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H I G H L I G H T S

• High time resolution organic and inorganic data pose challenges for receptor models.

• Inorganic ions, carbonaceous species and trace elements were measured in N Italy.

• A multistep approach led to PMF results consistent with off-line and on-line datasets.

• The combined dataset led to the identification of more sources.• Source profiles with 87 species were consistent with external data and literature.
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A B S T R A C T

The use of high time resolution datasets of aerosol organic and inorganic species as input for receptor models
poses a number of challenges. The estimation of uncertainties differ between different analytical methods and
the number of chemical species may considerably vary among the different techniques. In this study, an ap-
proach to harmonise the uncertainties of different online datasets for their combined use in source apportion-
ment with positive matrix factorization (PMF) is presented. The concentration of inorganic ions, organic frag-
ments and trace elements were measured in a Po Valley background site using offline and online methods. Six-
hour PM 2.5 samples were collected on filters and chemical analyses were carried out offline. Parallel hourly
online measurements were made using the Xact 625 (CES LLC) XRF analyser and the Q-ACSM (Aerodyne
Research Inc.) spectrometer.

Online and offline methods produced comparable results for the major chemical component and some trace
elements, while others (Ba, Ni, As and Se) showed limited comparability between the two methods. To ensure
the consistency of the final PMF results, a multistep approach was adopted. In the first step PMF was run with
only the offline dataset, in the second step only the online organic data were used and in a third step the PMF run
was executed using only the online inorganic species. In the first three steps running PMF with homogeneous
data made it possible to identify the main sources and produce chemical profiles to be used as internal reference
for the final fourth step in which all the online species (major inorganic ions, m/z of organic fragments and trace
elements) were combined. The sources of the final solution were developed using internally consistent chemical
profiles and those from the literature and were validated by analysing the source diurnal variations and by
comparison with external tracers. The sources identified were: biomass burning, aged biomass burning, sec-
ondary ammonium nitrate and ammonium sulphate, traffic, steel industry and waste thermal treatment. The
source profiles with a large set of organic and inorganic species (87) and associated source diurnal variations
resulting from this study are expected to serve as reference for future studies.
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1. Introduction

Ambient air particulate matter (PM) impacts both human health
(Lelieveld et al., 2015) and the global climate (Baker and Peter, 2008;
Leibensperger et al., 2012; Myhre et al., 2013). Main direct PM climate
effects are a consequence of scattering part of the solar radiation back
to space while its indirect climate effects are associated with the for-
mation of clouds containing an increased number of smaller droplets
(Haywood and Boucher, 2000; Lohmann and Feichter, 2004). More-
over, particles with aerodynamic diameter smaller than 2.5 μm (PM2.5)
are associated with “all-cause” lung cancer and cardiopulmonary
mortality (Pope et al., 2002). Ambient PM originates from several
sources that are either directly emitted into the atmosphere or formed
from precursor gases by different mechanisms, such as nucleation and
condensation (Kulmala et al., 2004). Once in the air, these particles
undergo chemical transformations that alter their physical properties as
well (Kanakidou et al., 2005; Seinfeld and Pandis, 2016).

In order to help establishing mitigation strategies concerning PM,
sources of pollution should be identified and apportioned. Although
chemical markers may help with the identification of certain sources,
such as biomass burning, sea spray and dust particles (Guieu et al.,
2002; Ovadnevaite et al., 2012; Simoneit et al., 1999), the general case
is that each source has a distinct chemical profile and time trend that
cannot be directly distinguished from co-emitted sources. One of the
methods to apportion PM to its sources is receptor modelling (RM). The
most common RMs are based on factor analysis of observed variables
weighted by their uncertainty (Hopke, 2009; Watson et al., 2008).

Routine RM analyses are carried out using datasets consisting of
24 h filter samples. In Europe the choice of this time step partly derives
from the need to align the sampling set up with the reference method
for the determination of PM2.5 and PM10 mass (EN12341, 2014). The
length of the sampling time when collecting particulate matter with low
volume samplers (16–38 l/min flow) to accomplish its full chemical
characterisation is also dictated by the need to collect enough material
to quantifying components that are present in very low concentrations
(e.g. trace elements, organic markers).

A study on the effect of the sampling time on the ability of factor
analytical methods to resolve source types concluded that reducing the
sampling duration can increase the number of sources identified by the
model (Lioy et al., 1989). Time resolutions higher than 24 h make it
possible to detect short-lived processes that determine or influence the
release, formation and dispersion of pollutants into the atmosphere.
Moreover, diurnal variations in sources give useful information for the
identification of sources when using factor analytical tools that support
the evaluation of it soundness from the physical point of view. For in-
stance, traffic emissions are expected to peak during the rush hours,
while those from biomass/wood burning take place mainly in the
evening (Viana et al., 2013). Hourly or even higher resolution organic
and major ions concentrations in fine PM determined with spectro-
metric methods is a well-established methodology that has been ex-
tensively used for source identification purposes (Jayne et al., 2000; Ng
et al., 2011). On the other hand, trace elements are generally measured
offline using filter-based samples or continuous samplers like streakers
or rotating drums (Crilley et al., 2017; Lucarelli et al., 2018). Never-
theless, online (near real time) highly time resolved trace element in-
formation is less common (e.g. Furger et al., 2017; Visser et al., 2015;
Tremper et al., 2018) and the evaluation of this kind of data is needed
in order to understand whether it could be successfully used in source
apportionment studies. Thanks to recent advancements in in-
strumentation, the availability of continuous and high time resolved
organic fragments, ions and elements could open the way for a more
reliable source identification which in addition could be partially au-
tomated to deliver near real time source contribution estimations,
therefore, available to support the decisions of air quality managers in
the short term.

A number of source apportionment studies based on trace elements

high resolution time series (Park et al., 2014; Fang et al., 2015; Chang
et al., 2018; Yu et al., 2018) have been recently published. However,
few receptor modelling studies combining the organic and inorganic
(both ions and trace elements) fractions of high time resolution aerosol
datasets are currently available (Sofowote et al., 2018; Jeong et al.,
2019). The reason is that such kind of analysis poses a number of
challenges. Firstly, the combination of data from instruments with
different operating principles that use different methods to estimate the
uncertainties is required. Secondly, the instruments may not sample the
same PM size fraction. In addition, the resulting factor chemical profiles
are more complex than those currently available in the literature
(higher number and type of species/markers) and therefore more dif-
ficult to interpret and validate in terms of sources and processes. The
objective of this study is to develop a methodology for the combined
use of hourly resolved organic and inorganic datasets with hetero-
geneous uncertainties for their use in source apportionment, in order to
find an approach to deal with such issues.

2. Data collection and methods

A sampling campaign was carried out in January–February 2015 in
a background monitoring site located in a small town (Veggiano) near
Padua, Italy (Fig. 1). The site is a typical example of background lo-
cation in the Po Valley with high PM levels, especially during winter
time (Larsen et al., 2012; Vecchi et al., 2009). The concentration of 20
trace elements (Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Sn,
Sb, Ba, Hg, Tl, and Pb) in PM2.5 was determined by online X ray
fluorescence using the Xact ®625 (Cooper Environmental Services LLC)
instrument. A co-located quadrupole aerosol chemical speciation
monitor (Q-ACSM; Aerodyne Research Inc.) was used to analyse main
ions (SO4

2−, NO3
−, NH4

+, Cl−) and mass fragments ranging from 12 to
100 mass-to-charge ratio (m/z) of the non-refractory PM1 organic
fraction (NR-PM1). In addition, parallel offline PM2.5 6-h samples were
collected on quartz filters (Pall QAT2500) using a low volume auto-
matic sampler (Thermo FH95) between January 26th and February
19th. Because of the considerable effort needed to collect 6-h samples
and obtain a complete PM2.5 chemical characterisation, the offline data
collection was limited to 61 samples distributed along the monitoring
campaign. The filter mass was determined using the European gravi-
metric reference method (EN12341, 2014). The trace elements (Ca, Ti,
V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Ba and Pb) in the
off-line samples were analysed using particle induced X-ray emission
(PIXE) and particle induced gamma-ray emission (PIGE) was used for Al
(Calzolai et al., 2010).

Main ions (Cl−, NO3
−, SO4

2−, C2O4
2−, Na+, NH4+, K+, Mg2+,

Ca2+) were analysed by ion chromatography with electrochemical
eluent suppression (ICS2000; Putaud et al., 2018). In 2015, the la-
boratory successfully participated in the EMEP33 inter-laboratory
comparison using the described technique (https://www.nilu.no/
projects/ccc/intercomparison/index.html), with observed deviations
of less than± 15% of the assigned value for all ions except K+ that
showed deviation between±15–25% of the assigned value. Organic
and elemental carbon (OC/EC) were analysed using a Sunset Dual-op-
tical Lab Thermal-Optical Carbon Aerosol Analyse implementing the
EUSAAR-2 thermal protocol (Cavalli et al., 2010; EN16909, 2017). In
2015, the laboratory successfully participated in the ACTRIS OC/EC
inter-laboratory comparison using the same techniques as this study
(http://www.actris-ecac.eu/ocec-analyse.html). Organic carbon and
elemental carbon deviated, on average, by less than −2% and −15%,
respectively of the assigned value.

The PM2.5 6 h samples and blank filters were conditioned for at least
two days prior to weighing under stable environmental conditions, at
50% relative humidity and 20 °C. The filters were weighed with a 1-μg
resolution microbalance (Mettler Toledo, Switzerland, Model AX26)
following the procedure of EN 12341. The balance was calibrated
yearly using mass standards (class-E1, from Mettler Toledo,
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Switzerland) and drift checks were performed with standard weights
(class-E2 from Mettler Toledo, Switzerland) before weighing. Field
blanks were used to check the stability in the sampling conditions and
identify possible artefacts.

2.1. Methods used for trace elements determination

The Energy Dispersive X-ray fluorescence technique (ED-XRF) has
been extensively used for off-line analysis of trace elements in PM
(Brown et al., 2010; Niu et al., 2010; Yatkin et al., 2012). The Xact 625
used in this study implements this technique for online measurements
(Geiger et al., 2015; Furger et al., 2017; Tremper et al., 2018). To that
end, it collects PM samples on a Teflon tape filter at a 16.7 l/min flow
and subsequently accomplishes the analysis in the sampled spot on the
tape while the next sample is being collected on another area of the
same tape. In this study, the sampling intervals were configured to
provide 1 h average concentrations. The instrument was calibrated by
comparison with NIST reference standards. To optimise the measure-
ment efficiency in the Xact 625 the intensity of X-rays was adjusted to
the amount of element present in the sample by means of known ele-
ment specific sensitivity curves pre-determined with standards. The
following automated and manual QA procedures were implemented in
Xact 625: a) Pd rod calibration for every sample, b) daily energy
alignment and upscale tests (at midnight), and c) periodic checks with
NIST traceable thin film standards, and flow and blank tests. Even
though the Xact 625 uncertainty is related to the size of the peak which
goes through spectral deconvolution for determining the concentra-
tions, the uncertainty depends only partially on the concentration of the
measured element because other factors influence the measure (section
3.1).

A 3MV Tandetron (High Voltage Engineering Europa B.V.) accel-
erator was used for PIXE and PIGE analyses. Samples were bombarded

by a 2mm2 proton beam of 3MeV that was extracted in air through a
thin (500 nm) Si3N4 window. An array of two KETEK GmbH silicon drift
detectors (SDDs), with 113mm2 area and 450mm thickness, shielded
by 450mm Mylar foils, detect X-rays in the range 3–20 keV. Currents of
the order of 100 nA were applied and measurements lasted 120 s for
each sample. A further SDD detector with thin entrance window (8 μm
Be) and He flow in front of it was implemented for the detection of X-
rays in the range 1–6 keV. This modification allowed the detection of all
the elements down to Na with good sensitivity on most collection
substrata (Lucarelli et al., 2014). Since the detector does not work ef-
ficiently with quartz fibre filters, due to the high Si X-ray counting rate
from the filter itself, PIGE (Particle Induced g-ray Emission) was
exploited for the quantification of Al. PIGE and PIXE measurements
were performed simultaneously with the same beam and duration
conditions. The γ-rays were measured using a 60× 23mm coaxial Ge
detector (Calzolai et al., 2010).

PIXE spectra were fitted using the GUPIX code and elemental con-
centrations were obtained by a calibration curve from a set of thin
standards (Micromatter Inc.) of known areal density (uncertainty: 5%).
PIGE spectra were fitted using a standard Gaussian fitting routine and
Al elemental concentrations were obtained by comparison with the γ-
ray yield from a thin Al standard (Micromatter Inc.) of known areal
density. A check of the calibration was routinely performed analysing
the NIST SRM2783 (Air Particulate on Filter Media). The reported PIXE
and PIGE uncertainties include the statistical and spectra-fit procedure
plus a 5% attributable to the uncertainty of the certified areal density of
the standards used to compute the calibration curve.

In Table 1 the method detection limits (MDLs) and percentage of
values below detection and quantification limits (MQLs) are given for
each element. The differences in the MDLs of the two techniques are
due to the more stringent approach adopted in the PIXE/PIGE method.
The Xact 625 calculates them as 1 σ of the interference free detection

Fig. 1. Monitoring site location in the Po Valley.
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limit while in PIXE/PIGE are computed as 3 σ of the background areas
over a 1 FWHM (Full Width Half Maximum) region centred on the
element's principal peak centroid in the spectra (therefore, PIXE MDLs
are specific for every sample and element). In case of standard daily
samples or hourly samples collected with devices developed for that
purpose such as the streaker sampler, PIXE DLs are roughly 50% those
of Xact (Calzolai et al., 2015).

2.2. Method used for organic composition determination

A Q-ACSM with unit mass resolution (UMR) and time steps of
30 ± 1min was used to analyse the NR-PM1. The operation principle is
based on impacting a focused particle beam onto a heated (600 °C)
porous tungsten surface under ultra-high vacuum to vaporise the non-
refractory components of the particles. The resulting vapour is subse-
quently ionised using a 70 eV electron impact (EI) to finally analyse the
resultant ions with a quadrupole mass spectrometer (Jayne et al.,
2000).

Data acquisition was carried out with the ACSM DAQ software (v.
1.4.4.5). The Q-ACSM data were corrected for a decrease in ion trans-
mission at high m= z (>55) according to a standard curve obtained
by Ng et al. (2011). To correct for the decay of the detector amplifi-
cation the airbeam N2 signal at m= z 28 was used (reference value:
1× 10−7 A).

Data were treated according to (Ulbrich et al., 2009, section 3.1) to
generate a matrix of masses for the corresponding time and mass-to-
charge up to m= z 100 and associated error matrix.

The performance of the used Q-ACSM instrument used for this study
was previously tested in an intercomparison where 13 individual Q-
ACSM were co-located during a two-week field campaign (Crenn et al.,
2015; Fröhlich et al., 2015). The instrument used in this study (#11)
fulfilled the intercomparison z-score test (−3 > z-score< 3) and was
among those with the closest values to the average of all tested in-
struments for both inorganic and organic fragments as shown in Figure
S5.6 of Crenn et al. (2015). In the present study the ACSM calibration
was carried out according to the Aerosol Chemical Speciation Monitor
Data Acquisition Software Manual procedures (Aerodyne, 2010).
Comparable experimental NO3 response factor (RF) and the NH4 and
SO2 relative ionization efficiencies were observed before and after the
monitoring campaign (Table S1).

3. Source apportionment approach

The identification and quantification of sources was accomplished
using Positive matrix factorisation (PMF), a statistical factor analysis
algorithm developed by Paatero and Tapper (1994) and Paatero (1997).
The multilinear engine implementation (ME-2, Paatero, 1999) allows
for the introduction of additional constraints (e.g. external factor pro-
files) to the algorithm. The algorithm has been widely used for source
identification and quantification with offline and online datasets of
inorganic or organic species (Belis et al., 2013; Viana et al., 2008;
Zhang et al., 2011, 2017).

The PMF model solves the following mass balance equation

= +
=

x g f e( )ij
k

p

ik kj ij
1 (1)

Where x is the measured quantity, f is the factor profile, g the temporal
variability of each source and e represent the residuals. The subscripts i
and j correspond to each of the n time steps and m chemical species (e.g.
trace elements or mass fragments), respectively. The subscript k refers
to the factors the number of which (p) is defined by the user. Solution to
Eq. (1) is reached by minimizing a goodness-of-fit parameter known as
Q value (Eq (2)) which is the difference between measured (xij) and
modelled (gikfkj) quantities scaled by their uncertainties (uij).
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One of the requirements for a dataset to be used in PM source ap-
portionment with factor analytical methods is that the main chemical
components representing a high share of the PM mass (organic fraction,
major ions, elemental or black carbon) and a series of tracers (trace
elements, organic markers) are included (Lucarelli et al., 2015; Belis
et al., 2014). Commonly available offline datasets include a number of
24 h samples ranging from 60 to 100 (Hafner and Brown, 2005; Belis
et al., 2014). Moreover, techniques measuring a wide range of markers
with high time resolution (down to hours or minutes) provide evidence
for a better understanding of the processes involving organic com-
pounds, to characterise sources more comprehensively from the che-
mical and dimensional points of view and to identify sources associated
with short lived processes (not detectable with 24 h averaged samples).
Examples of this kind of techniques are the aerosol mass spectrometer
(AMS, Jayne et al., 2000) and the related aerosol chemical speciation
monitor (Q-ACSM, Ng et al., 2011) to analyse organic mass spectra. In
addition, rotating drums (Peré-Trepat et al., 2007) or streakers (Crespo
et al., 2012; Moreno et al., 2013) are commonly used to obtain (offline)
high time resolution records of elemental composition. Combining on-
line organic and inorganic datasets to be used as input for receptor
models could be problematic when the uncertainties and the number of
species are not homogeneous among the different techniques. Never-
theless, online high resolution with a complete organic and inorganic
characterisation of the aerosol is a new receptor models’ frontier that
deserves more investigation.

Considering the limited previous knowledge of source profiles with
a high number of heterogeneous components (in our case 87 species) a
multi-step source apportionment approach was adopted in this study, to
better monitor the impact of combining data from different size frac-
tions (NR-PM1 and PM2.5) and with different uncertainty estimation
methods. The steps are as follows:

Step 1. PMF run with a 6 h time resolution offline dataset, including
OC/EC, major ions and trace elements, to provide a list of sources with
traditional chemical profiles, simplified source diurnal variations and
time trends following an approach consistent with previous studies in
the Po Valley (Larsen et al., 2012; Vecchi et al., 2009).

Step 2. PMF run with hourly online Q-ACSM data (fragments m/z) to
obtain a picture of the sources contributing to the organic NR-PM1

Table 1
Xact625 and PIXE method detection limits (MDLs) and percentage of values below detection and quantification limits (MQLs) for each element. For PIXE the average
is provided because MDLs are specific for every measurement. The quantification limits are calculated as 3 x MDL.

TYPE UNITS Ca Ti V Cr Mn Fe Co Ni Cu Zn As Se Ag Cd Sn Sb Ba Hg Tl Pb

Xact 625 MDL (1 σ) 1 h ng/m3 0.9 0.4 0.3 0.3 0.3 0.8 0.3 0.2 0.3 0.2 0.1 0.1 4.3 5.7 7.5 0.7 0.9 0.2 0.2 0.3
BDL % 0 1 8 6 0 0 68 0 0 0 42 7 0 0 0 5 59 0 97 0
BQL % 0 21 68 41 6 0 100 21 0 0 53 75 98 98 82 7 95 18 100 0

PIXE MDL (3 σ) average ng/m3 7.4 3.2 2.2 1.4 1.2 0.9 0.6 0.7 0.7 0.6 0.5 11.6 1.9
BDL % 0 2 76 0 2 0 0 0 0 51 95 14 10
BQL % 0 65 98 11 3 0 2 2 0 94 100 52 35
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fraction with chemical profiles coherent with literature and previous
studies carried out with the same technique in the Po Valley (e. g. Bressi
et al., 2016).

Step 3. PMF run with hourly online Xact 625 trace elements and Q-
ACSM inorganic ions to determine the sources and contributions
resulting from the use of the inorganic components of PM.

Step 4. PMF run with hourly combined Xact 625 and Q-ACSM datasets
(major ions, m/z of organic fragments and trace elements) using the
results of the previous steps as reference to support the identification of
sources and the estimation of their contributions to PM. In this step a
series of tests (section 4.3.3) to harmonise the uncertainties of the
abovementioned families of compounds used in the analysis were
carried out.

To guarantee the robustness of the “combined” source apportion-
ment every step was consistent with the previous ones (when appro-
priate), especially as regards the source chemical profiles. With the
scheme followed in this study, the source apportionment carried out in
steps 1 to 3 using well-known approaches and homogeneous input data
served as a reference for the development of the source apportionment
based on the “combined” dataset.

The US-EPA PMF5 application implementing the Multilinear Engine
v2 (Paatero, 1999) was used for the source apportionment runs. The
identification of the primary sources in steps 1 and 3 was confirmed by
comparison with the source profiles of the SPECIATE (Simon et al.,
2010; Hsu and Divita, 2014) and SPECIEUROPE repositories (Pernigotti
et al., 2016) by means of the DeltaSA tool (Pernigotti and Belis, 2018).
The average standardised identity distance (SID k=1, Belis et al.,
2015), where distances equal or below 1 are acceptable, was used to
compare the chemical profiles.

The m/z spectra obtained in step 2 (Q-ACSM) were validated by
comparison with reference spectra from a previous study in a similar
site of the Po Valley (Bressi et al., 2016) and from the literature: MI-
LAGRO (DeCarlo et al., 2010) and MEGACITY (Crippa et al., 2013)
projects.

3.1. Online datasets input uncertainty

The uncertainty of the Xact 625 measurements depends on a series
of factors: a) the relationship between the atmospheric concentration of
the elements and the instrument MDL (higher for levels< 3.3x MDL),
b) line interferences in multi-element samples and self-absorption for
the lightest elements and c) the length of the sampling time (inversely
proportional). The uncertainties of measurements are determined for
every single concentration value by comparison with internal standards
(at every measurement cycle and daily) during the instrument opera-
tion taking into account the above mentioned variables. In addition,
laboratory experiments with NIST standards report additional un-
certainty< 5% due to fitting errors and uncertainties in the internal
standards (Furger et al., 2017). In this study, Xact 625 uncertainties
were calculated for each value of each element under the corresponding
energy condition (EC) and standard tube (Al, Pd, Cu) used for the
measurement with (regression) parameters fitted in automatic daily
calibrations. Ca, Ti, V, Cr, Mn, Sb and Ba correspond to EC1 (25 kV with
Al standard); Fe, Co, Ni, Cu, Zn, As, Se Hg, Tl and Pb to EC2 (48 kV with
Pd standard) and Pd, Ag, Cd; and Sn to (EC3 48 kV with Cu standard).

The Q-ACSM uncertainties were calculated according to Ulbrich
et al. (2009) with the Igor Pro (Wavemetrics Inc) local tool (v. 1.5.3.2)
for Q-ACSM data treatment and export of PMF matrices. The initial
error values were calculated as the standard deviation of the Poisson
distribution of the detected ions in a given time period convolved with a
Gaussian curve describing the distribution of the electrical pulse areas
(Allan et al., 2003). A minimum uncertainty was attributed to every
single variable on the basis of the length of the sampling time. The error
of a 3-point smoothing of the m/z time series was added in quadrature

to decrease the data noise. Finally, fragmentation tables (Allan et al.,
2004) were used to account for the contribution from gaseous species
and for the fragmentation that certain molecules (e.g. ammonium ni-
trate, ammonium sulphate, polycarboxylic acids) undergo when va-
porising at high temperatures. This is needed to correct the decrease in
the m/z peaks of bigger molecules and corresponding increase in the
lower m/z peaks of the mass spectrum because of the presence of
fragments of low molecular weight. For 30min of averaging time (t30),
the 3σ detection limits for ammonium, organics, sulphate, nitrate, and
chloride were 0.28 μg/m3, 0.15 μg/m3, 0.02 μg/m3, 0.01 μg/m3, and
0.01 μg/m3, respectively (Ng et al., 2011). The observed uncertainties
were in line with the Q-ACSM reproducibility relative uncertainties
observed in the ACSM intercomparison (Crenn et al., 2015): 9, 15, 19,
28 and 36% for NR-PM1, nitrate, organic matter, sulphate and ammo-
nium respectively.

To create an extensive input dataset for PMF, including organic and
inorganic aerosol components (hereon “combined dataset”), it was
necessary to pool measurements obtained with different analytical
techniques. One of the most complex aspects when combining such kind
of data is that the criteria to determine the analytical uncertainty may
considerably vary between techniques and between instruments.
Considering that in PMF every entry value is weighted by its un-
certainty, significant differences in the uncertainties between techni-
ques or instruments may overshadow the information relevant for the
apportionment of sources. Moreover, in such a combined dataset, the
number of markers deriving from different techniques could become
unbalanced (e.g. AMS-like techniques produces organic spectra with a
hundred or more m/z while the number of trace elements (inorganic)
vary between 20 and 30).

3.2. Criteria adopted to harmonise the uncertainties of the online data

In receptor modelling, there are different sources of error: random
error, modelling error (bias), and rotational ambiguity (Paatero et al.,
2014). The analytical procedures are one important source of random
error. Also sampling and sample management may contribute to this
kind of error. Moreover, modelling error arises in situations in which
the RM assumptions are seriously infringed (e.g. wrong number of
sources or variation of source profiles in time).

In step 4 of this study (section 4.3.3) we combined Xact 625 trace
element measurements with Q-ACSM major ions and organic m/z data.
The analytical uncertainties of these measurements were used to cal-
culate the input uncertainties for PMF according to Polissar et al.
(1998) as follows:

=
+ >

U
MDL if x MDL

u x MDL if x MDL
ij

i j i

i j i j i

5
6

2 2 2
(3)

Where ui are the analytical uncertainties and Uij the input uncertainties.
The input uncertainties were considered as a first estimate of the total
uncertainty of the input concentrations. To harmonise the uncertainties
deriving from the different measurement techniques in the combined
dataset, they were adjusted on the basis of the analysis of scaled re-
siduals and the Qtrue/Qexp ratios, both total and for every species, of the
PMF runs (Paatero pers. comm.). To that end, after selecting the
number of factors, the analytical uncertainties were increased so that
the scaled residuals were evenly distributed around zero with a max-
imum of 5% absolute values (without sign) > 3, the Qtrue/Qexp for
every species did not exceed 2 and the overall Qtrue/Qexp ratio was at
most few tenths above the unity. The increase of the starting analytical
uncertainties was made for groups of species. When the distribution of
the scaled residuals was skewed the uncertainties were adjusted only
for lowest/highest values depending on the sign of the skewness (po-
sitive or negative).
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4. Results

4.1. Comparison between online and offline trace elements analyses

The online and offline elemental analyses were carried with two
different techniques PIXE/PIGE and XRF, respectively. The good quality
of the measurements is not under discussion considering that both da-
tasets were generated following well established methods that include a
series of quality checks as described in Chapter 2. The objective of this
chapter is to assess the comparability between online and offline ele-
mental analyses to support the interpretation of the source apportion-
ment results. To that end, the linear regression slope, the coefficient of
determination (R2) and the absolute relative difference (ARD) were
evaluated. Although a slope near unity and a high R2 are indicators of
good agreement between measurements, this method has some limita-
tions because samples with high concentrations may influence too
much the regression. Therefore, the ARD indicator (Eq. (4)), was also
used to test the relative difference between two sets of measurements
sample by sample.

=
+

ARD species
species species

100
1/2( )

1on

off on (4)

In this study, ARD less than 20% (for at least 2/3 of the samples)
and slope less than 20% different from unity with R2 higher than 0.8
were used as criteria to assess whether offline and online were in “good
agreement” (G) (Yatkin et al., 2016). In addition, “poor agreement” (P)
was attributed when ARD>50%, slope difference>50% and
R2 < 0.5. Results falling between good and poor agreement were al-
located in an intermediate category regarded to as “acceptable agree-
ment” (A).

The results of the comparability tests for the chemical species
measured with both methods are reported in Table 2 and the time
trends are shown in Fig. S1 of the supplementary material.

In order to compare the two datasets, the hourly online measure-
ments were averaged to match the offline 6-h samples. Considering the
low OM/OC winter ratios reported by Bressi et al. (2016) for a similar
location of the Po Valley, the organic matter (Org) resulting from the Q-
ACSM was compared with the offline OC multiplied by the conversion
factor 1.4 (Turpin and Lim, 2001). The gravimetric PM2.5 was com-
pared with the sum of the chemical species obtained with the Q-ACSM.
The organic matter and major ions showed good comparability between
the offline and the online (Q-ACSM) in all the three test indicators, with
the exception of the R2 in chloride, and consequently the overall
comparability of these species was considered good (Table 2). A wider
range of responses was observed in the 13 elements for which both
offline and online measurements were available. Only Fe and Cu pre-
sented an overall good comparability with an R2 between 0.6 and 0.7
(Table 2). The majority of the elements (Ca, Ti, V, Cr, Mn, Zn and Pb)
presented an intermediate comparability as shown by their higher re-
lative differences and dispersion of the data around the regression line.
Finally, four elements (Ba, Ni, As and Se) showed low comparability
between the two techniques mainly reflected by the poor fit of the
linear regression curve. The low comparability of some elements could
be attributed to high share of values falling below the Xact 625 MDLs:

Ba and As, or the of PIXE: V, As and Se (Table 1).
Good comparability is reported in the literature between offline

methods: PIXE vs XRF and PIXE vs ICP-MS, for Ca, Ti, Mn, Fe, Cu, and
Pb in PM10 (Traversi et al., 2014; Yatkin et al., 2016). On the contrary,
limited comparability between PIXE and XRF was observed for V, Cr,
Ni, Zn and Ba (Yatkin et al., 2016).

Moreover, good comparability between Xact 625 (online) and ICP-
OES/MS (offline) was reported for S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb
while poorer match was observed for: V, Cr, Co, Ni, As, Se, Cd, Sn, Sb,
Hg and Bi (Furger et al., 2017). A preliminary conclusion on the basis of
this first part of the work is that the limited comparability between
some of the offline and online trace element measurements observed in
this study may be attributed to their low concentrations in the ambient
air, that were often near or below the detection limit of the methods
(As, Se, V and Ba). Other factors contributing to the variability of results
are: a) that, as shown by previous studies, the different methodologies
are not fully comparable for all the elements (e.g. V, Cr, Ni, Zn and Ba)
and b) that averaging of online data over the 6 h off-line samples was
required for comparing them. In this regard, it must be taken into ac-
count that the comparisons available in the literature for this kind of
data (Yatkin et al., 2016; Furger et al., 2017) refer to daily averages
while in this study are used higher time resolutions that imply higher
uncertainty for the XRF determinations due to the reduced sampling
(=analytical) times.

4.2. Source apportionment with offline data (step 1)

The off-line dataset consisted of 61 PM2.5 6 h samples collected from
26/1 to 19/2/2015. The major chemical components (ions and carbo-
naceous fractions) of the offline and online were very similar in terms of
relative composition. The total mass used for this run was the gravi-
metric PM2.5 mass (41 μg/m3).

The selected solution encompassed six sources: fresh biomass
burning (BIOB, 33%), aged biomass burning (AGED BIOB, 17%), am-
monium sulphate (AMS, 14%), ammonium nitrate (AMN, 29%), road
dust and exhaust (TRAFFIC, 1.2%), and iron/steel industry (STEEL, 4%)
(Fig. 2, Table 3). It was possible to detect a seventh sporadic source
consisting of aged sea salt that was not considered for the purposes of
this study because of its very low share of the total mass (≪1%). The
two biomass burning sources were identified on the basis of K+, ele-
mental and organic carbon, chloride and Zn. One of these source pro-
files contains 85% of the oxalate. In the literature oxalate is reported
either as a primary or secondary pollutant. In European studies it has
often been associated with both biomass burning emissions, as it is
correlated with non-sea salt K+ in winter, and to secondary aerosol
because of its correlation with sulphate (Laongsri and Harrison, 2013;
Yu et al., 2005). Moreover, winter secondary formation of oxalate and
other diacids in wood burning plumes was reported in European con-
tinental background sites (Legrand et al., 2007). On the basis of this
evidence, the biomass burning factors with and without oxalate have
been allocated to aged and fresh fractions, respectively. The con-
temporary presence of fresh and aged biomass burning in PMF results
has been reported in other locations (e.g. Perrone et al., 2018).

The fifth factor of this solution is a combination of a dust component
as indicated by the presence of crust elements such as Al, Ca, Ti and Fe

Table 2
Comparability between offline and online measurements on the basis of the slope, the coefficient of determination (R2) and the 67th Percentile of the absolute
relative difference (ARD) calculated for Xact 625. Normal font: good comparability (G), bold font: poor comparability (P) and italics font: acceptable comparability
(A). Org=Q-ACSM organic matrix.

Org/OM SO4
2- NO3

− NH4
+ Cl− Ca Ti V Cr Mn Ba Fe Ni Cu Zn As Se Pb PM

SLOPE 1.0 0.9 0.8 1.0 1.0 0.5 0.7 1.1 0.7 1.2 0.0 1.2 0.4 1.1 0.7 0.5 1.6 0.5 1.0
R2 0.9 0.8 0.9 0.9 0.7 0.5 0.5 0.6 0.5 0.5 0.0 0.6 0.3 0.7 0.4 0.1 0.1 0.3 0.9
ARD 67th Per 8 13 12 7 20 28 37 49 75 23 96 20 44.3 19.0 24.4 57.5 37.4 30.4 7.4
overall G G G G G A A A A A P G P G A P P A G
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and elements deriving from break abrasion such as Zn, Cu, Ba and Mo
(Grigoratos and Martini, 2015). Nevertheless, components associated
with exhaust are also present (OC, EC, nitrate), suggesting that the
factor is likely to be attributed to the more comprehensive source ca-
tegory traffic, including both road dust and exhaust. The comparison
with the chemical profiles in SPECIATE and SPECIEUROPE using the
DeltaSA tool confirms the affinity of this factor with traffic (average
SID=0.95). Also the allocation of the other primary sources: biomass

burning and iron/steel industry has been confirmed by comparison with
the abovementioned repositories (average SID=0.93 and 0.87, re-
spectively).

The simplified source diurnal variations (only four values each)
were coherent with the identification of the sources (Fig. 3). The bio-
mass burning and aged biomass burning source presented increasing
concentrations during the evening and highest levels during the night.
The road dust source presented highest values in the evening while the

Fig. 2. Chemical profiles of the seven sources identified in this study. Only the offline species that are also present in the online dataset are shown. For comparability
with literature data, relative values of organics in all steps are normalised by the sum of the organics while those of inorganics are normalised by the sum of all species
(the total mass of the profile).
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iron/steel industrial source showed the highest levels at noon. AMN and
AMS presented rather flat diurnal patterns.

4.3. Source apportionment with online data

4.3.1. SA of the organic fraction (step 2)
A source apportionment run was carried using only the Q-ACSM

components (m/z) of the online dataset for the same time window of
the offline dataset (471 samples) (Fig. 2, Table 3). The total variable
was the sum of the organic m/z (22 μg/m3). The best solution was the
one with three sources representing primary biomass burning organic
aerosol (BBOA, 34%), biomass burning oxygenated organic aerosol (BB-
OOA, 28%) and oxygenated organic aerosol (OOA, 38%). A solution
with a fourth factor including HOA was interpreted as a factor split
because of its high similarity with the BBOA chemical profile.

The identification of the BBOA factor (key species: f29, f43, f60 and
f73) was confirmed by comparison with the one reported for the winter
season by Bressi et al. (2016) for another suburban background location
in the Po Valley (SID= 0.18, Fig. 2a). Also the OOA factor (key species
f18, f29 and f44) presented high similarity (SID= 0.31) with the one
reported by Bressi et al. (2016) (Fig. 2h). Since no BB-OOA source (key
species: f29, f44 and f60) was reported in the latter study the chemical
profile was validated with the ones reported by Crippa et al. (2013)

(SID= 0.61, Fig. 2b) and DeCarlo et al. (2010) (SID=0.64, not
shown).

Even though the chemical profiles of steps 1 and 2 could not be
compared (because contain different markers), the analysis of m/z
spectra confirmed the identification of two sources associated with
biomass burning: BBOA (fresh) and BB-OOA (aged), achieved using the
offline dataset (step 1).

The BBOA diurnal variation showed increasing contributions (delta
13 μg/m3) from afternoon to night (17–23 h) and minimum levels in the
afternoon (14–17 h) (Fig. 3). In BB-OOA, a similar trend was observed
with the difference that the diurnal excursion was narrower. On the
other hand, the OOA presented no clear hourly trend with values ar-
ranged within a limited range (less than 3 μg/m3).

4.3.2. SA of the inorganic fraction (step 3)
As a complement of step 2 a PMF run was also carried with only the

inorganic compounds of the online dataset for the same time window of
the offline dataset (471 samples) (Fig. 2, Table 3). The total variable in
this step was the sum of all the chemical species (38 μg/m3). As in step
1, six sources were identified: biomass burning (36%), ammonium ni-
trate (38%), ammonium sulphate (17%), road dust/traffic (2%), iron/
steel industry (1.3%) and waste incineration (3%). Unlike the offline
(step 1) and online organic (step 2) datasets, in this run it was not

Table 3
Summary of the model set up used in the EPA-PMF 5 run in every source apportionment step.

Step STEP 1 STEP 2 STEP 3 STEP 4

Duration 26/1 16.00–20/2 10.00 26/1 16.00–19/2 10.00 26/1 16.00–19/2 10.00 26/1 16.00–19/2 10.00
Input data OFFLINE ONLINE ACSM

ORGANICS
ONLINE XACT INORGANIC ONLINE COMBINED DATASET

PM fraction PM2.5 NR-PM1 NR-PM1 (ions)/PM2.5

(elements)
NR-PM1 (ions, m/z)/PM2.5 (elements)

40.91 μg/m3 (gravimetric) 21.7 μg/m3 (sum of
species)

38.3 μg/m3 (sum of species) 38.3 μg/m3 (sum of species)

Factors 6 3 6 7
Solution BASE BASE BASE CONSTRAINED
Fac names and

contributions
BIOB: 33%; 13.4 μg/m3 BBOA: 34%; 7.29 μg/m3 BIOB: 36%, 13.7 μg/m3 BIOB: 25%; 9.6 μg/m3

AGED BIOB: 17%; 7.1 μg/m3 BB-OOA: 28%; 6.08 μg/
m3

AMN: 38%, 14.4 μg/m3 AGED BIOB: 19%; 7.1 μg/m3

AMN: 29%; 11.7 μg/m3 OOA: 38%; 8.22 μg/m3 AMS: 17%, 6.5 μg/m3 AMN: 32%; 12.0 μg/m3

AMS: 14%; 5.5 μg/m3 TRAFFIC: 2%, 0.8 μg/m3 AMS: 19%; 7.0 μg/m3

TRAFFIC: 3%; 1.21 μg/m3 STEEL: 4%, 1.3 μg/m3 TRAFFIC: 2%; 0.8 μg/m3

STEEL: 4%; 1.83 μg/m3 WASTE: 3%, 1.2 μg/m3 STEEL: 2%; 0.9 μg/m3

WASTE: 1%; 0.3 μg/m3

Species 29: 20/9 (strong/weak) 71: 67/4 (strong/weak) 17: 17/0 (strong/weak) 87: 87/0 (strong/weak)
S= strong S: OC, EC, SO4

2−, NO3
−, NH4

+,
Cl−, Oxalate, K+, Mg+, Ca+, Al, Cr,
Mn, Fe, Ni, Cu, Zn, Br, Rb, Pb

67m/z from f15 to f100 S:Org., SO4
2−, NO3

−, NH4
+,

Cl−, Ca, Ti, V, Cr, Mn, Ni, Cu,
As. Hg, Pb, Fe, Zn

Elements: Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As,
Hg, Pb (12); m/z from f15 to f100 (71); ions:
SO4

2-, NO3
- NH4

+,Cl- (4)
W=weak W: Na, Ti, V, As, Sr, Y, Zr, Mo, Ba W: f15, 24, 37, 49

Obs vs mod Slope<0.5: Na, Al, Ti, V, As, Br, Sr,
Y

OK Slope< 0.5: Ti, V, Cr, As, Pb Slope< 0.5: Ti, V, Cr, As, Pb

Scaled resid. > 3: Cl, Na > 3: f31, f59, f60, f72,
f88, f90, f93, f95

> 3: Ti > 3: f90, f93, f95, Ti

Time steps 61 471 471 471
Uncertainty input 2x all species 0.8x: SO4

2−, 0.8x: SO4
2−, 0.8x: SO4

2-

1.5x: NO3
−, NH4

+, Cl−,
f50 to f59 and f80 to f89/

1.5x: NO3
−, NH4

+, Cl−, f80 to
f100

1.5x: NO3
−, NH4

+, Cl−, f45,f55,f71,f80 to f100

2x:f90 to f100, Ti, As 2x: f70 to f79, Ti, As 2x:f15, f43, f57, f72, f73, Ti, As
2.5x: f60, f72, Ni, Cu 2.5x: f60,Ni,Cu 2.5x: f60,Ni,Cu
3x:V, Ba 3x: V,Ba 3x:V,Ba
4x: Cr, Mn, Pb 4x: Cr, Mn, Pb 4x: Cr, Mn, Pb

Qrob - Qtrue 1113–1212 30455–31988 4205–5223 Base: 37374 - 40547
Constr: 37690–40724 dQ=0.8%

Qtrue/Qexp Overall: 1.80; Overall: 1.1; Overall: 0.94; Overall: 1.09 (base);
Species > 2: Cl−, Na, K+, Ca+, Zn Species > 2: none Species > 2: Ti, Ni, Pb Species > 2: 93, 95, Ti

BS, DISP BS OK, DISP OK BS OK, DISP OK BS OK, DISP OK BS OK, DISP OK
Constraints NO NO NO BIOB:SO4/NH4=2; SO4/PM=0.003;

AMN: f60=1.4 x f58;
TRAFFIC: f44= f42; f60= 1.6 x f61;
STEEL: f44= f42; f60=1.6 x f61;
WASTE: f44= f42; f60= 1.6 x f61;
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possible to distinguish fresh and aged fractions of biomass burning due
to the lack of specific organic markers. On the other hand, in this step it
was possible to better resolve the industrial source identified in the
offline solution confirming the contribution from the steel industry (key
species: Fe and Mn) and extracting an additional source (key species:
Zn, Cl−) that has been attributed to waste thermal treatment. As in the
previous steps, the identification of the sources biomass burning, road
dust, steel industry and waste incineration was validated by comparison
with the SPECIATE and SPECIEUROPE datasets using the DeltaSA tool
(average SID= 0.96, 0.96, 0.90 and 0.87, respectively).

Unfortunately, Si and Al that are very useful for the identification of
dust and road dust sources (Amato et al., 2016) and elemental carbon
for the identification of traffic exhaust were not available in the online
dataset used in this study. However, the availability of other elements
typical of crustal material (Ca, Ti) and of brake emissions (Fe, Zn) made
it possible to recognize the road dust fraction. In addition, the presence
of ammonium nitrate and ammonium sulphate as in the traffic profiles
of step 1 supported the identification of this factor as traffic source.

A check of the consistency between the source profiles belonging to
comparable source categories obtained in this analysis and step 1

resulted in very good similarity for AMN (SID= 0.88), AMS
(SID= 0.69), road dust/traffic (SID=0.70) and steel plant
(SID= 0.72). The sum of the profiles of the two biomass burning fac-
tors reported in step 1 was also comparable with the undivided biomass
burning of this step (SID= 0.67).

In this step, the biomass burning diurnal variations were compar-
able to those of BBOA in step 2 and as OOA in that step, AMN presented
a very limited diurnal excursion. Also AMS presented limited diurnal
variations with minimum values during the afternoon. Traffic presented
two daily maxima corresponding to the rush hours while the two in-
dustrial sources showed a main daily peak before noon (Fig. 3).

4.3.3. Combined dataset (step 4)
The final solution obtained using the combined Q-ACSM and Xact

625 data for the same time window of the previous steps is presented in
this section. Considering the complexity of the profiles encompassing
species with different uncertainty estimation approaches (section 3.1)
and the scarcity of such kind of profiles in the literature, a specific
approach to ensure the soundness of the results was adopted. A solution
was obtained after harmonising the uncertainties as described in section

Fig. 3. Source diurnal variations for the seven sources identified in this study. The curves in step 1 represent the average of 6 h samples while the others are hourly
sample averages.
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3.2. A constrained solution was then developed to fine tuning the
source profiles taking as reference the chemical profiles obtained in
steps 1 to 3 that were carried out using set of species whose un-
certainties were derived with consistent methods (within each step). In
addition, the three previous steps fulfilled widely accepted receptor
models technical protocols (Belis et al., 2014; Hafner and Brown, 2005;
Norris et al., 2014) and the resulting chemical profiles were validated
by comparison with those in the literature. As a consequence, the
output of step 4 was based on internal reference profiles derived from
state-of-the art receptor model applications that either:

a) were obtained using a totally independent set of data (offline, step
1) for the same time window with the difference that the range of
species and the time resolution was lower, or

b) covered the entire range of species (87) using the same type of
variables and time resolution with the difference that were obtained
in two separate runs (online, steps 2 and 3).

To prioritise solutions with chemical profiles coherent with to those
obtained in steps 1 to 3, constraints were applied in a post processing
stage of the PMF analysis. The constraints were introduced as ratios
between markers species taken from the profiles in the previous steps
and from reference profiles in the literature (Table 3). The constrained
ratios were:

- in BIOB, SO4/NH4=2 and SO4/PM=0.003 (average of profiles in
SPECIEUROPE and step 1);

- in TRAFFIC, STEEL and WASTE, f44= f42 and f60=1.6 x f61
(average of HOA profiles from Bressi et al., 2016 and Sofowote et al.,
2018);

- in AMN, f60=1.4 x f58 (average of OOA profiles from Bressi et al.,
2016 and Sofowote et al., 2018).

The maximum Q variation for every single constraint was set to
0.5% and the increase in the global Q parameter was negligible (0.8%).
The comparison between the unconstrained and constrained chemical
profiles is shown in Fig. S3 of supplementary material. The applied
constraints did not altered the identity of the sources as confirmed by
the conservation of the diurnal profiles (Fig. S4, supplementary mate-
rial) while the allocation of the mass underwent minor changes (≤7%
points) for the single sources (Fig. S5, supplementary material).

In this step seven factors were identified: fresh biomass burning
(BIOB, 25%), aged biomass burning (AGED BIOB, 19%) ammonium
nitrate (AMN, 32%), ammonium sulphate (AMS, 19%), road dust/
traffic (TRAFFIC, 2%), iron/steel industry (STEEL, 2%) and waste
thermal treatment (WASTE,< 1%) (Fig. 2, Table 3). A spreadsheet with
the source profiles is provided in the supplementary material.

The combined analysis in step 4 confirmed the presence of fresh and
aged biomass burning factors reported in steps 1 and 2. The chemical
profile of the fresh biomass burning factor matched the one of the
biomass burning in step 1 (SID=0.82), the one of BBOA factor in step
2 (SID=0.15) and one in the literature (Bressi et al., 2016; SID= 0.12;
Fig. 2a). Also the chemical profile of the aged biomass burning from this
step matched the one of the corresponding sources in step 1
(SID=0.76) and in step 2 (SID=0.54; Fig. 2b) and those in the lit-
erature (Crippa et al., 2013; DeCarlo et al., 2010; SID= 0.60 and 0.69,
respectively). The only difference was that in the BB-OOA profile ob-
tained in this step f18 and f44 peaks are higher than in the profiles used
as reference.

The inorganic fraction of the AMN and AMS profiles were com-
parable with those observed in previous steps [SID: 0.90–0.55 in AMN
and 0.79–0.37 in AMS for the offline (step 1) and online (step 3) da-
tasets, respectively]. In these profiles the main species are ammonium
nitrate and ammonium sulphate. Differences in some trace elements
that are not key species for these factors were observed (Fig. 2c and d).
In particular, Ti, V, Cr, and Zn that were present in AMN obtained with

the offline dataset (step 1) are missing in this step and in step 3. In the
AMS factor the profiles were even more stable and the lack of match
between offline and online only concerned Mn and Zn. As for the or-
ganics, the sum of the m/z spectra of AMN and AMS in this analysis
presented a high affinity with the one of the OOA factor obtained in
step 2 (SID= 0.45).

The remaining three factors added up to a relatively small share of
the total mass. One of them was attributed to TRAFFIC (key inorganic
species Ca, Fe and Zn; Fig. 2e) and the other two were associated with
industrial activities (Fig. 2f and g): STEEL (key inorganic species Mn
and Fe) and WASTE (key inorganic species: Zn, Cl− and Pb). TRAFFIC
and STEEL profiles were comparable with those reported in step 1
(SID= 0.85 and 0.60, respectively). No WASTE source was identified in
step 1. The main differences with step 1 in TRAFFIC concerned am-
monium sulphate, V, Cr, Hg and Pb while the STEEL profiles differed
from the one in step 1 in nitrate, Ca and As. The similarity between the
profiles in this run and those of step 3 (online inorganic) for these three
sources was also satisfactory (SID=0.60, 0.42 and 0.37 for TRAFFIC,
STEEL and WASTE, respectively). The organic fractions of these three
sources were characterised by primary combustion markers (e.g. f41,
f43, f55 and f57). The SIDs between the HOA factor reported in Bressi
et al. (2016) and TRAFFIC, STEEL and WASTE factors were 0.42, 0.54
and 0.59 respectively. The lack of a HOA factor in step 2 is likely due to
the very little mass of this factor compared to the primary biomass
burning. In step 4, the presence of organic and inorganic markers in the
same dataset made it possible to identify a small HOA like fraction in
traffic and industrial sources.

The limited contribution from TRAFFIC at this site is in line with its
location in a small business area next to a dead end road 300m from the
closest main road. STEEL was associated with two steel plants located
19 km to the North-West (> 100 kt of steel/year). The presence of a
WASTE source was associated with one incinerator (max. 220 ton/day;
max. electric power 95MWh) located 17 km to the East and a second
one (max. 196 ton/day; max. electric power 7MWh) located 40 km to
the North-West.

The daily time profiles of the sources were coherent with those
observed in steps 1 to 3 (Fig. 3). BIOB and AGED BIOB presented a steep
increase in the evening. TRAFFIC showed two clear maxima corre-
sponding to the rush hours while AMN and AMS underwent modest
variations along the day. The two industrial sources presented the
highest levels in the latest morning hours.

To check the consistency between the source apportionment derived
from combined online dataset (step4, 1 h samples) with the one derived
from the offline one (step 1, 6 h samples), in Fig. 4 left are compared the
source contribution time series for the studied time window (26/1 to
19/2/2015). The comparison is limited to the sources that were present
in both steps. In BIOB and AMN a very good match between the two
steps in terms of phase and amplitude was observed (Fig. 4a,c).
TRAFFIC contributions were near zero on 14th and 15th February
which corresponds to the closure of the main streets for the traditional
Carnival parade (Fig. 4e). Although trends and levels were quite co-
herent in AGED BIOB, AMS, TRAFFIC and STEEL, small biases (positive
or negative) for short time windows were detected. Differences between
the AGED BIOB trends of the two steps were observed especially during
the Carnival celebrations (Fig. 4b). However, there is not enough evi-
dence to associate this event with the biomass burning contributions. In
the same period, the AMS contributions in step 4 presented higher
values than in step 1 while on 17th – 19th February it was the contrary
(Fig. 4d). Also TRAFFIC and STEEL present comparable trends in both
steps, however, the amplitude of the curve in step 4 was higher com-
pared to the one in step 1 in the former and the opposite is true for the
latter (Fig. 4e and f). The differences may be due to the presence of
HOA organic fraction in these sources in step 4 that was not present in
step 1.

In Fig. 4 (right) the time series of step 4 are compared with external
markers derived from the offline dataset and from fixed monitoring
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Fig. 4. Time trends of the sources identified in this study. Comparison of the online results with the offline sources and with independent markers.
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networks (Fig. 4 right). The BIOB matched the trend of K+ (Fig. 4a).
The bias between AGED BIOB and the levels of oxalate was very similar
to the one observed between the trends of this source in steps 1 and 4
(Fig. 4b). Therefore, the abovementioned differences between the two
steps may be due to the predominant role of this marker in step 1 while
in step 4 the trend is influenced by a wider range of markers. This
hypothesis is supported by the good correlation observed in step 4
between AGED BIOB and f45. This fragment derives from alfa cleavage
with loss of alkyl radical (COOH) from mono- and low molecular mass
di-acids (https://chem.libretexts.org/). A similar association between
aged biomass burning source and f45 was reported by Sofowote et al.
(2018). AMN and AMS trends match very well those of ammonium
nitrate and ammonium sulphate concentrations in the offline dataset
with the exception of the latest two days where the AMS in step 4 is
lower confirming the underestimation observed in the comparison be-
tween the sources time series in these two steps. TRAFFIC presented a
very good correlation with the averaged NO2 hourly trend of the two
closest fixed monitoring stations of the relevant Regional Environ-
mental Protection Agency (Fig. 4e).

4.4. Discussion of the source apportionment approach

This study aimed at developing a methodology to combine online
organic and inorganic datasets with heterogeneous uncertainties for
their use in source apportionment. Each of the source apportionment
results obtained in steps 1 to 3 represent a complete and robust solution
carried out using state-of-the-art methodologies and input data.
Moreover, step 1 was based on a complete independent dataset. To
guarantee the robustness of the results in step 4 (and take advantage of
all the quality checks carried out in the execution of each previous
step), its coherence with the previous ones was intentionally imposed.
In addition, source profiles from the literature were used as an addi-
tional mean to ensure the soundness of the step 4 results. The con-
sistency of the step 4 with the previous ones in terms of chemical
profiles (Fig. 2), diurnal variations (Fig. 3) and time series (Fig. 4)
demonstrates that a final combined result, which is consistent with the
complete and robust solutions of steps 1–3 used as reference, was
successfully achieved. This attainment and the coherence with the lit-
erature source profiles (SPECIATE, SPECIEUROPE and others) guar-
antee the robustness of the final solution and demonstrates the effec-
tiveness of the approach used in this study.

The combination of high number of species and time resolution
available in step 4 made it possible the identification in one single run
of all the sources identified in the previous steps. In addition, in this
step the sources were better characterised than in the previous ones
because of the extended set of species and the source diurnal variations
with hourly detail.

The mass apportioned to the different sources varied between the
different steps of the analysis. Such differences are primarily due to
different total variable used in every step (Table 3). A contribution to
the variability of the output in step 4 with respect to the previous ones
may be attributed to the different size fractions used: PM2.5 in the
offline and online elemental analysis and NR-PM1 for the online ions
and m/z spectra. Nevertheless, this discrepancy is considered to have a
minor impact on the source apportionment results for a number of
reasons. Firstly both fractions represent the same kind of aerosol (ac-
cumulation and smaller size modes) and their masses are highly cor-
related (Lagler et al., 2011). Secondly, during winter time in the Po
Valley PM1 represents a very high fraction of the PM2.5 (Vecchi et al.,
2008) as confirmed in our study where the average PM1/PM2.5 ratio
was 0.9. Thirdly, the average chemical composition and the time series
of the main components in the two size fractions, are comparable
(Table 2 and Fig. S2). The differences between some of the trace ele-
ments have been attributed to the differences between the analytical
methods used for the online and offline datasets. Finally, the homo-
geneity of PM1 and PM2.5 for the purposes of this study is supported by

previous source apportionment work combining online and offline data
where no significant differences were observed between Q-ACSM
equipped with PM1 and PM2.5 lenses (Sofowote et al., 2018; Jeong
et al., 2019).

Another important source of variation between steps is that the
combination of different kinds of species into a single analysis influ-
ences the strength of the sources differently to analyses carried out with
only a subset of them. This is mostly due to the different number of
species representing the PM chemical fractions. For instance, in the
offline dataset the organic fraction consisted of one single species: or-
ganic carbon, while in the combined dataset this fraction included 71
different species (m/z). Even though in this study the uncertainties of
the different families of components were harmonised it is clear that the
influence of the organic fraction in the allocation of the mass to the
sources is stronger in the combined dataset (step 4) than in the offline
dataset (step 1). Moreover, there were no online measures of black or
elemental carbon in step 4 while this chemical component was avail-
able in step 1.

Finally, the differences observed between the chemical profiles and
contributions obtained with offline and online datasets have been in-
fluenced by differences in the analytical determinations (section 4.1).
Even if this source or error cannot be completely removed because
depending on intrinsic differences between the analytical techniques,
the most affected species were either excluded from the analysis (e.g.
Ba, Sn, Cd, Ag, Co, Se, Sb, Tl) or strongly downweighted (e.g. Cr, V, Ni,
Ti, As). None of the marker species presented critical differences be-
tween offline and online measurements. The only exception is Zn that
presented some discrepancies only at the beginning of the monitoring
campaign (Fig. S2).

5. Conclusions

The study successfully developed a robust methodology to execute
and validate a receptor model study combining high resolution organic
and inorganic data derived from different online analysers with dif-
ferent uncertainty data treatment.

Good comparability between the offline and the online (Q-ACSM) in
all the three test indicators was observed for major components of fine
PM such as organic matter and major ions. On the other hand, the
higher variability between offline (PIXE/PIGE) and online (Xact 625)
trace elements observed in this study was attributed to the low con-
centrations of certain elements in the ambient air that resulted often
near or below the method detection limits. Another source of variability
is that the PIXE and XRF are not fully comparable for all the elements as
suggested by Yatkin et al. (2016) for V, Cr, Ni, Zn and Ba.

Notwithstanding the abovementioned discrepancies in the analy-
tical results, the approach adopted in this study led to the consistent
combination of PM chemical components measured with analytical
techniques that have different uncertainty estimation approaches. Such
combination was possible thanks to the use of a protocol to harmonise
the uncertainties based on the analysis of the PMF weighted residuals
and Q/Qexp ratios. The robustness of the combined source apportion-
ment was ensured through the consistency with an independent ana-
lysis based on an offline dataset, the use of source chemical profiles
from the literature as reference, the soundness of the diurnal profiles
and the coherence between the time series of the sources with external
markers.

This study demonstrates that combining organic and inorganic
markers with high time resolution supports a more comprehensive
characterisation of the sources in terms of chemical composition and
diurnal time profiles. This kind of analysis may, therefore, foster the
identification of a higher number of sources because of the wider range
of markers (organic and inorganic) and the possibility to identify
sources associated with short lived processes that are not always de-
tectable with 24 h averaged samples.

The source profiles reported in this study combining online ions, m/
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z and trace elements validated by comparison with external experi-
mental and literature data are expected to contribute to the develop-
ment of a pool of chemical profiles that could be used as reference for
future studies. The developed methodology should be used to combine
also online black carbon measurements to achieve an even more com-
prehensive set of markers.
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