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Abstract: Increasing evidence has demonstrated the bidirectional link between acute kidney injury
(AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified
syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular
mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic
kidney disease progression are yet to be explained. This acute injury could promote progression to
chronic disease through different pathways involving the endothelium, the inflammatory response
and the development of fibrosis. The interplay among endothelial cells, macrophages and other
immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a
central role. Recent evidence has strengthened this concept by demonstrating that injured tubules
respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular
cells and the proliferation of a small population of self-renewing renal progenitors. This alternative
pathophysiological interpretation could better characterize functional recovery after AKI.
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1. AKI Is Not a Self-Limiting Event

Despite the common belief of a generally benign nature, the profound, long-term implications of
acute kidney injury (AKI) are appearing more and more evident. In particular, the emergent finding of
a progression to various degrees of chronic kidney disease (CKD) after apparently self-limiting AKI
episodes, independent from the etiology, has attracted great attention.

In the last decade, the assumption of an existing association between AKI and CKD has gradually
spread in the nephrology and intensive care fields with evidence of a tight link between even mild
serum creatinine elevation and long-term CKD [1–3]. The classic teaching case regarding acute renal
failure, in particular acute tubular necrosis (ATN), has been that those patients generally achieve
full or nearly full recovery [4,5]. The consensus on a new definition of AKI has helped to improve
the understanding of its long-term clinical consequences and to demonstrate a clear link between
AKI episodes, their severity, and their outcome [6]. With the help of standardized criteria for the
definition of AKI and CKD, diverse observational studies collecting data from large administrative
databases have increasingly showed a possible association between these two clinical entities [7–9].
Indeed, the more recent assumption is now to consider AKI and CKD as two interconnected syndromes
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where CKD is a risk factor for AKI and, in the meantime, AKI is a risk factor for the development
and progression of CKD [3]. A recent systematic review and meta-analysis by See et al. [7] aimed to
quantify the association between AKI and CKD by evaluating the results from 82 studies comprising
more than 2 million patients experiencing AKI. The authors confirmed an increase in the risk of new
or progressive CKD after AKI (HR 2.67, 95% CI 1.99–3.58) with a gradient of risk across AKI stages,
an increased risk of end stage renal disease (ESRD) (HR 4.81, 95% CI 3.04–7.62), and an increased risk
of death (HR 1.80, 95% CI 1.61–2.02) [7]. Moreover, previous studies have demonstrated that AKI
severity [10], duration [11] and frequency [12] are associated with an increased risk of CKD progression.
The AKI–CKD link has also been highlighted in pediatric studies [13–15].

Despite continuous progresses in the field and the recent ability to better identify the molecular
signature of different renal cell types following acute injury, the mechanisms that drive the transition
to chronic disease remain debated [16,17]. The traditional beliefs are now challenged by clinical
observations and new advances in experimental transgenic models. Researchers have made significant
effort trying to elucidate the pathophysiological link from AKI to CKD on cellular and molecular levels
by using experimental models. CKD can occur through several pathologic mechanisms involving
one or more of the kidney compartments: Vasculature, the tubule-interstitium or the glomerulus.
Microvascular loss occurs along with increased fibrosis, worsening relative hypoxia within the
kidney and in particular within the outer medulla. This is associated with changes in pericytes to
adopt a pro-fibrotic myofibroblast phenotype. Moreover, consequent to altered oxygen availability,
tubular injury and necrosis cause tubular dysfunction, oliguria and reduced glomerular filtration
via tubulo-glomerular feedback. Thus, after an ischemic injury, the loss of nephronic mass, with
remnant nephron hyperfiltration, renin-angiotensin system (RAS) activation, systemic hypertension
and subsequent glomerulosclerosis have been described to pave the way from AKI to CKD [18–20].
Regardless of the initial insult, evidence of tubular cell loss and replacement by collagen scars and
infiltrating macrophages are associated with further renal functional loss and progression towards
end stage renal failure. Experimental models have shown that selective epithelial injury could drive
capillary rarefaction, interstitial fibrosis, glomerulosclerosis and progression to CKD, substantiating a
direct role for damaged tubular epithelial cells (TECs) [21]. Therefore, tubular epithelial cells have
attracted increasing attention [22,23].

A new interpretation of this pathophysiology is that the epithelial tubular cell may allow for a
better understanding of this somehow unexpected turn in the AKI natural history. Altogether, there is
a need for the further investigation of the AKI-to-CKD transition as a public health priority.

2. Pathophysiology of the AKI-to-CKD Transition

From a pathophysiological point of view, microvascular integrity, changes in leukocyte and
pericyte behavior, and tubular cell survival and function are all features of both AKI and CKD, and
several cellular and molecular pathways have been considered to define the transition process. The main
pathological mechanisms which concur to explain the AKI-to-CKD transition include: (i) Endothelial
dysfunction, vasoconstriction and vascular congestion [24,25]; (ii) interstitial inflammation and the
associated infiltration of monocytes/macrophages, neutrophils, T- and B-cells [26–30]; (iii) fibrosis
via myofibroblasts recruitment and matrix deposition [31–33]; and (iv) tubular epithelial injury and
dysregulated repair [23,34,35] (Figure 1). After a brief description of the main molecular pathways
of the endothelial, inflammatory and fibrotic response to injury, we focus on the proximal tubular
epithelial cell, the main player of the AKI-to-CKD transition [35].
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tubular epithelial injury concur to explain the acute kidney injury-to-chronic kidney disease (AKI-to-
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Capillary rarefaction has been extensively described as a consistent feature of the acutely injured 
nephron and has been linked to progression as a potential initiator of chronic nephropathy. A 
reduction in regional renal oxygen delivery leads to inflammation, ischemia, and necrosis, thus 
reflecting an imbalance between arterial pressure and vascular resistance, with a particularly 
vulnerable area in the outer stripe of the outer medulla. The existence of a putative bone marrow-
derived endothelial progenitor cell (EPC) population has been hypothesized and linked to 
progression to chronic disease [36]. However, a recent study that combined bone marrow and kidney 
transplantation in a transgenic murine model demonstrated that no extra-renal cells substantially 
contribute to endothelial repair after selective injury [37]. 

Once capillary rarefaction is established, tissue hypoxia, mitochondrial dysfunction, 
inflammation and subsequent fibrosis occur [24]. The cellular and molecular pathways that underlie 
capillary rarefaction—in particular, the interplay between hypoxia, anti-angiogenic, and angiogenic 
factors—have yet to be explained [38]. Among angiogenic factors, vascular endothelial growth factor 
(VEGF), an endogenous cytokine produced by epithelial cells and directed to endothelial cells, is 
crucial for the preservation of vascular networks. Its reduced production could promote 
microvascular dysfunction and morphologic changes in the nephron [39,40]. The effects of its 
exogenous administration, with restoration of the microvascular density, improved renal blood flow, 
and reduced fibrogenic activity have been described in swine kidneys [41]. Similar effects, with 
improved endothelial cell survival and prevention of capillary leakage, resulted from the activation 
of the endothelium-specific receptor Tie2 through angiopoietin-1 (Ang-1)—a protein produced by 
vasculature support cells and specialized pericytes [42]. Moreover, the transgenic murine inactivation 
of endothelial hypoxia-inducible factors (Hif1-α and Hif2-α), as well as the deletion of endothelial 
sphingosine 1-phosphate receptor 1 (S1-pr1), resulted in increased acute and chronic inflammation 
and fibrosis after injury without affecting capillary permeability [43,44]. Therefore, there is 
considerable interest in the potential for Hif-stabilizing agents as therapeutic tools in renal injury [45]. 
In two models of folic acid-induced AKI and ureteral obstruction, Sirtuin 1 (Sirt 1) inactivation in 
endothelial cells caused impaired recovery, increased fibrosis, and disease progression [46,47]. 

Figure 1. The interplay between endothelial dysfunction, interstitial inflammation, fibrosis and
tubular epithelial injury concur to explain the acute kidney injury-to-chronic kidney disease
(AKI-to-CKD) transition.

2.1. Endothelial Dysfunction

Capillary rarefaction has been extensively described as a consistent feature of the acutely injured
nephron and has been linked to progression as a potential initiator of chronic nephropathy. A reduction
in regional renal oxygen delivery leads to inflammation, ischemia, and necrosis, thus reflecting an
imbalance between arterial pressure and vascular resistance, with a particularly vulnerable area in
the outer stripe of the outer medulla. The existence of a putative bone marrow-derived endothelial
progenitor cell (EPC) population has been hypothesized and linked to progression to chronic disease [36].
However, a recent study that combined bone marrow and kidney transplantation in a transgenic
murine model demonstrated that no extra-renal cells substantially contribute to endothelial repair
after selective injury [37].

Once capillary rarefaction is established, tissue hypoxia, mitochondrial dysfunction, inflammation
and subsequent fibrosis occur [24]. The cellular and molecular pathways that underlie
capillary rarefaction—in particular, the interplay between hypoxia, anti-angiogenic, and angiogenic
factors—have yet to be explained [38]. Among angiogenic factors, vascular endothelial growth
factor (VEGF), an endogenous cytokine produced by epithelial cells and directed to endothelial
cells, is crucial for the preservation of vascular networks. Its reduced production could promote
microvascular dysfunction and morphologic changes in the nephron [39,40]. The effects of its
exogenous administration, with restoration of the microvascular density, improved renal blood flow,
and reduced fibrogenic activity have been described in swine kidneys [41]. Similar effects, with
improved endothelial cell survival and prevention of capillary leakage, resulted from the activation
of the endothelium-specific receptor Tie2 through angiopoietin-1 (Ang-1)—a protein produced by
vasculature support cells and specialized pericytes [42]. Moreover, the transgenic murine inactivation
of endothelial hypoxia-inducible factors (Hif1-α and Hif2-α), as well as the deletion of endothelial
sphingosine 1-phosphate receptor 1 (S1-pr1), resulted in increased acute and chronic inflammation and
fibrosis after injury without affecting capillary permeability [43,44]. Therefore, there is considerable
interest in the potential for Hif-stabilizing agents as therapeutic tools in renal injury [45]. In two models
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of folic acid-induced AKI and ureteral obstruction, Sirtuin 1 (Sirt 1) inactivation in endothelial cells
caused impaired recovery, increased fibrosis, and disease progression [46,47].

Endothelial-to-mesenchymal transition (EndoMT) has been proposed as a contributor to capillary
rarefaction, interstitial fibrosis, and, therefore, chronic damage [48]. Indeed, the reduction of EndoMT,
obtained by reducing endothelium-specific transforming growth factor β (TGF-β) in a transgenic
mouse model, was followed by the preservation of renal blood flow and microvasculature, less tissue
hypoxia and tubulointerstitial fibrosis, thereby supporting the hypothesis of a link between EndoMT
and chronic changes [49]. Moreover, the renal pericyte is now recognized as a key contributor to
vascular stability in response to kidney injury [50].

Pericytes sit in close proximity to the endothelial cells within many organs, where they
maintain vascular stability and release factors, including PDGF (platelet-derived growth factor) [51],
angiopoietin [52], TGF-β [53], VEGF [54] and sphingosine-1-phosphate [55]. There is now an increasing
understanding of the role played by these cells in acute and chronic kidney injury, where they leave their
perivascular site in response to injury and differentiate to become myofibroblasts. Thus, either injuries
or defects in pericyte function induce their detachment, contributing to both vascular rarefaction and
increased fibrosis. In the end, recent advances have elucidated a contribution of endothelial cells and
their products to capillary rarefaction, inflammation and tubulogenic pathways in a complex cellular
interplay [43,44].

2.2. Interstitial Inflammation

Both resident and infiltrating immune cells participate in inflammation, injury and repair in the
acute phase of kidney injury; through a tight cross-talk with endothelial cells, epithelial cells, and
pericytes, they also contribute to disease progression [56]. The recent identification of a particular
subset of renal resident macrophages, located at the abluminal side of the peritubular capillaries and
capable of monitoring endothelial transport, has provided a perfect paradigm of the interplay between
endothelium and immune system [57]. Resident macrophages seem to form a distinct anatomical
and functional unit with the peritubular capillary endothelial cells that have the ability to detect and
scavenge small immune complexes, possibly explaining the further recruitment of monocytes and
neutrophils, as well as tissue injury in immune complex diseases [57]. This macrophage-endothelial
functional unit, with a specific cross-talk at both the cellular and molecular levels, is also likely to be
involved in the response to AKI [38].

The link between endothelial cells and inflammation is also suggested by CD169+

monocytes/macrophages that counteract the inflammatory response induced by intercellular adhesion
molecule-1 (ICAM-1) expression after ischemic AKI [58]. Because they regulate inflammation,
neutrophils infiltration, and because of their paracrine effects on tubular epithelial cells, macrophages
can play an important role as determinants of AKI outcomes. Two populations of macrophages have
been proposed by in vitro studies on behalf of their chemokine receptor repertoire: Pro-inflammatory
or M1-subtype (interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α)) and anti-inflammatory or
M2-subtype (arginase, mannose receptor, IL-10, and IL-4 receptor-α), the first classically activated and
the latter alternatively activated [59]. Despite being recently revised in regards to these two populations’
in vivo behavior [60,61], this classification has been useful to identify different responses after acute
injury in the kidney and a putative role for these cells in disease progression [28]. Macrophages have
contrasting roles in renal injury and repair, first increasing the number of M1-polarized cells and
then switching to an M2 phenotype supporting epithelial cell repair. Indeed, the depletion of M2
macrophages in mice with established AKI has resulted in prolongation of renal injury [62].

In a post-ischemic transgenic murine model, IL-1 receptor-associated kinase-M (IRAK-M),
specifically expressed by monocyte/macrophages, has been demonstrated to influence the progression
of AKI to CKD. IRAK-M expression induces the healing phase by inhibiting the toll-like receptor
(TLR) and IL-1 receptor signaling, resolving TNF-α-dependent inflammation, and dampening the M1
pro-inflammatory response, all of which have been found to allow for improved functional recovery
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and structural regeneration [26]. Macrophages also participate in endogenous repair by secreting
cytokines, such as IL-22, and providing ligands for retinoic acid (RA) and Wnt/β-catenin. In an
ischemia-reperfusion injury (IRI) transgenic murine model, the administration or overexpression of
IL-22 has been found to preserve renal function by increasing signal transducer and transcription factor
3 (STAT3) and protein kinase B (Akt) phosphorylation in proximal tubular epithelial cells, upregulating
anti-apoptotic genes (e.g., Bcl-2), and downregulating pro-apoptotic genes (e.g., Bad) [63]. Retinoic acid
(RA) signaling, activated in macrophages and tubular epithelial cells within hours of injury, has been
found to reduce macrophage-dependent injury and fibrosis after AKI [64]. In zebrafish and murine
models, the activation of RA signaling between epithelial cells and macrophages after AKI has been
found to limit the injury extent by promoting the activation of M2 macrophages and tubular epithelial
cell repair [64]. Wnt/β-catenin is another important pathway in recovery from AKI. Its activation
by macrophages has been found to stimulate repair [65], and its early intervention is required to
minimize renal damage after AKI in the initial phase [66]. However, its persistent activation and
Wnt1 overexpression have been shown to play a role in progression to CKD through uncontrolled
fibroblasts activation and inflammation [66,67]. Therefore, while important in facilitating repair after
AKI, the presence of macrophages is also correlated with fibrosis and adverse outcomes. Moreover, the
reciprocal expression of colony-stimulating factor-1 (CSF-1) and its receptor between macrophages
and tubular epithelial cells could enhance cell proliferation and stimulate the anti-inflammatory M2
subtype [68]. Interestingly, to highlight the complexity of the interplay between these cells upon
injury, IL-34 produced by injured TECs may have a pro-inflammatory ability despite sharing the same
macrophage receptor of CSF-1 [69].

After the initial phase of injury, early inflammation is followed by the infiltration of circulating
immune cells (T- and B-cells) attracted by cytokines and damage-associated molecular patterns
(DAMPs) released by injured cells [27]. While interacting with activated monocytes/macrophages,
injured TECs, and endothelial cells, DAMPs participate in the development of a pro-fibrotic milieu
which activates pericytes to proliferate and evolve into myofibroblasts, thereby inducing matrix
deposition, renal fibrosis, and CKD [70]. In contrast, a subset of regulatory T-cells (Treg) may act like
self-tolerance inducers and suppress inflammation by enhancing immune homeostasis [71]. Together
with their positive effects, Treg depletion has been shown to aggravate ischemic AKI [72]. Interestingly,
the protective role of CD4+ and CD8+ T-cells in a murine model of toxic nephropathy (aristolochic acid
nephropathy) has recently been described after treatment with selective monoclonal antibodies [73].
Concerning B-cells, immunoglobulins production, antigen presentation, and subsequent complement
activation have been described as possible contributors to the progression from acute to chronic renal
injury [74].

2.3. Fibrosis

Several obstructive, ischemia-reperfusion and nephrotoxic animal models have investigated
the link between AKI and CKD by focusing on the development of interstitial fibrosis [31–33].
Myofibroblasts, whether derived from activated resident fibroblasts or from pericytes, are responsible
for extracellular matrix (ECM) production, with the deposition of collagens, fibronectins and other
glycoproteins, which, together with TGF-β, contribute to fibrosis [32,75]. The expression of α-smooth
muscle actin (α-SMA), usually confined to the vascular compartment, and platelet-derived growth
factor receptor-β (PDGFR-β), identifies these cells in the interstitium of injured kidneys [75]. A number
of studies have consistently linked peritubular capillaries rarefaction, pericytes detachment, interstitial
hypoxia and tubular epithelial injury as triggers of renal fibrosis [21,50]. In particular, whereas an
ischemic injury could be responsible for capillary rarefaction and pericyte detachment, pericyte loss
could be a trigger for endothelial damage and capillary rarefaction followed by tubular epithelial injury
and fibrosis [50]. Though the severity of interstitial fibrosis in renal biopsies has been recognized as
the major prognostic factor for CKD/ESRD, fibrosis has been considered a self-sustaining process [76],
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and a causal relationship between ECM deposition, fibrosis and chronic kidney injury has not yet
been identified.

Recent studies have suggested that fibrosis could also be beneficial for the healing processes [34].
During repair from experimental AKI, tubules that fail to recover become atrophic, and fibrosis
surrounds them in well-demarcated areas that separate the injured parenchyma from restored or not
injured tubules [34]. In this view, fibrosis is itself essentially a self-limiting repair process that restricts
injury, and it is not autonomously progressive. Indeed, many other experimental data do not support
a major role of self-perpetuating tubulointerstitial fibrosis in the transition from AKI to CKD and
highlight that progressive renal fibrosis requires additional injuries—unless primary interstitial disease
is itself the triggering factor for fibrosis [23,77]. Recently, in a transgenic mouse model expressing
diphtheria toxin receptor on renal fibroblasts, Nakamura et al. showed that fibroblasts depletion
could worsen the expression of tubular injury markers, with a marked increase after unilateral
ureteral obstruction [33]. While the transition of resident fibroblasts to myofibroblasts has been
described to trigger fibrosis [78], myofibroblasts can also acquire retinoic acid-production ability—lost
by the injured tubular epithelial cells—supporting epithelial integrity and repair [33] and dampening
pro-inflammatory macrophages [64]. In the aged kidney, the ability of resident fibroblasts to support
repair is less pronounced [79].

Altogether, a deeper understanding of the cellular and molecular pathways involving fibrosis in
different types of acute kidney injury will be of great importance for the development of therapeutic
strategies to halt the progression of AKI to CKD [80,81].

2.4. Tubular Epithelial Injury

The most sensitive cells to acute ischemic and nephrotoxic injury are the proximal S3 segment
tubular epithelial cells of the outer stripe of the outer medulla due to their intense workload, high
metabolic demand, and limited capacity for anaerobic energy production [82]. In fact, this region
accounts for a unique microvascular environment which is extremely vulnerable to hypoperfusion,
renal hypoxia, and mitochondrial damage [82,83]. Recently, a shift from a victim to the driving force of
the AKI-to-CKD transition has been proposed for the tubular epithelial cell [35]. Indeed, injured TECs
have been shown to act as drivers of both inflammation and fibrosis. They produce a large variety of
cytokines (e.g., IL-6, IL-1β, and TNF-α), thereby gaining a pro-inflammatory phenotype and directly
influencing macrophage behavior [84,85], and they are an important source of chemokines—via several
pathways including STAT signaling and TGF-β signaling—adhesion molecules and reactive oxygen
species [35]. Traditionally, injured TECs have been thought to undergo a process of dedifferentiation, a
partial epithelial–mesenchymal transition (EMT) [86,87], i.e., the de novo expression of mesenchymal
marker such as vimentin in TECs [88] induced by the injury-mediated reactivation of snail family zinc
finger 1 (Snail1) [89,90]. This transient dedifferentiation is also characterized by the re-expression of
developmental genes such as Pax2 and cell cycle markers such as proliferating cell nuclear antigen
(PCNA)—thus suggesting extensive proliferation—followed by a loss of mesenchymal markers, which
has been interpreted as re-differentiation into fully viable epithelial cells [91,92]. This extensive
proliferative ability could be responsible for rapid repair upon acute injury.

This proliferative capacity is thought to explain why young and mildly injured patients regain
normal (or near-normal) renal function within days from acute injury, regardless of etiology. According
to this view, the kidney’s reparative potential is counterbalanced by maladaptive repair, as if they are
on a balance pan. Shifting from proliferation to maladaptive repair would explain disease progression.
In one toxic and one obstructive nephropathy models, Yang et al. demonstrated a causal association
between cell cycle arrest and fibrosis [93]. Due to abnormal repair processes, TECs can become atrophic
and gain a pro-fibrotic phenotype after AKI. G2/M-arrested TECs may activate the JNK signaling
to induce the production of pro-fibrotic cytokines (e.g., TGF-β and connective tissue growth factor
(CTGF)) [22]. Altogether, whereas favorable cell cycle events could be responsible for repair, cell
cycle arrest could determine the progression of injury. Dysregulated and inefficient (i.e., maladaptive)
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tubular repair has been related to the persistence of an inflammatory milieu, ECM deposition and
subsequent tubular cells convergence towards a pro-fibrotic and senescent phenotype [94]. Indeed,
dedifferentiated TECs acquire pro-fibrotic characteristics that elicit CKD progression [23].

An alternative pathophysiological interpretation of cell cycle events after acute injury has recently
been proposed [95,96]. Indeed, several studies have recently pointed toward the existence of a scattered
population of undifferentiated, self-renewing, renal progenitors with the ability to regenerate fully
differentiated TECs rather than acquire a dedifferentiation state [97–102]. After their identification in
the human kidney, further studies were able to provide detailed characterization in both humans and
mice [100] and to identify these cells as a source of tubular regeneration after AKI [103]. This strategy
for kidney regeneration appears to be highly conserved across species [104] and involved in kidney
development, maintenance, and regeneration [105]. New experimental evidence provided by lineage
tracing studies has strengthened the concept that tubular epithelial cell regeneration is mostly due to a
scattered progenitors’ population rather than to the majority of remnant cells [95]. Renal progenitors
are more numerous in the proximal tubule S3 segment, the segment which is more sensitive to
ischemic and nephrotoxic injury and from where tubular cells detach in large numbers, thus explaining
the high proliferation of tubular epithelial cells observed in this area (Figure 2) [95]. The intense
immunoreactivity of nuclear proliferation markers (such as proliferating cell nuclear antigen-PCNA and
Ki-67) has also been observed after acute injury in the proximal tubule S2 segment and other uninjured
areas of the nephron [88,106]. Regardless, although such cell cycle markers confirm the cell’s entry in
the cell cycle, they do not entail its completion with the formation of two new differentiated daughter
cells. Thanks to simultaneous cell cycle phase lineage tracing analysis and DNA content measurement
with FUCCI (fluorescent ubiquitination-based cell cycle indicator) technology, it has been shown that
the majority of remnant TECs do enter the cell cycle, but they undergo endoreplication-mediated
hypertrophy (Figure 2). Endoreplication is an evolutionary conserved cell cycle program by which
cells replicate their genome without division, resulting in polyploid cells (i.e., polyploidization).
Polyploidization increases the gene copy number in response to the need to quickly support increased
functional requests for a higher metabolic output while persistently maintaining differentiated and
specialized cell functions. This permits hypertrophy and function recovery [95,96].

In mammals, endoreplication-induced polyploidy has been observed in multiple tissue and
organs (including the skin, placenta, liver, and blood) during normal development and under stressful
conditions [107]. In the kidney, tubular cell polyploidization has frequently been observed in the
proximal convoluted tubule S2 segment that is not directly injured during ATN (Figure 2). Accordingly,
a new interpretation could follow: i) AKI causes TEC loss; ii) a small subset of progenitor cells showing
resistance to death and proliferative ability are responsible for parenchymal regeneration; and iii)
remnant TECs enter the cell cycle but undergo endoreplication-mediated polyploidy rather than
mitosis, thus rapidly compensating for function loss [95].

According to this new hypothesis, the physiological response to AKI could imply a limited
regeneration mediated by scattered renal progenitors and a polyploidization response by remnant
TECs [96]. Polyploid TECs do not truly reconstitute parenchymal loss; thus, they might be a marker of
irreversible loss and elicit progression towards chronic disease. In this view, a response to AKI is a
costly process which cannot endlessly repeat without any consequence; rather, the tubular epithelium
is more susceptible to further damage after every hit, better mirroring the clinical spectrum of the
AKI-to-CKD transition.
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Figure 2. A new pathophysiological interpretation of tubular response to AKI leading towards CKD:
The proliferation of renal progenitors and polyploidization of tubular cells. (A) Schematic localization
of renal progenitors scattered along the S1–S2 segment, the S3 segment, and thick ascending limb (TAL)
in the nephron. (Figure modified from Lazzeri et al., Trends Mol Med, 2019); (B) Top: In the uninjured
proximal tubule S1–S2 segment, tubular epithelial cells enhance their working capacity by entering
the cell cycle to increase their DNA content without division, resulting in polyploid tubular cells (i.e.,
polyploidization). Bottom: In the necrotic proximal tubule S3 segment, renal progenitors proliferate
and complete cell division to drive regeneration, while the remnant tubular epithelial cells undergo
polyploidization rather than mitosis. ATN: Acute tubular necrosis.

3. Conclusions

A tight link between AKI and CKD is now becoming evident, both in the clinical and experimental
settings. AKI severity, duration and frequency are associated with the development of CKD, but even
mild episodes are associated with an increased risk of disease progression. Recent experimental findings
have provided new insight into the cellular and molecular mechanisms of the AKI-to-CKD transition;
these experiments have been trying to unveil the relative contribution of endothelial dysfunction,
immune cell response, pericytes and fibroblasts activation. Regardless of the AKI etiology, endothelial
dysfunction and subsequent hypoxia (as well as death of tubular cells from a toxic injury) trigger a
cascade of self-sustaining events involving myofibroblast activation derived from resident fibroblasts
or pericytes, extracellular matrix deposition, and interstitial inflammation. The overall view has shown
that all the molecular and cellular mechanisms converge to the tubular epithelial cell dysfunction.
Indeed, the lack of recovery of the tubular structure’s integrity sustains the above-mentioned events,
thus promoting the progression of interstitial injury. The direct increase in the risk of CKD development
and progression, which mirrors the severity of the acute episode, suggests a causative role of the
final effector of acute function loss, i.e., epithelial cell injury. In several highly specialized organs,
widespread parenchymal proliferation is likely to be a counterproductive strategy. Indeed, the mitosis
and cytokinesis of highly specialized parenchymal cells determines a temporary loss of function that
might become critical for the organ’s survival. It is now becoming evident that, to minimize the mitotic
ability of specialized parenchymal cells without losing their functional performance, evolution has
selected an alternative type of response: Hypertrophy via polyploidization.
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The biological rationale for increasing genome content through polyploidization could be to
increase cell size and to facilitate amplified cell metabolism so that polyploid cells could sustain acute
organ function recovery. Renal progenitor cells instead, thanks to their clonogenic ability, could be
responsible for the true tissue regeneration and structural recovery of the necrotic S3 segment of the
proximal tubule in affected nephrons, as highlighted by lineage tracing studies. Overall, these results
suggest that injured tubules respond to ATN through two main mechanisms: The polyploidization
of tubular cells and the proliferation of renal progenitors. New advances in the understanding of
the biology and pathophysiology of epithelial tubular cells, renal progenitors, and their adaptation
mechanisms will permit the better characterization of functional recovery after AKI and the tracing of
the cascade of events leading towards CKD.
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