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Abstract—State Of Health (SOH) is one of the most important
parameters in order to evaluate battery performances over
time and it has profound impact on performances, cost and
reliability of the target vehicle. SOH definition requires an
accurate estimation of the actual battery energy storage capacity
at low frequencies. This paper presents an improved Ampere-
Count Method based on Incremental Capacity Analysis in a
particular voltage range delivered by battery for SOH estimation.
Proposed method is implemented using Matlab Software, and its
effectiveness has been verified based on simulated data from
thermo-electrical model of LiFePO4 cell with aging phenomena
realized on Siemens Amesim software. Model was calibrated with
data provided by manufacturer and based on real data acquired
from LiFePO4 battery packs installed on a Electric Vehicle (EV).

Keywords—battery; lithium-ion; online SOH estimation;
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I. INTRODUCTION

Analysis, modeling and management of energy storages in
the batteries, mainly Lithium-Ion types, are topics discussed
in major European research programs (Horizon 2020) and in
automotive industry. Battery performances vary significantly
with age and so it is important to represent these features and
to synthesize algorithms to predict its End Of Life (EOL).
Aging should be described by a parameter defined State Of
Health (SOH). This is usually represented as a vector that
contains battery parameters which degrade over time, such as:

• Residual capacity to store energy.
• Internal resistance.
• Maximum discharging peak power.
• Open Circuit Voltage (OCV) - State Of Charge (SOC)

relationship.
In this work, actual battery energy storage capacity is rep-
resented as indicator of SOH. Consequently, battery SOH is
defined as the following equation:

SOH =
Qaged[Ah]

Qnew[Ah]
× 100 % (1)

where Ah indicates the charge transferred by a steady current
flowing for one hour; Qaged indicates the maximum available
capacity in current state and Qnew indicates the nominal

battery capacity. The residual capacity can be computed by a
normal Ampere-Count method, which is based on recursive
calculation of the integral of the current delivered by the
battery over time, through a defined number of complete
battery standard charge and discharge (at constant current
discharge rates) phases, as suggested by the International stan-
dards ISO 12405-1,2 [1], [2] and IEC 62660-1 [3]. However
this solution should be used only in laboratory tests. Indeed,
in real operating conditions, charge and discharge phase is
often partial or not complete. Hence, the online Ampere-Count
method must focus in a particular range of SOC when the
Electric Vehicle (EV) is usually used. In Fig. 1 is represented
Ah-V curve (SOC is replaced by accumulated capacity in Ah)
of LiFePO4 cell at different SOH. From Fig. 1 it’s clearly
noticeable that Ah-V curve exhibits some particular features
which are quite not sensitive respect to battery SOH. In this
way, it’s possible to identify a known SOC level, recognizing
a specific feature (e.g. feature highlighted in Fig. 1 is the
knee of the Ah-V curve localized above about 3.3V). This
work presents an improved Ampere-Count Method based on
Incremental Capacity Analysis (ICA) [4], [5] of this particular
feature. The reasons why SOH estimation is carried out on this
feature are mainly three:

1) This feature is always present during cell’s life: as
specified previously.

2) Possibility to apply algorithm during each recharge
cycle of Electric Vehicle (EV): estimating SOH in a
SOC range of [65, 95] %, which is often achievable
along a common EV cycle.

3) Relationship between SOH-Feature’s slope: aged cell,
as shown in Fig. 1, assumes a more flat curve than new
cell, in particular in this specific feature (good for ICA).

Performances of the proposed method have been verified on
simulated data from a thermo-electrical model of LiFePO4 cell
with aging behaviors realized on Siemens Amesim software,
shown in Fig. 2.

II. CELL THERMO-ELECTRICAL MODEL

The Lithium-Ion cell model (Fig. 2) simulated in this work
is a prismatic LiFePO4 cell manufactured by China Aviation
Lithium Battery (CALB).
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Fig. 1. Ah-V curves of LiFePO4 cell model simulated on Siemens Amesim
at different SOHs and the particular feature’s curves analyzed in this work.

Fig. 2. Cell thermo-electric model in Siemens Amesim: ready to test its cycle
life.

This cell has 72 Ah of nominal capacity and 3.2 V of
nominal voltage (dc). To replicate its thermal and electrical
behavior, the LiFePO4 cell quasi-static model is chosen from
electric storage’s library on Siemens Amesim. Parameters of
this model, which takes into account aging phenomena, have
been calibrated and validated on experimental tests carried out
by the research institute IFP Energies nouvelles [6], [7], [8].
Single cell model should have nominal capacity in the range
[2.3, 8] Ah. In this work, battery pack is chosen: it’s composed
by 18 cells in parallel with 4 Ah of rated capacity and 3.2 V of
nominal voltage. Then, a variable resistance (Rint) is inserted
in series to the cell model in order to simulate voltage drops
and heat dissipations produced by the internal resistance of
the real cell. In particular, value of internal resistance depends
from actual SOC of cell and the surrounding temperature.
In [9] is realized an appropriately surface function Rint =
Υ(SOC, T ) which returns the value of the internal resistance

Fig. 3. Analytical surface function Υ for single LiFePO4 cell (battery pack
monitored is composed by 30 cell in series): contour plot.

Rint in function of the SOC and the surrounding temperature.
Coefficients of this surface function are sized using Curve
Fitting Toolbox of Matlab, and are identified based on real
data acquired from LiFePO4 battery packs (composed by 30
CALB cells in series) installed on a EV and online estimation
algorithms shown in [9]. In Fig. 3 is shown contour plot
of internal resistance surface function. LiFePO4 cell quasi-
static model and variable resistance complete electrical model
of battery. Then, thermal cell model is realized as follows:
referring to [10], [11], equivalent electrical circuit model
shown in Fig. 4 should describe thermal dynamics from inside
to outside of the cell. Indeed, thermal and electrical processes
represent exchanges of energy flows between two physical
entities; so there is a strong correlation in the description of the
two physical dynamics. After this consideration, the difference
of temperature should be associated with a difference of
electrical potential of two sources on a physical conductor;
moreover the heat flow should be associated with the current
flow exchanged between these. Cell thermal model is shown
in Fig. 4 illustrates the dynamics of the exchange of heat
flows from inside the cell to the outside. Tin indicates the
cell internal temperature; the amount of heat dissipated inside
for Joule effect corresponds to the ideal current generator
Qth,in. Finally, transient energy exchanges between internal
and surface of the cell are represented by the same electric
dynamics of an RC unit.

↑

Qint
Cth,int

Rth,int

Cth,sur

Rth,sur

+

T

Tint Tsur

Fig. 4. Cell thermal model.



It’s composed by Cth,int, which is cell internal thermal
capacity, and Rth,int, which is inversely proportional to heat
conduction coefficient between internal and cell surface. Tsur
indicates cell surface temperature. Exchanges of heat flows
between the surface (Tsur) of the cell and the surrounding
environment (T ) are represented by Rth,sur, Cth,sur param-
eters. Thermal parameters are sized during phase recharging,
analyzing real internal temperature data acquired on battery
packs [9]. In particular thermal capacity and resistance are
sized using thermodynamics equations:

Cthermal = mc, Rthermal =
S

λ
(2)

m is the mass of the cell; c is the specific heat; S is the
surface of the cell invested by the fluid; λ is the thermal
conductivity coefficient. Finally, as its seen in Fig. 2, another
heat source is inserted in parallel to thermal model to add
all heat dissipation transient effects shown from equivalent
thermal circuit represented in Fig. 4, and in [10], [11]. In
Table I are listed values which are signed to thermo-electrical
cell model. Cycle life test is applied to verify cell capacity’s
degradation and it consists of two phases:

1) Cell standard charge: charging is performed up to 3.40
V at a constant current of 21.6A; the value is reduced
continously in order to mantain the voltage to 3.40 V
until the current was not more than 3.6 ± 0.5 A, at room
temperature (25◦C).

2) Cell standard discharge: a discharge current of 21.6 A
is imposed considering a cut-off voltage (2.6 V ) and a
room temperature (25◦C).

These two steps (cycle) are repeated until the discharge
capacity reached the 80 % of rated capacity; the number of
cycles completed defines the battery cycle life. Cell thermo-
electrical model is chosen as in Table I and cell degradation
curve of capacity is shown and compared with real CALB
cell degradation in Fig. 5. It’s clearly noticeable a quasi-
perfect tracking between two curves. So this cell thermo-
electric model implemented in Amesim validates successfully
CALB degradation of capacity in its cycle life.

TABLE I
CELL THERMO-ELECTRIC MODEL’S PARAMETER VALUES INSERT FOR THE

SIMULATION OF REAL PRISMATIC CALB CELL

Parameter Value
Weigth cell 1.9 kg
Volume cell 869 cm3

Nominal voltage 3.2 V
Nominal capacity 72 Ah
Thermal resistance 0.06 K/W
Thermal capacity 1050 J/K
Room temperature 25 ◦C
Velocity fluid 1.5 m/s (calm)
Sample time 1 s

Fig. 5. Results during cycle life test: comparison between cell model and
real cell.

III. IMPROVED AMPERE-COUNT METHOD

A. Presentation

One of the most simple way to estimate online SOH (1), is
to use Ah-V curve when EV is charging. Current and voltage
measurements are necessary to reproduce this curve. In this
work, the Ah-V curve is composed by capacity accumulated
data and by Open Circuit Voltage (OCV), which is not subject
to battery loads, and its relationship with SOC doesn’t depend
on the temperature. Indeed battery OCV changes very slowly
with temperature, e.g., in [10] it was shown that OCV value
changed less than 10 mV as temperature passed from -10◦C to
50◦C. With current and voltage measurements, Ampere-hour
throughput to battery is the integrated current over time and
represents the energy stored by battery during phase charging.
However, OCV is not directly measured online, but it should
be accurately estimated with several filtering techniques, for
example Kalman Filter [12] or other model-based observer
filters. An example of cell Ah-V curve is represented in Fig.
1 at different SOHs. In particular it’s noticeable that aged cell
Ah-V profile assumes a more flat curve than new cell Ah-
V profile in highlighted feature. This fact implies that, by the
same Ah accumulated, an aged cell must reach higher voltages
compared to a new cell. The causes of this phenomena are due
to electro-chemical behaviors of anode and electrolyte of the
cell [4] during cell’s life: the not perfect interaction between
the active materials and the electrode-electrolyte interface
for aged cell, consequently a possible degradation of active
materials, in conclusion a reduction in the capacities of the
electrodes [4]. The composition and process of film formation
passive Solid Electrolyte Interphase (SEI) in the anode, during
cell’s life, is another process that produces a loss of capacity.
In this work Incremental Capacity Analysis (ICA) is used
to analyze actual cell Ah-V profile. ICA is a mathematical
method which analyzes the evolution of the Ah-V curve over
time by monitoring its slope in a particular characteristic area
of curve, defined feature. ICA function is defined by numeric
derivative operation between two consecutive points of the Ah-
V curve:

ICA =
dQ

dV
, [Ah/V ] (3)



Fig. 6. ICA curve and its construction before numercal derivation.

Q indicates the actual capacity accumulated by cell. CALB
cell model ICA curve is represented in Fig. 6. Specific feature
analyzed for CALB cell thermo-electrical model realized pre-
viously (Fig. 1 and Fig. 6) is localized in a particular voltage
range [3.31, 3.36] V, which corresponds from 66 % to 94%
of CALB cell SOC.

B. Online SOH estimation algorithm

Once cell ICA curve is reproduced in the voltage range of
interest, improved Ampere-count method is used to analyze the
whole feature, i.e. integral of ICA curve is calculated. Indeed,
measuring area instead of only peak maximum amplitude
provides more accurate results because the integration process
acts as an average of whole feature. The area under the curve
between two voltage limits is equal to compute accumulated
cell capacity (Q) between these limits:∫ Vsup

Vinf

ICA(V )dV =

∫ Vsup

Vinf

dQ(V )

dV
= Q(Vsup)−Q(Vinf )

(4)
A reduction of the area consists of a reduction in the accumu-
lated capacity among the two voltage limits, so in proportion,
a SOH degradation. In conclusion, computing the amount
of accumulated capacity energy between [Vinf , Vsup] and
comparing it to new cell, the updated istantaneous SOH is
obtained. To be able to provide a robust implementation of
this algorithm, it is necessary filtering ICA signal to clean
it from eventual noises. Indeed, as shown in Fig. 8, real ICA
curve is perturbed by noisy signal due to process disturbances,
reproducing ICA curve, and not perfect accuracy of the
measuring instruments. In this work, a low-pass 2nd order
Butterworth filter is used to clean ICA curve. Magnitude of
frequency response of a generic N-order’s Butterworth Filter
with cut frequency ωc is represented by the following equation:

|H(jω)|2 =
1

1 + ( ω
ωc

)2N
(5)

TABLE II
PARAMETER VALUES FOR ALGORITHM

Parameter Value
Sample time 1 s
Input costant current recharge 21.6 A
Input current disturb ± 0.5 A
Accuracy voltage measurement ± 1 mV
Voltage range analyzed [3.31, 3.36] V
Resolution (s. frequency) feature 0.015 mV (67.04 kHz)
Cut frequency Butterworth 700 Hz
Initial condition of Butterworth 1st order 300 Ah/V
Initial condition of Butterworth 2nd order -275 Ah/V2

OCV
data-set

Current
data-set

Reproduce

ICA curve

Analyze feature:

ICA curve in [Vinf , Vsup]

Butterworth

Filter

∫ Vsup

Vinf

Proportion
with new cell

SOH

Fig. 7. SOH estimation represented on a flow-chart.

This type of filter is chosen because has the most flat mag-
nitude response in the pass-band respect to other filters and
using order’s filter N = 2, the attenuation beyond the cut-
off frequency is a moderately steep -40 dB/decade and is
acceptable for this work. Finally only cut-off frequency and
initial conditions of Butterworth filter (dAh/dV and its deriva-
tive) should be tuned. Results of ICA filtered are shown in
Fig. 8. Now, improved Ampere-Count algorithm is complete.
This algorithm is realized using Matlab software, because
Butterworth filter is easily implementable thanks to Signal
Processing Toolbox in Matlab. Parameter values for algorithm
are shown in Table II and a summary of improved Ampere-
Count method for SOH estimation is represented on a flow-
chart in Fig. 7.



Fig. 8. ICA curve reproduced by Butterworth filter.

IV. RESULTS

SOH estimation’s effectiveness using improved Ampere-
Count method is evaluated during many recharging test simu-
lations on cell thermo-electric model implemented in Siemens
Amesim and shown in Fig. 2. Firstly accumulated capacity
for a new cell (100% SOH) in voltage range [Vinf , Vsup] (in
this work is chosen [3.31, 3.36] V) is defined using Ampere
count method. After this capacity calibration test, 100 recharge
tests are performed to assess a more robust evaluation on
the improved Ampere Count algorithm’s effectiveness. Input
charge current is supplied to cell based on standard charge
described in the previous section; an input current disturb is
added to it: this additive disturb is modeled as a white noise
with zero mean and its standard deviation value is equal to
input current disturb value shown in Table II. Moreover, a
white noise voltage disturb is added during voltage measure-
ment, and its standard deviation value is shown in Table II.
Algorithm is tested to different cell SOHs, exactly to 100%,
99,5%, 99%, 95%, 90%, 85%, 80%. For each defined cell
SOH, 100 recharge tests are performed: during these tests,
current and voltage data changes due to the additive noise.
Filtered ICA curve at different SOH is shown in Fig. 9. As
expected, ICA curve of aged cell is lower than new cell in all
voltage range. This result proves a lower capacity accumulated
by aged cell at the same voltage difference, thus a real capacity
loss. All Results of cell SOH estimation are shown in Table III,
after 100 recharge trials. It is noted that the estimated SOH
corresponds to its expected with a little standard deviation,
which defines the accuracy of the SOH estimation method.
Therefore we observe in Table III that results slightly deviate
from the mean value, which is approximately equal to the real
SOH value, so effectiveness of the improved Ampere count
method is proven.

Fig. 9. Comparison fitered ICA features at different cell SOHs.

TABLE III
SOH ESTIMATION USING IMPROVED AMPERE-COUNT ALGORITHM: FOR

EACH SOH DEFINED ARE PERFORMED 100 TESTS ON CELL
THERMO-ELECTRIC MODEL WHICH SIMULATES REAL CALB CELL

SOH original Capacity estimated Ah (SOH %)
100% (Calibration test) 20.1215
100% 20.1224 (100.0047 ± 0.0363%)
99.5% 20.0404 (99.5971 ± 0.0369 %)
99 % 19.9319 (99.0578 ± 0.0428 %)
95 % 19.0583 (94.7161 ± 0.0383 %)
90 % 17.9575 (89.2455 ± 0.0352 %)
85 % 16.8606 (83.7939 ± 0.0319 %)
80 % 15.7574 (78.3114 ± 0.0283 %)

V. CONCLUSIONS

An improved Ampere Count method, based on Incremental
Capacity Analysis, for battery SOH estimation was carried
out in this paper. SOH is defined only as ratio between
actual capacity residual and capacity of a new cell (1). CALB
(LiFePO4) cell is tested to verify algorithm’s performance.
Initially, electrical and thermal properties of lithium cell are
described. Then, its same dynamics are simulated by cell
thermo-electrical model implemented and realized on Siemens
Amesim. Parameter of this model are sized to simulate not
only same physical properties of real CALB cell, but to
simulate the same degradation curve of capacity during its
cycle life. After this, an improved Ampere-Count method was
presented to estimate SOH, based on Incremental Capacity
Analysis on a particular feature of cell Ah-V profile. Feature
analyzed is usually found in a SOC range (for CALB [66,
94] %) which is often reachable along a common EV cy-
cle. To enhance this method, a 2nd order Butterworth filter
was used. Algorithm for SOH estimation was implemented
in Matlab. This algorithm was tested during simulations of
complete recharge of cell thermo-electrical model on Amesim
at different SOH. Results, which are shown in Fig. III, prove



that the aged cell shows a lower capacity accumulated than
the new cell at the same voltage difference, confirming the
aging phenomena caused by the electro-chemical behaviors
of anode and electrolyte of the cell leading to a degrada-
tion process of active materials exchange between anode-
electrolyte interfaces. Moreover results in Table III verify
the effectiveness of proposed method. This novel estimation
SOH approach is innovative and it allows battery SOH online
estimation and on board the vehicle. Indeed ISO and IEC
battery capacity test standard requires to perform a complete
recharge and discharge cycle for a correct rated capacity
measurement. Using improved Ampere count method rated
capacity should be simply estimated from so-called partial
recharge made by the vehicle during the week. Moreover,
with this new algorithm, it is possible to obtain an up-to-date
estimation of SOH frequently, more times a week. Finally
this method should be used during the entire cycle life of
the battery. Indeed the Ah-V curve feature highlighted in
Fig. 1, in Fig. 6 and analyzed in this work is not sensitive
respect to battery SOH, so during entire its cycle life. However,
improved Ampere-Count method elaborates an accurate SOH
estimation if OCV and current values during phase recharge
are accurately measured. In this work, accuracy voltage and
current measurements are respectively supposed under 1% of
cell nominal voltage and capacity. Moreover measurements are
sampled in order of second. Possible future developments are
certainly implementation of this algorithm in real industrial
control systems for Lithium-Ion battery, as BMS, with appro-
priate current and voltage sensors, and finally the integration
of this algorithm with other filter which computes battery
parameters in different time scales (for example SOC, OCV,
etc.).
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