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Abstract 

Patient-derived metabolomics offer valuable insights into the metabolic phenotype 

underlying diseases with a strong metabolic component. Thus, these datasets will be pivotal to 

the implementation of personalized medicine strategies in health and disease. However, to take 

full advantage of such data sets, they must be integrated with other omics within a coherent 

pathophysiological framework to enable improved diagnostics, to identify therapeutic 

interventions and to accurately stratify patients. Herein, we provide an overview of the state-of-

the-art for different data analysis and modeling approaches applicable to metabolomics data 

and of their potential for systems medicine. 

Highlights  

o Metabolomics integrated with multi-omics datasets can strongly foster systems medicine 

o Modeling and analysis of metabolic fluxes permit to decipher complex biological 

relationships 

o Metabolomics-based systems medicine can improve diagnostics, therapeutics, and patient 

stratification 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

  

 

The brave new world of Systems Medicine  

Systems biology treats biological systems as ensembles of networks at multiple levels, 

starting from the molecular level and from there gradually addressing more complex systems 

such as cells, tissues, organs, whole organisms and finally analyzing population-dynamics. 

Systems biology aims to describe and predict the behavior of groups of interacting components. 

To do so, it uses mathematical and computational tools to analyze measurements collected by 

systematic high-throughput technologies such as (post-)genomics, metabolomics or proteomics 

among others. The goal of systems approaches is to boost our understanding of biology by 

overcoming the limitations of reductive science, which addresses individual genes, proteins, 

metabolites, pathways or cells and thus does not account for the properties emerging from their 

interactions [1, 2]. 

Current medical science is mostly conducted using the reductionist approach [3, 4]. This 

limits our ability to grasp how multiple variables interact with one another to create emergent 

effects [5] and hampers our understanding of diseases, as well as our capability of delivering 

better treatments.  Systems medicine can be regarded as the application of systems biology to 

human physiology in a clinical context [6, 7]. It addresses the above issues by applying iterative 

and reciprocal feedback between clinical research and practice through computational, 

statistical and mathematical multiscale analysis. This includes modeling of disease progression 

and remission, treatment responses and adverse events both at the epidemiological and patient 

level. This new paradigm of systems science and medicine strongly complements the traditional 

reductionist approach (Figure 1).  

Figure 1:  Overview of the core differences between reductionism and systems science, 

when analyzing the properties of a system; figure initially published in Tillmann et al. 2015 [8] 

under the terms of Creative Commons Attribution 2.0 license. 

The functioning of the human body is regulated by the interaction and 

interdependencies of biological molecules at multiple levels (protein-protein, protein-RNA, 

protein-DNA networks, and metabolic networks) [9]. Therefore, it can only be efficiently 

analyzed by examining various omics concurrently. Systems medicine provides the appropriate 

framework to achieve this goal. The complementary perspectives offered by different datasets 

allow the genotype of an individual to be linked to its observed phenotype as a function of 

lifestyle and environmental conditions. Eventually, this could lead to defining how any healthy 

state can transition into a pathological one and vice versa and pave the way for personalized 

medicine.  

 Multi-omics data integration 

The integration of multiple omics data (sometimes also called trans-omics) will further 

enhance the contribution of omics science to our understanding of biomedicine [10]. The 

example in Figure 2 shows the connections among genomics, transcriptomics, proteomics, and 
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metabolomics, thus providing an overview of the system from its potential (encoded in DNA) to 

the actual outcome (monitored by metabolomics). 

Figure 2:  Multi-Omics integration across different omics layers.  Red arrows highlight 

the top-down flow of interactions across layers: genes are transcribed, transcripts determine 

enzyme concentrations, and finally enzymes act on metabolites. Purple arrows highlight bottom-

up interactions, whereby metabolite levels modulate enzyme activities, the DNA/RNA binding 

affinities of regulators or DNA methylation. Note that metabolites can also interact directly with 

transcripts. Black arrows are intra-omic networks, which can be derived based on individual 

omic datasets (for a review of methods in metabolomics see Rosato et al. 2018 [11]).  Intra-omic 

networks may describe direct physical interactions (e.g., protein-protein interactions) and 

correlations between their abundances (e.g., transcript levels or metabolite concentrations). 

Environmental stimuli (blue arrows) can affect all omic layers. For example, they can trigger DNA 

mutations, transcriptional events and modify protein activity. Additionally, the environment is 

also a source of metabolites and xenobiotic molecules. Overall, the different omics levels, which 

are a function of the environment and the omics interactions, determine the phenotype. 

It is commonly accepted that the relationships between genes, gene products, and 

metabolites participate in complex, interconnected networks (Figure 2). Various biological 

molecules can be represented as nodes in a network and the interactions connecting them as 

edges. For example, in metabolomics, metabolites would be nodes and the edges would 

represent the enzymatic reactions interconnecting them. Graph theory can be applied to 

analyze the complexity of the interactions within a biological network and link a priori 

knowledge from the literature and databases [12]. The application of network analysis allows 

the identification of nodes with a high degree of connectivity (“hubs”) and groups of highly 

interconnected nodes (“modules”) identifying molecules functionally related to a disease state 

[13-15].  

It is possible to outline a general strategy to integrate various omic datasets based on 

network representations. First, the network scaffold is defined by defining how the individual 

components are interconnected. The structure of the network can be identified based on the 

data or prior knowledge (i.e., database information). Subsequently, the network itself can be 

separated into modules. Finally, all the information can be combined with computational 

models of the whole system to simulate and predict how the network determines the observed 

phenotype. In practice, if two omics elements share a common driver, or if one perturbs the 

other, they will exhibit correlation or association. Various specialized statistical approaches can 

be applied to measure these correlations. For example, a linear model taking into account age, 

gender, body mass index, and white blood cell count was used to find correlations between DNA 

methylation and metabolite concentrations in human blood serum[16]. An even broader study 

analyzed the genome, transcriptome, proteome, metabolome, and metabolic fluxes in 

Escherichia coli to understand how its metabolic state reacted to perturbations [17]. More 

recently, weighted gene correlation network analysis was used to identify connectivity-based 

gene modules highly correlated to pathways identified by metabolomics [18]. 
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Connecting	the	metabolome	layer	and	other	omic	layers	
Metabolomics measure the metabolites present within a cell, tissue or organism. It is a 

core experimental omic within systems biology, as it delivers an integrated view of 

biochemistry[19, 20]. Current experimental approaches in metabolomics are mostly based on 

Nuclear Magnetic Resonance (NMR) and Mass Spectroscopy (MS) [21, 22]. Metabolomic studies 

can be divided into two major groups: targeted and untargeted.  

Targeted metabolomics quantitatively measure the abundance of a pre-defined group 

of known, well-characterized metabolites in a sample. Usually, the aim is to identify novel 

associations between metabolites in the context of specific physiological states [23, 24]. On the 

other hand, untargeted metabolomics typically focus on capturing all the chemical compounds 

present in a sample, including metabolites of unknown chemical structure, thus generating 

notably large datasets. By comparing the metabolome of control and test groups and focusing 

on the differences between their metabolic profiles, the number of significant detected signals 

becomes more manageable. Finally, the compounds or metabolites identified are annotated 

using in silico libraries when possible, or by applying analytical chemistry methods to explore the 

newly observed structure [25]. 

   One of the technical challenges in connecting the metabolome with other omic layers 

is matching the identities of the same objects in different layers (ID conversion). Various 

databases support this task: the Kyoto Encyclopedia of Genes and Genomes (KEGG) integrates 

one computationally generated and fifteen manually curated databases, allowing the users to 

link metabolites to reactions, enzymes, pathways, and genes [26]; BRENDA provides information 

on enzymes, such as kinetic parameters for enzymatic reactions, allosteric effectors and 

association to diseases [27]; Reactome is a database that organizes metabolites into biological 

pathways and processes, using reactions to define relationships [28]; MetaCyc  is a database of  

metabolic pathways and enzymes  whereas BioCyc (BioCyc.org) collects organism-specific 

genomes and computationally predicted metabolic networks [29].  For example, in a multi-omic 

study on the flow of insulin signal based on time-course data from the metabolome, 

phosphoproteome, and transcriptome, a global metabolism map was generated by mapping 

quantitatively changed metabolites and their corresponding metabolic enzymes to the KEGG 

database [30]. 

Finally, it is worth mentioning the Investigation Study Assay (ISA-Tab) format, which is a 

convenient standard to store the metadata and the results of experiments across the various 

omics and is already implemented in metabolomic platforms like MetaboLights or PhenoMeNal 

[31-33]. 

Metabolic models 	
The metabolic phenotype is defined by two complementary omics, the metabolome, 

and the fluxome. The first offers a static view of metabolism (snapshot-like), whereas the latter 

represents the rate at which metabolites are interconverted through metabolic pathways and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

  

 

therefore provides a dynamic view of the metabolic phenotype [34]. The fluxome emerges from 

complex interactions among metabolites, enzymes and transmembrane carriers. Thus, the 

fluxome cannot be directly measured, and instead needs to be inferred through the analysis of 

other omic measurements. One of the most informative techniques to determine the fluxome 

are Stable Isotope-Resolved Metabolomics (SIRM). In SIRM, a biological system is incubated with 

a substrate labeled with a stable heavy isotope (e.g., 13C) that propagates to metabolites in the 

network generating characteristic label patterns which are indicative of the underlying flux 

distribution [35].  

Metabolic models, mathematical representations of metabolism, are the tools used by 

systems biology and systems medicine to integrate multiple layers of data and predict metabolic 

fluxes. Nowadays, the vast availability of genomic data and the functional annotations allows 

the reconstruction of Genome-Scale Metabolic Models (GSMMs). GSMMs are built starting from 

genome annotations, which are used to identify enzyme-coding genes. These can then be 

mapped to reactions using biochemical databases, such as KEGG, BRENDA or MetaCyc. The 

resulting network is then curated to account for misannotations and missing reactions. Finally, 

the built reconstruction is validated by simulating the known metabolic functions of the target 

organism [36]. In 2007, the first human GSMMs were reconstructed [37, 38]. They formed the 

basis for much more in-depth human genome-scale reconstruction models including Human 

Metabolic Reaction, Recon 2 and Recon3D [39-41].    

Metabolic simulations based on these genome-scale networks, or a subset of them, are 

usually performed with either kinetic or constraint-based modeling (CBM) techniques.  Kinetic 

models integrate kinetic properties of enzymes (e.g., their affinity for substrates, the number of 

catalytic cycles that they can undergo per unit of time and their regulation by activators or 

inhibitors) and allow to simulate the dynamic behavior of fluxes and metabolites. However, they 

are limited by the complexity to build and parameterize kinetics models for large networks. In 

contrast, CBM uses network stoichiometry and the assumption of metabolic pseudo-steady 

state (i.e., intracellular metabolite concentrations are constant in time) to simulate steady-state 

flux distributions.  While CBM is easily applied to large networks like GSMMs, it has a more 

limited capacity when it comes to studying the dynamic behavior of metabolic networks than 

kinetic models.  

 

Building	large	scale	kinetic	models	
Kinetic models are systems of Ordinary Differential Equations (ODEs) where metabolic 

fluxes are computed as a function of metabolite concentrations through a set of defined kinetic 

equations. Each metabolite has an ODE equation representing its variation in time, and each 

reaction has a kinetic equation describing the dependency of reaction fluxes to metabolite and 

enzyme concentrations. Metabolomic data, taken at multiple time points, is the primary input to 

validate kinetic models and iteratively fit unknown parameters of the kinetic equations (Figure 

3) [42]. 
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Figure 3: Kinetic model of upper glycolysis (Puigjaner et al., 1997 [43]). The network has 

four metabolites (Glc: Glucose, G6P: Glucose 6-phosphate, F6P: Fructose 6-phosphate) 

connected by three reactions (HK: Hexokinase, GPI: Glucose 6-phosphate isomerase, PFK: 

phosphofructokinase). HK has a Michaelis-Menten kinetic law with an uncompetitive inhibition 

by G6P, GPI a reversible Michaelis-Menten kinetic law and PFK a Hill cooperative kinetic law. 

Each kinetic law is parametrized from measurements of mice muscle extracts (Vmax: maximal 

reaction rate, Km/Kms/Kmp/Shalve: concentration at which half of the Vmax is achieved, Ki: 

Concentration at which half of the inhibition is achieved, h: hill cooperativity coefficient).   From 

network stoichiometry, the parametrized kinetic laws are combined to build a system of ODEs, 

with each equation describing the dependent dynamic of a metabolite concentration.  Starting 

with initial metabolomic values, solving the system of ODEs simulates time courses for 

metabolite concentrations and reaction fluxes, which can be compared with additional 

metabolomics data for validation.   

There are two approaches to building large-scale kinetic models: the bottom-up or 

forward reconstruction and the top-down or inverse reconstruction. In the former method, the 

various subparts of the model are built individually and then put together to form the final 

model, whereas in the latter the entire model is reconstructed, and all the parameters are fitted 

at the same time. The major issues in large-scale kinetic model reconstruction are the many 

unknown parameters in the model and the lack of knowledge of regulatory information. Indeed, 

the greatest challenge to build large kinetic models is the parameter inference or fitting step. 

Over the last years, approaches like structural Kinetic Modelling (SKM) and Mass Action 

Stoichiometric Simulation (MASS) modeling have been developed to tackle this step.  

SKM aims to quantitatively describe the dynamic performance of a system, rather than 

specifically define kinetic parameters, and constructs local linear approximations for each 

parameter according to experimental data and feasible biochemical states. Then, the 

reconstructed local linear models are used for the interrogation of a solution parameter space 

[44, 45]. On the other hand, MASS models try to combine constraint-based stochiometric 

reconstructions with matrix based kinetic modeling. More specifically, MASS uses large scale 

stochiometric network reconstructions as scaffolds, onto which fluxomic and metabolomic data 

measured in vivo are integrated and then kinetic parameters, explicit for the modeled steady-

state of the system, are estimated. If simulations of growth conditions are performed, kinetic 

constants for the evolution of the system can be calculated, thus describing its dynamic 

behavior [46].  

 

Constraint-Based	modeling	
CBM assumes a metabolic pseudo-steady state to build mass-balance constraints 

around metabolites and identify valid steady-state flux distributions. In this manner, the 

stoichiometry of the network can be represented as a system of linear equations and steady-

state flux distributions can be simulated without the need of defining the kinetic equations for 
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each enzyme[37, 38, 47]. As the resulting system is usually underdetermined, additional 

constraints and optimizations need to be applied to reduce the solution space towards a unique 

solution (Figure 4) [39, 40]. 

For instance, GSMMs generally need to be constrained by integrating transcriptomics or 

proteomics data. This need arises because GSMMs define the entire metabolic potential for a 

given organism, whereas at any given cell and time point only a subset of enzymes are 

expressed and only a subset of reactions will be active. There are several approaches to 

integrate such data, but they are generally based on maximizing the consistency between the 

transcript and protein abundances of enzymes and the flux through reactions catalyzed by 

them. Integrating transcriptomics and proteomics allows to obtain maps of active/inactive 

reactions, as well as to characterize the changes in flux distributions between two or more 

different conditions or time points [48-53].  

The range of feasible flux values can be further constrained by metabolomics data. 

Metabolomics from the extracellular media can be used to constrain extracellular fluxes (i.e., 

rates of uptake of secretion for extracellular metabolites). Concerning intracellular 

metabolomics, if a metabolite is detected, the model can be constrained to have at least one 

reaction active, where this metabolite is produced [51]. Furthermore, quantitative 

metabolomics of intracellular metabolites allows setting the rate at which intracellular 

metabolites must be synthesized to maintain a steady state in proliferating or growing systems 

[54]. Finally, SIRM-based metabolic flux analysis (MFA) can be applied to identify the range of 

flux values underlying a given set of SIRM measurements. The resulting flux ranges can be added 

to GSMM as flux bounds[35].  

Even after integrating transcriptomics or proteomics and metabolomics, GSMMs are 

generally still undetermined. Flux Balance Analysis (FBA) aims to identify a unique optimal 

solution by maximizing or minimizing one or more fluxes in the metabolic network [55]. The 

choice of objective depends on the system under study, for instance, to study rapidly 

proliferating systems, like cancer cells, the synthesis of biomass is used as the objective, but 

other objectives can be set depending on the system of study [55-60]. 

Figure 4: Constraint-based modeling. First, the stoichiometry of the metabolic network 

is written as a stoichiometric matrix (s), where the sm,r element of the matrix is the 

stoichiometric coefficient of metabolite m in reaction r. From an infinite space of possible flux 

(v) solutions, a feasible solution space which contains possible steady-state solutions is obtained 

by applying the steady-state constraint (s.v=0) and defining the directionality of reactions. A 

condition-specific solution space can be obtained by integrating condition-specific omics like 

transcriptomics, proteomics or metabolomics. Finally, an optimization can be performed in the 

solution space to select the best solution(s). For instance, biomass production can be maximized 

so that the solution(s) that optimize growth efficiency can be selected. 
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Applications	in	systems	medicine	
The integration of multiple omics data in a systems medicine manner is an emerging 

field. Nevertheless, it has already provided new insights into the interplay among different 

regulatory layers. 

For example, by studying the associations between SNPs with metabolomics 

measurements, it has been demonstrated that the variability of metabolite concentrations in 

the blood between individuals, is explained to a large extent by common genetic variants [61]. 

In another study, associations using Epigenome-Wide ASsociation data (EWAS) in combination 

with cytosine-guanine dinucleotide (CpG) methylation data and other multi-omics data 

suggested a causal effect of metabolite levels on methylation of obesity-associated CpG sites 

[62].  

Furthermore, even if the reconstruction of large-scale kinetic models still poses a big 

challenge, several examples of kinetic models in systems medicine demonstrate their great 

potential. For instance, a kinetic model of human erythrocytes was used to identify metabolic 

targets that would selectively kill parasite Trypanosoma brucei with minimal collateral damage 

to human cells [63]. Berndt et al. reconstructed a kinetic model of the liver, and they used it to 

characterize the metabolic phenotype of hepatocytes and the metabolic reprogramming that 

they undergone during carcinogenesis [64]. Bordbar et al. (2015) have simulated individual 

responses to drug exposure including side effect incidence and demonstrated that enzyme 

activities and cellular dynamics, rather than metabolomics, are the most accurate 

representation of the genotype [65].  

CBM has also been widely used in systems medicine to perform multi-omics data 

integration in the framework of GSMMs. For example, Mardinoglu et al. integrated proteomics 

and transcriptomics to build an adipocyte-specific GSMM and identified several putative 

therapeutic against obesity [66]. GSMMs have also been widely applied to identify genes or sets 

of genes that are essential for a disease related process [60, 67-69]. For instance, Folger et al. 

created a GSMM of cancer metabolism that predicted 52 cytostatic drug targets, 40% of which 

were targeted by known anticancer drugs [70].  Similarly, Agren et al. built 27 patient-specific 

GSMM of hepatocellular carcinoma and identified 101 potential drug targets, many of which 

had a strong correlation with disease progression [71]. GSMMs have also shown great potential 

in biomarker discovery for example in liver diseases and type two diabetes [72, 73].  

Conclusions and future perspective 
The primary goal of systems medicine is to explain, predict and prevent the progression 

of disease based on clinical, environmental and multi-omics data. Given the inherent network 

structure of metabolic processes, network modeling and the analysis of multi-omics data 

provide powerful and flexible inference tools to decipher the complex interactions in biological 

systems. However, consensus models built from samples from many individuals, albeit 

informative, might fail to capture the heterogeneity that is present in a population [74]. This 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

  

 

limits the elucidation of the molecular drivers for an individual-specific phenotype (either 

healthy or pathological), which result from the differential regulation or dysfunction of 

individual-specific networks. 

Towards that end, methods are being proposed to build patient-specific networks that 

capture the subject’s specificity of clinical manifestation with the goal of understanding diseases 

at the individual level and providing targeted and personalized treatments [75-78]. In principle, 

a personalized database could be generated for each individual, containing his/hers omics 

information (e.g., genomics, urine and blood metabolomics, gut microbiome), together with 

lifestyle data across time. This information, if properly analyzed, can provide the means to build 

patient-specific networks in order to identify the best diagnostic, therapeutic and prevention 

strategies for each individual and enable P4 (Predictive, Preventive, Personalized and 

Participatory) medicine [79, 80]. 
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metabolite levels on methylation of obesity-associated CpG sites. 

 

( * )Haanstra, J.R., et al., Targeting pathogen metabolism without collateral damage to the host. 

Scientific Reports, 2017. 7: p. 40406. 

This study highlights how kinetic modelling can assist drug design by identifying targets against 

pathogen metabolism with have minimal side effects on the host. 

 

( ** ) Bordbar, Aarash & Taylor, Douglas & Zielinski, Daniel & Sonnenschein, Nikolaus & 

Jamshidi, Neema & Palsson, Bernhard O.. (2015). Personalized Whole-Cell Kinetic Models of 

Metabolism for Discovery in Genomics and Pharmacodynamics. Cell Systems. 1. 283-292. 

10.1016/j.cels.2015.10.003. 

Bordbar et al., constructed personalized whole cell kinetic models of erythrocyte and showed 

that personalized kinetic rate constants are the best representation of the genotype. They were 

also able to identify individuals at risk for a drug side effect. 

 

( * ) Berndt, N., Bulik, S., Wallach, I., Wünsch, T., König, M., Stockmann, M., Meierhofer, D., … 

Holzhütter, H. G. (2018). HEPATOKIN1 is a biochemistry-based model of liver metabolism for 

applications in medicine and pharmacology. Nature communications, 9(1), 2386. 

doi:10.1038/s41467-018-04720-9 

In this study, the authors build a large-scale kinetic model of hepatocyte metabolism and 

integrated proteomics to highlight the metabolic differences in the metabolic phenotype 

hepatocytes compared to adenoma and hepatocellular carcinoma cells. 
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( ** ) Nilsson, Avlant & Nielsen, Jens. (2016). Genome Scale Metabolic Modeling of Cancer. 

Metabolic Engineering. 43. 10.1016/j.ymben.2016.10.022. 

A comprehensive review of GSMMs focused on their application to the study of Cancer 

metabolism. 

 

 

* Ref. 13, entitled "Epigenetics meets metabolomics: an epigenome-wide association 

study with blood serum metabolic traits." 

This is the first epigenome-wide association study (EWAS) between DNA methylation 

and metabolic types in human blood, showing that that DNA methylation plays an important 

role in regulating human metabolism. 

 

** Ref. 14, entitled "Multiple high-throughput analyses monitor the response of E. coli 

to perturbations." 

This study integrated multiple omics measurements on Escherichia coli. It showed that 

in most cases the disruption of genes encoding metabolic enzymes led to surprisingly small 

changes in messenger RNA and proteins and did not sizably alter metabolite levels. This is due to 

the rerouting of metabolic fluxes. In contrast, E. coli actively controlled enzyme levels to 

maintain a stable metabolic state in response to changes in growth rate. 
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