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Abstract. In this paper a new method is developed and described, aimed at the modeling and 

diagnosis of the joints connecting the ends of two cables on a high voltage electricity pylon. 

Identifying the anomalous joint behaviour through the line frequency response analysis is the 

first objective of the work. For this reason, it is necessary to model the whole overhead line 

with a lumped circuit and studying the joint electrical parameter variation. The problem is 

approached in multiple steps: modelling, testability analysis of the model, optimal frequency 

selection, identification of the possible failures. Some simulated cases are included in order to 

show the potentialities of the method. 

1. Introduction 

The assessment of operating conditions of overhead transmission lines is an important aspect in the 

management of an electrical energy distribution system and can be performed in different ways. By 

using the state estimators based on the load flow analysis, it is possible to obtain the voltage profile at 

each node of the network [1-3]. The anomalous behaviour of the power line is detected by means of 

this method, but the exact location of the failure is not possible. Often, the anomalous behaviour of the 

power grid depends on the state of the joints, therefore it is very important to obtain information about 

their deterioration at an early stage. In many cases, time domain reflectometry techniques are used for 

remote detection of the joint impedance; these techniques are based on the study of the reflected 

signals from the conductor discontinuity regions [4-5]. The reflected signal analysis is influenced by 

measurement errors, environmental noise and other factors; several difficulties are due to line length 

and different environmental conditions along the line. As a result the remote estimation of joint 

conditions is not a simple task. 

This paper presents the theoretical basis for developing a method of fault location of joints in high 

voltage electrical lines. It is a diagnostic method that allows to identify the cause of malfunction by 

analysing the electrical characteristics of the whole transmission line. In fact, the network model 

includes the electrical parameters of the most stressed parts conductors and joints[6-7]. In this paper, 

only the joint conditions are considered because many drawbacks – such as voltage drops, power loses 

and power quality decrease – may depend on the change of joint characteristic electrical parameters. 

Therefore, only these parameters are considered variable, while the electrical parameters of the 

conductors are fixed at the nominal value. The frequency response of the line equivalent circuit is used 

by the diagnostic system and a multifrequency approach is considered, as it is common in many 

diagnosis techniques (see, for example, the pioneering one in [8]).  
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The paper is organized as follows. In Section II the phase conductors are modelled as standard 

transmission lines constituted by two longitudinal parameters and two transversal parameters, defined 

per unit of length and dependent on the physical and geometrical characteristics of conductors. The 

equivalent circuits of the joints are also described on the base of their physical structure. In Section III, 

the whole procedure is outlined, describing the various steps. Section IV presents some specific 

application cases. In the last section, conclusions are reported.  

2. Conductor and joint modelling 

The first step of the modelling is to define the electrical parameters of the main components in the 

overhead power line. The transmission line can be considered as a succession of joints and stretches of 

conductor. Thus, the overall equivalent circuit of the line is formed by a cascade of equivalent circuits 

of conductors and joints. The junction region must guarantee electrical continuity between two 

conductor parts of the same phase. A standard circuit with four components can be used for the 

conductors, as shown in Fig. 1. A line series resistance (Rl’Δλl) and a line series inductance (Ll’Δλl) are 

used to account the voltage drop along a line stretch. A shunt conductance (Gl’Δλl) and a shunt 

capacitance (Cl’Δλl) take into account the current losses along the line [1, 9]. 

 

In the overhead lines there are two different types of joints: compression joints and bolted joints [4]. In 

this work only bolted joints are considered: they have a physical structure different from that of the 

conductors and are positioned at the pylons [4]. An electrical model of the bolted joint can be 

determined by the physical structure of the solder joints [1, 9]. The solder joints are typical for signal 

applications, but they can be used for the present purpose without a significant loss of representability. 

In Fig. 2 (a) the solder joint simplified structure is shown, where: 

Δλ is the length of the junction region; 

d is the width of the junction region; 

H is the height of the junction region. 

The joint model is shown in Fig. 3, where three circuit parameters are considered: Rsj, Lsj and Csj. The 

joint resistance is the parameter sensitive to the formation of oxide on the structure because this 

modifies its resistivity, while Lsj and Csj take into account any break in the joint [10-11].  

 

 

 
Figure 1. Equivalent circuit of the conductor. 

 
(a)                                                          (b) 

Figure 2. Solder joint: (a) Simplified structure (b) fracture dimensions. 
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In the analytical formulation of Rsj, the skin effect is introduced, and this limits the surface available 

for conduction in alternating current. In conditions of perfect functioning the following relations are 

valid [10]: 

 
2 ( 2 )

H
R

sj d



  
=

 + −
     (1) 

 

 
2

ln 0.5
2

H Ho r
L

sj d

 

 

  
= +  

 +  
     (2) 

 

 
1

f o r


   
=      (3) 

 

where δ is the depth of penetration of the current at the frequency f. The value of the capacitor Csj is 

negligible in the absence of breakage, therefore it is fixed at 0.01 pF. This value maintains inductive 

the impedance given by the parallel connection with Lsj and can be considered inside the tolerance, 

where “tolerance” in this case means a vertical breaking value equal to 5% of the H value and x equal 

to 5% of the joint width. For this reason, 0.01 pF can be considered the nominal value of Csj. 

The dependence of the circuit parameters with respect to the dimensions of the damage can be derived 

by introducing a typical breaking mechanism of the solder joints [11]: 
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where, relating to Fig. 2 (b): 

x is the width of the crack; 

h is the height of the crack. 

 

By connecting in cascade the models of the conductor and of the joint, it is possible to model a very 

large electrical power grid by means of a small number of components. In the following section a 

procedure for identifying the joint parameters, based on the analysis of the frequency response of the 

equivalent circuit, is presented. 

 

 

Rsj Lsj

Csj

 
Figure 3. Equivalent circuit of the joint. 
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3. Procedure outlines 

Once that the models of the line and joint have been established, the fault diagnosis phase can start. 

The frequency response of the line equivalent circuit and a multifrequency approach are used in the 

developed procedure, as is common in many diagnosis techniques. The steps of the procedure are: 

• Circuit simulation; 

• Testability analysis;  

• Optimum frequency set selection;   

• Parameter identification. 

3.1 Circuit simulation  

The developed procedure requires simulations at several frequencies. The number of simulations can 

be very high in some circumstances, and the simulator SapWin© (Symbolic Analysis Program for 

Windows) [12] is suited to this purpose. It is a simulation package developed by the authors, available 

at [13]. It provides in output the response of a circuit in symbolic format. This allows to perform the 

necessary simulations in a very short time. On the circuit constructed in SapWin© the test points are 

chosen and the program yields as output the network functions relevant to test points. 

3.2 Testability analysis 

For any diagnosis procedure the knowledge a priori of the solvability degree of the problem is of 

fundamental importance to avoid wasting time in the attempt to determine unidentifiable parameters. 

In fact the term solvability degree indicates how many and what parameters are identifiable starting 

from measurements carried out at a test point set chosen on the system under analysis.  The testability 

analysis helps in this direction, as reported in recent papers [14-16], which also present some efficient 

approaches to testability analysis. It consists of testability evaluation and ambiguity group 

determination. For analog circuits, the definition given in the seminal paper [8] states that testability T 

equates the solvability degree of the fault diagnosis equations, that is the number of parameters 

identifiable by elaborating a given input/output set of measurements. The testability value T cannot be 

greater than the total number N of potentially variable components of the system. When it is less than 

N, it is useful to determine the “ambiguity groups” of the circuit. The ambiguity groups are sets of 

components each other indistinguishable. In summary, testability value establishes the maximum 

number of parameters identifiable at the same time, ambiguity groups give precise information on 

which parameters can be identified [16]. In the proposed fault procedure testability analysis is 

performed by the program LINFTA [16], exploiting SapWin© for the model construction. 

3.3. Optimum frequency set selection  

In order to diagnose the behavior of the joint, a collection of measures taken at different frequencies 

can be necessary. In fact, if the number of network functions relevant to the selected test points is less 

than the number of unknowns, additional equations are introduced by means of measurements at 

different frequencies. To minimize the error deriving from tolerances and noise, a suitable choice of 

frequencies has to be made. To this end the efficient approach in [17] has been followed. It determines 

the Jacobian matrix JM of the set of nonlinear equations associated with the measurements and with 

the network functions at several frequencies, and then it extracts the index:  
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being k the condition number of the Jacobian: 
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and σMAX and σMIN the maximum and minimum singular values of the Jacobian matrix, respectively. The 

index is then minimized with respect to the frequencies range, in order to find the region where the 

error due to tolerances and measurement noise is minimum, as demonstrated in [17]. A program for 

the determination of the optimum frequency set, based on this approach, is associated with the 
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software package SapWin©. In this phase many repeated simulations (hundreds or thousands) at several 

frequencies are necessary. SapWin©, thanks to its symbolic nature, performs the necessary simulations 

in a very short time. 

 

3.4 Parameter identification  

Once the testability analysis of the circuit has been carried out and the most appropriate frequencies 

have been determined, the fault diagnosis equations are solved to identify the electrical parameters of 

the joint and to assess its state of health. The identification of the parameters is executed with the 

Matlab® software by means of the Newton-Raphson method. The fault equation system, nonlinear 

with respect to unknown parameters, has the following form  
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In principle, this approach can be used to identify any situation of circuit parameters. If the parameters 

do not belong to any ambiguity groups, it is possible to find their values through the inversion of the 

fault equations. 

Actually, not always the exact value of the parameters can be extracted, due to the poor sensitivity of 

the output with respect to the parameter values. However the exact identification is not always 

necessary.  To this aim it can be useful mentioning the typical classification of faults: 

• Manufacturing tolerance: a slight variation of parameters caused by manufacturing processes is 

supposed to have no effect on the system performance. 

• Soft faults: in this case the system is still functioning, but some of its characteristic properties lie 

outside their allowed intervals. The component variation leads to the loss of functionality and can 

be caused, for example, by temporary inappropriate operation conditions or component ageing. 

• Hard faults: the deviation of parameters is extremely significant, and the system is not functioning 

at all. 

• Fatal fault: this is a boundary condition of hard faults. In this case, the fault is usually 

accompanied by the destruction of a component and, in the case of electrical systems, can be 

modelled using a short or open circuit. 

The low sensitivity in the “Manufacturing tolerance” is not a problem, in fact the method has not to 

identify the nominal conditions but those of malfunctioning.  

4. Case studies 

In order to validate the developed procedure, some fault situations have been simulated. Then, for the 

determination of the fault diagnosis equations, a suitable number of simulated responses of the circuit 

have been created using the SapWin® software [12-13], able to quickly calculate the output of the 

circuit when the parameter values are randomly variated over a given range. 

 
Figure 4. Circuital model for the first example. 
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Let us initially consider only one junction region and a 300 meters line stretch (Fig. 4). The chosen test 

point is the current, then the network function is an admittance function. The testability of the circuit is 

maximum (T=6). For this reason, there are not ambiguity groups and all components can be 

considered faulty at the same time. In the first examples of simulation, equivalent circuits are realized 

on SapWin® with only one symbolic parameter at a time, Rsj . This is due to the fact that the unknown 

parameter choice is based on the fault mechanism. In this case the oxidation mechanism is considered, 

which produces the resistivity variation, with the consequent increase of Rsj. To determine the 

variation magnitude, reference is made to the measurement results in [4], reported in table 1. 

 

Table 1. Resistance values of the joint region 

Acronym Status ACSR Rsjdc 

BJNew New 22.8 mm 60 µΩ 

BJAged1 Aged 22.8 mm 5 mΩ 

BJAged2 Aged 22.8 mm 2.5 mΩ 

BJNewTape1 New+Tape1 22.8 mm 2 Ω 

BJNewTape2 New+Tape2 22.8 mm 1.6 kΩ 

 

Table 1 shows five different bolted joints considered in [4] to obtain the measurements of the junction 

region DC resistance Rsjdc. “BJNew” represents a joint in perfect condition that has not been used yet 

on the real network. “BJAged1” and “BJAged2” are two joints with different levels of oxidation, 

extracted from the same network during the maintenance period. “BJNewTape1” and “BJNewTape2” 

are artificial degraded joints, which represent the junction regions with a high oxidation level; these 

conditions are realized by inserting a low conductivity material between the opposing faces of the joint. 

All the joints used for these measurements are usually connected to the Aluminium Conductor Steel 

Reinforced (ACSR) with a 22.8 mm outer diameter. 

The Newton Raphson algorithm is implemented in Matlab® to solve the fault equation. Three different 

resistance values are chosen for the simulation: the first one (60 µΩ) represents the nominal value, the 

second one (100 mΩ) represents the “soft fault” condition, and the last one (2 Ω) represents the “hard 

fault” condition. The second value (100 mΩ) is chosen because it represents a limit condition between 

normal aging and artificial oxidation. As shown in Fig. 5, the sensitivity of Rsj is always very low. 

Without the oxidation mechanism, Rsj is close to the nominal value and the low sensitivity does not 

allow to identify its value. On the other hand, when the oxidation state of the joint begins to become 

relevant, the actual values move to a range where, even with low sensitivity, they become recognizable. 

 
Figure 5. Sensitivity of the magnitude of the response with respect to the joint resistance 

 

The same procedure can be followed to identify the variations of the other parameters. For Lsj and Csj 

it is necessary to consider the joint breaking mechanism. The junction region inductance is particularly 

sensitive to the breaking height “h” and it is identifiable using the only unknown parameter Lsj on the 
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circuit of Fig. 4 and using a frequency of a few tens of MHz. In the case of the junction capacity Csj, 

there are strong limits of sensitivity and this parameter is never identifiable. The results for the case of 

Fig. 4 are reported in Table 2. 
 Table 2. Results of junction parameter identification of the circuit in Fig.4 

 Range of values Condition Rsj Lsj Csj 

   Testable Identifiable Testable Identifiable Testable Identifiable 

Rsj 60µΩ ÷ 2.5mΩ 

Manufacturing 

Tolerance 
Yes 

No 

(low sens.) 
Yes Yes Yes 

No 

(low sens.) 
Lsj (1.5642÷1.4) µH 

Csj 0.01 pF 

Rsj (2.5÷100) mΩ 

Soft Fault Yes Yes Yes Yes Yes No Lsj (1.4÷1.2) µH 

Csj > 0.01 pF 

Rsj 100 mΩ ÷ 2 Ω 

Hard Fault Yes Yes Yes Yes Yes No Lsj (1.2÷1.057) µH 

Csj > 0.01 pF 

  Fatal Fault Short or Open circuit 
 

Table 2 reports, for each component, if it is testable, i.e. independently recognizable, and if it is 

actually identifiable, i.e. determinable from the measures of the admittance. As it can be seen (and said 

before), the components are always testable, but not always identifiable. 

The next example is referred to the three-junction case shown in Fig. 6(a) and the oxidation 

mechanism is again considered. The first step is the equivalent circuit realization on SapWin®; in this 

case there are three unknown parameters, Rsj1, Rsj2 and Rsj3. The circuit under test has maximum 

testability, so there are no ambiguity groups. The transfer function chosen is still the admittance 

function, then also in this case just one test point (the output current) is used. Since the unknown 

parameters are three and the network function is only one, it is necessary to consider three different 

frequencies in order to have three unknowns and three fault equations. The approach proposed in [17] 

and summarized in the paragraph 3.3 is followed for the choice of the test frequencies. Subsequently, 

using SapWin©'s multi-parametric simulation feature, the simulated frequency responses can be 

obtained. Finally, using the analytical form of the network functions at the three determined 

frequencies and the simulated measurements, it is possible to obtain the system of the fault equations. 

The iterative Newton Raphson algorithm is used to solve the system of non-linear equations. The 

solution of the system allows to identify all three oxidation conditions. The model and the results for 

this case are shown in fig. 6(b), showing that all fault cases are identified. 

 
(a) 

 
(b) 

Figure 6. Three joint system. 
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5. Conclusions 

An innovative method for diagnosing faults on joints of high voltage electric transmission lines has 

been presented. Starting from the simulation of the model of joints and stretches of conductor, the fault 

diagnosis equations, corresponding to a network function evaluated in a suitable set of frequencies, are 

solved with the Newton- Raphson method in order to identify the model electrical parameters. Each 

junction region in the network has a model with three electrical parameters: Rsj, Csj and Lsj. The 

oxidation mechanism produces the resistance variation and this is the first effect that decreases the 

network functionality. When the value of Rsj exceeds the manufacturing tolerance limit, it is possible 

to identify its value. This means that it is possible to identify the first oxidation phase, which is very 

important because it allows to prevent high criticality failures. Furthermore the study of the junction 

resistance can be performed on circuits of any complexity and this allows to locate the joint in the 

worst conditions; in this way it is possible to reduce network recovery times and correctly organize 

maintenance operations. If the oxidation limit condition has been reached, it is possible to consider the 

partial breakage mechanism of the joint. In this condition all the electrical parameters of the joint are 

modified; the resistance variation cannot be used to quantify the joint break and the variation of the 

parameters Lsj and Csj is taken into consideration. In the next future alternative techniques will be tried, 

in particular through the use of methods based on machine learning, both for identification and for the 

classification. 
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