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We study the relation between the microscopic structure and dynamics and the macroscopic rheological response of glass-
forming colloidal suspensions, namely binary colloidal hard-sphere mixtures with large size asymmetry (1 : 5) that span a large
range of mixture compositions close to the glass transition. The dynamical shear moduli are measured by oscillatory rheology
and the structure and dynamics on the single-particle level by confocal microscopy. The data are compared with Brownian
Dynamics simulations and predictions from mode-coupling theory based on the Percus-Yevick approximation. Experiments,
simulations and theory consistently observe a strong decrease of the intermediate-frequency mechanical moduli combined with
faster dynamics at intermediate mixing ratios and hence a non-monotonic dependence of these parameters but a localization of the
large particles which decreases monotonically as the fraction of small particles is increased. We find that the Generalized-Stokes
Einstein relation applied to the mean square displacements of the two components leads to a reasonable estimate of the shear
moduli of the mixtures and hence links the rheological response to the particle dynamics which in turn reflects the microscopic
structure.

1 Introduction
Dense colloidal suspensions show complex transport phenom-
ena and nontrivial rheological properties1,2. If crystalliza-
tion is avoided (for example due to size polydispersity), the
approach to the glass transition causes an increasingly slow
structural relaxation. The rheological signature of this is vis-
coelasticity3: for an increasingly large time window of the
transient elastic response, the dynamical shear modulus G(t)
remains close to a constant value G∞, the Maxwell plateau
modulus. Only on a time scale τ that grows rapidly as one
approaches the glass transition, G(t) decays to zero and in-
dicates a viscous response. In the corresponding frequency-
dependent storage and loss moduli, G′(ω) and G′′(ω), low-
frequency viscous behavior (G′′(ω) ∝ ω and G′(ω) ∝ ω2 for
ωτ � 1) is followed by an elastic regime (G′(ω) > G′′(ω)
and both nearly constant) at higher frequency.

Glass-forming binary mixtures have attracted growing in-
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e División de Ciencias e Ingenierı́as, Universidad de Guanajuato, Loma del
Bosque 103, 37150 León, Mexico. Email: mlaurati@fisica.ugto.mx
‡These authors contributed equally to this work

terest recently4–11. This is because mixing effects can dras-
tically alter the viscoelastic response of glass-forming sys-
tems. If the constituents are different enough, glasses may
occur where only one component forms a solid matrix, while
the other component undergoes long-range motions4–15. This
links these binary systems to paradigmatic statistical-physics
models for transport in heterogeneous media, such as the
Lorentz gas16,17. As a consequence, an interplay arises be-
tween two distinct types of dynamical transitions18, namely
the glass transition and a dynamical localization transition of
the mobile, small species. The regime where both transitions
are close to each other, i.e., where the smaller species remains
mobile but each component significantly alters the structure
and dynamics of the other19,20, is of special interest because
it reflects situations in realistic applications, from cellular flu-
ids21 to complex materials for energy storage18, much better
than the idealized Lorentz-gas model. This in particular ap-
plies to the mechanical properties of such systems, which are
determined both by the crowding imposed on the small parti-
cles and by the transient rigidity of the matrix12–15.

Here we investigate the linear rheology of binary glass-
forming mixtures of hard spheres. This extends our pre-
vious experimental studies on the nonlinear rheology of bi-
nary mixtures12–15 and theoretical work on shear moduli
in two-dimensional model glass formers.22 We determine
the mechanical properties upon changing the composition
at fixed overall volume fraction. This reveals a change in
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the frequency-dependent dynamical shear moduli, the stor-
age modulus G′(ω) and the loss modulus G′′(ω), by orders
of magnitude. Using confocal microscopy and Brownian
Dynamics computer simulations, we relate this pronounced
change in the shear moduli to the local structure and dynamics
as quantified by the radial distribution function, static struc-
ture factor, distribution of Voronoi volumes and mean-squared
displacement. The shear moduli are quantitatively linked to
the microscopic dynamics by the Generalized Stokes-Einstein
(GSE) relation. Both, experiments and simulations, are in
qualitative agreement with predictions of mode-coupling the-
ory (MCT).

2 Methods

The composition of binary hard-sphere mixtures is described
by three control parameters, namely the size ratio δ = ds/dl ≤
1 between the diameters of the small, ds, and large particles,
dl, the total volume fraction ϕ , and the composition xs =ϕs/ϕ ,
with the volume fraction of small spheres ϕs. Then, the total
number density n of a binary sample is given by n= 6ϕ/(π d̄3)
with d̄3 = d3

l /(1− xs + xs/δ 3). Together with the thermal en-
ergy kBT , this fixes the natural unit of the mechanical moduli,
nkBT .

2.1 Experiment

Suspensions of poly-methylmethacrylate (PMMA) particles
sterically stabilized with a layer of polyhydroxystearic acid
(PHS) were prepared in a mixture of cycloheptyl bromide
(CHB) and cis-decalin that closely matches the density and re-
fractive index of the colloids. In the CHB/decalin solvent mix-
ture, the particles acquire a small charge which was screened
by adding 4mM tetrabutylammoniumchloride23. This sys-
tem shows almost hard-sphere behaviour. The large par-
ticles were fluorescently labeled with nitrobenzoxadiazole
(NBD). Binary colloidal mixtures with size ratio δ ≈ 0.2,
fixed total volume fraction ϕ = 0.58 and different mixing
ratios, quantified by xs, were prepared starting from one-
component suspensions. Those were obtained by diluting a
sediment of large particles of mean size dl = 1.76± 0.02 µm
(polydispersity 0.06) and small particles of mean size ds =
0.350± 0.004 µm (polydispersity 0.15), respectively. For
the rheological measurements, samples with δ ≈ 0.38 were
also prepared from suspensions with dl = 0.72± 0.01 µm
(polydispersity 0.14) and ds = 0.27± 0.01 µm (polydisper-
sity 0.12). The values of the diameter and polydispersity of
the particles were determined from the angular dependence
of the scattered intensity and the diffusion coefficient ob-
tained by means of static and dynamic light scattering on
a very dilute colloidal suspension (ϕ ' 10−4), respectively.

The average polydispersity of the mixture can be obtained

as σ =
√

[ξs〈d2
s 〉+(1−ξs)〈d2

l 〉]/[ξs〈ds〉+(1−ξs)〈dl〉]2−1,
with ξs = Ns/N the number fraction of small particles, being
Ns the number of small particles and N the total number of
particles in a mixture. The quantity σ presents a maximum
value at xs ≈ 0.038 for δ = 0.2 and at xs ≈ 0.13 for δ = 0.38.

To estimate the random close packing density, a sediment of
the large particles with dl = 1.76 µm was diluted to a volume
fraction ϕ ' 0.4 and imaged by confocal microscopy. The im-
aged volume was partitioned into Voronoi cells and the mean
size of the Voronoi volume per particle calculated. The ratio
of the mean particle volume to the mean Voronoi volume was
taken as an estimate of the volume fraction of the sample. This
was found to be ϕ = 0.43 which implies a volume fraction of
the sediment ϕ

(rcp)
l = 0.68. This is close to ϕ

(rcp)
l = 0.65, as

predicted by simulations for the current polydispersity24. The
small spheres were too small to be imaged (and hence also not
fluorescently labeled). Thus their volume fraction was chosen
to match the rheological response of the large particles. The
volume fraction of the small particles was adjusted by suc-
cessive dilutions until the shear moduli normalized by nkBT
matched the ones of the large particles. Although their lin-
ear viscoelasticity is identical within experimental uncertainty,
their volume fractions are slightly different since the samples
have different polydispersities. Thus the total volume fraction
ϕ slightly depends on the composition, i.e. xs. Furthermore,
the value of ϕ is known to have some uncertainty25.

Rheology measurements were performed with an
AR2000ex stress controlled rheometer (TA Instruments)
using a cone and plate geometry with 20mm diameter, 2◦

cone angle and 0.054mm gap size. A solvent trap was used
to minimize solvent evaporation. The temperature was set
to 20◦C and controlled within ±0.1 ◦C via a Peltier plate.
The effects of sample loading and aging were minimized by
performing standard procedures. Directly after loading, a
dynamic strain sweep was performed, i.e. we applied an oscil-
latory shear with a frequency ω = 1rad/s and an increasing
strain amplitude until the sample was shear melted. Further-
more, to start with a reproducible initial state, before each
measurement, flow of the sample was induced by oscillatory
shear at a strain amplitude γ = 300%. Shear was applied for
the time needed to achieve a steady-state response indicating
flow, i.e. for G′(ω) and G′′(ω) to become time-independent,
typically 200s. Subsequently, the linear viscoelastic moduli
were measured at 0.1% ≤ γ ≤ 0.5% (depending on sample)
as a function of time to monitor reformation of the structure,
until the moduli reached a time-independent value, i.e. a
reproducible initial state of the sample. The time needed
to reach this state (between 100s and 900s, depending on
sample) was set as the waiting time before commencing a
new measurement after the large amplitude oscillatory shear
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test.
Confocal microscopy experiments were performed using a

VT-Eye confocal unit (Visitech International) mounted on a
Nikon Ti-U inverted microscope. Stacks of slices of 512×512
pixels, corresponding to a size of the x–y plane of about 50×
50 µm2, were acquired using a 100× Nikon Plan-Apo VC oil-
immersion objective and a laser with λ = 488nm. Each stack
was composed of 101 slices which were 0.2 µm apart in z-
direction, leading to an imaged volume of approx. 50× 50×
20 µm3 per stack. Stacks were acquired at a depth of about
30 µm from the coverslip. The time needed to acquire one
stack was approximately 3.8s. Typically, 10 different volumes
were imaged for each sample and time series of 100 stacks
per volume obtained to follow the dynamics of the samples.
The stacks were analyzed to extract particle coordinates and
trajectories using standard routines26. Before each confocal
microscopy experiment was performed, samples were shaken
and the measurements were started after a waiting time equal
to that used in the rheological measurements to start from a
reproducible initial state. Possible effects of aging occurring
during the measurements are assumed to be negligible.

2.2 Simulations
We performed Brownian Dynamics simulations of hard sphere
binary mixtures. They are based on the Langevin equation

m·d
~U

dt
= ~FB +~FH +~FP (1)

where m is the generalized mass/moment of inertia tensor, ~U
is the particle translational/rotational velocity vector, ~FB is the
Brownian force, ~FH is the viscous drag and ~FP is the deter-
ministic non-hydrodynamic force27,28. Since the mass of col-
loidal particles is very small and the Reynolds number is much
smaller than 1, the left hand side of Eq. 1 tends to zero. The
Brownian force ~FB is defined by

〈~FB(t)〉= 0 (2)

〈~FB(t)~FB(t+τstep)〉= 2kBT (3πηsd)Iδ (τstep) (3)

for translational processes29. Here 〈...〉 denotes an average
over all fluctuations, ηs the solvent viscosity, I the isotropic
tensor, τstep is the time interval of each step and δ is the Dirac
delta function. The hydrodynamic force,

~FH =−3πηsd(~U−〈~U〉) (4)

is considered as a simplified Stokes drag for an isolated parti-
cle where 〈~U〉 is the externally imposed flow field at the par-
ticle center. The interactions between the particles are intro-
duced through the deterministic non-hydrodynamic force vec-
tor ~FP = ~FHS reflecting the hard sphere interaction potential28.

In our simulations, it is implemented using a potential-free
algorithm30, which has been exhaustively used previously to
simulate concentrated colloidal suspensions at rest and under
shear28,31–34. If, after an affine (due to shear) and a random
(due to Brownian motion) displacement, particles i and j, with
diameters di and d j respectively, have come to overlap with an
interparticle separation ∆s, the hard sphere force is given by

~FHS
i( j) = 3πηsdi( j)

∆~ri( j)

τstep
(5)

where ∆~ri( j) is the distance that the particle i (or j) should
be moved back to avoid overlap and puts the two particles at
contact and the time τstep is chosen based on the motion of the
small particles. Here it is

∆~ri( j) =
d j(i)

di +d j

(
∆s−

di +d j

2

)
~̂r H

(
di +d j

2
−∆s

)
(6)

where the prefactor d j(i)/(di+d j) accounts for the polydisper-
sity, ~̂r is the unit vector connecting the centers of the particles
i and j and H is the Heaviside function. The simulation box
is simultaneously divided into small and large cubic cells with
the length of each cell identical to the small and large particle
radius, respectively. The small particle and large particle cell
lists are separately identified in each time step. Then the algo-
rithm steps through the small and large cells in order to iden-
tify overlaps between small and large neighbors respectively.
The overlaps of small and large particles are evaluated when
stepping through the large cells only. The advantage of this
procedure is threefold: the code efficiently identifies neigh-
bors, avoids omitting particles during the removal of overlaps
and saves computation time by avoiding repetitions in finding
particle overlaps.

The total stress ΣΣΣ is calculated based on the interparticle
forces during each collision. Then the bulk stress is defined as
total stress per unit volume28

〈ΣΣΣ〉=−〈p〉 f I−nkBT I−n〈~x~FHS〉+2ηs(1+
5
2

ϕ)〈E〉 (7)

where 〈p〉 f is the average fluid pressure, −nkBT is the
isotropic pressure due to Brownian motion, 〈~x~FHS〉 repre-
sents the rheological contribution of the stress tensor and
2ηs(1+ 5

2 ϕ)〈E〉 is the hydrodynamic contribution to the stress
that reduces to the single particle Einstein correction where
〈E〉 is the rate of strain tensor. Thus the scaled dimensionless
shear stress is Σxy, one of the components in the stress tensor,
corresponding to the summation of all interparticle distances
moved when fixing particle overlaps and collisions, i.e.

Σxy =−
n

τstep N

N

∑
i=1

rx
i ∆ry

i (8)
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where rx
i is the x-component of the position and ∆ry

i is the y-
component of the displacement of particle i.

The simulations were performed with size ratio δ = 0.2 and
volume fraction ϕ = 0.58 to mimic the experimental parame-
ters. Periodic boundary conditions were used in order to avoid
wall effects and reduce finite size effects. To avoid crystalliza-
tion, for xs ≥ 0.9 the polydispersity of the small particles was
chosen to be 0.10, drawn from a discrete Gaussian distribu-
tion, while the large particles were monodisperse for all com-
positions. For xs = 1, the number of particles was N = 15,000,
whilst N = 50,000 for other values of xs. In all the above
cases, the particles where initially randomly placed and al-
lowed to equilibrate for a minimum of 100τ0, i.e. 106 τstep,
where τ0 = d2

i /D0
i with D0

i = kBT/(3πηsdi) the free diffusion
coefficient. The equilibration was considered completed once
the average osmotic pressure had reached a steady state value.
It was checked that this was fulfilled before microscopic struc-
tural and dynamical information was gathered and shear tests
performed.

2.3 Theory

The mode-coupling theory (MCT)35 describes the dynam-
ics of dense liquids in terms of density correlation func-
tions. For a mixture of N particles with species labeled by
Greek indices, the basic quantity is the collective density
correlator Φαβ (q, t) = 〈ρα(~q, t)∗ρβ (~q,0)〉, where ρα(~q, t) =

∑
Nα

k=1 exp[i~q ·~rα,k(t)] are the density fluctuations to wave vector
~q of the Nα = x̃α N particles of species α . The theory assumes
that the system remains homogeneous and isotropic.

In the MCT framework, one derives an approximate equa-
tion of motion for Φαβ (q, t) that embodies slow dynamics
through a Mori-Zwanzig memory kernel. For overdamped
colloidal dynamics without hydrodynamic interactions,

τ
0(q)∂tΦ(q, t)+S(q)−1

Φ(q, t)

+
∫ t

0
M(q, t−t ′)∂t ′Φ(q, t ′)dt ′ = 0 (9)

in obvious matrix notation, τ0
αβ

(q) = 1/(q2D0
α)δαβ is a di-

agonal matrix of short-time diffusion coefficients and S(q) =
Φ(q,0) is the matrix of partial static structure factors. The
equation is closed in MCT by

Mαβ (q, t) =
n

2q2x̃α x̃β

∫ d3k
(2π)3 ∑

γδλ µ

Vαγδ (~q,~k)Φγλ (k, t)×

×Φδ µ(p, t)Vβλ µ(~q,~k) , (10)

where p = |~q−~k|. The vertices are given in terms of the static
structure functions; introducing the direct correlation function

matrices c(q) = (X−1− S−1(q))/ρ (with Xαβ = x̃α δαβ ), we
use

Vαα ′α ′′(~q,~k) = δαα ′′(~q ·~k)cαα ′(k)/q

+δαα ′(~q ·~p)cαα ′′(p)/q . (11)

Here, static triplet correlation functions have been neglected.
For details, we refer to the literature36,37.

In studying self-diffusion, also the tagged-particle density
correlation function φ s

α(q, t) = 〈ρs
α(~q, t)

∗ρs
α(~q,0)〉 is of inter-

est, where ρs
α(~q, t) = exp[i~q ·~rs

α(t)] is the density fluctuation of
a tagged particle of species α . In the limit q→ 0 one obtains
an expression for the mean-squared displacements (MSD),
δ r2

α(t), of a particle of species α ,

∂tδ r2
α(t)+

d
dt

∫ t

0
m̂s

α(t−t ′)∂t ′δ r2
α(t
′)dt ′ = 6D0

α . (12)

Here, m̂s
α(t) is a memory kernel derived from the one deter-

mining tagged-particle correlation functions. In particular, for
liquid states its integral is finite, so that asymptotically for long
times δ r2

α(t) ∼ 6Dα t with the long-time self-diffusion coeffi-
cient of species α

Dα =
D0

α

1+D0
α

∫
∞

0 m̂s
α(t)dt

. (13)

In the ideal glass, MCT predicts the MSD to saturate,
∆r2

α(t)→ 6r2
loc,α , indicating particle localization to within a

typical localization length given by rloc,α = 1/
√

m̂s
α(t→ ∞).

In the MCT approximation the collective density correlation
functions determine the dynamical shear modulus through the
q→ 0 limit of the memory kernels appearing in the equation
of motion,

G(t) = nkBT lim
q→0

∑
αβ

x̃α MT
αβ

(q, t)x̃β . (14)

Here, MT(q, t) is the transverse-force memory kernel obtained
by replacing in M(q, t) the vector ~q by a vector ~qT perpen-
dicular to ~q and of equal length. In the liquid, integration of
Eq. (14) over time yields the shear viscosity.

MCT describes the transition to an ideal glass state, char-
acterized by a non-decaying contribution of the density cor-
relation functions, called nonergodicity parameters. With
limt→∞ Φ(q, t) = F(q), a positive definite matrix in the ideal
glass, also the long-time limit of the shear modulus becomes
finite, limt→∞ G(t) = G∞. This is the Maxwell plateau mod-
ulus. Close to the glass transition, but on the liquid side, a
slow final decay from G∞ to zero is seen whose time scale
is increasing as one approaches the transition. This approach
hence causes visco-elastic behavior that is typically quantified
by the Fourier transformed complex shear modulus G(ω) =
G′(ω)+ iG′′(ω).
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Equations (9) to (12) were solved numerically using a well
established scheme36. The time-domain equation is solved on
a blockwise regular grid, with a step length that is doubled
every time a new block is entered. This allows to cope with
slow relaxation functions that vary on logarithmic time scales.
Wave numbers are discretized according to qi = (i+ 1/2)δq
with δq = 0.4/dl and i = 1, . . .1000. This ensures that the
shear moduli in the glass, calculated from Eq. (14) as t → ∞,
obey the expected scaling with the particle number density
when crossing over from xs = 0 to xs = 1. The frequency-
dependent shear moduli were obtained from a Fourier trans-
form of the time-domain solution by a simple trapezoidal
method38.

For the static structure factors needed to evaluate the MCT
vertices, we resort to the Percus-Yevick (PY) approxima-
tion39,40. We will refer to the combination of both approx-
imations as PY-MCT in the following. Despite its known
deficiencies, the PY approximation has the advantage of be-
ing parameter-free and available in analytical form. Still, the
quality of this approximation for binary mixtures and in the
parameter range required by MCT, is largely unknown. Our
experiments allow some test of the structure-factor input, as
detailed below. Yet, the influence of approximation errors in
the PY closure on MCT is difficult to estimate.

A well-known error of MCT is in the determination of
the glass-transition volume fraction. For monodisperse hard
spheres, PY-MCT predicts ϕc ≈ 0.516 for the transition point,
while experiments suggest ϕc ≈ 0.58. In order to quantita-
tively compare the dynamic moduli and other dynamical quan-
tities close to the transition, we thus adopt the usual procedure
of using an effective shifted volume fraction in the MCT cal-
culations. Unless noted otherwise, we will compare our exper-
imental data at ϕ = 0.58 with PY-MCT results for ϕ = 0.515.

3 Results and Discussion

3.1 Quiescent Particle Arrangement

The structure of mixtures with different compositions is visu-
alized through snapshots obtained from confocal microscopy
and simulations (Fig.1). The successive dilution of the large
particles can be appreciated in both confocal and simulation
snapshots. At small values of xs the large particles are sur-
rounded by many other large particles. In contrast, at large xs
the small particles closely surround the large particles.

These qualitative observations can be supported by a more
quantitative analysis of the structure of the mixtures, in partic-
ular using the radial distribution function

g(r) =
N(r)

4πr2∆rshn
, (15)

Fig. 1 Confocal microscopy images (left) and simulation snapshots
(right) of samples with total volume fraction ϕ = 0.58, size ratio
δ = 0.2 and different relative volume fractions of small particles, xs,
as indicated. Note that only small parts of the confocal images are
shown to match the sizes of the particles in the simulation snapshots.
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where N(r) is the number of particles in a thin shell of thick-
ness ∆rsh at distance r from a selected particle. The same in-
formation is contained in the static structure factor

S(q) = Φ(q,0) =
1
N

N

∑
j=1

N

∑
k=1

e−i~q·(~r j−~rk) . (16)

From a set of microscopy images, we evaluate the radial dis-
tribution function of the large particles, gll(r), and the corre-
sponding static structure factor Sll(q), whereas the arrange-
ment of the small particles is not accessible due to their small
size (and the absence of fluorescent labelling). In contrast, in
simulations gss(r) and the corresponding Sss(q) can be deter-
mined with high accuracy, but the statistics of gll(r) and Sll(q)
are poor due to the smaller number of large particles. Experi-
ments and simulations therefore complement each other.

The radial distribution functions of the large particles,
gll(r), as obtained from experiments are shown in Fig. 2a. The
gll(r) for xs = 0 is typical of a glass-forming one-component
system with size polydispersity. It shows a pronounced peak
at r ≈ dl corresponding to the first-neighbor shell and rapidly
decaying layering. The simulation data for xs = 0 are in good
agreement with the experimental results. For xs = 0.1, these
features remain essentially unchanged. Upon increasing xs
further, the height of the first-neighbour peak decreases. As
the short-range order of the large particles is destroyed, addi-
tional peaks emerge that correspond to distances r ≈ dl + ds
and dl + 2ds; peaks for further dl + mds (m = 3,4, . . .) can
be identified for xs ≥ 0.7. As more and more large particles
are replaced by small particles, it becomes more probable that
large particles are separated by small particles. Moreover, for
xs = 0.3 one also identifies a bump at r≈ 2dl+ds that replaces
the one at 2dl for lower xs. This layering beyond two large-
particle distances disappears with increasing xs.

The static structure factor of the large particles, Sll(q), re-
flects the progressive dilution of the large particles indicated
by the decreasing height of the first peak and its shift towards
smaller q (Fig. 2b). To compare Sll(q) from experiments and
simulations with predictions of the Percus-Yevick (PY) ap-
proximation, the PY approximation is based on ϕ = 0.55, i.e. a
volume fraction which is lower than the volume fraction of
the experimental and simulated systems. This is a widely em-
ployed correction for the PY approximation41. The PY ap-
proximation typically overestimates the height of the structure
factor peak compared to experimental data. The heights of
the peaks and their positions agree, except for xs = 0 where
the theoretically predicted peaks are considerably larger and
where a slight mismatch in the length scale of the oscillations
is observed. Furthermore, at small q, where S(q) is connected
to the isothermal compressibility, and large xs = 0.7 and 0.9,
the PY approximation overestimates Sll(0). Nevertheless, for
all xs, the same shift in volume fraction between experiment

0 5 10 15 20 25
0

2

4

6

8

10

  xs = 0
  xs = 0.1
  xs = 0.3
  xs = 0.5
  xs = 0.7
  xs = 0.9

  Exp
  Sim
  MCT

 

 

S ll(q
)+

10
x s

qdl

(a)

(b)

0 1 2 3 4
0

2

4

6

8

10

 

 

g ll(r)
+1

0x
s

r/dl

Fig. 2 (a) Radial distribution function of the large particles, gll(r),
obtained from confocal microscopy for total volume fraction
ϕ = 0.58, size ratio δ = 0.2 and different relative volume fractions
of small particles, xs, as indicated, shifted vertically to avoid
overlap. Open circles represent simulation data for xs = 0. (b)
Structure factor of the large particles, Sll(q), as a function of
dimensionless wave number qdl obtained from confocal microscopy
for ϕ = 0.58, δ = 0.2 and different xs, as indicated, shifted vertically
to avoid overlap. Open symbols represent simulation data for xs = 0,
0.1 and 0.3. The solid lines are Percus-Yevick results for ϕ = 0.55.

(ϕ = 0.58) and theory (ϕ = 0.55) seems to provide satisfac-
tory agreement.

The PY approximation is also able to predict radial distri-
bution functions. However, we do not include them in Fig. 2a
for two reasons: for hard spheres polydispersity effects are
much more pronounced in g(r) than in S(q) and, in addition,
for one-component systems with ϕ ≈ 0.6 the g(r) from PY
are known to violate the requirement g(r)≥ 0. The failure of
PY to reproduce gll(r) well will not affect our comparison of
the dynamical and rheological behaviour as obtained by the-
ory, simulations and experiments since we use the static struc-
ture factor as input for MCT, which is formulated entirely in
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Fig. 3 (a) Radial distribution function of the small particles, gss(r),
obtained from simulations for total volume fraction ϕ = 0.58, size
ratio δ = 0.2 and different relative volume fractions of small
particles, xs, as indicated, shifted vertically to avoid overlap.
Simulation data for xs = 0.9 and 1.0 are based on small particles
with a polydispersity of 0.10 to avoid crystallization. (b) Structure
factor of the small particles, Sss(q), as a function of dimensionless
wave number qds from simulations for ϕ = 0.58, δ = 0.2 and
different xs, as indicated, shifted vertically to avoid overlap. The
solid lines are Percus-Yevick results for ϕ = 0.55
.

the wave-vector domain. Thus, the observed agreement in the
wave-vector domain (Fig. 2b) can form the basis for a later
discussion on whether possible discrepancies between MCT
and simulation as well as experimental results are due to the
PY approximation or are intrinsic to MCT.

The radial distribution functions of the small particles,
gss(r), as obtained from simulations are shown in Fig. 3a. The
evolution of the arrangement of the small particles with in-
creasing xs evidences the progressive crowding of the small
particles, with the growth of the first peak and the appearance
and also growth of higher order peaks. For most of the samples

no peculiar structural arrangements of small and large parti-
cles can be discerned. Only for xs = 0.1 a large distance peak
at r/ds ≈ 6.5 is observed, which could be associated with a
configuration where two small particles are separated by one
large particle. This is probably the only sample where this
correlation is significant: for larger xs the number of small
spheres is so large that these configurations become irrelevant.
Note that for xs = 0.9 and 1.0 a polydispersity of the small
spheres of 0.10 is chosen to avoid crystallization, which leads
to a broader and smoother first peak.

Fig. 3b shows the small-particle static structure factors,
Sss(q), obtained from simulations. Similar to the case of the
large spheres, gss(r) and Sss(q) show the progressive crowding
of the small spheres with increasing xs, resulting in increas-
ingly pronounced peaks. A comparison with PY calculations
with ϕ = 0.55 shows satisfactory agreement. Thus, it is justi-
fied to apply this approximation also to calculate the structure
factors of the small particles and use them as input for MCT.

3.2 Voronoi Volume

In order to better quantify the local packing of the large
and small particles as a function of mixing, we construct a
Voronoi tessellation of the simulation volumes42 which yields
the Voronoi volume Vvor of each individual particle. The prob-
ability density functions of these volumes for the small and
large particles are presented in Fig. 4.

For both species, with increasing xs, P(Vvor) moves to
smaller volumes Vvor, i.e. the average Voronoi volume 〈Vvor〉
becomes smaller and hence the local volume fraction ϕloc =
(4π/3)d3

i /Vvor larger and the packing tighter (Fig. 4c). This
supports our finding that, with increasing xs, the small parti-
cles form increasingly tight cages around the large particles
but also around other small particles. The particularly tight
cage of small particles around large particles is also reflected
in the much higher local volume fraction of the large particles
as compared to the small particles.

The probability density functions of Voronoi volumes of the
large particles becomes very narrow for large xs. Interestingly,
with increasing xs the width of P(Vvor) of the small particles
first becomes narrower, up to xs = 0.7, and then broadens
again. This suggests that around xs the environment of small
particles is most homogeneous. This is consistent with the
radial distribution function gss(r) which, for xs = 0.7, shows
a modulated second peak and the most pronounced oscilla-
tions suggesting relatively high homogeneity (Fig. 3a). More-
over, the relatively pronounced peak of gll(r) at r = dl + ds
for xs = 0.7 indicates a well-developed layer of small parti-
cles surrounding each large particle whereas different arrange-
ments seem to simultaneously exist for other compositions.
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Fig. 4 Probability density function of Voronoi volumes p(Vvor)
from simulations for total volume fraction ϕ = 0.58, size ratio
δ = 0.2 and different relative volume fractions of small particles, xs,
as indicated, for (a) small and (b) large particles. (c) Mean local
volume fraction 〈ϕloc〉 of the small and large spheres as well as their
number average as a function of the composition, i.e. xs. The dashed
line indicates the total volume fraction ϕ = 0.58.

3.3 Linear Viscoelasticity

We next discuss the frequency-dependent shear moduli G′(ω)
and G′′(ω). The results are presented in terms of a dimen-
sionless frequency, Peω = 3πηsω d̄3/(kBT ), the oscillatory
Péclet number. It quantifies the ratio between the timescales
determined by the oscillatory perturbation, tω ∼ 1/ω , and
the average Brownian diffusion time 〈τ0〉. Fig. 5 shows the
xs dependence of the storage modulus G′(xs) in units of the
thermal energy per average particle volume, i.e. nkBT , at
fixed Peω = 0.4. The normalization ensures that the limiting
cases xs = 0 and xs = 1, both representing one-component sys-
tems, are characterized by about the same value, G′ ≈ 45nkBT

Fig. 5 Storage modulus G′ as a function of the total volume
fraction of small particles, xs, for size ratios δ = 0.2 and δ = 0.38
(as indicated) at fixed oscillatory Péclet number Peω = 0.4 and total
volume fraction ϕ = 0.58 (experiments and simulations) and
ϕ = 0.515 (PY-MCT). Dashed lines represent the true plateau
modulus G∞ along the PY-MCT glass transition for δ = 0.2 where
the two branches correspond to two kinds of glasses.

in the present case, by removing a trivial increase in G′ by
about a factor 110 because n varies by a factor 1/δ 3. A
pronounced minimum is seen in G′/(nkBT ) as a function of
xs. For δ = 0.2, it is lowered by more than one decade with
the minimum around xs = 0.3. Experiments and simulations
show qualitative agreement. The same trend is predicted by
PY-MCT, although the theory somewhat underestimates the
magnitude of the decrease. It is interesting to note that the
non-monotonic trend of G′(xs) can be connected to structural
changes manifested in the gll(r) of the large spheres; the cage
of large particles is first disrupted by the intercalation of small
particles and then replaced by a cage of small particles. For
δ = 0.38 the decrease is less pronounced, as previously re-
ported12, which is attributed to the reduced ability of the small
particles to penetrate the cage of large particles. Experimental
results and MCT predictions show a satisfactory agreement.

PY-MCT predicts the appearance of multiple glass states in
the present system10. If the length scales associated to amor-
phous structures formed by the large and the small particles
are sufficiently different, in a mixture of both, the transition
between the glassy structures Formed at xs = 0 and xs = 1,
respectively, is not continuous but discontinuous in the domi-
nant length scale as manifested by a discontinuous change in
the structure factor as xs is changed. In the linear rheology, this
is evidenced by a sudden change in G∞ upon increasing ϕ in
a glass at intermediate xs. In Fig. 5 (dashed lines), the values
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Fig. 6 Dynamical storage modulus G′ and loss modulus G′′ as a
function of the oscillatory Péclet number Peω for a total volume
fraction ϕ = 0.58, size ratio δ = 0.2 and different relative volume
fractions of small particles, xs, as indicated, as obtained from
experiment (filled and open diamonds and inverted triangles) and
simulations (filled and open stars). Solid and dashed lines: PY-MCT
results for ϕ = 0.515.

of the true plateau modulus G∞ in the idealized limit Peω → 0
reflect this prediction, i.e., there are two possible values in
the range 0.4 . xs . 0.7, one corresponding to lower packing
fraction and the large-particle dominated glass (dashed line
extending from xs = 0), one corresponding to higher packing
fraction and the small-particle dominated glass (line extending
from xs = 1). The repulsive glass of large particles at xs = 0
softens upon addition of small particles (the value of G∞ de-
creases with increasing xs). In contrast, the glass of small par-
ticles at xs = 1 instead stiffens upon addition of large parti-
cles. Whereas G∞(xs) shows a splitting into two branches, at
finite Peω PY-MCT predicts that the moduli show a continu-
ous variation which, as discussed previously, is in agreement
with experimental and simulated data.

A more complete understanding of the rheological effects of
mixing can be obtained from the frequency-dependent mod-
uli G′(ω) and G′′(ω), shown in Fig. 6. Overall, the G′(ω)
curves reproduce the trends discussed above in connection
with Fig. 5. The experimental data for xs = 0 and xs = 1
agree within their uncertainty after normalization (Fig. 6a),
confirming the expectation that both constituents behave as
hard spheres with a corresponding volume fraction. For xs = 0
and 0.1 we observe G′(ω) > G′′(ω) in the measured fre-
quency range, i.e. a transient elastic response. For xs = 0.3
and xs = 0.5, G′(ω) has decreased as discussed above and the
system has become softer and more fluid with G′(ω)≈G′′(ω)
in the same frequency window. Increasing xs further, a solid-
like response with G′(ω)> G′′(ω) in the measured frequency
range is recovered. Note that the range of Peω observed in ex-
periments increases with xs which is due to the larger content
of small particles with their larger energy density and conse-
quently a larger rheological signal with better statistics.

The PY-MCT and BD simulation data shown in Fig. 6 ex-
tend the experimentally accessible Peω range. They agree well
with the experimental data for xs < 0.7, whereas for xs = 0.7
and xs = 0.9 agreement is less satisfactory. PY-MCT pre-
dicts the mixture to be more strongly fluidized than observed
in our experiments which is in agreement with the stronger
elastic response seen in experiments for larger Péclet num-
bers only. In contrast, agreement with simulations is more
satisfactory, even though the moduli show a more pronounced
fluid-like response for all values of xs. The discrepancy be-
tween experimental, theoretical and simulation results at large
xs might be due to several reasons. Due to the different poly-
dispersities of the two particle species (0.06 and 0.15 for the
large and small particles, respectively), the effects of poly-
dispersity might change with xs which is neither accounted
for in the theory nor in the simulations. The different poly-
dispersities together with the adjusted equivalent rheological
response (Sec. 2.1, Fig. 6a) imply slightly different volume
fractions; the volume fraction of the smaller particles is ex-
pected to be larger. This might lead to a slight increase of the
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volume fraction with xs. PY-MCT predicts a strong decrease
with increasing xs

10. Our experimental data suggest that PY-
MCT overestimates this decrease, which might be related to
the use of the PY approximation for S(q) that becomes worse
for large xs (Fig. 2b). In addition to an xs dependence of the
volume fraction, in the experiments the absolute value of ϕ

is known to have some uncertainty, typically at least 3 %25,
such that the actual volume fraction is expected in the inter-
val 0.56 . ϕ . 0.60. The simulations, which show an even
more pronounced fluid-like response than PY-MCT, suggest
that the experimental volume fraction might be slightly higher
than assumed. Given the vicinity to the glass transition, even
small variations in ϕ will have large effects, in particular on
the dynamics.

Close to the fluid–glass transition, the loss modulus G′′(ω)
predicted by PY-MCT displays a broad minimum in the
present frequency range. However, for xs ≥ 0.5 they display
an S-shape of G′′(ω). This shape indicates the superposition
of two broad structural-relaxation peaks. This is attributed to
the vicinity of two different glasses, dominated by the frozen
dynamics of the small and large particles respectively, as pre-
dicted by MCT and observed experimentally10,11. The re-
laxation of glasses dominated by small and large particles at
large and small Peω respectively, lead to the observed S-shape
of G′′(ω). Furthermore, the storage modulus G′(ω) can no
longer be described by an approach to a single Maxwell-type
plateau but two plateau regions. These plateau regions are
not very pronounced in the data since the packing fraction is
significantly below the glass-transition packing fraction pre-
dicted for these xs values. Nevertheless, the experimental and
simulation data for xs = 0.5 are in remarkable agreement with
the broad spectrum predicted by PY-MCT. For a more detailed
test of the predictions for the dynamical shear moduli, a larger
frequency window and further volume fractions need to be in-
vestigated.

3.4 Quiescent Particle Dynamics
The dynamics is quantified by the mean-squared displacement
(MSD)

δ r2
α(t) = 〈(rα,i(t, t0)− rα,i(0, t0))

2〉t0,i , (17)

where t is the delay time, t0 a time during the particle tra-
jectory, 〈...〉t0,i indicates an average over all times t0 and all
particles i and α = s, l refers to the small and large particles,
respectively. Fig. 7 shows results obtained from experiments,
simulations and theory. In general the data show the typi-
cal signature of slow structural relaxation, that is a cross-over
from short-time diffusion to a broad time window with a sub-
linear increase before diffusion is reestablished at long times.
The sublinear increase indicates subdiffusive dynamics. It is
due to caging of particles by either large or small particles

which leads to a transient particle localization on a character-
istic length scale.

We first discuss the experimental and simulation results for
the large particles (Fig. 7a). Both data sets show similar qual-
itative trends. The short-time dynamics monotonically de-
creases with increasing xs. In contrast, the localization length
and the reestablished diffusive dynamics at intermediate and
long times, respectively, are observed to first increase and then
decrease with the particles being most mobile for xs ≈ 0.3.
This is attributed to the caging transition during which a looser
cage of large particles first is destroyed by the intercalation
of small particles leading to a very loose first shell of neigh-
bours at intermediate xs. Then a successively tighter cage of
small particles is formed with the small particles packing very
closely around the large particles (Fig. 3). This sequence is
consistent with the trend of the Voronoi volume with increas-
ing xs (Fig. 4). The slowdown is more pronounced in the
experimental data with well-developped plateaus, while the
simulations extend to the long-time diffusive regimes. This
discrepancy, again, might be due to slightly different volume
fractions, polydispersities and/or their dependencies on xs and
as such this is consistent with our findings for the linear vis-
coelasticity (see discussion in Sec. 3.3).

Fig. 7b presents a comparison between PY-MCT and sim-
ulation data, while the comparison with experiments is indi-
rect through Fig. 7a. The experiments and simulations were
performed with a volume fraction ϕ = 0.58, whereas the PY-
MCT calculations are based on a volume fraction ϕ = 0.515,
in order to compare states that are similarly close to the
glass transitions. Using the PY structure factor, MCT is
known to overestimate the tendency to glass formation in one-
component hard-sphere systems and predicts a glass transi-
tion at ϕ ≈ 0.51635. Thus for the PY-MCT calculations we
use a lower volume fraction, ϕ = 0.515, and assume the shift
in volume fraction between theory and experiment to be in-
dependent of xs. With this shift in ϕ , PY-MCT captures the
decrease of the localization length of the large particles with
increasing xs (Fig. 7b). But for long times the agreement of
PY-MCT with the experimental and simulation results is poor.
In contrast to the experiments, PY-MCT predicts diffusive dy-
namics at large xs. Compared to simulations, the dynamics
are significantly slower. This has already been reported for
one-component systems43; close to the glass transition, MCT
is known44 to predict a much slower growth of the MSD than
found in simulations, even after adjusting the packing fraction.
At long times, furthermore, the trend with increasing xs is not
reproduced by PY-MCT. Comparing with previous MCT re-
sults10, one might expect that at higher total volume fractions
a better agreement for the trend of the long-time dynamics
could be obtained. However, this would imply that the one-
component dispersions of large and small particles are con-
siderably deeper in the glass compared to the simulations and
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(a)

(b)

(c)

Fig. 7 Mean-squared displacement (MSD), δ r2
α (t), as a function of

delay time t for size ratio δ = 0.2 and different relative volume
fractions of small particles, xs, as indicated, for (a) large particles as
obtained from experiments and simulations, (b) large particles as
obtained from simulations (same data as in (a)) and PY-MCT, (c)
small particles as obtained from simulations. The experiments and
simulations were performed at a total volume fraction ϕ = 0.58,
whereas PY-MCT results are shown for two different total volume
fractions, ϕ = 0.515 and 0.46 (dotted and solid lines, respectively).
The MSD δ r2

α (t) is normalized by the corresponding particle
diameter dα and the time t by the Brownian time of the
corresponding particle in a dilute suspension, τ0,α .

experiments. Thus, simulations and experiments do not sug-
gest to use a higher total volume fraction for the PY-MCT. In
contrast, if the total volume fraction is reduced to ϕ = 0.46,
PY-MCT better captures the magnitude of the MSD obtained
by simulations (Fig. 7b). However, as expected, the trend of
the diffusivity with xs does not agree with the simulation and
experimental results. This decrease in ϕ accounts for a well-
known issue of MCT in treating the relaxation dynamics of a
tagged particle at small q, where the relaxation times are over-
estimated43.

The small particle dynamics obtained from simulations
(Fig. 7c) show diffusive behavior at long times for all com-
positions with the long-time diffusion coefficient decreasing
and the inflection point at intermediate times becoming more
pronounced with increasing xs. Both are consistent with a
progressive tightening of the cage of small particles as indi-
cated in the structural evolution represented by g(r) and S(q)
(Fig. 3), as well as the decrease of the Voronoi volume (Fig. 4).

In the simulations and MCT calculations, solvent-mediated
hydrodynamic interactions (HI) are neglected. Close to the
glass transition the influence of HI on the long-time dynam-
ics is unclear, whereas it is known to slow down the short-
time diffusion. This has been shown for various size ratios
and compositions, based on resummation techniques for the
hydrodynamic scattering series and on Stokesian-dynamics
simulations45–47. They suggest that the dynamics in a one-
component suspension with a volume fraction comparable to
ours is slowed down by a factor of 5 to 10, and slightly less
in binary mixtures (cf. Fig. 3 of Ref.46). Thus HI could affect
the Brownian time τ0 and hence lead to a shift of the time axis
in Fig. 7.

3.5 Shear Moduli Obtained through the Gen-
eralised Stokes-Einstein Relation

The shear moduli reported in Fig. 6 represent an average rheo-
logical response of the mixture and do not provide information
about the contributions of the small and large particles, respec-
tively. In contrast, the MSDs of the small and large particles
have been determined individually by simulations. The Gen-
eralised Stokes-Einstein (GSE) relation provides an approxi-
mate way to link the viscoelastic moduli to the MSD48:

G∗(ω) =
2kBT

πiωdF{〈∆r2(t)〉}
(18)

where F{...} indicates a Fourier transform. For the one-
component suspensions (xs = 0 and 1), the moduli calculated
using the GSE relation agree with the macroscopic moduli
(Fig. 8a). This is expected as the GSE relation has been well
established for one-component suspensions. However, here
it needs to be extended to mixtures. Based on the MSDs
of the large and small particles, the corresponding moduli
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Fig. 8 Dynamical storage modulus G′ and loss modulus G′′ as a
function of oscillatory Péclet number Peω for a total volume fraction
ϕ = 0.58, size ratio δ = 0.2 and different relative volume fractions
of small particles, xs, as indicated, as obtained from simulations.
Filled (open) hexagons represent the ‘macroscopic’ G′ (G′′) of the
mixture (same data as in Fig. 6), solid lines the G′ and dashed lines
the G′′ of: (blue) the small particles, (green) the large particles, all
obtained through the Generalized Stokes-Einstein relation, and (red)
their number-average
G′(ω) = (ns/(ns+nl))G′s(ω)+(nl/(ns+nl))G′l(ω) (and similar for
G′′(ω)).

of the large, G′l(ω) and G′′l (ω), and small particles, G′s(ω)
and G′′s (ω), are calculated for each composition xs. Based on
these moduli, the number-averaged moduli are determined ac-
cording to G′(ω) = (ns/(ns+nl))G′s(ω)+(nl/(ns+nl))G′l(ω)
and similar for G′′(ω) (Fig. 8). This procedure yields rea-
sonable agreement between the directly determined ‘macro-
scopic’ moduli and the moduli calculated via the GSE relation
from the microscopic dynamics.

Note that even for xs = 0.1, the number fraction of small
particles is huge, ns/(ns+nl)> 0.93. Nevertheless, due to the
much larger moduli of the large particles, G′l(ω)�G′s(ω) and
G′′l (ω)�G′′s (ω), the large particles’ contribution to the mod-
uli is noticeable for xs < 0.3. Beyond this composition, how-
ever, the number fraction of the large particles becomes so
minute that the response is dominated by the small particles
and the number-averaged moduli approach those obtained for
the small particles. Although the range 0.1≤ xs ≤ 0.9 implies
that we only examined suspensions with a large number frac-
tion of small particles, the agreement indicates that the pro-
posed procedure is appropriate. Hence the macroscopic mod-
uli of mixtures can be estimated by the number average of the
moduli of the individual species that can be obtained through
the GSE relation and hence are based on the microscopic dy-
namics.

3.6 Osmotic Pressure

The osmotic pressure is obtained as the average of the diago-
nal terms of the stress tensor. Fig. 9 reports simulation results
for the osmotic pressure of the mixtures as a function of xs.
It shows a non-monotonic trend with a minimum at xs = 0.1.
This trend resembles that of the number-averaged local vol-
ume fraction 〈ϕloc〉 (Fig. 4c). Thus, based on the Voronoi
volume, the partial osmotic pressures of the small and large
particles were calculated using the Carnahan-Starling equa-
tion49 Πα/nα kBT =(1+〈ϕloc,α〉+〈ϕloc,α〉2−〈ϕloc,α〉3)/(1−
〈ϕloc,α〉)3, with α = s, l and nα as well as 〈ϕloc,α〉 depending
on xs. Neither the number nor the volume average of the par-
tial osmotic pressures of the two species is equivalent to the
total osmotic pressure obtained from the simulations. This
indicates the presence of collective effects, i.e. the non-ideal
mixing of the two species. If non-ideal mixing effects are
taken into account50, indeed the total osmotic pressure Π is
in almost quantitative agreement with the simulation results
(Fig. 9).

The non-monotonic trend of the total osmotic pressure Π

as a function of xs is similar to the dependence of the stor-
age modulus G′ (Fig. 5). Both trends can be related to the
caging transition manifested in the gll(r) of the large particles,
in which the cage of large particles is first disrupted by the
intercalation of small particles and then replaced by a cage of
small particles.
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Fig. 9 Total osmotic pressure Π/nkBT as a function of the relative
volume fraction of small particles, xs, for total volume fraction
ϕ = 0.58 and size ratio δ = 0.2 as directly obtained from
simulations and calculated according to Ref.50 based on the Voronoi
volumes. The partial osmotic pressures of the small, Πs, and large
particles, Πl, are also shown .

4 Conclusions

We performed confocal microscopy and rheology experiments
as well as BD simulations and MCT calculations on binary
mixtures of quasi-hard spheres. Whereas the total volume
fraction ϕ = 0.58 and size ratio δ = 0.2 were kept constant,
the relative volume fraction of small particles, xs, was var-
ied. The effect of the fraction of small particles on the lin-
ear rheological response as well as the structure and dynam-
ics on the individual-particle level was determined. Upon in-
creasing the fraction of small particles from xs = 0.0 to about
0.5, we observe an intercalation of small particles into the
cages of large particles which disrupts the cages and also re-
duces the mean size of the cages. This leads to changes in
the dynamics, namely an increase of the long-time diffusiv-
ity of the large particles. And it also affects the rheological
response which shows a softening of the glass, if probed at
fixed reduced frequency. Further increasing xs towards unity,
the caging by small particles becomes tighter. The long-time
diffusivity starts to decrease again. Correspondingly, the sys-
tem again becomes less fluid and the reduced shear modulus
returns to its one-component value. Therefore, changing xs
from 0 to 1, we observe a transition in the caging mechanism,
from caging by large particles to a softening of the cage and
a subsequent caging by small particles, which results in the
long-time diffusivity and the reduced shear modulus both dis-
playing a non-monotonic behaviour as a function of xs with
a pronounced minimum. On the other hand, the progressive
trapping by the small rather than the large particles results in
a monotonic decrease of the localization length of the large

particles observed at intermediate delay times.
These trends are consistently observed in the experiments,

simulations and PY-MCT. However, we could not achieve a
quantitative agreement in all aspects. In both, the dynamics
and the shear moduli, we observe a more pronounced glassy
behavior in the experiments, which might be caused by a mis-
match of the total volume fractions, namely a slightly higher
volume fraction in the experiments. Different polydispersi-
ties as well as xs dependences of the polydispersity and total
volume fraction might also play a role. Furthermore, an over-
estimated change in the glass transition point with xs and the
neglected hydrodynamic interactions in the simulations and
MCT might contribute to the discrepancies.

We quantitatively linked the shear moduli to the single-
particle dynamics using the Generalized Stokes-Einstein re-
lation. The simulation results suggest that, despite the non-
equilibrium conditions, the number average of the moduli of
the two components, as obtained through the GSE relation,
represents the macroscopic moduli. Thus, a direct link be-
tween the dynamics on an individual-particle level and the
macroscopic bulk shear moduli exists. In addition, this link
provides a measure to estimate the contributions of the two
species to the rheological response. Similarly, the total os-
motic pressure of the mixtures has been linked to the contri-
butions of the two components with their partial osmotic pres-
sures determined from their Voronoi volumes.
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