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Chapter 1

PHD PROJECT

11 Introduction

1.1.1 Role of Metals in Biology

More than 90 of the 118 elements in the periodic table are metals. Each metal
has unique chemical and physical properties that can play crucial roles in biological
reactions. In this regard, metals play an important role since the era of the so-called
“RNA world”. Despite the fact that the concentrations of most of these metals in the
prebiotic ocean are not known, it is believed that evolution took advantage of the most
plentiful ones to develop numerous and fundamental biological processes!. As
essential metals for all living organisms that are abundant in both the environment and
in vivo, we find sodium (Na*) and potassium (K*) of the first group and magnesium
(Mg?*) and calcium (Ca?*) of the second group?. Sodium and potassium ions play
major roles in biological systems, from maintaining the membrane potential, a
mechanism underlying muscle contraction and nerve impulse transmission, to osmotic
pressure regulation in cell®>. Magnesium is mainly involved in the maintenance of
nucleotides stability and ATP activation®. Calcium is the most abundant metallic
element of the human body and takes part in many crucial physiological activities as
signal transduction, muscle contraction and relaxation, neurotransmission, bone
formation, mitosis, secretion or can simply act as enzyme stabilizer and others®. The
other essential metal ions are also known as “trace” elements because they act in low
concentration and are cytotoxic in high amount. Molybdenum (Mo), tungsten (W),
manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn) are all
“trace” elements and belong to the d-block of the periodic table. In general, essential
trace elements take part in different biological processes depending on their properties.
For instance, the propensity of iron to make complexes and exchange electrons is
extremely important in hemoglobin formation underlying oxygen transport and oxido-

reduction reactions, respectively®. Again, zinc is a fundamental cofactor for many
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enzymes involved in metabolism and cell growth’. The maintenance of an optimal
cellular or subcellular concentration requires the presence of mechanisms to regulate
the uptake, storage and excretion of metal ions®. The balance of these processes is
called metal homeostasis. Several and severe pathologies are directly related to
disfunctions in metal homeostasis regulation®. Furthermore, there are also a number of
non-essential metals that are present in many organisms and affect physiological
processes. They are usually toxic even in very small concentration, hence specific
homeostatic systems regulate their availability. Finally, some metal-dependent physio-
chemical properties of some non-biological metals can be specifically exploited to
better understand physiological processes (for instance in imaging) or to therapeutic
effectst®.

1.1.2 Metalloproteins

Proteins that require one or more metal ions to perform their biochemical
function are called metalloproteins. To date, metal ions are critical to the activity of up
to an estimated one-third of all proteins in most of the organisms. Metals can play
different functional roles in the interaction with proteins. As mentioned above,
transport of electrons is a crucial activity that often relies on transition metal cofactors.
As catalytic cofactors, it was estimated that 41% of enzymes contain metal ions at the
catalytic centre and thus are named metalloenzymes®?. As structural cofactors, metals
ions are mainly required for correct protein folding or to stabilize the folded functional
state, in both monomeric conformation and mediating protein-protein interactions in
complex formation. Furthermore, a big portion of metalloproteins are directly involved
in the maintenance of an optimal intracellular metal concentration i.e. in the metal
homeostasis regulation. For instance, metallochaperones are employed for
intracellular metal trafficking and for controlling the delivery of the appropriate metal
ion to the target metalloprotein in a specific cellular compartment and through specific
protein-protein interactions!2. Metalloproteins usually use a specific metal ion to
perform their function that, in most of the cases, cannot be substituted by other metals,
thus requiring a metal-specific fine-tuned homeostasis regulation system®3. In this
context, a crucial role is played by metal-responsive transcriptional regulators, also
known as metalloregulatory proteins or metal sensors'*. The specific binding of the
appropriate metal on the regulator triggers a rearrangement of protein structure and/or

dynamics that modulates its affinity/specificity to DNA. The binding on the DNA in




turn triggers up- or down-regulation of proteins involved in metal homeostasis or that
require metal to their biochemical activity. Thus, this class of metalloproteins can
modulate gene expression in response to the metal intracellular concentration. A quick
mention deserves also mellathioneins, a family of metalloproteins enriched of
sulfhydryl groups mainly involved in the protection against metal toxicity and

oxidative stress and in the maintenance of essential metal ion homeostasis®®.

1.1.3 Iron and Zinc

Iron and zinc are the first and second most abundant trace element in the human
body, respectively. They participate in many important physiological processes. Thus,
disorders in their metabolism can lead to severe diseases. In particular, iron propensity
to catalyze the propagation of ROS (reactive oxygen species) and the generation of
highly reactive radicals (such as the hydroxyl radical) through Fenton chemistry
requires a tight control of its availability by diverse mechanisms at different levels®®.
Iron exists in vivo in two different oxidation states, the ferrous +2 and the insoluble
ferric +3. Iron-containing systems can bind the metal as single ions or complexed with
minerals and other cofactors, such as in ferritin, heme or iron-sulfur clusters.

In contrast to iron, zinc is ubiquitous within cells and can be found in cellular
compartments approximately with the following distribution: 50% in the cytoplasm,
30-40% in the nucleus and the remaining 10% in plasma and organelle membranes?®’.
Zinc is required by approximately 10% of human proteins®®. As catalytic or structural
cofactor it contributes to many physiological functions, from cell growth, development
and differentiation, to processes such as gene expression, DNA synthesis, hormone
storage and release, neurotransmission, memory and apoptosis®®. Specific protein
families are responsible of zinc transport inside and outside cells and cellular
compartments. The removal of zinc from cell or from organelles is due to the Cation
Diffusion Facilitator (CDF) proteins ZnT/SlIc30. On the contrary, ZIP/Slc39 proteins
uptake zinc in the cytoplasm from the extracellular space. There are at least 10 ZnT
and 14 Zip transporters in human cells. Both ZnT and ZIP family members feature
unique tissue-specific expression and respond differentially to zinc overload or

deficiency.
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1.2 Aim of the Project

My doctoral project was focused on the investigation of structural properties of
metalloproteins in silico. In this regard, the large diffusion of powerful and cost-
effective GPGPU units has allowed the computational exploration of a number of
biological processes using techniques based on molecular dynamics (MD). In
particular, the research projects addressed during my PhD can be grouped in two main
chapters: i) structure determination of proteins and ii) role of metal ions in
metalloprotein dynamics.

In the context of proteins structure prediction, three studies have been carried
out. In the first one, the PseudoContact Shifts (PCS) module of the AMBER MD
package was extended to handle multiple PCS datasets simultaneously and to refine
NMR structures with the restrained molecular dynamics (rMD) method. In the second
study, NMR-derived ambiguous contacts were simulated and provided to predictors
(in addition to real data) of the CASP13 NMR-assisted competition. Eventually,
evaluation of the models generated by NMR-assisted competitor groups was
performed relative to the models generated using baseline methods and relative to the
models generated using non-assisted regular methods. In the third study, we took
advantage of coevolution analysis to develop a protocol for the prediction of homo-
oligomeric complexes from ambiguous NMR-data.

In the chapter “role of metal ions in metalloprotein dynamics” are grouped the
four projects based on MD methods. In the first one, the metal-dependent folding
process of rubredoxin was investigated using accelerated MD. In the second project,
the iron release mechanism from human ferritin was explored as a function of pH. In
the third study, zinc-dependent conformational transitions of the YiiP transporter were
sampled. Finally, in an ongoing project the conformational motions of two variants of
the human zinc transporter ZnT8 associated with type-2 diabetes are under

investigation.
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1.3 Methodological Aspects

1.3.1 Molecular Dynamics

An important step in the knowledge of biological systems is the characterization
of their three-dimensional (3D) or quaternary structure and dynamics. Experimental
methods for structural determination of molecules such as X-ray crystallography,
NMR and Cryo-EM (and others) very often can resolve proteins structures in the
corresponding global energetic minimum but less often the transient conformations
corresponding to local energetic minima. However, transient conformations can
provide important contribution in the description of molecular mechanisms, therefore
they are fundamental for getting a complete overview of biological processes?. In this
regard, the computational approach most suitable for the investigation of dynamics
properties is the molecular dynamics (MD) method. Molecular dynamics can simulate
the evolution of a system over time based on the forces (expressed as force-fields)
affecting system particles. Basically, MD simulations solve Newton’s equations of

motion (equation 1) for a system of N interacting atoms:

62ri
m; at?

=F;i=1,-,N )

where m;, r; and F; are the mass, the position and the force acting on the i-th
atom, respectively. Because of the high number of atoms typically involved in these
systems, MD simulations are performed with the use of classical force-fields

[V (ry, -+, 7y)], which are functions of the atomic positions only:

oV (ry,TnN)

Fl: a—rl ; i:1,"’,N (2)

Equation 2 is integrated in short time steps, providing an atomistic view of the
evolution of the system over time (the so-called trajectory). In fact, MD simulations
are worthwhile to obtain an atomic-level description of protein systems and their
mobility under different conditions such as during conformational transitions, protein
folding or transport of molecules through the cellular membrane?!. In the context of

metalloproteins, MD can be effectively used in the investigation of metal perturbation
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on systems. By analyzing the trajectory after its initial “equilibration” phase, during
which system properties reach target mean values e.g. temperature, pressure or water
molecules and ions distribution around the macromolecule, the macroscopic properties
of interest can be extracted from the simulation. Furthermore, MD simulations can be
harnessed to improve the structural features of protein conformations through

restrained molecular dynamics (rMD).

1.3.2 Classical Parametrization Strategies for Metal lons

A common issue in performing MD simulations of metalloproteins is the
parametrization of metal ions and/or metal centers. For instance, metal ions or clusters
covalently bond to proteins need a reasonable distribution of their electronic densities
on single particle charges. Furthermore, common force-fields used in MD simulations
do not include parameters for d-block metals. Thus, using different approaches a
number of models have been developed during years with the goal to obtain the best
possible (closest to natural behavior) reproduction of metal properties and their effects
on the interacting atoms?2. In the following sections the most popular parametrization

strategies for metal ions are discussed.

The Nonbonded Model

The most widespread potential for two atoms not covalently interacting is
undoubtedly the sum of the Van Der Waals and electrostatic terms?® as described in
Equation 3. The electrostatic function for two atoms i and j is given by their partial
charges Qi and Q;, that for metal ions is usually assigned as integer charge
corresponding to their oxidation state, separated by a distance r;j in which a dielectric
constant g, defines the free space permittivity. The function describing VVan Der Waals
energy contributions is known as Lennard-Jones function (LJ), where ¢;; is the well
depth and measures how strongly the two particles attract each other, o;; is the distance
at which the intermolecular potential between the two particles is zero and r;; is the
distance separating the two atoms. Because in a system with N atom types there will
be as many as N(N+1)/2 unique atom pair types, which require a considerable
parametrization effort, different rules have been introduced to derive ij pair
coefficients from each individual atom type. In this way, only two parameters per atom

type (e.g., € and o) are needed (2N in total). The resulting potential is a good
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approximation especially for low electronegative monovalent ions, where the

polarization and charge transfer effects are small®.

QI.Q] Ui]' 12 Uij 6
U(r;) = Eete + Evow = +iey (_) - (_) (3

47T£0Tij T'i]' rij

The parametrization of metal ions can follow different strategies with the
common aim to reproduce one or more structural, kinetic and dynamic properties in
addition to thermodynamic quantities. In particular, the three key parameters that
should be accurately reproduced are: i) the hydration free energy (HFE) ii) the
coordination number (CN) and iii) the ion-oxygen distance (I0D) of the first water
shell. Among the parametrization strategies that can be adopted with MM
computational methods, the force field or single point energy calculations, Monte
Carlo or MD simulations are commonly used. Parameters derived by fitting against
specific properties should be tested before being applied, since the derived model can
be affected by transferability problem if it is used on bigger or more complex systems
where multiple atom types are present simultaneously. Instead, metal ions parameters
derived from QM fitting typically consider solely the first water molecule, therefore
neglecting the many-body effects arising from fitting on multiple molecules. As a
result, ion-water interactions are often overestimated especially for the HFE and CN
properties. This can be partially compensated by using small basis sets, except for
highly charged metal ions for which the many-body effect is too high. In the latter
case, various approaches can be deployed to circumvent the many-body issue: (A)
introducing many-body terms; (B) working with an effective potential; (C) working
with a combined model. Parameterizations derived from experimental data are often
effectively based on free energy. Thus, free-energy changes can be calculated using
different computational methods such as free-energy perturbation?® (FEP),
thermodynamic integration®® (T1), MM Poisson-Boltzmann surface area®’
(MM/PBSA), MM generalized Born surface area (MM/GBSA) and linear response
approaches?,

In general, parametrization based on the LJ model are affected by an error the
increases with the square of the ion charge. Thus, a good agreement with experimental
values is particularly difficult to achieve for all the parameters simultaneously (HFE,

CN and 10D) in the case of highly charged ions. A straightforward way to reduce
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errors is to refit specific parameters to satisfy individual experimental features.
However, this approach usually results in some parameters reproduced with high
accuracy but big errors in the others. Furthermore, classical approaches neglect charge-
induced dipole and dipole-induced dipole interactions, a drawback particularly
relevant for multivalent ions. To correct this, a new 12-6-4 LJ model was proposed in
2014 and applied to parametrize various metal ions in conjunction with three common
water models?*-3!. The new 12-6-4 model has an additional term representing the ion-
induced dipole interaction. Similarly, classical force fields adopting single point
charges that are kept fixed during simulations lack of polarization effects. In this case,
the charge scaling (CS) approach can be applied to introduce long-range screening
effects into account as in the MD electronic continuum (MDEC) approach®2. A model
of water based on the CS approach features fluctuating charge and, because it does not
introduce additional terms, has the advantage to be suitable for use in conjunction with
classical force fields while preserving computing performances®. Despite CS models
are unable to reproduce correctly the microscopic environment, they can be used to
predict some statistical properties such as different polarization of water molecules

binding metal ion at the macromolecular surface and in the bulk phase.

The Bonded Model

Together with the nonbonded terms, the functional used in MM-based
calculations is formed by the bonded interactions illustrated in the Equation 4. In the
first three terms we find bond, angle and dihedral interactions described as follow: for
each group of bonds, the k; (force constant) and req (equilibrium length), for each group
of angles, ke (force constant) and 6eq (equilibrium value), for each group of torsion
angles, Vi (energy barrier), n (periodicity), and y (phase). The latter two terms define
electrostatic, with atomic charges, and VDW interactions that largely contribute to the
quality of the force field. The most widely used classical force fields for biological
systems are based on the same functional shown in Equation 3, that can slightly differ
in the LJ term. The parameters for dihedral and improper torsion angles have distinct
minima depending on the repulsions between bond electrons®*. However, in the case
of metal ions all angle values are considered accessible at physiological temperature,

therefore the corresponding energy barriers are normally set equal to zero®®.
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U= Zbonds ki(r - Teq)z + Zangles kH (9 - Heq)z + Ztorsions Zn=1,2,3,4 Vn[1 +

cos(n® — V)] + E¢ie + Evpw (4)

Even though modern force fields can have high power and cross terms®®27, most
of the classic force fields are still based on a harmonic representation of the bonded
and angle terms, making the parameters transferability feasible and easy. Force field
parameters are usually derived based on agreement with QM or experimental data and
then transferred on larger target systems. This basic transferability assumption is a
good approximation for equilibrium bond and angle distances, whose values are often
similar in different environments. However, in QM calculations the bonded and
nonbonded interactions are coupled together, making it difficult in some case to
disentangle the two contributions.

Among the QM methods to derive force constants, the potential energy surface
(PES) scanning approach is one of the simplest. Despite simplicity, every bond and
angle that is part of the metal environment requires a PES scan, making the
computational cost expensive. This approach was applied to develop a force field for
various heme species®®. Instead, the Z-matrix method relies on the computation of the
Hessian matrix that usually is executed calculating the derivative of the energy
analytically and in combination with the DFT level of theory®®. This method has some
well-known drawbacks, we list here the most relevant ones. First, it is dependent on
the internal coordinates chosen. Second, it considers only harmonic terms, thus
requiring corrections of final force constants. Finally, the harmonic potential used
prevent the application of calculated dihedral force constants within modern force
fields. Similarly, the Seminario method calculates force constants using a sub-matrix
of the Cartesian Hessian matrix*°. However, these constants incorporate the influence
of the environment and may not be suitable for isolated bonded terms. To date, several
metal ion parameters are present in literature based on the use of this method within
the MCPB toolkit*'. Furthermore, it was recently used for the development of a python
based metal center parameter builder*? and a visual force field derivation toolkit*®
(VFFDT). A mention deserves also the automated parametrization method (APM), an
approach to derive parameters directly from the parameter space. APM has the
advantage of not presenting the double counting issue of bonded and nonbonded
interactions that affect other methods as the Z-matrix approach. Nevertheless, the

number of possible combinations raises exponentially with the parameter space
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dimension. This can be partially managed dividing the parameter set in subsets or
performing the parameter optimization as a geometry optimization. A number of free
programs are available to perform APM, such as Parmfit®® and ForceBalance®’,

Charge parameters for classical force fields are in most of the cases inferred by
QM calculations. Among them, the most used methods to derive partial charges of
metal sites is the electrostatic potential fitting (ESP)*® and in particular the restrained
charge fitting (RESP)*’. The former method is applied in combination with algorithms
able to pick ESP points and their spatial location for fitting. For instance, the CHarges
from Electrostatic Potentials (CHELP)*® approach uses points that are symmetrically
distributed on four spherical shells from the VDW surface separated by 1 A, with 14
points on each shell. Similarly, the CHarges from ELectrostatic Potentials using a
Grid-based (CHELPG)* strategy picks the points between the VDW surface of the
molecule and a surface 2.8 A away based on a cubic grid where the points are separated
by 0.3 A. The RESP method using the DFT functional with the 6-31G* showed
excellent performance in calculating the atomic charges of metal sites, despite
sometimes an effective core potential can be preferable (for instance with negative
charged clusters®). Both the mentioned methods are unable to take in account charge
fluctuations due to conformational dynamics around the metal site. However, the
metal-protein bonds usually confer rigidity to the protein region, making the
calculation on a single conformation a reasonable approximation.

In addition to QM calculations, atomic charges can be inferred by empirical
methods, by fluctuating charges methods (FQ) and by experimental derivation
methods. However, all these approaches have limited applicability for different
reasons. Empirical charge methods are time consuming and perform poorly in
addressing transition and excited states. The FQ model is difficult to apply on
macromolecules. Finally, the presence of a structure with very high resolution and low

B-factors allows to derive charges from XRD experiments.

The Polarizable Model

Highly charged metal sites are affected by strong local polarization effects that
are impossible to be accurately reproduced with fixed partial charges. As consequence,
the polarizable model was developed to account for charge delocalization as a function
of the coordination environment. The three most used polarization models are, the FQ

model®!, the Drude oscillator® and the induced dipole model®®. Nowadays, MD
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simulations with polarization models have a reasonable computational cost if
performed in combination with extended Lagrangian algorithms®*. However, the
applicability of these models is still limited.

The Cationic Dummy Atom and the Combined Model

The cationic dummy atom model (CDAM) representation splits the total charge
and mass of the metal atom in a number of dummy atoms around the metal core that
depends on the coordination number of the metal ion (Figure 1). This model was
originally developed for Mg?* and then extended for other cations where it showed
excellent performances in reproducing the native coordination of ions in solution®.
Despite it might reduce the energy of the interaction between metal and amino acids,
CDAM was applied also in nonbonded models to improve experimental HFE and 10D
parameters together®®,

Alternatively, the combined model incorporates the first water shell around the
metal core in a combined unit exploitable in MM calculations®’. This approach has the
advantage of immediately including many-body effects in the first water shell, while
taking into account electronic state crossing. However, it works well only for highly
charged metal ions (+2 or higher) and in short simulations because of long mean

residence time of water molecules in the first shell.
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Figure 1. Example of an octahedral dummy model coordinating water molecules®®.
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Chapter 2

PROTEINS STRUCTURE PREDICTION

21 Introduction

2.1.1 NMR-based Structure Determination of Metalloproteins

Function of metalloproteins strongly depends by the physical-chemical
properties of the bound metal ion/cluster, in turn affecting the coordination chemistry
of the metal center. In this regard, the investigation of the metal coordination by NMR
can be performed only on the metals with a magnetic susceptibility. Unfortunately, a
significant number of biologically active metals lack of nuclear magnetic susceptibility
(e.g. %7Zn, *3Ca) or have unpaired electrons (e.g. Mn?* and Cu?*), making the
investigation of the metal coordination unsuitable. In some cases, this issue can be
addressed by replacing physiological metals with NMR-active metals, for instance
using ™3Cd in zinc binding proteins®. In the case of diamagnetic metals, the
information collected mainly derive from the metal-dependent NMR chemical shift
perturbation of the environment around the metal, both through chemical bonds and
through space. Stoichiometry of metal binding and its affinity can be estimated simply
by mapping the chemical shift perturbations on the protein structure. However, in most
of the cases this method alone is not sufficient to derive the 3D structure of a
metalloprotein. Thus, the NMR structure determination of metal-binding proteins
usually relies on the combination of NMR with other techniques such as SAXS or X-
ray crystallography. Interestingly, despite the complexity of the approach, quantum
mechanical/molecular mechanical (QM/MM) molecular dynamics simulations
restrained by NMR-derived data has proved effective in the structural determination
and refinement of zinc metal binding sites in absence of other experimental
information®°.

In the case of metalloproteins binding paramagnetic ions, additional information
can be collected from the interaction between the magnetic nuclei of the protein and

the unpaired electron spin density of the metal. This kind of interactions typically
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cannot be used to derive the coordinates of the nuclei of the protein residues that
coordinate the paramagnetic metal because of signal broadening or because of
negligible contributions. However, paramagnetic interactions between residues distant
in space can be exploited as long-range restraints that, in combination with classical
short-range restraints as NOEs, can be applied in structure refinement. Besides residual
dipolar couplings (RDCs), the two most used paramagnetic restraints are called
paramagnetic relaxation enhancements (PREs), derived from the enhancements of
nuclear relaxation rates, and pseudocontact shifts®* (PCSs).

The collection of a PCS dataset relies on the determination of the magnetic
susceptibility anisotropy tensor (Ay), that arise from the paramagnetic metal ion, and
its fitting on a protein structural model®2. Then, the structural model is iteratively
refined against PCS restraints (together with other restraints) and its Ay updated®. In
particular, this approach has been extensively applied in the study of calcium-binding
proteins by replacing Ca?* ions with lanthanide ions or by attaching lanthanide binding
tags to proteins®*®® (Figure 2). Each lanthanide ion has a different number of unpaired
electrons and therefore can induce a paramagnetic effect in a shell located at variable
distance from the metal ion. This lanthanides feature is typically exploited to collect
multiple PCS datasets that potentially bring structural information on metalloproteins

in a distance range from the metal site up to ca. 40 A%®.

57
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Figure 2. Lanthanide series in the periodic table.

2.1.2 Refinement of Proteins Structure with restrained MD

The calculation of protein structures based on NMR data usually is executed with
specific computer packages as Cyana or Xplor-NIH®"% These programs can manage
a number of NMR data that can be used as restraints in simulated annealing
calculations, at the end of which a 3D model of the molecule of interest is generated.
Usually, NOE-derived distance restraints are given as pseudopotential in the
calculations to the determination of the molecular structures (Figure 3). Moreover,

NMR data can provide further relevant structural information, such as dihedral angles

20



(derived from chemical shifts) or other restraints derived from paramagnetic data
(RDCs, PCSs and others). Once that a data-driven simulated annealing calculation is
completed, the generated NMR structure needs a final energetic refinement to improve
its structural quality, in particular for stereochemical parameters®. In this regard, other
possible approaches are the so-called structure rebuilding or statistical potential’®"%,

VNOE

Figure 3. Parabolic flat-bottom potential often used for NOE-driven structural determination. Upper
(us) and lower (li;) limit for the NOE distance r;;.

Energetic refinement relies on the force fields and water treatment (explicit or
implicit), implemented in NMR-based structure calculation programs, that often have
lower quality than those implemented in classical MD packages as AMBER or
GROMACS’®™, Thus, restrained molecular dynamics (rMD) can improve
significantly the accuracy of the generated structure both in term of agreement with
experimental data and stereochemical quality. The restraints given in input to MD
packages need to be converted to the supported format in order to retain the structure
consistent with the experimental data. This step can be tedious due to conflicting rules
and other format differences. To facilitate the format conversion and speed up the
calculation, a web interface exploiting computational grid infrastructure called AMPS-
NMR (AMBER-based Portal Server for NMR structures) is available free of charge

for academics at http://py-enmr.cerm.unifi.it’*. Furthermore, the portal implements

predefined protocols greatly simplifying rMD set up for who is not familiar with MD

packages.

2.1.3 Solid-State NMR in the Investigation of Protein Assemblies

Protein assemblies are defined as a combination of different proteins or multiple

copies of the same monomeric unit. In the first case are called hetero-complexes and
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in the second case are called homo-complexes. The structural characterization of
protein complexes is extremely important since many proteins can perform their
biological function only as biological assembly. The correct complex formation
depends on specific protein-protein interactions (PPIs) that play a crucial role in the
partner recognition. The diffusion of Cryo-EM methods has exponentially increased
the investigation of big complexes and molecular machines. However, other
techniques based on X-ray crystallography and NMR spectroscopy can provide
information on structure and dynamics by giving a contribution to the characterization
of individual subunits and by pinpointing PPIs.

Among the experimental methods, solid-state NMR (SSNMR) has an increasing
potential in the study of complexes because is not limited by protein size, solubility,
crystallization difficulties, presence of inorganic/organic matrices or lack of long-
range order that often make the application of other structural biology methods
extremely difficult or unsuitable. In the NMR context, SSNMR can yield good quality
spectra by the identification and assignment of through-space nucleus-nucleus
interactions also in experiments on high molecular weights, such as protein assemblies.
For this purpose, DARR is a diffused pulse sequence based on 3C-13C magnetization
transfer through proton-driven spin diffusion’. By tuning experimental DARR
parameters, users can select the range of distances at which inter-nuclear interactions
are sampled. Although solid-state resonance lines of protein complexes are narrow,
spectral congestion coming from resonance overlap makes the assignment of DARR
peaks a challenging task (Figure 4). As a result, SSNMR DARR experiments collect a
number of ambiguous contacts in which the tertiary and quaternary contacts cannot be
distinguished, thus precluding the correct identification of protein-protein contacts and
the determination of the complex structure. In hetero-complexes this problem can be
mitigated by using different schemes for the enrichment of stable NMR-active isotopes
(13C, ®*N) in different complex units. Unfortunately, this procedure is extremely more
tedious for homo-complexes, in which the identification of inter-monomeric contacts

remains largely a manual task that requires a lot of time and user efforts.
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2D 3C-13C DARR Chemical shift list

1 171.125 0.000 C 24
2 59.425 0.000 CA 24
3 29.315 0.000 CB 24

N/

ATNOS/CANDID

!

Ambiguous
contacts
list

Figure 4. Example of a scheme for the generation of ambiguous contacts from 2D °C-*C DARR
experiment.

2.1.4 Coevolution in the Investigation of Protein Assemblies

PPIs of protein assemblies can be also predicted by investigating their
evolutionary conservation across many different proteins of the same family. The so-
called coevolution analysis assumes that the conservation of fundamental residue
interactions is favored during protein evolution’®. This implies that residues in contacts
in the tertiary structure or among the complex subunits show correlations in their
aminoacidic occurrences. The information derived can be exploited by structural
biologists, alone or in combination with experimental data, to predict tertiary or
quaternary structures or even putative multiple protein conformational states. In the
case of homo-complexes, the identification of evolutionary couplings (ECs) consistent
with PPIs is based on the construction of a single large multiple-sequence alignment
(MSA) in which are present the homologue protein family sequences. On the contrary,
in hetero-complexes the ECs prediction requires a joint MSA of two protein families,
in which each line corresponds to an interacting protein pair. This crucial step is very
often much difficult to implement due to the presence of paralogs that must be
identified and removed prior to the covariance analysis. Although the construction of
the MSA is simpler for homo-complexes, the identification of ECs belonging to inter-
molecular contacts is much more complicated because such information is hidden
among thousands of ECs that can belong to either tertiary or quaternary contacts’’. The
removal of ECs corresponding to tertiary contacts requires the knowledge of the

tridimensional structure of the monomeric subunit of the complex. Nevertheless, at the
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time of writing (2019) there is a relevant number (about 2000) of protein families
annotated as forming homo-oligomeric assemblies in vivo with a deposited monomeric
structure in the Protein Data Bank (PDB). These families potentially constitute an

interesting target for homo-oligomeric structural predictions.
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2.2 Research Projects

As described above, PCS are information-rich paramagnetic restraints that can
be measured when the protein binds a paramagnetic metal ion. For lanthanide-
substituted proteins it is possible to measure multiple sets of PCS data. In principle,
these data sets can be used simultaneously and in combination with diamagnetic
restraints to generate structural models, thanks to the incorporation of specific routines
in different structure generation programs. However, there were no available protocols
for rMD using multiple PCS datasets as part of the restraints. Thus, the
PSEUDOAMBER routine was extended to allow the energetic refinement of structural
models in the presence of all available PCS restraints. This new extension implements
a refinement protocol that is a finely tuned version of the AMPS-NMR standard
protocol. To test the new implementation, NOEs and multiple independent PCS data
sets were used to refine bovine calbindin Dgk. In each PCS dataset, a different member
of the entire series of lanthanide trivalent cations (excluding the radioactive Pm** and
the isotropic Gd®*) was used. How much the protocol affects the structural quality was
evaluated performing rMD on the NMR bundle models generated from the beginning
(i.e. in CYANA) only with traditional restraints or with traditional restraints in
combination with multiple PCS datasets. With respect to improving the local
energetics and geometric features of the protein structure, the protocol was equally
effective in the refinement of structures initially generated with or without inclusion
of the PCS data. The content of secondary structure elements was not significantly
affected by the refinement, yet there was a small but consistent improvement in the
distribution of residues in the most favoured regions of the Ramachandran plot. The
Procheck G-factor all (Z-score) featured a much greater improvement than its
counterpart focusing only on the backbone conformation. This significant difference
was due to the impact of the refinement on the rotameric states of all side chains.
Another improvement was the extensive removal of bumps between atoms, as
indicated by the large improvement of the MolProbity clashscore. Finally, correlation
between experimental and back-calculated PCS data before and after rMD refinement
indicated a relevant improvement of the agreement in the refined models. Overall, this
new implementation delivered the expected improvement of protein geometry,

resulting in final structures that were of suitable quality for deposition in PDB.
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In the CASP-NMR project, CASP13 predictors were provided with
“ambiguous contact lists” derived from the analysis of simulated or real NOESY peak
lists using the program ASDP’8, In the case of generating simulated NOESY data, the
procedure was started by using structure coordinates as input to the SHIFTX2 program
to generate chemical shift values for *H, 3C, and °N atoms (Figure 5). The simulated
NOESY peak lists and the final table of the simulated chemical shifts were used to
generate a list of ambiguous distance restraints using the ECO-NMR method from the
ASDP program’. In total, data for 13 different proteins or protein domains were
provided to competitors. In so doing, for each dataset a number of resonance
assignments and NOESY peaks were deleted to simulate line broadening due to
conformational dynamics and incomplete assignments. In fact, protein dynamics and
signal overlap are the main causes of errors in the conversion of NMR observables into
structural restraints. The first case can lead to missing observable peaks involving a
given nucleus. The second case can lead to less reliable assignments of resonance
frequencies e.g. due to accidental degeneracies. In the latter case, peaks are observable
but cannot be converted to the appropriate structural restraints. To mimic realistic data,
both types of problems were introduced in the simulations by randomly selecting loop
residues. For each extracted residue, it was randomly decided whether to remove the
assignments of all its nuclei and all corresponding peaks, or to discharge only the
frequency assignments while retaining the peaks, hence leading to the inclusion of
ambiguous restraints that are impossible to satisfy. In addition, random noise peaks
were added by randomly combining shifts of the direct and indirect dimensions. In
general, considering both the removal of assignments from the chemical shift list and
the addition of random noise to the spectra, in each simulated dataset the fraction of
ambiguous restraints that were impossible to satisfy was kept around 10% of the whole
list. Unfortunately, the program Talos+ used to predict the chemical shifts not always
was consistent with the X-ray structure. Thus, backbone dihedral angles of all the
structured residues present in the final table of chemical assignments were randomized

in a range +/- 30 of the value observed in the X-ray structure.
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X-ray structure coordinates
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coordinates with protons
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NOESY peaks < chemical Shifts

lASDP
Ambiguous Contacts List

Figure 5. Scheme adopted for the simulation of ambiguous contacts in CASP13.

As already anticipated, many proteins carry out their functional role acting as
part of protein assemblies. The assembly of the correct biological complex strongly
depends upon specific protein-protein interactions (PPIs) that often are evolutionary
conserved. If this is the case, coevolution analysis can detect quaternary contacts
besides tertiary contacts. However, in homo-oligomers the separation of evolutionary
couplings (ECs) belonging to protein-protein interface from the others is not
straightforward. Similarly, solid-state NMR (SSNMR) is often used in the
investigation of protein assemblies, as the quality of SSNMR spectra does not decrease
with increasing molecular weight, but spectral congestion makes the investigation of
homo-complexes largely a manual task.

In this project, a protocol was developed to automatically predict the structure
of homo-complexes from SSNMR-derived ambiguous contact lists using coevolution
analysis. The same protocol can be also applied using only solution-state NMR data.
Our protocol calculates a list of putative interface residues to be used as input for
docking calculations. It needs four inputs: one or more files with the list of ECs, the
structure of the monomer, the experimental NMR-derived list of ambiguous contacts
and the Naccess file (rsa format) with the per-residue relative solvent accessible area.
The protocol was validated on a tetrameric and a dimeric protein. The ECs for both the
proteins were collected using 3 servers available online: Gremlin, RaptorX and
ResTriplet. The monomer-monomer docking calculations were carried out with
HADDOCK. The structural prediction of the tetrameric E. coli L-asparaginase Il
(PDB: 6EOK) is not trivial since this protein features a D2 symmetry, hence two
distinct dimeric conformations must be recognized to reconstruct the functional

complex. Nevertheless, the calculated ECs were matched with a solid state 2D*3C-13C
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DARR dataset yielding a relevant number of predicted interface residues for both the
protein interfaces. In fact, the docking calculation mainly sampled a structural
configuration with an RMSD of about 1 A from the crystallographic dimer with the
largest interface in the tetrameric protein. After the removal of the restraints already
satisfied by the most favored configuration, the second docking run resulted in a
second dimer that, despite being less favored, had an RMSD of 1.3 A from the
crystallographic dimer with the smaller interface. The final tetrameric structure can be
easily reconstructed by symmetry. In addition, the agreement between side chains
orientation and docking accuracy was assessed building template-based monomeric
conformations with side chains randomly oriented. Finally, the robustness of the
protocol in the identification of residues belonging to small interface regions was
tested in the prediction of dimeric human apo Sod1 (PDB: 3ECU). The match between
the calculated ECs and solution-state 3D *H-®N NOESY-HSQC dataset resulted in
residues that, given to docking calculation, yielded clusters with comparable
HADDOCK score values. Nevertheless, the distribution of the desolvation energies
discriminated the best cluster with high accuracy, showing this energetic contribution

as an excellent scoring function.
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Abstract The binding of paramagnetic metal ions to pro-
teins produces a number of different effects on the NMR
spectra of the system. In particular, when the magnetic
susceptibility of the metal ion is anisotropic, pseudocontact
shifts (PCSs) arise and can be easily measured. They
constitute very useful restraints for the solution structure
determination of metal-binding proteins. In this context,
there has been great interest in the use of lanthanide(III)
ions to induce PCSs in diamagnetic proteins, e.g. through
the replacement native calcium(Il) ions. By preparing
multiple samples in each of which a different ion of the
lanthanide series is introduced, it is possible to obtain
multiple independent PCS datasets that can be used
synergistically to generate protein structure ensembles
(typically called bundles). For typical NMR-based deter-
mination of protein structure, it is necessary to perform an
energetic refinement of such initial bundles to obtain final
structures whose geometric quality is suitable for deposi-
tion in the PDB. This can be conveniently done by using
restrained molecular dynamics simulations (rMD) in
explicit solvent. However, there are no available protocols
for tMD using multiple PCS datasets as part of the
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restraints. In this work, we extended the PCS module of the
AMBER MD package to handle multiple datasets and
tuned a previously developed protocol for NMR structure
refinement to achieve consistent convergence with PCS
restraints. Test calculations with real experimental data
show that this new implementation delivers the expected
improvement of protein geometry, resulting in final struc-
tures that are of suitable quality for deposition. Further-
more, we observe that also initial structures generated only
with traditional restraints can be successfully refined using
traditional and PCS restraints simultaneously.

Keywords Pseudocontact shift - Lanthanide ion -
Metalloprotein - Protein structure - Structure refinement

Introduction

Since the 1980s NMR spectroscopy has been used as a
technique complementary to X-ray to determine the solution
structure of proteins (Wiithrich 1986; Cavanagh et al. 2007).
The usefulness of addressing protein structure determination
using both NMR and X-ray approaches has been extensively
documented, especially within Structural Genomics initia-
tives (Synder et al. 2005; Yee et al. 2005; Serrano et al.
2016). The standard protocols for NMR-based protein
structures determination involve three main steps: (i) deter-
mining the chemical shift assignments of the target protein;
(ii) measuring as many as possible NOEs (nuclear Over-
hauser enhancements) between pairs of 'H nuclei to com-
pute internuclear distance restraints (upper distance limits,
upls); and (iii) using the NOE-derived upls to generate the
3D structure of the protein. Additional restraints that are
normally used include dihedral angle restraints [which often
are derived from J-couplings (Karplus 1959) or from
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chemical shifts (Shen et al. 2009)] and residual dipolar
couplings (Tjandra and Bax 1997). Alternative protocols
based on the use of chemical shift data or chemical shift and
residual dipolar couplings without any NOE information
have been described (Cavalli et al. 2007; Shen et al. 2008;
Vernon et al. 2013; Cavalli and Vendruscolo 2015; van der
Schot and Bonvin 2015). As a further alternative, limited
NOE information (sparse NOEs) can be used together with
various other types of data, including evolutionary-based
restraints, to define the protein fold with reasonable accuracy
(Lange et al. 2012; Tang et al. 2015).

Within standard protocols, the energetic refinement of
the initial 3D structures has a deep impact on the quality of
the final NMR structure that will be eventually deposited in
the PDB. Aside from the accuracy and completeness of
experimental data, the quality of NMR structures thus
depends on the programs utilized in the generation of initial
structures with simplified force fields and in their subse-
quent energetic refinement (Linge and Nilges 1999; Linge
et al. 2003; Chen et al. 2004). In particular, as demon-
strated by many studies, the quality of NMR structures can
be improved by refinement either based on molecular
dynamics simulations with state-of-the-art force field and
explicit or, less often, implicit solvent (Xia et al. 2002;
Linge et al. 2003; Chen et al. 2004; Feig et al. 2004; Jao
et al. 2008). Other approaches based on structure rebuild-
ing (Mao et al. 2014) or on the use of statistical potentials
(Ryu et al. 2016) have been proposed. Such refinement
approaches can improve significantly the geometric
parameters that are often used as indicators of structural
quality and can also have a positive impact on the accuracy
of the structure, as measured from the agreement with the
NMR data (Nabuurs et al. 2004; Nederveen et al. 2005). On
the other hand, these procedures may sometimes mask
errors in the NMR structures, at least as far as the normality
of geometric parameters is concerned (Nabuurs et al. 2006;
Saccenti and Rosato 2008). Therefore, NMR structure
validation approaches should be based on a combination of
quantitative parameters describing geometric quality and
agreement with NMR data (Huang et al. 2012; Rosato et al.
2013; Ragan et al. 2015; Vuister et al. 2014; Montelione
et al. 2013; Doreleijers et al. 2012).

Pseudocontact shifts (PCSs) arise in paramagnetic
molecules when the magnetic susceptibility tensor of the
paramagnetic center is anisotropic, as it is often the case
when the paramagnetic center is a metal ion. Because of the
anisotropic magnetic susceptibility, macromolecular systems
featuring measurable PCSs spontaneously orient in solution
in the presence of a magnetic field, thereby allowing residual
dipolar couplings (RDCs) to be measured as well (Banci
et al. 1998b). PCSs contain structural information that
proved very helpful for solving protein structures both in
solution (Gochin and Roder 1995; Banci et al. 1996, 1998a;
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Allegrozzi et al. 2000; Bertini et al. 2001b; Gaponenko et al.
2004; Banci et al. 2004; Schmitz et al. 2012; Yagi et al.
2013; Camilloni and Vendruscolo 2015), in the solid state
(Balayssac et al. 2008; Bertini et al. 2010; Li et al. 2013;
Jaroniec 2015) and in living cells (Pan et al. 2016; Muntener
et al. 2016). PCSs can also be used for structural refinement
in combination with X-ray data (Rinaldelli et al. 2014;
Carlon et al. 2016). In this context, the use of lanthanide ions
is attractive due to their large magnetic anisotropy that
induces large PCSs and RDCs (Bertini et al. 2008). Lan-
thanide ions can be introduced in proteins in different ways.
Among these, there is extensive literature describing metal-
substitution in calcium-binding proteins (Allegrozzi et al.
2000; Bertini et al. 2003) and the use of so-called lanthanide
binding tags that are chemically attached to proteins (Bar-
thelmes et al. 2011; Hass and Ubbink 2014; Rodriguez-
Castaneda et al. 2006; Su and Otting 2010). Owing to the
different number of unpaired electrons in the lanthanide
series, respectively, the induced PCSs as well as paramag-
netic relaxation enhancements, which lead to signal broad-
ening even beyond detection, are significantly different for
different ions. Thus, the combination of PCS data from
different paramagnetic lanthanides provides structural
information on different shells at variable distances from the
binding site of the metal ion (Allegrozzi et al. 2000). This
has been exploited not only for the structural determination
of individual globular proteins (Schmitz et al. 2012; Yagi
et al. 2013) but also for two-domain proteins and for pro-
tein—protein docking (Hass and Ubbink 2014; Hulsker et al.
2008; Brewer et al. 2015; Chen et al. 2014). The software
tools for structure calculation and for structure refinement
can handle RDCs induced by self-orientation and the more
popular RDCs induced by the presence of orienting media in
solution in exactly the same way. Instead, it is necessary to
implement specific routines for the use of PCSs as structural
restraints. It is currently possible to generate structural
models of proteins by combining traditional NMR restraints
with PCS restraints from multiple lanthanides, for example
using torsion angle dynamics (Banci et al. 1998a). However,
is no protocol for the energetic refinement of such models.
This makes it difficult to obtain structures based on multiple
PCS datasets that are of sufficient quality for deposition in
the PDB. Here, we report on an extension of PSEU-
DOAMBER (Banci et al. 1997) that addresses this limita-
tion, by providing a protocol that closely resembles the
protocols routinely used for structure determination without
PCS restraints and thus can be readily adopted by NMR
structural biologists. We validated the above protocol by
using the PCS data measured for bovine calbindin D9k
where the full series of the lanthanide ions (except the
radioactive promethium and the isotropic gadolinium) was
bound into its C-terminal calcium-binding site (Bertini et al.
2001a).
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Materials and methods
Implementation of the restraints

We extended our previous implementation of PCS in the
sander module of the AMBER suite (Banci et al. 1997), in
order to permit the use of multiple experimental datasets,
each from a different lanthanide ion, all referring to the
position of a single metal ion. For the present implemen-
tation, we used version 12 of the suite. For each lanthanide
ion, the following holds (McConnell and Robertson 1958)

g 1 3
o = B Ay (3cos? ¥ — 1) + EAZ"” sin® 9 cos 2¢p
(1)

where Ay, and Ay, are the axial and the rhombic ani-
sotropies of the magnetic susceptibility tensor, and r, 0, and
¢ are the polar coordinates of the nucleus under observa-
tion with respect to the orthogonal reference system formed
by the principal axes of the magnetic susceptibility tensor.
To use the PCS induced by a single paramagnetic center in
a protein as restraints in molecular dynamics calculations,
in previous work we defined a pseudo-potential term based
on the deviation between experimental (exp) and back-
calculated (calc) PCS values as

al 2
UPE = k2% Y wiAs

where A; = (|6f""’ = 5;"""| — err;)ifA; > 0,0 otherwise
(2)

where is the weight for PCS restraints with respect to
the other terms of the complete potential, w; is the relative
weight of the each of the N PCS restraints and A; is the
deviation between the experimental and back-calculated
values of the i-th restraint, beyond the experimental
uncertainty (err;). In practice, the summation includes only
violations that are greater than the uncertainty on each PCS
measurement. In our experience, it is not necessary to
define w; weights different from 1.0, except when using
null weights for PCS data the assignment of which one
wants to confirm based on the calculations results, e.g.
when the assignment of an amide proton in the paramag-
netic system is ambiguous.

To extend the above approach to the case of L different
lanthanide ions, we modified Eq. 2 as follows

kPC S

L
yres = Z W U;n's ( 3)
=1

where UY® is the contribution of the data from the /-th

lanthanide ion, as defined in Eq. 2. The experimental PCS
restraints associated to the /-th lanthanide ion are back-
calculated using Eq. (1) with the specific Ay, values of that

ion. Such values, as well as the orientation of the magnetic
susceptibility axes with respect to the laboratory frame, are
kept constant during the simulation. Therefore, each of the
L datasets contributes independently to the overall pseudo-
potential, and its contribution can be globally scaled with
respect to the other datasets by adjusting the w; weight.
Note that setting a w, value different from 1 in Eq. (3) is
equivalent to multiplying all the w; weights of the indi-
vidual PCS restraints of the /-th dataset by the same scaling
factor. We assume that the origin of all L tensors coincides.
This is the relevant scenario when multiple lanthanides are
substituted in the same metal-binding site.

Generation of initial structures

We used the program CYANA (Herrmann et al. 2002) to
generate the initial structural models (without or with PCS
restraints) to be used for the demonstration of our refine-
ment protocol, using the methods and datasets described in
(Bertini et al. 2001a, b). Briefly, we used 1539 NOE-based
upper distance limits, 6 distance limits derived from
paramagnetic relaxation data and dihedral angles for all
residues in secondary structure elements as the ensemble of
“traditional restraints”. 1097 PCS restraints were derived
from measurements on eleven different calbindin Doy
(Ca,Cb) samples, where one of the two calcium ions was
selectively replaced by a lanthanide ion (CaLnCb). The
PCS values were determined by subtracting the shifts of the
CaLaCb or CaLuCb sample from the particular lanthanide
derivative (Bertini et al. 2001a). Structure bundles con-
taining 100 conformers each were generated using the
standard annealing protocol of CYANA in 10,000 steps.
All restraints were used from the beginning of annealing
procedure. We generated two different bundles: one using
only traditional restraints, which we dubbed CYnoPCS,
and one with traditional restraints and PCS restraints,
which we dubbed CYwithPCS.

Refinement protocol

The refinement procedure is applied to each conformer of
the input bundle independently by computing a single rMD
trajectory. The latter consists of six stages: two mini-
mizations (of water only and then of the entire system),
three simulated annealing stages (heating, constant-T rMD
and cooling), and a final energy minimization (Fig. 1 and
Supplementary material). All the minimizations are carried
out with a combination of steepest descent followed by
conjugate gradient minimization. Before starting the
refinement, every conformer of the input bundle of struc-
tures (e.g. generated with CYANA) is embedded in a
rectangular or octahedral box of TIP3P water molecules
with a user-selected distance (10 A in the present test case)
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Fig. 1 Flowchart summarizing
the rMD refinement protocol
presented in this article

CYANA
structure
bundle

Restrained
MD
Force field: =
AMBER99SB

Restraint
violations
Geometric
quality

between the protein surface and the box walls. In the
present work, the 20 conformers with the best agreement
with all experimental data after rMD were retained as the
refined NMR structure.

In the first stage, the protein is restrained with a har-
monic potential, so that the minimization mostly affects the
water molecules in the hydration shell. In the subsequent
stages of the protocol, the protein moves freely in presence
of the active pseudopotential of all the NMR restraints. For
the rMD stages, the integration step can be set to 1-2 fs
(we used 1 fs for the present text case). The rotational
motion of the protein is turned off, as the reference frames
of the magnetic susceptibility tensors are integral with the
laboratory frame, and PBC are not used. The length of all
bonds involving hydrogen atoms is constrained with the
SHAKE and SETTLE (for the water molecules) algo-
rithms. The weak-coupling algorithm is applied to control
the system temperature. A tight temperature regulation is
maintained during the heating phase by setting the time
constant for heat bath coupling to 0.4 ps until the tem-
perature reached its target of 300 K. The temperature
coupling is then relaxed to 1 ps during the constant-T rtMD
trajectory. In the subsequent cooling stage, the temperature
of the system returns to 0 K to complete the simulated
annealing. During the warming and cooling phases, the
temperature is scaled linearly with time, as commonly
performed in NMR-based structure determination algo-
rithms (Fossi et al. 2005; Mareuil et al. 2015). Finally, all
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20000 ssteps-dt = 1fs
Cooling Trange= 300-0K
Tautp=1.0
Fl.ne?l E.ner.gv Steepest Descent 3000+ 3000steps
Minimization Conjugate Gradient

Refined bundle
suitable for PDB
deposition

the conformers are minimized to reach the closest local
minimum of energy.

The user can modify most of the parameters in the
protocol, such as the temperature for the rMD stages or the
number of steps (i.e. simulation time in ps) of rMD. Tra-
ditional restraints (NOE-derived upper distance limits,
upls, and dihedral angle restraints) are applied using a flat-
bottom parabolic potential. A crucial parameter is the
weight of the PCS restraints (Eq. 2) versus the weight of all
other NMR restraints. For the present text, we chose
weights of 32 kcal mol ™ A~2 and 30 kcal mol ™ ppm 2
for traditional and PCS restraints, respectively. The user
can adjust one or both of these parameters to scale the
relative contribution of the different restraints, as well as
the impact of the AMBER force field on the final struc-
tures. The used parameter files for AMBER, the input
CYwithPCS structure and the corresponding output struc-
ture are provided as Supplementary material.

The sviol script of the AMBER package provides users
with a report on the violations of traditional restraints. The
default cutoffs are >0.1 A for upls and 10° for dihedral
angles. We used the FANTEN software (Rinaldelli et al.
2015), which is available on the WeNMR portal (Wasse-
naar et al. 2012), to fit the PCS data before and after the
rMD, in order to assess the stability of the Ay parameters
(Banci et al. 2004). FANTEN provides a very convenient
graphical interface to visualize immediately the agreement
between back-calculated and experimental PCS data. This
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is done for each PCS dataset against the structure bundles
before and after refinement. As the rMD protocol starts
from conformations that are already properly folded and
not random coils (Fig. 1) significant changes of the Ay
parameters are not observed. Finally, the overall geometric
quality of the bundles was assessed with the Protein
Structure Validation Software suite (Version 1.5) (Bhat-
tacharya et al. 2007). The secondary structure content was
computed with the DSSP program (Kabsch and Sander
1983).

Results and discussion

In the context of protein structure determination based on
NMR data, molecular dynamics (MD) methods are used
both to generate structural models in agreement with the
data and, at a later stage, to optimize the energetics and
several geometric aspects of the final structures, prior to
deposition in the PDB. In this work, we wanted to enable
the use of MD for structure refinement also when using
multiple independent PCS datasets, available thanks to the
substitution of different lanthanide ions in the same metal-
binding site. Our standardized refinement approach
exploits short restrained MD (rMD) trajectories. rMD
provides some kinetic energy to each conformer of the
NMR bundle input to the refinement procedure, permitting
the sampling of the conformational space around the initial
conformation. In rMD the pseudo-potential of the NMR-
based restraints remains always active in order to prevent
the structure from sampling regions of conformational
space incompatible with the data. After the rMD run at
room temperature, the input conformers are cooled down to
0 K, resulting in the final bundle. This procedure is based
on the concept of the RECOORD protocol (Nederveen
et al. 2005), and has been extensively used by several
research teams via the AMPS-NMR web portal for NMR
structure refinement (Bertini et al. 2011). In a nutshell, this
refinement scheme allows the protein structure to settle in
local minima that are energetically sound, thanks to the use
of the AMBER force field, while retaining full agreement
with the experimental data. This is particularly effective for
parts of the protein structure that are not well defined by the
data themselves, such as the backbone conformation of
long loops or the rotameric states of side chains not in the
core of the structure (Bertini et al. 2011; Nederveen et al.
2005; Rosato et al. 2012).

Our new implementation of PCS restraints in the
AMBER package permits the refinement of structures gen-
erated without or with the inclusion of PCS data from the
very beginning of the calculation procedure (i.e. in
CYANA). Hereafter, we will refer to these two initial bun-
dles as CYnoPCS and CYwithPCS, respectively. Both

scenarios converge successfully, and produce similar effects
at the level of the overall protein fold (Fig. 2). The fold is
actually defined mostly by the NOE and dihedral restraints
data, so the structural impact of the addition of PCS
restraints for the present system is relatively modest. This
aspect of the use of PCS restraints has been addressed in
detail in previous work (Allegrozzi et al. 2000). The struc-
tural refinement in explicit solvent does not, and it is not
expected to, change significantly the overall protein fold
(Fig. 2). Nevertheless, it appears that the definition of some
elements of secondary structure improves after AMBER
refinement.

The main motivation to perform the energetic refinement
of macromolecular structures is to remediate deviations
from optimal local configuration, as gauged by structure
validation programs, while maintaining their agreement with
the experimental data. The currently available software tools
are lacking a protocol to perform such refinements using
also multiple PCS data sets as part of the input data sets. In
this work, we implemented such a protocol in the AMBER
MD package. With respect to improving the local energetics
and geometric features of the protein structure, the protocol
is equally effective in the refinement of structures initially
generated with or without inclusion of the PCS data
(Table 1). The content of secondary structure elements is not
significantly affected by the refinement, yet there is a small
but consistent improvement in the distribution of residues in
the most favored regions of the Ramachandran plot. This is
apparent also from the values of the Procheck G-factor phi/
psi (Z-score), especially in the case of the refinement of the
CYwithPCS structure, for which this parameter increased by
0.63 (from —1.42 to —0.79). The distribution of residues in
the Ramachandran plot is a sensitive indicator of the pres-
ence of errors and of local structure quality (Saccenti and
Rosato 2008). The Procheck G-factor all (Z-score) features a
much greater improvement than its counterpart focusing
only on the backbone conformation, mentioned above. The
variation for the CY with PCS structure is as large as 2.78.
This significant difference is due to the impact of the
refinement on the rotameric states of all side chains. Such an
impact, which the Ramachandran plot analysis does not
address, is actually much more significant than for the
backbone, as measured by the larger increase observed for
the G-factor computed on all angles with respect to the
G-factor computed on the backbone dihedrals only.

The second prominent improvement afforded by the
refinement procedure is the extensive removal of too-close
contacts between atoms (bumps), as indicated by the large
improvement of the MolProbity clashscore, which is also
accompanied by a dramatic reduction in the spread of this
parameter over the structure bundles (Table 1). The Veri-
fy3D parameter, which describes the likelihood of the
overall fold, is less sensitive to the refinement, because the
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Fig. 2 Refinement of calbindin
structures generated with
CYANA (a, ¢) using AMBER
with the standard protocol of the
AMPS-NMR portal,
incorporating all available PCS
restraints (b, d). a, b Refinement
of the CYANA structure
generated without PCS
restraints (CYnoPCS). Panels ¢,
d Refinement of the CYANA
structure generated with all PCS
restraints (CYwithPCS). In all
panels, the structure of the
bundle closest to the mean
structure is shown. The
lanthanide ion is shown as a
sphere

Table 1 Quality parameters for calbindin structures before and after rMD refinement with all available PCS restraints

CYANA without PCS (CYnoPCS) CYANA with PCS (CYwithPCS)
Before rMD After ’MD Before rMD After rMD
DSSP secondary structure
Secondary structure content 0.86 + 0.13 0.84 & 0.24 0.83 +0.14 0.85 £ 0.18
Helical content 0.59 + 0.06 0.53 + 0.14 0.45 =+ 0.06 0.54 4+ 0.09
Sheet content 0.04 + 0.01 0.03 £+ 0.02 0.02 £+ 0.01 0.05 &+ 0.01
PROCHECK Ramachandran plot summary
Most favored regions (%) 84.6 90.9 85.5 89.4
Allowed regions (%) 15.3 9.0 14.0 10.4
Generously allowed regions (%) 0.2 0.1 0.5 0.3
Disallowed regions (%) 0.0 0.0 0.0 0.0
Structure quality factors®
Procheck G-factor ¢-y (Z-score) —0.75 —0.59 —1.42 —-0.79
Procheck G-factor all (Z-score) —3.78 —1.54 —4.55 -1.77
Verify3D (Z-score) —0.96 + 0.02 —0.80 + 0.03 —1.28 + 0.02 —0.96 + 0.03
MolProbity clashscore (Z-score) —1.01 + 3.79 1.25 £ 1.34 —1.69 + 3.37 1.28 + 1.05

The input structures for the rtMD procedure were CYANA structures generated with NOE-based upper distance limits and dihedral angle
restraints, and without (CYnoPCS) or with (CYwithPCS) PCS restraints

? A positive Z-score indicates that the parameter is better than the average value observed in the PSVS reference dataset (composed by high-
resolution X-ray structures). Changes larger than a Z-score unit after refinement are highlighted in bold
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NOEs and dihedral angle restraints already define the
topology at the level of CYANA. Clearly, even though the
parameters of Table 1 separately describe specific aspects
of the stereochemical and geometric quality of the struc-
ture, the refinement procedure addresses all of them
simultaneously. In other words, different unsatisfactory
aspects of local structure may be fixed together (Fig. 3).

Indeed, a crucial aspect to assess the quality of a
structure is to quantify its agreement with experimental
data (Huang et al. 2012; Rosato et al. 2013; Ragan et al.
2015; Vuister et al. 2014; Montelione et al. 2013;
Doreleijers et al. 2012). CASD-NMR in particular has
shown that high quality as measured by the parameters of
Table 1 does not imply that a structure is correct, i.e. it may
not fulfil all the experimental data (Rosato et al. 2012). In
practice, these two aspects of structure quality are some-
what independent and should be simultaneously verified.
The application of a structure refinement procedure thus
should not affect adversely the agreement with the data,
with respect to the situation of the structure before refine-
ment. This is indeed true for the present protocol (Table 2).
Regardless of the inclusion of PCS restraints in the initial
CYANA structure, the refinement procedure outputs
structures with a consistent level of agreement with the
data. The agreement before and after refinement is essen-
tially unchanged.

A specific aspect of this work is the use of multiple PCS
data as restraints. Thus, we focus on the impact of the

Fig. 3 Effects of refinement on
local structure. A close contact
between the side chains of
Leu39 and Ile73 is present in the
unrefined CYANA structure (a).
Refinement with the present
protocol removes the clash and
optimizes the rotameric states of
the involved residues (b)

energetic refinement on these datasets, by measuring the
agreement between the experimental data and the data back-
calculated from the structure bundles via Eq. 1. The inclu-
sion of PCS restraints in the refinement leads to a great
improvement of the agreement of the CYnoPCS structure
(Table 3). This is summarized by the count of the total
number of PCS deviations (A; of Eq. 2) larger than 0.5 ppm,
which diminishes from 375 to 85. The latter value is how-
ever higher than the result obtained for the CYwithPCS
structure, both before (71 deviations) and after refinement
(63 deviations). The improvement from 71 to 63 deviations,
albeit very small, is noteworthy because the force field of
rMD prevents the protein from sampling energetically
unfavorable conformations that could be previously allowed
by CYANA. Nevertheless, our protocol is capable of iden-
tifying a slightly better minimum for PCS data. By
inspecting the results for each lanthanide, we observe that
most of the deviations arise from the Yb dataset. If this
dataset is excluded the improvements described above
become more significant (not shown). For a single dataset,
excluding Yb, the greatest improvement is observed for Nd
(Table 3; Fig. 4) for the refinement of the CYnoPCS
structure. It is possible to observe that the PCSs back-cal-
culated from the CYnoPCS bundle deviate from the diago-
nal in Fig. 4, whereas they move much closer to it after
refinement, as indicated by the Pearson coefficient value of
0.98. Instead, changes are marginal for each individual
lanthanide in the case of the CYwithPCS, as the latter was

Table 2 Violation of traditional (upper distance limits and dihedral angle) restraints for calbindin structures before and after rMD refinement

with all available PCS restraints

CYANA without PCS (CYnoPCS)

CYANA with PCS (CYwithPCS)

Before rMD After rMD Before rMD After tMD

Violation analysis

Distance restraint violations >0.1 A 340 3+0 0+0 0+0

Mean distance violations >0.1 A 0.13 4+ 0.01 0.14 £+ 0.04 0.00 £ 0.00 0.00 £ 0.00

Dihedral restraint violations >10° 0+0 1+£0 0+0 14 0

Mean dihedral violations >10° 0.00 £ 0.00 11.9 £ 0.00 0.00 £ 0.00 10.1 £ 0.00
See the caption to Table 1 for details on the column headers
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Table 3 Correlation between experimental and back-calculated PCS data for calbindin structures before and after rMD refinement with all

available PCS restraints

CYANA without PCS (CYnoPCS)

CYANA with PCS (CYwithPCS)

Before rMD After rMD Before rtMD After rMD
Cerium
Correlation (%) 95.11 97.19 97.47 96.85
Mean deviation (ppm) 0.07 &£ 0.10 0.06 + 0.07 0.06 & 0.07 0.06 £ 0.08
# Violations >0.5 ppm 28 9 3 3
Preseodymium
Correlation (%) 98.53 99.73 99.55 99.71
Mean deviation (ppm) 0.10 £ 0.15 0.05 & 0.06 0.07 £ 0.07 0.06 & 0.06
# Violations >0.5 ppm 74 0 3 1
Neodymium
Correlation (%) 94.96 98.04 97.61 98.05
Mean deviation (ppm) 0.09 + 0.12 0.06 + 0.07 0.07 & 0.08 0.06 + 0.07
# Violations >0.5 ppm 49 8 20 3
Samarium
Correlation (%) 86.77 89.02 89.04 88.90
Mean deviation (ppm) 0.07 = 0.08 0.06 & 0.07 0.06 & 0.07 0.06 £ 0.08
# Violations >0.5 ppm 3 0 0 0
Europium
Correlation (%) 98.20 99.47 99.55 99.49
Mean deviation (ppm) 0.17 £ 0.13 0.09 % 0.07 0.09 + 0.06 0.09 &+ 0.07
# Violations >0.5 ppm 16 0 0 0
Terbium
Correlation (%) 98.53 99.59 99.54 99.61
Mean deviation (ppm) 0.19 + 0.17 0.10 + 0.09 0.11 £ 0.10 0.10 + 0.09
# Violations >0.5 ppm 70 0 2 0
Dysprosium
Correlation (%) 98.16 99.55 99.39 99.57
Mean deviation (ppm) 0.15 £ 0.14 0.08 £ 0.06 0.09 + 0.08 0.07 £ 0.06
# Violations >0.5 ppm 40 0 0 0
Holmium
Correlation (%) 98.10 98.80 98.68 98.84
Mean deviation (ppm) 0.07 &+ 0.07 0.05 + 0.05 0.06 = 0.06 0.05 & 0.05
# Violations >0.5 ppm 0 0 0 0
Erbium
Correlation (%) 98.79 99.37 99.10 98.38
Mean deviation (ppm) 0.14 £ 0.11 0.10 £ 0.08 0.12 £ 0.10 0.10 £ 0.08
# Violations >0.5 ppm 12 1 1 0
Thulium
Correlation (%) 85.77 97.19 97.62 97.45
Mean deviation (ppm) 0.13:4:0.13 0.11 £ 0.11 0.10 &+ 0.10 0.10 + 0.10
# Violations >0.5 ppm 39 24 2 15
Ytterbium
Correlation (%) 55.13 57.74 58.74 60.60
Mean deviation (ppm) 0.06 = 0.10 0.06 £ 0.09 0.06 + 0.09 0.06 + 0.09
# Violations >0.5 ppm 44 43 40 41
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Table 3 continued
CYANA without PCS (CYnoPCS) CYANA with PCS (CYwithPCS)
Before rMD After rMD Before rMD After rMD
Total
Mean deviation (ppm) 0.11 £ 0.12 0.08 & 0.08 0.08 + 0.08 0.07 £ 0.08
# Violations >0.5 ppm 375 85 71 63

The correlation is defined by the Pearson coefficient. The mean deviation and the number of violations >0.5 ppm are also given. See the caption

to Table 1 for details on the column headers
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Fig. 4 Correlation between experimental (x axis) and back-calcu-
lated (y axis) PCS data of Nd**—substituted calbindin for the
CYANA structures generated without PCS restraints (CYnoPCS)
before (black circles) and after (grey diamonds) refinement. Each
bundle was fit separately. The dashed line is y = x and is shown only
to guide the eye

generated including also PCS restraints and thus is already
in very good agreement with the PCS data before rMD.

The CYnoPCS and CYwithPCS CYANA structures did
not reach the same level of agreement with the PCS data
after refinement (Table 3). This is presumably due to the
relatively low temperatures and high weight on the “tra-
ditional” NMR restraints used in the rtMD protocol. Indeed,
it is the purpose of our refinement strategy not to disrupt at
any stage of the calculation the fold initially output by
CYANA, which is entirely driven by the experimental data,
but to optimize its features that are less well defined by the
data. On the other hand, the present setup results in a
convergence of the refinement protocol close to 100 % (i.e.
all input structures are correctly refined). This is important
to allow less expert users to adopt successfully relatively
complicated computational procedures.

Concluding remarks
We have implemented a rMD protocol that allows NMR

structural biologists to simultaneously use PCS restraints
derived from the substitution of multiple lanthanide ions in

the same site in the energetic refinement of structures. This
tool complements the available portfolio of software tools
for the use of paramagnetic restraints in protein structure
determination. The protocol exploits the AMBER package
for molecular dynamics simulations, and can be incorpo-
rated in the AMPS-NMR portal (Bertini et al. 2011) for
NMR structure refinement provided by the WeNMR elec-
tronic infrastructure (Wassenaar et al. 2012). The rMD
refinement affords the expected improvement of initial
structures in terms of their geometric quality, especially for
rotamer distributions and interatomic bumps. Importantly,
our implementation allows a structure initially calculated
without PCS restraints to be refined using such data as
additional restraints, obtaining both good agreement with
all experimental data and good geometry. The refined
bundles are of the typical quality for NMR structures
deposited in the PDB. This is achieved thanks to an
approach that seamlessly integrates into routine procedures
for NMR-based protein structure determination (Bertini
et al. 2011).
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Abstract

CASP13 has investigated the impact of sparse NMR data on the accuracy of protein
structure prediction. NOESY and *°N-H residual dipolar coupling data, typical of that
obtained for *°N,*3C-enriched, perdeuterated proteins up to about 40 kDa, were sim-
ulated for 11 CASP13 targets ranging in size from 80 to 326 residues. For several tar-
gets, two prediction groups generated models that are more accurate than those
produced using baseline methods. Real NMR data collected for a de novo designed
protein were also provided to predictors, including one data set in which only back-
bone resonance assignments were available. Some NMR-assisted prediction groups
also did very well with these data. CASP13 also assessed whether incorporation of
sparse NMR data improves the accuracy of protein structure prediction relative to
nonassisted regular methods. In most cases, incorporation of sparse, noisy NMR data
results in models with higher accuracy. The best NMR-assisted models were also
compared with the best regular predictions of any CASP13 group for the same target.
For six of 13 targets, the most accurate model provided by any NMR-assisted
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1 | INTRODUCTION

Since its inception, CASP has been a driving force in the field of con-
tact prediction and contact-directed modeling (see eg References 1-5.
Conceptually, even a few accurate native contacts could reliably guide
de novo fold predictions, or provide valuable information for selecting
among alternate models. During the CASP10 International Meeting, it
was suggested that rather than using predicted contacts, which at the
time were not very reliable, it might be more productive to explore the
impact of a few real experimental contacts, as can be obtained from
NMR, cross-linking, fluorescence energy transfer, or other experimen-
tal methods. This concept developed in CASP11 into the first
NMR-assisted contact prediction experiment.®® In the meantime, the
accuracy of contact prediction based on evolutionary sequence covari-
ance analysis and machine learning has increased dramatically,’?#
making the original proposal of replacing predicted contacts with real,
sparse experimental contacts moot. None the less, the concept of com-
bining sparse experimental data with sophisticated modeling methods
is an important and emerging area of integrative structural biology, and
CASP provides an important venue for testing and developing such
hybrid methods. In CASP12 and CASP13, this_integrative approach
was also explored using small angle X-ray scattering™® and chemical
cross-link data.’® Such integrative data-driven protein prediction is
evolving into an important approach for structural biology.

The NMR Community has also explored automated NMR struc-
ture analysis in the context of the Critical Assessment of Protein
Structure Determination by NMR (CASD-NMR). In this series of
studies, 21 NOESY peak lists and NMR resonance assignments for
20 small proteins were distributed to several groups developing fully
automated nuclear Overhauser effect spectroscopy (NOESY) assign-
ment and structure determination methods. In the first phase, CASD-
NMR 2010, NOESY peak lists for 10 proteins were preprocessed to
be relatively free of noise peaks, and automated structure determina-
tion was carried out in a blind fashion, without knowledge of the man-
ually refined reference structure. It was observed that with such data,
several fully automated NOESY analysis program could consistently
deliver structures with backbone rmsd's < 2.5 A from the manually
refined reference structure, demonstrating the feasibility of routine,
fully automated protein structure determination by NMR. These

prediction group was more accurate than the most accurate model provided by any
regular prediction group; however, for the remaining seven targets, one or more
regular prediction method provided a more accurate model than even the best NMR-
assisted model. These results suggest a novel approach for protein structure determi-
nation, in which advanced prediction methods are first used to generate structural
models, and sparse NMR data is then used to validate and/or refine these models.

CASP, contact prediction, protein modeling, residual dipolar coupling, simulated NMR spectra,
sparse NMR data, structure prediction

results were extended in CASD-NMR 2013, a similar blinded study
using uncurated, noisy NOESY peak lists. Across the entire set of
more than 140 models submitted in this phase, 70% of all entries had
a backbone accuracy relative to the reference NMR structure better
than 1.5 A backbone rmsd, with some methods having up to 100% of
their submitted models within 1.5 A rmsd. However, using these
uncurated NOESY peak lists, some automated structure determination
methods did not converge for some targets. These studies provide
benchmark results demonstrating strengths and weaknesses of sev-
eral programs for fully automated NOESY analysis and structure gen-
eration.of small (<15 kDa) proteins.

While these CASD-NMR studies were very successful with these
relatively small proteins, determining larger-sized protein (20-70 kDa)
structures by solution NMR is extremely challenging but highly feasi-
ble.2%2! For such larger proteins, perdeuteration becomes necessary
to circumvent the efficient spin relaxation properties resulting from
their slow rotational correlation times. Backbone and sidechain amide
hydrogens (H") can be exchanged back into the protein structure, all-
owing collection of HN-HN NOE data, and some methyl and/or aro-
matic groups can be protonated by biosynthetic methods.?%2?
However, aside from such selectively protonated side-chain moieties,
replacing most protons in the protein structure with deuterons also
eliminates most long-range and sidechain NOESY information. The
difficulty in determining accurate structures with no, or limited,
side-chain information (ie, sparse NMR data) is a major technological
challenge to the modeling community that currently limits routine
application of solution NMR to larger systems.

In CASP11, we explored this challenge together with the global
CASP community,®® by providing interatomic contacts derived from
sparse nuclear Overhauser effect (NOE) data simulated from the X-
ray crystal structure coordinates of 19 CASP template-free modeling
targets, assuming perdeuteration with selective protonation of back-
bone amide and certain methyl groups. These targets ranged in size
from 108 to 462 residues. The results were compared with baseline
modeling results using some of the more successful automated struc-
ture determination programs assessed in CASD-NMR, including the
ASDP program.?#2> While most NMR-assisted CASP11 methods
could not provide accurate models using these sparse experimental
data, a few groups (eg, Lee, Baker) submitted models for several
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targets that were more accurate than those generated using “conven-
tional” baseline automated NOESY analysis methods. These results
demonstrate the strong synergy between the computational NMR
and protein prediction communities, as each has the potential to learn
from one another.

In CASP13, we extended our NMR-assisted structure prediction
study begun in CASP11. NMR data were simulated from CASP free
modeling targets with realistic degrees of incompleteness and noise,
typical to that observed in real NMR spectra of perdeuterated, selec-
tively protonated proteins. These free modeling targets ranged from
80 to 326 residues. In addition to contacts based on simulated 3D
NOESY data, simulated residual **N-*H dipolar coupling (RDC) data,
and dihedral restraints as derived from backbone chemical shift data,
for a subset of residues were also provided. In some cases, contact
predictions from evolutionary sequence covariance analysis were also
provided to predictors. Two real NMR data sets were also made avail-
able to the CASP13 prediction community. These results further drive
the field of integrated protein structure modeling by exploring the
impact of sparse experimental data in enhancing the power of protein
structure prediction methods.

2 | METHODS

2.1 | Experimental NMR structure determination

NMR studies were performed using a uniformly *°N,**C-enriched
sample of a de novo designed protein, named foldit3,2¢ CASP13 tar-
get 1008. The synthetic codon optimized gene (Genscript, Inc),

2728 \as cloned into

designed to exclude ACA nucleotide sequences,
plasmid pET15TEV_NESG.?? The resulting protein product includes a
short N-terminal 6xHis purification tag, followed by a TEV protease
cleavage site, which was removed prior to data collection. Details of
the production and characterization of this sample have been
described elsewhere,?® and are also provided in the Supporting Infor-
mation. Homogeneity (>97%) was validated by SDS polyacrylamide
gel electrophoresis. The purified protein was dialyzed against 20 mM
potassium phosphate, pH 6.5, and the protein concentration was
adjusted to between 0.3 and 0.4 mM for NMR studies.

All NMR spectra were recorded at 25°C using cryogenic NMR
probes. NMR data were collected on a Bruker AVANCE Il 600 MHz
spectrometer, processed using the program NMRPipe,*° and analyzed
using the programs SPARKY®! and XEASY.>? Spectra were referenced
to external DSS. Sequence-specific resonance assignments were
determined using AutoAssign software®> 34 together with interactive
manual analysis. NMR data collection included simultaneous *°N,**C-
edited 3D NOESY and '°N-edited 3D NOESY, both recorded with
mixing time 7, = 120 ms. Backbone dihedral angle constraints were
then derived from the assigned chemical shifts using the program
TALOS_N*"* for residues located in well-defined secondary structure
elements. The programs ASDP?*?5 and CYANA®>3¢ were used to
automatically assign NOEs and to generate 3D structures, respec-
tively. NOESY peak lists used for NMR-assisted predictions in

CASP13 were all based on fully automated NOESY peak assignment
with ASDP.

For structure refinement, RPF analysis,
and predicted NOESY peak lists, was used to guide iterative cycles of
noise/artifact peak removal, peak picking, and NOESY peak assign-

3738 comparing observed

ments. The 20 conformers with the lowest target CYANA function
value were then refined by restrained molecular dynamics in explicit
water®® using the program CNS.*® Structural statistics and global
structure quality factors were assessed using the PSVS 1.5*' and
PDBStat*? software packages. The global goodness-of-fit of the final
structure ensembles with the NOESY peak list data, the NMR DP
score, was determined using the RPF program.”:>®

2.2 | Baseline modeling with ASDP-Cyana

Baseline modeling was carried out using state-of-the-art “conven-
tional” methods for modeling protein structures from NMR data.
NMR structures were modeled using the ASDP program for NOESY
peak assignment, together with Cyana for structure generation from
the resulting restraints. This pipeline, described in detail elsewhere,?®
was one of the top performing automated NOESY analysis methods
in the CASD-NMR" experiments.'®'? ASDP uses expert system
methods to assign NOESY cross peaks, and to generate distance
restraints. These restraints are then input to a structure generation
program. In this case, structures were generated from the restraints
using the restrained molecular dynamics in torsion angle space module
of the program Cyana. The resulting intermediate structure models
are then used to iteratively rule in/rule out additional NOESY cross
peak assignments.?* The final structures generated in several cycles of
NOESY peak assignment and model generation are then refined with
these NMR restraints active using Rosetta, with loop remodeling and
core repacking, as described elsewhere (Mao et al. 2013).

2.3 | CASP assessment units and assessment metrics

Simulated sparse NMR data were provided to CASP13 predictors for
11 proteins and protein domains (Table 1, CASP Targets), ranging in
size from 80 to 326 residues. In addition, real NMR data were pro-
vided for one target, protein T1008 (aka, foldit3),2¢ of 80 residues. In
this case, two different real NMR were made available, differing in the
completeness of the assignment of the NMR frequencies. Submitted
prediction models were assessed by standard CASP metrics.*>*®
Summed or averaged Z scores for each metric were computed by the
CASP Prediction Center.** NMR DP scores,®” comparing the short
1H-'H distances in prediction models with the NOESY peak list, and
15N-'H RDC Q scores*”*® were provided for each model submitted
to the CASP Prediction Center for statistical analysis.

Accuracy of submitted models was evaluated at the domain level.
Z scores were calculated for a total of 14 assessment units (domains)
listed in the third column of Table 1. The Z score analysis excluded
the combined domain constructs NO957s1-D1.D2 and N0989-D1.D2,
and also the n1008 target for which full NMR assignments were avail-
able, although structure accuracy metrics for these are also available
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TABLE 1 CASP13 NMR-assisted prediction targets, assessment units, and NMR data

No. of CASP assessment :fo No. of dihedral
residues unit (AU) RDCs restraints
Simulated NMR data
NO0957s1 163 N0957s1-D1 95 202
N095751-D2
N0968s1 123 NO0968s1 62 128
N0968s2 115 N0968s2 59 118
NO0980s1 105 NO980s1 43 87
N0981-D1 86 N0981-D1 32 66
N0981-D2 80 N0981-D2 26 54
NO0981-D3 203 N0981-D3 64 130
N0981-D4 111 N0981-D4 42 90
N0981-D5 127 N0981-D5 58 122
NO0989 246 N0989-D1 100 194
N0989-D2
N1005 326 N1005 154 320
Real NMR data
N1008 80 N1008 N/A 148
n1008 80 a N/A 148

No. of possible Average ambiguity Maximum ambiguity
contacts per contact per contact
5582 5 50

1506 2 16

2088 4 32

1489 3 18

538 2 10

504 2 8

4701 4 32

1093 2 10

1983 3 21

7095 5 90

49 887 11 92

2273 5 54

29 205 9 169

“Target n1008 is a control real NMR data set with essentially complete backbone and sidechain resonance assignments, and was not included in the

calculations of summed Z score metrics.

on the CASP13 Prediction Site. The relative performance of partici-
pants was established based on the combination of Z scores calcu-
lated from per-target distributions of evaluation scores.

2.4 | Sidechain rotamer analysis

In order to assess the accuracy of predicted structures against a refer-
ence structure, a useful metric of structure quality is the accuracy of
side-chain rotamer states for well-defined (ie, converged), buried (ie,
not on the protein surface) side chains.? PDBStat*? is a computer pro-
gram originally developed as a universal coordinate and protein NMR
restraint converter. Its primary function is to provide a user-friendly
tool for interconverting between protein coordinate and NMR restraint
data formats. It also provides an integrated set of computational
methods for protein structure quality assessment. Here, the PDBStat
program was extended for assessing the agreement of sidechain x4 and
12 rotamer states between predicted and reference protein structures.
This automated sidechain analysis protocol of PDBStat was used to
assess NMR-assisted protein structure predictions in CASP13.

The y1 and y, rotamers for all residues in each reference structure
were assigned to the nearest g+, t, or g-conformational state. Side
chains with solvent accessible surface area (SASA) less than 40 A? in
the reference structure (calculated using the program Molmol*°) were
considered as buried side chains. In considering NMR structure
ensembles, side chains whose ¥, (or y,) dihedral angle values had SD
of <30° were considered as “converged side chains." For NMR-
derived reference structures, the medoid conformer of the ensemble

(ie, the conformer most similar to all of the other conformers*?4!) was
selected as the representative structure.

2.5 | Organization of simulated and real data for
CASP predictors

The NMR data packages distributed to CASP13 participants for each
target are summarized in Table S1. Data consisted of an ambiguous
contact list (described below), a Table of Dihedral Angle Restraints, and
a Table of RDC Values (for two alignments), where available. For sev-
eral targets, residue-residue contact predictions, based on multiple
sequence alignments (Evolutionary Contacts, ECs) from the Meta PSI
COV server,* were also provided. For bookkeeping, the participants
also were provided a FASTA file with the protein sequence. All files
were distributed as tab-separated text files, to facilitate data ingestion,
compressed in a single archive. Simulated and experimental data were
organized and distributed in essentially the same manner. All simulated
and experimental data distributed to participants are available on the
CASP13 web site (http://www.predictioncenter.org/casp13/index.cgi),
as well as from the Zenodo web site (DOI: 10.5281/zenodo.3386805).

3 | RESULTS

3.1 | Simulation of resonance assignments

Sequence specific resonance assignments were simulated from the
atomic coordinates of the X-ray crystal structures of 11 CASP-NMR
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targets (excluding targets N1008 and n1008 for which real NMR data
were generated for this study). First, any selenomethione (MSE) resi-
dues in the original PDB coordinate file of the reference X-ray struc-
tures were changed to methionine (MET). Hydrogen atoms were then
added to the coordinates of X-ray crystal structures with the program
Reduce.>? The resulting coordinates were then used to simulate *H,
13C, and N chemical shift values using the program SHIFTX2.>® As
one goal of the CASP13 experiment is to explore the impact of NMR
data obtainable from NMR studies of larger proteins on the accuracy
of structure prediction, resonance assignments were all simulated
assuming a perdeuterated protein sample with typical selective rep-
rotonation.?2® Specifically, only backbone HN, N, C% and C' atoms,
sidechain C” atoms, and the C and H atoms of Ile(51), Leu, Val, and Ala
methyl groups were included in the simulated chemical shift table.
This proton labeling pattern corresponds to that provided by the
application of typical selective labeling strategies used for studies of
proteins in the size range 20-70 kDa. It was assumed that individual
stereospecific assignments of the isopropyl methyls of Leu and Val
were not available, and no corrections were made to account for deu-
terium isotope effects on bound **C chemical shift values.

3.2 | Simulation of NOESY peak lists

In order to create incomplete NOESY peak lists like those observed
with real NMR data, a number of resonance assignments were deleted
prior to simulating the NOESY spectra. In this process, illustrated for a
representative target in Figure 1, our expertise in protein NMR stud-
ies was used to simulate the effects of line broadening due to confor-
mational dynamics and/or weak spectra in causing ‘“missing
resonances.” First, we created a list containing selected regions for
each CASP target proposed to exhibit missing resonances and/or

FIGURE 1

NOESY cross peaks (eg, yellow residues in Figure 1A). The choice of
region to select was made so as to simulate the effects of local
dynamics which could plausibly result in exchange broadening. This
typically included surface loop residues and/or potentially dynamic
secondary structures. Within each of these regions, we randomly
selected 25% of the residues and deleted all chemical shift assign-
ments for these residues (eg, red residues in Figure 1B).

These chemical shifts were then used, together with *H-'H dis-
tances from the atomic coordinates, to simulate 3D **C-edited and
3D '*N-edited NOESY peak lists (frequencies and intensities) which
would be obtained for perdeuterated *3C,**N-enriched, backbone
HN and ILVA 3C-'H; methyl labeled proteins. For all potential
1H-1H NOEs, a summation distance*? was calculated from the atomic
coordinates of all degenerate proton resonances,

-1/6

[Zﬁq(m%)é] @

If the resulting r;j was less than a cutoff distance Deyofr, 3D *°C-

or '*N-edited NOE cross peaks were simulated with intensity of
10 OOO/r(’;j. The maximum observable interproton distance was set to
5 A. NOESY “cross peaks” (frequencies and intensities in a NOESY
peak list), representing these short interproton distances, were then
created between these resonances. Adjacent NOESY peaks created
within tolerances of 0.02 ppm for the direct H dimension, 0.2 ppm for
the C/N, and 0.03 ppm for the indirect H dimension were merged,
and the corresponding resonance frequencies were averaged, to simu-
late overlapped regions in the NOESY spectra. Short *H-'H distances
between protons in residues for which resonance assignments were
deleted did not generate any NOESY peak, corresponding to False

Negative, FNs.

©)

Schematic depiction of process for simulating missing NOESY peak and resonance assignment data for CASP-NMR target

NO0968s1. (A) Ribbon representation of the backbone structure of T0968s1 showing the locations (in yellow) of candidate regions for NOESY
peak and/or resonance assignment deletion. (B) Residues (red) for which all resonance assignments are deleted prior to generating the NOESY
peak list. This results in the elimination of potential NOESY peaks from the simulated spectra due to, for example, conformational exchange
broadening. (C) Residues (blue) for which, after the NOESY cross peaks are generated, all resonance assignments are deleted. These data simulate
the case where NOESY peaks are observed, but one or more of the corresponding 'H resonances are not assigned. These NOESY cross peaks are
present in the NOESY peak list, but cannot be correctly assigned, and often result in incorrect NOESY cross peak assignments due to accidental

degeneracies with observable resonances
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After simulating these NOESY peak lists (ie, the resonance fre-
quencies and intensities of observable NOESY cross peaks, excluding
cross peaks involving resonances that are missing due to exchange
broadening), an additional 15% of the residues in the resonance
assignment list were randomly selected and their chemical shift values
were removed from the chemical shift list, while preserving the
corresponding NOESY peaks (eg, blue residues in Figure 1C). This pro-
cess simulates the situation where the NOESY cross peak is present,
but one or both of the corresponding sequence-specific resonance
assignments cannot be determined. These NOESY cross peaks cannot
be correctly matched to the original *H-*H pair, and have the poten-
tial to be incorrectly assigned. Finally, weak NOESY noise peaks were
added to the NOESY peak lists, at frequency positions consistent with
assigned resonances, but not corresponding to short *H-H distances
in the reference structure. These are false positive NOESY peaks, FPs.
The contacts indicated by these FP peaks are generally inconsistent
with the native protein structure. This similar process of resonance
assignment deletions (resulting in FNs and incorrect NOESY cross
peak assignments) and random addition of weak NOESY peaks
(resulting in FPs) was applied in simulating *C- and *°N-edited 3D
NOESY spectra peak lists from reference X-ray structures of
11 CASP-NMR targets (excluding targets N1008 and n1008 for which
real NMR data were available).

NMR data were simulated assuming a monomer structure for all
targets. No efforts were made to simulate interfacial X-filtered
NOESY data; homodimers were simulated as the single protomer. Tar-
gets NO957s1 and NO989 are two-domain proteins, in which each
domain is well-defined relative to the other. Hence, the complete
two-domain coordinates were used to simulate NOE and RDC data
assuming the same static orientation of domains as observed.in the
corresponding X-ray crystal structures. Target NO980 is a dimer of
heterodimers (2:2 tetramer). Since one chain is a small polypeptide,
we simply used the coordinates of the single protomer of the larger
subunit as the target for simulating NMR data. Target NO981 is a five-
domain structure, in which the domains are likely to be independent
of one another. Hence, each domain was treated as an independent
target, and NOESY and RDC data were simulated separately for each
of them.

3.3 | Statistics on simulated and real NOESY peak
lists

Statistics on the NOESY peak list data for each target are summarized
in Table S1 and Figure S1. The process of simulating NOESY peak lists
outlined here provided data sets with properties similar to those gen-
erally obtained for uniformly *°N,*3C-enriched, perdeuterated pro-
teins with ILVA methyl **C-'Hj labeling. Analysis of these NOESY
peak lists against the reference atomic coordinates showed that 5%-
18%
corresponding NOESY peak, and 5%-10% of the NOESY peaks in
these lists cannot be assigned to any true short *H-'H distance. For
these simulated NOESY peak lists, the data ranged from 3.5 to 9.3
NOESY peaks per residue. This compares to 8.4 NOESY peaks per

of short distances in the reference structures have no

residue for the sparse real data set N1008, and 43.4 NOESY peaks
per residue for the generally complete experimental dataset of n1008.
Generally speaking, the low restraint density (10 NOESY peaks/resi-
due) of the simulated data sets, and of the real data set N1008, make
these targets challenging for NMR-based structural determination
using traditional methods.

These NOESY data sets (summarized in Table S1) are not only
sparse (incomplete), but they also include significant numbers of false
peaks which cannot be satisfied by the correct structure. For the sim-
ulated datasets, 6.2%-9.1% of the peaks in the NOESY spectra cannot
be satisfied by the reference structure. For real data set N1008, the
fraction of peaks with possible assignments for which none are con-
sistent with the native structure is even higher, 19.7%. This is because
this protein sample was fully protonated, but its NOESY peak list was
analyzed using only the backbone resonance assignments, including
HN and H® resonances; cross peaks involving sidechain atoms with
chemical shifts similar to backbone atoms were thus often incorrectly
assigned (uniquely or ambiguously) as backbone-backbone NOEs,
making this real data set particularly challenging. For the real data set
n1008, which included essentially complete backbone and sidechain
assignments, only about 0.2% of the NOESY peaks cannot be
explained by the final, refined solution NMR structure, a hallmark of
high quality NMR data and structures.>*

3.4 | Generation of ambiguous contact lists

The ideal input for NMR-assisted prediction would be the unassigned
NOESY peak lists together with sequence-specific NMR assignments
and RDC data, as was done in the CASD-NMR project.’¢"*? However,
in order to reduce the extent of domain specific NMR spectroscopy
knowledge required for participation in CASP13, the organizers
instead provided these NOESY data as “ambiguous contact lists” (-
Figure S2). For each NOESY peak, the ambiguous contact list provides
the set of *H-'H pairs which, within a defined frequency tolerance of
matching the NOESY peak frequencies to the chemical shift frequen-
cies, are possible assignments for each NOESY peak.

Ambiguous contact lists were generated by analyzing simulated
(or real) NOESY peak lists together with the corresponding resonance
assignment lists, without knowledge of the target 3D structure. The
resonance assignment list was first modified to simulate the small
inconsistencies generally seen between peak frequencies measured in
the NOESY spectrum and the corresponding frequencies in the reso-
nance assignment list. Random noise shifts were added to the chemi-
cal shift values in each dimension, with SD 0.01 ppm for direct *H
dimension, 0.20 ppm for indirect C/N, and 0.02 ppm for the indirect
1H dimension. 3D NOESY peak lists were then analyzed together with
these resonance assignment lists using the Cycle O module of the pro-
gram ASDP. This algorithm assigns NOESY cross peaks to one or more
potential *H-'H interactions based on chemical shift matching. These
initial assignments use information, based on backbone chemical shift,
on the locations of a-helices and p-strands, inter strand alignments,
and other topological rules derived automatically from distances
within standard secondary structures, to reduce the ambiguity of
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NOESY cross peak assignments, as described elsewhere.?* The Cycle
0 ASDP analysis was executed with match tolerances of 0.03 ppm for
H atoms and 0.30 ppm for C/N atoms, and with parameters
Deutort = 5.0 A and Dypper = 7.5 A

In this protocol, outlined in Figure 2, only one cycle of ASDP was
executed. If peaks could be uniquely assigned by the algorithms of
ASDP cycle 0O, the unique assignments for these particular NOESY
peaks, including any unique long-range HN-HN NOEs important for
p-strand alignments, were included in the ambiguous contact lists.
Short-range intraresidue and sequential NOESY peak assignments (Ji-
j| < 2) were excluded. For each remaining NOESY peak, the output of
ASDP Cycle 0 provided all possible proton pair assignments within the
defined resonance frequency match tolerances. In practice, each
NOESY peak is assigned to a set of ambiguous *H-'H pair assign-
ments whose chemical shifts are compatible with the resonance fre-
quencies associated with the 3D NOESY peak. In the absence of
experimental errors, at least one of these *H-'H pairs should corre-
spond to a short-distance interproton interaction that is consistent
with the native protein structure. However, NOESY peaks that arise
from unassigned resonances, as well as random noise peaks, will pro-
vide a set of ambiguous contacts, or possibly even a unique assign-
ment, none of which are consistent with the native structure. We
calibrated the number of added noise peaks so that number of FP
contacts due to these random noise peaks did not exceed 10%
(except for real data set N1008) of the final ambiguous restraint list.
The resulting ambiguous contact lists (Figure S2) were provided to
CASP predictors.

3.5 | Backbone dihedral angle restraints

For relatively static protein conformations, backbone chemical shift
data can be used to make reliable predictions of backbone dihedral

X-ray structure coordinates

Reduce

coordinates with protons
SHIFTX2

simulated
chemical Shifts

simulated
NOESY peaks

l ASDP Cycle 0

Ambiguous Contact List

FIGURE 2 Process flow chart for generating ambiguous contact
lists for NMR-Assisted CASP13

angle values based on statistical assessment against the database of
protein chemical shifts and local structures.®® In this work, we
observed that dihedral angle restraints computed using the program
Talos_N,>® from chemical shifts predicted from the atomic coordinates
with the program SHIFTX2, were not always consistent with the X-
ray crystal structure used to predict the chemical shifts. This probably
reflects shortcomings in the accuracy of these chemical shift predic-
tions. In order to provide the kind of restraint data based on backbone
chemical shifts that would be available using real NMR data, the back-
bone dihedral angle restraints for residues with “observed” and
“assigned” backbone chemical shifts (ie, for residues that were not
deleted from the chemical shift list) were also provided to CASP pre-
dictors. These dihedral restraints were provided as ranges, in which
two random numbers between 5.and 30° were added and subtracted
from the dihedral angle value observed in the reference X-ray
structure.

3.6 | Simulation of ¥N-'H RDC data

RDCs arise from the interaction of two magnetically active nuclei in
the presence of the external magnetic field of an NMR instrument. In
solution NMR studies, this interaction is normally reduced to zero due
to the isotropic tumbling of molecules in their aqueous environment.
The 'introduction of partial order to the molecular alignment
reintroduces dipolar interactions by minutely limiting isotropic tum-
bling. This partial order can be introduced in numerous ways, including
inherent magnetic anisotropy susceptibility of molecules, incorpora-
tion of artificial tags (such as lanthanides) that exhibit magnetic anisot-
ropy, or using a liquid crystal or otherwise partially ordered aqueous
solution.

The RDC interaction phenomenon has been formulated in differ-
ent ways. To harness the computational synergy of RDC data, in this
study we have utilized the matrix formulation of this interaction as
shown in Equation (2). The matrix S shown in Equations (2) and (3) rep-
resents the Saupe order tensor matrix (the “order tensor”) that can be
described as a 3x3 symmetric and traceless matrix. Dpyay in
Equation (2) is a nucleus-specific collection of constants, r; is the sep-
aration distance between the two interacting nuclei (in units of A),

and vj; is the corresponding normalized internuclear vector.
D;= (%m) vi*S*v] 2

Sw Sy Se
S=[Sy Sy Sy @)
Se Sy Sz

cos(6y)
cos(6y) (4)
cos(z)

Vij =

The software package REDCAT***’ used this formalism to simu-
late **N-*HN RDCs for the target proteins. REDCAT uses the protein
structure and an order tensor S to calculate RDCs using Equations (2)-
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(4). For each of the target protein structures, two different order ten-
sors were calculated using the software package PALES.>® PALES uti-
lizes a steric collision model to calculate order tensors in different
simulated alignment media. In this work, two different simulated align-
ment media were utilized: bicelle (wall-like structures) and phage (rod-
like structures). The concentration used for both simulations was
0.05 units. The resulting **N-'H RDC for the “observed” and
“assigned” residues of each target were provided to CASP13
predictors.

3.7 | Summary of NMR data

Table 1 also summarizes the numbers of RDCs, dihedral restraints,
and ambiguous contacts (NOESY peaks) provided to predictors for
each target. The number of all possible atom pair assignments for all
NOESY peaks provide by ASDP Cycle O ranged from 504 (for target
data set N0981-D2) to 49 887 (for target data set N1005). These
NOE-based contacts, provided to CASP predictors, had an average of
2-11 possible atom pair assignments per contact, with maximum
ambiguity of 92 possible assignments per contact.

3.8 | Assessment of baseline NMR assisted modeling
with ASPD

Baseline modeling was carried out for each target using the ASDP
software program for NOESY peak assignment and restraint genera-
tion. These “baseline structures” were modeled in “blinded fashion,” in
which simulated NOESY and RDC data were provided to one of the
authors (JH) without her knowledge of the reference structures, and
structures were generated from these data using the conventional
automated NOESY assignment and modeling algorithms of the ASDP
software. ASDP takes as input the NOESY peak and resonance assign-
ment lists, from which the ambiguous contact lists were derived. For
this reason, the ASDP baseline calculations used these NOESY peak
lists, rather than the ambiguous contact lists, as-input. Peaks in these
unassigned NOESY peak lists were labeled only by the corresponding
resonance frequencies, and did not include any link to the table of
chemical shift assignments. NOESY peaks were assigned and disam-
biguated using ASDP, these data were interpreted as calibrated dis-
tance restraints, and the resulting assigned distance restraints were
used to generate structural models with the software CYANA.*® The
resulting structures were further refined using restrained Rosetta

t,°% as outlined in the Section 2.

refinemen

Baseline models were generated using three protocols. Baseline_
Group 321 provided five models generated using the simulated (or real)
sparse NOESY, dihedral, and RDC data, without EC contact predictions.
Baseline_Group 459 provided five models generated using these same
data, plus EC contact predictions from the Meta PSI COV server,**
which were also provided to all predictors. A third set of models was
generated for each target using ECs from the EVFold contact prediction
pipeline,®° run locally for this study. Alignments were generated using
five jackhmmer®! iterations against the Uniref100 sequence database
(February 2018 release), with multiple normalized bitscore thresholds

ranging from 0.1 to 0.9 (with TO981 subsequently run at 0.03). Align-
ments were chosen based on maximizing both the effective number of
sequences and the nongap coverage of each position. Pseudolikelihood
maximization was then used to compute evolutionary couplings using
the alignments, with the default settings found at the evcouplings.org
webserver. These ECs were then combined with NMR data to generate
EC-NMR structures, and the top five scoring models were selected. The
resulting 15 models for each target (five from NMR alone, five from EC-
NMR using Meta PSI COV, and five from EC-NMR using EVFold ECs)
were then assessed using the DP score “NMR R-factor” metric, which
compares the contact map for the: NMR-derived model against the
NOESY peak list.”® The five models with highest DP score were then
submitted as Baseline Group 313.

These baseline models were then assessed by the CASP Prediction
Center. All three baseline groups (ASDP Baseline_Groups 313, 321,
and 459) had similar overall accuracy performance based on GDT-TS,
GDT_HA, GDT_ALL, GDC_SC, SphereGrinder, and RPF assessment
metrics (these metrics are described in References 44 and 45). In gen-
eral, modeling accuracy was highest for ASDP Baseline_Group
313 (best DP score), followed by ASDP Baseline_Group 459 (with
Meta PSI COV ECs), and then ASDP Baseline_Group 321 (without
ECs). Interestingly, using the knowledge-based MolProbity assessment
score, the highest quality structures were those generated by protocol
ASDP Baseline_Group 321 (without ECs), while ASDP Baseline_Group
459 (with PSI COV ECs) had significantly poorer MolProbity scores,
suggesting that inclusion of contact predictions in these protocols can
distort models from their best atomic packing conformations. For the
sake of simplicity, in the remaining analysis we utilize only the ASDP
Baseline_Group 321 (without ECs) and ASDP Baseline_Group 459 (with
PSI COV ECs) as the baseline comparison results.

3.9 | Initial assessment of NMR assisted predictions

Six CASP13 predictor groups participated in this NMR-guided predic-
tion experiment; Forbidden (122), KIAS-Gdansk (208), Meilerlab (250),
UNRES (288), Laufer (431), and wf-Baker-UNRES (492). An initial
ranking of the six NMR-guided prediction groups, along with two
baseline groups, was done using summed GDT-TS Z scores for the
first-ranked model submitted for each predictor group (Figure 3A), as
described elsewhere.*>¢%¢3 For the calculation of the summed GDT-
TS Z scores we used the common convention of setting the
Z score = —2 for any model with Z score < —2.434263 This is done so
as not to heavily penalize the worst models, and to encourage the
exploration of new (perhaps less successful) methods in CASP.

Figure 3A demonstrates that two prediction groups (Laufer and
Meilerlab) generally provided more accurate models than the baseline
groups. The same conclusion was drawn by considering the “best of 5"
models from each group, and also for the individual assessment mea-
sures GDT_HA, GDT_AIl, GDC_SC, Sphere Grinder, and RPF. However,
in ranking using only MolProbity scores, groups Laufer and Meilerlab
are reversed in their relative order; apparently group Meilerlab, using
the Rosetta force field and fragment libraries, does a better job of
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FIGURE 3 Summed Z score ranking of CASP13 NMR-assisted predictions. (A) Summed GDT-TS Z scores. (B) Weighted summed Z scores for

multiple metrics, as described in text

generating better packed and more physically plausible conformations,
with better MolProbity scores.

3.10 | Principal component analysis on Assessment
Metrics

A good CASP prediction should be both similar to its corresponding
experimentally derived target structure and physically reasonable.
Therefore, the ranking of predicted structures for a given CASP target
should incorporate statistics, such as the GDT-TS,%* quantifying how
accurately a structure models a target, as well as measures of biophys-
ical structure quality such as the MolProbity score.®® Incorporation of
multiple measures of structure accuracy and quality into a single rank-
ing involves either folding multiple statistics into a single composite
score or using consensus methods to combine rankings based on mul-
tiple measures of structure quality and accuracy into a single
composite ranking. As in previous template-based modeling CASP

experiments, 36263

our final ranking of NMR data assisted predictions
in CASP13 combines multiple structure evaluation statistics using a
weighted sum. Thus, the question of how to rank predictions of a
given target reduces to a question of finding appropriate weights to
use in adding together a selection of measurements of structure qual-
ity and accuracy.

We chose to use for evaluation of NMR-data assisted structure
predictions superposition-dependent global measures of structure
accuracy (GDT-HA and GDT-SC), a local superimposition dependent
local measure of structure accuracy (SphereGrinder), measurements
of the accuracy of interatomic contact areas (CAD-AA) and contact
distances (RPF), and a measurement of the physical reasonableness of
the structure (MolProbity score).

A recent analysis** of protein structure evaluation scores indicates
that most methods for structure evaluation are highly correlated. We
observed this also for the set of metrics we used for assessing
NMR-assisted structure predictions (Table S2). The MolProbity score,
however, is less correlated to the other scores, and provides comple-
mentary information. While the MolProbity score was distinct, none of
the scores was inconsistent with each other according to Friedman's

test. In general, models with reasonable accuracy were (as judged by
MolProbity score) physically reasonable structures, although some
models with good Molprobity scores were not particularly accurate.
Inaccurate models with. good MolProbity scores have also been
observed in assessments of incorrect homology models®® and of inac-
curate CASD-NMR experimental NMR structures.'®1?

The high correlation between structure evaluation statistics sug-
gests that Principal Component Analysis (PCA) may be a useful ad hoc
method to calculate weights for summing multiple measurements of
structure quality and accuracy. PCA identified that a composite score
of 0.442+Z_GDT_HA + 0.449*Z_GDT_SC + 0.425*Z_RPF + 0.428*
Z_SphGrdr + 0.433*Z_CAD_AA + 0.227*Z_MolProbity (where Z_[X]
indicates the z-score calculated on a per target basis, using the first
model provided by each predictor, from quality measure [X]) explains
approximately 87% of the variance in structure evaluation scores
(Table S3). Setting all Z-scores below a certain threshold yields a simi-
lar composite statistic via PCA. We rounded the coefficients of the
PCA score explaining the highest amount of variance down to the
nearest tenths to create the following linear regression: 0.40 for GDT-
HA, GDC-SC, RPF, SphereGrinder and CAD-AA and 0.20 for
MolProbity. Note that while PCA is a useful tool for constructing a
composite metric for assessing structure prediction quality, we do not
necessarily expect PCA-derived weights will be similar from one CASP

dataset to the next.

3.11 | Overall ranking based on PCA-defined
combination of scores

The final ranking of NMR-assisted predictions, using the combined
weighted Z scores of GDT-HA (0.4), GDT-SC (0.4), RPF(0.4),
SphereGrinder (0.4), CAD-AA (0.4), and MolProbity (0.2) is illustrated
in Figure 3B for the predictor-designated “first” models. Again, in this
analysis Z score is set to —2 for any model with Z score < —2. Similar
results were obtained by selecting the best-scoring model out of the
five submitted. These rankings are essentially the same as those
obtained using the GDT-TS (or other individual metrics) alone.

Relative to the baseline groups, two prediction groups (Laufer and

99

100
101
102
103
104
105
106

50



N on b N R

18

NN

N
o

50

[N
N e

@w

10 Wl LEY_EBROIEINS

SALA ET AL.

Meilerlab) generally provided more accurate models, while the
remaining four groups had somewhat poorer accuracy performance.
For the 14 assessment units (AUs, listed in column 3 of Table 1), the
top prediction groups were Laufer 431 for seven AUs, Meilerlab
250 for three AUs, ASDP Baseline_Group 321 (without ECs) for two
AUs, and ASDP Baseline_Group 459 (with PSI COV ECs) for two AUs,
respectively. Groups wf-Baker-UNRES and KIAS-Gdansk also out-
performed the ASDP Baseline_Groups on 3 and 1 AU, respectively.
These results demonstrate that for 10 of 14 AUs, two CASP13 predic-
tor groups—Laufer and Meilerlab—submitted first-ranked models for
many targets that are more accurate than those generated using our
conventional automated ASDP modeling protocol.

3.12 | Target N1008: real NMR data with backbone
assignments only

Two real NMR data sets (N1008 and n1008) were provided for the
data-guided prediction program of CASP13. Both data sets were for
the CASP COMMONS target T1008 (foldit3), proposed by Brian
Koepnick and David Baker as part of their project assessing de novo
protein design by citizen scientists in the online protein-folding game
Foldit.2® Foldit players were provided a set of general principles for
protein design in the form of Foldit rules, and the resulting designs
were assessed by Rosetta stability calculations. One hundred and
fifty-six designs were encoded in synthetic genes, which were
expressed, screened for stability, and (in four cases) experimental
structures were determined.?® One of the protein designs, the
80-residue foldit3 protein, was produced for CASP13 with uniform
15N,*3C-enrichment, and its structure was determined by conven-
tional triple-resonance NMR in the context of this project. The struc-
tural statistics and global structure quality factors including
Verify3D,%” Prosall,® PROCHECK,® and MolProbity®® raw and sta-
tistical Z-scores were computed using the Protein Structure Validation
Suite Software PSVS 1.5°¢ and PDBStat*? software packages. The
global goodness-of-fit of the final structure ensembles with the
NOESY peak list data, the NMR DP score, was determined using
the RPF analysis program. The resulting reference 3D structure of
foldit3, CASP target 1008, exhibits excellent convergence and struc-
ture quality statistics (Table S4). This structure and the associated data
have been deposited in the Protein Data Bank (PDB id 6msp) and
chemical shifts have been deposited in the BioMagResDataBase
(BMRB id 30527).

Ambiguous contact lists for target 1008 were provided to CASP13
predictors as two distinct NMR-assisted targets. In the first cycle,
NMR-assisted target N1008, backbone resonance assignments (only)
were combined with complete *°N- and *°C edited NOESY spectra
and Talos_N backbone dihedral restraints (derived from backbone
chemical shift data) as input to the program ASDP. Following one cycle
of analysis with ASDP, the structure-independent NOESY peak assign-
ments (most of which are assigned to multiple possible *H-'H interac-
tions) were used to generate the ambiguous contact list for target
N1008. This CASP13 target explores a novel approach to NMR struc-
ture determination, in that *H-H NOE interactions due to backbone-

sidechain and sidechain-sidechain contacts are present in the NOESY
peak list, but cannot be correctly assigned as the sidechain resonances
are not present in the chemical shift list. For the second target data
set, NMR-assisted target n1008, the nearly complete backbone and
sidechain resonance assignments were combined with complete 1°N-
and *3C-edited NOESY data and Talos_N backbone dihedral restraints,
as input to ASDP. Following one cycle of analysis with ASDP, the
structure-independent NOESY peak assignments (most of which,
again, are assigned to multiple possible *H-'H interactions) were used
to generate ambiguous contact list n1008. In this case, backbone-
sidechain and sidechain-sidechain-NOEs could generally be reliably
assigned. Note that no RDC or EC data are available for target 1008.
CASP13 predictor models provided using ambiguous contact lists
N1008 and n1008 were all assessed against the final manually refined
NMR structure.

Data set N1008 was designed to test the ability to combine
backbone-only assignments with advanced structure prediction
methods. Several studies have previously explored the combination of
sparse NMR data obtained on perdeuterated protein samples with
advanced ‘molecular modeling methods.”®2°7976 For such data sets,
the NOESY cross peak assignments are not complicated by the pres-
ence of unassigned sidechain resonances. However, in the case of
N1008, the backbone resonances were assigned in a fully protonated
13C 5N-enriched protein sample; hence the NOEs may arise from
backbone/backbone,
interactions. Since the sidechain resonances are not in the chemical

backbone/sidechain, or sidechain/sidechain
shift list, many backbone/sidechain NOEs may be incorrectly assigned
as unique backbone/backbone interactions; this is particularly prob-
lematic for NOEs involving resonances which are degenerate with
assigned backbone HN and H” protons. The resulting falsely assigned
backbone-backbone contacts might be expected to corrupt the struc-
ture. The goal of this experiment is to assess if data-guided predic-
tions could overcome such corruption and provide an accurate 3D
structure without sidechain assignments. In practice, the complicating
effects of NOEs involving sidechain protons can be overcome using
protein samples with perdeuterated H* and sidechain resonances.
However, here we explored the potential of avoiding perdeuteration,
completing backbone assignments, and using such noisy NOESY data
for accurate structure determination.

CASP13 results for target N1008 are illustrated in Figure 4. While
these NOESY peak lists contain large numbers of NOE peaks which
cannot be correctly assigned using the backbone chemical shift list,
three prediction groups did very well with these data: Meilerlab
250 (GDT-TS 0.75), KIAS-Gdansk 208 (GDT-TS 0.73), and Laufer
431 (GDT-TS 0.68). The results of the ASDP baseline group 321 (GDT-
TS 0.53) was significantly less accurate (note that Baseline group
459 did not contribute a distinct structure because no ECs are available
for this de novo designed protein). For this N1008 data set, the first
selected model of predictor groups were 15-22 GDT-TS points higher
than the best models provided by the baseline methods. These results
demonstrate the significant value of these modeling methods in
obtaining accurate structures from sparse, noisy NOESY data.
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Reference Best Regular ASDP Forbidden
PDB_ID 6msp SHORTLE Baseline no EC GDT-TS: 0.43
GDT-TS: 0.91 GDT-TS: 0.53 o
wfBakerUNRES Laufer UNRES MeilerLab KIAS-Gdansk
GDT-TS: 0.41 GDT-TS: 0.68 GDT-TS: 0.40 GDT-TS: 0.75 GDT-TS: 0.73

FIGURE 4 NMR-guided predictions for real NMR data target N1008. Target N1008 was produced with uniform *°N-,*C-enrichment
(without perdeuteration). The backbone chemical shift assignments were used together with 3D *°N-NOESY data to generate ambiguous contact
list, which include many NOESY peaks involving sidechain resonances for which no assignment in list of possible assignments is correct. Blue,
experimental solution NMR structure. Magenta, best nonassisted regular prediction. Lt blue, ASDP Baseline model. Green, NMR-assisted

prediction results

Although target N1008 was a NMR-data assisted CASP target,
some of the “regular predictions,” which did not use any NMR data,
were also quite good. In particular, SHORTLE 281 (GDT-TS 0.91)
(Figure 4), A7D-DeepMind 043 (GDT-TS 0.81), and other regular pre-
dictor groups did remarkably well with this target, and significantly
better than any group could do using these sparse NMR data. It should
be noted that target 1008 is a de-novo designed protein, and may be
more amenable to accurate structure prediction compared to natural
proteins. None the less, these results suggest hybrid methods in which
models generated with regular methods are simply validated or refined
against NMR data could be used for data sets like that provided for
N1008.

3.13 | Target n1008: real NMR data with extensive
backbone and sidechain assignments

Data set n1008 was provided as a control for performance with
essentially complete NMR assignments. A reliable NMR-assisted pre-
diction method should do well with these data. Because n1008 was

among the very last data sets released for CASP13, only four predic-
tor groups, plus Baseline_Group 321, ASDP without ECs, submitted
models for n1008. For this data set, Baseline Group 321 provided the
most accurate top ranked model, with GDT-TS 0.83. Laufer-431 also
submitted a good first-ranked model (GDT-TS 0.57), followed by
UNRES 288 (GDT-TS 0.41), Forbidden 122 (GDT-TS 0.40), and wf-
Baker-UNRES 492 (GDT-TS 0.27). These results highlight the value of
such control data in testing and developing NMR-assisted prediction
methods, as the n1008 control data set is an important benchmark for
testing various methods.

3.14 | Overall performance per target per group

Table 2 provides a summary of overall performance for the six predic-
tor groups and two Baseline groups (321No EC or 459 Meta-PSI-COV
EC), based on GDT-TS score of the top-ranked submission, per group,
and per target. The table is color coded so that GDT-TS scores >0.50
(correct fold) are colored in shades of green, and scores <0.50 in sha-
des of red. Certain targets (eg, NO981-D4) appear to be relatively
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1 TABLE 2 GDT-TS scores for first ranked models for each target and each NMR-assisted predictor group 54
2 Best regular 492 wfBaker 431 288 250 208 122 ASDP baseline  ASDP baseline 22
3 Target  Nres prediction UNRES Laufer UNRES  Meilerlab  KIAS-Gdansk  Forbidden no EC with EC 56
i NO0957s1 162 452 81.9 52.9 288 56.0 NA 32.2 30.2 a7
5 A7D 58
6 No989 246 313 NA 59
7 Zhang 60
8 NO968s1 123 714 64.6 59.5 453 69.0 NA 315 597 54.6 61
9 Elofsson 62
10 NO0968s2 115 78.7 60.0 737 55.4 432 NA 304 337 49.5 63
11 A7D 64
19 N0980s1 105 54.8 29.8 67.7 250 59.8 NA 286 62.0 724 65
13 Multicom 66
14 N0981-D1 86  66.2 49.4 584 537 55:5 61.0 NA 70.3 69.7 67
15 slbio_server 8
16 N0981-D2 80 340 NA 40.0 387 34.0 421 NA 64.3 67.5 69
Venclovas
17 70
N0981-D3 203 55.1 379 41.0 39.0 9.3 NA 557 551
18 71
A7D
19 72
N0981-D4 111 65.9 50.6 65.7 47.7 61.7 59.6 NA 60.1 58.1
20 Multicom 73
—- N0981-D5 127 72.8 53.1 76.5 39.7. 59.8 40.9 NA 389 259 74
22 A7D 75
23 N1005 326 563 289 498 264 362 29.2 NA 339 294 76
24 A7D 77
25 N1008 97 .5 68.1 40.2 75.0 73.0 42.8 52.9 NA 78
26 79
27 n1008 97 7.2, 57.4 415 NA NA 40.2 80
28 81
29 82
30 . . 3 LA 83
41 easy, as most groups submitted good models with GDT-TS > 0.50 3.16 | RDC Q-scores for NMR-assisted pred]chon g
‘3’2 while other targets (eg, N0989, N0981-D2, N0981-D3, and N1005)  models Hi
were more difficult. Not surprisingly, the largest targets (>200 resi- .
33 . The RDC Q-score is a measure of the agreement between RDC values 86
dues) were all among the most difficult targets. These results suggest
34 i . calculated from the model, and the RDC data. The Q-score ranges &7
that more efforts are needed even by the best NMR-assisted predic-
35 R \ from 1 to O, with lower values indicating better agreement between 88
2 tion methods, for addressing larger perdeuterated proteins where only A5
36 calculated and observed RDCs. The average '°N-'H RDC Q-scores for 87
sparse NMR data can be collected.
37 each of the six predictor groups ranged from 0.49 to 0.83 (Figure S3). 90
38 These scores are significantly poorer than those of the baseline 91
39 3.15 | Sidechain rotamer metrics groups, which range from 0.19 to 0.21. Among the predictor groups, =2
40 i 93
41 Another valuable structure quality metric involves comparing the the best average RDC Q-scores were for models submitted by 94
42 sidechain conformations of buried residues in predictor models vs the Meilerlab (average RDC Q-score 0.49) and Laufer (average RDC Q- 95
4 reference structure.*® Both 41 and %2 sidechain rotamer states for score 0.63). The submitted models of the remaining four predictor 5%
44 residues with buried side chains were compared between the first- groups have poor RDC Q-scores. These results demonstrate that all of 97
45 ranked predicted models and the corresponding reference structure the data-guided predictor groups could improve model accuracy by 98
44 using the PDBStat program*? as described elsewhere.” Groups better consideration of RDC data in their prediction algorithms. oo
47 laufer 431, Meilerab 250, and KIAS-Gdansk 208, well as ASDP 100
45 Baseline_Groups 321 and 459, provided models with significantly bet- . L. 101
) i R 3.17 | DP scores for NMR-assisted prediction
49 ter than average y1 and y2 sidechain rotamer agreement with refer- del 102
moadels
5(E8 ence structures, compared with the other predictor groups (Figure 5). 103
51 However, all of the predictor groups have average x1 and »2 rotamer The NMR DP score®”® is a “NMR R factor”, comparing the short 104
52 agreement of only 30%-60%, indicating that this is a valuable metric 1H-'H distances in a protein structure model with all possible assign- 105
53 which should be focused on in future CASP experiments. ments of peaks in the NOESY peak list, considering the available 106
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FIGURE 5 Sidechain y1 and y, rotamer states. Percent of (A) y1 or (B) y2 rotamer states for buried residues in each assessment unit that

match the corresponding dihedral angle of the reference structure in the best prediction models submitted by each prediction group

chemical shift data. The NMR DP score ranges from O to 1, and is cor-
related with structural accuracy. Correct structures generally have DP
scores >0.6.57*854 The DP scores for each of the six predictor groups
ranged from 0.47 to 0.69 (Figure S4). These scores are generally lower
than those of the baseline groups, which range from 0.73 to 0.75.
However, ASDP uses the DP score to guide the automated NOESY
peak analysis process. Among the predictor groups, the best average
DP scores were for NMR-assisted models submitted by Laufer (aver-
age DP score 0.69) and Meilerlab (average DP score 0.63). DP scores
for each reference X-ray crystal and NMR structure, and for the best
regular and NMR-assisted models submitted for each target are sum-
marized in Figure S5. These are generally consistent with the
corresponding GDT-TS scores. Overall, the NMR-assisted predictor
rankings based on DP scores are consistent with the rankings based
on GDT-TS and other conventional CASP metrics, placing Laufer and
Meilerlab as the best performing NMR-assisted prediction groups in
CASP13.

4 | DISCUSSION

4.1 | Simulations of NOESY data for CASP targets

Simulated data provide an important tool for computational methods
development. Although it is challenging to accurately simulate some-
thing as complex as a protein NOESY peak list, the powerful advan-
tage of such simulated data is that the ground truth structure is
known. Using real data has the advantage of including effects which
are not captured in simulated data. For example, protein dynamics
and signal overlap are primary causes of errors in the conversion of
NMR observables into structural restraints, and may be difficult to
account for in simulating NOESY data. However, with real data the
“true” structural distribution from which these data arise is generally
not known.

Normally, one cannot assign the frequencies of resonance of all
nuclei in a protein. In practice, two scenarios may occur: either there
are no observable peaks involving a given nucleus, because of local

dynamics preventing their detection, or the resonance cannot be
assigned to a unique atom with confidence, for example, due to acci-
dental degeneracies. In the latter case, peaks are observable but can-
not be converted into the appropriate structural restraints. For this
work, we introduced both types of problems in our simulations, by
manually selecting for each target regions of protein sequence from
which resonance assignment were deleted. To simulate missing
NOESY data for assigned resonances, removed some resonance
assignments before simulating the NOESY peak list. To simulate miss-
ing assignments of resonances which do provide NOESY peaks, we
removed resonance assignments for some residues after simulating
the NOESY spectrum, while retaining the NOESY peaks. This second
situation is actually common in sparse NMR data sets, and can lead to
restraints that are incorrect. For example, mis-assignments of NOESY
peaks due to missing resonance assignments are particularly extensive
for the real NMR data set N1008, in which only backbone resonance
assignments were provided while the NOESY peak list includes NOEs
with unassigned sidechain resonances. Importantly, some of the
modeling methods used in this data assisted CASP13 experiment
were able to overcome the challenges of these real data provided for
target N1008, to provide accurate structures without the need for
sidechain resonance assignments or perdeuteration of the protein
sample. This represents a novel approach to small protein structure
determination by NMR.

In CASP11, one successful strategy used by the Baker lab was to
focus their initial NMR-guided predictions on the uniquely assigned
NOE-based contacts provided in the ambiguous contact lists (7).
Table S5 provides an analysis of the unique long-range, and unique
HN-HN long-range, contacts in the ambiguous contact lists provided
to CASP13 predictors. These ranged from 0.8 to 1.6 uniquely assigned
long-range contacts per residue, and from 0.24 to 0.58 HN-HN long-
range contacts per residue, similar to the distributions provided in the
CASP11 ambiguous contact lists, which were also based on simulated
NOESY peak lists. For the real sparse NMR data set, target N1008,
the ambiguous contact list has 0.54 and 0.28 unique long-range and
unique HN-HN long-range contacts, respectively. These densities of
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1 long-range contacts in this real NMR data set are similar to, but at the Our results show that, in most cases, incorporation of NMR data 54
2 lower-end, of the ranges provided in the simulated ambiguous contact results in models with much higher accuracy predictions. NMR-assisted 55
3 lists. prediction models are, on average, more accurate than the corresponding 56
4 regular prediction by the same group (Figure 6A). Modeling methods that B8/
5 used NMR data generally improved accuracy of prediction over modeling 58
6 - = . i 59
; 42 | Impact of NMR datain improving regular metr.lods used by the sam(? groups without NMR data. In some cases, "
predictions the improvement for particular targets was as much as 40 GDT-TS
8 points (Figure 6B). The improvement was particularly dramatic for groups 61
9 Animportant question to be addressed in this NMR data guided pre- Laufer (average improvement across all targets of 25 GDT-TS points; 62
10 diction component of CASP13 is whether incorporation of sparse maximum improvement on a specific target of 42 GDT-TS points) and 63
11 experimental data can improve the accuracy of prediction. To assess wf-Baker-UNRES (average improvement across all targets of five GDT- 64
12" this, we compared the best “regular prediction” model with the best T points; maximum improvement.on a specific target of 39 GDT-TS 7
13 “NMR data assisted” model, where both the regular and assisted  points). Hence, we conclude that sparse; noisy NMR data can generally  °©
14" models were provided by the same predictor group; that is, for For- improve model prediction accuracy. In some cases, however, incorporat- 67
15 bidden, KIAS-Gdansk, UNRES, Laufer, and wf-Baker-UNRES. ing these simulated or real NMR data resulted in reduced model accuracy 68
15" Meilerlab did not provide a “regular prediction,” precluding this analy-  for some targets; for example; most of the predictor groups submitted o2
17 3 % 4 . 70
# sis. The CASP organizers recognize that predictor groups may have first-ranked “data assisted” targets which are less accurate than their 5
8 i " . . « i 4 - . 1
" utilized different modeling methods for their regular and “NMR corresponding “regular” predictions (Figure 6B). For group KIAS-Gdansk B
5 assisted” predictions, or even used models submitted by other predic- 208, this results in an average reduction in GDT-TS score across all tar- i
. o “ ” . . - @
1 tor groups, which became available between the release of “regular’ gets of—five GDT-TS points (Figure 6A). These results suggest that more 2
55 and “data assisted” targets, making these comparisons not as rigorous efforts are needed by predictor in implementing sparse NMR data in o
- as we might like. their data-guided prediction algorithms. 76
<. o
24 77
25 ( A) 80 78
26 79
27 70 80
28 81
29 60 82
30 83
31 A =0 84
9
‘ﬁ c
32 = 40 85
94 8 86
v
34 30 87
35 88
36 20 89
37 FIGURE 6 Impact of sparse 90
38 10 NMR data on modeling 54
39 accuracy: a NMR-assisted §
0 prediction group also submitted |S
40 Laufer wfBakerUNRES  Forbidden UNRES KIAS - Gdansk regular prediction models, and |2
41 the corresponding best regular | £
42 (B) 60 and best NMR-assisted g
43 predictions were compared. % 3
44 a0 - (A) Stacked column plot showing !-5 b
45 . . the average GDT-TS scores for 5
4 s . . best models submitted for each =~
46 E‘ 20 o - . assessment unit as a regular 99
4 9 e e .. prediction (blue) or NMR- 100
48 < o '. L) See, *us assisted prediction (yellow). (B) A 101
49 . o " ¢ GDT-TS = GDT-TSassisted - GDT- 109
50 20 . . TS,.egu,a, for the best NMR- 103
= . assisted and best regular model
51 submitted for each target by 104
52 -40 each group providing both 105
53 Laufer wfBakerUNRES  Forbidden UNRES KIAS - Gdansk regular and assisted predictions 106
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4.3 | NMR-assisted predictions of larger proteins

None of the NMR-assisted groups did particularly well with the three
larger (>200 residue) targets (Table 2). For these targets, most NMR-
assisted models have GDT-TS < 0.50. The most accurate predictions
were those of the Laufer (two of three targets) and ASDP baseline
(one of three targets) groups. This contrasts the results in CASP11,
where two predictor groups, Lee and Baker, were particularly out-
standing in modeling larger (>200 residues) proteins more accurately
than baseline methods using sparse NMR data. Regrettably, neither
these Lee or Baker groups of CASP11 participated in the NMR-
assisted prediction component of CASP13.

44 | The best “regular” prediction for a target was
often more accurate than the best “data assisted”
prediction

A second key question we wanted to address involves comparing the
accuracy of all regular prediction methods with NMR data assisted
predictions. For six of the 13 targets, the best NMR-assisted models
were more accurate than any regular prediction (solid yellow histo-
gram bars in Figure 7A). This improvement using the NMR data was
particularly dramatic for target NO981-D2 (Figure 8). For this target,
the best NMR-assisted model (Baseline_Group 313 ASDP No EC,
GDT-TS 0.68) is significantly more accurate than the best unassisted
regular model (Venclovas 366; GDT-TS 0.35). Interestingly, all 15 of
the top-ranked assisted models for target NO981-D2 were from the
Baseline groups 321, 459, and 313. This may reflect the nature of this

100
90

FIGURE 7 Best NMR 80
assisted vs best regular 70
predictions. (A) GDT-TS scores & 60
for the best model submitted by = 50
any NMR-assisted prediction 8 40
group (blue bars) compared with 30
the best model submitted by any 20
regular prediction group (yellow 10
bars). The solid yellow bars 0
indicate targets for which the
best model submitted by any
regular prediction was more
accurate than the best model
submitted by any NMR-assisted -
prediction group. The hashed- 'B
yellow bars indicate targets for Z *
which the best model submitted 5 ®
by any regular prediction was less o bl °
accurate than the best model S «
submitted by any NMR-assisted € »
prediction group. (B) Scatter plot ',"’_ o ”
comparing the GDT-TS scores for b oz
the best model submitted by any 8 » "o
regular prediction vs the best » = - -

model submitted by any NMR-
assisted prediction

fold, since the ASDP program uses algorithms designed to address the
unique features of beta sheets.?* The best NMR-assisted models sub-
mitted by predictor groups Laufer (GDT-TS 0.46) and Meilerlab (GDT-
TS 0.36) were also more accurate than the best model from regular
prediction groups. These results confirm the expectation that, gener-
ally speaking, inclusion of sparse NMR data improves the accuracy of
predictions. Detailed descriptions of the methods used by Laufer’”
and Meilerlab”® are presented in their own papers on NMR-assisted
prediction in CASP13.

Although NMR-assisted modeling provide the best models gener-
ated by any methods for several targets, for seven out of 13 targets
used in the NMR-data assisted component of CASP13, the most accu-
rate (best) model provided by a regular prediction group was actually
more accurate than the most accurate model provided by any NMR-
data assisted prediction group (hashed yellow histogram bars in
Figure 7A). This is also evident by plotting the GDT-TS score for best
model submitted by the NMR-assisted groups against the GDT-TS
score for the best model of the corresponding target by any regular
prediction group (Figure 7B); many of these comparisons fall below
the diagonal indicating that at least one regular prediction group pro-
vided a more accurate model than the corresponding NMR-assisted
model. Although in these cases, the improved accuracy of the non-
assisted group is only marginal, they are non-the-less impressive
because no sample-specific experimental data was used. The regular
prediction groups providing these highly accurate “regular predictions”
include groups A7D 043 (Deep Mind), Zhang 322, Venclovas
366, slbio_serve 266s, SHORTLE 281, and MULTICOM 083. Several
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FIGURE 8 Comparison of best assisted and best regular prediction models submitted for target NO981-D2. The best NMR-assisted models 80
28 of the baseline ASDP (with EC) and Laufer groups are more accurate than the best models provided by any regular prediction group (Venclovas) 81
29 82
30 - " . h 83
of these regular prediction groups utilize novel machine learning ORCID
31 84
methods to guide structural modeling. For the NMR-guided targets, . - )
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37 tion using sparse NMR data, in which pure prediction methods, like 90
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Production and Solution NMR Structure Determination of Target 1008 (foldit3).

The synthetic gene for foldit3 [26] without ACA sequences [27, 28 ] was obtained from
Genscript already incorporated into plasmid pET15TEV_NESG, which includes a N-terminal
6xHis purification tag, followed by a TEV protease cleavage site (sequence
‘MGHHHHHHGWSENLYFQGS?’). For these NMR studies, this affinity purification tag was not
removed. Sample preparation followed standard protocols, as outlined in the previous
publication on foldit3 [26]. E. coli BL21(DE3) cells harboring plasmid pET15TEV_NESG-
foldit3 were grown in 1 L MJ9 minimal media [78], supplemented with 100 y g/ml ampicillin at
37 °C. In order to produce uniformly "N and 3C enriched protein samples, 1g / L "NH,-salts and
2g /L U-1C glucose were added as sole a nitrogen and a carbon sources, respectively. When
0.D 00 reached around 0.5 units, the culture was transferred to 18 °C, and the protein production
was induced by addition of 1 mM IPTG. After overnight incubation, the cells were collected and
resuspended in 20 ml binding buffer, containing 20 mM Tris-HCI pH 8.0, 500 mM NaCl and 20
mM imidazole. After passing the cells through a 16,000-17,000 psi French press twice, cell
debris were removed by 10,000 rpm for 30 min. The supernatant was further spun down at
40,000 rpm for 1 hr. The obtained supernatant (soluble fraction) was mixed with 1 mL of Ni-
resin and incubated at 4 °C for 1 hr. The non-specific binding proteins were removed by 20 mL
binding buffer and washing buffer, containing 20 mM Tris-HCI pH 8.0, 500 mM NaCl and 50
mM imidazole, and the target protein was eluted by 5 mL elution buffer (20 mM Tris-HCI pH
8.0, 500 mM NaCl and 300 mM imidazole). The protein was dialyzed against gel filtration
buffer, containing 20 mM Tris-HCI pH 8.0, 100 mM NaCl), overnight, and gel filtration was
carried out using AKTA Express purification system with high-load 26/600 Superdex 200 pg
column. Homogeneity (> 97%) was validated by SDS polyacrylamide gel electrophoresis. The
purified protein was dialyzed against 20 mM potassium phosphate (pH 6.5), and the protein
concentration was adjusted to between 0.3-0.4 mM for NMR studies.
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Supplementary Table S1. Statistics for Real and Simulated NMR Data for NMR-Assisted CASP13 Targets

Target Data available No. of Assessment No.of No. of peaks No. of No.of No.of residues  No. of residues
residues Units peaks in not peaks peaks for which for which
the final assignable per r d r r
list residue i

were deleted were deleted
before NOESY  after NOESY

simulation simulation

Only backbone 80 N1008 665 163 84 N/A 0 0

resonance assignments, (19.7%)
N1008 dihedrals

Essentially complete 80 nl1008-D1 3422 6 433 N/A 0 0

resonance assignments. 02%)
nl008 dihedrals

simNOE, dihedrals, 2x 326 N1005 4367 342 126 245 83 46
N1005 RDC’s (7.3%) (52%)

simNOE, dihedrals. 2x 105 N0980s1 623 41 5.1 89 24 15
N0980s1 RDC's (6.2%) (13.4%)

5 : 246 N0989-D1.D2 1407 119 93 157 56 35

slmN_OE.dlhcdmls. 2x 132 N0989-D1 (78%) (103%)
N0989 RDC's 134 N0989-D2

simNOE, dihedrals, 2x 86 N0989-D1 349 31 35 48 28 14
N0981-D1 RDC’s (82%) (12.6%)

simNOE, dihedrals, 2x 80 N0989-D2 359 36 36 70 28 14
N0981-D2 RDC's 9.1%) (17.7%)

simNOE, dihedrals, 2x 203 N0981-D3 1186 106 5.1 155 50 36
N0981-D3 RDC’s (82%) (12.0%)

simNOE, dihedrals. 2x 111 N0981-D4 553 41 44 68 29 18
N0981-D4 RDC’s (69%) (11.4%)

simNOE. dihedrals. 2x 127 N0981-D5 698 59 47 97 30 19
N0981-D5 RDC's (718%) (12.8%)

simNOE, dihedrals, 2x 116 N0968s2 592 41 45 67 30 18
N0968s2 RDC’s (6.5%) (10.6%)

simNOE, dihedrals. 2x 123 N0968s1 751 52 54 83 32 20
N0968s1 RDC’s (6.5%) (10.3%)

. " 163 N0957-D1.D2 1123 105 59 165 40 20

AIMNOE; dibedmls, 2x 108 N0957-DI (8.6%) (134%)
N0957s1 UGS 54 N0957-D2

Data (real or simulated) provided for each target are listed are listed in the second column. NOESY peaks which
cannot be accounted by combined analysis of the chemical shift list and the coordinates of the reference structure are
not assignable. The number of residues deleted either before simulating the NOESY peak list, or after simulating the
NOESY peak list, are reported in the last two columns, respectively.
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Supplementary Table S2. Correlation Coefficients Between Various CASP13 Metrics.

GDT HA 0.959 0923 0907 0929 0518

'GDT_SC 0.952 0902 0891 0937  0.521

'RPE 0918 0902 0952 0969  0.557

- 0.901 0.895 0.947 0.927 0.555

CAD AA 0915 0932 0966  0.920 0.588
MolPrbty 0.546 0554 0573 0562  0.610

Friedman’s Test indicates, aside from the MolProbity packing metric, different scoring techniques
do not give significantly different rankings. Upper right — Pearson coefficient.
Lower left — Spearman coefficient.
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Supplementary Table S3. Principal Component Analysis of Key Structure Assessment

=
-
=
5

0.425
-0.067
0.389
0.373
0.380
-0.616

0.428
-0.056
0.608
-0.567
-0.319
0.145

0.433
-0.040
0.050
0.632
-0.156
0.621

0.227
0.966
-0.104
-0.044
-0.007
-0.044

86.702
8.351
2.511
1.331
0.800
0.306
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Supplemental Table S4: NMR Data and Refinement Statistics for Foldit3 [26]

Summary of conformationally-restricting experimental restraints *

NOE-based distance restraints:

Total

intra-residue [i = j]

sequential [li-jl=1]

medium range [1 <li-jl<5]

long range [li-j1=5]

NOE restraints per restrained residue ®
Hydrogen bond restraints:

Total

long range [li-j1=5]
Dihedral-angle restraints:
Total number of restricting restraints
Total number of restricting restraints per restrained residue ®

Restricting long-range restraints per restrained residue ”

Total structures computed
Number of structures used

Residual constraint violations *¢
Distance violations / structure
0.1-024
02-05A
>05A
RMS of distance violation / restraint
Maximum distance violation ¢
Dihedral angle violations / structure
1-10°
>10:°
RMS of dihedral angle violation / restraint
Maximum dihedral angle violation ¢

RPF scores
Recall
0.945
RMSD Values
All backbone atoms

All heavy atoms

Structure Quality Factors

1725
448
441
344
492
213

66
22
118
1909
23.6
6.3

100
20

10.05
235

001 A
042 A

17

1.12°°
8.40°

Precision F-measure DP-score

0.956 0.95
all ordered®
69 A 0.6A
77A 1.1A

Mean score SD
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Procheck G-factor ¢ (phi / psi only) -0.18 N/A -0.39

Procheck G-factor ¢ (all dihedral angles) -0.21 N/A -1.24

Verify3D 0.25 0.0282 -3.37

Prosall (-ve) 0.87 0.0739 091

MolProbity clashscore 497 2.6461 0.67
General linear model RMSD prediction 1.14 A

Ramachandran Plot Summary from Procheck f

Most favored regions 94.4%
Additionally allowed regions 5.5%
Generously allowed regions 0.1%
Disallowed regions 0.0%

Ramachandran Plot Statistics from Richardson's lab

Most favored regions 97.3%
Allowed regions 2.5%
Disallowed regions 0.1%

@ Analyzed for residues 1 to 97, Including N-terminal purification tag.
® There are 81 residues with conformationally-restricting restraints.

¢ Calculated for all restraints for the given residues, using sum over r°
d Largest restraint violation among all the reported structures.

¢ Residues with sum of phi and psi order parameters > 1.8.

Ordered residue ranges: 21A-45A,48A-54A,57A-78A,80A-87A,90A-96A
fResidues selected based on: dihedral angle order parameter, with S(¢)+S(y) >= 1.8

Selected residue ranges: 21A-45A,48A-54A,57A-78A,80A-87A,90A-96A
¢ With respect to mean and standard deviation for for a set of 252 X-ray structures < 500
residues, of resolution <= 1.80 A, R-factor <= 0.25 and R-free <= 0.28; a positive value indicates

a 'better' score

Generated using PSVS 1.5
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Supplementary Table S5. Assessment of Contact Ambiguity

No. of No. of Average Maximum Unique Long- Unique Long-range
Residues Possible Ambiguity Ambiguity range Contacts  HN-HN Contacts
Contacts per Contact per Contact Total / Per Total / Per Residue

Residue
Simulated
NMR Data
N0957s1 163 5582 3 50 110/0.67 39/0.24
N0968s1 123 1506 2 16 138/1.12 29/0.24
N0968s2 115 2088 -+ 32 93/0.81 51/0.44
N0980s1 105 1489 3 18 92/0.88 34/0.32
N0981-Dl 86 538 2 10 126 /1.47 44/0.51
N0981-D2 80 504 2 8 127 /1.59 60/0.75
N0981-D3 203 4701 4 32 193/0.95 67/0.33
N0981-D4 111 1093 2 10 100 /0.90 49/0.44
N0981-D5 127 1983 3 21 135/1.06 74/0.58
N0989 246 7095 5 90 200/0.81 91/0.37
N1005 326 49,887 11 92 263 /0.81 90/0.28
Real NMR
Data
N1008 97° 3 54 53/0.54 27/0.28
n1008 972 9 169 200/2.06 19/0.20

aStatistics for target 1008 include the N-terminal 17-residue polypeptide tail.
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Supplementary Fig. S1. Analysis of NOESY peak lists against the
reference atomic coordinates. Orange bars — percentage of all possible
NOESY peaks that are removed by simulated deletions of “exchange
broadened” resonances from the resonance assignment list. Blue bars —
Percentage of all NOESY peaks in the real or simulated spectra that cannot be
correctly assigned based on the information provided in the Ambiguous
Contact Lists. “Unassignable peaks” arise either from noise peaks, which do
not correspond to a true NOE interaction, or for real NOESY peaks when the
true resonance that gives rise the cross peak is not assigned in the chemical
shift list, leading to erroneous assignments of the NOESY cross peak. This
problem is particularly severe for data set N1008 in which many sidechain-
backbone NOEs are present in the NOESY peak list, but no sidechain
assignments are available in the chemical shift list.
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Residue 1 Residue 2 Peak No. Upper-bound Atom 1 Atom 2

R1 R2 P# UPL Confid A1l A2
79 77 17 5.0 0.95 H H
79 177 20 6.0 0.67 H HD2
79 135 20 6.0 0.97 H HD1
79 249 20 6.0 0.96 H HD1
79 50 20 6.0 0.81 H HD2
79 217 23 5.0 0.68 H H
79 230 23 5.0 0.75 H H
79 232 23 5.0 0.72 H H
79 106 23 5.0 0.76 H H
79 166 23 5.0 0.83 H H
79 100 23 5.0 0.83 H H
79 82 23 5.0 0.74 H H
79 246 23 5.0 0.71 H H
79 216 23 5.0 0.67 H H
45 37 28 7.5 0.84 HD2 HG1

Supplementary Fig. S2. Format of Ambiguous Contact Lists. These data were provided in
place of NOESY peak list data to CASP13 predictors. For each peak in the “N-edited or '*C-
edited 3D NOESY peak list (column P#), a set of ambiguous contacts were determined based on
the simulated chemical shift list, using the Cycle 0 protocol of the NOESY peak assignment
program ASDP. Possible contacts are listed between H atom 1 (Residue number R1, and Atom
Al), and H atom 2 (Residue number R2, and Atom A2), together with an upper bound distance
(UPL) in A. Early Ambiguous Contact Lists included an assignment confidence score (Confid)
ranging from O to 1, based on the quality of the match between the chemical shift values of the
NOESY peak and the chemical shift values of candidate interacting atoms in the resonance
assignment list. Since the Confid score was not used in CASP11, it was phased out of use during
CASP13. Atom types include amide HN protons (H) and various methyl proton groups (HB,
HG1,HG2,HDI1, HD2, etc). In this example, ASDP has uniquely assigned peak P# 20 to an
interaction between the amide HN of residue 77 and the amide HN of residue 79, while peak P#
20 has four ambiguous assignments, HN of residue 79 and methyl resonances of residues 177,
135,249, and 50
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Supplementary Fig. S5. NMR DP Scores for X-ray Crystal Structures, Experimental NMR
Structures Compared with Best Regular or Best NMR-Assisted Models. Top (same data as
main text Fig 7A): GDT-TS scores for the “best” model submitted by any NMR-assisted
prediction group (blue bars) compared with the “best” model submitted by any regular prediction
group (yellow solid bars show improved accuracy, and hashed yellow bars show average
accuracy, due to addition of sparse NMR data). Bottom: DP scores for experimental structures
determined by X-ray or NMR (blue bars) compared with the “best” model submitted by any
regular prediction group (yellow bars) and the “best” model submitted by any NMR-assisted
prediction group (green bars). Hashed yellow or green bars indicate targets are less accurate than
the experimental structures, while solid yellow or green bars indicate targets are more accurate.
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contacts derived from solid- or solution-state NMR
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ABSTRACT

Protein assemblies are involved in many important biological processes. Solid-state NMR
(SSNMR) spectroscopy is a technique suitable for the structural characterization of samples with
high molecular weight and thus can be applied to such assemblies. A significant bottleneck in terms
of both effort and time required is the manual identification of unambiguous intermolecular
contacts. This is particularly challenging for homo-oligomeric complexes, where simple uniform
labeling may not be effective. We tackled this challenge by exploiting coevolution analysis to extract
information on homo-oligomeric interfaces from NMR-derived ambiguous contacts. After removing
the evolutionary couplings (ECs) that are already satisfied by the 3D structure of the monomer, the
predicted ECs are matched with the automatically generated list of experimental contacts. This
approach provides a selection of potential interface residues that is used directly in monomer-
monomer docking calculations. We validated the protocol on tetrameric L-asparaginase Il and
dimeric Sod1.
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INTRODUCTION

Many proteins carry out their functional role acting as part of protein assemblies, i.e. a
combination of different proteins (hetero-complexes) or of multiple copies of the same monomeric
unit (homo-complexes). The assembly of the correct biological complex strongly depends upon
specific protein-protein interactions (PPIs) that often are conserved among species (Qian et al.,
2011; Sun and Kim, 2011). Frequently, an initial step in the study of an assembly is to characterize
the three-dimensional structure of its individual subunit components either by X-ray crystallography
or NMR spectroscopy. Among NMR techniques, solid-state NMR (SSNMR) has been receiving
increasing attention because it is not limited by protein size, solubility, crystallization problems,
presence of inorganic/organic matrices or lack of long-range order that often make the application
of other structural biology methods unsuitable. In particular, it is straightforward to extend SSNMR
experiments designed for individual proteins to the investigation of protein assemblies (Demers et
al., 2018), as the quality of SSNMR spectra does not decrease with increasing molecular weight, as
happens for solution NMR.

A crucial step in the application of SSNMR to structure determination is the identification
and assignment of through-space nucleus-nucleus interactions. DARR (Dipolar Assisted Rotational
Resonance) is a commonly used pulse sequence for this purpose, which is based on 3C-13C
magnetization transfer through proton-driven spin diffusion (Takegoshi et al., 2001). Tuning of
experimental DARR parameters allows users to select the range of distances at which inter-nuclear
interactions are sampled. Although solid-state resonance lines of protein complexes are narrow,
spectral congestion makes the assignment of DARR peaks a challenging task. In practice, DARR
experiments yield a list of ambiguous contacts in which the quaternary contacts must be separated
from intra-monomeric contacts to determine the 3D structure of the complex. In hetero-complexes
this problem can be alleviated by using different schemes for enrichment in stable NMR-active
isotopes (*3C, °N) in the various subunits of the complex (Gobl et al., 2014); for instance, one subunit
can be uniformly enriched while all other subunits are not. This approach may not be very effective
for homo-complexes, and more complex and labor intensive strategies for the asymmetric
enrichment of all subunits have been proposed (Traaseth et al., 2008). Thus, the investigation of
homo-complexes by SSNMR often remains a manual task, especially with respect to the
identification of inter-subunit contacts.

Coevolution analysis assumes that evolutive pressure favors the preservation of protein
function through the conservation of fundamental residue interactions (Salinas and Ranganathan,
2018). This concept has been implemented, among others, in global coevolutionary or direct
coupling analysis (DCA) methods (Morcos et al., 2011; Weigt et al., 2008). These methods differ for
the types of approximation used, from dimensional reduction (Cocco et al., 2013) to pseudo-
likelihood maximization (Ekeberg et al., 2013) and others (Burger and van Nimwegen, 2010; Jones
et al.,, 2012; Skwark and Elofsson, 2013). The information derived allows the identification of
multiple protein conformational states (Morcos et al., 2013; Sutto et al., 2015) and the prediction
of tertiary protein structures, either alone or in combination with experimental data (Anishchenko
etal., 2017; Dago et al., 2012; Marks et al., 2012, 2011; Tang et al., 2015). Coevolution analysis can
detect also ECs corresponding to inter-subunit contacts (Hopf et al., 2014; Ovchinnikov et al., 2014;
Rodriguez-Rivas et al., 2016; Schug et al., 2009; Szurmant and Weigt, 2018). The identification of
ECs consistent with PPIs for hetero-complexes requires the creation of a joint multiple sequence
alignment (MSA) in which each line corresponds to an interacting protein pair (Bitbol et al., 2016;
Burger and van Nimwegen, 2008; Cheng et al., 2014; Procaccini et al., 2011). This is a relatively
complex task, especially due to the analysis required for the separation of orthologs and paralogs,
prior to the construction of the MSA. Instead, the coevolution analysis of homo-complexes is based
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on a single protein sequence and thus on a single MSA. While this simplifies the construction of the
alignment, it makes the identification of ECs belonging to inter-molecular contacts much more
complicated because such information is hidden among hundreds or thousands of ECs of which the
majority are tertiary contacts (dos Santos et al., 2015; Uguzzoni et al., 2017). The removal of tertiary
contacts requires knowledge of the 3D structure of the monomeric protein. Notably, there is a
relevant number (about 2000) of protein families annotated as forming homo-oligomeric
assemblies in vivo with a deposited monomeric structure in the Protein Data Bank (PDB) (El-Gebali
et al., 2019; Rose et al., 2015). These families potentially constitute an interesting target for homo-
oligomeric structural predictions, also in the frame of drug discovery (Bai et al., 2016).

In the present work we developed a protocol to extract information on the protein-protein
interface of homo-complexes from SSNMR-derived ambiguous contact lists, which can be
automatically generated, using coevolution analysis. All the ECs with a relevant probability to be
true residue interactions in either the monomer (intra-monomeric contacts) or in the homo-
oligomerization interface (inter-monomeric contacts) are considered. The removal of intra-
monomeric ECs requires the availability of the structure of the monomer. The predicted ECs with
possible matches to experimental peaks are used to identify candidate interface residues. The final
list of such residues is used directly in protein-protein docking calculations. The same protocol can
be also applied using only solution-state NMR data.

RESULTS

Our protocol aims to predict the structure of homo-oligomeric complexes by using
ambiguous NMR contacts to identify reliable inter-monomeric contacts within the list of ECs. The
whole procedure, which is described in detail in the next section, can be divided in two main parts.
First, intra-monomeric evolutionary couplings (ECs) are removed from the list of ECs based on the
3D structure of the monomer. Second, the list of ECs predicted to potentially be at the complex
interface is compared with the list of ambiguous NMR contacts to extract all residue pairs matching
both the predicted and the experimental dataset. The protocol was validated by predicting the
tetrameric structure of Escherichia coli L-asparaginase |l (Cerofolini et al., 2019) (PDB ID: 6EOK), in
which two distinct dimeric conformations must be recognized to reconstruct the functional complex
(Fig. 1). Furthermore, the robustness of the procedure in the identification of complexes with small
interface regions was tested by predicting the structure of dimeric human apo Sod1 (Bertini et al.,
2009) (PDB ID: 3ECU) (Fig. 1). For L-asparaginase Il we used solid-state NMR data (Cerofolini et al.,
2019), whereas for Sod1 we used solution NMR data (Bertini et al., 2009).

Figure 1. Crystal structures of the tetrameric L-asparaginase Il and the dimeric apo Sod1.
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Description and application of the protocol

This protocol calculates a list of putative interface residues to be used as input to HADDOCK for
docking calculations. It needs four inputs (Fig. 2): one or more files with the list of ECs, the structure
of the monomer, the experimental NMR-derived list of ambiguous contacts and the Naccess file (rsa
format) with the per-residue relative solvent accessible area. The ECs of the target protein are
obtained from so-called coevolution analysis. A number of servers performing coevolution analysis
are available online (see Methods). In general, they need the protein sequence as input to predict a
contact map from multiple sequence alignments (MSAs). The output is a list of residue pairs scored
for the probability that they are actually in contact in the monomeric or oligomeric structure. We
apply a probability cutoff P to remove ECs with low probability of being true interactions.
Coevolution analysis usually outputs from hundreds to thousands of ECs that cannot be assigned as
intra-monomeric or inter-monomeric contacts without any structural information. As a
consequence, our protocol calculates for each EC the corresponding Ca-Ca distance in the 3D
structure of the monomer and all the ECs below the distance cutoff of 12 A are classified as intra-
monomeric and removed .

After the removal of intra-monomeric ECs, the resulting list is enriched in contacts across
the interaction interface (inter-monomeric ECs). Nevertheless, it still contains a relevant number of
false-positives. False-positives can be either ECs that do not correspond to a true residue-residue
interaction or ECs that correspond to intra-monomeric interactions that occur in conformations
sampled during the physiological conformational dynamics of the protein. The EC list thus cannot
be used directly in docking calculations. We thought that the rate of false positives could be reduced
by leveraging the information present in the list(s) of ambiguous contacts provided by NMR
experiments. Indeed, NMR-derived contacts list of protein complexes are affected by a high level of
ambiguity caused by the accidental overlap of NMR resonances, making the extraction of reliable
inter-monomeric contacts an arduous task. Our protocol overcomes this bottleneck by matching
the predicted inter-monomeric ECs with the experimental list to extract information present in both
the datasets. In practice, residue pairs in the predicted inter-monomeric EC list are matched to
ambiguous assignments in the experimental list, providing a list of interface residue pairs.
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FOR each EC: IF probability >= P AND distance >= 12 A

Predicted inter-monomeric EC
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Figure 2. Scheme of the protocol adopted to predict the structure of homo-oligomeric complexes
using coevolution analysis and ambiguous NMR contacts.

The number of residual false-positives in the matched list is further decreased by removing
all the residues with a relative solvent accessibility lower than 40% in both main-chain and side-
chain (i.e. buried residues). The remaining residues constituting the output list from our protocol
can be used directly as ambiguous interaction restraints (AIRs) in monomer-monomer docking
calculations with HADDOCK. The protocol can be run using the python script provided as
supplementary material (S/ Appendix).

We assessed the accuracy of the protocol in predicting residues at the homo-oligomeric
interface for different probability cutoffs (Tables 1 and 2). Furthermore, we evaluated the NMR data
contribution to the prediction accuracy by comparing the results obtained with or without (“ECs +
NMR” and “ECs only”, respectively) matching with the NMR data. A residue accurately predicted at
the complex interface is defined as a true-positive (TP) residue. More in detail, we defined a true-
positive (TP) residue as having at least one atom with a distance < 7 A from any atom located on a
different chain in the crystal structure of the complex.

In the case of the L-asparaginase Il protein, the crystallographic complex is formed by four
subunits with a D, symmetry. Thus, the ensemble of all TP residues contains the amino acids at both
dimeric interfaces. For this system, the inclusion of NMR data enhances the positive predictive value
(PPV), defined as true-positive (TP) residue predictions over all predictions [TP/(TP+FP)], at all the
probability cutoffs assessed (Table 1). In fact, on the basis of the “ECs only” analysis the absolute
number of TP residues present in the prediction is significantly higher than the number of TP
obtained after the match with NMR data. However, the same analysis also outputs a much greater
number of FPs. Consequently, the “ECs + NMR” analysis features a PPV of 100% for P >= 0.35; the
PPV remains very high (>= 80%) even at low probabilities (P < 0.35) and the number of predicted
interface residues is sufficient to successfully drive docking calculations (see next section).

Table 1. Number of residues predicted to make contacts across the L-asparaginase || homomeric interface. The protocol was applied
as depicted in figure 2 with the ECs matched with the NMR data “ECs + NMR” and without the matching step with NMR data “ECs
only”. P indicates the probability threshold used to accept ECs. PPV = TP/(TP+FP).
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L-asparaginase Il
ECs only ECs + NMR
P TP+FP TP PPV | TP+FP TP PPV
0.90 13 10 0.8 3 3 1.0
0.85 23 20 0.9 3 3 1.0
0.80 30 21 0.8 3 3 1.0
0.75 34 24 0.8 3 3 1.0
0.70 38 27 0.8 4 4 1.0
0.65 41 30 0.8 4 4 1.0
0.60 47 31 0.7 4 4 1.0
0.55 51 33 0.7 4 4 1.0
0.50 60 36 0.7 4 4 1.0
0.45 73 42 0.7 4 4 1.0
0.40 84 47 0.6 5 5 1.0
0.35 97 52 0.6 7, 7 1.0
0.30 105 54 0.6 9 8 0.9
0.25 121 60 0.6 19 16 0.8
0.20 128 60 0.6 34 28 0.8

Instead, the Sod1 complex contains two subunits with a C; symmetry and a small protein-
protein interface. As a consequence, in the central part of the interface the inter-monomeric
contacts involve residue pairs that also are at intra-monomer distance smaller than the 12 A
threshold that we used to remove intra-monomeric ECs. In practice, this structural organization
significantly reduces the number of detectable TPs because the aforementioned inter-monomeric
contacts are discarded. Furthermore, small interfaces are harder to predict computationally and
also provide a lower number of NMR-detectable contacts. All these features make the Sod1 system
challenging but useful to test the limits of the protocol. When considering the Sod1 protein, the
“ECs only” protocol yielded a reasonable PPV for P >= 0.55, but with only a handful of TPs in the
prediction (Table 2). Instead, the match with NMR data removed the signal for P>= 0.45 while
retaining information at lower P values, especially for P = 0.30.

Table 2. Number of residues predicted to make contacts across the Sod1 homomeric interface.

Sod1l
ECs only ECs + NMR
P TP+FP TP PPV | TP+FP TP PPV
0.90 0 0 NA 0 0 NA
0.85 0 0 NA 0 0 NA
0.80 0 0 NA 0 0 NA
0.75 4 3 0.7 0 0 NA
0.70 4 3 0.7 0 0 NA
0.65 4 3 0.7 0 0 NA
0.60 8 4 0.6 2 0 NA
0.55 10 4 0.4 2 0 0.0
0.50 17 5 0.2 4 0 0.0
0.45 23 7 0.3 5 1 0.2
0.40 29 9 0.3 5 1 0.2
0.35 38 12 03 9 3 0.3
7
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0.30 50 14 03 18 7 0.4
0.25 68 17 0.2 27 7 0.3
0.20 74 17 0.2 48 9 0.2

These results suggest that the quality of the initial EC prediction is quite important for the
performance of our protocol, leading to a larger enhancement of the PPV when the prediction
includes a larger number of TPs. When the EC data yielded is weaker and mixed with noise, our
protocol retains a good part of the available information but the PPV is mostly unchanged.

HADDOCK calculations for L-asparaginase Il

The ECs at the P cutoff of 0.25 were matched with a solid state 2D*3C-3C DARR dataset
(mixing time 200 ms) holding 4937 ambiguous assignments, resulting in 19 surface residues
predicted to be at the protein-protein interface (corresponding to 14% of the whole protein
surface). The final 200 water-refined models generated by HADDOCK were analyzed by measuring
the RMSD from the structure with the lowest HADDOCK score. The clustering algorithm grouped
the models in 7 clusters (Fig. 3A). The first cluster was the most populated and included the models
with the lowest score. Indeed, the lowest HADDOCK score model of the first cluster was a dimer
with an RMSD of 0.7 A from the crystallographic dimer formed by chain A and chain C of the
tetrameric protein (Fig. 3B). In addition to the HADDOCK score, the desolvation energy calculated
using empirical atomic solvation parameters proved to be an useful scoring function(Fernandez-
Recio et al., 2004), allowing the identification of the correct A-C dimer (Fig. S1).
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Figure 3. L-asparaginase |l monomer-monomer docking. A) Plot of the HADDOCK score vs RMSD clusters distribution
with respect to the lowest HADDOCK score model. B) Structural alignment between the lowest HADDOCK score
model (in blue) of the first cluster and the crystal structure.

Both the predicted inter-monomeric ECs and the experimental NMR inter-monomeric
contacts include residue pairs belonging to all the pairs of chains effectively in contact in the
functional complex. In the case of the tetrameric L-asparaginase Il, besides the largest A-C interface
also chains A and D share a relevant number of contacts. According to this, in a single docking run
one might expect to sample both relevant dimeric configurations (A-C and A-D) in two different
clusters. Indeed, by checking the position of the 19 predicted interface residues within the crystal
structure, it appears that the A-C and A-D interfaces were both mapped (Fig. 4). In fact, the largest
portion of residues effectively in contact belonged to dimer A-C and the smallest portion to dimer
A-D.
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Figure 4. Projection on the crystal structure of the L-
asparaginase |l residues used to generate AIRs in the
docking calculation. The residues making inter-monomeric
contacts are shown as colored spheres (A-C interface in
purple; A-D interface in orange).

However, the structural configuration present in the other clusters did not correspond to
the A-D dimer. This could be easily verified by observing that the superimposition of the two dimers
on the common chain A resulted in evident steric clashes between the subunits, as shown for the
cluster 3 (Fig. 5). If the two dimers actually corresponded to the A-C and A-D dimers of the tetrameric
structure, the superimposition on the A chain would have caused no significant clashes.

Figure 5. Superimposition on chain A (in green) of
the third (in gray) and the best (in blue) dimer
configurations in the first run.

In principle, the absence of the second compatible dimer in calculations can be due to two
reasons. First, the interface residues belonging to the second configuration were not present in the
AlIRs dataset. Second, the residues belonging to the second interface region were present, but the
correct structural configuration had a HADDOCK score worse than the wrong sampled
configurations. In the present case, the latter reason was the relevant one. In fact, the wrong dimer
models in general contained some contacts from both interface regions, thus satisfying a higher
number of AIRs than the correct dimer A-D.
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To obtain a model of the A-D dimer, we performed a second docking run in which the
restraints already satisfied in the best cluster (containing the most favored configuration) of the first
run were removed from the input dataset. To this end, we looked at the violation analysis of
HADDOCK, and retained all contacts that were not satisfied by the majority of the members of the
first cluster by at least 3 A. This resulted in 9 residues being used as input to a second monomer-
monomer docking run. As in the previous calculation, the first cluster was the largest and contained
the models with the best HADDOCK score and desolvation energy (Fig. 6A and S2). Superimposing
the lowest HADDOCK score water-refined model with the crystal structure resulted in an RMSD of
0.9 A from the dimer A-D (Fig. 6B).
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Figure 6. L-asparaginase |l monomer-monomer docking using AIRs violated in the A-C dimeric model. A) Plot of the
HADDOCK score vs RMSD clusters distribution with respect to the lowest HADDOCK score model B) Structural alignment
between the lowest HADDOCK score model (in yellow) of the first cluster and the crystal structure.

In summary, the two correct dimeric conformations A-C and A-D were obtained performing
two distinct docking runs, the first one with the whole AIRs dataset and the second one with the
subset resulting from the removal of the AIRs satisfied in the best cluster of the first run. Crucially,
this procedure provided us with two compatible non-overlapping dimeric models that, for
symmetry, can be used to reconstruct the tetrameric model (Fig. 7). This step strictly depended by
the correctidentification of the structural model on which the distance violation analysis was carried
out. In fact, selecting the third cluster of Fig. 3 to perform the violation analysis instead of the best
one resulted in a second docking run that sampled again the dimer A-C in the two best clusters and
not-compatible structural configurations in the others (Fig. S3).

Figure 7. Superimposition on the chain A (in green) of
the best structural configurations in the second run (in
yellow) and in the first run (in blue).

Extracting the monomer from the PDB of the complex results in a protein model with the
side chains oriented in a contact-ready state that favors the correct assembly, in terms of both
docking score and RMSD from the experimental structure, as compared to incorrect docking poses.
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Thus, to test our protocol in a more realistic condition we generated 15 homology models of L-
asparaginase Il using the structure of the homolog from Wolinella succinogenes(Lubkowski et al.,
1996) as the structural template (PDB ID 1WSA, chain A). The homology models had a backbone
RMSD lower than 1 A from the crystal structure of the E. coli protein, but widely differing in the
orientation of the surface side chains. Each model was used in protein-protein docking with the
same input AIRs of the “crystal P 0.25” runs, for both the A-C and A-D dimers. The results of Table 3
show the significant influence of the orientation of side chains on the ability of the docking
calculations to sample the correct dimer in the best cluster. Based on the HADDOCK score of the
best cluster for each model, the AC runs pointed out that the five runs with the best score also had
the lowest RMSD from the crystal A-C dimer, (green gradient in the table). However, for these five
models the second calculation with the AIRs providing the A-D dimer resulted in wrong dimeric
conformations. Nevertheless, by inspecting the results for all models (Table 3), it turned out that
the runs with the best HADDOCK scores (for their first clusters) indeed provided results
conformations close to the crystallographic A-D dimer (in particular models 6 and 15). For further
comparison, we performed a docking run of the crystallographic monomer with the 34 residues
(25% of the whole protein surface) output by the protocol run at a P cutoff of 0.20. Changing the
AIRs dataset with a larger one having the same PPV did not significantly affect the results.

Overall, the results described above pointed out the importance of generating a sufficiently
large number of homology models to sample many different side chain orientations, thus increasing
the probability to capture the orientation permitting residue-residue contacts across the
monomeric interface. The best clusters of the two crystal runs showed that ideal side chain
orientations provided the top HADDOCK score values. In line with this, the models that had the best
HADDOCK scores resulted in the configurations closest to the crystal structure, with a backbone
RMSD between 1 and 3 A from it. For these models, the HADDOCK scores themselves were similar
to the values observed for the runs starting from the crystal monomer. Indeed, superimposing on
the chain A the AC dimer of model 13 and the AD dimer of model 15 or model6 showed two
compatible dimeric models that, taken together, can be used to reconstruct the tetrameric structure
(Figure S4)

Table 3. Docking results for homology models of L-asparaginase Il. The two “Crystal” runs were performed using the chain A of the
crystal structure. Each model mainly differs in the orientation of side chains. For each run the HADDOCK score of the best cluster
(calculated as the average value of the 4 best structures of the cluster) and the RMSD of its best structure from the experimental
dimer are reported.

A-C dimer A-D dimer
HADDOCK score RMSD HADDOCK score

Crystal P 0.25
Crystal P 0.20
modell | ‘
model2
model3
model4
model5
model6
model7
model8
model9
model10
modelll
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Chapter 2 — Results 81



bioRxiv preprint first posted online Jul. 30, 2019; doi: http://dx.doi.org/10.1101/714857. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

model12 -117 -124 7.4
modell3 -204 -121

modell4 -101 -104 11
modell5 -134 -169 2.6

HADDOCK calculations for Sod1

The predicted inter-monomeric ECs at P=0.30 were matched with 7611 ambiguous
assignments from solution-state 3D *H >N NOESY-HSQC spectrum. The protocol yielded 18 putative
interface residues, corresponding to 23% of the whole monomer surface. By comparing the
prediction to the of the crystal structure, it appeared that 7 out of 18 residues effectively formed
inter-monomeric contacts (Fig. S5).

From the docking calculation starting with the crystal monomer we obtained 7 clusters with
comparable HADDOCK score values (Fig. 8A). However, the distribution of the desolvation energies
discriminated the second cluster as the most favored (Fig. 8B). Indeed, the structural alignment of
the best model of this cluster with the experimental dimer revealed an impressive RMSD of 0.6 A
(Fig. S6A). Instead, the same superimposition on the crystal structure of the first cluster resulted in
a dimer in which one of the two monomeric units was rotated by 180° with respect to the
corresponding experimental monomer, while preserving the same interface region (Fig. S6B).
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Figure 8. Sod1 clusters distribution with respect to the lowest HADDOCK score model. A) HADDOCK score distribution. B)
Desolvation energy distribution.

DISCUSSION

Solid State NMR is an attractive technique to study large protein assemblies as even systems
with high molecular weight can provide very good spectra. However, the determination of their 3D
structure involves two very time-consuming steps: the assignment of the side chains in contact at
the interface between the subunits and, for homo-oligomeric complexes, the discrimination of
intra- vs inter-monomer contacts. In particular, the correct identification of inter-monomer contacts
usually requires extensive efforts by an experienced user. From the bioinformatics point of view,
focusing on homo- rather than hetero-oligomers makes the interpretation of coevolution signals
harder. In fact, the difficult step in the coevolution analysis of hetero-oligomers is the proper pairing
of orthologs of interacting proteins and the corresponding removal of paralogs. Once this has been
achieved, the creation of a joint MSA in which each line contains a pair of interacting proteins allows
the straightforward use of predicted inter-protein contacts as restraints to drive the modelling of
the quaternary structure (Bitbol et al., 2016; Hopf et al., 2014; Ovchinnikov et al., 2014). Instead,
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the coevolution analysis of homo-oligomers is based on a single protein MSA, which is relatively
effortless to build. Unfortunately, the availability of the three-dimensional structure of the
monomeric unit is necessary to successfully separate intra-monomeric and inter-monomeric ECs
(Uguzzoni et al., 2017). In this work, we developed a protocol to integrate ECs with NMR-derived
ambiguous contacts in order to identify interface residues in homo-oligomers. The input lists of
ambiguous contacts can be automatically generated from appropriate solution or solid-state NMR
spectra. Our protocol was validated by predicting two difficult cases: the tetrameric L-asparaginase
I, in which two distinct dimeric conformations must be recognized to reconstruct the functional
complex and the dimeric Sod1, in which the interface region is comparatively small.

The correct identification of interface residues was readily verified by comparing the output
of the protocol with the known interfaces in the crystal structures of the two systems (Tables 1 and
2). This analysis showed that NMR data can be beneficial by enriching the predictions in true
contacts (i.e. higher PPV). This improvement comes at the cost of reducing the absolute number of
predicted residues, which however did not limit the subsequent docking calculations. The requisite
for the integration of ECs and NMR data to be successful is that the initial list of potential inter-
monomeric ECs contains enough information. This is clearly exemplified by the case of Sod1, for
which the absolute number of predictions, after removing all contacts that could be satisfied within
the monomer, was quite low. Consequently, many NMR signals could not be matched and the
benefit in PPV was modest. Nevertheless, when the total number of predicted interface residues is
in a reasonable range (15%-20% of all surface residues, i.e. 12-16 residues for Sod1) the prediction
resulting from the integration of ECs and NMR data is more reliable than that based only on ECs.

To generate a 3D structural model of the oligomer, the output of our protocol can be
exploited in docking calculations. As a proof-of-principle, we run these calculations starting from
the monomer conformation observed in the crystal structure. This is an ideal case, where all the
side chains at the protein-protein interface are already in the correct rotameric state to engage in
the formation of the complex. All the same, it is important to perform this step to ensure that the
output contains enough information to successfully drive the docking. This was indeed the case for
the main dimer of L-asparaginase Il (A-C) as well as for Sod1. The calculation with the complete AIR
dataset could not identify the A-D dimer even though the dataset contained contacts belonging to
both interfaces. The A-D interface is somewhat smaller than the A-C interface; as HADDOCK aims to
satisfy the highest number of AIRs, the situation where the second chain of the dimer is positioned
in between the two interfaces, thus partly satisfying both subsets of AIRs, is favored over the
situation in which all of the A-D and none of the A-C AlIRs are satisfied. To circumvent this bottleneck,
it is necessary to separate the residues belonging to each interface. This was done by removing the
contacts already satisfied in the first docking calculation to run a second calculation only with the
unsatisfied restraints. The best cluster of the second run indeed matched closely the A-D dimer of
the tetramer (Fig 6). Intriguingly, the AIRs derived from ECs only at a P cutoff of 0.8 (Table 1), whose
number was similar to the number of AIRs used in the “ECs + NMR” calculations, did not contain
information on the A-D dimer interface (not shown). Thus, the information provided by ECs at high
levels of confidence is not balanced over the two interfaces, presumably due to the evolutionary
history of the system. This makes it necessary to use data at lower P cutoffs, which is efficiently
filtered by the ambiguous contacts provided by solid state NMR. The experimental data in fact
contain information on both interfaces and thus is useful to extract both sets of true contacts from
the list of ECs.

In a more realistic scenario one would use a homology model of the monomer as the input
structure to docking calculations. We tested this scenario by generating 15 different models of
L-asparaginase Il (Table 3) and using the same input AIRs used in the docking of the crystal monomer
for all calculations, so that the structure was the only source of variability. For the A-C dimer, we
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observed that in four cases the best model of the adduct was within 2 A from the crystal structure,
while an additional calculation provided a model with a RMSD of 2.2 A. The A-D dimer resulted in a
similar situation, with two structures within 3 A and another two at 3.2 A. Remarkably, there was a
very good correlation between the HADDOCK score and the RMSD, allowing the more accurate
models to be identified quite straightforwardly. It is also noteworthy that the best results obtained
with the homology models had scores close to those obtained with the crystal monomer, which can
be reasonably assumed to represent the best possible score. It thus appears that sampling a
relatively extensive ensemble of different conformations is an important factor to obtain accurate
models of the oligomer in a real-life setting.

In summary, our protocol allowed us to predict homo-oligomeric structure in multimers and
in presence of a small homodimerization interface. Notably, this goal was achieved with a minimal
user effort, making the determination of the 3D structure of the complex faster than using
experimental data alone. The only parameter that must be decided by the user is the probability
cutoff P below which the ECs are removed. In our hands selecting a P cutoff such that the number
of predicted interface residues was 15%-20% of the number of surface residues in the monomer
worked well. The results of our protocol clearly depend upon the quality of the ECs obtained from
the online servers. Their integration with NMR data serves two different purposes, namely enriching
the input AIRs in true contacts when working at low P cutoffs and removing biases among different
regions of the protein. From the point of view of NMR spectroscopists, the present work provides a
methodology to analyze homo-oligomers with reduced manual effort.

METHODS
Computational aspects

The protocol described in the “results” section can be carried out running the python script
provided (S/ Appendix). The script needs four inputs: the ECs files, the PDB structure of the
monomeric protein, the experimental ambiguous NMR contacts list and the Naccess file (rsa format)
with the relative solvent accessibility of the residues. Details about inputs preparation, script steps,
and docking protocol adopted for the L-asparaginase Il and Sod 1 are described below.

The ECs for both proteins were collected using 3 servers available online: Gremlin
(Ovchinnikov et al., 2014) (http://gremlin.bakerlab.org), RaptorX (Wang et al., 2017; Xu et al., 2016)
(http://raptorx.uchicago.edu/) and ResTriplet (Yang Li, Chengxin Zhang, Dongjun Yu, 2018)
(https://zhanglab.ccmb.med.umich.edu/ResTriplet/). The last two methods are supervised but the
PDBs used in this work were not present in the training sets. The MSA in the Gremlin server was
generated with the Jackhmmer method and default options (Eddy, 1998). Using different servers
adopting different methods in the ECs generation can result in multiple copies of the same EC with
different computed likelihood probability. If this is the case, the EC with the highest probability is
kept.

The reference protein structures were retrieved from the Protein Data Bank: E. coli L-
asparaginase |l corresponds to PDB ID 6EOK, whereas human apo-Sod1 has the PDB ID 3ECU. Inter-
monomeric ECs were identified by removing from the full EC lists all residue pairs with a
corresponding Ca-Cat distance < 12 A in chain A of the structures. This distance was already proved
as an excellent threshold in the selection of true contacts across the interface (Uguzzonietal., 2017).

The experimental procedure for the generation of the ambiguous NMR contacts list is
described in the next section.
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The per-residue relative solvent accessible area for both main chain and side chain was
calculated with Naccess (Hubbard, S. J. and Thornton, 1993). Our python script requires the Naccess
file in the rsa format to automatically remove all the residues with a relative solvent accessible area
below 40% for both the side chain and the main chain.

The monomer-monomer docking calculations were carried out with the HADDOCK software
(Dominguez et al., 2003). The residues chosen to drive the docking run were given as active residues
(directly involved in the interaction) to generate ambiguous interaction restraints (AIRs) with the
default upper distance limit of 2 A. The water-refined models were clustered based on the fraction
of common contacts (Rodrigues et al., 2012), FCC = 0.75, and the minimum number of elements in
a cluster of 4. For the docking run starting from crystal structures, chain A was used as the input
monomer. The number of models generated for each step of the HADDOCK docking procedure were
set as follow: 10000 for rigid-body energy minimization, 400 for semi-flexible simulated annealing
and 400 for refinement in explicit solvent. The distance violation analysis was performed on the best
cluster and the corresponding output written in the ana_dist_viol_all.lis file. In this file we selected
all the residues with a violation larger than 3 A to generate a subset of AIRs to drive a second docking
run. Thus, the second docking run was performed using exactly the same conditions as the first one.

We generated 15 models of monomeric E. coli L-asparaginase Il using the structure of
Wolinella succinogenes L-asparaginase (Lubkowski et al., 1996) as a template (PDB ID 1WSA, chain
A) using Modeller (Eswar et al., 2007). The two proteins have 55% sequence identity. The resulting
template-based models featured a very similar backbone conformation, lower than 1 A from the E.
coli crystal, but different side chain orientations. Each model was assessed in protein-protein
docking using the same AIRs used in the “crystal P 0.25” runs, with all the AIRs (A-C dimer
calculation) and after the removal of the ones already satisfied by the A-C dimer (A-D dimer
calculation), respectively. The number of models generated for each step were reduced as follow:
1000 for rigid-body energy minimization, 200 for semi-flexible simulated annealing and 200 for
refinement in explicit solvent.

All the RMSD values reported in this work were measured on the Ca atoms.

Solid- and solution-state NMR data

The L-asparaginase Il protein [U- 13C, °N] was expressed and purified as previously reported
(Cerofolini et al., 2019; Giuntini et al., 2017b, 2017a; Ravera et al., 2016), freeze-dried and packed
(ca. 20 mg) into a Bruker 3.2 mm zirconia rotor. The material was rehydrated with a solution of 9
mg/mL NaCl in MilliQ H,0; the hydration process was monitored through 1D {*H}-'3C cross-
polarization SSNMR spectrum and stopped when the resolution of the spectrum did not change any
further for successive additions of the solution (Giuntini et al., 2017b, 2017a; Ravera et al., 2016).
Silicon plug, (courtesy of Bruker Biospin) placed below the turbine cap, was used to close the rotor
and preserve hydration.

SSNMR experiments were recorded on a Bruker Avancelll spectrometer operating at 800
MHz (19 T, 201.2 MHz *3C Larmor frequency) equipped with Bruker 3.2 mm Efree NCH probe-head.
All spectra were recorded at 14 kHz MAS frequency and the sample temperature was kept at = 290
K.

Standard '3C-'3C correlation spectra (Dipolar Assisted Rotational Resonance, DARR) with
different mixing times (50, 200 and 400 ms) were acquired using the pulse sequences reported in
the literature(Takegoshi et al., 2001). Pulses were 2.6 ps for H, 4 ps for 13C; the spectral width was
set to 282 ppm; 2048 and 1024 points were acquired in the direct and indirect dimensions,
respectively; 128 scans were acquired; the inter-scan delay was set to 1.5 s in all the experiments.
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All the spectra were processed with the Bruker TopSpin 3.2 software package and analyzed
with the program CARA (Keller, 2007).

The assignment of the carbon resonances of the 2D 3C-*3C DARR spectra of rehydrated
freeze-dried ANSII was easily obtained by comparison with the 2D *3C-13C DARR spectrum collected
on the crystalline and PEGylated preparations of L-asparaginase Il (Cerofolini et al., 2019; Ravera et
al., 2016).

The experimental data used for the Sod1 protein were taken from deposited solution-state
3D 'H-1N NOESY-HSQC spectrum (Bertini et al., 2009).

Ambiguous assighment lists of the 2D *3C-'3C DARR and 3D *H->N NOESY-HSQC peaks were
generated with the program ATNOS/CANDID (Andreas et al., 2016; Guerry and Herrmann, 2012) by
setting the chemical-shift—based assignment tolerances to 0.25 ppm and 0.025 ppm, respectively.
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The python script to perform the protocol can be downloaded at the following LINK.
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Figure S4. Superimposition on the chain A (in green) of the best L-asparaginase Il models. A) Model 13 AC dimer is in blue and
model 6 AD dimer in yellow. B) Mode13 AC dimer is in blue and model 15 AD dimer in yellow.

Figure S5. Residues used as AIRS in the docking run of Sod1.
Residues forming contacts across the interface are colored as
the backbone.

Figure S6. Fitting of the best model of the clusters 1 and 2 on the Sod1 crystal structure . A) cluster 2 in red. B) cluster 1 in green
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24 Conclusions

In conclusion, my Ph.D. project contributed in an important aspect of
metalloproteins: development of methods to the prediction/determination of
(metallo)proteins structure. All of these studies were performed with the contribution
of computational methods. In particular, experimental NMR-based data were
integrated in theoretical calculations to develop new protocols for the prediction of
proteins structure or complex and the refinement of NMR bundles.

In this chapter, we started implementing a rMD protocol that allows NMR
structural biologists to simultaneously use PCS restraints derived from the substitution
of multiple lanthanide ions in the same site of diamagnetic metals to perform the
energetic refinement of structures. This refinement yielded an improvement of
structural quality parameters comparable to that of the standard AMPS-NMR protocol
for diamagnetic proteins. Importantly, this new protocol allowed structures generated
without inclusion of PCS data among the restraints to be successfully refined including
the PCS restraints only at the MD stage. This resulted in a satisfactory agreement with
all experimental restraints and high stereochemical quality. The refined bundles were
of the typical quality for NMR structures deposited in the PDB. This tool exploits the
AMBER package for molecular dynamics simulations and is incorporated in the
AMPS-NMR portal for NMR structure refinement provided by the WeNMR electronic
infrastructure. It complements the available portfolio of software tools for the use of
paramagnetic restraints in protein structure determination.

In the CASP13 project, the assessment of the models generated by competitors
revealed general higher values of local RMSD on missing data regions. Thus, the
presence of data covering most of the target regions positively affected the structural
quality of the generated models. Modeling methods that used NMR data generally
improved accuracy of prediction over modeling methods used by the same groups
without NMR data. However, for most of the targets the best model generated with
and without experimental data were similar in term of overall structural quality, i.e.
equally distant from the crystal structure. Therefore, the constant raising of
computational power and accuracy of prediction methods are close to cover the gap
with data-driven approaches, at least for small proteins structure determination.

Solid State NMR can provide ambiguous contacts for large protein assemblies.

However, the determination of their 3D structure involves two very time-consuming
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steps: the assignment of the side chains in contact at the interface between the subunits
and, for homo-oligomeric complexes, the discrimination of intra- vs inter-monomeric
contacts. In particular, the correct identification of inter-monomeric contacts usually
requires extensive efforts by an experienced user. From the bioinformatics point of
view, focusing on homo- rather than hetero-oligomers makes the interpretation of
coevolution signals harder. In fact, the difficult step in the coevolution analysis of
hetero-oligomers is the proper pairing of orthologs of interacting proteins and the
corresponding removal of paralogs, that lead to the creation of joint MSA in which
each line contains a pair of interacting proteins. Instead, the coevolution analysis of
homo-oligomers is based on a single protein MSA, which is relatively effortless to
build. At the moment, the availability of the three-dimensional structure of the
monomeric unit is necessary to successfully separate intra-monomeric and inter-
monomeric ECs. In this work, we developed a protocol to automatically identify
residues belonging to the homo-oligomeric interface by matching predicted inter-
monomeric ECs with NMR ambiguous contacts list automatically generated from

appropriate solution or solid-state NMR spectra.

94



Chapter 3

ROLE OF METAL IONS IN METALLOPROTEIN
DYNAMICS

31 Introduction

3.1.1 Metalloproteins Folding

The constant growing in computational power has paved the way to the
investigation of long timescale biological processes using in silico methods. In
particular, modern cost-effective GPGPUs allow exploration of atomic motions
through molecular dynamics (MD) methods. MD simulations are particularly useful
in the investigation of processes that are difficult to capture with experimental
methods, such as protein folding, protein transient conformations, metal ions mobility
and others®’. Among them, folding mechanism occurs when an unfolded protein chain
starts to evolve into its stable and functional three-dimensional structure. This can
happen in different timescales, from microseconds to seconds and higher, depending
on protein features. Despite advances in computational power, in force fields accuracy
and MD methods, the exhaustive sampling of protein folding mechanism by MD
simulations remains a challenging task®. In this regard, the simulation length to
observe at least a single folding event or to achieve enough folding/unfolding
transitions to define the folding pathway and accurately measure Kkinetic and
thermodynamic quantities is still demanding®. In addition, studying the unfolded
states is one of the frontiers for all-atom simulations®. Alternatively, information on
folded and unfolded states can be extracted generating equilibrium trajectory
ensembles from independent simulations®*. Interestingly, the finding of fast-folding
proteins has made possible the direct comparison of experimental and computational
folding timescales on these systems®®. As a result, the integration of experimental and
computational studies contributed significantly to our knowledge of the pathway(s),

thermodynamics and kinetics of folding®®.
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Although metalloproteins are involved in many crucial physiological
processes, metal-induced folding has been poorly investigated from theoretical point
of view. The main reason is the complexity of the metal treatment in model metal-
protein interactions®’. Some of the crucial features of metal binding interactions that
are much difficult to reproduce in classical MD simulations are metal induced
protonation/deprotonation, multiscale coupling, charge transfer and induced
polarization. Some force fields able to accurately model part of the mentioned metal-
induced interactions have been developed??. However, their applicability on long
timescale processes is difficult because of the extensive computational cost.

One of the key question in metalloprotein folding is how the presence of metal
affects protein folding in terms of structural and dynamics properties®. In this regard,
MD simulations of small metalloproteins is a cost-effective way that can be exploited
to partially answer this question. However, in most of the cases classical MD
simulations are not suitable to study the folding process of proteins due to the long
simulation time required that usually must be even larger than the experimental
timescale. In fact, a well-known problem in applying classical MD for folding
simulations relies on high-energy barriers of proteins that separate minima of the
potential energy surface (PES). Consequently, the protein is often trapped in local
minima for long time, preventing exploration of the PES and reducing the possibility
to sample the native folded state starting from the unfolded protein. This problem can
be overcome by applying enhanced sampling methods that greatly boost
conformational sampling. Among them, the accelerated MD (aMD) method exploits a
bias potential to reduce the height of local barriers and proved to be effective in

enhancing the PES exploration®®.

3.1.2 Ferritin

Ferritin is a superfamily of protein-caged Fe.O3*H>O biominerals that plays a
key role in the storage and transport of iron ions®°. Ferritin function is performed in
two main steps, 1. Fe?* ions entry and oxidation, with the following nucleation and
mineral growth that has a protective effect from metal toxicity and 2. mineral
reduction/dissolution with Fe?* ions release from the protein cage into iron-containing
systems. Ferritin stores and transports iron in both intra- and extra-cellular
environment where it can bind different cell types and receptors. The T cell

immunoglobulin and mucin domain-2 (TIM-2) receptor binds human ferritin, allowing
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for its entry into endosomes where the pH is in the 6.0-4.8 range®.. Ferritin uptake into
endosomes is also triggered by the binding to Transferrin Receptor 1 (TfR1) on the
cell surface followed by cellular internalization via endocytosis®.

Most members of the ferritin superfamily consist of 24 subunits arranged to form
a hollow structure able to store up to 4300 iron ions (Figure 6). The highly symmetric
24-mer structure spontaneously self-assembles from the four-helix bundle subunits
resulting in a protein with an octahedral symmetry and an overall molecular weight of
about 480 kDa. In mammalian, ferritin is mainly composed of H (FtH, heavy 21 ~
kDa) and L subunits L (FtL, light, ~ 19kDa), that have a distinct function, plus the
mitochondrial one (FtMt, about 21 kDa) exclusively found in mitochondrial ferritin.
Despite the high level of sequence similarity, only FtH harbours the oxidoreductase
site responsible of ferroxidase activity, converting Fe* to Fe?*, a step crucial for iron
biomineralization. Instead, the FtL chain contains the nucleation site that can bind Fe®*
helping the mineralization process®®. The formation of the mineral protects cell from
normal or pathological oxidative damage that may arise from reactions of iron with
oxygen. Differently from the homopolymeric mitochondrial ferritin, the ratio of FtH
and FtL subunits in cytosolic ferritin is tissue-specific and can also vary under
pathological conditions®*. Since the two subunits are not interchangeable, the correct
balancing of the subunit ratio is critical. Ferritin mutations, disfunction and

misregulation have been associated with several diseases®.

Figure 6. 24-mer ferritin with iron ions in the protein cage.

The 24-mer ferritin structure has two different channels that connect bulk
solution to the protein cavity. The two channels have also different chemical properties
related to their aminoacidic composition. The hydrophobic C4 channels assemble
around the 4-fold symmetry axis and have a role in in the diffusion of dioxygen and

hydrogen peroxide®. Instead, the hydrophilic and negatively charged C3 channels

Chapter 3 — Introduction 97



assemble around the three-fold symmetry axes of the ferritin and are responsible of
iron ions mobility in and out from the protein cavity during entry process for mineral
formation and during exit after mineral dissolution, respectively®’. During the entry
process, iron ions transit under the form of hexahydrate ions that is attracted by the
electrostatic gradient in turn generated by carboxylate groups at the inner end of the
C3 channels. Instead, the pH dependence of the iron removal on human H-ferritin has
been measured in vitro adding a reducing agent in the presence of chelators, a step
required to reduce the oxidized Fe®" to the soluble Fe?*, showing that lowering the pH
from basic to acidic values increases the amount of iron ions discharged®. In vivo the
process is associated to cage disassembly due to lysosome degradation but also the
proteasomal pathway might be involved®®°. Interestingly, experimental results have
shown the crucial role of the acidic environment for iron extraction in both

physiological and pathological conditions'®.

3.1.3 YiiP

Zinc has cytotoxic effects for intracellular concentration higher than few
hundred picomolar. Thus, zinc uptake and efflux from cytosol is tightly controlled by
specific systems. In mammalians, zinc removal from the cytoplasm into the
extracellular space or into the intracellular organelles is mediated by the ZnTs/SIc30
family belonging to the cation diffusion facilitator (CDF) superfamily®l. At present,
all the CDF members known are featured by an antiport mechanism to export divalent
cations. These proteins contain an N-terminal domain, a transmembrane domain
formed by six helices (TMD) and a long C-terminal domain (CTD). However, an
experimental 3D structure for any of the ZnT family proteins is missing so far. This
absence is partially compensated by the well-characterized bacterial homolog protein
from Escherichia coli, the YiiP transporter. YiiP is a cation-proton antiporter that
couples a cation ion efflux with a proton influx in a 1:1 exchange stoichiometry. YiiP
can transport a broad range of metal cations, but only zinc and cadmium with high
efficiency!®2. Its architecture in the crystallographic outward-facing (OF)
conformation (PDB 3H90) shows a homodimer with a Y-shaped structure composed
by six transmembrane (TM) helices for each monomer!®® (Figure 7A). The six TM
helices can be grouped in two separated subdomains, a four-helix bundle (TM1-TM2-
TMA4-TM5) and a helix pair (TM3-TM®6). The TM3-TM6 helix pair protrudes in the

cytosolic region in an antiparallel configuration providing a dimeric interface
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stabilized by four interlocking salt bridges formed between K77 of TM3 and D207 of
IL3 close to TM6. Each protein chain has three conserved zinc-binding sites (A-C).
The transport site (A) is located in the middle of TMD and is the active site for zinc
transport. The tetrahedral coordination geometry adopted in the zinc transport site is
made of four highly conserved residues, D45 and D49 from TM2 and H153 and D157
from TM5. These residues are responsible for zinc and cadmium selectivity of the
transporter. The binding site B is located in the cytoplasmic loop connecting TM2 and
TM3 and is formed by D68, H71 and H75. However, its function is still unknown.
Finally, the binding site C is located at the CTD-CTD interface. It harbors two zinc

ions for each monomer with very high affinity and has a stabilizing effect on the dimer.

Outward-Facing State Inward-Facing State

Figure 7. YiiP protein in the outward-facing and inward-facing states'®.

Successively, the cryoelectron microscopy structure of the YiiP homolog from
Shewanella oneidensis was solved in the inward-facing (IF) conformation and lipid
environment at low resolution (PDB 3J12)%* (Figure 7B). Recently, the resolution of
the IF conformation structure was improved again with Cryo-EM®, It has been
suggested that this conformation allows the zinc permeation in the TM cavity from the
cytoplasmic side and the following zinc binding to the transport site. In particular, the
zinc binding on site C could trigger an allosteric mechanism through which the TMD
rearranges to allow the zinc binding on site A. This mechanism connecting CTD to
TMD could be mediated by the aforementioned charge interlock and a reorientation of
the TM3-TM6 helix pair. The zinc binding to the transport site is followed by the ion
release. However, how this process happens is not totally clear. A proposed
mechanism relies on the switch from the IF to the OF conformation as a necessary step

to discharge the metal ion in the extracellular space or other cellular compartments. A
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variation of this mechanism has been proposed in which to discharge zinc ions the OF
conformation is not strictly necessary but the critical step is a rearrangement of the
four-helix bundle against a static TM3-TM6 helix pair'®. In practice, a persistent
dimeric interface acts as a static “rock” versus a mobile “bundle” that modulate the
ions permeation and release, in a so-called rocking-bundle mechanism common also
in other secondary active transporters'®. In this regard, the modulation of the zinc
accessibility in the TM cavity harboring the zinc transport site was measured through
x-ray-mediated hydroxyl radical labelling and mass spectrometry'®’. The
measurements revealed the key role played by TM5 of the four-helix bundle in the
modulation of the water accessibility from the cytosol to the TMD through a rigid-
body motion that puts in contact the L152 and M197 sidechains eventually forming a
hydrophobic gate that prevents the access to the transport site.

3.14 ZnT8

Levels of zinc in different cellular compartments are controlled by
metallothioneins and two zinc transporter families, ZIP and ZnTs, which members are
expressed in many tissues. Among them, the mammalian subgroup of four transporters
ZnT2, 3, 4 and 8 are responsible of the zinc ions removal from the cytosol, thus raising
zinc concentration in vesicles'’. In particular, ZnT8 is highly expressed in the
membrane of insulin secretory granules of pancreatic beta cells!®®, ZnT8 supplies zinc
in the secretory granules facilitating insulin storage and maturation. Inside granules
zinc is crystallized with insulin to form hexameric crystals. ZnT8 is expressed also in
some other tissues, for instance in pancreatic a-cells where is supposed to play a role
in glucagon secretion®. Interestingly, a single nucleotide polymorphism (SNP) in the
ZnT8 gene SLC20A8 encodes two major variants, an arginine or a tryptophan at
position 325, located in the CTD, that are associated with high and low risk to develop
type-2 diabetes (T2D), respectively'?. Despite both variants are widespread in
population, the higher risk R325 variant is more frequent in humans (>50%).
Remarkably, the same variant is also associate with a strong zinc transport activity
compared to the loss-of-function W325 variant that is associated with a protective
effect!!, Unfortunately, there is no 3D structure for any of the eukaryotic ZnT
transporters. Moreover, homology models based on the bacterial functional
homologue YiiP protein revealed a mutation localized in a position not directly

involved in the zinc binding on the CTD and very distant to the transport site, thus
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making the postulation of how the two ZnT8 variants work an arduous task. Recently,
biophysical characterization of the ZnT8 CTD suggested a higher zinc affinity and
lower thermostability of the W325 variant!*2, Furthermore, both eukaryotic CTD
variants exhibited a different zinc-binding stoichiometry from bacterial homologue,
highlighting the limitation of the latter as template for model generation of the human
proteins.
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32 Research Projects

Metal-coupled folding is a biological process particularly hard to investigate
with MD, not only for the long timescale of the process but also for the limited
accuracy of classical force fields in the description of metal-binding effects. However,
one of the smallest metalloprotein suitable for a folding study is rubredoxin from
Pyrococcus furiosus (PfRd). PfRd is a globular protein of 53 amino acids that binds a
single iron ion with a tetrahedral coordination. After denaturation, PfRd can refold
both in presence and absence of the metal cofactor. The holo-PfRd folding properties
were investigated performing a classical MD (F-cMD) simulation and an accelerated
(F-aMD) simulation by which an extensive conformational sampling can be reached.
A third simulation in the folded apo-form (APO) in addition to experimental data were
used to assess the calculated conformational ensembles in term of structural similarity
with the native folded state. The crystal structure of the holo-PfRd (PDB 1BRF) was
used as starting point for all the MD runs. The RESP charges of the metal-binding site
compatible with the Amber14SB force field used in the calculations were taken from
the literature. The unfolded conformation needed for the starting point of the refolding
simulations was derived from a brief MD at 600K.

As expected, the APO simulation confirmed the stability of the PfRd protein
even without the bound metal. In fact, the RMSD from the crystal structure was stably
low for the whole simulation. However, the secondary structures showed little
rearrangements, especially around the metal-binding site. The gained degrees of
freedom due to the iron ion removal was in fact compensated by the formation of up
to three non-native B-sheets. The secondary structures detected in the F-aMD
conformational ensemble generally mapped with good accuracy the ones present on
the crystal structure. The main discrepancies from the folded state were observed in
the overestimated occurrence of helical structure elements and in the formation of
some non-native PB-structures as seen for the APO run. Moreover, the F-aMD
simulation was not able to recover the long-range contacts needed to make the triple
B-sheet, main responsible of the protein globularity. The NMR chemical shifts of the
backbone nuclei of holo-PfRd provided and experimental reference for the comparison
of the protein dynamics sampled in our simulations. As expected, the APO simulation
showed good agreement with the experimental data, confirming the lack of significant

rearrangements. Instead, the other two folding simulations featured modest
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correlations for the C and N atoms, probably due to a heterogeneous conformational
ensemble. However, the extensive sampling of the F-aMD trajectory was able to
produce a significant number of conformations with a compact shape relatively similar
to the native structure. This statement was supported by the temporal correlation of the
lowest RMSD from the crystal with the lowest solvation (SASA analysis) and the
highest number of hydrophobic contacts detected among the core residues. In
particular, the values sampled were close to the ones observed in the folded APO
simulation, with the exception of the RMSD from the crystal structure that never
lowered below 6-7 A. Thus, the sampling achieved in the F-aMD simulation showed

at least some transition/intermediate conformations toward the folded state.

To shed light on the molecular mechanism of Fe?* ions release from human H-
ferritin nanocage, extensive MD simulations were performed in both acidic and basic
conditions. The 24-mer human ferritin model (4134 residues) was built based on the
crystal structure of the bullfrog M ferritin (PDB 4DAS). Using H++ server the
protonation state of titratable groups was calculated at pH 4 and pH 9. Subsequently,
31 Fe?* jons were added inside the protein’s cavity. The two systems were prepared
independently using the customized forcefield AMBER99SB-ILDN* on the
AMBER16 MD Package. This forcefield merges the ILDN correction of AMBER99-
ILDN ff with the CMAP dihedral parameters improvement of CHARMM22* ff. The
same NPT condition was applied in both the systems for a simulation time length of
105 ns each.

MD simulations provided a detailed atomic-level view of the mechanism of Fe?*
release at pH 4, which occurred through the C3 channels. Within each individual
channel, two nearby rings formed by symmetry-related Asp and Glu sidechains define
the binding site to which iron ions were rapidly attracted from the internal cavity by
the electrostatic gradient. The negatively charged cluster of carboxylates in C3
channels was surrounded by a number of histidine residues with a different protonation
state depending on the pH of the simulation. In this regard, the Fe?* ions diffused in
the bulk solution only at pH 4, whereas at pH 9 they were immobilized inside the C3
channels by the negative charges. Therefore, a key role in the release process was
played by the positive charges of histidine side chains that partially compensated the
negative electrostatic charge of the carboxylates. The free energy of the processes

sampled by the two unbiased simulations were then measured with the umbrella
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sampling (US) method. In accord to what seen in the unrestrained simulations, at pH
4 the free-energy profile showed a significantly lower energy barrier than at pH 9.
Furthermore, the positions of the energetic minima corresponding to the Fe?* binding
site within the channel at pH 4 was significantly closer to the end of the channel,
denoting a higher permeability of the channel in acidic than in basic conditions. This
hypothesis was tested building a chimeric ferritin in which the His residues inside the
C3 channels were doubly protonated as at pH4. As a result of the US run, the mutations
caused a reduction of the energetic barrier of Fe?* release but did not change the
position of the energetic minimum along the C3 channel. Therefore, the protonation
state of the His residues inside the channel is a necessary but not sufficient factor for
Fe?* release. In fact, it is only at pH 4, where all the His of ferritin are doubly
protonated, that the dynamic opening of the binding site could take place, resulting in
a significant shift of the Fe?* coordination site towards the exit of the channel with
respect to pH 9.

In a following unpublished work we investigated arachidonic acid’s (ARA)
contribution to the coordination of iron ions in the mineral nucleation site, situated in
the L-chain of horse spleen ferritin (HoSF, PDB 4DEG6). The influence of the
negatively charged ARA on the mobility of iron ions inside the cage of HoSF was
analyzed building the protein model both with and without bound ARA. For each
model, four replicas were performed in which the number of ions in the protein cage
was increased as follow: 12, 22, 31 and 62. The iron ions were treated in their Fe**
form for concordance to the data acquired by in vivo experiments.

The first relevant result regards the stability of the protein in presence of 62 Fe?*
ions in the cage, measured as RMSD from the crystal structure. With this significant
number of Fe?* ions, ferritin reached stability, i.e. RMSD plateau, only with the bound
ARA. On the contrary, the protein without ARA never achieved convergence. Thus,
ARA positively contributed to the protein stability in presence of high amount of Fe?*
ions. We then used the radial function to evaluate how many Fe?* ions were present in
every mineral nucleation site for each simulation. The origin of the function was the
centre of the four oxygens of the two glutamate side chains in the nucleation sites. The
presence of ARA led to a preference for the peaks closer to the origin in the simulations

with 12, 22 and 31 Fe?* ions, but not in the simulation with 62 Fe?* ions (Figure 8).
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Figure 8. Radial function of iron ions in the nucleation sites.

This might be due to an overpopulation of Fe?* ions in the nucleation site that
enabled the possibility of both glutamates to interact with the same metal ion. In this
regard, the steric effect and the repulsion of the negatively charged ARA prevented the
formation of a “bridge” coordination, instead present in the simulations without ARA,
in which two glutamates (Glu56 and Glu60) of two adjacent nucleation sites interacted
with the same metal ion (Figure 9). Eventually, ARA reduced the number of possible
conformations that the glutamates of mineral nucleation sites can otherwise take to

interact with irons.
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Figure 9. "Bridge" coordination in the nucleation site of MD simulations without ARA.
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The zinc-induced YiiP dynamics was investigated performing MD simulations
of the IF conformation in presence of Zn?* ions in solution. First, the model of the YiiP
inward-facing state was built combining the CTD of the crystal structure (PDB 3H90;
2.9 A) with the TMD of the Cryo-EM structure (PDB 3J1Z; 13 A). Then, the
transporter was embedded in a DPPC bilayer. Two NVT MD simulations in 0.150 M
of ZnCl, and one in the apo-form were performed for a length of 1 ps each. Finally,
two umbrella sampling simulations were performed to measure the free-energy

profiles of Zn?* and Na* ions going through the TM channel.
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The holo-simulations carried out on the YiiP transporter elucidated the Zn?*
interaction pathway from the cytosol to the transport site. The Zn?* permeation was
preceded by a quite fast disjunction of the four-helix bundle (in particular TM5 and
TM4) from the TM3-TM6 helix pair that opened the TM cavity from the IC space
allowing one Zn?* ion to reach D49 and H153 of the transport site. Subsequently, a
reorientation of TM5 putted in direct contact the side chains of L152 and M197,
forming a hydrophobic gate that dropped the water presence in the TM cavity, thus
making the channel inaccessible from the cytosol. Moreover, the CTD motion could
affect the TMD region tilting and rotating. In fact, the two protein channels had always
an alternating accessible/inaccessible state and the CTD was always tilted toward the
inaccessible channel. Finally, the free-energy profiles calculated performing two
umbrella simulations indicated that both the Zn?* and Na* ions can reach the transport
site without encountering high energetic barriers. Conversely, from the transport site

to the EC space only Na* ion had a low-energy profile.

Despite the relevance of this transporter, the structure of ZnT8 is still unknow as
well as that of eukaryotic homologs. Taking advantage of coevolution analysis and the
template structure of a prokaryotic functional homolog YiiP, a model of the dimeric
ZnT8 transporter was built. The interatomic distances of the monomeric subunit were
calculated using the Gremlin webserver. The multiple sequence alignment was
generated with Jackhmmer. The resulting structure was then superimposed to the
dimeric YiiP IF structure (PDB 5VRF). The following structure was embedded in a
2:1:1 DOPC:DOPE:DOPG bilayer already proven as the lipid composition able to
maximize the zinc transport in vitro!*3, Then, by performing all-atom and coarse-
grained MD simulations putative conformational dynamics discrepancies between the
active and the loss-of-function ZnT8 variants are under investigation. To date, an all-
atom simulation of 2 us in presence of zinc ions has been performed for each variant
(R325 and W325). The recent ff14SB and lipid17 force fields were used for protein
and lipidic membrane, respectively. The preliminary analyses performed on the two
ZnT8 all-atom simulations pointed out different dynamics of the two transporter
variants. In particular, the protective variant W325 showed a cytosolic domain (CTD)
tilted toward one of the two channels, blocking its ion permeability (Figure 10). On
the contrary, the active R325 variant showed a CTD rotating along its y-axis that

allows zinc ions entrance in both the channels by an alternating mechanism.
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Figure 10. Snapshots of the ZnT8 conformation in the simulations of the R325 (active) and R325W
(loss-of-function) variants.
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Abstract: The constant increase of computational power has made feasible to investigate the folding
mechanism of small proteins using molecular dynamics (MD). Metal-binding proteins
(metalloproteins) are usually complicated to model, largely due to the presence of the metal cofactor.
Thus, the study of metal-coupled folding is still challenging. In this work, we addressed the folding
process of Pyrococcus furiosus rubredoxin (PfRd), a 53-residue protein binding a single iron ion,
using different MD methods. Starting from an extended conformation of the polypeptide chain where
we preserved the coordination of the metal ion, a classical MD simulation and an extensive
accelerated MD run were performed to reconstruct the folding process of the metal-bound protein.
For comparison, we simulated also the dynamics of folded PfRd devoid of the metal cofactor
(apo-form), starting from the folded structure. For these MD trajectories, we computed various
structural and biochemical properties. In addition, we took advantage of available experimental data
to quantify the degree to which our simulations sampled conformations close to the native folded
state. We observed that the compaction of the hydrophobic core is the main feature driving the
folding of the structure. However, we could not reach a fully folded conformation within our
trajectories, because of the incomplete removal of the solvent from the core. Altogether, the various
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MD simulations, including that of the folded apo-form of the protein, suggest that an improvement in
the accuracy of the protein force-field is still needed.

Keywords: folding; rubredoxin; molecular dynamics; metal; iron; metalloproteins; simulation;
forcefield; modelling

Abbreviations: MD: Molecular Dynamics; aMD: accelerated MD; cMD: classical MD; IRED:
Isotropic Reorientational Eigenmode Dynamics; PDB: Protein Data Bank; PfRd: Pyrococcus
furiosus rubredoxin; RMSD: Root Mean Square Deviation; RMSF: Root Mean Square Fluctuation;
SASA: Solvent Accessible Surface Area

1. Introduction

Constant advances in computational power and methods have opened the possibility to study
many biological processes using in silico methods. In particular, the massive computing efficiency of
modern GPGPUs can be exploited in molecular dynamics (MD) simulations to explore at the
atomistic level timescales of motion that are relevant to functional properties [1,2]. One of the
processes that in principle can be studied in a cost-effective way using MD is the folding
mechanism [3]. Protein folding occurs when an unstructured polypeptide chain reaches its stable and
functional three-dimensional structure. For different proteins, this can happen in a broad range of
timescales from microseconds to seconds and higher. Thus, to obtain sufficient sampling to
meaningfully comment on folding mechanisms by MD simulations remains a challenging task,
notwithstanding the recent advances in computing power, MD methods and accuracy of
force-fields [4]. In fact, the simulation length must be at least on the microsecond timescale to stand
a good chance of observing a single folding event [5,6]. Achieving enough folding/unfolding
transitions to define the folding pathway and accurately measure kinetic and thermodynamic
quantities is even more demanding [7]. Alternatively, MD simulations for the folded and unfolded
states can be carried out independently [8]. Despite the common difficulties mentioned above, the
discovery of fast-folding proteins has provided systems for which the achievable MD timescales
match the experimental folding times [9,10]. As a result, the combination of experimental and
theoretical studies contributed significantly to our knowledge of the thermodynamics and kinetics of
folding [11].

Despite the importance of metalloproteins in many important biological functions [12], little
attention has been devoted to the theoretical investigation of metal-induced folding. This is mainly
due to the difficulties to correctly model metal-protein interactions [13]. One of the unsolved
questions regards how the presence of the metal affects the protein folding in terms of structural and
dynamics properties [14]. In this work, we analyzed the folding mechanism of a highly stable
metalloprotein: rubredoxin from Pyrococcus furiosus (PfRd). PfRd is a globular protein of 53 amino
acids that binds a single iron ion in the +2 or +3 oxidation state [15]. The iron atom is coordinated to
the protein through cysteinyl sulfurs of two consensus cysteine motifs, CXXC and CPXC. Various
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studies have addressed the structural basis of PfRd hyperthermostability as well as its ability to
refold both in presence and absence of iron [16—19]. The secondary and tertiary structure of PfRd
devoid of its iron cofactor (apo-PfRd) are very similar to iron-loaded PfRd (holo-PfRd) [20].
However, experimental studies of Holo- and apo-PfRd showed significant different in their unfolding
and refolding processes. Apo-PfRd reaches about 50% unfolding at about 343 K, with the folded
50% of the molecules still displaying structural features consistent with the native structure of the
holo-protein. The unfolding process is reversible [20]. On the other hand, the unfolding of holo-PfRd
is essentially irreversible [21]. This has been ascribed to presence of the iron binding site; a designed
variant of the protein that retains the tertiary structure and thermostability of wild-type PfRd but
cannot bind iron features reversible folding [22]. Addition of iron to apo-PfRd in the presence of
denaturing agents such as either 6 M urea or 6 M guanidine hydrochloride triggers protein refolding
eventually yielding correctly folded holo-PfRd [19]. However, this does not happen if the denaturing
agents are removed prior to addition of the metal. More recently, it has been suggested that these
subtleties in the refolding process of apo- and holo-PfRd depend on the extent of structure loss upon
removal of the iron ion from the holo-protein, which in turn depends on the amount of denaturant
added. This is crucial to get the correct packing of the hydrophobic core residues during protein
refolding [16].

In this work, we aimed at evaluating the folding properties of holo-PfRd. We applied two
different MD methods: a classical MD (cMD) simulation in explicit solvent and an accelerated MD
(aMD) simulation where a biased potential enhances the conformational sampling [23,24]. A well-
known problem in applying cMD for folding simulations is that proteins usually have high barriers
that separate the minima of the potential energy surface. Consequently, the system is often trapped in
a local minimum for long periods of simulation time, preventing extensive exploration of the
potential energy surface. Eventually, this may prevent reaching the native folded state of the protein
starting far away from the global minimum. Even achieving a timescale comparable with the
experimental data is not guarantee of success. To overcome these limitations, in this work we applied
the aMD method, by which the height of local barriers is reduced, thus allowing the calculation to
evolve much faster [25].

2. Materials and methods

This work is based on MD simulations performed using the Amber package of molecular
simulation programs [26]. All the MD runs were prepared from the crystal structure of holo-PfRd
(PBD 1BRF). The apo-form of the protein was obtained by removing the iron ion from the metal
binding site. The holo-form has an iron ion covalently bound to 4 cysteine side chains. Thus, the
RESP charges compatible with the AMBER force field for the metal center were used [27]. The
systems were solvated with TIP3P water model molecules and the overall charge balanced. The
forcefield used was Amber14SB. The starting structure of the folding simulations is derived from a
brief MD at 600 K. More precisely, the most elongated structure was chosen as representative of the
unfolded state. The MD runs were prepared following the same basic protocol consisting in 4 steps:
water minimization, system heating to 300 K in NVT and density equilibration in NPT conditions.
All the production runs were performed on a Nvidia Tesla K20m GPGPU applying a PME cutoff of
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10 A. This computational infrastructure is available to users via the AMPS-NMR portal within the
West-Life (www.west-life.eu) project [28,29].

The first production run was performed on the folded state of the apo-form for 1 us (APO).
Then, a classical MD run was carried out for 1 ps to fold the protein (F-cMD). In addition, to
increase the probability of sampling a folding event the accelerated molecular dynamics method was
applied (F-aMD). Accelerated molecular dynamics was carried out starting from the same unfolded
structure used for the cMD run. Differently form ¢cMD, during the aMD run the whole potential is
boosted as follows:

(Ep—(4Vp))*

g = ap+(Ep—(V+AVD)) M
where the torsion potential AV, is given by
_ _(Ep-v)?
Ao = ot @om @

The terms Ep and Ep define the average potential and dihedral energies. The terms ap and ap are
the inverse strength boost factors for the total and dihedral potential energy, respectively. Prior to the
production run a classical MD was carried out for 50 ns to define reasonable constants. As a result,
the following values were applied: Ep = —47.64 kcal/mol, Ep = 814 kcal/mol, ap = 2.542 and op = 42.
The production run was performed for 11.6 ps.

The Root Mean Square Fluctuation (RMSF) is an index to measure the structural flexibility. It is

defined by
RMSF = ’ §=1llr(tti“)—(r)ll2 3)

where 7 is the number of frames, r(t) is the atomic position at time ¢ and (r) is the average structure.
Basically, this parameter corresponds to the standard deviation of the atomic positions from the
average structure over a trajectory.

The order parameter (S*) measures the magnitude of the angular fluctuation of a chemical bond
vector such as the NH bond, thus reflecting the flexibility of a protein specific site. We used two
different methods to calculate the order parameter of NH vectors. The isotropic reorientational
eigenmode dynamics (iIRED) method relies on a principal component analysis of the isotropically
averaged covariance matrix [28]. In the second method, the autocorrelation function (ACF) of the
vectors is fitted on a monoexponential curve [29].

The content of secondary structure along the trajectories was measured using the DSSP
program [30,31]. Its dictionary consists of 8 classes: random-coil, 3-turn helix, a helix, 5-turn helix,
turn, beta-sheet, beta-bridge and bend. In this work, the three helical topologies are indicated with
“helix” and the beta-structures as “B-sheet”.

The Root Mean Square Deviation (RMSD) is a conformational distance index. It is defined by

2
S myr(@-r®|

N
Zi=1 mj

RMSD = 4)
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where N are the atoms selected, r; is the position vector and @ and b are two different conformations.
In this study, all RMSD values were referred to the crystal structure.

Chemical shifts were predicted using the PPM chemical shifts prediction web server
(http://spin.ccic.ohio-state.edu) that was parametrized specifically for MD trajectories [32].

The Solvent Accessibility Surface Area (SASA) is a measure of the exposure to the solvent. For
the common water, a probe of 1.4 A is used to scan the molecular surface. In this study, the SASA is
calculated on selected hydrophobic residues belonging to the protein core (residues Trp3, TyrlO,
Tyr12, Phe29, Trp36, Phe48, Ile23 and Leu32).

For the present work, we defined “native contact” any contact shorter than a defined cut-off that
is present in the reference structure. Only the contacts among core hydrophobic residues closer than
7 A were considered.

The Principal Component Analysis was performed on the Ca atoms of the F-aMD and APO
trajectories. The conformations were fitted on the crystal structure and separated on the average
structure. The first two eigenvectors include 44% of the motions.

3. Results

PfRd has a globular shape, with the iron ion covalently bound to 4 cysteine side chains (residues
5, 8,38 and 41) and is known to be quite rigid in its folded holo form, as shown by the low values of
the B factor [33]. Its conserved secondary structure consists of three 3)o-helices (residues 19-21,
29-31 and 45-47) and one antiparallel triple stranded B-sheet (residues 2—5, 11-13 and 48-50). The
hydrophobic core consists of 8 residues (residues Trp3, Tyrl0, Tyr12, Phe29, Trp36, Phe48, 1le23
and Leu32). In this work, we attempted to simulate the folding process of holo-PfRd, starting from
an extended structure. To this end, two different simulation schemes were adopted (Table 1). In
addition, we simulated the dynamics of apo-PfRd; the starting model for the latter was the folded
structure (PDB 1BRF) after removal of the metal ion.

Table 1. Main features of the MD simulations performed.

Type of simulation Simulation length (us)  Starting structure

Classical-Apo (APO) 1 Crystal structure without metal ion
Folding Accelerated (F-aMD) 11.6 Unfolded state with the metal bound
Folding Classical (F-cMD) 1 Unfolded state with the metal bound

The acronyms used in the text to identify each simulation are given in brackets in the first column.
Both folding runs started from the same elongated conformation with the iron ion bound.

3.1. Simulation of folded apo-PfRd (APO)

The Root Mean Square Fluctuation (RMSF) analysis of the backbone atoms provides a measure
of the flexibility of residues with respect to the average structure (Figure 1A). The higher the RMSF
of one residue, the higher its mobility. In addition, protein motions can be summarized by calculating
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the order parameter (Sz) of N-H vectors [34,35]. Other bond vectors can also be used [36,37]. In the
APO trajectory, we estimated the S? values of N-H vectors by two different methods: the IRED
analysis [28] and a more traditional approach where the autocorrelation function (ACF) is fitted to a
monoexponential curve [29] (Figure 1B). Despite the absence of the metal coordination by Cys5 and
Cys8, the first 8 residues of the N-terminus are very rigid whereas Gly9 has higher flexibility than
nearby residues in the RMSF profile. Residues 11 to 13 are quite rigid, and then the RMSF increases
and reaches the maximum value in the region 20-21, whereas the order parameters values are still
close to the overall protein average. From 22 to 29 the RMSF profile decreases progressively, but
then increases again from residue 30 until the peak of the region 34-35. Then, the flexibility drops
rapidly for the subsequent two residues. Differently from the RMSF, the order parameter profiles in
this central region of the protein have more variability suggesting that the local environment affects
the dynamics of the N-H vectors more than larger-scale motions. The absence of the covalently
bound iron ion affects in a similar way both the RMSF and the order parameters in the region limited
by the metal binding Cys38 and Cys41. In fact, all the analyses revealed high mobility in this region.
The RMSF and S profiles agree also in the last protein segment showing a modest flexibility from
residue 42 to 51 followed by enhanced mobility for the last two residues of the C-terminus.
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Figure 1. RMSF and order parameter profiles of the APO trajectory. The residues
corresponding to B-sheets and 3 g-helices in the crystal structure are colored with a green and
blue background, respectively. The metal-binding cysteines are indicated with yellow
arrows. (A) RMSF of the backbone atoms. (B) The NH vector S? profiles computed with the
IRED method (IRED, brown) and by calculating the autocorrelation function (ACF, black).
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The apo-PfRd structure maintained its native (i.e. present in the crystal) secondary structure
elements for most of the simulation (Figure 2). The Root Mean Square Deviation (RMSD) from the
crystal structure of the backbone atoms shows a great stability along the trajectory, with an average
value lower than 2.5 A and only a modest increase in the second half of the simulation (Figure 3).
The three-stranded B-sheet is present in almost the totality of the frames. On the contrary, the three
helices are not as conserved as the triple strand. In particular, the first helix is present in just 23% of
the snapshots against 58% and 67% of the second and third helix, respectively. A more detailed
analysis revealed that most of the helix-missing frames sampled a turn structure featuring hydrogen
bonds typical of helices (Table S1). Hence, just a very small percentage of the conformations were
actually unstructured in these regions. Notably, six residues sampled non-native structures with a
certain persistency. All of them formed B-strands involving the following couple of residues: 18-23,
38-42, and 37-44 present in the 98%, 42% and 91% of the conformers, respectively.

1
@ f-Sheet m—
.
2 osf Helix wm—m
2
]
> 06} ]
e
©
2
(=] 04 | 5
Q
Q
(7]
S o2f 1
—
(1]
=
0 |

2 3 4 5111213484950 192021293031454647
Residue number

Figure 2. Fraction of native secondary structures sampled in the APO simulation. For
each residue in B-sheet (green) or helix (blue) structure in the crystal structure, we report
the fraction of conformations with the same secondary structure.

To evaluate the deviation of the APO conformational ensemble from the behavior of the holo-
form, we used the NMR data of the latter [40—42]. We compared the chemical shifts of the Ca, C and
N atoms computed from the trajectory with the available experimental data [38]. Figure 4 reports the
correlation of the predicted values and the experimental values. The Ca atoms display a very high
correlation, with a value of the Pearson coefficient as high as 0.98. The N and C atoms have Pearson
coefficients of 0.87 and 0.73, respectively. In general, the correlation is good for all the atoms
assessed, confirming that the apo-form samples conformations that are consistent with the holo-form.
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Figure 3. Root Mean Square Deviation from the crystal structure in the APO simulation.
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Figure 4. Correlation between experimental and calculated chemical shifts (CS) in the
APO simulation. The Co. atoms are shown as black squares. The C atoms are shown as
gray circles. The N atoms are shown as red triangles. The dashed line is y = x and is
shown only to guide the eye.

In summary, apo-PfRd features a great structural stability. Nevertheless, the lack of metal
binding affects the dynamics of local structural elements. For instance, the anomalous flexibility of
Gly9 compared with its nearby residues could be the result of the destabilization of the aromatic
sidechains in the protein core (Figure 5). Furthermore, some regions sampled non-native secondary
structures that can result in a discrepancy between the S? and RMSF profiles. This is the case of
residues 19-22 and 29-31 (i.e. in correspondence of the first and second native helix) where the
RMSF plot shows a relatively high flexibility not detected by the §* analysis. The difference is
related to the native helices being replaced by H-bonded turns (Table S1). Furthermore, the big loop
involving residues 32 to 44, which in the crystal structure is stabilized by the metal binding of Cys38
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and Cys41, here is broken in two smaller flexible parts (residues 34-35 and 39—41) by the formation
of non-native B-strands involving residues 37-38 with residues 44—43. Thus, the non-native p-sheet
partially compensates the stabilizing effect of the metal ion.

Figure 5. Snapshot at 1 us showing the 3-D structure of the apo-PfRd. The aromatic side
chains in the protein core are shown in cyan (Trp3, Tyrl0, Tyrl12, Phe29, Trp36 and
Phe48).

3.2. Simulation of the folding process

The folding process of holo-PfRd was simulated using two different computational strategies:
classical MD (F-cMD) and accelerated MD (F-aMD) (Table 1). The purpose of these simulations
was to achieve a structure as close as possible to the folded state starting from an unfolded
conformation, where we enforced metal coordination.

Figure 6 shows the 5? profile for the simulations. As expected, the boost applied in the F-aMD
simulation makes the average S* values for this simulation lower than for F-cMD. Following this
trend, the N-terminus in the F-cMD is more rigid than in the F-aMD run. Nevertheless, the N-H
vectors of the range 48 are quite rigid in both profiles due to the metal-binding Cys5 and Cys8. The
order parameter values of F-cMD in the second half of the protein displays more rigidity than in the
first half, especially in the metal binding region. Instead, for the F-aMD profile the second half of the
protein appears as flexible as the first half, except in the metal binding region that has values similar
to the binding region in the first half of the protein. In summary, while the overall dynamics sampled
by the F-aMD and F-cMD simulations have some broad global similarities (Figure 6), we could
pinpoint differences in the internal motion variations within specific protein regions.
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Figure 6. IRED order parameter profiles of the folding simulations. The residues
corresponding to B-sheets and 3;p-helices in the crystal structure are colored with a green
and blue background, respectively. The metal binding cysteines are indicated with yellow
arrows. The NH vector S* profiles of the F-aMD and F-cMD trajectories are shown as
black and magenta linepoints, respectively.

We analyzed the folding simulations in terms of secondary structures sampled (Figure 7). In the
F-cMD conformational ensemble, the second and third strands of the B-sheet are consistently
missing, whereas the first strand involves only residues 2 and 3 for the 40% and 1% of the frames,
respectively (Figure 7A). The F-aMD trajectory has a higher presence of native B-strands except for
residue 2. Regarding helical structures, the F-cMD conformational ensemble typically maintains only
two residues of the native first 3;p-helix and the last residue of the native third helix (Figure 7B).
More in detail, residues 20-21 and 47 are in helical conformation in 7% and 37% of the frames,
respectively. Also for the helical structures, the F-aMD run shows a better agreement with the
crystal. Indeed, all the three helices are sampled at least in 10% of the frames; the third helix in
particular is present in more than 60% of the frames. We then conducted a more detailed per-residue
analysis of the non-native (i.e. not present in the crystal structure) secondary structures sampled
(Tables S2, S3 and Figure 8). In the F-cMD run, a non-native B-sheet structure is observed for two
couples of residues: residues 2-28 and 23-51 in 41% and 37% of the frames, respectively.
Furthermore, the F-cMD simulation shows an appreciable propensity to form helical structures in
correspondence of the second and third native B-strands. The F-aMD simulation sampled more non-
native structures than F-cMD. Among the non-native B-structures, the most persistent one involves
residues 8 and 43. Notably, the last native B-sheet is replaced by a helix in most of the frames, as also
seen in the F-cMD ensemble. As a result, the final helix spans an extended protein region, going
from residue 45 to 50. In general, the F-aMD simulation sampled helical structures mostly in regions
with defined secondary structures in the crystal or in their adjacent residues (Figure 8).
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Figure 7. Fraction of native secondary structures sampled in the folding simulations. For
each residue being in a secondary structure element in the crystal structure, we report the

fraction of conformations that have the same secondary structure in the F-aMD and

F-cMD simulations (black and magenta histograms, respectively). (A) Native B-sheets.
(B) Native helices.

Figure 8. Secondary structures sampled by the F-cMD (A) and F-aMD (B) simulations
mapped on the crystal structure of holo-PfRd. The residues where helical or strand

structures are sampled in most of the conformations are shown in blue and green,

respectively. Unstructured residues are shown in dark gray. The iron ion is shown as a

red sphere.

Figure 9 displays the correlation of the chemical shifts predicted from the MD trajectories with

experimental NMR data for the F-aMD and F-cMD trajectories. As a reference, a completely

linearized protein was built in silico and used to compute the same correlation, to be used as a
threshold. For the latter system, we observed a high correlation for the Ca atoms, whereas the

correlation is poor for both the C and the N atoms. This is not unexpected given the strong
dependence of the chemical shifts of the Ca atoms on the aminoacid identity. Both the folding
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trajectories display a weal correlation for the chemical shifts of the C atoms, with coefficients around
0.41-0.44. The larger variation was observed for the N atoms, with correlation coefficients for the
F-aMD, F-cMD and linearized protein of 0.73, 0.70 and 0.68, respectively. Overall, the above data
indicate that the F-aMD trajectory has marginally higher correlations with the experimental chemical
shifts than the F-cMD trajectory.

>

Calculated CS

=

Calculated CS

0

Calculated CS

70

65 |
60 |
55 |
50 |
a5 |
al

180
178 |
176 |
174 |

172 |

Ca

- FampR2-=093 =

F-cMDR; =089 *

Linear R® = 0.89

40

45 50 55 60 65 70
Experimental CS

7o "

130 |
125 |
120 |
115 |
110 |
105 |

L] =

o m P

SEme
» o

L

F-cMD

-
-
F-aMD R: =041
R2=0.44
Linear R” = 0.41

170

172 174 176 178 180
Experimental CS

" aF-aMDR2=073 =
" om F_cMDR2=070 ©

;‘ . B
or "l"
a e .

F XY *y
A
- oged m

* N4 WS

Linear R® = 0.68

00 L
100 105 110 115 120 125 130

Experimental CS

Figure 9. Correlation between experimental and calculated chemical shifts (in ppm) of
the F-aMD trajectory, F-cMD trajectory and the linear protein (i.e. a model of the
completely linear PfRd). The F-aMD values are shown as black squares. The F-cMD
values are shown as magenta circles. The linear protein values are shown as grey
triangles. (A) Plot of the Ca atoms chemical shifts. (B) Plot of the C atoms chemical
shifts. (C) Plot of the N atoms chemical shifts.
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The F-aMD simulation has greater flexibility and a better propensity to make native or native-
like secondary structures than F-cMD (Figures 7 and 8). In addition, its predicted chemical shifts are
slightly closer to the experimental data, although all the folding simulations failed to reproduce the
chemical shifts of the C atoms (Figure 9). On the other hand, the APO simulation (starting from the
folded structure) features a significant stability of the tertiary structure of the apo-form of PfRd and a
strong correlation with the experimental NMR data.

3.3. Folding events in the F-aMD simulation

We analyzed the F-aMD trajectory along the simulation time to identify the structural features
of possible folding events (Figure 10). The RMSD from the crystal structure of the backbone atoms
spans a range from 6.5 to 12.5 A (Figure 10A). The closest conformation to the crystal structure is
reached around 2.2 ps; additional RMSD minima are observed after further 1-1.5 ps. Subsequently,
the protein remains almost stable in a plateau at 11 A for 5 ps. In the second half of the simulation a
local minimum at about 7 A from the crystal is reached three times: around 8, 10.1 and 10.7 ps. The
relative partially folded conformations are shown.
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Figure 10. Structural properties along the F-aMD trajectory. (A) backbone RMSD from
the crystal structure. The colored arrows indicated minima; the corresponding
conformations are shown using the same color. (B) Fraction of native contacts occurring
among the side chain residues in the hydrophobic core (residues Trp3, Tyr10, Tyr12,
Phe29, Trp36, Phe48, Ile23 and Leu32). (C) SASA of the hydrophobic core. (D) SASA
of the hydrophobic core along the APO simulation.
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On average, hydrophobic residues tend to be in the core of a protein, where solvent accessibility
is low, whereas polar residues tend to reside on the surface, where solvent accessibility is high. Thus,
to clarify how the packing of the hydrophobic core affects the folding process, we measured the
fraction of native hydrophobic contacts among the core residues (i.e. any contact between two
hydrophobic residues of the protein core closer than 7 A and present in the crystal structure). In the
F-aMD simulation, the highest fraction of native contacts is reached at 2.2 ps and 3.5 ps, i.e.
concurrently with two RMSD minima (Figure 10B). However, even the highest picks on the plot do
not exceed the 60% of all the native contacts in the crystal structure. We additionally monitored the
Solvent Accessibility Surface Area (SASA) of the PfRd hydrophobic residues as a function of
simulation time (Figure 11C). The profile minimum around 400 A” is achieved a few ns before 2 ps
of simulation. Around 3 ps there is a second minimum. Both these minima occur just before the
RMSD minima and native contacts maxima at 2.2 us and 3.5 ps. These correlations suggest that
shielding the hydrophobic core from the solvent is crucial to achieve the folding of the protein. After
the first 3 ps, the protein was not able to lower the SASA around 400 A? anymore, even though at
8 s there is another local minimum below 500 A2 again just some ns before a RMSD minimum. In
all the profiles of Figure 10, the best conformation appears at around 2 ps, when the protein first
removes the water molecules from the hydrophobic core, and then achieves the highest number of
hydrophobic contacts and the most native-like structure (Figure 10, structure in green). This
correlation seems to be related to a unique folding event followed by a second similar attempt
occurring about 1 ps later.

In general, the correlations among the parameters assessed confirm the strong relationship
between the SASA and the number of native hydrophobic contacts profiles (Table 2). In fact, a
negative value of —0.51 means that the protein has the necessity of isolating the protein core from the
solvent to connect the hydrophobic residues correctly. The correlation of —0.27 between the RMSD
from the crystal structure and the fraction of hydrophobic contacts, albeit weak, could indicate the
crucial role of the hydrophobic core in pushing the simulation toward correctly folded
conformations. The APO simulation constitutes a useful reference to understand the extent to which
the folding events in the simulation produced conformations close to the native structure. Thus,
considering that the APO trajectory has an average fraction of native hydrophobic contacts in the
protein core of 0.74 (data not shown), the F-aMD top value of 0.58 suggests a good attempt but not a
perfect packing. In addition, the SASA values sampled in the F-aMD simulation remain significantly
larger than the values of the APO simulation, even in correspondence of the two minima (Figure 10C, D).
Thus, even if the folding simulation generates a reasonable number of native contacts in the protein
core, the hydrophobic residues remain accessible to the water in the conformations explored.

The projection of the F-aMD and APO conformational ensembles on the first two eigenvectors
in the Ca space shows the extent of sampling reached by applying the boost potential in contrast to
the stability of the APO simulation (Figure S1). This PCA analysis shows that the two simulations
are separated by a relevant free energy barrier; note that the F-aMD free energy has not been
reweighted to restore the canonical ensemble. However, the projection of the F-aMD conformation
closest to crystal, i.e. the one at 2.2 ps, is located in proximity to the APO trajectory projection.
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Figure 11. Hydrophobic cluster compactness. The residue side chains of the hydrophobic
core are shown as blue dots. The iron ion is shown as red sphere. (A) The highly compact
hydrophobic core in the crystal structure PDB 1BRF. (B) The less compact hydrophobic
core in the closest to crystal conformation sampled in the F-aMD run.

Table 2. Correlations among the analyses of the F-aMD trajectory.

Structural parameters compared R
RMSD SASA 0.24
RMSD Native hydrophobic contacts —-0.27
SASA Native hydrophobic contacts -0.51

The strongest correlation is highlighted in bold. R is the Pearson’s coefficient. See Figure 10 to
observe how each parameter evolves during the simulation.

4. Conclusions

Our analyses indicate that the APO simulation has sampled conformations close to the folded
state, as expected. Nevertheless, there are some visible effects due to the absence of the iron ion on
the structural properties of apo-PfRd. In particular, up to three non-native B-sheets between residues
in spatial proximity, which partly compensates the degrees of freedom gained with the removal of
the iron ion. In addition, we observed that the 3y helical regions tend to assume an H-bonded turn
configuration; this is more prominent for the first helix. Similar trends are observed also in the
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F-aMD simulation, where some non-native B-structures also occur. The occurrence of secondary
structures in the F-aMD simulation generally maps with good accuracy to the same residues that are
in helical or B-structures also in the crystal structure. This simulation overestimates the occurrence of
the elements of helical structure. A significant example is that of the last 3(-helix, which extends to
involve also residues of the last B-strand of the native sheet (Figure 7). In fact, the full native triple-
stranded B-sheet is never sampled, because the simulation is not able to recover all the long-range
contacts needed to make the correct B-structures. The NMR chemical shifts of the backbone nuclei of
holo-PfRd provide an experimental reference for the understanding of the average dynamic and
structural features of the various simulations. For the APO simulation, the agreement of the back-
calculated shifts with the experimental data is very good, confirming the absence of significant
rearrangements. The situation is somewhat different for the folding simulations, which feature
modest correlations for the C and N atoms.

The extensive sampling of the F-aMD trajectory has produced conformations with a compact
shape relatively similar to the native structure. This is supported by the analysis of the RMSD from
the crystal, and its correlations with the SASA profile and the number of hydrophobic contacts
among the core residues (Figure 10 and Table 2). These data suggest that the F-aMD simulation
indeed sampled putative folding pathways. In these events, the SASA reduced to 400-500 A?, and
shortly after the RMSD values dropped to about 67 A from the crystal structure. At the same time,
the number of native contacts in the hydrophobic core increased to the values observed also in the
APO simulation. These results indicate that the major obstacle for the complete folding of holo-PfRd
is the residual presence of the solvent molecules in the core residues. As a result, one of the potential
driving force in the folding process is weakened. This prevents the compaction of N-terminal part of
the structure with the rest of the core (Figure 11). Interestingly, the interaction of the first 15 residues
of PfRd with the other parts of the protein has been shown to be an important contributor to the
thermostability of the system [20]. An additional contribution limiting our simulation is likely the
oversampling of helical structure especially for residues 48—50.

The extensive sampling of one of the smallest known metalloproteins achieved here by a
combination of accelerated dynamics and the use of GPGPUs shows that metal-coupled folding is
still a challenging task for unbiased MD methods. The main difficulties are not limited to the
accuracy of the force field describing the metal binding, such as metal induced
protonation/deprotonation [40,41], the polarizable effect [42], the charge transfer [43,44] and
multiscale coupling [33-35]. Indeed, the standard force field may also induce some bias for the
protein part. This is exemplified by the folded apo-form of the protein adopting some non-native
secondary structures during the APO simulation. These phenomena affect also the F-aMD and
F-cMD simulations. Indeed, there are known limitations in the description of various force fields of
interactions that are crucial here, such as those involving phenylalanine side chains [51]. Other
authors pointed out that electrostatics and water descriptions could be the weakest force field
elements, and proposed that their optimization should consider unfolded proteins [52]. In agreement
with this, we suggest that significant methodological work is still needed until unbiased metal-
induced folding of metalloproteins can be achieved.
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Supplementary

Table S1. Secondary structure persistency per-residue of the APO simulation.

#Residue Strand Helix Turn  #Residue  Strand  Helix Turn
1 0.00 0.00 0.00 28 0.00 0.00 0.00
2 0.97 0.00 0.00 29 0.00 0.58 0.25
3 1.00 0.00  0.00 30 0.00 0.58 0.41
4 1.00 0.00  0.00 31 0.00 0.58 0.38
5 1.00 0.00 0.00 32 0.00 0.00 0.00
6 0.00 0.00 049 33 0.00 0.00 0.00
7 0.00 0.00 049 34 0.00 0.00 0.93
8 0.02 0.00 0.32 35 0.00 0.00 0.93
9 0.00 0.00 0.09 36 0.00 0.00 0.00

Continued on next page
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#Residue Strand Helix Turn  #Residue  Strand  Helix Turn
10 0.09 0.00  0.00 37 0.91 0.00 0.00
1L 1.00 0.00 0.00 38 0.42 0.00 0.00
12 1.00 0.00  0.00 39 0.00 0.01 0.98

13 0.95 0.00 0.00 40 0.00 0.01 0.99
14 0.00 0.02 097 41 0.00 0.01 0.98

15 0.00 0.02 0.98 42 0.00 0.00 0.42
16 0.00 0.02 0.97 43 0.42 0.00 0.00
17 0.10 0.00 0.00 44 0.91 0.00 0.00
18 0.98 0.00 0.00 45 0.00 0.67 0.32
19 0.00 023 0.76 46 0.00 0.67 0.33

20 0.00 023  0.76 47 0.00 0.67 0.01

ol 0.00 023 0.76 48 0.99 0.00 0.00
22 0.00 0.00 0.99 49 1.00 0.00 0.00
23 0.98 0.00  0.00 50 0.99 0.00 0.00
24 0.00 0.00 0.94 51 0.05 0.00 0.00
25 0.00 0.00 094 52 0.78 0.00 0.00
26 0.00 0.00 094 53 0.00 0.00 0.00
27 0.00 0.00  0.00

The residues involved in a native helix and B-strand are colored in blue and green, respectively.

Residues with significant (>0.3) persistency of non-native secondary structures are in bold.

Table S2. Secondary structure persistency per-residue of the F-cMD simulation.

#Residue Strand Helix Turn #Residue B-sheet Helix Turn
1 0.00 0.00 0.00 28 0.41 0.00 0.00
2 0.41 0.00 0.00 29 0.01 0.00 0.00
3 0.01 0.00 0.00 30 0.00 0.00 0.00
4 0.00 0.00 0.00 31 0.00 0.00 0.00
5) 0.00 0.00 0.00 32 0.00 0.00 0.00
6 0.00 0.00 0.00 33 0.00 0.00 0.00
7 0.00 0.00 0.00 34 0.00 0.15 0.85
8 0.01 0.00 0.00 35 0.00 0.15 0.85
9 0.00 0.00 0.00 36 0.00 0.15 0.79
10 0.00 0.00 0.00 87 0.00 0.00 0.00
11 0.00 0.08 0.40 38 0.00 0.00 0.00
12 0.00 0.12 0.46 39 0.00 0.00 0.00
13 0.00 0.52 0.37 40 0.01 0.00 0.00
14 0.00 0.52 0.43 41 0.01 0.00 0.00
15 0.00 0.49 0.35 42 0.00 0.00 0.00
16 0.00 0.27 0.24 43 0.00 0.00 0.00
17 0.00 0.11 0.26 44 0.00 0.00 0.00
18 0.00 0.00 0.29 45 0.01 0.00 0.00
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#Residue Strand Helix Turn #Residue B-sheet Helix Turn

19 0.00 0.00 0.29 46 0.00 0.00 0.00
20 0.01 0.07 0.04 47 0.00 0.37 0.57
21 0.01 0.07 0.30 48 0.00 041 0.57
22 0.01 0.07 0.28 49 0.00 0.50 0.48
23 0.37 0.00 0.00 50 0.00 045 0.31
24 0.00 0.00 0.00 51 0.37 0.19 0.15
25 0.00 0.14 0.72 52 0.00 0.07 0.10
26 0.00 0.14 0.73 53 0.00 0.00 0.00
27 0.00 0.14 0.26

The residues involved in native helix and [B-strand structures are colored in blue and green,
respectively. Residues with significant (>0.3) persistency of non-native strand and helix are in bold
and underlined bold, respectively.

Table S3. Secondary structure persistency per-residue of the F-aMD simulation.

#Residue Strand Helix Turn #Residue B-sheet Helix Turn
1 0.00 0.00 0.00 28 0.17 0.32 0.16
2 0.09 0.00 0.06 29 0.12 0.30 0.33
3 0.12 0.00 0.07 30 0.05 0.25 0.39
4 0.14 0.00 0.01 31 0.02 0.13 0.43
5 0.00 0.00 0.01 32 0.11 0.05 0.08
6 0.08 0.00 0.25 33 0.01 0.09 0.12
7 0.00 0.00 0.27 34 0.00 0.10 0.31
8 0.32 0.00 0.05 35 0.01 0.09 0.32
9 0.05 0.04 0.11 36 0.00 0.01 0.10
10 0.01 0.13 0.12 37 0.01 0.00 0.00
11 0.04 0.16 0.11 38 0.00 0.00 0.00
12 0.07 0.17 0.11 39 0.01 0.00 0.00
/12) 0.09 0.19 0.12 40 0.01 0.00 0.00
14 0.01 0.15 0.33 41 0.03 0.00 0.34
15 0.00 0.12 0.35 42 0.00 0.00 0.36
16 0.02 0.08 0.33 43 0.31 0.00 0.01
17 0.04 0.05 0.15 44 0.04 0.01 0.03
18 0.16 0.05 0.03 45 0.00 0.57 0.08
19 0.07 0.10 0.33 46 0.00 0.62 0.07
20 0.01 0.13 0.38 47 0.01 0.79 0.11
2l 0.02 0.12 0.42 48 0.00 0.80 0.10
22 0.08 0.07 0.27 49 0.00 0.65 0.22
23 0.06 0.05 0.15 50 0.00 0.53 0.26
24 0.07 0.03 0.05 51 0.01 0.39 0.24
25 0.06 0.17 0.18 52 0.01 0.08 0.13
26 0.05 0.23 0.22 53 0.00 0.00 0.00
27 0.08 0.31 0.17
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The residues involved in a native helix or B-strand structure in the crystal are colored in blue and
green, respectively. Residues with significant (>0.3) persistency of non-native strand or helix

structure are in bold and underlined bold, respectively.

0.5

kcal/mol

-40 -20 0 20 40

Figure S1. Principal Component Analysis of the F-aMD and APO trajectories.
Projection of the two conformational ensembles on the first two eigenvectors. The APO
region is zoomed on the right. The F-aMD conformation closest to the crystal structure at

2.2 ps is projected with a cyan triangle.
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these organelles is in the 6.0—4.8 range whereas in lysosomes
the pH can drop to values around 4.5."7"*

Our kinetic measurements on human H-ferritin in the
presence of different reductants showed that iron release has
different kinetic profiles but with the same distinct pH
dependence (Figure 2A and B). In particular, lowering the
pH from 9.0 to 4.0 increased significantly the amount of iron
discharged. We used MD simulations to identify the parts of
the protein responsible for the interaction with the iron ions
during the release process. We focused on the processes
occurring at pH 4, where iron release is enhanced, and
compared them to pH 9. Furthermore, the umbrella sampling
method was applied to estimate the corresponding free-energy
barriers. At pH 4, all His residues are doubly protonated,
whereas all carboxylates are deprotonated. Consequently, the
internal cavity of ferritin provides an environment whose
electrostatic potential is close to neutrality due to the balance of
the charges of the doubly protonated His side chains (positive)
and of the carboxylate side chains (negative). Therefore, the
electrostatic surface of the protein’s cage does not stabilize
significantly metal ions in the absence of mineralization. The
iron(II) ions thus respond readily to the gradients of
electrostatic potential leading them toward other regions of
the structure where negatively charged residues are spatially
clustered. Such gradients drive the iron ions toward two main

ABSTRACT: We investigated the kinetics of the release
of iron(Il) ions from the internal cavity of human H-
ferritin as a function of pH. Extensive molecular dynamics
simulations of the entire 24-mer ferritin provided atomic-
level information on the release mechanism. Double
protonation of His residues at pH 4 facilitates the removal
of the iron ligands within the C3 channel through the
formation of salt bridges, resulting in a significantly lower
release energy barrier than pH 9.

B INTRODUCTION locations: the ferroxidase catalytic sites and the C3 channels
Maxi ferritins are 24-mer nanocage structures that self-assemble (movie S1). The same behavior takes place at pH 9 despite the
from 4-helix bundle subunits.' The resulting structure has fact that in each chain nine out of ten His residues are neutral
octahedral symmetry. In correspondence to the C3 and C4 and thus the electrostatic charge within the cavity at this pH is
symmetry axes there are two different channels connecting the negative. In this work, we obtained evidence that the C3
bulk solution to the inner cage cavity (Figure 1). The two ) types channels are the pathway for the release of iron(II) ions from
of channels differ in their size and chemical properties.”™ In the cavity to the bulk solution'’ (movie $2). Our MD
vertebrate ferritins, the eight C3 channels constitute the entry simulations provide a detailed atomic-level view of the
points of iron(II) ions,*® which transit under the form of mechanism of iron release from ferritin, which was still
hexahydrated ions under the effect of the electrostatic gradient missing.”’

generated by carboxylate groups at the inner end of the

channels. The iron release mechanism in biomineralized ferritin B RESULTS

is less characterized.” In vitro, release experiments generally

involve the addmon of a reducing agent in the presence of The eight C3 channels are formed by three symmetry-related

motifs,”" specifically helix a4-loop-a3, from as many chains (A,

chelators." """ The process in vivo might be associated with o S i

cage dlsassembly,1 '3 or it could depend on specific acidic B, and C). Within each individual chanm?l, two.nearby rings
environments.'#'* H-ferritin enters cells via receptor-mediated formed by symmetry-related Asp and Glu side chains define the
endocytosis mediated by Transferrin Receptor 1 (TfR1).'° binding site to which the iron ions move from the internal

Binding of H-ferritin to TfRI results in the uptake of H-ferritin cavity (Figure 1). The side chains of the Asp131 residues define

into endosomes and lysosomes in a dynamic process. During
their maturation from early to late endosomes, the pH inside Published: August 30, 2017

v ACS Publications © 2017 American Chemical Society 2112 DOI: 10.1021/acs jcim.7b00306
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Figure 1. Structure of human H-ferritin viewed down the C3 and C4 axes, related by a 45° rotation around the red axis. Each subunit is colored
differently. Iron ions inside the C3 channel are shown as yellow spheres. (A) The C3 channel inside view is illustrated in the red box on the left.
Glu134 and Asp131 side chains are shown as red and orange sticks, respectively. (B) The C4 channel is illustrated in the red box on the right.
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Figure 2. Iron(Il) release in human H-ferritin at different pH
conditions. The plots show the percentage of iron(II) released over
1800 s at pH 4, 7, and 9 by human holo (480 Fe** per cage) H-ferritin.
The curves represent the mean + SEM of six independent analyses.
The student’s t test indicated that the curves are significantly different
(P < 0.05). The graph shows the iron(II) release in the presence of
(A) NADH/FMN reductants or (B) sodium dithionite. (B inset) First
seconds of the kinetics at pH 4 in the presence of dithionite
(represented as absorbance at 522 nm over time) acquired with a
stopped-flow spectrophotometer, which allowed us to measure the
initial points of the reaction that are lost with manual mixing.

a first ring that is closer to the internal cavity of ferritin, whereas
the side chains of the Glul34 residues define a second ring,
further from the internal cavity, and thus closer to the protein
surface. In our simulation at pH 4, three of the eight C3 sites
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become populated at different time points by a single iron(1I)
ion. At pH 9 four sites become populated. Typically, the iron
ion reached the site within the first nanoseconds of the
simulation. The fact that not all eight channels become
populated can be due to the relatively low number of ions
introduced in the cavity (31 ions) as well as to the initial
position of each ion, e.g, because of the different relative
distance between each ion and the closest ferroxidase vs C3
sites. In addition, the local conformations of the eight sites in
the initial structural model, built by aligning the human H-chain
on the bullfrog crystal structure”® (PDB entry 4DAS), are not
identical.

Before the iron ion actually reaches the C3 site, the Asp131
side chains move apart thereby allowing the metal ion to get
into the space between the two rings of carboxylates (Figure
S1). Within the site, the iron can be in proximity to the side
chains of the Glul34 and Aspl31 residues (Figure 1). Once
inside, the metal ion moves toward the exit of the channel and,
in so doing, it transitions between different coordination
configurations. As an example, Figure 3 shows how the
coordination of iron in one of the C3 sites at pH 4 is affected by
the dynamics of Glul34(C) and its interactions with
neighboring histidinium (i.e, the cationic form of His) side
chains. When the iron enters the site, it is at a short distance
from all three Glu residues. However, after only a few ns
Glul34(C) changes conformation and moves away from the
metal (Figure 3). This is triggered by the subsequent formation
of two salt bridges involving the negatively charged carboxylate
of Glu134(C). The first salt bridge is formed with the positively
charged side chain of His128(A), which is later (after about 1
ns) displaced by His136(A). The latter event causes the
carboxylate of Glu134(C) to rotate away from the iron ion and
toward the cavity of ferritin (Figures 3 and S2). The other two
Glu134 residues in the site (chains A and B) are released only
when the iron ion exits the C3 channel (Figure 4).

The pairwise distances among the three Glul34 residues of
the three chains define the process of opening of the channel.
For the same C3 site described previously, the three distances
are similar in the initial configuration of the ferritin structure
(Figure 4C). Upon the arrival of the iron ion in the site, they
evolve into one shorter (about 6 A) and two longer distances
(8—8.5 A). The situation changes further upon the rearrange-
ment of Glul34(C) described in the previous paragraph and
Figure 3. After this event, the distance between Glul34(A) and
Glu134(B) oscillates between 6 and 8 A but is typically closer
to the lower part of this range, whereas the two distances
involving Glu134(C) rapidly increase above 8 A reaching peaks
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Figure 3. Switch of iron coordination in a C3 site. (A) Overlap of
three snapshots at 2.36 ns (white), 3.38 ns (gray), and 3.63 ns (black).
Residue side chains involved in the process are shown as sticks. The
red dash indicates the salt bridge between His128(A) and Glul34(C)
at 3.38 ns that weakens the iron(II)—Glul34(C) interaction. The
green dash shows the salt bridge between His136(A) and Glul34(C)
that is formed at 3.63 ns, just after iron(II)—Glul34(C) detachment.
(B) Iron(I1)—Glul34(C), His128(A)—Glul34(C), and His136(A)—
Glu134(C) distances for the first channel. His—Glu distances refer to
the He and C& atoms of the His and Glu residues, respectively.

of 12 A. While the iron ion is in the site, the carboxylate Oe
oxygen atoms do not form consistent hydrogen bonds to donor
groups in spatial proximity and thus remain close to each other
due to electrostatic interaction with the metal ion. At pH 4 this
structural configuration evolves during the MD simulation,
eventually leading to the release of the iron ion (see below).
Instead, the corresponding configuration at pH 9 remains stable
throughout the entire simulation (e.g., Figures S3 and S4).

The protein dynamics at pH 4 leads to conformations
featuring relatively long-lived salt bridges involving the Glul34
and the doubly protonated His118 residues in the channel. This
is apparent between S and 20 ns of the simulation (Figure 4A
and B). The presence of these salt bridges can be conveniently
monitored by looking the hydrogen bond persistence between
the side chains (Figure 4D).

The iron ion is released when the A and B chains
simultaneously feature long-lived hydrogen bonds, between
15 and 20 ns (Figure 4B and D). This configuration reinforces
the correlation between the dynamics of the protein structural
environment and the dynamics of the Glul34 side chains. In
addition, there is a partial compensation of the negative
electrostatic charge of the carboxylates of the Glul34 residues.
Eventually, the iron ion escapes the C3 binding site and
irreversibly (in our simulations) diffuses into the bulk solution
(Figure 4). The channel closes after the iron release and
Glu134(C) comes back to the starting orientation (Figure 4C
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and movie S3). When the His residues are singly protonated,
the aforementioned electrostatic mechanisms are no longer
possible. Indeed, at pH 9, where all His are singly protonated,
the iron ions move quickly toward the nearest C3 channel from
their starting position, but the Asp and Glu rings do not open
and the ions remain blocked in the site (Figures S3 and S4).
Clearly, the double protonation of the His residues is crucial to
enable an effective mechanism for the release of the iron ions.
Notably, at pH 7 the majority of the His side chains are doubly
protonated thereby suggesting that the mechanism described at
pH 4 could be relevant also at neutral pH. In the final part of
the simulation at pH 4, although the iron ion has already left
the protein His128(A) closes the gap with Glul34(C) as
previously observed (Figure 3). Thus, the Glul34 distances
increase and the channel opens again (Figure 4C and movie S3
at about 100 ns) despite the absence of the metal ion.

As mentioned, during our simulation at pH 4 we observed
two iron ions being released through two different channels in
the bulk solution. In the second channel, the entry of the iron
occurs after a few ns and all three Glul34 side chains are
recruited to form the coordination sphere, which remains stable
for nearly 40 ns of trajectory (Figure SS). The distance of the
three Glul34 side chains from one another are not all identical,
with two pairs at about 6 A and the third (Glul34(A) and
Glul34(B)) at 7 A for nearly 20 ns. Afterward, there is a
rearrangement of the site, with the distance between Glu134-
(B) and Glul34(C) remaining at 6 A, whereas the other two
distances increase up to 8 A until 40 ns. Shortly after 40 ns of
simulation, Glul34(B) rearranges similarly to what we
described for Glu134(C) in the first channel with the exception
that His136(A) is closer to Glu134(B) than His128(A) (Figure
S6). Nevertheless, the simultaneous proximity of both
histidinium side chains allows Glu134(B) to move away from
the metal ion. After this event, the distance between the side
chain of Glul34(A) and the iron ion oscillates rapidly in the
range 4.5—-8.0 A. Instead, the iron—Glul34(C) distance
remains within 4.5—5.0 A, with sporadic transitions at longer
distances when the iron—Glu134(A) falls at 5.0 A or less (e.g,,
see around 80 ns in Figure SS). In summary, within this second
channel the iron ion is mostly bound to Glul34(C).
Occasionally the iron ion moves from Glul34(C) toward
Glu134(A), then moves back. On top of this, Glu134(A) itself
is moving back and forth with respect to the other two
glutamates. These extensive structural fluctuations correspond
to a situation where the Cé atoms of the three Glu residues of
the C3 site have changed their configuration from a roughly
triangular distribution in space to a distribution closer to
linearity. The escape from this situation is mediated again by
the formation of a persistent salt bridge to positively charged
His118 residues (Figure S7). This reinforces the link between
the motions of Glu134(C) and Glul34(A), and the rest of the
protein chain while simultaneously reducing their electrostatic
interaction with the iron ion. In this way, the ion can displace
more from its position and eventually escapes from the channel.

The umbrella sampling method® was applied to measure the
free-energy of the iron(II) release process through the C3
channel. In addition to simulations at pH 4 and pH 9, we
prepared a chimeric variant of ferritin in which the protonation
state at pH 9 was altered by doubly protonating the side chains
of the three histidines that play a crucial role in the release
process at pH 4: His118, His128, and His136. At the starting
point of the umbrella simulations, the metal ion is located
inside the ferritin cage. Then, in all the simulations, the
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Figure 4. Iron release after the formation of two Glu134—His118 salt bridges in the first channel. Chain A is in blue; chain B is in green. The metal
ion is shown as a yellow sphere. (A) Glul34(A) is too far from His118(A) to make a salt bridge, and the iron(II) ion is still coordinated. (B)
His118(A) moves in proximity of Glu134(A), and a salt bridge is formed. The electrostatic attraction between the carboxylate Oe oxygen atoms and
the metal is interrupted and the iron(II) ion is free to leave the channel. (C) Iron—Glu134 and Glu134—Glu134 distances for one of the three C3
channels populated by iron(II). For Glu residues, all distances refer to the C6 atoms. Iron(II)—Glu distances are shown using hot colors, Glu—Glu
distances are shown using cold colors. The release of iron occurs at about 19 ns (D) The plot shows the persistence of Glul34—His118 hydrogen
bonds on a window of 1 ns, normalized by the number of frames in the window. The persistence increases for both hydrogen bonds between 15 and

19 ns of the simulation, i.e. immediately before iron release.

electrostatic gradient pushes rapidly the iron ions inside the C3
channel. Once the metal is inside, the free-energy profile at pH
4 reaches the minimum at 6.2 A from the innermost part of the
channel, shifted by about 4 and 4.5 A toward the exit with
respect to the minima observed for wild-type and chimeric
ferritin at pH 9 WT, respectively (Figure S). In fact, the rings
formed by the Asp131 and Glul34 residues (Figures 4C and
S1) of the three chains can open dynamically at pH 4, allowing
the metal ion to move deeper in the channel (Figure SA). On
the contrary, the iron(II) ion at pH 9 is coordinated closer to
the cavity, where negatively charged residues are spatially
clustered (Figure SB). The free-energy minimum for the
chimeric ferritin at pH 9 is in a position similar to the WT
protein, despite the metal coordination is less compact and
some electrostatic interactions with the carboxylates are
disrupted by the protonated His residues (Figure SC). We
can conclude that the double protonation of the side chain
rings of only the three His residues (His118, His128, and
His136) is not sufficient to restore the channel opening
observed at acidic pH. Notably, at pH 4 the energy needed to
discharge the iron(II) ion or to attract it in the channel are very
similar, not exceeding 2 kcal/mol. Instead, for the WT at pH 9
the energetic barrier for the escape from the binding site within
the C3 channel is somewhat higher, reaching a plateau of 15.3
kcal/mol around 13.5 A (Figure S8). Introducing the double
protonation for the three key His residues at pH 9 lowers the
energy needed to leave the channel to just about 3 kcal/mol.
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B DISCUSSION AND CONCLUSIONS

In summary, at both pH 4 and pH 9 the iron ions are rapidly
attracted toward the C3 channels by the electrostatic gradient
due to the Glu and Asp side chains that form the C3 site. The
Asp residues move apart to allow the metal ion to enter the site,
where three Glu side chains are available to coordinate it. This
coordination remains stable throughout the simulation at pH 9,
whereas at pH 4 we observed for two distinct channels the
release of the iron ion into the bulk solution. Overall, the iron
release mechanism is very similar for both channels. This
process occurs in two main steps (Figure 6): first, the iron ion
coordination switches from three to two glutamate side chains
(Figure 6A and B). This switch is triggered by the electrostatic
attraction between one of the Glul34 side chains and two
positively charged histidine residues (His128 and His136). The
new orientation of Glul34 is stabilized by His136 through a salt
bridge. In the second step, the iron ion is released when its
electrostatic interaction with the carboxylate Oe oxygens of the
two coordinating Glul34 side chains is interrupted by an
increased interaction between these side chains and nearby
residues (Figure 6C and D). In this respect, the lifetime of the
intrachain Glul34—His118 hydrogen bonds is a useful
indicator. Figure 4 suggests that this increase in lifetime is
effective for iron release only when it involves at least both Glu
residues concurrently. Indeed, the enhanced lifetime of the
hydrogen bonds formed by the Glul34 residue from a single
chain observed at 5—15 ns in the first channel does not lead to
the release of the iron ion. A similar situation occurs in the
second channel in the range 65—80 ns. The iron release
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Figure S. Free-energy profiles along the iron(II) exit coordinate (distances increase from the innermost to the outer part of the channel) through the
C3 channel. The free-energy profiles are obtained from the weighted histogram analysis of the umbrella sampling trajectories performed with biased
harmonic potential (force constant set at 15 kcal/mol A?) for pH 4, pH 9 WT, and pH 9 chimeric (histidine 118, 128, and 136 are doubly
protonated as pH 4). The free-energy minima are indicated with arrows, the corresponding metal ion coordinations are shown in pictures A, B, and
C. The iron(1I) ion is shown as a yellow sphere, Glul34 and Asp131 side chains are shown as sticks, and each chain is colored differently.

mechanism at pH 4 leverages the favorable electrostatics of the
doubly protonated His residues enhancing the effectiveness of
the stochastic events that bring Glul34 and Hisl18 in
proximity for two protein chains simultaneously.

Based on the umbrella sampling simulations we could
estimate the free-energy profiles of the initial configurations.
Two main things are noteworthy: first, the position of the
minima differ by about 4 A between pH 4 and pH 9, denoting a
different accessibility of the channel. Second, the energy barrier
is somewhat higher at pH 9 than pH 4. Although all the His
residues are doubly protonated at pH 4, three of them are
particularly influent in the release process: His118, His128, and
His136. We thus leveraged the unique opportunity offered by
molecular dynamics simulations to build and study chimeric
ferritins to obtain a deeper description of the iron(II) release
mechanism. The double protonation of these three His residues
introduced in the chimeric form of ferritin at pH 9 could not
restore completely the mechanism for the entry of the iron(II)
ion in the C3 channel but achieved a nearly full reduction of the
energetic barrier for the escape from the binding site into the
bulk solution. In conclusion, the positive charges on the side
chains of the His118, His128, and His136 residues proved to be
crucial to weaken the metal coordination by compensating the
negative charges of the Asp131 and Glul34 side chains inside
the C3 channel. Instead, only the overall electrostatic
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contribution of the double protonation of all His at pH 4
could trigger the dynamic opening of the binding site, thus
significantly shifting the position of the coordinated iron(II)
ion toward the exit of the channel with respect to pH 9. In fact,
there is a lower energetic barrier to discharge the iron ion in
chimeric than in WT ferritin at pH 9, even though the position
of the minimum within the C3 channels remained the same
(Figure S).

At variance with human H-ferritin, the C3 channels are not
the entry/exit channels for iron ions in bacterioferritins and
bacterial ferritins. These bacterial systems exploit the so-called
B-pores instead,”*** which are absent in eukaryotic ferritins.
For example, in the ferritin of Pseudomonas aeruginosa the
threefold pores are lined with side chains of alternating
charge.26 Indeed, in the pH 6.0 structure of this system, a
negatively charged sulfate ion is found within the C3 channel.

The described pH-dependent mechanism of iron release
from ferritin might help defining the role of the acidic
environment of endosomes and lysosomes in modulating iron
release within these organelles. Encapsulation in endosomes is
proposed to be relevant for H-ferritin internalization via the
TfR1 receptor'® and therefore plays a role for the use of ferritin
as a drug nanocarrier targeting cancer cells overexpressing
TfR1. The delivery of ferritin to lysosomes, instead, has been
proposed as a key role in controlling iron cellular homeo-
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Figure 6. Summary of the crucial steps for iron(II) ion release from C3 channels at pH 4. Each chain is colored differently, and the metal ion is
shown as a yellow sphere. Residue side chains involved in the process are shown as sticks. (A) Snapshot at 3.00 ns. The ion is coordinated by three
Glu134 residues. His128(A) is approaching the Glu134(C) residue to rip it off from the metal. (B) Snapshot at 3.63 ns. The Glu134(C) is now
oriented toward the protein cavity stabilized by His136(A); thus, the ion is now coordinated just by two Glu134 residues. (C) Snapshot at 19.0S ns.
During the five nanoseconds before the ion release the interactions between Glul34 and His118 increase, disrupting the metal—carboxylate
coordination. (D) Snapshot at 19.24 ns. The simultaneous formation of salt bridges between Glul34 and His118 causes the iron ion release from the

channel.

stasis;'® the interplay between biomineral solubilization upon
iron reduction and ferritin degradation at this level is not yet
clear, and the observed cage-assisted release at low pH might
also come into play.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.7b00306.
Experimental and computational methods and additional
figures (PDF)
Movie of a C3 channel, along the whole trajectory, from
the protein’s cage point of view (MPG)
Movie of the iron(II) ion leaving cavity through the first
C3 channel (MPG)
Movie of the first C3 channel, along the whole trajectory,
from the protein’s cage point of view (MPG)

B AUTHOR INFORMATION

Corresponding Author

*Tel.: +39 055 4574267. E-mail: rosato@cerm.unifi.it (A.R.).
ORCID

Paola Turano: 0000-0002-7683-8614

Antonio Rosato: 0000-0001-6172-0368

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work was supported by Ministero dell'Istruzione,
dell’Universita e della Ricerca, PRIN 2012, Prot.
2012SK7ASN. S.C. acknowledges a postdoctoral grant by
Fondazione Cassa di Risparmio di Firenze (no. 2013.0494)
provided by FiorGen.

B ABBREVIATIONS

MD, molecular dynamics; C3, channel formed by three chains;
C4, channel formed by four chains; TfR1, transferrin receptor
1; PDB, protein data bank; WT, wild type

B REFERENCES

(1) Zhang, Y.; Orner, B. P. Self-Assembly in the Ferritin Nano-Cage
Protein Superfamily. Int. J. Mol. Sci. 2011, 12 (12), 5406—5421.

(2) Bernacchioni, C.; Ghini, V.; Theil, E. C.; Turano, P. Modulating
the Permeability of Ferritin Channels. RSC Adv. 2016, 6 (25), 21219—
21227.

(3) Chandramouli, B.; Bernacchioni, C.; Di Maio, D.; Turano, P,;
Brancato, G. Electrostatic and Structural Bases of Fe2+ Translocation
through Ferritin Channels. J. Biol. Chem. 2016, 291 (49), 25617—
25628.

(4) Theil, E. C.; Behera, R. K.; Tosha, T. Ferritins for Chemistry and
for Life. Coord. Chem. Rev. 2013, 257 (2), 579—586.

DOI: 10.1021/acs.jcim.7b00306
J. Chem. Inf. Model. 2017, 57, 21122118

140



Journal of Chemical Information and Modeling

(5) Crichton, R. R;; Declercq, J.-P. X-Ray Structures of Ferritins and
Related Proteins. Biochim. Biophys. Acta, Gen. Subj. 2010, 1800 (8),
706—718.

(6) Pozzi, C; Di Pisa, F.; Bernacchioni, C.; Ciambellotti, S.; Turano,
P.; Mangani, S. Iron Binding to Human Heavy-Chain Ferritin. Acta
Crystallogr, Sect. D: Biol. Crystallogr. 2018, 71 (9), 1909—1920.

(7) Linder, M. C. Mobilization of Stored Iron in Mammals: A
Review. Nutrients; Multidisciplinary Digital Publishing Institute,
October 10, 2013; pp 4022—4050.

(8) Theil, E. C. Ferritin: The Protein Nanocage and Iron Biomineral
in Health and in Disease. Inorg. Chem. 2013, 52 (21), 12223—12233.

(9) Finazzi, D.; Arosio, P. Biology of Ferritin in Mammals: An
Update on Iron Storage, Oxidative Damage and Neurodegeneration.
Arch. Toxicol. 2014, 88 (10), 1787—1802.

(10) Melman, G.; Bou-Abdallah, F.; Vane, E.; Maura, P.; Arosio, P.;
Melman, A. Iron Release from Ferritin by Flavin Nucleotides. Biochim.
Biophys. Acta, Gen. Subj. 2013, 1830 (10), 4669—4674.

(11) Hynes, M. J,; O Coinceanainn, M. M. Investigation of the
Release of Iron from Ferritin by Naturally Occurring Antioxidants. J.
Inorg. Biochem. 2002, 90 (1), 18—21.

(12) Kidane, T. Z. Release of Iron from Ferritin Requires Lysosomal
Activity. AJP Cell Physiol. 2006, 291 (3), C445—C455.

(13) Lewis, H. A; Buchanan, S. G; Burley, S. K; Conners, K;
Dickey, M.; Dorwart, M,; Fowler, R; Gao, X; Guggino, W. B,;
Hendrickson, W. A.; Hunt, J. F.; Kearins, M. C.; Lorimer, D.; Maloney,
P. C; Post, K. W,; Rajashankar, K. R; Rutter, M. E.; Sauder, J. M,;
Shriver, S,; Thibodeau, P. H; Thomas, P. J,; Zhang, M,; Zhao, X;;
Emtage, S. Structure of Nucleotide-Binding Domain 1 of the Cystic
Fibrosis Transmembrane Conductance Regulator. EMBO J. 2004, 23
(2), 282-293.

(14) Mancias, J. D.; Wang, X; Gygi, S. P; Harper, J. W,;
Kimmelman, A. C. Quantitative Proteomics Identifies NCOA4 as
the Cargo Receptor Mediating Ferritinophagy. Nature 2014, 509
(7498), 105—109.

(15) Asano, T.; Komatsu, M, Yamaguchi-Iwai, Y.; Ishikawa, F.;
Mizushima, N.; Iwai, K. Distinct Mechanisms of Ferritin Delivery to
Lysosomes in Iron-Depleted and Iron-Replete Cells. Mol. Cell. Biol.
2011, 31 (10), 2040—2052.

(16) Li, L; Fang, C. J; Ryan, J. C; Niemi, E. C,; Lebrén, J. A;
Bjorkman, P. J.; Arase, H.; Torti, F. M,; Torti, S. V.,; Nakamura, M. C,;
Seaman, W. E. Binding and Uptake of H-Ferritin Are Mediated by
Human Transferrin Receptor-1. Proc. Natl. Acad. Sci. U. S. A. 2010,
107 (8), 3505—3510.

(17) Yamashiro, D. J.; Maxfield, F. R. Acidification of Morpholog-
ically Distinct Endosomes in Mutant and Wild-Type Chinese Hamster
Ovary Cells. J. Cell Biol. 1987, 105 (6), 2723—2733.

(18) Maxfield, F. R;; Yamashiro, D. J. Endosome Acidification and
the Pathways of Receptor-Mediated Endocytosis. Adv. Exp. Med. Biol.
1987, 225, 189—198.

(19) Tosha, T.; Behera, R. K; Ng, H. L.; Bhattasali, O.; Alber, T.;
Theil, E. C. Ferritin Protein Nanocage Ion Channels: Gating by N-
Terminal Extensions. J. Biol. Chem. 2012, 287 (16), 13016—13025.

(20) Bradley, J. M; Le Brun, N. E; Moore, G. R. Ferritins:
Furnishing Proteins with Iron. J. Biol. Inorg. Chem. 2016, 21, 13—28.

(21) Haldar, S.; Bevers, L. E; Tosha, T.; Theil, E. C. Moving Iron
through Ferritin Protein Nanocages Depends on Residues throughout
Each Four -Helix Bundle Subunit. J. Biol. Chem. 2011, 286 (29),
25620—-25627.

(22) Bertini, L; Lalli, D.; Mangani, S; Pozzi, C.; Rosa, C.; Theil, E.
C.; Turano, P. Structural Insights into the Ferroxidase Site of Ferritins
from Higher Eukaryotes. J. Am. Chem. Soc. 2012, 134 (14), 6169—
6176.

(23) Roux, B. The Calculation of the Potential of Mean Force Using
Computer Simulations. Comput. Phys. Commun. 1995, 91 (1-3),275—
282.

(24) Rui, H.; Rivera, M.; Im, W. Protein Dynamics and lon Traffic in
Bacterioferritin. Biochemistry 2012, S1 (49), 9900—9910.

(25) Yao, H,; Rui, H.; Kumar, R; Eshelman, K; Lovell, S.; Battaile, K.
P.; Im, W,; Rivera, M. Concerted Motions Networking Pores and

2118

Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron
Traffic. Biochemistry 2015, 54 (8), 1611—1627.

(26) Yao, H.; Jepkorir, G.; Lovell, S.; Nama, P. V.; Weeratunga, S.;
Battaile, K. P.; Rivera, M. Two Distinct Ferritin-like Molecules in
Pseudomonas Aeruginosa: The Product of the bfrA Gene Is a Bacterial
Ferritin (FtnA) and Not a Bacterioferritin (Bfr). Biochemistry 2011, SO
(23), 5236—5248.

DOI: 10.1021/acs.jcim.7b00306
J. Chem. Inf. Model. 2017, 57, 2112-2118

Chapter 3 — Results

141



Supporting Information

Investigation of the iron(II) release mechanism of

human H-ferritin as a function of pH

Davide Sala’, Silvia Ciambellotti’, Andrea Giachetti’, Paola Turano™ and Antonio Rosato™"*

"Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto

Fiorentino, Italy.

*Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6,

50019 Sesto Fiorentino, Italy.

§Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino,

Italy.

*rosato(@cerm.unifl.it

MATERIALS AND METHODS

1. Kinetic Measurements

Recombinant human H-chain ferritin was made apo (without metal ions) as previously
described'? and mineralized (480 Fe*" ions per cage) with a freshly prepared solution of ferrous
sulphate in 1 mM HCI in 100 mM MOPS, 100 mM NaCl, pH 7.0. After mixing, the solutions
were incubated for 2 h at room temperature and then overnight at 4 °C to complete the iron
mineralization reaction. In order to investigate the pH-dependence of the release process,
mineralized ferritin was treated with PD-10 desalting columns (GE Healthcare) to be exchanged
into 100 mM sodium acetate pH 4.0 and 100 mM MOPS, 100 mM NacCl, pH 9.0 buffers. The
sample at pH 7 was also treated with PD-10 column to remove the excess of iron not
biomineralized. The release of iron(Il) from caged ferritin minerals was initiated by reducing the

1
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mineral with added NADH (2.5 mM) and FMN (2.5 mM) or with sodium dithionite (2.5 mM,
dissolved with degassed water under anaerobic condition until the addition) and trapping the
reduced and dissolved iron(Il) with the specific chelator 2,2’-bipyridyl outside the protein cage.
All release experiments were performed in aerobic conditions. Iron(Il) release from the protein
cage was measured as the absorbance of the [Fe(2,2’—bipyridyl)3]2+ complex at the maximum of
Asz nmand the amount of complexed iron(II) extrapolated using the molar extinction coefficient
of the complex (8,430 M cm™). The experiments were performed at iron and protein cage

concentrations of 250 uM and 0.52 puM, respectively.

2. Computational Methods

We used the Modeller software’ (mod9v2) to model the 24-mer human ferritin (4134
residues) based on the crystal structure of the bullfrog M ferritin® (PDB 4DAS). Bullfrog and
human heavy chains have 68% and 90% of sequence identity and similarity, respectively. Using
the H++ server’ (version 3.2) the protonation state of titratable groups was calculated at pH 4
and pH 9. For this, we used different conformations extracted from a short molecular dynamics
simulation at pH 7, which were all submitted to the H++ server. In all cases, the server indicated
that all the His side chains are doubly protonated as pH 4. On the contrary, only a few Glu or
Asp residues on the external surface of the protein close to the C4 channel are protonated at this
pH. These residues were different in the different conformations. For the sake of simplicity and
considering that they are far from the C3 channel, we decided to omit the protonation of Asp and
Glu residues. The H++ server predicts that the configuration in which all His are doubly
protonated and no Asp or Glu is protonated occurs at pH 4.5, i.e. the lowest pH within

lysosomes. This configuration is thus physiologically relevant for human H-ferritin.

Subsequently, 31 iron(I) ions were added inside the protein’s cavity. The system was
solvated with TIP3P water model molecules in a truncated octahedron box with walls distant 9 A
from the solute. The non-bonded parameters for iron(Il) were taken in agreement with the use of
TIP3P water and of the classical 12-6 LJ non-bonded model®. In particular, the Compromise set
(CM) of parameters for divalent ions were taken (available from the
fremod.ions234Im_126_tip3p file of the AMBERI16 package). The system at pH 4 was balanced
adding 110 chloride ions for a total amount of 161,784 atoms. At pH 9 106 sodium ions were
added for 161,507 total atoms. The two systems were prepared independently using the
customized force-field AMBER99SB-ILDN* on the AMBER 16 Molecular Dynamics Package’.
This forcefield merges the ILDN correction® of AMBER99-ILDN force-field with the CMAP
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dihedral parameters improvement of CHARMM22* force-field’. The same simulation protocol
was applied for both systems using the pmemd software. At the first stage the water was
minimized to remove bad contacts, after a brief MD with the protein restrained, all the system
was minimized using Steepest Descent algorithm followed by Conjugate Gradient. The
temperature was set to 310 K and controlled by Langevin thermostat with a collision frequency
of 20 ps']. The system was heated linearly for 1 ns in constant volume. Thus, to adjust the system
to the correct density we performed a 500 ps MD in NPT condition using Monte-Carlo barostat.
The production run was carried out using the following parameters: integration step of 2 fs and
constant temperature of 310 K under the control of weak coupling algorithm every 10 ps in NPT
conditions controlled by Monte Carlo barostat. Covalently bonded hydrogen atoms were
constrained with the SHAKE and SETTLE (for water molecules) algorithms. Finally, the PME
method with a cutoff of 8 A was applied to calculate electrostatic interactions. One snapshot
every 1 ps was saved for a total production run of 105 ns on Nvidia Tesla K20m GPGPU. The

electrostatic potential was computed using the Adaptive Poisson-Boltzmann Solver software'’.

We carried out umbrella sampling simulations''

using harmonic biased potential along the
iron(II) release process through C3 channels. The force constant was set to 15 kcal/mol/A? with a
window spacing of 0.1 A. At the starting point of the simulations, the metal ion is located inside
the ferritin cage, 25 A away from a water molecule fixed by tight distance restraints to face the
exit of the C3 channel. In particular, six distance restraints to the Asn23 and Asn109 a-carbon of
each chain forming the C3 channel were applied, using a harmonic potential with a force
constant of 20 kcal/mol/A%. We chose these residues because they are in a stable position in the
middle of two long a-helices. The protocol applied for the production runs was the same as
described above, each replica was sampled for 500 ps. The resulting umbrella sampling

trajectories were analyzed using the weighted histogram analysis method (WHAM)'? version

2.0.9 to obtain the free energy profiles of the metal ion release at pH 4 and pH 9.
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SUPPLEMENTARY FIGURES AND MOVIES
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Figure S1 Iron(II)-Asp131 and Asp131-Aspl31 distances for the first channel at pH 4. All

distances refer to the Cy atoms.
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Figure S2 Iron(I1)-Glul134(C), His128(A)-Glul34(C), and His136(A)-Glul34(C) distances
of the first channel at pH 4 along the whole trajectory.
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Figure S3 Iron(I)-Glul34 and Glul34-Glul34 distances at pH 9. For Glu residues, all
distances refer to the Cd atoms. Iron-Glu distances are shown using hot colors; Glu-Glu
distances are shown using cold colors. Essentially, at pH 9 the same profiles are observed

for all the four channels populated by iron(II).
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Figure S4 Asp131-Asp131 distances at pH 4 and pH 9 for the same channel.
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Figure S5 Iron(II)-Glu134 and Glul34-Glul34 distances for the second channel at pH 4.
For Glu residues, all distances refer to the Cé atoms. Iron-Glu distances are shown using hot
colors; Glu-Glu distances are shown using cold colors. The release of iron occurs at about

95 ns.
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Figure S6 Iron(I1)-Glul34, His128(A)-Glul34(B), and His136(A)-Glul34(B) distances of

the second channel.
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Figure S7 The plot shows the Glul134-His118 hydrogen bonds persistence on a window of 1

ns, the number is normalized over the number of frames in the window. The persistency
increases for both hydrogen bonds between 80 and 95 ns of the simulation, i.e.

concomitantly with iron release.
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Figure S8 Free-energy profiles along the iron(Il) release process (distances are calculated
from the innermost to the outer part of the channel) through the C3 channel. The free-energy
profiles are obtained from the weighted histogram analysis of the umbrella sampling

trajectories performed with biased harmonic potential at pH 4 and pH 9.
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MOVIES

Movie S1 Movie of a C3 channel, along the whole trajectory, from the protein cage point of
view. Three iron(Il) ions are shown. The first one goes inside the channel at the center and
leaves the protein. The others two ions are attracted toward two different catalytic sites. The

bottom right metal ion is very stable inside the site, the other one on top is transient.

Movie S2 Movie of the iron(Il) ion leaving cavity through the first C3 channel. The protein
is sectioned to allow the view of the iron inside the channel. Negative electrostatic is shown
in red, positive one in blue. Fieldlines represent the electrostatic gradient from positive to
negative. The metal ion moves very quickly toward the channel led by a strong electrostatic
gradient. When the iron ion reaches the top of the channel, a transient electrostatic attraction,

due to Asp residues sidechains, pulls it outside, in the bulk solution.

Movie S3 Movie of the first C3 channel, along the whole trajectory, from the protein cage
point of view. Besides the iron ion insertion, it is possible to appreciate the channel closing

event followed by a reopening in absence of a metal ion.
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ABSTRACT

Keywords:
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Background: YiiP is a bacterial zinc-for-proton antiporter belonging to the cation diffusion facilitator family. The
zinc(Il) ions are transported across the cell membrane, from the cytosol to the extracellular space.

Methods: We performed atomistic molecular dynamics simulations of the YiiP dimer with zinc(Il) ions in so-
lution to elucidate how the metal ions interact with the protein while moving from the cytosol to the transport
site.

Results: We observed that of the two cavities of the dimer, only one was accessible from the cytosol during
transport. Zinc(II) binding to D49 of the transport site triggered a rearr 1t of the tr brane domain
that closed the accessible cavity. Finally, we analyzed the free-energy profiles of metal transit in the channel and
observed the existence of a high barrier preventing release from the transport site.

Conclusions: The observed dynamics is consistent with the dimer-dimer interface forming a stable scaffold
against which the rest of the trans-membrane rearranges.

General significance: Zinc(Il) transporters are present in all kingdoms of life. The present study highlights
structural features that might be of general relevance.

1. Introduction

Zinc is the second most abundant trace element in all living or-
ganisms and plays a fundamental role in many biological processes
[1,2]. Despite sufficient intracellular zinc(II) concentration is needed to
supply proteins that require zinc(Il) ions as cofactor, intracellular
concentrations higher than few hundred picomolar produce cytotoxic
effects [3,4]. Therefore, the cellular uptake and the efflux of zinc(II)
ions are tightly controlled by specific systems, present at all phyloge-
netic levels, to maintain its concentration in a quite narrow range
[5-7]. In mammals, the Zrt-, Irt-related proteins (ZIPs/Slc39s) are re-
sponsible of the uptake of zinc(II) ions into the cell [8,9]. On the con-
trary, the zinc transporters of the Cation Diffusion Facilitator (CDF)
superfamily (ZnTs/Slc30) mediate zinc(Il) removal from the cytoplasm
into the extracellular space or into intracellular compartments such as
secretory vesicles [10-14]. Presently, there is no direct experimental
information on the three-dimensional structure of any member of the
human ZnT family [15,16]. However, this limit is partially compen-
sated by a relatively well-characterized bacterial homolog, the YiiP
transporter from Escherichia coli [17,18]. Among the human homologs

of YiiP, Znt8 has received significant attention owing to the involve-
ment of its W325R common variant in the onset of type-1 and type-2
diabetes [19-22].

YiiP is a cation-proton antiporter catalysing the efflux of zinc(II)
against the uptake of a proton with a 1:1 exchange stoichiometry [23].
YiiP can transport several divalent metal cations but only zinc(II) and
cadmium(II) with high efficiency [24]. The first X-ray structure of this
transporter was solved in the outward-facing conformation [25]; in
2009 a new structure with better resolution became available (PDB ID:
3H90) [26]. These crystal structures featured an architecture shared
among all CDF transporters consisting in a transmembrane domain
(TMD) connected to a C-terminal, cytoplasmic domain (CTD). YiiP is a
Y-shaped homodimer with six TM helices per monomer clustered in a
four-helix bundle (TM1-TM2-TM4-TM5) and a helix pair (TM3-TM6).
The TM3-TM6 helix pair provides the dimer interface and protrudes in
the cytosolic region. Each YiiP protein chain harbours three zinc(II)
binding sites (A-C). Site A is located close to the middle of the TMD and
constitutes the tetrahedral zinc(II) transport site, involving D45 and
D49 of TM2 as well as H153 and D157 of TM5 [24]. The CTD hosts the
Csites in which the binding of two zinc(II) ions enhances the stability of

Abbreviations: CDF, Cation Diffusion Facilitator; TMD, transmembrane domain; CTD, cytosolic domain; EC, extracellular; IC, intracellular; TM, transmembrane;

PCA, principal component analysis
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the dimer [26]. The function of site B is unclear. The inward-facing
state of the YiiP homolog from Shewanella oneidensis (PDB ID: 3J1Z) was
solved at 13 A by cryo-electron microscopy [27]. Based on the com-
parison of all available structures, it has been proposed that the
transport of zinc(Il) involves a so-called alternating mechanism [28].
This proposed mechanism involves an allosteric connection between
sites A and C through which a zinc(Il) ion binding in the C site can
promote metal binding and transport to the TMD thanks to the reor-
ientation of the TM3-TM6 helix pair [26]. In turn, the binding of the
zinc(Il) ion in the transport site A triggers the conformational switch
from the inward- to the outward-facing state facilitating the release of
zinc(Il). Recently, a variation of the alternating mechanism has been
proposed in which the motion of the four-helix bundle relative to the
static TM3-TM6 scaffold is proposed to be the critical step for the zinc
(I) transfer across the membrane [29]. This mechanism relies on a
persistent dimer interface within the lipid membrane acting as a static
scaffold versus a mobile transport domain; a similar strategy is used
also by other secondary active transporters [30]. In this regard, the zinc
(11) translocation to the transport site depends on the accessibility of the
hydrophobic cavity located in the TMD region facing the intracellular
space [31].

In this work, we investigated the zinc-induced dynamics of YiiP
from Escherichia coli by performing atomistic MD simulations of the
inward-facing conformation in presence and without zinc(II) ions in
solution, respectively. Our results pointed out how the binding of one
zinc(Il) ion in the transport site triggers the closing of the portion of the
channel going from the cytosolic space to the transport site itself,
hereafter called the TM cavity. The TM cavity closing was mainly the
result of TM4-TMS5 of the four-helix bundle moving towards TM3-TM6.
In this regard, TM5 played a crucial role through a reorientation that
brought the side chains of L152 and M197 in close contact, thus
forming a hydrophobic gate as proposed by Gupta et al. Unexpectedly,
we observed that zinc(Il) binding triggered the selective opening of
only one channel out of the two protein chains in the dimer. Our work
provides a detailed view of the mechanism of zinc(II) permeation from
the cytosol to the TM cavity and gives hints on the subsequent steps of
the transport mechanism.

2. Methods

The dimeric model of the inward-facing state of YiiP from
Escherichia coli was built with the Modeller software [32] (mod9v2)
exploiting two different structural templates. Since the inward- and the
outward-facing state share the same conformation of the CTDs, we used
the structure with the highest resolution available (PDB ID: 3H90) [26]
to model the residues in the range 208-290. Instead, the inward-facing
TMDs, spanning residues 7-207, were modelled on the cryo-EM struc-
ture of the homologous Shewanella oneidensis protein (PDB ID: 3J17)
[27]. The membrane builder module of the CHARMM-GUI was used to
embed the protein in a rectangular lipid bilayer composed by 366 DPPC
phospholipids [33,34]. The system was solvated with TIP3P water
molecules with a hydration ratio of 1:100 lipid to water. Two dummy
atoms were bound with harmonic restraints to the two cytosolic binding
sites (site C) to mimic the binuclear zinc coordination mediating the
interaction between the CTDs [12]. All the histidine residues were kept
neutral. The N§-protonated tautomer was used for all the histidine re-
sidues of the zinc(II) binding sites that coordinate the metal with the Ne
atom in the 3H90 crystal structure. Instead, the Ne-protonated tautomer
was used for all the remaining histidine side chains.

The holo-simulations were performed in the presence of 0.150 M
ZnCl; corresponding to 94 zinc(II) ions and 174 (188 minus 14 ions to
balance the negative charge of the protein) chloride(I) ions in solution.
The non-bonded parameters for zinc(II) were taken in agreement with
the use of TIP3P water model in combination with the classical 12-6 LJ
non-bonded model [35]. In particular, the Compromise set (CM) of
parameters for divalent ions was used (available from the
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fremod.ions2341m_126 _tip3p file of the AMBER18 package).

The No-zinc simulation was prepared by adding 0.150 M of NaCl
corresponding to 104 sodium(I) ions and 90 chloride(I) ions in solution.
A harmonic potential was applied to prevent the insertion of sodium(I)
ions in the TM cavities.

The E79A simulation was prepared starting from the snapshot of the
Holo02 run at 50 ns, when the zinc(II) was already bound to D150 and
E79. After introducing the E79A mutation, a chloride(I) ion was added
to the system to balance the charge.

All the simulations exploited the same force fields for the lipid and
the protein portions of the system, the Amber LIPID17 and the Amber
ff14SB, respectively [36,37]. All the calculations were performed with
the AMBER Molecular Dynamics Package using the pmemd software
[38,39], with the same equilibration protocol. An initial minimization
step was carried out using the Steepest Descent algorithm followed by
Conjugate Gradient. Langevin dynamics with a collision frequency of
1 ps~! was used to linearly heat the system in constant volume for 1 ns,
during which the protein and the ions are restrained with a force
constant of 10kcal/mol/A2. The equilibrium temperature was set to
323K, a value commonly used to overcome the phase transition (liquid
to gel) temperature of the pure DPPC lipid membrane (about 315K)
[40]. The physiological density of the system was achieved by carrying
out an NPT simulation in which the anisotropic pressure scaling is
controlled by the Berendsen barostat (pressure relaxation time of 2 ps).
Covalently bonded hydrogen atoms were constrained with the SHAKE
and SETTLE (for water molecules) algorithms. The PME method with a
cutoff of 10A was applied to compute electrostatic interactions. The
production runs were performed on Nvidia Pascal Xp GPGPU in the
same NVT conditions reported above for the heating step [41]. The
RMSD of the protein Ca atoms from the starting conformation was
calculated over time to check the convergence of the simulations (Fig.
S1).

We carried out umbrella sampling simulations using a harmonic
biased potential along the zinc(II) diffusion pathway through the TM
cavity of the channel [42]. We prepared two runs using a zinc(II) ion as
probe and a third run using a sodium(I) ion. The starting structure of
the simulations was chosen from the unbiased holo-trajectory when the
zinc(II) ion is at the entrance of the TM cavity facing the IC space. In the
calculation using the sodium(I) probe, the metal ion was moved some
angstroms away from the channel entrance in order to probe also the
energetics for its approach to the channel. The metal probes were pulled
towards a water molecule fixed by tight distance restraints outside the
top exit of the channel. In this way the ion probe is forced to cross the
whole TM portion of the transporter. The water molecule was re-
strained to the Ca of six residues (122, L58, L95, L131, L152 and L191)
located in a stable position in the middle of TM1, TM2, TM3, TM4, TM5
and TM6, respectively. The force constant used to fix the water mole-
cule was 20 keal/mol /A, Instead, the metal probe was pushed through
the channel with a force constant of 15 kcal/mol/Az. The total distance
was split in windows of 0.2 A, each one sampled for 1 ns. The resulting
trajectories were computed using the weighted histogram analysis
method (WHAM) version 2.0.9 to derive the free energy profiles from
the potential of mean forces of the metal probes crossing the TM
channel [43]. The standard deviations or error bars in the PMF calcu-
lations were derived from both bootstrapping and block analysis but are
not reported due to their very small values.

All MD trajectories and umbrella sampling simulations are freely
available from the Zenodo website at https://zenodo.org/record/
2658142 (DOI: https://doi.org/10.5281/zenodo.2658142).

3. Results

Our model of the E. coli YiiP dimer in the inward-facing state was
built by merging the model of the TMD built on the cryo-EM structure
of the S. oneidensis homolog with the higher quality CTD obtained from
the outward-facing crystal structure of E. coli YiiP (Fig. 1A). The CTD is
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Fig. 1. Model of the E. coli YiiP transporter in the inward-facing state. A) The three zinc(II) binding sites are indicated (A-C). The two protein chains are colored
differently. B) Fitting of the final snaphot of chain B on the starting conformation in the Holo01 simulation. The starting conformation is in cyan. The zinc(II) ion is
shown as an orange sphere. C) Zinc(II) interaction pathway in the TM cavity. The distances are measured from the zinc(II) ion to the Cy atom of D49, D150 and to the
N8§ atom of H153. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

structurally identical in both the protein states. The resulting dimeric
protein model was embedded in a lipid bilayer and solvated (see
Methods). Overall, we carried out four classical MD simulations: three
in the presence of 0.150 M of ZnCl, (holo) and one without zinc(II) ions
in solution. The two longest holo-simulations started from the same
conformation and sampled a trajectory length of 1 ps each. Hereafter,
we will refer to these two runs as “Holo01” and “Holo02”. Also the
simulation of YiiP in absence of zinc(Il) ions (“No-zinc” hereafter)
spanned a time length of 1 ps. A further replica of the holo system was
performed for 540 ns starting from a snapshot of the “Holo01” run with
the zinc(II) ion already bound to the binding site in the channel. We will
refer to this replica as “Replica01”. Finally, we performed three um-
brella simulations using the zinc(I) (2 runs) and sodium(l) ions as
probes to assess the metal-dependent free-energy barriers of the
channel permeation process.

3.1. Simulations of Holo-YiiP

In the presence of zinc(Il) ions in solution, the final structures of the
two Holo trajectories at 1 ps featured both sites B on the IL1 loops
(Fig. 1A) populated by zinc(II) ions. More importantly, in both runs one
zinc(1l) ion entered the transmembrane (TM) cavity. The zinc(Il) ion
entered the channel of chain B in the HoloO1 run as opposed to chain A
in the Holo02 run. However, only in Holo0O1 the zinc(II) ion moved
from the TM cavity to the transport site (Fig. 1B), whereas in Holo02
the ion remained stably bound at the entrance of the TM cavity (Fig.
S2).

The distances from the residues interacting with the zinc(II) ions in
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the TM cavities were measured along the simulation (Fig. 1C). In the
diffusion process from the cytosol towards the transport site in the
Holo01 simulation, the zinc(II) ion interacted mainly with three re-
sidues: D150, which is part of the region of the TM5 helix facing the
intracellular space, D49, which is part of the transport site on the TM2
helix, and H153, which is part of the transport site on the TM5 helix
(Fig. 1B and Movie S1). After binding to the transport site, the zinc(II)
ion remained coordinated by D49 and D150 until the end of the si-
mulation.

In the Holo02 simulation the metal ion interacted simultaneously
with D150 and E79 at the entrance of the TM cavity (Fig. S3). The latter
interaction was not observed in the HoloO1 trajectory. Although H153
repeatedly approached the zinc(1I) ion in the first half of the simulation,
the two negative charges of E79 and D150 produced an electrostatic
attraction on the metal ion so strong as to prevent further displacement
of the ion towards the TM cavity. To analyze whether the additional
carboxylate recruited by the zinc(Il) ion in Holo02 with respect to
Holo01 was indeed the main responsible for preventing the transit of
the cation along the channel, we removed the charge of E79 by repla-
cing it with alanine (E79A mutant) and re-started the simulation. Upon
mutation, the metal ion was able to move away from the entrance of the
channel and bound to D49 similarly to HoloO1 (Fig. S4).

The channel accessibility along time can be estimated by measuring
a structural parameter, such as the TM cavity opening, and a bio-
chemical parameter, such as the hydration of the channel. In this work,
the channel accessibility was assessed by measuring the distances of the
stable TM3 (represented by 190) helix from TM1 (A20), TM2 (D49),
TM4 (1130), TM5 (L152) and TM6 (M197) (Fig. 2). In all the holo-
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Fig. 2. TM cavity opening and water accessibility as a function of time in Holo01 chain B, Holo02 chain A and mutant E79A chain A, respectively. The graphs show
the distances from the Ca atom of 190 in the TM3 helix to the Ca atoms of A20 (TM1), D49 (TM2), 1130 (TM4), L152 (TM5) and M197 (TM6). The reorientation of

TMS is marked by an orange arrow.

simulations, TM2 and TM6 showed a very stable behavior preserving a
direct contact with TM3. On the contrary, at the beginning of the
Holo01 run the chain permeated by the zinc(II) ion displayed a rapid
increase of the TM3-TM4 and TM3-TMS5 distances followed by a gradual
decrease to 15 A (Fig. 2A). At 470 ns, these distances suddenly dropped
due to the reorientation of TMS5. In particular, the TM3-TM5 distance
reached the same values as TM3-TM2 and TM3-TM6, denoting a direct
contact between the TM helices. We can interpret this behavior as the
channel being initially in a more exposed (open) configuration, fol-
lowed by a large-scale rearrangement, induced or stabilized by the
presence of the zinc(Il) ion in the transport site, that eventually closed
the channel. Of note, the Replica01 simulation, where a zinc(II) ion was
already bound at the transport site, sampled the same large-scale re-
arrangement seen in HoloO1 (Fig. S5A). Instead, in the chain A of
Holo02, where the zinc(Il) ion was stably bound at entrance of the TM
cavity, all the distance profiles remained fairly constant throughout the
whole simulation and did not feature any relevant conformational
changes, in what can be regarded as an essentially open configuration
(Fig. 2B). Allowing the zinc(II) ion to reach the transport site by re-
starting the Holo02 run after introducing the E79A mutation resulted in
the same reorientation of TM5 observed in Holo0O1 (Fig. 2C). Further-
more, after this reorientation, the zinc(II) coordination became similar
to the tetrahedral geometry of the outward facing configuration for
some nanoseconds, with the exception of D150 taking the place of H153
(Fig. S4). This configuration allowed a second zinc(II) ion to approach
the site from the extracellular environment, suggesting the existence of
an accessible extracellular cavity.

Variations of the channel hydration in response to the conforma-
tional motions caused by zinc(II) binding were measured experimen-
tally by Gupta et al. [31]. To obtain a qualitative comparison with these
data we measured the time evolution of the number of water molecules
(cutoff at 5A) surrounding the residues in the TM cavity (Fig. 3). For
this analysis, we selected the residues that in experiments displayed the
largest response to the presence of zinc(II) ions in solution, namely the
average of V48, D49 and 150 (these three residues are grouped together
in the experimental work), M151, L152 and M197. The profiles of the
V48-D49-150 group (TM2), L152 (TM5) and M197 (TM6) of chain B
displayed a similar trend in the HoloO1 and Replica0l simulations
(Fig. 3A and S5B). These residues featured the highest water accessi-
bility with TM4 and TMS5 far away from TM3. Then, their accessibility
dropped when TMS5 closed the gap with TM3 closing the channel. Dif-
ferently from the rest, the water accessibility of M151 (TMS5) increased
after the channel closed. This effect is more evident in Replica0l and
E79A than HoloO1. Notably, M151 displayed an opposite trend of ex-
perimental hydration change upon zinc(II) exposure with respect to the
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other residues examined here [31]. For comparison, in the zinc(Il)-
bound chain A of the Holo02 simulation, V48-D49-150 and M197
sampled intermediate values between the poorly solvated M151 and the
highly solvated L152 (Fig. 3B). Thus, the channel of chain A remained
partly accessible from the IC space. The E79A mutant sampled the same
TMS5 rearrangement as HoloO1 and Replica01. However, here only the
water accessibility of M197 dropped (Fig. 3C). This is due to the fact
that in this simulation a second cavity exposed to the extracellular
environment increased the solvation of the top part of the channel.

We then looked at the chains where zinc(Il) did not enter the
channel. In chain A of Holo01 TM5 sampled short distances from TM3,
denoting a TM cavity constantly closed from the IC (Fig. S6A). A similar
behavior was observed also for chain B in the Holo02 simulation, with
the exception of TM2 being modestly more distant from TM3 (Fig. S6B).
Accordingly, the presence of water molecules in the channel was quite
low for chain A of HoloO1 as well as for chain B of Holo02, with the
exception of the V48-D49-I50 triad in the latter simulation (Fig. S6C
and S6D).

We monitored the accessibility of the TM cavity also through the
distance between the side chains of L152 and M197 (Fig. 4). These
residues were always in direct contact in chain A of the HoloO1 and
Replica01 simulations, corresponding to an inaccessible cavity. On the
contrary, for chain B the interaction was suddenly achieved when the
channel closed and conserved until the end of the trajectory. The con-
formational change that closed the channel corresponded to a rotation
and tilt of TM5 that brought the L152 side chain in close contact with
the side chains of 190 from TM3 and of M197 from TM6 (Movie S2).
This interaction created a hydrophobic gate modulating the access of
water from the IC space to the TM cavity and in turn to the transport
site. The snapshots at 466 ns and 470 ns displaying the top view of the
TM cavity on the chain B of Holo0O1 point out the link between the
L152-M197 distance and the presence of water molecules in the cavity
(Fig. 5). In particular, the snapshot at 466 ns shows that L152 and M197
were distant enough to allow water/ions to enter the TM cavity from
the IC space. In fact, the TM cavity is filled by water molecules. Four ns
later, the close contact between the side chains of L152 and M197
prevented the access to the TM cavity from the cytosol. As consequence,
the number of water molecules in the cavity dropped. In addition to the
above residues, A149 of TM5 approached A83 and 190 of TM3 and to
A194 of TM6 making a packed cluster of side chains that reinforced the
hydrophobic barrier separating the transport site from the IC space
(green sticks in Fig. 5). The time evolution of this hydrophobic cluster
closely paralleled the formation of the L152-M197 gate (compare
Fig. 4A and Fig. S7).

To obtain further insights into the conformational dynamics of the
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Fig. 3. Number of water molecules within 5 A from the reported residues in the A) HoloO1 chain B, B) Holo02 chain A and C) mutant E79A chain A, respectively.

TM helices in the Holo0O1 simulation, we calculated the atomic corre-
lation of motions, dividing the whole simulation into two parts: before
and after the reorientation of TM5 occurring at 470 ns (Fig. 6). Besides
the obvious correlation among residues close in sequence, the loops EL2
(connecting TM3 and TM4) and EL3 (connecting TM5 and TM6) fea-
tured the highest correlation during the first 470ns of simulation
(Fig. 6A). This could suggest a sort of communication pathway between
the TM3-TM6 helix pair and the TM4-TM5 helices of the four-helix
bundle. In the second part of Holo01, the motions of TM5 and the lower
part of TM4 were correlated with those of TM3 and TM6 (Fig. 6B). This
correlation was absent in the first 470 ns of the simulation. Thus, the re-
orientation of TM5 linked directly TM4 and TM5 to the TM3-TM6 helix
pair.

The principal component analysis (PCA) carried out on the Ca
atoms of the HoloO1 simulation highlighted the main conformational
motions in a few principal components or eigenvectors. In particular,
performing the PCA on the TM helices of the HoloO1 chain B (excluding
the long EC loops) together with the IL1 loop resulted in the first ei-
genvector containing 62% of the overall motions. The widest motion
involved the TM4-TM5 helices (Movie S3), which moved towards the
TM3-TM6 helix pair covering a long distance. In this process TM5 not
only translated towards the TM3-TM6 helix pair along with TM4, but it
also rotated towards the TM cavity as already described in the previous
paragraphs. This is accompanied by a smaller-scale reorientation of the
TM3-TM6 pair, resulting in a coordinated conformational change that
modulates the packing of the four-helix bundle against the TM3-TM6
pair. We then performed a second PCA including also the CTDs (Movie
S4). The first eigenvector collected 71% of the overall motions and
showed again the main contributions to the mobility given by TM4,
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Fig. 5. Top view of the HoloO1 chain B channel at 466 and 470 ns. L152 and
M197 are depicted as magenta sticks, water molecules are shown as thin sticks.
The residues forming the hydrophobic cluster are shown as green sticks. The
residues of the transport site coordinating the zinc(II) ion are indicated as cyan
sticks. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

TMS5 and the IL1 loop. In addition, a rotation of the CTDs was observed,
thus suggesting a connection between the CTD dynamics and the con-
formational changes recorded in the TM region of chain B. Notably, the
superposition of the TMDs of the final structures of Holo01 and Holo02
reveals that the two CTDs are tilted in opposite directions (Fig. S8A). In
fact, in both structures the CTD tilted towards the chain whose TM
cavity was inaccessible. The tilt was greater for the HoloO1 run than the
Holo02 run, possibly due to the presence of a zinc(II) ion bridging site B
(which is located on the IL1 loop) of chain A to the CTD, observed only
in HoloO1.
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Fig. 4. Hydrophobic gate regulating the access to the TM cavity from the IC space. The distances are measured between the Cy of L152 and the Ce of M197 in both the
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3.2. Simulation of YiiP in the absence of zinc(Il) ions

The No-zinc simulation was performed without zinc(II) ions in so-
lution for a time sampling of 1 ps. We are aware that using the structure
of holo-YiiP as the starting point of the No-zinc run could be far from
the correct conformational ensemble sampled by apo-YiiP. Indeed, in
this simulation the global structure experienced larger fluctuations than
in the Holo-simulations (Fig. S1). However, the main goal of this si-
mulation was to investigate whether the conformational changes fea-
tured in the holo simulations are zinc-dependent. To reach this goal we
exploited the unique feature of molecular modelling that permits the
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simulation of non-physiological conditions. Thus, in this simulation a
force was applied to prevent the sodium(I) and chloride(I) ions access in
the TM cavities, so that the cations could not induce conformational
effects similar to zinc(II), while preserving the physiological pro-
tein-sodium chloride interactions in the remaining regions of the pro-
tein.

To compare with the previous trajectories, we measured the dis-
tances of TM3 (190) from TM1 (A20), TM2 (D49), TM4 (I1130), TM5
(L152) and TM6 (M197) as a gauge of the accessibility of the TM cavity
(Fig. S9). For chain A, the profile is similar to that observed for chain B
of the HoloO1 run, consistent with high accessibility of the cavity (Fig.
S9A). On the contrary, TM5 in the chain B sampled shorter distances
corresponding to the partially accessible or, for short time intervals,
inaccessible cavity (Fig. S9B). In accord to this scenario, the L152-M197
distance sampled high values for the chain A and intermediate values
for the chain B (Fig. S10). By superimposing the TMDs of the final
conformations of the Holo0O1 and the No-zinc runs, it became apparent
that also in this case the CTDs tilted towards the chain whose cavity is
inaccessible (chain A of Holo0O1 and chain B of No-zinc) (Fig. S8B).

3.3. Umbrella simulations

The Holo01 simulation provided us a detailed view of the zinc(II)
interactions along the pathway for diffusion towards the transport site.
This information can be used to perform a so-called umbrella simula-
tion to derive the free-energy barrier encountered by the ion. The metal
dependency of the energetic barriers can be estimated by replacing the
zinc(I) ion with other metals. Thus, we performed three umbrella si-
mulations using a zinc(II) or sodium(I) ion as probe on the inward-
facing state. The two zinc runs exploited the same starting conforma-
tion extracted from the unbiased HoloO1 run when the metal ion is
located at the entrance of the TM cavity of chain B (corresponding to
0A in Fig. 7). Instead, the sodium run started with the ion placed some
angstroms away from the channel entrance. The more distant starting
point of the sodium(I) than zinc(Il) runs is motivated by the fact that
there is no evidence in the literature that sodium can enter YiiP. Thus,
measuring the energetic barrier of the metal approach to the channel
entrance can be relevant. The highest free-energy barrier encountered
when moving from the cytosol to the transport site was similar for both
metal ions (Fig. 7). In correspondence of the energetic minima, the two
metal ions interacted with the same residues (Fig. S11). In particular,
the coordination of the zinc(II) ion is the same as in the unbiased
Holo01 simulation, with the carboxylates of D150 and D49 interacting
with the metal (Fig. S11A). Instead, the energetic profiles when going
from the transport site to the EC space differed significantly between
the two metals. The sodium(l) ion free-energy increased only slightly
before reaching the top of the channel. Instead, in the two zinc(II) runs
we observed a dramatic energy increase when detaching from D157 in
the transport site to move to the top of the channel. In summary, the
inward-facing conformation favored the entrance of the cations in the

Fig. 7. Free-energy profiles of the zinc(I) and sodium(I) ions
crossing the TM cavity. The channel entrance from the IC is
aligned at 0A. The main binding residues are reported.
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TM cavity and their translocation to the transport site. Here, the co-
ordination environment of the zinc(I) ion is well defined; similar in-
teractions with the protein have been observed also for the sodium(I)
cation. In the process of release from the transport site, the zinc(II) ion
experienced a dramatically high energetic barrier, which effectively
prevents its free diffusion from the channel to the bulk solution. This
suggests that a significant conformational rearrangement is needed to
lower the energetic barrier for the exit of the zinc(II) ion. Interestingly,
there is a comparatively much lower barrier for the release of the so-
dium(I) ion, indicating that the interactions of the latter within the
transport site are somewhat weaker, albeit structurally similar, than
those formed by the zinc(II) ion. This can be ascribed to the higher
charge of the zinc cation.

4. Discussion

The main force that drives the zinc(II) ions towards the YiiP protein
channels is electrostatic attraction. Indeed, the YiiP transporter has
three negatively charged residues located at the entrance of the TM
cavity: E79 on TM3, D150 on TM5 and E200 on TM6. In our holo-
simulations the zinc(II) ion permeating the TM cavity bound to D150 or
D150 and E79. In particular, the simultaneous interaction with both
D150 and E79 occurring in the Holo02 run blocked the metal ion at the
TM cavity entrance for the entire simulation. Instead, in the HoloO1 run
the metal ion interacted initially only with D150, allowing it to sub-
sequently reach the transport site. We thus postulated that the zinc(II)
interaction with two negative charges generated a very high energetic
barrier preventing the ion from moving deeper in the channel and also
inhibiting the rearrangement of TM5. We tested this hypothesis by
mutating E79 to alanine. In the E79A mutant, the zinc(II) ion previously
blocked at the entrance of the TM cavity reached the transport site as
seen in the HoloO1 simulation (Fig. S4). Notably, the human homologs
of YiiP lack D150, which could result in a similar effect of lowering the
energetic barrier for the diffusion of zinc(II) within the channel while
preserving the negative electrostatic potential needed for attracting the
ions from the IC space [44]. Indeed, the energetic profile of Fig. 7 in-
dicates that once the metal ion has reached the entrance of the TM
cavity, its translocation to the transport site encounters modest barriers.
Electrostatics is, based on our energetics calculations, a crucial factor
also in preventing the free diffusion of the metal ion from the transport
site towards the EC space in the inward-facing state of YiiP.

The possibility for the zinc(II) ion to enter the TM cavity from the IC
space is related to the accessibility of the TM cavity delimited by the
four-helix bundle (TM1, TM2, TM4 and TM5) and the TM3-TM6 helix
pair. It has been proposed that the dynamics of TM5 with respect to the
TM3-TM6 helix pair is the main factor in modulating the access to the
transport site [31]. Our Holo simulations demonstrated a tight corre-
lation between the motion of helices TM5 and, to a lesser extent, TM4
and the presence of water molecules in the TM cavity. The TM helices
sampled short distances in the chains not permeated by zinc(II) and had
low solvation, corresponding to a closed configuration. Instead, the
chains whose TM cavity was permeated by zinc(II) displayed a relevant
increase of the distance between the TM4-TMS5 pair and the TM3-TM6
pair at the beginning of the simulation (open configuration); this was
accompanied by relatively high hydration of the channel (Figs. 2 and
3). After the zinc(II) ion reached the transport site by binding to D49,
TM4 and TM5 slowly closed the gap with the TM3-TM6 helix pair. In
parallel, the number of water molecules in the cavity gradually de-
creased. Then, a rapid conformational change took place that put TM5
in close contact with the TM3 making the TM cavity inaccessible from
the IC space. The rearrangement of TM5 involved also a motion of TM4,
so that the whole structural change can be described as the four-helix
bundle achieving a tighter packing against the TM3-TM6 pair. In our
Holo01 and Replica01 simulations, this led to the formation of a hy-
drophobic gate between L152 and M197 (Figs. 4 and 5). This process
was highlighted by X-ray-mediated hydroxyl radical labeling
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measurements, leading to the suggestion that the hydrophobic gate is
responsible for the regulation of zinc(Il) access to the TM cavity [31].
Our simulations support this view.

In all Holo runs, including the E79A mutant, we found only one of
the two available TM cavities was accessible, whereas the other was
totally or partially inaccessible. Therefore, the usual symmetric re-
presentation of the YiiP transporter does not match the dynamics
sampled by our simulations. The open cavity was the one permeated by
the zinc(II) ion. In the simulation without zinc(II) ions both chains were
in an open or partly open configuration. Thus, it is possible that the
binding of zinc(Il) initially stabilizes the chain in the open configura-
tion while the other chain rearranges to the closed configuration.
Subsequently, when the zinc(II) ion reaches the transport site also the
first chain reorganizes to reach the closed configuration.

Based on X-ray-mediated hydroxyl radical labeling measurements,
it was suggested that zinc(II) binding at the transport site with tetra-
hedral coordination geometry is the crucial event to trigger the con-
formational change of TM5 [31]. In particular, it was hypothesized that
this rearrangement would cause the TM cavity to close in the portion
facing the IC while opening towards the extracellular side in a sort of
alternating mechanism. Here, in the HoloO1 and Replica01 simulations
YiiP underwent a wide conformational change that caused the closing
of the TM cavity upon zinc(II) binding at the transport site. To achieve
this, it was sufficient for the zinc(II) ion to reach a stable interaction
with only D49 of the transport site, suggesting that tetrahedral co-
ordination is not essential to trigger the reorientation of TM5. Only in
the E79A simulation we could observe the coordination sphere of the
zinc(1I) ion in the transport site achieve a geometry very similar to the
tetrahedral geometry of the outward facing configuration. Intriguingly,
this event was accompanied by other smaller-scale structural changes,
which allowed a second zinc(II) ion to approach the site from the EC
side of the protein. This observation is in line with a recent experi-
mental work suggesting that a conformation of the transporter where a
persistent dimer interface is combined with an inaccessible intracellular
cavity and an accessible extracellular cavity is able to transport zinc(I)
across the membrane [29]. Overall, our simulations and the latter ex-
perimental data indicate that the four-helix bundle rearranges with
respect to a static TM3-TM6 helix pair scaffold, in a rocking-bundle
mechanism common also in other active transporters as LeuT [45,46].
This mechanism was apparent in the conformational dynamics sampled
in the HoloO1 run (Movie S5), even though the simulation length is very
short compared to the estimated timescale of the overall zinc(II)
transport process [23,47]. Furthermore, our umbrella simulations
showed that the IC-facing conformation permitted the translocation of
zinc(Il) to the transport site but not its release. Thus, we can postulate
that a further conformational change involving at least the TM helices
harboring the zinc(I)-binding residues (TM2 and TMS) is needed to
lower the free-energy barrier of the zinc(II) release process [44].

In conclusion, our simulations combined with the available struc-
tural and experimental data on YiiP provide an atomistic view of var-
ious steps of the transport mechanism involving the inward-facing
conformation. First of all, we observed that during zinc(II) transport the
symmetry of the YiiP dimer is lost, with the channels in the two chains
consistently featuring a significantly different accessibility. Zinc(II)
permeation within the TM cavity of one chain is sufficient to trigger the
compaction of the four-helix bundle and the TM3-TM6 helix-pair in the
TMD of that chain. After the zinc(Il) ion fully enters the transport site
further structural changes may put the site in communication with the
extracellular space without achieving a full transition of the outward-
facing state. Nevertheless, our energy calculations suggest that there is
a substantial energetic barrier preventing the release of the ion from the
coordination environment in the transport site. Our data do not allow
us to evaluate how this barrier is eventually removed, an event which
may be combined with the proton antiport performed by YiiP.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbagen.2019.06.001.

Chapter 3 — Results

159



D. Sala, et al.

Acknowledgements

This work was supported by Consorzio Interuniversitario Risonanze
Magnetiche di Metallo Proteine (CIRMMP).

References

8]
[2]

[3

[4]

[5]

[6]

[7

[8]

91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

R.J.P. Williams, J.J.R. Frausto da Silva, The Biological Chemistry of the Elements:
The Inorganic Chemistry of Life, Oxford University Press, 2001,

W. Maret, Zinc biochemistry: from a single zinc enzyme to a key element of life,
Adv. Nutr. An Int. Rev. J. 4 (2013) 82-91, https://doi.org/10.3945/an.112.003038.
A. Krezel, W. Maret, The biological inorganic chemistry of zinc ions, Arch. Biochem.
Biophys. 611 (2016) 3-19, https://doi.org/10.1016/j.abb.2016.04.010.

J.L. Vinkenborg, T.J. Nicolson, E.A. Bellomo, M.S. Koay, G.A. Rutter, M. Merkx,
Genetically encoded FRET sensors to monitor intracellular Zn2+homeostasis, Nat.
Methods 6 (2009) 737-740, https://doi.org/10.1038/nmeth.1368.

C. Cubillas, P. Vinuesa, M.L. Tabche, A. Garcia-De Los Santos, Phylogenomic ana-
lysis of cation diffusion facilitator proteins uncovers Ni,*/Co,* transporters,
Metallomics. 5 (2013) 1634-1643, https://doi.org/10.1039/c3mt00204g.

B. Montanini, D. Blaudez, S. Jeandroz, D. Sanders, M. Chalot, Phylogenetic and
functional analysis of the Cation Diffusion Facilitator (CDF) family: improved sig-
nature and prediction of substrate specificity, BMC Genomics 8 (2007) 107, https://
doi.org/10.1186/1471-2164-8-107.

S. Barber-Zucker, B. Shaanan, R. Zarivach, Transition metal binding selectivity in
proteins and its correlation with the phylogenomic classification of the cation dif-
fusion facilitator protein family, Sci. Rep. 7 (2017) 1-12, https://doi.org/10.1038/
$41598-017-16777-5.

H. Zhao, D. Eide, The yeast ZRT1 gene encodes the zinc transporter protein of a
high-affinity uptake system induced by zinc limitation, Proc. Natl. Acad. Sci. U. S.
A. 93 (1996) 2454-2458, https://doi.org/10.1073/pnas.93.6.2454.

N. Grotz, T. Fox, E. Connolly, W. Park, M.L. Guerinot, D. Eide, Identification of a
family of zinc transporter genes from Arabidopsis that respond to zinc deficiency,
Proc. Natl. Acad. Sci. 95 (1998) 7220-7224, https://doi.org/10.1073/pnas.95.12.
7220.

R.D. Palmiter, L. Huang, Efflux and compar ion of zinc by I of
the SLC30 family of solute carriers, Pflugers Arch. Eur. J. Physiol. 447 (2004)
744-751, https://doi.org/10.1007/500424-003-1070-7.

L. Huang, S. Tepaamorndech, The SLC30 family of zinc transporters-a review of
current und ding of their biol 1 and pathophysiological roles, Mol. Asp.
Med. 34 (2013) 548-560, https://doi.org/10.1016/j.mam.2012.05.008.

0. Kolaj-Robin, D. Russell, K.A. Hayes, J.T. Pembroke, T. Soulimane, Cation dif-
fusion facilitator family: structure and function, FEBS Lett. 589 (2015) 12831295,
https://doi.org/10.1016/j.febslet.2015.04.007.

LT. Paulsen, M.H. Saier, A novel family of ubiquitous heavy metal ion transport
proteins, J. Membr. Biol. 156 (1997) 99-103, https://doi.org/10.1007/
5002329900192.

A. Salusso, D. Raimunda, Defining the roles of the Cation diffusion facilitators in
Fe®*/Zn** homeostasis and establishment of their participation in virulence in
Pseudomonas aeruginosa, Front. Cell. Infect. Microbiol. 7 (2017) 1-14, https://doi.
org/10.3389/fcimb.2017.00084.

E. Bafaro, Y. Liu, Y. Xu, R.E. Dempski, The emerging role of zinc transporters in
cellular homeostasis and cancer, Signal Transduct. Target. Ther. 2 (2017) 17029, ,
https://doi.org/10.1038/sigtrans.2017.29.

T. Kambe, Y. Yamaguchi-Iwai, R. Sasaki, M. Nagao, Overview of mammalian zinc
transporters, Cell. Mol. Life Sci. 61 (2004) 49-68, https://doi.org/10.1007/500018-
003-3148-y.

G. Grass, M. Otto, B. Fricke, C.J. Haney, C. Rensing, D.H. Nies, D. Munkelt, FieF
(YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and
relieves iron stress, Arch. Microbiol. 183 (2005) 9-18, https://doi.org/10.1007/
500203-004-0739-4.

Y. Wei, H. Li, D. Fu, Oligomeric state of the Escherichia coli metal transporter YiiP, J.
Biol. Chem. 279 (2004) 39251-39259, https://doi.org/10.1074/jbc.M407044200.
D.S. Parsons, C. Hogstrand, W. Maret, The C-terminal cytosolic domain of the
human zinc transporter ZnT8 and its diabetes risk variant, FEBS J. 285 (2018)
1237-1250, https://doi.org/10.1111/febs.14402.

R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent,
A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T.J. Hudson,

A. Montpetit, A.V. Pshezhetsky, M. Prentki, B.I. Posner, D.J. Balding, D. Meyre,
C. Polychronakos, P. Froguel, A genome-wide association study identifies novel risk
loci for type 2 diabetes, Nature. 445 (2007) 881-885, https://doi.org/10.1038/
nature05616.

G.A. Rutter, F. Chimienti, SLC30A8 mutations in type 2 diabetes, Diabetologia. 58
(2015) 31-36, https://doi.org/10.1007/500125-014-3405-7.

B. Yi, G. Huang, Z. Zhou, Different role of zinc transporter 8 between type 1 dia-
betes mellitus and type 2 diabetes mellitus, J. Diabetes Investig. 7 (2016) 459-465,
https://doi.org/10.1111/jdi.12441.

Y. Chao, D. Fu, Kinetic study of the Antiport mechanism of an Escherichia coli zinc
transporter, ZitB, J. Biol. Chem. 279 (2004) 1204312050, https://doi.org/10.
1074/jbc.M313510200.

Y. Wei, D. Fu, Selective metal binding to a membrane-embedded aspartate in the

1567

[25]
[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

38]

391

[40]

[41]

421

[43]

[44]

[45]

[46]

471

BBA - General Subjects 1863 (2019) 1560-1567

Escherichia coli metal transporter YiiP (FieF), J. Biol. Chem. 280 (2005)
33716-33724, https://doi.org/10.1074/jbc.M506107200.

M. Lu, D. Fu, Structure of the zinc transporter YiiP, Science (80-) 317 (2007)
1746-1748, https://doi.org/10.1126/science.1143748.

M. Lu, J. Chai, D. Fu, Structural basis for autoregulation of the zinc transporter YiiP,
Nat. Struct. Mol. Biol. 16 (2009) 1063-1067, https://doi.org/10.1038/nsmb.1662.
N. Coudray, S. Valvo, M. Hu, R. Lasala, C. Kim, M. Vink, M. Zhou, D. Provasi,

M. Filizola, J. Tao, J. Fang, P.A. Penczek, 1. Ubarretxena-Belandia, D.L. Stokes,
Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron
microscopy, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 2140-2145, https://doi.org/
10.1073/pnas.1215455110.

0. Jardetzky, Simple allosteric model for membrane pumps, Nature. 211 (1966)
969-970, https://doi.org/10.1038/211969a0.

M.L. Lopez-Redondo, N. Coudray, Z. Zhang, J. Alexopoulos, D.L. Stokes, Structural
basis for the alternating access hanism of the cation diffusion f: YiiP,
Proc. Natl. Acad. Sci. (2018) 201715051, , https://doi.org/10.1073/pnas.
1715051115.

Y. Shi, Common folds and transport mechanisms of secondary active transporters,
Annu. Rev. Biophys. 42 (2013) 51-72, https://doi.org/10.1146/annurev-biophys-
083012-130429.

S. Gupta, J. Chai, J. Cheng, R. D'Mello, M.R. Chance, D. Fu, Visualizing the kinetic
power stroke that drives proton-coupled zinc(Il) transport, Nature. 512 (2014)
101-104, https://doi.org/10.1038/nature13382.

N. Eswar, B. Webb, M.A. Marti-Renom, M.S. Madhusudhan, D. Eramian, M. Shen,
U. Pieper, A. Sali, Comparative Protein Structure Modeling Using MODELLER, Curr.
Protoc. Protein Sci, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2007, pp.
2.9.1-2.9.31, , https://doi.org/10.1002/0471140864.ps0209s50.

E.L. Wu, X. Cheng, S. Jo, H. Rui, K.C. Song, E.M. Davila-Contreras, Y. Qi, J. Lee,
V. Monje-Galvan, R.M. Venable, J.B. Klauda, W. Im, CHARMM-GUI membrane
builder toward realistic biological membrane simulations, J. Comput. Chem. 35
(2014) 1997-2004, https://doi.org/10.1002/jcc.23702.

S. Jo, T. Kim, V.G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface
for CHARMM, J. Comput. Chem. 29 (2008) 1859-1865, https://doi.org/10.1002/
jec.20945.

P. Li, B.P. Roberts, D.K. Chakravorty, K.M. Merz, Rational design of particle mesh
Ewald compatible Lennard-Jones parameters for + 2 metal cations in explicit
solvent, J. Chem. Theory Comput. 9 (2013) 2733, https://doi.org/10.1021/
ct400146w.

R. Gould, LR. Skjevik, A.A. Dickson, C.J. Madej, B.D. Walker, Lipid17: A
Comprehensive AMBER Force Field for the Simulation of Zwitterionic and Anionic
Lipids, (2018) In Prep.

J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, C. Simmerling,
ff14SB: improving the accuracy of protein side chain and backbone parameters from
ff99SB, J. Chem. Theory Comput. 11 (2015) 3696-3713, https://doi.org/10.1021/
jete.5b00255.

D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev,
C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation pro-
grams, J. Comput. Chem. 26 (2005) 1668-1688, https://doi.org/10.1002/jcc.
20290.

D.A. Case, LY. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E.I. Cheatham,

V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke,
A.W. Goetz, D. Greene, R. Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman,
T.S. Lee, S. LeGrand, P. Li, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz,
Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi,
D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling,

J. Smith, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao,
D.M. York, P.A. Kollman, AMBER 2018, (2018).

J.F. Nagle, Area/lipid of bilayers from NMR, Biophys. J. 64 (1993) 1476-1481,
https://doi.org/10.1016/50006-3495(93)81514-5.

R. Salomon-Ferrer, A.W. Gétz, D. Poole, S. Le Grand, R.C. Walker, Routine micro-
second molecular dynamics simulations with Amber on Gpus. 2. Explicit solvent
particle mesh Ewald, J. Chem. Theory Comput. 9 (2013) 3878, https://doi.org/10.
1021/ct400314y.

B. Roux, The calculation of the potential of mean force using computer simulations,
Comput. Phys. Commun. 91 (1995) 275-282, https://doi.org/10.1016/0010-
4655(95)00053-1.

M. Andrec, The Weighted Histogram Analysis Method (WHAM), Spring, 2010,
https://doi.org/10.1136/bm;j.39349.437442.43.

Y. Golan, R. Alhadeff, F. Glaser, A. Ganoth, A. Warshel, Y.G. Assaraf, Demonstrating
aspects of multiscale modeling by studying the permeation pathway of the human
ZnT2 zinc transporter, PLoS Comput. Biol. 14 (2018) e1006503, , https://doi.org/
10.1371/journal.pcbi.1006503.

G. Jeschke, A comparative study of structures and structural transitions of sec-
ondary transporters with the LeuT fold, Eur. Biophys. J. 42 (2013) 181-197,
https://doi.org/10.1007/500249-012-0802-z.

L.R. Forrest, G. Rudnick, The rocking bundle: a mechanism for ion-coupled solute
flux by symmetrical transporters, Physiology. 24 (2009) 377-386, https://doi.org/
10.1152/physiol.00030.2009.

Y. Chao, D. Fu, Thermodynamic studies of the mechanism of metal binding to the
Escherichia coli zinc transporter YiiP, J. Biol. Chem. 279 (2004) 17173-17180,
https://doi.org/10.1074/jbc.M400208200.

160



Supporting information

Supplementary figures

8 T
7
6
< s
Q
(g 4
e & Holo01 —— |
2 Holo02 —— |
Replica01 ——
1 No-zinc
0 | | _ E79A -
0.2 04 0.6 0.8 g
Time (us)

Figure S1. RMSD of the Ca atoms over
time.

Holo02

B

Figure S2. Final snapshot of
the holo02 simulation.

Chapter 3 — Results

161



Holo02

N
o

N
o

-
(4]

-
o

o

A

Distance from zinc(ll) ion (A)

o

02 04 06 08 1
Time (us)
Figure S3. Zinc(ll) interaction pathway in the TM cavity of chain A of the Holo02 run.

Distances were measured from the zinc(ll) ion to the Cy atoms of D49 and D150, to the
N& atom of H153 and to the C6 atom of E79.

E79A mutant
25 - —_—
| ml D49 ——
zinc(ll) ——
20 D45 ——
D157 ——

D150

-
(4]

-
o
T

o
T

o

Distance from zinc(ll) ion (A)

100 200 300 400 500 600 700 800
Time (ns)
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A149(TM5)-L152(TM5) and the side
chains of A83(TM3)-190(TM3)-
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Ce of M197 in both the protein chains.

Figure S11. Metal ions coordination at the energetic minimum of the corresponding
umbrella simulation. A) zinc(Il). B) sodium(l).
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34 Conclusions

My Ph.D. project contributed to the investigation on the role of metals in
metalloproteins conformational dynamics by performing MD studies on metal
transporters and by studying relevant biological processes as metal-coupled folding.
In so doing, different molecular dynamics approaches were implemented to get an
atomistic view of the molecular mechanisms under exploration.

Fist, our study on the small PfRd metalloprotein showed some difficulties in the
description of the metal-coupled folding not linked to the technological gap. The main
limitations were due to the partial accuracy of the classical force field describing the
metal binding. In fact, they do not take in account important effects such as metal
induced protonation/deprotonation, the polarizability, the charge transfer and
multiscale coupling. Furthermore, this is only part of the problem, the counterpart
regards the bias induced by the force field on the protein portion. In this regard, some
limitations affecting the force field quality are well-known, such as the description of
phenylalanine side chains. Other authors pointed out the importance of taking in
account also the unfolded proteins in the description of electrostatic and water
interactions. In this regard, the recent force fields CHARMM36m!** or a99SB-disp!®®
in combination with TIP4P-D showed excellent performances. However, significant
methodological work is still needed until unbiased metal-induced folding of
metalloproteins can be achieved.

We described the pH-dependent mechanism of iron release from human H-
ferritin. Based on the umbrella sampling simulations we could estimate the free-energy
profiles of the initial configurations. In conclusion, the positive charges on the side
chains of three His residues proved to be crucial to weaken the metal coordination by
compensating the negative charges of the Asp and Glu side chains inside the C3
channel. The illustrated pH-dependent process of iron discharge from ferritin might
help defining the role of the acidic environment of endosomes and lysosomes in
modulating iron release within these organelles. Encapsulation in endosomes was
proposed to be relevant for H-ferritin internalization via the TfR1 receptor and
therefore plays a role for the use of ferritin as a drug nanocarrier targeting cancer cells
overexpressing TfR1. The delivery of ferritin to lysosomes, instead, has been proposed

asakeyrole in controlling iron cellular homeostasis. The interplay between biomineral
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solubilization upon iron reduction and ferritin degradation at this level are not yet clear
and the observed cage-assisted release at low pH might also come into play.

The data collected in a following study showed that in presence of high amount
of Fe?" ions, the structure of the ferritin with arachidonic acid (ARA) is much more
stable than the protein alone. This might be due to the higher amount of negative
charged present in the ARA form of the protein or because ARA can play a proper
structural role inside the ferritin cage. Furthermore, it has been observed that ARA can
increase the initial rate of biomineralization'®, but is not clear how such effect is
produced. Our data suggested that ARA prevent the formation of some conformations
but promote the conformational selection of specific iron-bound configurations in the
nuclease site. This influence from the ARA could increase the initial rate of
biomineralization, decreasing the “range” of possible conformations to explore in
order to get to the actual conformation/s responsible for the biomineralization process.

In literature, the dimeric YiiP transporter was always depicted as a symmetric
antiporter, with the two channels either accessible or inaccessible. Instead, in our
simulations the two channels had always an alternating state, one accessible and the
other one inaccessible, with the CTD always tilted toward the channel inaccessible.
The Zn?* entrance in the cavity triggered the channel closing, through the TM4-TM5
motion. Then, the Zn?* binding on the transport site caused the reorientation of TM5
in turn forming the L152-M197 hydrophobic gate that prevented the water and ions
access from the cytosol. In conclusion, our results suggested a correlation between the
CTD tilted position and the conformational dynamics upon Zn?** binding at the
transport site. A defined communication pathway connecting the CTD to the TMD
could be significant not only in the switch between IF and OF states as previously
postulated, but also in the signal transmission between the two protein chains,
especially if the two channels have an alternating open/closed state and the dimeric
interface does not need to splay apart to transport Zn?* across the membrane, as

recently suggested®,
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Abstract: Available estimates indicate that 30-40 % of all pro-
teins need at least one metal ion to perform their biological
function. Therefore, they are called metalloproteins. The correct
biosynthesis of metalloproteins requires living organisms to be
able to cope with issues such as the limited bioavailability or
the potential cytotoxicity of several essential metals. Thus, orga-
nisms have developed complex machineries that guarantee the
proper intracellular concentration and distribution among com-
partments of each metal, i.e. metal homeostasis. To understand
how the different proteins responsible for metal homeostasis
carry out their function, it is necessary to investigate their
\three~dimensional (3D) structure and mobility at the atomic

=

level. Nuclear magnetic resonance spectroscopy is one of the
main experimental techniques providing this information. Com-
puter simulations of molecular dynamics (MD) complement ex-
perimental information by showing how the 3D structure fluc-
tuates over time and as a function of environmental conditions,
with the possibility of exploring a wider range of timescales
and conditions than usually amenable to experiment. Here we
review numerous applications of MD for the investigation of
the structure and dynamics of metalloproteins, and we also
mention some technical aspects related to the parametrization
of metals in commonly used force fields.

o

1. Introduction

30-40 % of the proteins encoded by the genome of most orga-
nisms are metalloproteins, i.e. their biochemical role depends
on the binding of at least one metal ion in vivo."? Conse-
quently, several metal ions are essential micronutrients. On the
other hand, many essential metals, especially from the d-block,
have limited environmental availability and are cytotoxic in
high amounts. These unfavorable properties required the devel-
opment of cellular mechanisms to control the uptake, storage
and excretion of metal ions in a selective manner. The mecha-
nisms underlying metal homeostasis maintain the appropriate
metal concentrations in the cytoplasm. In parallel, specific path-
ways for intracellular metal trafficking control the delivery of
the appropriate metal ion to metalloproteins and the distribu-
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tion of metal ions among sub-cellular compartments.2~! In par-
ticular, each metal ion has unique chemical and physical prop-
erties, so that metalloproteins use a specific metal ion to per-
form their function.!® By balancing the uptake, excretion, stor-
age, and intracellular distribution of metal ions, the intracellular
concentration of each metal is maintained at optimal levels.
This subtly regulated ensemble of processes is called metal
homeostasis. Defects in metal homeostasis or in its regulation
may lead to pathologic conditions.” Most cells respond to de-
pletion and repletion of metal ions in a metal-specific manner.
This suggests that the mechanisms of metal-dependent regula-
tion, metal transport and storage, and metalloprotein matura-
tion can discriminate the correct cofactor among other metal
ions.

Metal-responsive transcriptional regulators, also known as
metalloregulatory proteins or metal sensors, are crucial players
of metal homeostasis. Each regulator in this family recognizes
a specific metal ion or a group of metal ions within the cell.
Binding of the cognate metal to the regulator modulates its
DNA binding affinity and/or specificity, thereby linking the in-
tracellular concentration of the metal and gene expression lev-
els.[B-191 At the structural level, this happens by propagating the
rearrangements that take place within the metal binding site
to the other regions of the metalloregulator structure, thus in-
ducing a variation of protein structure and/or dynamics. In turn,
the latter variation affects the affinity of the protein for DNA.
The effect of this chain of events on gene expression depends
on the specific metal sensor. Ultimately, this typically leads to a
significant up- or down-regulation of the production of a vari-
ety of proteins involved in metal usage or metal homeostasis,
from metal-dependent enzymes to metal-transporting and
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metal-storage systems.''"'3! Moreover, some metalloregulators
act on processes beyond metal homeostasis, such as the re-
sponse to oxidative stress or acid adaptation.*'415)

In this review, we will address explicitly, among other metals,
iron and zinc metabolism. Iron is the most abundant trace ele-
ment in the human body and is essential to all forms of life
and participates in fundamental biological processes, such as
photosynthesis, respiration and nitrogen fixation.'®! Its most
relevant oxidation states in vivo are +2 (ferrous) and +3 (ferric).
Higher oxidation states appear transiently during the catalytic
cycle of some iron-dependent enzymes. Iron-dependent pro-
teins may bind individual ions but also complex iron-containing
cofactors, such as heme or iron-sulfur clusters. The use of these
different cofactors is related to the environmental niche occu-
pied by the organism, with iron-sulfur clusters being among
the most ancient from the evolutionary point of view.['”! Zinc
is the second most abundant trace metal in the human body;
approximately 10 % of all human proteins require zinc.'® Ac-
quisition and efflux of zinc ions are mediated by a number of
specific systems that transport zinc across the biological mem-
brane. Human zinc transporters can be divided into two main
families: (i) zinc uptake proteins (ZIP/SIc39)""®! and (i) CDF (Cat-
ion Diffusion Facilitator) proteins for zinc export from the cyto-
plasm (ZnT/SIc30).1'3 ZnTs transfer zinc ions from the cytosol to
intracellular compartments or outside the cell. On the contrary,
ZIPs raise the cytosolic concentration of zinc.

Knowledge of three-dimensional (3D) structure and dynam-
ics are crucial to understand the function of biological systems.
The NMR or X-ray structure of a protein describes the conforma-
tion corresponding to the global (or sometimes a local) energy
minimum. Nevertheless, higher energy conformations can con-

tribute significantly to the protein function, thus introducing a
relationship to protein mobility.22" Molecular dynamics (MD)
simulations provide a convenient way to obtain an atomic-level
view of the mobility of proteins. Indeed, computational ap-
proaches based on MD simulations have become a precious
tool to acquire detailed insights on biological systems.?223 MD
simulations solve Newton's equations of motion for a system of
N interacting atoms: Equation (1).

%r;

mSE=F; i=1,N a)

where m;, r; and F; are the mass, the position and the force
acting on the j-th atom, respectively. Because of the number of
atoms typically involved in these systems, MD simulations are
performed with the use of classical additive potentials [force-
fields, V (ry,...ry)]1, which are functions of the atomic positions
only:

Equation (2) is integrated in small time steps, providing an
atomistic view of the evolution of the system over time (the
so-called trajectory). By analyzing the trajectory after its initial
“equilibration” phase, during which e.g. water molecules and
ions redistribute around the macromolecular system, the mac-
roscopic properties of interest can be extracted from the simu-
lation.
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Here we describe selected applications of MD to the investi-
gation of metalloproteins. We also mention some technical diffi-
culties associated with MD simulations of metalloproteins, fo-
cusing on the parametrization of the metal site.
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2. Determination of the 3D Structure of
Metalloproteins

2.1. NMR-Based Structure Determination of
Metalloproteins

The biological function of metalloproteins is intrinsically tied to
the properties of the bound metal ion(s), defined by its coordi-
nation chemistry. Therefore, the characterization of the metal
coordination environment (number and types of ligands, geom-
etry of the donor atoms) are a crucial part of the structure
determination process for metalloproteins. The use of NMR-ac-
tive metal nuclei to observe directly protein-metal interactions
is feasible only for a handful of metals. In this regard, NMR
studies of '°’Hg and ''3*Cd have been particularly instructive,
thanks to the information provided both by the chemical shifts
of these nuclei when bound to proteins with respect to those
observed in model compounds and by the measurement of the
coupling constants between the NMR active metals and the
protein nuclei ("H/'°N/'3C). Unfortunately, many biologically in-
teresting metals are not suitable for direct study by NMR, e.g.
because the nuclear spin is greater than 1/2 (e.g. “*Ca, ©7Zn)
or because they harbor unpaired electrons in their biologically
relevant states (e.g.,, Mn?*, Cu?*). In fact, '"3*Cd has been used
also as an NMR-active replacement for other metals, mostly
Zn.24

For proteins binding diamagnetic metal ions, the NMR chem-
ical shifts of protein nuclei can afford information on the metal
environment. For instance, the chemical shifts of the '*Cf nuclei
of zinc-bound cysteines (ca. 34 ppm) are significantly higher
than all other cysteines (ca. 27 ppm). This permits the identifica-
tion of zinc-bound cysteines.?® While the above is mainly a
through-bond effect, metal binding always induces variations
in the chemical environment of the residues involved in metal-
binding as well as of their spatial neighbors, giving rise to
changes in the NMR chemical shifts of their nuclei. By mapping
these chemical shift perturbations on the protein structure, it
is possible to evaluate the affinity and stoichiometry of metal
binding. Besides metal binding, chemical shift mapping is
routinely exploited to investigate protein-ligand as well as pro-
tein—protein and protein—nucleic acid interactions. As an exam-
ple, this approach enabled the characterization of the binding
of diamagnetic Cu* to the soluble domains of intracellular cop-
per shuttle,2%27] as well as to study metal-mediated formation
of heterodimers based on simple titrations followed via 'H-">N
HSQC NMR spectra.28291 However, it is difficult to use chemical
shift mapping to define the 3D structure of a metalloprotein
at atomic detail. In practice, NMR structure determination of
metalloproteins typically relies on SAXS measurements or alter-
natively X-ray crystallography to define accurately the ligand
geometry around the metal ion(s).*% With this information
available, the structure determination of a metalloprotein con-
taining a diamagnetic metal ion does not differ significantly
from the routine procedure used for any protein. It has been
shown that quantum mechanical/molecular mechanical (QM/
MM) molecular dynamics simulations restrained by NMR-de-
rived data permit the refinement of the zinc coordination in
protein structures even in the absence of X-ray or SAXS infor-
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mation.®" However, the technical complexity of such an ap-
proach practically prevents its widespread application. Indeed,
for the majority of currently available NMR structures of zinc-
proteins, zinc-donor atom distances as well as bond angles in-
volving the metal ion have been taken directly from libraries or
based on available force field parameters (see section 5).

For metalloproteins containing paramagnetic metal ions, ad-
ditional structural information is provided by the interaction
between the NMR-active nuclei of the protein and the unpaired
electron spin density on the metal.??! This interaction affects
the NMR spectra of the protein in a measurable way; these
measurements can be converted into so-called paramagnetic
restraints, to be used together with traditional restraints for
NMR-based structure determination. A distinct advantage of
paramagnetic restraints is that they are long-range in nature
(i.e. they involve residues that are distant in protein sequence).
Thanks to the higher magnetic moment of the electron, elec-
tron-nucleus interactions can be appreciable at much greater
distances than nucleus-nucleus interactions. Thus, para-
magnetic effects can provide structural restraints at distances
up to ca. 40 A from the metal site.33! The most exploited para-
magnetic restraints are derived from the enhancements of nu-
clear relaxation rates (typically called paramagnetic relaxation
enhancements, PREs) and pseudocontact shifts!3234-361 (PCSs).
In metalloproteins, one can exploit Solomon's law*”:8 to con-
vert the measured PREs into nucleus-metal distance restraints,
which are then added to the list of the usual NMR-based inter-
nuclear distance restraints.>% The electronic properties of the
paramagnetic metal ion are treated as an effective constant that
can be calibrated against an initial structural model. The treat-
ment can be slightly more complex if the protein binds multiple
metal ions with different electronic properties, as in the case of
some iron-sulfur proteins. In this case, the PRE-based restraints
are handled as a weighted average of the inverse sixth power of
all the nucleus-metal distances.®! The use of PCSs as structural
restraints requires the determination of the magnetic suscepti-
bility anisotropy tensor (Ay) of the paramagnetic metal ion, by
fitting the experimental PCS data to an initial structural
model.*"2 This initial model is then refined against the PCS
restraints, together with all other available restraints, and used
to re-evaluate Ay, in an iterative fashion. It has been necessary
to introduce specific routines in the structure generation pro-
grams to allow the use of PCS restraints."**-%* There are various
approaches to introduce lanthanide ions in proteins, such as
the replacement of Ca?* ions in calcium-binding proteins334¢!
and the chemical attachment of so-called lanthanide binding
tags to proteins.’°%! Thanks to the diverse number of un-
paired electrons in the lanthanide series, different lanthanide
ions induce different PCSs. This allows to produce multiple sam-
ples each with a different lanthanide ion and then combine
the corresponding PCS data. This approach affords structural
information within multiple shells at variable distances from the
metal ion.133]

Paramagnetic restraints typically cannot be used to deter-
mine the coordinates of the nuclei of the protein residues that
coordinate the paramagnetic metal ion. This is caused either by
the very strong paramagnetic broadening of their NMR signals,
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which makes them undetectable, or by their chemical shifts
resulting from the sum of PCSs and contact shifts, which can
be difficult to separate with sufficient accuracy. However, if the
Ay is negligible, the contact shifts experienced by the nuclei of
the coordinating residues can sometimes be exploited to
obtain dihedral angle restraints, e.g. for iron-sulfur clusters in
ferredoxins.>"!

2.2. Molecular Dynamics for the Refinement of
(Metallo)protein Structures

Usually, NOE-derived distance restraints provide the bulk of the
information for NMR-based macromolecular structure determi-
nation. In addition, dihedral angle restraints, commonly ob-
tained from chemical shifts,®? residual dipolar couplings
(rdc's),*3! and paramagnetism-based restraints®? can be used.
All the available restraints constitute the input for the simulated
annealing calculations that generate the 3D structure of the
macromolecule of interest. After simulated annealing, a so-
called structure refinement step is performed to improve the
quality of the final NMR structure, especially from the energetic
point of view. Such refinement is often based on MD calcula-
tions with state-of-the-art force fields and explicit or, some-
times, implicit water.>*-58 Other possible approaches are based
on structure rebuilding'®® or statistical potentials.®® Structure
refinement can improve significantly the structural quality, as
measured by stereochemical parameters. In addition, it can im-
prove the accuracy of the structure, as measured by the agree-
ment with the experimental data.®"®?! Unfortunately, some-
times these protocols can make errors in the NMR structures
less evident, especially in terms of the analysis of stereochemi-
cal parameters.[6364

In spite of the latter drawback, structure refinement in ex-
plicit solvent is now a routine practice within all projects of
NMR-based macromolecular structure determination. General
MD programs, such as AMBER®®! or GROMACS,®®! exploit con-
version tools to convert the restraints used by the simulated
annealing software to their own format. This is crucially needed
in order to maintain the structure consistent with all experimen-
tal data also during the energetic refinement procedure. Unfor-
tunately, such conversions are often not straightforward, e.g.
due to conflicting rules for atom naming. To address this issue,
we developed a web interface that greatly facilitates the setup
of MD-based structure refinement. Calculations are run over a
computational Grid infrastructure with many thousand CPUs.
By using a distributed computational infrastructure, users do
not have to rely on local PC clusters and enjoy a reduction of
the wall time needed to obtain their results thanks to paralleli-
zation. In fact, each conformer of the NMR bundle is refined
independently. This interface, which we called AMPS-NMRI67!
(AMBER-based Portal Server for NMR structures), is available
free of charge for academics at http://py-enmr.cerm.unifi.it/
access/index. The development of AMPS-NMR took place in the
context of the European FP7 project WeNMR.[%®! After taking
care of the conversion of restraints, AMPS-NMR automatically
implements a predefined multi-step protocol for structure re-
finement, so that the user does not need to know the intricacies
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of the various parameters to be adjusted in order to perform
an MD simulation. By exploiting the AMPS-NMR interface, the
user may obtain substantial improvements in the quality of his/
her NMR structure.®”) As of today, more than 450 users have
registered on the AMPS-NMR portal.

More recently we extended the functionality of AMPS-NMR
by enabling calculations also over a cluster of GPUs (graphics
processing units). GPUs provide a great speed-up of MD calcula-
tions,!%%! resulting, according to our benchmarks,”? of a 100-
fold time gain in the refinement of the NMR-based structure of
a small protein. Thus, calculations that require 12 hours on a
traditional Linux PC with a single CPU core can be performed
in less than 10 minutes on a GPU card. In addition, this develop-
ment enables computing longer unrestrained MD simulations
via the simple web interface of AMPS-NMR spectroscopy.

Another significant recent improvement was the extension
of AMBER to handle multiple PCS data sets. As described in
the previous sections, PCS are information-rich paramagnetic
restraints that can be measured when the protein binds a para-
magnetic metal ion. For lanthanide-substituted proteins it is
possible to measure multiple sets of PCS data by preparing dif-
ferent samples where a different member of the lanthanide se-
ries has been incorporated. These data sets can be used simul-
taneously to generate structural models, thanks to the incorpo-
ration of specific routines in different structure generation pro-
grams.*>71 However, it was only 2016 that we extended the
PSEUDOAMBER routines,”? enabling the energetic refinement
of such structural models in the presence of all available PCS
restraints”?! (also together with diamagnetic restraints, if any).
Our new extension implements a refinement protocol that is
finely tuned version of the AMPS-NMR standard protocol. Tun-
ing the previously developed protocol was necessary to obtain
consistent convergence with multiple PCS datasets.”3! This opti-
mized protocol allowed us to successfully refine the NMR struc-
ture of bovine calbindin Dgy using PCS data from multiple sam-
ples. In each sample, a different member of the entire series of
lanthanide trivalent cations (excluding the radioactive Pm>* and
the isotropic Gd**) was substituted into the C-terminal calcium-
binding site of calbindin.?*#%! This refinement yields an im-
provement of structural quality parameters comparable to that
of the standard AMPS-NMR protocol for diamagnetic proteins.
Interestingly, this new protocol allowed structures generated
without inclusion of PCS data among the restraints to be suc-
cessfully refined including the PCS restraints only at the MD
stage; this resulted in a satisfactory agreement with all experi-
mental restraints and high stereochemical quality.”?!

3. Molecular Dynamics Studies on Metal
Storage and Transport

A number of metal ions are essential to life. Other metal ions
are instead poisonous to living organisms, even when present
in the environment at very low concentrations. Sometimes, the
same element may be beneficial or noxious depending on spe-
ciation. Thus, the cell must control tightly the uptake and ex-
port of metals through efficient transporting systems. In addi-
tion, specific storage mechanisms allow the cell to calibrate the
intracellular concentration of metal according to needs.
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3.1. Ferritin and Iron

Ferritin plays a key role in the storage and transport of iron
ions.”# The main functions of ferritin are performed through
safe iron oxidation, which protects the cell from metal toxicity,
iron mineralization and finally controlled iron release for metal
incorporation into iron-containing systems. Ferritin stores iron
intracellularly, but it also circulates and binds specifically to dif-
ferent cell types. Binding of ferritin to Transferrin Receptor 1
(TfR1) on the cell surface triggers the uptake of ferritin into
endosomes, where the pH is in the 6.0-4.8 range, and in cellular
internalization via endocytosis.”*! From the structural point of
view, ferritin is a globular protein consisting of 24 subunits ar-
ranged to form a nanocage structure able to store up to 4300
iron ions. The 24-mer structure has an octahedral symmetry; it
self-assembles from the four-helix bundle subunits resulting in
an overall molecular weight of about 480 kDa. Three types of
subunits can be found in mammalian ferritins: H (FtH, heavy 21
ca. kDa), L (FtL, light, ca. 19 kDa) and the mitochondrial one
(FtMt, about 21 kDa) exclusively found in mitochondrial ferritin.
The sequence similarity among the subunits is high; neverthe-
less, only FtMt and FtH harbor the oxidoreductase site responsi-
ble of the oxidation of Fe2*.76! |nstead, the FtL chain contains
the nucleation site that can bind Fe** and catalyze the forma-
tion of the biomineral.””! At variance with homopolymeric mi-
tochondrial ferritin, the ratio of the two subunits in the cytosolic
protein can vary depending on the tissue and also under patho-
logical conditions.”® The main functions of ferritin are per-
formed through safe iron oxidation, which protects the cell
from metal toxicity, iron mineralization and finally controlled
iron release for metal incorporation into iron-containing sys-
tems.

Two different channels connect external environment and
the ferritin cavity at the C3 and C4 symmetry axes of the 24-mer
structure. The two channels have different chemical properties
related to their amino acidic composition. The hydrophobic C4
channel has a role in the diffusion of dioxygen and hydrogen
peroxide,”?! whereas the hydrophilic and negatively charged
C3 channel is responsible for the uptake of Fe?* due to the
favorable electrostatic field potential.®®®"1 The iron transport
from the external environment to the catalytic site has been
extensively studied in the past years; instead, the opposite proc-
ess, i.e. the release of biomineralized iron from the cage to the
bulk solution, is not totally clear. In vivo, the release process
is associated to cage disassembly,®? mainly due to lysosome
degradation!®3#4 but also the proteasomal pathway might be
involved.®>8¢ Importantly, an acidic environment is crucial for
iron extraction in both pathological and physiological condi-
tions.!8287:88] The pH dependence of the iron removal on human
H-ferritin has been recently measured in vitro.#>°° |n the pres-
ence of reductants, which are needed to reduce biomineralized
Fe3* to the more soluble Fe?* species, lowering the pH from
basic to acidic value increases the amount of iron ions released
in the bulk solution. We performed molecular modelling and
MD simulations to study the release mechanism of Fe?* ions
from human homopolymeric FtH ferritin (H-ferritin). The work
was focused on the structural and energetic differences be-
tween the process at pH 4 and pH 9, with the aim of under-
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standing the determinants of the enhanced Fe?* release in
acidic conditions. Thus, it was important to compute the
protonation state of titratable groups at pH 4 and pH 9; this
was done using the H++ server.® The AMBER package was
used for molecular dynamics (MD) simulations;!®> details on the
MD setup are given in Sala et al.*?

In our simulations, the Fe?* ions rapidly entered the C3 chan-
nels due to the electrostatic gradient going from the cavity to
the interior of the channels. The gradient is present at both pH
4 and pH 9. It is the result of two groups of residues making a
spatial cluster of negative charges inside the channel. The two
groups can be described as two rings of three residues each
from as many chains: the innermost (i.e. closer to the cavity)
ring made by three Asp residues and the most external one
made by three Glu residues. The negatively charged cluster of
carboxylates in C3 channels is surrounded by a number of hist-
idine residues with a different protonation state depending on
the pH of the simulation. At both pH 4 and 9, a single iron ion
reached a position between the two rings of carboxylates in
less than five nanoseconds of simulation.

From this point, the Fe?* ions diffused in the bulk solution
exclusively at pH 4, whereas at pH 9 they were immobilized
inside the C3 channels by the negative charges. Therefore, a
key role in the release process was played by the different pro-
tonation state of the titratable sites. In fact, the positive charges
on the His rings inside the C3 channels (His118, His128 and
His136) were crucial to weaken the iron coordination environ-
ment. This is presumably due to the compensation of the nega-
tive charges of the Asp and Glu carboxylate groups (Figure 1).
Further insights on the release process were provided by so-
called umbrella simulations, which are used to evaluate the en-
ergetic barriers derived from the potential of mean force (PMF)
along a reaction coordinate.!”® For ferritin, we simulated the
diffusion of the Fe?* ion within the C3 channels, along the tra-
jectory that we observed in unrestrained simulations. The um-
brella simulations highlighted two main features: first, the en-
ergy barrier of the Fe?* release process was higher at pH 9
than at pH 4. Second, the positions of the energetic minima
corresponding to the Fe?* binding site within the channel were
different between pH 4 and pH 9. At pH 4, the energetic mini-
mum is significantly closer to the end of the channel, denoting
a higher permeability of the channel in acidic than in basic
conditions. In addition, we performed an umbrella simulation
at pH 9 on a chimeric ferritin in which the His residues inside
the C3 channel were doubly protonated as at pH 4. This simula-
tion showed that the double protonation of His118, His128 and
His136 at pH 9 did not change the position of the energetic
minimum along the C3 channel. Instead, it greatly reduced the
energetic barrier preventing the Fe?* ion from leaving the bind-
ing site in the channel and diffusing into the bulk solution.
In summary, we demonstrated that the compensation of the
negative charges inside the C3 channel by the doubly proto-
nated His residues was a critical factor. However, it is only by
doubly protonating all the His of ferritin at pH 4 that the dy-
namic opening of the binding site could take place, resulting
in a significant shift of the Fe?* coordination site towards the
exit of the channel with respect to pH 9.
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Figure 1. The main steps allowing Fe?* exit from the human H-ferritin via the C3 channels at pH 4. Each chain has a different color; the yellow sphere
represents the Fe?*ion. The side chains of the most important residues along the pathway are represented as sticks. [A] Snapshot at 3.00 ns. Three Glu134
residues bind to the Fe?* ion. His128(A) is close to Glu134(C), favoring its subsequent detachment from the ion. (B) Snapshot at 3.63 ns. Glu134(C) points
toward the cavity of ferritin: its position allows the interaction with His136(A); the metal is now bound to two rather than three Glu134 residues. (C) Snapshot
at 19.05 ns. Prior to the release of the metal there is a reinforcement of the interactions between Glu134 and His118, affecting the coordination of Fe?*. (D)
Snapshot at 19.24 ns. Glu134 and His118 from chains A and B engage in two salt bridges; this triggers the exit of the Fe?* ion release from the channel.

Reprinted with permission from ref.'®¢! Copyright 2017 American Chemical Society.

3.2. YiiP and Zn?*

The YiiP transporter from Escherichia coli is a relatively well-
characterized member of the CDF (Cation Diffusion Facilitator)
family. All CDF transporters known so far use an antiport mech-
anism to export divalent cations.® Their architecture com-
prises a transmembrane domain (TMD) connected to a cytosolic
C-terminal domain (CTD). The high-resolution crystal struc-
ture®! (PDB 3H90) showed that YiiP is a homodimer with a
Y-shaped structure composed by twelve transmembrane (TM)
helices. The six TM helices from each monomer are grouped
into two bundles with four (TM1-TM2-TM4-TM5) and two
(TM3-TM6) helices, respectively. Each YiiP chain contains three
zinc-binding sites (A-C) but only sites A and C are conserved in
all CDF members. Site A (the transport site) is positioned near
the center of the TMD and constitutes the active site for zinc
transport. Sites B and C are in the loop connecting TM2 and
TM3 and at the CTD-CTD interface, respectively. The transport
site adopts a tetrahedral coordination geometry that involves
D45 and D49 of TM2 as well as H153 and D157 of TM5.1°¢! The
structure has four interlocking salt bridges, involving K77 of
TM3 and D207 of IL1, connecting the TMD and CTD regions.
The charge interlock among the four salt bridges determines
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the stabilization of the dimer and the positioning of the TM3-
TM6 bundle. The low-resolution cryoelectron microscopy struc-
ture of the YiiP homolog from Shewanella oneidensis (PDB 3J12)
provided a view of the inward-facing state.?”! It has been pro-
posed that this protein conformation allows the zinc ions to
bind the transport sites from the cytosol. The proposed mecha-
nism for this process is mediated by sites A and C. They are
connected through an allosteric mechanism by which a pertur-
bation in the CTD region can affect site A in the TMD region.
This connection is mediated by the aforementioned charge in-
terlock. In the proposed mechanism, zinc binding in the C site
induces a reorientation of the TMD helices, thus allowing access
to the transport site. Zinc binding in the transport site triggers
the switch from the inward-facing conformation to the zinc-
discharging outward-facing conformation. Diffusion of the Zn?*
ion to the A site depends on the accessibility to the hydropho-
bic cavity located in the TMD region facing the intracellular
space. Thus, the possibility to reach the transport site A is regu-
lated by the packing of hydrophobic residues belonging to
TM3, TM5 and TM6 helices. X-ray-mediated hydroxyl radical la-
belling and mass spectrometry data suggested that TM5 plays
a key role in gating water access to the TMD region through a
rigid-body motion that affects the orientation of the Leu152
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side chain, in turn modulating the access to the transport
site.[%8]

We investigated some of the latter aspects by performing
MD simulations of the inward-facing conformation in the pres-
ence of Zn?* ions in solution (0.150 m of ZnCl,). The transporter
was embedded in a DPPC lipid bilayer. In our simulations, one
of the zinc ions reached residues Asp49 and His153 in the trans-
port site, elucidating the pathway attracting the metal ion from
the cytosol to the TMD region. Zinc binding in the transport
site triggered the closing of the side of the TMD that faces the
cytosolic space. The motion of the TM1-TM2-TM4-TM5 helices
with respect to TM3-TM6 tuned the access to the TMD region;
an important contribution came also from the internal dynam-
ics of TM5. In particular, the rotation of TM5 affected the orien-
tation of the hydrophobic Leu152 side chain blocking the water
access to the cavity as proposed by Gupta et al.® (Figure 2).
In addition, umbrella sampling simulations were performed to
measure the free-energy profiles of zinc and sodium ions going
through the TM channel. In the inward-facing conformation
both metals have a favorable energetic profile to reach the
transport site. Asp49 and Asp150 provided the coordination site
corresponding to the energetic minimum. Only the sodium ion
was able to exit the channel with a reasonable energetic barrier,
demonstrating that the inward-facing conformation is suitable
for zinc access to the transport site but not for its release in the
bulk solution.

A

Figure 2. Closing of the TM cavity upon Zn?* ion binding on the transport
site of the YiiP antiporter. The orange spheres represent the Zn?* ions. The
residues coordinating the metal and Leu152 are represented as sticks. Leu152
is colored in yellow. The DPPC membrane surface is shown in gray. (A) Snap-
shot at 400 ns. The TM cavity is accessible from the intracellular (IC) space
and one zinc ion reached the transport site. (B) Snapshot at 1 ps. The access
to the transport site is closed from the IC space.

The case studies reported above define a common strategy
for the investigation of the diffusion processes of metal ions
using MD. The strategy can be resumed as follow: first, MD
unrestrained simulations are performed to collect information
about the diffusion pathways, the interactions of the metal ions
with the protein frame and the associated conformational
changes. Second, when the metal pathway of interest is identi-
fied, umbrella simulations provide the energetic barriers along
the process. Furthermore, a deeper description of diffusion
processes can be achieved by exploiting the unique possibility
provided by MD to easily build and investigate the behavior of
mutants or chimeras that can probe the role of specific inter-
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atomic interactions. In summary, the proposed strategy yields a
detailed atomic description of the mechanisms of metal ion
transport in turn helping the interpretation of low-resolution
structural data and physiological/biochemical data.

4. Molecular Dynamics Studies on Metal-
Responsive Transcriptional Regulators

In recent years, the resolution of several crystallographic struc-
tures of bacterial metalloregulatory proteins prompted the
study of their mode of action by using both experimental and
computational methods. In this section, we describe some re-
cent results obtained through the use of molecular modelling
techniques.

4.1. The DtxR Family

The DtxR family comprises metallosensors specific for the Fe?*
and/or Mn?* ions. They are metal-dependent repressors of tran-
scription. The metal ions are co-repressors that induce the inter-
action of the regulators with palindromic DNA regions up-
stream of the set of regulated genes!®®'%% (Figure 3A).

In 2007, Bhattacharya et al. studied the diphtheria toxin
repressor (DtxR) from Corynebacterium diphtheriae by using ato-
mistic MD simulations and ">N-NMR based relaxation measure-
ments.!"°" DtxR is the primary regulator of iron homeostasis,
oxidative stress resistance, and virulence in Gram+ bacteria.
DtxR is composed by two domains linked by a flexible proline-
rich (Pr) stretch: a large N-terminal domain responsible for iron
binding, dimerization, and DNA binding not considered in the
simulations, and a C-terminal domain with structural similarity
to eukaryotic SH3 domains. In the iron-bound (holo) protein,
the Pr stretch associates with and stabilizes the N-terminal do-
main helices that constitute the dimer interface. In the metal-
free (apo) protein, the Pr stretch is in contact with the SH3
domain, resulting in an intramolecular complex!'®? (Pr-SH3)
stabilizing the monomeric form of the protein. In both forms,
the dynamics of the SH3 domain featured ordered secondary
structures with high generalized order parameters and low ef-
fective correlation times. Instead, the amino acids of the loops
connecting the P-strands featured reduced generalized order
parameters, with extra motional terms needed to correctly
model the relaxation rates. The amino acids in the Pr region
had low order parameters and long effective correlation times.
In addition, the SH3 domain exhibited motions on the ms time
scale, whereas the Pr region showed motions on the 0.1 ms
time scale. The MD simulations conducted on the Pr-SH3 com-
plex, the SH3 domain and the Pr region highlighted structural
changes that could provide a contribution to the observed re-
laxation rates. This might indicate that the Pr region is involved
in a binding-unbinding equilibrium. However, the absence of
the metal binding N-terminal domain in the simulations pre-
cluded the possibility of a complete picture of the molecular
mechanism of action of DtxR.

In 2015, Ghosh et al. published an extensive study of IdeR
from Mycobacterium tuberculosis,'®*! another member of the
DtxR family binding up to two Fe?* ions per monomer. The IdeR
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Figure 3. Crystal structures (A, B) and model structure (C) of the metal sensor/DNA complex of DtxR, NikR and Fur, respectively. The metal sensors are reported
as ribbons colored from blue to red going from the N- to the C-terminal. Metal ions are depicted as spheres colored accordingly to the atom type. The DNA
double strand is reported as light blue and orange ribbons. PDB code: 1COW and 2HZV for panel A and B respectively; in panel C is reported a model complex

from refl24

monomer contains three domains: the DNA binding domain
(DBD), the dimerization domain (DD), and the SH3-like domain
(SH3). While the function of the DBD and DD domains is rela-
tively clear, the role of the SH3-like domain is still object of
debate. Two monomeric subunits form a dimer that binds to
DNA, mainly via the DNA-binding helices. Two IdeR dimers bind
to opposite sides of a 19 base-pairs-long conserved DNA se-
quence (the “iron box"1'%4193)) resulting in a dimer-of-dimer
complex. The authors performed atomistic MD simulations in
explicit solvent of several systems in different metallation states
and without or with DNA. The parametrization of the Fe?* cen-
ters were conducted by using the Metal Center Parameter
Builder!'° (MCPB). The simulations were integrated with pro-
tein structure networks to characterize the impact of Fe?* bind-
ing on the 3D structure and function of the metalloregulator. A
significant structural variation between the apo and the holo
systems was observed. In particular, the simulations suggested
that Fe?* improves the stability of the monomeric subunit,
which in turn enhances dimerization. By simulating the dynam-
ics of the IdeR-DNA complex without Fe?*, the authors were
able to observe the unbinding of the protein subunits from the
DNA after 100 ns of simulation. Moreover, Fe?* acts as an allo-
steric regulator of IdeR that enhances the formation of the com-
plex between the metalloregulator and DNA.

4.2. NikR

NikR regulates the expression of genes encoding proteins in-
volved in nickel metabolism.197:1%8] About 30 species of bacte-
ria and archaea are known to have NikR homologs. The Ni®*-
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bound form of the protein represses the nikABCDE operon,
which encodes an ABC transporter responsible for selective Ni**
uptake.[9%11% Moreover, NikR from Helicobacter pylori is a pleio-
tropic regulator of several genes. Among its nickel-dependent
roles, it functions as a repressor of H. pylori NikR itself and of
the Ni** permease NixA, and as a promoter of the expression
of urease.'"")

NikR™ has a homodimer-of-homodimer structure, which can
be regarded as an ensemble of three domains (Figure 3B). The
first one is the central metal-binding domain (MBD), involving
the C-terminal portion of the four monomers forming the qua-
ternary structure of the protein. The MBD harbors four regula-
tory metal-binding sites symmetrically located at the tetrameri-
zation interface. The coordination geometry around each Ni®*
ion is square planar, with three fully conserved His and one Cys
residues coordinating the metal. This geometry is maintained
also thanks to the ligand field stabilization of the d® Ni%* ion
The network of hydrogen bonds around the metal-binding site
is the likely means through which the occupancy of the metal
site modulates the overall structural and dynamic behavior of
NikR. The MBD is connected to two peripheral DNA-binding
domains (DBD) by flexible linkers. Each DBD is formed by the
N-terminal portions of two monomers of the metallosensor and
contains a ribbon-helix-helix motif, as often encountered in pro-
karyotic transcription factors.''? The available crystal structures
of NikR showed that this metallosensor can adopt three alterna-
tive conformations: open, trans, and cis, differing because of the
relative position of the DBDs with respect to the MBD. The crys-
tal structure of the NikR-DNA complex from Escherichia coli
demonstrated that the cis conformation of the holo sensor can
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bind DNA!"'3! (Figure 3B), a result confirmed also by a computa-
tional model built on the basis of chemical shift perturbation
data.114

Atomistic MD simulations of apo NikR from E. coli identified
a number of residue interrelationships that constitute an allo-
steric communication pathway between the metal- and DNA-
binding sites, which are as far as 40 A.l''$! Additional atomistic
MD calculations in implicit solvent are available for NikR from
Pyrococcus horikoshii in the apo-open, holo-trans, and apo-trans
forms.[''® The analysis of these three 100 ns-long simulations
highlighted a slow conformational kinetics and independent
motion of the DBDs. A noticeable relationship was observed
between structurally and biological important regions. Finally,
also the effect of Ni** on DNA binding by H. pylori NikR has
been studied using several atomistic MD simulations in explicit
solvent together with experimental data from solution NMR
spectroscopy. The protein was simulated in the apo, 2Ni**-
bound and 4Ni**-bound forms and starting from all the possi-
ble NikR conformations.''”! From these simulations it appears
that both apo- and holo-NikR exist in solution as inter-convert-
ing conformations sampling the whole space from the cis to
the open to the trans conformations observed in the crystal.
Metal binding does not result in the stabilization of the cis con-
formation that has high affinity for DNA. Rather, it enhances the
relative dynamics of the DBDs with respect to the MDB. These
results support the view that the binding of the metallosensor
to its operator DNA is mediated by conformational selection
together with an induced fit mechanism assisted by the coordi-
nation of the metal."'”) In the latter two studies, the Ni* bind-
ing site was modelled through a bonded approach.''%117]

4.3. The MerR Family

Metallosensors belonging to the MerR family are activators in
their holo-forms. They induce the expression of genes coding
for proteins involved in metal export and detoxification.!'* The
MerR family includes metal sensors able to bind monovalent or
divalent cations.) Members of the MerR family bind their DNA
operator sequences regardless of the presence of the metal and
activate gene expression at low metal ion concentrations.

In 2010, Guo and co-workers studied the archetypal member
of this family, MerR from Shigella flexneri, upon Hg?* bind-
ing."'® |n particular, the authors performed 50 ns-long atomis-
tic MD simulations in explicit solvent on the model structure

of the apo and holo forms of the protein. The Hg?*-binding
site was modelled by the Automatic Frequency Matching
Method'? and potential energy scanning to parameterize the
potential function from quantum chemical calculations for the
metal in a trigonal-planar environment. The structure was pre-
dicted to be an all-alpha homodimer formed by six a-helices.
Helices a1 and @2 constitute the DBD, and helices a3 and a4
comprise the “coupling domain” (CD). The CD mediates the
communication between the Hg?*-binding site and the DBD.
The dimerization interface is constituted by an anti-parallel
coiled coil dimer involving helix «5; two Hg?*-binding sites are
located at the two ends of the dimer. The simulations, corro-
borated by SAXS data, revealed that the average torsional angle
between the DBDs is about 65°. The interdomain motions occur
on a timescale of ca. 10 ns and involve domain opening-and-
closing movement, together with changes of the torsional an-
gle between the DBDs. This correlated motion may propagate
from the Hg?*- to the DNA-binding site.l''®!

4.4. The ArsR/SmtB Family

The ArsR/SmtB family is the most widespread group of known
metalloregulators. It includes over 500 transcriptional regulators
able to bind a plethora of metal ions."”! In general, the members
of the ArsR/SmtB family are repressors in their apo form, recog-
nizing and binding an imperfect 12-2-12 inverted repeat on
DNA within the promoter region. DNA-binding prevents tran-
scription by the RNA polymerase. The binding of the cognate
metal ions lowers the affinity of the regulator for DNA, resulting
in the dissociation of the protein:DNA complex.!'2%)

In 2012, Lee at al. solved the solution structure of homo-
dimeric apo-NmtR from Mycobacterium tuberculosis.'?"! Binding
of Ni?* to the regulatory sites induces a very significant para-
magnetic broadening of the NMR signals from the first ten resi-
dues as well as from amino acids in helix «5. Atomistic MD
simulations were performed on the apo, Zn?*- and Ni**-bound
form of the protein in explicit solvent. The Zn?* and Ni** bind-
ing site were parametrized through quantum chemical (QM)
computations. The calculations revealed that NmtR accommo-
dates Zn?* ions in a pseudo-tetrahedral geometry and Ni?* ions
in a pseudo-octahedral geometry involving the a-amino group,
His3, His104 and His107 from the helix a5 of the first monomer,
together with residues Asp91, His93 from the helix a5 of the
second monomer. In the same year, Chakravorty and co-work-

Table 1. Main methods used for the parametrization of d-block metal ions. Only the approaches described in this review are listed. For each group of models
(type of model), we indicated the specific model discussed (if relevant) and then the corresponding parametrization approaches. The last column indicates

the section of this review where the method is discussed.

Type of Model Specific Model Principal Parametrization Appr S
Nonbonded 126LJ/ QM fitting
12-6-4 LJ Free-energy variation 5.1
QM calculations (bonded terms)
Bonded Bonded + nonbonded Potential energy surface scanning (bonded terms) 521
interactions Z-matrix (bonded terms)
Fitting of the QM-derived electrostatic potential (charges)
Restrained electrostatic potential fitting (charges) 522

Cationic dummy atom

Reproducing hydration free energies and ion-oxygen distances 5.3

Combined QM calculations 53
Polarizable Various 54
Eur. J. Inorg. Chem. 2018, 4661-4677 www.eurjic.org 4669 © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

178



ers studied the Zn?>* sensor CzrA from Staphylococcus
aureus.'?? The study was conducted through classical and
quantum mechanical/molecular mechanical (QM/MM) MD sim-
ulations. The Zn?* site was parametrized using the MTK++ pro-
gram.'?31 Zn?* binding to apo CzrA induces the transition from
a “closed” conformation to an “open” conformation that redu-
ces the DNA binding affinity of the protein. The simulations
could reproduce the closed to open transition for DNA-bound
holo CzrA and provided a view of the residues involved in corre-
lated and anticorrelated motions underlying the communica-
tion from the zinc- to the DNA-binding sites. The authors sug-
gested that zinc binding restricted the conformational space
available to the regulator, resulting in a suboptimal configura-
tion of the DNA binding interface.

4.5. The Fur Family

Proteins belonging to the Fur family of dimeric metalloregula-
tors usually are repressors in their holo form. When coordinating
the cognate metal ions, they prevent transcriptional initiation
by binding their target DNA within the promoter region. The
metal ions are co-repressors. The progenitor of this family (the
ferric uptake regulator, Fur) binds Fe?* ions, while other mem-
bers of the family can bind Zn?* (Zur), Ni?* (Nur) or Mn?* (Mur)
jons.

Fur regulates iron metabolism and its coupling with the re-
sponse to oxidative stress. In H. pylori, Fur acts as a transcrip-
tional commutator switch by repressing the expression of iron-
inducible and iron-repressible genes, respectively in the apo
and in the holo form, respectively. In iron depletion conditions,
Fur binds to DNA in the apo form as a dimer, repressing the
transcription of ferritin, a protein dedicated to iron storage.
Conversely, when iron is in excess, holo Fur binds to different
DNA operators as a tetramer and represses the expression of
genes involved in iron uptake. Two models of Fur-DNA com-
plexes in the apo and holo forms have been proposed by Agri-
esti and co-workers in 2014 through a knowledge-based macro-
molecular docking protocol?# (Figure 3C). In the same year,
Cissé et al. proposed the use of a peptide derived from anti-Fur
peptide aptamers as a possible Fur inhibitor.'?*! The peptide-
Fur complex was built by using a docking protocol combined
with MD simulations in implicit solvent. The calculations were
validated with experimental information provided by single
points mutations.

4.6. The CsoR/RcnR Family: A Target for Future Studies

The members of this family bind Cu* (CsoR) or Ni?* and Co?*
(RenR) or only Ni?* (InrS).[1981 When the concentration of the
cognate metal ion increases, it binds to the metal sensor and
reduces its DNA affinity; this permits the expression of the pro-
teins devoted to decreasing the metal concentration. The mod-
els of the metal-site structures of RcnR from E. coli bound to
Ni%*, Co?*, and the non-cognate metal Zn?* have been recently
proposed on the basis of spectroscopic and functional data
obtained both on the wild type protein and on several
mutants.[2]
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4.7 Common Aspects of the Investigation of Metal-
Responsive Transcriptional Regulators

The present-day challenge is to understand the molecular basis
of the change in DNA affinity upon metal ions binding/unbind-
ing to metal-dependent transcriptional regulators. Together
with the experimental techniques, molecular modelling is the
key for gaining insights into this complex mechanism. The in-
creasing number of crystal structures, the improvement of the
computational tools, the availability of accurate models for the
metal ions and, last but not least, the growth of computational
power can offer a deep and detailed characterization of the
molecular determinants underlying the conformational changes
needed to specifically repress/derepress one or more genes.
Applied to pathogenic bacteria, and in particular to those spe-
cies known to be a danger for their increasing antibiotic resist-
ance (see http://www.who.int/medicines/publications/global-
prioritylist-antibiotic-resistant-bacteria/en/), these findings can
pave the way to the development of new classes of drugs and
antibiotics targeting gene expression.

5. Computing Force Field Parameters for the
Metal Site

The force fields commonly used in MD simulations do not in-
clude d-block metal ions. Thus, ad hoc parametrization method-
ologies must be deployed. In this section we describe the most
popular approaches used for the parameterization of metal ions
(for a complete and exhaustive review see ref.!'?”)). Table 1 sum-
marizes the main methods addressed here.

5.1. Classical Approaches: The Nonbonded Model

The 12-6 Lennard-Jones (LJ) potential is the most popular one

for the nonbonded interactions.!'?®! The potential for two atoms

i and j is given by the sum of the electrostatic and VDW terms,

as described in Equation (3) using three different formulations
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In this equation, r; is the distance between the two atoms,
Q; and Q; are their partial charges. In this model, the metal
ion is usually assigned an integer charge corresponding to its
oxidation state. Just a pair of parameters must be evaluated,
namely Aj and Bj;, Rmin,j and &j OF Onin; and &; subject to the
specific notation used, i.e. two parameters per pair of atom
types. Note that Ry, is the distance where the LJ potential
reaches its minimum, oj; is the distance where the value of the
potential becomes zero and ¢ is the well depth of the func-
tional profile. Because in a system with N atom types there will
be as many as N(N+1)/2 unique atom pair types, which entails
a considerable parametrization effort, different rules have been
introduced to derive ij pair parameters from parameters specific

U(n,) = Ege + Eypw =

QiQ;
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of each individual atom type (e.g., &; can be computed by com-
bining ¢; and ¢; values according to a predefined rule). In this
way, only two parameters per atom type (e.g., ¢ and o) are
needed (2 N in total). The resulting potential is a good approxi-
mation especially for low electronegative monovalent ions,
where the polarization and charge transfer effects are
small.[129.130]

The parametrization of ions is usually performed trying to
reproduce one or more properties among: thermodynamic
quantities, structural properties and kinetic or dynamic proper-
ties. The parametrization can be derived using different compu-
tational methods such as force field or single point energy cal-
culations, Monte Carlo!"*" or MD simulations.'? The transfera-
bility of the parametrization determined by fitting against spe-
cific properties should be tested before the model is applied in
different, often more complex, systems, e.g. in biological sys-
tems where the ion typically encounters dissimilar ion/atom
types in combination.

Instead, one of the main drawbacks of potentials derived
from QM fitting is that they typically consider solely the first
water molecule; this can result in the effective potential for ion—-
water interactions being overestimated. The latter overestima-
tion is in part due to the many-body effects being neglected.
Therefore, the resulting hydration free energies (HFEs) and the
coordination numbers (CNs) are in general higher than those
observed experimentally. Working with small basis sets may re-
duce the error because they underestimate the interaction en-
ergy of the ion bound to a single water molecule, even though
they are not effective on highly charged metal ions for which
the many-body effect is noteworthy. Various approaches can be
deployed to circumvent the many-body issue: (A) introducing
many-body terms; (B) working with an effective potential; and
(C) working with a combined model. Two further models were
developed specifically for zinc-containing proteins: the short-
long effective function (SLEF) model and the quantum cali-
brated polarizable-charge transfer (QPCT) model. SLEF was
parametrized reproducing QM/MM-derived forces for zinc-
enzymes with various coordination environments.'33'34 |n
QPCT, a CT term is added to the nonbonded model in order to
match the interaction energy between the metal and one of
the ligands.!>%

Parameterizations derived from experimental data are often
effectively based on free energy. From the computational
chemistry point of view, two methods are particularly notewor-
thy in estimating free-energy changes: the free-energy pertur-
bation!’*®! (FEP) and thermodynamic integration (Tl) meth-
ods.l"37! Other approaches trying to evaluate the variation of
free energy are the MM Poisson-Boltzmann surface areal'3®!
(MM/PBSA), MM generalized Born surface area (MM/GBSA) and
linear response approaches.['3%

As introduced above, the LJ model is a good approximation
for the simulation of ions in solution but has also some limita-
tions. For example, an important factor is the water model used.
In general, the error of this model increases with the square of
the ion charge. Thus, for metal ions having a charge of +2 or
higher it is often hard or infeasible to achieve a parametrization
that results in an acceptable agreement with experimental data
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such as HFE and the ion-oxygen distance (I0OD) of the first wa-
ter shell. An easy way to reduce errors in reproducing structural
properties is to refit the parameters to satisfy specific experi-
mental features. Obviously, this approach leads to bad perform-
ance in reproducing macroscopic or kinetic properties. A draw-
back particularly relevant for multivalent ions is that classical
approaches neglect the charge-induced dipole and dipole-
induced dipole interactions. To correct this, a new 12-6-4 LJ
model was proposed in 2014 and applied to parametrize vari-
ous metal ions in conjunction with three common water mod-
els.[130.140141) The new 12-6-4 model has an additional term
representing the ion-induced dipole interaction [compare Equa-
tion (3) above with Equation (4)].
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Similarly, classical force fields do not include polarization ef-
fects, because they use simple point charges. The charge scal-
ing (CS) approach can be applied to introduce long-range
screening effects into the picture. A successful application of
this concept led to the MD electronic continuum (MDEC) ap-
proach, which can be applied to organic molecules,'“? wa-
ter,['*3 and ionized systems.'* Furthermore, some common
models of water underestimate its dipole moment. A model of
water based on the CS approach features fluctuating charge
and has the advantage to be suitable for use in conjunction
with unpolarized force fields like CHARMM or AMBER.!'#*! This
model can recapitulate the different polarization of water mol-
ecules binding metal ions, at the macromolecular surface, and
in the bulk phase. Therefore, the CS approach can model some
properties that the classical unpolarized force fields cannot
model. As it does not introduce additional terms, it preserves
the MD performance. However, the use of the model is still
limited by the fact that it corresponds to an average perspec-
tive suitable to predict some statistical properties but unable
to reproduce the microscopic environment.

5.2. Classical Approaches: The Bonded Model

5.2.1. Bond, Angle, and Torsion Parameters

Equation (5) describes the well-known combination of terms
describing bonded and nonbonded interactions. In the first
group
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we find bond, angle and dihedral terms; in the latter the elec-
trostatic and VDW terms [grouped in the fourth summation of
Equation (5)]. In addition to the nonbonded parameters dis-
cussed in the previous section, the force field contains several
other parameters for the bonded terms: for each group of
bonds, the k, (force constant) and r.q (equilibrium length); for
each group of angles, k, (force constant) and 6., (equilibrium
value); for each group of torsion angles, V,, (energy barrier),
n (periodicity), and y (phase); for each atom, its partial charge
q.

The quality of a force field is largely determined by non-
bonded terms, with atomic charges and VDW parameters as-
signed to represent different properties at the same time. The
most widely used classical force fields for biological systems are
based on the same functional form with some differences in
the LJ terms. The parameters for dihedral and improper torsion
angles have defined minima depending on the repulsions be-
tween bond electrons.['#5! However, in the case of metal ions
all angle values are considered accessible at physiological tem-
perature; therefore the corresponding energy barriers are nor-
mally set equal to zero.['23147.148]

The commonly used force fields share a harmonic represen-
tation of the bond and angle terms (with an additional 1-3
term in CHARMM'49)), resulting in a good parameter transfera-
bility among them. More sophisticated force fields contain
higher power as well as cross terms.!'>%'5 The corresponding
parameters can be obtained in multiple ways, but we will focus
on methods effective for biological systems. Small representa-
tive molecules are normally used to derive the parameters
based on agreement with QM or experimental data. The result-
ing parameters are then transferred on larger systems as macro-
molecules. As supported by various experiments, this basic
transferability assumption is a good approximation for equilib-
rium bond and angle distances, whose values are often similar
in different environments. However, in QM calculations the
bonded and nonbonded interactions are coupled together,
making it difficult in some cases to disentangle the two contri-
butions.

The potential energy surface (PES) scanning method is one
of the simplest approach to parametrize force fields. The force
constants are optimized based on their match with PESs ob-
tained from QM computations. The PES scanning method was
applied to develop a force field suitable for use with AMBER for
various heme species.'>? Despite the simplicity, this approach
needs a PES scan for every bond and angle that are part of the
metal environment, making the computational cost considera-
ble.

The Z-matrix method relies on the calculation of the Hessian
matrix. This step can be performed in different ways such as
calculating the derivative of the energy either numerically or
analytically, with the latter more widely used in combination
with the DFT level of theory.l'>*1>4 The Z-matrix method has
some known limits. First, it is dependent on the internal coordi-
nates chosen.!'>>! Second, the derived force constants might
require corrections to fit the QM calculations because only the
harmonic terms are considered in the method, thereby result-
ing in a partial match to the PES. Finally, the calculated dihedral
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force constants cannot be used within modern force fields
models for two reasons: the harmonic potential form is not ap-
plicable to the Fourier expansion used in common classical
force fields [Equation (5)] and the dihedral 1-4 interactions are
already fully or partially considered. The Seminario method cal-
culates force constants using a sub-matrix of the Cartesian Hes-
sian matrix!'>%). However, these constants incorporate the influ-
ence of the environment and may not be suitable for isolated
bonded terms. Furthermore, the dihedral and improper torsion
parameters are in the harmonic form. This limit is overcome by
setting the dihedral and improper torsion terms to zero while
keeping bond and angle parameters (see above). To date, sev-
eral metal ion parameters are present in literature based on
the use of Seminario method within the MCPB toolkit.*" For
instance, the zinc AMBER force field (ZAFF) was developed for
10 sites where the donor atoms around the metal ion featured
tetrahedral geometry.'?*! Furthermore, the Seminario method
was recently used for the development of a python based metal
center parameter builder' and the visual force field deriva-
tion toolkit!'*®! (VFFDT).

The automated parametrization method (APM) is a simple
approach to obtain parameters directly scanning the parameter
space and comparing the resulting properties with experimen-
tal or QM data. APM has the advantage of not presenting the
double counting issue of bonded and nonbonded interactions
already mentioned.">”) However, the number of parameter
combinations raises exponentially with the parameter space di-
mension. This problem can be handled in different ways: (i)
dividing the parameter set in subsets to fit separately on the
basis of chemical and physical considerations or (i) performing
the parameter optimization as a geometry optimization. A
number of freely available APM programs are available, such
as Parmfit and ForceBalance.'>815%]

5.2.2. Charge Parameters

There are four main methods to produce charge parameters
for classical force fields: empirical methods, fluctuating charge
method (FQ), experimental derivation methods and approaches
based on QM fitting. Empirical charge methods are time con-
suming and perform poorly when addressing transition and ex-
cited states. The FQ model is a relatively straightforward polari-
zable model (see later); its main shortcomings are related to
charge transfer and application to macromolecules. In experi-
ment-based methods, the charges are computed from XRD ex-
periments and data on dipole moments.!'*%! This approach re-
quires structures with very high resolution and low B-factors; in
return, it provides a reference for scaling the point charges of
atoms or for assessing the charges obtained by different theo-
retical methods.''®") QM-based methods are probably the most
popular ones to infer charge parameters; below, we will focus
only on them.

Partial charges can be obtained with QM methods by fitting
the electrostatic potential (ESP) (e.g., CHELP!®?! CHELPG!'®3)),
through molecular orbital analysis (e.g., Mulliken,'64-167]
NPA'S8))  from the electron density in real space (e.g.,
ADCHI'®?)), and by postprocessing or scaling approaches (e.g.,
AM1-BCC1791 CM4,1'711 CM5172)), Despite their clear physical
meaning, Mulliken charges cannot be used straightforwardly in
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common force fields because they fail to replicate molecular
multipolar properties. Thus, these charges are often scaled to
make them suitable for use in MD calculations.

Multipolar properties and electrostatic interactions of mol-
ecules are well replicated by the partial charges provided by
ESP fitting. Thus the latter approach is one of most commonly
used.l'”3 Several algorithms and weights are available to
choose ESP points and their spatial location for fitting. Early
works found that selecting points in a distance from the Van
der Waals surface of the metal up to 3 or 7 A provide reason-
able results."7#175! There are two equally good methods to pick
ESP points: a cube-based or a layer/shell-based method. The
CHarges from Electrostatic Potentials (CHELP) approach uses
points that are symmetrically distributed on four spherical
shells from the VDW surface separated by 1 A, with 14 points
on each shell.!'%? The CHarges from ELectrostatic Potentials us-
ing a Grid-based (CHELPG) strategy picks the points between
the VDW surface of the molecule and a surface 2.8 A away
based on a cubic grid where the points are separated by
0.3 A.1631 ESp-derived charges have some limits. They are usu-
ally derived from a single configuration, thereby they do not
take into accounts charge fluctuations caused by conforma-
tional dynamics. Moreover, deriving ESP charges for macromol-
ecules has a high computational cost. In addition, this method-
ology may underestimate the charge of buried atoms and over-
estimate the charge of nonpolar atoms.

The restrained ESP (RESP) charge fitting procedure is the pre-
ferred method to compute the partial charges in metalloprote-
ins. Using the RESP algorithm at the HF/6-31G* level of theory
reproduces better solvation effects.'”8! RESP charges for metal
complexes can be derived using only one configuration, thanks
to the rigidity of the metal-protein bonds. In doing this, the
DFT functional B3LYP with the 6-31G* basis set has shown ex-
cellent performance. Nevertheless, an effective core potential
basis set can be preferable, e.g. for the parametrization of clus-
ters bearing an overall negative charge.['7/177:178]

5.3. Classical Approaches: The Cationic Dummy Atom and
the Combined Model

The cationic dummy atom model (CDAM) representation dis-
tributes the total mass and charge of the metal ion among the
metal center (core) and a number of dummy atoms surrounding
the core. The exact number of dummy atoms depends on the
coordination number of the metal under study. This model al-
lows a great flexibility in the parametrization procedure while
having the advantage to better reproduce the native coordina-
tion of ions in solution. The CDAM was originally described by
Aquist and Warshel'7%' for Mg?* and then extended to other
divalent ions as Ca%*, Mn?*, Fe?*, Co?*, Cu?*, Zn?* and recently
for Ni2* jons.'8-182 |n the classical octahedral representation,
the core site has a -1.0 charge while each dummy atom bears
a partial charge of +0.5. Furthermore, a weak repulsive LJ term
was added to prevent coordinating atoms from getting too
close to charge-carrying dummy sites. The CDAM approach can
reproduce experimental HFE and 10D data together, improving
upon nonbonded models.!'®3 Nevertheless, the fractional char-
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ges might reduce the energy of the interaction between the
metal and surrounding amino acids. In this case the classical
12-6 LJ nonbonded model could work better."® More re-
cently, consistent CC models have been developed for eleven
transition metal ions and different water models through an
elaborate procedure that in principle allows parameters to be
compatible with both periodic and non-periodic simulation
conditions.!85]

An alternative approach is the combined model, where the
ion and the first water shell around it are combined in a single
unit for MM calculations.!"® This approach has the advantage
of immediately incorporating many-body effects in the first wa-
ter shell, while taking into account electronic state crossing. The
quality of the resulting potential is linked to the quality of QM
calculations used to derive the parametrization. Moreover, the
combined model representation works well solely for ions with
a charge of +2 or higher and relatively short MD simulations,
due to the long mean residence time of the water molecules in
the first shell. To date, combined models were developed for
various highly charged ions, including Mg?*,1871 Zn2+188189]
and Cu2+[1901

5.4. Classical Approaches: The Polarizable Model

Polarization is important for many interatomic interactions, es-
pecially involving highly charged systems, where it becomes
more pronounced.'3% As consequence, the polarizable model
was developed to account for charge delocalization as a func-
tion of the coordination environment. Three fundamental ap-
proaches to the development of polarizable models are popu-
lar: the FQ model,'®% the Drude oscillator model,"" and the
induced dipole model.'"? Polarizable force fields are applicable
in simulations through various strategies: the self-consistent
field (SCF),[93194] matrix inversion,!'9>19 and extended Lagran-
gian methods."71%8] Currently, the latter is the preferred strat-
egy to perform MD simulations as it has a good accuracy and
a reasonable computational cost. A few polarizable models for
various metal ions have been published so far.['*%

5.5. Different Approaches for Parametrization Applied to
the Zn?* lon

There are several examples of applications of metal ion param-
etrization. Here we concentrate on the Zn?* ion, one of the
most common d-block metal ions found in proteins and, con-
comitantly, the ion for which most parametrization examples
are available.

Tuccinardi et al. studied matrix metalloproteinases with a
classical force field.?°®! The parametrization of the metal ion
was performed as follows: the partial charges were derived with
the RESP algorithm; the force constants for the bonds between
Zn?* and the donor atoms were derived with the Z-matrix
method; the force constants for the planar angles of the metal
site were derived by reducing the relevant bond force constants
by a factor 10. An optimization of the parameters against the
relative energies of various configurations computed by QM
methods was carried out to improve the parametrization.
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Lin and Wang applied the Seminario approach to 18 com-
plexes binding Zn?** to parametrize the constants for bonds
and angles, whereas the RESP approach provided the charge
parameters.'4”! By evaluating these parameters sets with vari-
ous combinations of the bonded/nonbonded model, using also
formal charges in addition to RESP charges, it appeared that
the best performance was achieved by the bonded model in
conjunction with RESP charges.

Zn?* ions are also the focus of several papers related to the
specific development of appropriate charge parameters. In par-
ticular, already in the ‘90s the ESP approach was applied to the
investigation of human carbonic anhydrase 11.207-203! For this
parametrization, the equilibrium values of bonds and angles
were taken from QM semi-empirical calculations and the corre-
sponding force constants from experimental data; the non-
bonded parameters were adjusted to match QM calculations
for the complexes of zinc with carbon dioxide and with water.
These results highlighted the significant redistribution of elec-
tron density over the coordination environment of Zn?*. Indeed,
according to the data obtained for the [(imidazole);Zn-OH]"
complex, the partial charge on the divalent metal ion was as
low as +0.5.202)

Hoops et al. investigated different charge modelling ap-
proaches on the model of a zinc center coordinated by the
nitrogen atoms of the imidazole rings of three histidine residues
and by one hydroxide.?°") The ESP charges for two system rep-
resenting the high and low pH forms of the system
([Zn(NH;)3H,01?* and [Zn(NH5);OH]*, respectively) were calcu-
lated at the MNDO, HF/STO-3G, HF/MINI-4, HF/MIDI-4, and HF/
6-31G* levels of theory on the semi-empirical MNDO optimized
geometries. The HF/STO-3G computations resulted in small par-
tial positive charges for the Zn?* ion (+0.68 and +0.48 for the
high and low pH forms, respectively), while the HF/MINI-4 cal-
culations gave partial charges more similar to the whole ionic
picture (+1.64 and +1.72 for the high and low pH forms, respec-
tively) Taken together, these results suggest that in the case of
the bonded model is not advisable to assign a +2 point charge
to the Zn?* ion

CDAM parameters for the Zn?* ion have been derived in a
study involving human carbonic anhydrase with the empirical
valence bond approach.’?*¥ The model involved six dummy at-
oms, each bearing a +0.5 charge. The simulations showed a
good agreement with experimental data, supporting the crucial
role played by electrostatic interactions in for the catalytic
metal ion.

Also Pang and co-workers applied the CDAM approach to
zinc-proteins in a series of studies.292%! As early as 1999, a
CDAM model for the Zn?* ion was developed by considering
four dummy atoms sharing the +2 total charge placed in a tet-
rahedral geometry and a neutral nucleus. No VDW parameters
were assigned to the dummy sites. This CDAM model was de-
signed to tackle the underestimation issued observed in the
case of Zn?*-H,0 interactions in the nonbonded model. This
model underestimated the Zn-S distances when compared to
experimental data but achieved a significant improvement in
the prediction of the HFE value. Moreover, the interaction en-
ergy of the Zn?*-H,0 dimer was modelled more accurately by
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the CDAM model than the nonbonded model. The transferabil-
ity of this CDAM model was demonstrated through calculations
carried out on carboxypeptidase, carbonic anhydrase Il, and
rubredoxin.

Finally, Pappalardo and Marcos,"'® who fitted a potential for
the Zn?* hydrate ion based on QM calculations, proposed the
first combined model of a metal. The obtained hydration en-
ergy for Zn?* (-517.6 kcal/mol) is in excellent agreement with
the experimental value (491 kcal/mol). Interestingly, in the
case of the combined model second shell water molecules ex-
hibited less directionality with respect to the calculation exe-
cuted employing a nonbonded model. The authors proposed
that this effect can be reduced by using a flexible water
model.[188]
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