39: calculation of the residual
40: calculation of p

(
y(k)|θθθkm,dminus,j

)
41: for h = 1 to nin (sample number in the inner Monte Carlo estimate) do

42: draw θθθ(k,h)
m from the prior distribution p (θθθm)

43:

∂φ̂φφ
(
x,θθθ

(k,h)
m ,dminus,j

)
∂θθθ

(k,h)
m

44: MAC matrix calculation and mode shapes derivative selection
45: calculation of the residual
46: calculation of p

(
y(k)|θθθ(k,h)

m ,dminus,j

)
end for

47: calculation of p
(
y(k)|dminus,j

)
end for

48: U (dminus,j) calculation

49: gi,j (di,j) =
U−1(dplus,j)−U−1(dminus,j)

2cj∆∆∆j

50: di,j = di,j − ajgi,j (di,j)
end for

51: devices set dset = [dset,di,j ]
end for

52: end procedure
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Chapter 8

The case studies

8.1 Introduction

In this chapter two real Italian concrete gravity dams are described and analysed, apply-

ing the procedures developed in the present research work. The choice of studying two

di�erent cases stems from the need to use real measurements. In addition to material test

results, static measurements are available for the Gramolazzo dam, while dynamic records

are available for the Scandarello dam.

The Gramolazzo dam is used as benchmark to test the static SHM framework. In partic-

ular, both the Updating Phase and the Detection Phase are applied.

The results of an experimental campaign with the aim of determining the modal charac-

teristics of the system through ambient vibrations are available for the Scandarello dam.

Therefore, it has been chosen as case study for the application of the dynamic SHM frame-

work described in Chapters 6 and 7 and the optimization procedure proposed at the end

of Chapter 7. The application of the procedure proposed in Chapter 6 allows updating the

dynamic parameters of the FE model and performing a dam twin model. The updated

model is used both to predict the structural behaviour during seismic events through the

fragility curves calculation and to control the health state of the structure.
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Finally, the Scandarello dam is also used as case study for the application of the proce-

dure proposed in chapter 7. The monitoring system based on ambient vibrations able to

detect damage and to acquire useful information for the strength parameters updating is

designed.

It is worth noting that since there are no information about the static or dynamic be-

haviour of the damaged dams, they have been simulated through calibrated high-�delity

models.

8.2 Static SHM for concrete gravity dams: the case of Gramo-

lazzo dam

8.2.1 Introduction

In this section the numerical results related to the study of the Gramolazzo dam are shown.

The static SHM framework presented in Chapter 5 is applied, using the results of material

tests, environmental measurements and static displacements as source of information.

Dam displacements recorded during the regular use of the dam are small and their vari-

ation is very slow, then materials can be assumed as liner elastic, as previously discussed

in Chapter 5. Therefore, the elastic parameters of both dam concrete and foundation soil,

namely the bulk modulus K and the shear one G, must be update. In this application

concrete parameters are indicated with the subscript C, while those of the foundation soil

with the subscript G.

The �rst step of the procedure is the training of the meta model needed to reproduce the

static behaviour of the dam. Displacements due to the basin level variation are approxi-

mated through the gPCE (Chapter 5.2), while those related to the thermal variation are

approximated by using a Fourier analysis (Chapter 5.3). According to the notation intro-

duced in Chapter 5, the parameters can be indicated as θgPCE,KC = KC , θgPCE,KG = KG,

θgPCE,GC = GC , θgPCE,GG = GG. Therefore, the vector θθθgPCE,K = [θgPCE,KC , θgPCE,KG ]T

and θθθgPCE,G = [θgPCE,GC , θgPCE,GG ]T . Whereas, the dimension of the vectors θθθFA,a and

θθθFA,b (Chapter 5.3) of the Fourier coe�cients is related to the number of harmonics as-

sumed in the expansion. In this application, the number of harmonics is varied in order to

asses its in�uence in the procedure result.

A high-�delity model is performed in order to simulate the dam behaviour after damage.
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8.2.2 Dam description

The Gramolazzo dam is a large dam located in north-centre Italy. Daily environmental

measurements, such as temperatures and basin levels, recorded displacements at di�erent

heights and the results of material tests, are available. With a total length of 96 m, the

dam is made up of 11 monoliths with a maximum height of 37 m from the base and a

downstream slope of 0.75. The structure, whose shape in plan is perfectly straight, is

inserted in a canyon with monoliths separated by trapezoidal key joints. The shape of the

vertical joints suggests a complete and monolithic 3D model.

8.2.3 Static and environmental measurements

The displacements are recorded by two inverted pendulums, one is installed in the central

spillway monolith and the other is installed on the non-over�ow monolith as shown in

�gure 8.1. This latter pendulum, �xed at the rock foundation at 534 m a.s.l., acquires

displacements in both up-stream/down-stream and cross-valley directions at three di�erent

heights: the dam crest at 604 m a.s.l. (P3), the upper tunnel at 593 m a.s.l. (P4) and

the lower tunnel at 574 m a.s.l. (P5). Only P4 displacements, shown in �gure 8.2, are

considered in the present application. Vertical joints opening-closing displacements are

monitored by removable mechanical strain gauges located inside the two horizontal tunnels

and shown in �gure 8.1.

The highest mean annual variations of the upstream-downstream displacements hover

around 3.5 mm at the dam crest, whereas the lowest mean annual variations are of about

0.5 mm in the lower tunnel. The opening - closing displacements of contraction joints

in both tunnels show average annual oscillations that are well correlated and hence with

water and air thermal variations.

In this work the displacements of the control point P04 are used as QI in the procedure

proposed in Chapter 5. Figure 8.2 shows the displacements of the point P04 in the period

from 2004 to 2011. Environmental measurements, such as basin level variation, water and

air temperatures, recorded in the same period, are also available, as shown in �gure 8.3

and 8.4. Finally, the observation recorded in the period 2004-2008 are used to calibrate

the model parameters (Chapter 5), while those registered from 2008 to 2011 are used to

validate the calibrated probabilistic model of dam displacements.
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Fig. 8.1: Static monitoring system layout of the Gramolazzo dam.

8.2.4 Material tests results

Several experimental campaigns have been conducted on the Gramolazzo dam. Usually,

during experimental campaigns both in-situ and laboratory tests are conducted, with the

aim to determine the material characteristics. In the case of Gramolazzo dam both dam

concrete and foundation soil have been investigated, through laboratory tests as compres-

sion ones and in situ tests as cross-hole. The results, in terms of Young's modulus E and

Poisson's coe�cient ν, are synthesized in table 8.1, where the parameters with subscript

C are related to the dam concrete, while those with the subscript G are related to the soil

ground.

Table 8.1: Gramolazzo dam: results of the material characterisation campaign.

EC [MPa] νC EG [MPa] νG

Mean 17543 0.176 29653 0.313

s.d. 4870 0.072 18873 0.075
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Fig. 8.2: Displacements of the point P4, recorded on the Gramolazzo dam.

Fig. 8.3: Basin level variation recorded by the monitoring system of the Gramolazzo dam.
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Fig. 8.4: Air and water temperatures recorded by the monitoring system of the Gramolazzo
dam.

The parameters indicated in table 8.1 are used to de�ne the prior distribution of the model

parameters with physical meaning, as indicated in paragraph 8.2.6.

8.2.5 FE Models description

Two FE models of the Gramolazzo dam are performed: a �rst model, to train the gPCE

for hydrostatic displacements, and a high-�delity model used both in static and dynamic

analysis, to simulate the dam behaviour after damage due to seismic events.

The geometry of the structure and the shape of the ground are built in a CAD program,

based on the original drawings of the dam and the orographic map of the region.

The �rst model, used only in static analyses, is performed by importing the geometry in

ANSYS r.17 (ANSYS 2013). The mesh is composed by 231254 quadratic hexahedral ele-

ments, for a total of 870787 nodes, as shown in �gure 8.5. Hertzian bonded contacts are

introduced between the monoliths and the materials, concrete and rock, are assumed to

be homogeneous linear and elastic.

Since there are no information about the damaged behaviour of the dam, it is simulated

through a high-�delity model. Starting from the geometry, previously imported in a CAD
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(a) Model mesh. (b) Global view of the model.

(c) Detail of the dam.

Fig. 8.5: Static FE model of the Gramolazzo dam.

program, the high-�delity model is built in ABAQUS 6.14 (ABAQUS 2014). In particular,

the SSI is modelled by considering a foundation with mass and by using In�nite Elements

as boundary conditions in order to account for the unboundedness of the soil, described in

Chapter 3.3. Whereas, the FSI is considered by modelling the basin with �uid elements

and by using low re�ecting boundary conditions to account for the unboundedness of the

basin, as explained in Chapter 3.4. Figure 8.6 shows the high-�delity FE model of the

Gramolazzo dam.

Since this model is used in dynamic analysis with seismic input, the minimum mesh size is

de�ned in order to be one tenth of the smallest elastic wavelength, considering a signi�cant

frequency range of the seismic input. Therefore, the mesh is composed by 40500 quadratic

tetrahedral mechanical elements (type C3D10), used for the dam concrete and the foun-

dation soil, 9506 quadratic tetrahedral �uid elements (type AC3D10), used for the basin,

and 309 linear hexahedral elements (type CIN3D8) as in�nite elements. Since the dam

has vertical contraction key joints, the connections between monoliths can be modelled as

bonded.
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(a) Model mesh. (b) Global view of the model.

(c) Detail of the dam.

Fig. 8.6: High-�delity FE model of the Gramolazzo dam.

The foundation soil is assumed a homogeneous isotropic linear elastic material, while the

dam concrete is modelled through a homogeneous isotropic plastic damage constitutive

model which has been proposed by Lee and Fenves 1998b and described in Chapter 3.2.3.

This constitutive material model requires the de�nition of the strength parameters, those

related to the damage behaviour and those related to the yield surface. The results of

the material tests allows determining the compressive and tensile strengths of the dam

concrete, indicated in table 8.2.

Table 8.2: Compressive and tensile strengths of the Gramolazzo dam.

fc,k [MPa] ft,k [MPa]

32.5 1.45

The strength parameters are used to de�ne the post elastic behaviour both in tension and

compression. In particular, the compressive branch is composed of three parts. By de�ning

fc,0 = 0.85fc,k as the value of the compressive stress beyond which the material starts to

show a non linear behaviour, fc,u = 0.3fc,k as the value of the compressive stress beyond

which the strength material decreases exponentially, and respectively characterised by the

deformation values εc,0 = fc,0/E and εc,u = 0.005, and fc,r = 0.1fc,k as the residual value
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of strength, the constitutive law can be de�ned as:

� Hardening branch: the branch where εc,0 < ε ≤ εc,k,

σc (εc) = fc,0 + (fc,k − fc,0)

√
2 (εc − εc,0)

εc,k − εc,0
− (εc − εc,0)2

(εc,k − εc,0)2 . (8.1)

� Softening branch 1 : the branch where εc,k < ε ≤ εc,u,

σc (εc) = fc,k − (fc,k − fc,u)

(
εc − εc,k
εc,u − εc,k

)2

. (8.2)

� Softening branch 2 : the branch where ε > εc,u,

σc (εc) = fc,r + (fc,u − fc,r) exp

(
2
fc,u − fc,k
εc,u − εc,k

εc − εc,u
fc,u − fc,r

)
. (8.3)

Where εc,k = 0.002 is the deformation value for which σc is equal to fc,k. The resulting

behaviour in compression is shown in �gure 8.7.

Fig. 8.7: Compressive constitutive behaviour of the Gramolazzo dam concrete.

The tensile behaviour of the dam concrete follows an exponential law after the elastic

branch, by de�ning the constitutive law in terms of tensile stress σt and displacements ut,
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in order to avoid the mesh dependency, it can be written as

σt (ut) = αt exp (−βtut) . (8.4)

In equation 8.4 αt and βt are the parameters which de�ne the shape of the exponential

branch, they are calibrated in order to obtain a fracture energy (Hillerborg et al. 1976)

equal to 150 N/m, as usually indicated in literature (Lee and Fenves 1998b).

Fig. 8.8: Tensile constitutive behaviour of the Gramolazzo dam concrete.

The Concrete Damage Plasticity constitutive model considers the e�ect of the damage as

a degradation of the undamaged elastic tensor C, as reported in Chapter 3.2.3. Therefore,

the de�nition of the law of the tension scalar degradation parameters d is needed. In this

application the law of dt is de�ned through a quadratic function to approximate the dt be-

haviour. The relationship plotted in �gure 8.9, between dt and the cracking displacements

uckt , is adopted.

Finally, the parameters of the yield criteria, introduced in Chapter 3.2.3, are de�ned ac-

cording to the values which can be found in the literature (Omidi et al. 2013), since no

information about them was available. They are reported in table 8.3.

Table 8.3: Yield criteria parameters of the Gramolazzo dam concrete.

ψ [°] ε σb0/σc0 Kc

36.31 0.1 1.16 0.66
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Fig. 8.9: Tensile damage law of the Gramolazzo dam concrete.

The Rayleigh's damping model has been used in the dynamic analyses and it has been

calibrated in order to have a damping factor equal to 5% with regard to the �rst and

second mode of the dam.

8.2.6 Prior distributions of the model parameters

The mechanical parameters to be identi�ed are the bulk modulus θθθgPCE,K and the shear

modulus θθθgPCE,G of both the concrete and foundation rock. The results of the in-situ

and laboratory tests, reported in table 8.1, are given in terms of Young modulus E and

Poisson's coe�cient ν. Therefore, the well known equations

K =
E

3 (1− 2ν)

G =
E

2 (1 + ν)
,

(8.5)

are used to determine the prior distributions of the mechanical parameters of both materials

in terms of K and G. Log-normal distributions are used for K and G and their parameters

are shown in table 8.4. The prior distributions of the other parameters with no physical

meaning, such as the combination coe�cients of the Fourier series θθθFA, the combination

coe�cient of the drift term θK, and the error standard deviation σ, are de�ned as non-

informative (Chapter 5.6).
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Table 8.4: Gramolazzo dam: Prior distributions of the mechanical parameters.

KC [MPa] GC [MPa] KG [MPa] GG [MPa]

Distr. Log-Normal Log-Normal Log-Normal Log-Normal

Mean 9024 7458 26429 11292

s.d. 5028 2073 16352 7608

8.2.7 Proxy model for hydrostatic displacements

In order to build the proxy model of the structure with the gPCE four random variables:

θgPCE,KC , θgPCE,KG , θgPCE,GC , θgPCE,GG , and the deterministic variable of the water level

are selected. Three trials are performed by changing the polynomial expansion degree in

order to check the error and to �nd the best compromise between solution accuracy and

computational burden.

The gPCE of the dam displacement is trained by using the results of the simplest static

FE model, previously described. Figure 8.10 shows the maximum relative error in terms

of di�erent displacements between FEM and the proxy model, by varying the expansion

degree. A polynomial degree of three allows obtaining the best agreement between the

number of analyses and the error value. The maximum error is less than 1% of the dis-

placement which is considered acceptable. The number of analyses to build the proxy

model, depending on the selected random variables and on the degree of the polynomial

expansion, is 1024.

One of the results of the gPCE is the response surfaces. Figure 8.11a shows displacement

due to the hydrostatic load by varying the bulk moduli K of both materials. It can be

observed that the variation of the concrete elastic modulus provides a strong variation of

the displacement, i.e. for a selected value of KG the result ranges between 0.5 and 0.7 mm.

Finally, the response surface involving KC and GC is shown in �gure 8.11b.

The sensitivity analysis is a fundamental task, both to recognize the most in�uential model

parameters and to asses the model validity (Chapter 4.4.4). Since gPCE is used to build

the meta model, Sobol's coe�cients are calculated, �gure 8.12. Since the basin level is

considered as deterministic variable in the gPCE, then the Sobol's coe�cients account also

for this parameter, which is the most in�uential one. This is the reason why the values of

the coe�cients shown in �gure 8.12 are so low, so they must be analysed in a comparative

way.

The most in�uential parameters on the model output are the bulk modulus of both mate-

rials θgPCE,KC and θgPCE,KG .
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Fig. 8.10: Maximum relative gPCE error versus expansion degree of the hydrostatic dis-
placements meta model.

8.2.8 Proxy model for thermal displacements

Three analyses are performed with di�erent numbers of harmonics in order to evaluate the

error related to the degree of expansion of the Fourier series. The number of harmonics

considered in the �rst analysis are two, three in the second and four in the last analysis.

The combination coe�cients of the Fourier series are treated as random variables and

collected in the vector θθθFA.

8.2.9 Bayesian updating and posterior statistics

Bayesian updating of the probabilistic model is performed using the displacement data of

the point placed in the upper part of the central spillway monolith (�gure 8.2), together

with the data of water and air temperatures and basin levels (�gures 8.3 and 8.4), recorded

from 2004 to 2008. The results of the updating procedure for the three analyses are re-

ported in tables 8.5, 8.6 and 8.7. The posterior mean values of the bulk modules of concrete

and ground soil, KC and KG, have a very small variance. The reason for this can be found

in the response surface in �gure 8.11 and in the Sobol's coe�cients in �gure 8.12, which

shows the stronger in�uence of KC and KG on the dam's response in comparison to the

shear modules of both materials. Moreover, the posterior mean values of θ1 and θK have

a small variation in every case, proving that they are little in�uenced by the variation in

the harmonics number.
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(a) Model output response surface versus KC and KG for a basin level equal to 30
m.

(b) Model output response surface versus KC and GC for a basin level equal to 30
m.

Fig. 8.11: Response surfaces of the hydrostatic displacements meta model.

Regarding the combination coe�cients of the Fourier series, the mean values of the �rst

two coe�cients of the �rst harmonic are higher with respect to the others and a small

variation is observed in the three cases. In �gure 8.13, prior and posterior distributions
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Fig. 8.12: Hydrostatic displacements Sobol's coe�cients.

of the model parameters are represented in the case of 2, 3 and 4 harmonics. One can

observe that the mean values of the error standard deviations σ are around 0.039 in all

cases. The substantial invariance of σ suggests that there are many possible solutions in

terms of posterior distributions for di�erent choices related to the Fourier series order.

The mean values of the output parameters are di�erent for each case, but they do not

exceed 10% of their average value. Since no further references are available to calibrate the

result, a second order Fourier series seems to be the best choice to simulate the thermal

displacements of the structure, while adding only two random variables to the probabilis-

tic problem. Moreover, for practical reasons, engineers usually work with E and ν, so the

comparison between prior and posterior distributions is reported also with regard to these

parameters. Figure 8.14 shows the results in terms of E and ν, in accordance to the results

indicated in �gure 8.13 the mean values of the parameters don't show notable changes,

while the standard deviation values are strongly reduced.

The values of R̂p varying between 1 and 1.4 endorse the convergence of the analyses, as re-

ported in paragraph 4.3.6. Figure 8.15 shows both recorded and calculated displacements.

One can note the agreement between them for every value of the Fourier series order.

Figures 8.16 shows the relationship between recorded and calculated displacements at ev-

ery step of the procedure. The crosses indicate the displacements calculated by assuming

material characteristics from experimental tests, while empty circles represent the updated

values of the material characteristics. Finally, �lled circles indicate displacements when

thermal e�ects and introducing explanatory functions are considered. Dashed lines rep-

resent the standard deviation. Figure 8.16 reports the results obtained for two and four
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Fig. 8.13: Updating procedure in static case, comparison between prior and posterior distri-
butions of K and G.

harmonics of the Fourier series for simulating thermal displacements. At the end of the

procedure, the agreement between recorded and calculated displacements is notable in both

cases.
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Fig. 8.14: Updating procedure in static case, comparison between prior and posterior distri-
butions in terms of E and ν.

8.2.10 Procedure validation

In this section, the predictions of the dam displacements predictive model and those

recorded on the dam body are compared in order to asses the e�ectiveness of the cali-

brated model.

The calibrated model with only two harmonics is used to predict the crest displacement
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Fig. 8.15: Updating procedure in static case, comparison between recorded and calculated
displacements.

Table 8.5: Updating procedure in static case, posterior statistics 2 harmonics.

θgPCE,KC
θgPCE,GC

θgPCE,KG
θgPCE,GG

θ1 θFA,a1
[MPa] [MPa] [MPa] [MPa]

Mean 7960 6788 17206 7987 -0.117 0.837

s.d. 20.14 469.23 33.89 5057 0.006 0.045

θFA,b1 θFA,a2 θFA,b2 θK σ

Mean 0.417 -0.102 -0.117 3.368 ∗ 10−10 0.039

s.d. 0.041 0.045 0.038 1.342 ∗ 10−12 0.002

in the period from 2008 to 2011. Such predictions are compared with the displacements

recorded by the monitoring system. Results are illustrated in �gure 8.17, they show a

good agreement between recorded and calculated displacements. Recorded displacement

curve almost totally falls in the interval between the prediction plus and minus standard

deviation of the probabilistic model.

The calibrated probabilistic model for the dam displacement could be used for a real time

structural control, thanks to its calculation speed. The proposed model allows evaluat-
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(a) Thermal displacements calculated with
2 harmonics.

(b) Thermal displacements calculated with
4 harmonics.

Fig. 8.16: Updating procedure in static case, e�ects of the updating procedure in terms of
residual.

Table 8.6: Updating procedure in static case, posterior statistics 3 harmonics.

θgPCE,KC
θgPCE,GC

θgPCE,KG
θgPCE,GG

θ1 θFA,a1 θFA,b1
[MPa] [MPa] [MPa] [MPa]

Mean 8437 6275 15302 7722 -0.121 0.841 0.443

s.d. 17.28 629.13 61.64 10687 0.003 0.052 0.046

θFA,a2 θFA,b2 θFA,a3 θFA,b3 θK σ

Mean -0.112 -0.104 0.055 -0.037 2.974 ∗ 10−10 0.039

s.d. 0.047 0.039 0.050 0.0391 9.875 ∗ 10−13 0.002

Table 8.7: Updating procedure in static case, posterior statistics 4 harmonics.

θgPCE,KC
θgPCE,GC

θgPCE,KG
θgPCE,GG

θ1 θFA,a1 θFA,b1 θFA,a2
[MPa] [MPa] [MPa] [MPa]

Mean 10067 7425 21008 9808 -0.110 0.831 0.436 -0.108

s.d. 30.44 1154 41.18 8247 0.004 0.038 0.045 0.039

θFA,b2 θFA,a3 θFA,b3 θFA,a4 θFA,b4 θK σ

Mean -0.104 0.054 -0.039 -0.018 0.017 3.422 ∗ 10−10 0.040

s.d. 0.042 0.040 0.043 0.039 0.034 1.233 ∗ 10−12 0.002
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ing the global error standard deviation, which can be used as starting point to de�ne a

threshold beyond which the dam behaviour is considered anomalous. In the next section,

the behaviour of the damaged dam is simulated in order to show how use the calibrated

predictive model for structural control purpose.

Fig. 8.17: Updating procedure in static case, comparison between recorded and calculated
displacements of P04.

Finally, the homoscedasticity assumption has been veri�ed by comparing the residuals ob-

tained with or without the use of the logarithmic transformation function. Figure 8.18

shows that only with the use of the logarithmic transformation function the residuals have

a constant error. In the case without logarithmic transformation function the residuals

show an error which increases moving away from zero.

8.2.11 The use of the displacements probabilistic model for structural

control purpose

The last part of the present study has the aim to show how to use the calibrated predic-

tive model (Chapter 5) for structural control purpose. The high-�delity model described

in section 8.2.2 is used to simulate the structural response of the damaged dam after a
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(a) Residuals calculated with the use of the
transformation function.

(b) Residuals calculated withouth the use of
the transformation function.

Fig. 8.18: Homoscedasticity assumption veri�cation for the Gramolazzo dam.

seismic event. In particular, after the seismic analysis a basin level variation history and

thermal loads, both for water and air, are used to simulate static displacements of the

damaged dam during its regular use. Finally, the resulting displacements are compared

with those predicted by the calibrated probabilistic model by assuming the same basin

level variation and thermal loads. An excessive di�erence between them is associate to a

damage even though the problem related to the threshold de�nition remains. In order to

build a predictive model of the high-�delity response the procedure proposed in Chapter

5 is repeated to calibrate the parameters of the probabilistic model. Finally, two damage

scenarios are assumed in order to validate the application of the predictive model for dif-

ferent conditions.

Firstly the high-�delity model is used to simulate the structural behaviour of the undam-

aged dam for two years, by assuming a basin level variation history sampled from a uniform

distribution, bounded in the interval 20 - 30 m, and considering temperatures of water and

air as in �gure 8.4 during the period 2004-2006. A transient thermal analysis is performed

and the resulting strain �eld variation applied in the mechanical model with the basin level

variation during a structural transient analysis. In this way the dam behaviour is simulated

by considering both thermal and mechanical actions. The model parameters used in this

work are indicated in table 8.8.
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Table 8.8: Reference parameters of the high-�delity model of Gramolazzo dam.

KC GC KG GG ρC ρG

[MPa] [MPa] [MPa] [MPa] [kg/m3] [kg/m3]

7960 6788 17206 7987 2444 1800

αC αG λC λG cC cG

[C°

−1] [C°

−1] [W/(mC°)] [W/(mC°)] [J/(kgC°)] [J/(kgC°)]

1 10−5 1 10−5 2.3 0.04 880 840

The procedure presented in Chapter 5 is repeated in order to calibrate the parameters of

the static twin model with respect to the outputs of the undamaged one. Only the predic-

tive model with only two harmonics is used. Since the prior distributions of all parameters

collected in ΘΘΘ are the same as in the previous case (section 8.2.6), the gPCE built in the

case of real measurements is still valid.

The results of the updating procedure in terms of comparison between prior and posterior

distributions are shown in �gure 8.19. It highlights that the bulk modulus of both mate-

rials are more sensitive to the information embedded in the observations than the other

parameters, as in the previous case.

Figure 8.20 shows the comparison between displacements simulated through the high-

�delity model and those obtained with the predictive model. The comparison shows a

good agreement between them. By comparing the results shown in �gure 8.20 with those

of �gure 8.17 it is easy to see that the use of simulated measurements leads to a better

agreement between reference records and predictions than in the case of real observations.

This fact is due to the absence of the measure error in the case of the simulated measure-

ments.

Once the predictive model is calibrated it is used to control the structural behaviour. The

Fivizzano seismic event ((LU) 12/07/2013) is used as reference ground motion in this ap-

plication. This earthquake, characterised by a magnitude of 3.3, is one of the strongest

seismic events occurred in this area and the epicentre was only 12 km far from the Gramo-

lazzo dam. The registration recorded in the municipality of Minucciano (LU), only 2.78

km far from the dam, is used (Luzi et al. 2016). The registration is scaled in order to

achieve two levels of damage scenarios. The reference input, i.e. the registration, is re-

ported in �gure 8.21, and it is characterised by a horizontal Sa (T1) equal to 0.04 g. The

energy contained in this seismic event is not su�cient to damage the structure, which in

fact did not show damage after the real seismic event, so it is scaled until the damage

occurs. As introduced before, two damage scenarios are considered in order to evaluate
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Fig. 8.19: Updating procedure in static case, comparison between prior and posterior distri-
butions of K and G in the case of simulated observations.

the e�ectiveness of the calibrated predictive model of dam displacements for structural

control purpose. In particular, they are based on the crack propagation achieved at the

end of the seismic event. In this context, a crack path is assumed to be signi�cant if the

tensile damage variable dt of the constitutive law is equal or greater than 0.3, i.e. the

damage leads to a reduction of the material elastic modulus equal or greater than 30%. A
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Fig. 8.20: Updating procedure in static case, comparison between displacements calculated
with high-�delity and predictive models.

localised soft damage is assumed to be achieved when the most damaged section shows no

thorough crack paths, and they do not reach the tunnel inside the dam body. A strong

damage is assumed to be reached when the most damaged section shows thorough crack

paths. Therefore, Sa (T1) is scaled in order to obtain the previous damage scenario. The

scaled input is deconvolved, according to Sooch and Bagchi (2014), and introduced in the

model as displacements boundary condition.

The soft damage condition is reached by scaling the seismic input until a value of Sa (T1) =

0.1 g. The most damaged section is near to the right abutment, this area is particularly

stressed because of the di�erent the heights of the monoliths, as shown in �gure 8.22.

Figure 8.23 shows the comparison between the predictive model plus and minus the global

error standard deviation and the results of the high-�delity model simulation in the case

of soft damage. The results shows that in this case the damage detection is particularly

di�cult, because the static behaviour is not changes so strongly. Indeed, the history of

displacements of the damaged dam remains within the con�dence interval of the predictive

model.

The strong damage is reached by multiplying the reference seismic action until Sa (T1)

is equal to 0.21 g. Through the analysis of the crack propagation, �gure 8.24, it is pos-
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(a) North-South direction record.

(b) East-West direction record.

(c) Vertical direction record.

Fig. 8.21: Seismic event of Fivizzano recorded in Minucciano on the 12/07/2013.
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Fig. 8.22: Gramolazzo dam: Damage Level 1.

sible to observe that the most damaged section is close to the right abutment, as in the

previous case. The comparison between damaged and undamaged behaviour in terms of

displacements is shown in �gure 8.25. Clearly this time some di�erences can be found in

the comparison, even tough these two behaviours are very similar. This time the displace-

ments of the damaged dam exceed the con�dence interval, then an abnormal phenomenon

can be determined.

The application of the proposed static SHM system to the case of the Gramolazzo dam

shows that the displacements of the control point, placed in the central monolith, are little

a�ected by the crack propagation in a section close to the abutments. This phenomenon

can be considered as the failure of a lateral vertical joint.

In this case a devices network which record the structural displacements in several di�erent

points could lead to a better detection of a possible damage. However, displacements are

generally little a�ected by crack propagation because it leads to a reduction of the global

sti�ness which is evident only when damage is widespread.

From the general point of view a good SHM system should detect also soft localised dam-
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Fig. 8.23: Comparison between soft damaged high-�delity model displacements and predic-
tive model of the Gramolazzo dam.
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Fig. 8.24: Gramolazzo dam: strong damage.
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Fig. 8.25: Comparison between strong damaged high-�delity model displacements and pre-
dictive model of the Scandarello dam.

ages. Therefore, dynamic measurements recorded in di�erent points of the dam body can

be more e�cient for damage detection purpose, as shown in the next application.

Finally, in this example the threshold is assumed to be equal to the standard deviation of

the predictive model. In general this value could be inappropriate, a study of the relation-

ship between displacement variation and damage should be done in order to set a right

threshold.

8.3 Dynamic SHM for concrete gravity dams: the case of

Scandarello dam

8.3.1 Introduction

In this section the numerical results related to the study of the Scandarello dam are shown.

The dynamic SHM presented in Chapters 6 and 7 is applied, by using the results of mate-

rial tests and the results of the OMA as source of information.

In particular experimental frequencies and mode shapes are used, the numerical model is

analysed by using a modal analysis, as previously discussed in Chapter 6. Therefore, the

elastic parameters of both dam concrete and foundation soil, namely the bulk modulus K

and the shear one G, are the subjects of the updating procedure.
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The �rst step of the SHM is the de�nition of the proxy model which reproduce the modal

behaviour of the undamaged dam. As introduced in Chapter 6.3, the proxy model is built

through the gPCE.

Furthermore, the model parameters are updated by using either the predictive model of the

frequencies or that one of the mode shapes, in order to compare them (Training Phase).

The e�ect of the updating procedure on the fragility curves calculation is assessed as Prog-

nosis step. In particular, the fragility curve calculated with the prior distributions of the

model parameters is compared with the one calculated by using the posterior distributions.

8.3.2 Dam description

The Scandarello dam is a concrete arch-gravity dam located in the center of Italy. This

particular construction has a total length of 199.20 m and a maximum high of 55.5 m. The

structure is characterised by a curvature radius in plant of 150.0 m, while the slope of the

upstream face is 4% and that one of the downstream face is 70%. Since the dam has no

key joints, the use of a 3D model is the best choice.

Several information about the dam are available due to the numerous experimental cam-

paigns. Particularly important is the geological composition of the foundation soil, which is

composed by two di�erent kinds of rocks: an arenaceous mass and a marl mass. These two

soil typologies have completely di�erent mechanical characteristics, then they are modelled

by using di�erent elastic parameters.

8.3.3 Material tests results

Several di�erent experimental campaigns have been conducted on the Scandarello dam

with the aim of material characterisations. In particular, the results of the experimental

campaigns performed in the 2012 are considered in this work. Both dam concrete and

foundation soil have been investigated, through laboratory tests as compression ones, and

in-situ tests as tomography. Regarding the foundation soil two di�erent rock typologies

have been found, an arenaceous mass and a marl mass. Figure 8.26 shows the arenaceous

mass (orange) and the marl one (green). Therefore in this application, the parameters of

the arenaceous mass have the subscript A, those of the marl mass have the subscript M

and those of the concrete have the subscript C.

Finally, the results of the material tests related to the elastic properties are synthesised in

table 8.9.

The results of the strength tests of the concrete are indicated in table 8.10.
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Fig. 8.26: Geological characterisation of the Scandarello dam.

Table 8.9: Scandarello dam: results of the material characterisation campaign.

EC νC ρC EA νA ρA EM νM ρM

[MPa] [kg/m3] [MPa] [kg/m3] [MPa] [kg/m3]

Mean 34620 0.16 2270 21000 0.16 1800 7000 0.22 1800

s.d. 12498 0.06 189.17 9545 0.07 - 3181.8 0.1 -

Table 8.10: Scandarello dam: results of the concrete strength tests.

ft,C fc,C

[MPa] [MPa]

Mean 2 16.7

s.d. 1.1 5.16

8.3.4 Ambient vibration records and OMA results

In the 2016 an experimental campaign was performed by the Italian Civil Protection with

the aim to record ambient vibrations in order to determine the modal characteristics of

the system. In particular, 15 LE-3Dlite velocimeters, placed in the upper part of the

structure, were used as shown in �gure 8.27. Every registrations was characterised by a

sampling frequency fs equal to 200 Hz and a duration of 2 hours. The basin level vari-

ation was equal to 856.2 meters above the sea level, i.e. 40.8 m from the bottom of the

dam. The ambient vibration were elaborated by the Italian Civil Protection by using the
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Frequency Domain Decomposition (FDD) technique (Brincker and Ventura 2015). The

ambient records and their OMA elaboration can be found in the experimental campaign

report (MISURE E ANALISI DELLE VIBRAZIONI DIGA DI SCANDARELLO) avail-

able on-line (ISS: Indagini conoscitive e monitoraggi nell'ambito dell'Osservatorio Sismico

delle Strutture).

Fig. 8.27: Ambient vibration test layout of the Scandarello dam.

The �rst three experimental modes were identi�ed, they were characterised by the frequen-

cies reported in table 8.11. Whereas, the relative mode shapes are indicated in �gure 8.28.

Finally, �gure 8.29 shows the auto-MAC matrix of the three experimental modes.

Table 8.11: Scandarello dam: experimental frequencies.

Mode number Frequency [Hz]

1 5.737

2 6.87

3 8.896
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(a) 1st mode, f1 = 5.737Hz. (b) 2nd mode, f2 = 6.87Hz.

(c) 3rd mode, f3 = 8.896Hz.

Fig. 8.28: Scandarello dam: experimental mode shapes.

Fig. 8.29: Auto-MAC matrix of the Scandarello experimental modes.
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8.3.5 Description of the FE models

The dynamic SHM system proposed in Chapters 6 and 7 requires the de�nition of four FE

models. A �rst FE model is needed within the Training Phase in order to build the gPCE

of the predictive models of the modal characteristics of the undamaged dam. Therefore

this is an elastic model. The geometry of the structure and the shape of the ground are

built in a CAD program, based on the original drawings of the dam and the orographic

map of the region. The model, performed in ABAQUS 6.14 (ABAQUS 2014), accounts

for the FSI by considering the basin composed by �uid elements. Moreover, according to

the indication reported in Chapter 3.4, low re�ecting boundary conditions are imposed at

the end of the �uid domain. Whereas, the SSI is considered by using in�nite elements

(Chapter 3.3) as boundary condition for the soil domain. Figure 8.30 shows the FE model

of the Scandarello dam. In this case, a basin level equal to the one recorded during the ex-

perimental campaign, so 40.8m, is considered. This model is composed by 13280 quadratic

tetrahedral C3D10 elements for the mechanical components, i.e. dam and foundation soil,

6137 linear tetrahedral AC3D4 elements for the basin and 237 linear hexahedral CIN3D8

elements for the IEs used as boundary condition. Since the reference analysis is the modal

one, the materials are considered linear elastic.

A non-linear FE model is used to calculate the seismic fragility of the structure. As in-

troduced in Chapter 2.2, the structural behaviour during seismic events is predicted by

calculating the fragility curves. In this application fragility curves are calculated both

considering prior and posterior distributions in order to evaluate the e�ect of the proce-

dure in reducing epistemic uncertainties. The FE model performed to predict the seismic

behaviour of the dam through the fragility curves calculation has the same features of

the previous one, in terms of FSI and SSI assumptions. However, the basin level is �xed

at the maximum height, equal to 52.9 m. Therefore, it is composed by 13280 quadratic

tetrahedral C3D10 elements for the mechanical components, i.e. dam and foundation soil,

7671 linear tetrahedral AC3D4 elements for the basin and 237 linear hexahedral CIN3D8

elements for the IEs used as boundary condition. This model is used for dynamic analyses

with seismic input, so the minimum mesh size is set as one tenth of the smallest wave-

length, considering a signi�cant frequency range of the seismic input.

The dam behaviour is modelled by using the concrete damage plasticity, introduced in

Chapter 3.2.3, in order to simulate the cyclic behaviour of the material. By assuming that

the structural failure is only related to the dam body the foundation soil is modelled by

using a linear elastic material. The concrete damage plasticity model requires the de�ni-

tion of the strength parameters, those related to the damage behaviour and those related
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(a) Model mesh. (b) Global view of the model.

(c) Detail of the dam.

Fig. 8.30: FE model of the Scandarello dam.

to the yield surface. The results of the material tests allows determining the compressive

and tensile strengths of the dam concrete, as indicated in table 8.10.

Likewise the static case, the strength parameters are used to de�ne the post elastic be-

haviour both in tension and compression. The compressive post-elastic behaviour is as-

sumed composed of three parts, whose shapes are respectively de�ned by equations 8.1, 8.2

and 8.3. The shape of the compressive behaviour is the same of the previous application,

�gure 8.7, but the compressive strength in the fragility curves calculation is considered a

random variable, so there is not a single diagrams.

The tensile behaviour of the dam concrete follows an exponential law after the elastic

branch (Equation 8.4), as in the case of the Gramolazzo dam. The tensile strength and the

compressive one are treated as random variables, also in this case the plot of the tensile

behaviour of the material has no meaning because it varies, even tough it has the same

shape of �gure 8.9. Finally, in the parametrization of the material behaviour during the

fragility curves calculation the fracture energy is kept constant equal to 150 N/m, as dis-

cussed in detail in section 8.3.9.

The tensile damage law has the same shape of the previous application, and it is shown

in �gure 8.9. Since the tensile strength is considered a random variable with a constant
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fracture energy, the damage law must be de�ned for every analysis. Indeed, equation 3.15

shows the relationship between plastic strain, tensile stresses and cracking strain, and so

the need to de�ne the damage law for every value of tensile strength.

Finally, the parameters of the yield criteria, described in Chapter 3.2.3, are de�ned with

regard to the values which can be found in the literature, because no information about

them is available for the Gramolazzo dam. The parameters are reported in table 8.12.

Since dynamic analyses are performed Rayleigh's damping of the materials, both dam con-

crete and foundation soil, is de�ned in order to have a structural damping equal to 5% for

the �rst two frequencies of the system.

Table 8.12: Yield criteria parameters of the Scandarello dam concrete.

ψ [°] ε σb0/σc0 Kc

36.31 0.1 1.16 0.66

The third FE model is used to reproduce the modal behaviour of the dam when a damage

occurs (Updating Phase). The FE model used to train the gPCE is the same described

for the fragility curves calculation. Also in this case the tensile strength varies, while the

fracture energy remains constant. Since the described model is used to simulate the dam

modal behaviour after seismic events, the FE analysis is composed by di�erent steps. The

analysis steps are summarised below:

� gravity 1 : in the �rst step the gravity load is applied only to the soil.

� gravity 2 : in the second step the gravity load is applied to the dam body.

� hydrostatic force: in this step hydrostatic forces are introduced.

� seismic: in this step a transient analysis is performed. The seismic action is applied

at the boundary of the model as displacement �eld after a deconvolution procedure.

� modal analysis: in this step a modal analysis on the damaged con�guration is per-

formed.

The last FE model is a high-�delity one with re�ned mesh, which allows simulating the

damaged behaviour of the dam in order to test the Detection Phase and the possibility to

update the strength parameters of the materials. This last FE model is de�ned by re�ning

the mesh of the previous non-linear model, in order to obtain a more accurate result.

The re�ned FE model is composed by 15936 quadratic tetrahedral C3D10 elements for
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the mechanical components, i.e. dam and foundation soil, 6873 linear tetrahedral AC3D4

elements for the basin and 308 linear hexahedral CIN3D8 elements for the IEs used as

boundary condition. This model is a deterministic one and is used to obtain the simulated

reference measures of the damaged behaviour. A �xed value of the tensile strength equal

to 1.45 MPa is considered, while the parameters needed to de�ne the CDP are the same

of the previous FE model, summarised in table 8.12. In order to assess the validity of the

procedure with regard to the damage detection, three damage scenarios are considered.

In particular, by considering only crack paths with tensile damage variable dt higher than

0.3, DL1 is achieved when cracks appear in one of the critical areas (localised damage);

DL2 is achieved when crack paths grow toward the core of the dam or others critical areas

(di�use damage); DL3 widespread damage or crossing crack path.

8.3.6 Prior distributions of Training Phase

Starting from the results of the material tests, described in section 8.3.3, the prior distri-

butions of the hyper-parameters related to the mechanical characteristics of the material

in the hierarchical predictive model (Chapter 6.5) can be de�ned. Indeed, the procedure

introduced in Chapter 6 is de�ned with regard to a hierarchical predictive model, in order

to update also the prior knowledge about the standard deviations of the mechanical pa-

rameters.

According to the notation introduced in Chapter 6, the hyper-parameters related to the

mean values of the model random variables θθθel = θθθgPCE can be collected in the vector ξξξµel,

where:

� mean value of the concrete bulk modulus ξµgPCE,KC ;

� mean value of the concrete shear modulus ξµgPCE,GC ;

� mean value of the arenaceous mass bulk modulus ξµgPCE,KA ;

� mean value of the arenaceous mass shear modulus ξµgPCE,GA ;

� mean value of the marl mass bulk modulus ξµgPCE,KM ;

� mean value of the marl mass shear modulus ξµgPCE,GM .

Moreover, the hyper-parameters related to the standard deviations of the model random

variables θθθgPCE can be collected in the vector ξξξσel, where:

� standard deviation of the concrete bulk modulus ξσgPCE,KC ;
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� standard deviation of the concrete shear modulus ξσgPCE,GC ;

� standard deviation of the arenaceous mass bulk modulus ξσgPCE,KA ;

� standard deviation of the arenaceous mass shear modulus ξσgPCE,GA ;

� standard deviation of the marl mass bulk modulus ξσgPCE,KM ;

� standard deviation of the marl mass shear modulus ξσgPCE,GM .

Since the materials tests results are in terms of Young Modulus and Poisson's coe�cient,

the prior distributions of the hyper-parameters can be de�ned by using equations 8.5. In

the case of the standard deviation, since no information are available about their variance

a Coe�cient of Variation equal to 10% is considered. The �nal hyper-prior distributions

are reported in table 8.13.

Table 8.13: Scandarello dam: Prior distributions of the mechanical parameters.

ξµgPCE,KC
ξµgPCE,GC

ξµgPCE,KA
ξµgPCE,GA

ξµgPCE,KM
ξµgPCE,GM

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Distr. Log-Normal Log-Normal Log-Normal Log-Normal Log-Normal Log-Normal

Mean 16971 14922 10294 9051.7 4166.7 2868.9

s.d. 6109.6 5372.1 4411.8 3879.3 1785.7 1229.5

ξσgPCE,KC
ξσgPCE,GC

ξσgPCE,KA
ξσgPCE,GA

ξσgPCE,KM
ξσgPCE,GM

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Distr. Log-Normal Log-Normal Log-Normal Log-Normal Log-Normal Log-Normal

Mean 6109.6 5372.1 4411.8 3879.3 1785.7 1229.5

s.d. 611.0 537.2 441.2 387.9 178.6 123.0

The prior distributions of the parameters with no physical meaning, such as the components

of the covariance matrix ΣΣΣf , and the parameters of the covariance functions collected in

the vectors λλλU, wU
d , are de�ned as non-informative (Chapter 5.6).

8.3.7 Proxy model for modal characteristics of Training Phase

According to Chapter 6 the �rst step of the proposed procedure is the composition of the

meta model based on the gPCE approach. This methodology, within the numerical algo-

rithm MCMC, allows signi�cantly reducing the computational burden, because it replaces

the FEA outputs. Moreover, both frequencies and mode shapes must be approximated, so

two di�erent meta models are set up.

The procedure described in Chapter 4.4.3 is used to determine the gPCE coe�cients, of
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the basis functions assumed as hermitian. Whereas the analysis number and the poly-

nomial expansion degree are changed in order to determine the best agreement between

accuracy and computational burden. In particular, the �nal analysis number is 150 and

the polynomial expansion degree varies from 3 to 5. Figure 8.31 shows the relative er-

rors in terms of mean and variance for the frequencies approximation, while �gure 8.32

shows the maximum relative errors of the mode shapes meta models. The errors, in both

cases, are calculated for each numerical frequency. In particular, the number of numerical

frequencies considered in this work is equal to 17 in order to reduce the computational

burden. A sensitivity analysis, varying the model parameters, is performed in order to �nd

the number of numerical modes to consider, in this case a maximum number of 17 modes

in the frequency range from 4 to 20 Hz allows catching the dam behaviour.

(a) Error of the mean value. (b) Error of the standard deviation.

Fig. 8.31: Relative errors of the frequencies meta model of the Scandarello dam.

The analysis of the two �gures highlights the di�erent relationship between errors, modes

and polynomial degree, even tough the error values are very low. Figure 8.31 shows that the

mean value error is minimum with a polynomial degree equal to 3 or 5, while the variance

approximation is better with a polynomial expansion equal to 4. Therefore, a polynomial

expansion equal to 4 is chosen for the frequency proxy model, in order to reduce as much

as possible the variance error. The same strategy is used for the mode shapes proxy model,

thus analysing �gure 8.32 is evident that the best choice is the polynomial expansion equal

to 5 since it reduce the variance.

Finally, the Sobol's coe�cients (Chapter 4.4.4) are calculated in order to understand the

in�uence of each parameter on the model output, as shown in �gure 8.33. Each parameter

variation has a strong in�uence on the model output, so no one of them can be neglected
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(a) Error of the mean value. (b) Error of the standard deviation.

Fig. 8.32: Relative errors of the mode shape meta model of the Scandarello dam.

in the updating analysis.

Fig. 8.33: Scandarello dam: Sobol's coe�cients.

8.3.8 Bayesian updating and posterior statistics

Once a reliable proxy model is built, it can be used within the proposed procedure to re-

duce the computational burden. The experimental modal characteristics, i.e. frequencies

and mode shapes, are used to updated the parameters of the predictive models, namely

ξξξθel, so θθθgPCE, λλλ
U, wU

d and ΣΣΣf . The model parameters updating was done separately by
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using frequencies and mode shapes for comparison reasons.

Regarding the frequency case, the posterior distributions are reported in table 8.14. Whereas

�gure 8.37 shows the comparison between prior and posterior distributions. The concrete

elastic parameters are more in�uenced by the procedure than those of the soil. Indeed, the

posterior distributions ofKC and GC show a shift of the mean values and a reduction of the

variances. Whereas, the mean values of the soil elastic parameters posterior distributions

are very close to the prior ones. Regarding the variances of the soil parameters, they show

a reduction if compared to the prior ones, but less than those of the concrete. The mean

values of the error terms are very close to each other but they increase toward high frequen-

cies. Table 8.16 shows a good agreement between experimental and numerical frequencies,

while �gure 8.34 shows the MAC matrix calculated by using the three experimental modes

and the 17 numerical ones. In this frequency range only three numerical modes shows a

high MAC coe�cient (higher than 0.85) and so they can be recognised as correlated to

the experimental ones. This shows the importance of the use of the reordering criterion

within the procedure, as the proposed one. In particular, it allows ensuring the coherence

between experimental and numerical modes, discarding the modes without experimental

coherence. The three selected numerical mode shapes are shown in �gure 8.35. The con-

vergence is checked by performing three chains starting from di�erent points composed by

100000 steps (1000 burn-in). Therefore, according to Chapter 4.3.6, the convergence of the

numerical algorithm is veri�ed by calculating R̂p which is equal to 1.3 in this case.

Table 8.14: Scandarello dam: Posterior distributions of the mechanical parameters calculated
by means of experimental frequencies.

ξµgPCE,KC
ξµgPCE,GC

ξµgPCE,KA
ξµgPCE,GA

ξµgPCE,KM
ξµgPCE,GM

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Mean 10965 5265.5 9438.3 7212.7 4802.1 2631.7

s.d. 471.49 136.91 462.48 230.80 292.92 94.53

ξσgPCE,KC
ξσgPCE,GC

ξσgPCE,KA
ξσgPCE,GA

ξσgPCE,KM
ξσgPCE,GM

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Mean 1823.2 502.21 3870.4 939.19 1473.2 511.3

s.d. 145.86 25.11 313.50 54.47 114.91 34.76

σf1 σf2 σf3
Mean 0.0042 0.0053 0.0089

s.d. 0.0021 0.0034 0.0051

In the updating procedure of the mode shape predictive model, the prior distributions are

the same as the ones of the frequency case (Chapter 8.3.6). In Chapter 6.4 the use of
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Fig. 8.34: MAC matrix between experimental frequencies and numerical ones calculated by
using the frequency predictive model.

the covariance function is introduced. More speci�cally, an exponential function is used

(equation 6.8) to approximate the covariance matrix terms. Since this assumption is par-

ticularly important for the predictive model, it must be veri�ed. The analyses used to

train the gPCE are also used to calculate the semivariogram and the estimation of the

correlation between two points (Kottegoda and Rosso 2008). Figure 8.36a shows the plot

of the correlation coe�cients versus the Euclidean distance of the �rst three modes. An

exponential function is �tted through these points, showing the goodness of the expo-

nential covariance function. The modi�ed MCMC (Chapter 2) is used to determined the

marginal posterior distributions. In this case, as in the frequencies one, the selection of

the mode shapes through a reordering criterion is a fundamental aspect both to ensure the

coherence between experimental and numerical modes, and to discard the modes related

to the soil. The results of the procedure are reported in table 8.15, while �gure 8.37 shows

the comparison between prior and posterior distributions. The results show how the pro-

cedure is more in�uential to infer the concrete parameters than those of the soil. A strong

shift of the mean values of the concrete parameters can be observed with a reduction of

the variances. Whereas the mean values of the soil elastic parameters remain close the

prior ones. The variances of these last parameters are reduced with respect to the prior

ones, but not as in the case of the concrete parameters, while the posterior parameters of

the covariance functions shows higher values toward the highest frequencies. Furthermore,
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(a) 1st mode, f1 = 5.737Hz. (b) 2nd mode, f2 = 6.87Hz.

(c) 3rd mode, f3 = 8.896Hz.

Fig. 8.35: Scandarello dam: experimental mode shapes.

�gure 8.38 reports the comparison between experimental and numerical characteristics in

terms of MAC matrix, it highlights the need of a coherence criterion within the numeri-

cal algorithm which discards the modes related to the soil, selecting only right candidates

with respect to the experimental ones. Finally, table 8.16 shows a good agreement between

experimental and calculated frequencies.

By comparing the results related to the two approaches (�gure 8.37 and table 8.16)

di�erent comments can be derived.

First, both procedures lead to a stronger inference of the concrete parameters than those of

the soil. The reasons of this fact can be found by reasoning about the nature of the infor-

mation. Indeed, the experimental modes are calculated by using the registrations acquired

on the dam body, so the e�ect of the soil is only a sti�ening of the boundary conditions.

Although dams strongly interact with the soil, di�erently from other kind of structures,

and so the experimental frequencies are those of a complex system, if the ambient vibra-

tions are measured on the dam body the modes of the dam are more evident than those

of the soil.

The two procedures lead to very similar posterior distributions and posterior modal char-
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(a) Numerical mode 1.

(b) Numerical mode 2.

(c) Numerical mode 3.

Fig. 8.36: Scandarello dam: Correlation coe�cients vs Euclidean distance of the �rst three
modes.
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Fig. 8.37: Updating procedure with dynamic measurements, comparison between prior and
posterior distributions of K and G.
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Table 8.15: Scandarello dam: Posterior distributions of the mechanical parameters, calcu-
lated with the experimental mode shapes.

ξµgPCE,KC
ξµgPCE,GC

ξµgPCE,KA
ξµgPCE,GA

ξµgPCE,KM
ξµgPCE,GM

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Mean 11184.2 5186.5 9156.3 7789.7 4958.1 2724.6

s.d. 559.22 378.61 631.78 545.28 242.94 168.93

ξσgPCE,KC
ξσgPCE,GC

ξσgPCE,KA
ξσgPCE,GA

ξσgPCE,KM
ξσgPCE,GM

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Mean 1749.1 598.31 2732.74 982.26 1422.50 598.3

s.d. 155.66 45.77 240.42 68.03 137.29 45.01

λ1,U λ2,U λ3,U w1,U
d w2,U

d w3,U
d

Mean 25.16 39.09 34.28 0.0074 0.0261 0.0053

s.d. 5.24 6.25 2.92 0.0096 0.1615 0.0132

Table 8.16: Scandarello dam: Comparison between experimental and numerical frequencies.

Experimental frequencies Numerical frequencies Numerical Frequencies

frequencies predictive model mode shapes predictive model

f1 [Hz] 5.737 5.693 5.592

f2 [Hz] 6.870 6.722 6.691

f3 [Hz] 8.896 9.029 9.183

acteristics. This is a proof of the goodness of the procedures.

The calibrated FE model is used in the next section to assess the structural fragility, show-

ing how the proposed procedures can be used to improve the prediction of the structural

behaviour during seismic events.

8.3.9 The use of the dynamic twin model for the fragility curves calcu-

lation

The procedure introduced in Chapter 6 allows updating the parameters of a dynamic twin

model of the dam, thus reducing the epistemic uncertainties related to the elasticity of

the materials. Therefore, the calibrated twin model can be used for di�erent purposes,

e.g. to detect damage (Chapter 7) or to predict the seismic behaviour of the dam. In this

latter case the seismic behaviour can be assessed through the fragility curves calculation,

as explained in Chapter 2.2.

More speci�cally, the ASOSM procedure proposed by Liel et al. (2009) and explained in

detail in Chapter 2.2.2 is used to calculate the fragility curves reducing the computational
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Fig. 8.38: MAC matrix between experimental frequencies and numerical ones calculated
using the mode shape predictive model.

burden. The Multi-Record Incremental Dynamic Analysis (MR-IDA) is used to calculate

the structural failure for each sample of aleatory and epistemic uncertainty.

The record-to-record variation is the only aleatory uncertainty, the MR-IDA analysis al-

lows considering it but a set of earthquakes must be selected. In this application 15 events

are chosen and reported in table 8.17. They are selected with regard to their magnitude,

which is higher than 6 and their epicentral distance which less than 50 km. Moreover, they

are recorded on site class A (rock soil) as that of the dam.

In MR-IDA every seismic event must be scaled until the structure reaches the collapse,

i.e. a �xed LS. This process can be particularly expensive from the computational point

of view, because the selected seismic event could have characteristics which does not af-

fect the integrity of the dam. The hunt & �ll algorithm (Vamvatsikos and Allin Cornell

2002) is used in this work. This procedure ensures that the record scaling levels are ap-

propriately selected in order to minimize the number of required runs. More speci�cally,

once the maximum analysis number and the desired accuracy for demand and capacity is

selected, the algorithm starts increasing rapidly the IM until numerical non-convergence is

encountered, indicating global dynamic instability. Furthermore, additional analyses are

run at intermediate IM levels to su�ciently bracket the global collapse and increase the

accuracy at lower IMs. This algorithm is implemented in MATLAB® R2017A (Mathworks

2016). Finally, every scaled seismic input composed of three components is applied at the
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Table 8.17: Scandarello dam: Selected Ground Motion Records.

# Event Year Station ID Mw Epicentral Distance EC8

[km] site class

1 Campano Lucano 1980 ST96 6.9 32 A

2 Friuli 1976 ST20 6.5 23 A

3 Campano Lucano 1980 ST98 6.9 25 A

4 Bingol 2003 ST539 6.3 14 A

5 South Iceland (aftershock) 2000 ST2558 6.4 5 A

6 Duzce 1 1999 ST1252 7.2 34 A

7 Tabas 1978 ST54 7.3 12 A

8 Umbria Marche 1997 ST238 6 21 A

9 Montenegro 1979 ST64 6.9 21 A

10 Basso Tirreno 1978 ST49 6 34 A

11 Golbasi 1986 ST161 6 29 A

12 Duzce 1 1999 ST3136 7.2 23 A

13 South Iceland 2000 ST2556 6.5 35 A

14 Izmit 1999 ST575 7.6 9 A

15 Friuli (aftershock) 1976 ST36 6 28 A

bottom of the soil domain once properly deconvolved (Sooch and Bagchi 2014). The use

of MR-IDA as reference analysis requires the de�nition of a IM. As deeply discussed in

Chapter 2.2.2, several works are available in the literature which analyse the in�uence if

the IM choice in the fragility curves calculation. The largest part of them uses Sa (T1)

the spectral acceleration of the seismic input for a period equal to the fundamental one

of the structure and considering a structural damping of 5%. Therefore, according to the

indications available in literature Sa (T1) is considered as IM in this work.

For the sake of simplicity only one limit state is considered, following Tekie and Elling-

wood (2003), the limit state function is de�ned in terms of defection of the top of the dam

relatively to the heel considering a limit value equal to 0.03% of the dam height, which

corresponds to 16.65 mm (equation 8.6). This LS can be related to large deformations of

the dam during seismic shaking, which might impair the internal drainage or function of

appurtenant structures.

∆δtop−heel ≥ 16.65mm (8.6)

In this application the epistemic uncertainties are those related to the elastic parameters

of the materials, namely K and G, and the values of the concrete strength parameters.

The elastic parameters of the materials are the objectives of the updating procedures, both
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their prior distributions and the posterior ones are used to calculate the fragility curves

in order to assess the e�ects of the proposed procedure. The distributions of the concrete

strength parameters can be de�ned starting from the results of the material tests, shown

in table 8.10. Both the compressive and tensile strengths are considered log-normally

distributed. The post-elastic tensile constitutive behaviour and the tensile damage law

are calculated every time that a new value of the tensile strength ft,C is sampled. The

post-elastic tensile branch can be approximated by assuming a functional expression, e.g.

exponential in this case, whose parameters are determined in order to kept constant the

fracture energy. Therefore, the tensile damage law must be de�ned by using equation 3.15.

A matlab procedure is implemented to automatize this task.

The correlation between epistemic uncertainties could lead to a variation of the results

in terms of fragility curves. The ASOSM procedure, introduced in Chapter 2.2, allows

easily considering correlations between random variables. Therefore, the fragility curves

are calculated assuming the RVs in a case uncorrelated, and in the other case correlated,

considering a correlation matrix based on expert judgement, as shown in table 8.18.

Table 8.18: Scandarello dam: Correlation Matrix of the concrete constitutive model param-
eters.

KC GC fc,C ft,C

KC 1

GC 0 1

fc,C 0.83 0.83 1

ft,C 0.83 0.83 0.9 1

The �rst step of the ASOSM method is the calculation of the fragility curve only related

to the record-to-record variation. Whereas, the e�ects of the epistemic uncertainties can

be considered in a simpli�ed way, evaluating the gradients of the results corresponding a

particular RV (Chapter 2.2). Figure 8.39 shows the mean MR-IDA curve, and its con�dence

interval, calculated considering only the aleatory uncertainty. The curve interval shown

in �gure 8.39 that is small around ∆δtop−heel = 16.65 mm, expresses the in�uence of the

record-to-record uncertainty on the determination of the LS.
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Fig. 8.39: MR-IDA curve calculated considering only the Record-to-Record uncertainty.

The fragility curves related to the prior distributions of the mechanical parameters are

calculated, and shown in �gure 8.40. The �gure highlights the e�ects of the epistemic

uncertainty, which leads to an increase of the variance. By comparing the curve calculated

considering the epistemic uncertainties uncorrelated and the one considering them corre-

lated, it is evident that the latter is characterised by the highest value of variance. The

mean value of the fragility curve decreases considering also the epistemic uncertainties,

regardless their correlation.

Fig. 8.40: Scandarello dam: fragility curve calculated using the prior distributions of the
mechanical parameters.

The procedure is performed again by considering the posterior distributions of the mechan-
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ical parameters, for comparison purposes. Figure 8.41 shows the fragility curves related to

the posterior distributions, as in the previous case the e�ect of the epistemic uncertainties

can be seen in terms of mean values shift toward lower values and an increment of the

variance. Anyway, the e�ects of the epistemic uncertainties are signi�cantly reduced with

respect to the case of the prior distributions.

Fig. 8.41: Scandarello dam: fragility curve calculated using the posterior distributions of the
mechanical parameters.

Finally, the comparison of prior and posterior fragility curves in the case of uncorrelated

epistemic uncertainties (�gure 8.42) and in that one considering them correlated (�gure

8.43) shows a signi�cant change in the resulting fragility curves. In both cases the values

of the standard deviations signi�cantly decrease while the mean values are very close. The

parameters of the fragility curves, calculated by using the Method of Moments (MOM)

explained in Chapter 2.2.3, are reported in table 8.19.

Table 8.19: Scandarello dam: Fragility curves parameters.

Mean value Standard deviation

Aleatory 0.661 0.0097

Prior Aleatory + Uncorrelated Epistemic 0.652 0.0213

Aleatory + Correlated Epistemic 0.652 0.0257

Aleatory 0.6605 0.0099

Posterior Aleatory + Uncorrelated Epistemic 0.657 0.0114

Aleatory + Correlated Epistemic 0.657 0.0133
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Fig. 8.42: Scandarello dam: comparison between fragility curve calculated using prior and
posterior distributions of the uncorrelated mechanical parameters.

Fig. 8.43: Scandarello dam: comparison between fragility curve calculated using prior and
posterior distributions of the correlated mechanical parameters.

Finally, �gure 8.44 A shows the initial crack path, which corresponds to the �rst damage

state of the Scandarello dam. This �gure shows the importance of the 3D model, because

the crack path in the downstream surface starts from the left abutment. Figures 8.44 B

and 8.44 C show the �nal damage state of the structure, which is related to the overcoming
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of the selected LS. Anyway, the analysis of the �nal damage state is interesting because

it shows that the crack path starts from the left abutment and it propagates toward the

right one and the crest of the dam. The application of the procedure proposed in Chapter

Fig. 8.44: Damage development in the Scandarello dam: a) �rst damage, b) �nal damage,
c) �nal damage cross section.

6 shows the possibility to reduce the epistemic uncertainties by using ambient vibrations.

The elaboration of the fragility curves highlights the need to account both for aleatory and

epistemic uncertainties, as also reported in literature (Chapter 2.2.3).

Finally, the analysis of the collapse mechanism of the dam shows how only an accurate

model can be able to catch this particular failure mode. In particular, the crack path starts

from the left abutment in the downstream face of the dam, so only a 3D model is able to

detect this particular behaviour. Obviously, this result is not generalizable because only

the Scandarello dam has been analysed so deeply. This fact and the reasons reported in

Chapter 3 show that signi�cant di�erences arise when a 3D high-�delity model is used to

assess the structural behaviour instead a 2D one, also in terms of localization of the failure.
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8.3.10 Detection Phase

Once the predictive model of the undamaged dam modal characteristics has been trained, it

can be used for structural control purpose by comparing the prediction of the undamaged

mode shapes with the experimental ones determined by the elaboration of the ambient

vibrations. The damaged behaviour of the dam must be simulated through a high-�delity

model, as previously described.

Three Damage Levels (DLs) are de�ned with regard to the critical areas de�ned in Figure

2.21. In particular, by considering only crack paths with tensile damage variable dt higher

than 0.3, DL1 is achieved when cracks appear in one of the critical areas (localised damage);

DL2 is achieved when crack paths grow toward the core of the dam or others critical areas

(di�use damage); DL3 widespread damage or crossing crack path. As in the static case

the spectral acceleration at the �rst period of the structure Sa (T1) is used as IM of the

seismic input. The Accumoli seismic event of the 24/08/2016 is selected (Figure 8.45)

as reference action, because the epicentre was 6 km far from the dam and the seismic

station of Amatrice, which recorded the event, is just 6 km faraway. The magnitude of

the event is equal to 6, the maximum horizontal PGA of the selected registrations is equal

to 850.804 cm/s2, while the vertical one is equal to 43.459 cm/s2 (Luzi et al. 2016) and

the horizontal spectral acceleration is 1.5622 g. The Accumoli seismic event is scaled with

respect to Sa (T1) until the damage scenario is achieved. Before the application of the

scaled seismic event as boundary conditions at the soil bottom, it is properly deconvolved

(Sooch and Bagchi 2014). DL1 is achieved for Sa (T1) = 0.2107g, DL2 is achieved for

Sa (T1) = 0.4328g and DL3 is achieved for Sa (T1) = 0.472g. These damage scenarios can

be achieved only by reducing the initial seismic input. This means that the dam did not

experience the recorded entity of the seismic action, which was recorded less than 3 km far

from the epicentre. Moreover, the tensile strength is assumed equal to 1.45MPa, which is a

small value if compared to the results of the material test. The damage levels are reported

in �gure 8.46. Following the proposed procedure, damage is detected by comparing the

mode shapes of the undamaged system, calculated through the calibrated predictive model,

with those recorded after the seismic event. Two di�erent layouts of the SHM system are

considered, in the �rst case, as shown in Figure 8.47. The �rst layout is composed by 15

devices placed along the dam crest, as during the experimental campaign. In the second

layout the same 15 devices are placed in a di�erent way, as shown in �gure 8.48. More

speci�cally, 7 devices are placed along the dam crest, 4 devices are installed 10 m under

the crest and the last 4 devices 20 m under the crest level.

In both cases the �rst three modes determined with the calibrated predictive model are
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(a) North-South direction record.

(b) East-West direction record.

(c) Vertical direction record.

Fig. 8.45: Seismic event of Accumoli recorded in Amatrice on the 24/08/2016.
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(Avg: 75%)
DAMAGET

+0.000e+00
+2.500e�02
+5.000e�02
+7.500e�02
+1.000e�01
+1.250e�01
+1.500e�01
+1.750e�01
+2.000e�01
+2.250e�01
+2.500e�01
+2.750e�01
+3.000e�01
+1.911e+00

X

Y
Z

(a) Damage Level 1.

(b) Damage Level 2. (c) Damage Level 3.

Fig. 8.46: Scandarello dam: Damage Levels, Detection Phase.

compared with the corresponding ones related to the damaged dam. The predictions and

the values of the DL1 are always very close, even though this last is out from the stripe

de�ned by the prediction plus and minus the standard deviation of the error. This is due

to the little extension of the crack path in the �rst scenario, as shown in �gure 8.46. In the

other two cases the predictions and mode shapes of the damaged system are well separated

and distinguishable.

Although the �nal results are qualitatively very close, the second layout in which the

devices are not aligned allows drawing the three-dimensional behaviour of the dam. This

leads to a wider control.

8.3.11 Prior distributions and seismic action parametrization in the Up-

dating Phase

The last phase of the procedure aims to use the information gathered during a seismic

event to update the state of knowledge about the strength parameters of the materials.

Also in this case the computational burden related to the Bayesian inference is reduced

by the use of gPCE based meta model. However, di�erently from the previous step, in

this one the gPCE is trained with regard to the damaged dam. In particular, observing

that the compressive stresses in the concrete mass are low if compared to the relative
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(a) SHM layout.

(b) First mode.

(c) Second mode.

(d) Third mode.

Fig. 8.47: Scandarello dam: comparison between experimental mode shapes and predictions,
Detection Phase, Layout 1.
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(a) SHM layout.

(b) First mode.

(c) Second mode.

(d) Third mode.

Fig. 8.48: Scandarello dam: comparison between experimental mode shapes and predictions,
Detection Phase, Layout 2.
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characteristic strength and the rock soil is characterised by high resistance, then the only

collapse mechanism is related to tensile crack propagation inside the dam body. Since the

concrete behaviour is modelled by using the CDP constitutive model (Chapter 3.2.3), and

the fracture energy is kept constant, the only epistemic uncertainty is the tensile strength

ft,C . With regard to the notation introduced in Chapter 7, θθθs is equal to ft,C , that is

θθθs = ft,C . The distributions of the hyper-prior parameters of ft,C are de�ned as those of

the elastic ones. Therefore, the mean value ξµft,C is assumed log-normally distributed with

mean value and standard deviation equal to those obtained by the material tests, shown

in table 8.10. In the same way ξσft,C is assumed log-normally distributed with mean value

equal to the standard deviation indicated in table 8.10 and CoV equal to 10%.

In the construction of the meta model of the damaged behaviour φ̂Dh,i (x,$$$,θθθs,ΞΞΞs) particu-

larly attention must be placed on the parametrization of the seismic input, as explained in

Chapter 7.4. In particular, Sa (T1) is used as IM of the seismic action, that is$$$ = Sa (T1).

Whereas, a set of recorded motion is considered in order to account for the variability of the

frequency-content. The record-to-record variation is considered by sampling the seismic

input from the set de�ned in table 8.17. The recorded motions used in this application to

train the gPCE are the same used for the MR-IDA, reported in table 8.17, while Sa (T1)

is assumed uniformly distributed between 0.1 g and 0.8 g. This range has been de�ned

starting from the fragility curves in order to reduce the number of analyses. To sum up,

the seismic input is modelled by sampling a Sa (T1) value from the interval 0.1-0.8 g, and

an event is sampled from the set reported in table 8.17. Therefore, the sampled seismic

event is scaled in order to have Sa (T1) equal to the sampled value. Once a seismic action

is de�ned, as indicated in �gure 7.2, it is applied as boundary condition at the bottom of

the near �eld after a proper deconvolution Sooch and Bagchi 2014.

8.3.12 Proxy model for modal characteristics of the damaged dam, Up-

dating Phase

The predictive model of the modal behaviour of the damaged dam φ̂Dh,i (x,$$$,θθθs,ΞΞΞs) is

built by using Hermitian polynomials, while 150 analyses are considered for the combina-

tion coe�cient calculation. The parameters of each analysis are sampled from the prior

distributions. A sensitivity analysis is performed with respect to the polynomial expansion

degree, in order to select that one which minimizes the errors in terms of mean values and

variances. Figure 8.49 shows the maximum relative errors of the mean values and vari-

ances among all mesh joints for every considered mode. On the one hand, the mean values
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maximum errors increase with the polynomial expansion order. Anyway, polynomial order

equal to 3/4/5 still give an acceptable result. On the other hand, the variance maximum

relative error decreases with the polynomial expansion order, even though these values

are very close. Therefore, a 4th order polynomial expansion is chosen. This polynomial

expansion degree leads to small relative errors both for mean values and variances.

(a) Error of the mean value. (b) Error of the standard deviation.

Fig. 8.49: Maximum relative error of the mode shapes gPCE of the damaged Scandarello
dam.

The Sobol's coe�cients provide useful information about how the tensile strength in�u-

ences the mode shapes derivative. For instance, �gure 8.50 shows the Sobol's coe�cients of

the �rst mode of the dam. Beyond the particular values of the coe�cients, it is important

to note the di�erences between them. Indeed, focusing the attention on the central points

of the �rst line, namely d-7, d-8 and d-9, they are little in�uenced by the variation of the

tensile strength because in every case the �rst mode of the dam has a sinusoidal shape in

the upper part of the structure, characterized by only one harmonic. Whereas the other

points are in�uenced by the parameter variation.

8.3.13 Tensile strength parameter updating

Once the gPCE is built, it can be used to update the strength parameters of the material.

This is done by solving equation 6.9. In particular, the modi�ed version of MCMC (Chapter

2) is used to solve this task. In particular, after 40000 steps a R̂p equal to 1.223 is achieved

and thus the convergence is ensured. An additional condition is added to the three damage

levels previously de�ned. Indeed, also the case of no damage is simulated in this application.

By considering the Amatrice's seismic event this is achieved for Sa (T1) = 0.0953g. The
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Fig. 8.50: Predictive model Sobol's coe�cients of the damaged mode shapes of the Scan-
darello dam.

updating process is performed only for the Layout 2.

The comparison between prior and posterior distributions is shown in �gure 8.51, while

table 8.20 summarise their parameters. The results shows that every scenario allows

Table 8.20: Posterior distributions of ft,C .

DL0 DL1 DL2 DL3

ξ
µ
ft,C

ξσft,C ξ
µ
ft,C

ξσft,C ξ
µ
ft,C

ξσft,C ξ
µ
ft,C

ξσft,C
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Mean 1.92 1.02 1.85 0.98 1.72 0.94 1.58 0.87

s.d. 0.15 0.09 0.15 0.07 0.12 0.06 0.12 0.04

updating the strength parameters, but in di�erent way. Increasing the seismic action, and

so the DL, the updating is more evident. In every case the mean value of the distribution

shows a shift toward the right value, 1.45 MPa. This means that the procedure allows

updating the damage parameters but the value of the information is not su�cient to

rightly update the distribution with only one measure. Moreover, this results show that

the value of the information varies with the intensity of the seismic action.
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Fig. 8.51: Scandarello dam: Comparison between prior and posterior distributions of ft,C ,
Layout 2.

8.3.14 Parametrization of the experimental domain

In this last application, the procedure proposed in Chapter 7 is used to design the monitor-

ing system of the Scandarello dam. The optimal Bayesian experimental design introduced

in Chapter 4.5, is applied in order to maximize the expected utility U (d) with regard to

the mode shapes variation, which is the QI for the damage detection. Since the crack

initiation and propagation is strictly linked to the strength material parameters, a SHM

system able to detect the damage can be also used to acquire useful information for the

updating of material strength parameters (Chapter 7).
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In the context of the Optimal Bayesian Experimental Design also the experimental variable

d must be parametrized. As introduced in Chapter 7, the polar coordinates are used to

parametrize d = [r, α]T , as shown in �gure 8.52. This requires the de�nition of a sampling

range for r and α, which depends on the geometry of the dam. In the present case the

ranges of the polar parameters are indicated in table 8.21. Despite the parametrisation of

d, some candidate points could lie out from the design domain, as the grey areas shown in

�gure 8.52. The algorithm 3, introduced in Chapter 7 projects the candidate points which

lies externally to the design domain onto the closest edge. The design domain is discretized

by considering nodes coming from the FE model. Therefore, the analysis solutions, used to

calibrate the gPCE, are determined at nodes of these elements. The value of the quantity

of interest of a candidate point is calculated by interpolating the values of the nodes of

the region in which the point itself lies. Theoretically, these nodes can coincide with those

of the mesh used in the FEA, but in this case only few of them are selected in order to

reduce the computational burden. The �nal mesh of the OED is shown in �gure 8.52.

Fig. 8.52: OED mesh of the Scandarello dam.

Table 8.21: Bounds of the design variable d.

r [m] α [rad]

max 110.93 1.30

min 25.84 0.00
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8.3.15 SHM system optimization through OED

Following the procedure introduced in Chapter 7 the predictive model of the behaviour of

the damaged dam φ̂Dh,i (x,$$$,θθθs,ΞΞΞs) (Updating Phase) can be used within the optimization

algorithm instead of the FEA solution, thus speeding up the procedure.

The SPSA algorithm requires the de�nition of some parameters (Chapter 4.5.3), which

are indicated in table 8.22. These parameters are derived from indications available in the

literature, and empirically checked for the analysed case. A maximum number of 10 devices

Table 8.22: Parameters of the SPSA algorithm for the devices optimization.

a A α c γ number of steps

20 100 0.602 10 0.101 3000

is chosen, the optimized layout is shown in �gure 8.53, where the devices are plotted in

red. The results show that the algorithm prefers to place the devices in the upper part

Fig. 8.53: Final SHM system of the Scandarello dam.

of the dam and around the section where the downstream face changes the slope. This

means that in these positions the expected utility, de�ned with regard to damage detection,

is maximized. Moreover, these results are coherent with the crack pattern found in the

fragility curves calculation (�gure 8.44). Indeed, the proposed procedure puts the devices

around the section of the downstream where the slope changes. The crack paths obtained in

the seismic analyses performed for the fragility curves calculation are concentrated around
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the section where the downstream face changes its slope, highlighting how this area can

be considered as a geometrical weakness of the dam.

8.3.16 The use of the optimised SHM system for damage detection and

material strength parameters updating

In this last section the optimised dynamic SHM system is used for damage detection and

strength parameters updating. Therefore, the Detection Phase and the Updating Phase

described in Chapter 7 are repeated for the new optimised layout. As in the case of the

initial monitoring system, also in this application the results of the high-�delity model

for the three DLs are used as reference measure (section 8.3.10). Figure 8.54 shows the

comparison between the prediction of the undamaged dam behaviour obtained with the

predictive model φ̂Uh,i (x,θθθel) calibrated in the Training Phase and the experimental mode

shapes calculated with the optimised layout. As observed also in the previous case (Figure

8.48) a non aligned layout allows gathering more information about the dam behaviour,

and thus the probability of damage detection increases. Also in this case the proposed SHM

system is able to detect the damage for all of the three DLs. Indeed, the experimental mode

shapes of the damaged dam are out of the bounds, even tough it is de�ned considering

the standard deviation of the prediction as threshold. As in the previous case the third

mode is more sensitive to damage and thus the damaged mode shape is very di�erent to

the undamaged one. Finally, from the Layout 2 (Figure 8.48) to the optimised one (Figure

8.54) the accuracy of the damage detection decreases, but the SHM is able to the detect

damage with a small number of devices.

These results are used to update the state of knowledge about the tensile strength of the

concrete in the Updating Phase. As in the previous case, also the DL0, which corresponds to

the no-damage scenario, has been considered. The modi�ed version of MCMC, introduced

in Chapter 2, is used to solve the inverse problem by considering 40000 steps. In this way,

a R̂p equal to 1.223 is achieved. The posterior distributions of the tensile strength of the

dam concrete are shown in �gure 8.55, while the statistics are collected in table 8.23.

The posterior distributions of the concrete tensile strength obtained with the optimised

layout are very close to the ones obtained in the case of Layout 2. However, this result

is achieved by using a smaller number of devices. Also in this case, for every damage

scenario the proposed SHM system allows updating the state of knowledge, even tough

stronger seismic motions lead to posterior distributions closer to the real value of the

tensile strength (1.45 MPa in this application). The quality of the information embedded

in the mode shapes after damage is not su�cient to obtain the real value with only one
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(a) First mode.

(b) Second mode.

(c) Third mode.

Fig. 8.54: Scandarello dam: comparison between experimental mode shapes and predictions,
Detection Phase, Optimised Layout.

Table 8.23: Posterior distributions of ft,C determined with the Optimised Layout.

DL0 DL1 DL2 DL3

ξ
µ
ft,C

ξσft,C ξ
µ
ft,C

ξσft,C ξ
µ
ft,C

ξσft,C ξ
µ
ft,C

ξσft,C
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Mean 1.94 1.07 1.89 0.92 1.75 0.94 1.61 0.92

s.d. 0.17 0.11 0.12 0.07 0.15 0.08 0.11 0.04
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Fig. 8.55: Scandarello dam: Comparison between prior and posterior distributions of ft,C ,
Optimised Layout.

record. The reason for that, as in the previous case, can be found in several factors as the

seismic motion parametrization or other bias in the predictive model.

8.4 Concluding remarks

In this last Chapter two dams have been studied: the Gramolazzo dam, in order to test

the proposed static SHM framework (Chapter 5), and the Scandarello in order to apply

the proposed dynamic SHM framework (Chapter 7).

In the static case the proposed procedure has been successfully used to update the pa-
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rameters of a static dam twin model, which can be used to improve the estimation of the

structural fragility. The calibrated predictive model has been used to control the struc-

tural behaviour during the regular use of the dam. In the case of the Gramolazzo dam,

the presence of a structural weakness close to the right abutment, in which the damage

is concentrated, leads to a di�cult damage detection if only one point is used. Indeed, a

network of devices could lead to an improvement in damage detection. Although the use

of only one point in the presence of strong damage the system has been able to �nd it. It

is worth noting that the proposed gPCE-based predictive model is very fast and reliable,

so it can be successfully used in an on-line SHM.

The application of the probabilistic dynamic SHM to the case of the Scandarello dam

showed that it can be successfully used for damage detection purpose. The particular

architecture of the proposed SHM system, based on three di�erent steps, allows both de-

tecting a possible damage and updating the mechanical parameters of the materials, thus

reducing the uncertainties. In this way, the accuracy of the predictive model (Diagnosis

step) and the prediction of the remaining life expectancy of the dam are improved. In

particular, the Training Phase allows reducing the uncertainties related to the elastic me-

chanical parameters, thus calibrating the predictive model of the undamaged dam. In the

Detection Phase the calibrated predictive model is used to control the health state of the

structure by comparing the prediction of mode shapes of the undamaged dam with the

experimental mode shapes. In the Updating Phase the observations recorded during the

seismic events are used to update the strength parameters of the materials.

The e�ects of the uncertainty reduction are quanti�ed in terms of fragility curves. Indeed,

the fragility curves of the Scandarello dam are calculated by using �rst the prior distri-

butions and the posterior ones. The results show that the fragility estimation calculated

with the posterior distributions is characterised by less dispersion if compared to the one

calculated with the prior distributions.

The last part of the Chapter is dedicated to the optimization of the devices layout in order

to maximise both the probability of damage detection and the updating of the strength

parameters of the materials. By exploiting the relationship between damage development,

concrete tensile strength and mode shape variation, the expected utility, based on the pre-

dictive model de�ned in the Updating Phase, can be de�ned and optimized, thus leading

to the �nal layout of the SHM system.

It is worth noting that the posterior distributions of the tensile strength show the e�ective-

ness of the procedure in strength parameters updating. However, the posterior distributions

have mean values higher than the tensile strength �xed in the high-�delity model. This
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is mainly due to the biases contained in the predictive model used to update the state of

knowledge on the strength parameters. Moreover, the Updating Phase requires the char-

acterisation of the seismic input acquired on the soil around the dam. Therefore, speci�c

devices installed on the soil close to the dam are needed.
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Conclusions

9.1 Introduction

This Chapter summarizes the most important conclusions of the thesis contributing appro-

priately to the research issues stated in Chapter 1, and which can be listed in the following

two points:

(a) Reduce the epistemic uncertainties involved in the seismic assessment of concrete grav-

ity dams by using all available information about the structures.

(b) Improve the dam control by developing suitable SHM system for concrete gravity dams.

In order to deal with these two points, two probabilistic SHM framework have been de-

veloped in this work. More speci�cally, the two probabilistic SHM framework aim both to

control the structural health state and to update the parameters of the predictive mod-

els, thus reducing the epistemic uncertainties. The �rst SHM system is based on static

measurements like dam displacements recorded during the regular use, while the second

SHM system is based on ambient vibrations records. This two procedures, developed in

a Bayesian setting, are applied to real Italian dams, thus showing the feasibility of reduc-
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ing uncertainties and of integrating them within a SHM system to improve the structural

control. The predictive models can be used in an on-line structural control thanks to its

calculation speed achieved with the de�nition of gPCE-based meta models.

In the last part of the present research work a procedure to design the dynamic SHM

system has been introduced. It aims to optimize the expected utility with respect to the

damage detection and the strength parameters of the materials. The objective function,

which drives the devices optimization, aims to maximize the acquisition of information

useful for the calibration of material strength parameters. The procedure, applied also in

this case to an Italian dam, shows how to successfully detect damage and how to update

the strength parameters of material constitutive models.

9.2 Summary of the work

This research project is composed by 9 Chapters. Chapter 1 presents the topic with the

main research questions and objectives.

In the Chapter 2, a literature overview on the seismic assessment of concrete gravity dams

and on the use of SHM for model calibration purpose is illustrated.

Chapter 3 shows the most in�uential issues and their e�ects in the seismic analysis of

concrete gravity dams. At the end of the Chapter the main epistemic uncertainty sources

involved in the seismic analysis of concrete gravity dams are introduced.

Chapter 4 introduces the theoretical background and the statistical tools used to develop

the procedures introduced in this research work.

Chapter 5 shows the static SHM framework based on the dam displacements.

Chapter 6 describes the procedure to calibrate the parameters of a dynamic twin model

of the dam by using the modal characteristics experimentally determined through the

operational modal analysis.

Chapter 7 shows the dynamic SHM framework and the procedure developed to design the

SHM system itself.

Chapter 8 presents the case studies on which the proposed procedures are applied.

Chapter 9 summarizes the main achievements of the research work.

9.3 Main outcomes

The e�ciency of the three proposed procedures are demonstrated by making use of two case

studies represented by two Italian concrete gravity dams for which material test results and
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real measurements are available. Generally, probabilistic procedures lead to huge numerical

e�orts. Meta models, based on the gPCE, are used to reduce the computational burden

thus making the procedure applicable to real cases.

In the �rst case the static SHM system is tested on the Gramolazzo dam, because material

test results, static measurements and environmental records are available. In particular,

half of these information is used to train the gPCE-based meta model, while the other

part is used to demonstrate the ability of the probabilistic model to well predict the dam

behaviour during its regular use. The procedure to integrate the predictive model of the

dam displacements within the SHM system is shown. Since no information about the

behaviour of the damaged dam are available, a high-�delity model of the structure is used

to simulate it by assuming two di�erent damage scenarios. The proposed procedure is

deeply analysed in Chapter 5. The main results of this application can be summarized as

follow:

� The use of a gPCE-based meta model instead of the FEA solution allows speeding

up the procedure.

� Material test results, environmental measurements and static displacements can be

successfully used to calibrate a probabilistic predictive model of the dam displace-

ments. The calibration procedure de�ned in a Bayesian setting allows determining

the posterior distribution of the model parameters.

� The calibrated predictive model can be used within a SHM framework to control the

structural behaviour during the regular use of the dam.

� The procedure allows determining the global error standard deviation, which can be

also used to de�ne a threshold beyond which the dam shows abnormal phenomena.

� The procedure can be repeated every time that new measurements are recorded. If

the procedure is integrated in SHM systems it allows continuously improving the

model parameters estimation, and the probabilistic model prediction.

A second case study is investigated in order to test the dynamic SHM framework intro-

duced in this research work. In particular, the Scandarello dam is selected because real

ambient vibration records are available in addition to the material test results. First of

all, the parameters of a dynamic twin model and those of the predictive models of the

modal characteristics are calibrated by using the results of the OMA, through the pro-

cedure introduced in Chapter 6. The computational burden is strongly reduced by using
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gPCE-based meta models to reproduce the FEA results in terms of frequencies and mode

shapes. For comparison reasons, the predictive models of frequencies and mode shapes are

separately calibrated.

The introduction of covariance functions for the error terms, in the case of the mode shape

predictive model, allows reducing the computational burden.

The use of modal characteristics as reference measure in the updating process requires

ensuring the coherence between experimental and numerical modes. More speci�cally, for

a particular sample numerical modes could be ordered di�erently from the experimental

ones. Before the likelihood calculation numerical results must be reordered coherently with

the experimental modes. Considering the SSI in the numerical model a large number of

numerical modes related to the soil mass with no experimental correlation are calculated.

A selection criterion is introduced in the numerical algorithm MCMC in order to solve this

problems, thus reordering the numerical modes coherently with the experimental ones, and

discarding the modes with no experimental correlation.

The calibrated dynamic twin model is used to estimate the structural fragility through

the MR-IDA. The comparison between fragility curves, calculated considering prior and

posterior distributions of the model parameters, shows an improvement in the estimation

of the seismic behaviour of the dam. The procedure is introduced and deeply described in

Chapter 6. The main results of this application can be summarized as follows:

� The use of gPCE-based meta models instead of the FEA outputs allows speeding up

the procedure.

� Material test results and the OMA results calculated by the elaboration of ambient

vibrations allows calibrating the parameters of dynamic twin models of the dam. A

dynamic twin model can be used both to predict the structural behaviour during

seismic events, and to build a predictive model of the modal characteristics which

can be integrated in a SHM framework, thus improving the damage detection system.

� The proposed modi�ed version of MCMC, de�ned by the introduction of a selection

criterion in order to ensure the coherence between experimental and numerical modes,

allows considering the SSI within dam numerical models.

� The use of covariance functions for the de�nition of the error terms of the mode

shapes predictive model allows reducing the computational burden. The case of study

demonstrates that exponential functions can be successfully used as covariance ones.

� The calibrated dynamic twin model of the dam leads to a better estimation of the
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structural fragility, because of the reduction of epistemic uncertainties obtained with

the use of the proposed procedure.

Starting from the results obtained with the application of the procedure introduced in

Chapter 6, the dynamic SHM framework proposed in Chapter 7 is applied to the Scan-

darello dam. The particular architecture of the proposed dynamic SHM system, based

on three di�erent phases, allows both controlling the health state of the structure and

updating the material mechanical parameters, elastic and strength ones. The use of two

di�erent predictive models, the one de�ned in Chapter 6, and one which reproduces the

behaviour of the damaged dam, allows reducing the computational burden, thus speeding

up the procedure and making possible its use in real time control. Three damage scenarios

are simulated through the use of a high-�delity model in order to test the e�ectiveness of

the proposed SHM both in damage detecting and model parameters updating. The results

show that the procedure has been successfully used to achieve these two goals, even tough

the posterior distributions of the tensile strength parameters are not fully updated. This

fact can be due to the bias of the predictive model of the damaged dam.

The optimization procedure described at the end of Chapter 7 is used to design the dynamic

SHM system. The resolution of the experimental design problem requires the parametriza-

tion of the design domain. Therefore, a projection/interpolation procedure is implemented

and integrated in the algorithm for the resolution of the OED, in order to ensure the con-

tinuity of the design domain and to limit it by the de�nition of geometrical criteria.

Once the maximum devices number is decided, the proposed procedure allows determining

the best device position in order to maximise the probability of damage detection and the

acquisition of information for strength parameters updating.

The results obtained in the case of the optimised layout are compared with those obtained

in the case of a non optimised layout. The comparison shows that the optimised layout

allows reaching the same performance of the non optimised one but with a less number of

devices. The main results of this application can be summarized as follows:

� The use of gPCE-based meta models instead of the FEA outputs allows speeding

up the procedure, thus making possible the use of the proposed SHM in real time

structural control.

� The proposed dynamic SHM system allows both controlling the health state of the

structure and updating the mechanical parameters of the materials, thus reducing

the epistemic uncertainties. For this purpose, some devices of the dynamic SHM

system must be installed on the soil around the dam in order to make possible the
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seismic input characterisation.

� The proposed optimisation algorithm allows solving the problem for a continuous de-

sign space, and if necessary limiting it by inserting geometrical criteria, and selecting

only the signi�cant modes.

� The designed SHM system shows better performance than a non-optimised SHM

system, once de�ned the minimum level of damage to be recorded or the maximum

number of devices.

The two proposed SHM systems can be used in a real time structural control both to

control the health state of the dam and to update the mechanical parameters of the ma-

terials, thus improving the prediction itself. The use of gPCE-based meta models and the

parallel algorithms developed in MATLAB allows speeding up the procedure even without

High-Performance Computing (HPC). Finally, the proposed updating procedures can be

employed every time new information are available. If the procedures are integrated in

a SHM system, the calibration of the parameters and the prediction of the probabilistic

models are improved.

9.4 Future developments

On the basis of the present work, with the challenge of making even more possible the

integration of calibrated predictive models within the SHM system of concrete gravity

dams, some e�orts are still necessary:

� Probabilistic framework for static SHM system of concrete gravity dams:

� More studies on the relationship between environmental conditions, e.g. hu-

midity and thermal radiation, and dam behaviour are necessary to improve the

predictive model. This improvement should reduce the global error standard

deviation, thus improving the estimation of the QI.

� The use of devices network, in conjunction to two or three dimensional dis-

placement records, could lead to a better resolution and then to a better control

during the regular use of the structure.

� A sensitivity analysis to investigate the relationship between damage and static

displacements after seismic events could lead to a good setting of the displace-

ment threshold.
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� Probabilistic framework for dynamic SHM system of concrete gravity dams:

� Since the method is based on the results of the OMA, a sensitivity analysis of

the OMA technique on the �nal results could lead to determine the best OMA

technique.

� Di�erent selection criteria within the proposed modi�ed version of MCMC

should be assumed in order to determine the most e�cient in the mode se-

lection.

� Di�erent covariance functions should be tested in order to assess their in�uence

on the �nal results.

� Verify the e�ect of the epistemic uncertainty reduction with respect to fragility

curves calculated by using other LSs function.

� Concrete gravity dams with vertical contraction joints should be analysed with

the aim to evaluate the possibility to update the shear strength parameters.

� Investigate the e�ect of the strength parameters uncertainty reduction in terms

of fragility curves.

� Detect the structural damage by combining the mode shapes with other quantity

of interest, e.g. frequencies, deformations, vibrations, etc.

� Verify the in�uence of environment conditions, e.g. humidity, water and air

temperatures, on the modal characteristic predictive models.

� Investigate the e�ect of relationship between damage development and struc-

tural behaviour in order to de�ne a threshold beyond which the damage must

be detected.

� Use the proposed procedure to determine the minimum number of devices

needed to detect a minimal level of damage, and optimize their positions.
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