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Abstract

This paper deals with the numerical computation and analysis for a class of two-dimensional time-space
fractional convection-diffusion equations. An implicit difference scheme is derived for solving this class of
equations. It is proved under some suitable conditions that the derived difference scheme is stable and
convergent. Moreover, the convergence orders of the scheme in time and space are also given. In order to
accelerate the convergence rate, by combining the Kronecker product splitting (KPS) preconditioner with the
generalized minimal residual (GMRES) method, a preconditioning strategy for implementing the difference
scheme is introduced. Finally, several numerical examples are presented to illustrate the computational
accuracy and efficiency of the methods.

Keywords: Fractional convection-diffusion equations, Implicit difference scheme, Stability, Convergence,
Kronecker product splitting preconditioner

1. Introduction

Consider the following initial-boundary problems of two-dimensional time-space fractional convection-
diffusion equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

a1
∂u(x, y, t)

∂t
+ a2 C

t0
Dγ

t u(x, y, t)

= a3
∂u(x, y, t)

∂x
+a4

∂u(x, y, t)

∂y
+a5

∂αu(x, y, t)

∂|x|α
+a6

∂βu(x, y, t)

∂|y|β
+f(x, y, t), (x, y, t) ∈ Ω× (t0, T ],

u(x, y, t0) = u0(x, y), (x, y) ∈ Ω̄ = Ω ∪ ∂Ω; u(x, y, t) = 0, (x, y, t) ∈ R2\Ω× [t0, T ],

(1.1)

where ai (i = 1, 2, . . . , 6), α, β and γ are some given constants with a1, a2, a5, a6 ≥ 0, |a1| + |a2| ≠ 0,
|a5| + |a6| ≠ 0, 1 < α,β ≤ 2 and 0 < γ < 1, Ω = (xL, xR) × (yL, yR) denotes the space domain with
boundary ∂Ω, f(x, y, t) is the source term, C

t0D
γ
t u(x, y, t) is the γ-order Caputo fractional derivative of

unknown function u(x, y, t) defined by

C
t0D

γ
t u(x, y, t) =

1

Γ(1− γ)

∫ t

t0

∂u(x, y, ξ)

∂ξ

dξ

(t− ξ)γ
, (1.2)
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∂αu(x,y,t)
∂|x|α is the α-order Riesz fractional derivative of u(x, y, t) w.r.t. the variable x defined by

∂αu(x, y, t)

∂|x|α
= −

1

2 cos
(

απ
2

)

[

xLD
α
xu(x, y, t) + xD

α
xR

u(x, y, t)
]

, (1.3)

in which

xLD
α
xu(x, y, t) =

1

Γ(2 − α)

∂2

∂x2

∫ x

xL

u(η, y, t)

(x− η)α−1
dη, xD

α
xR

u(x, y, t) =
1

Γ(2− α)

∂2

∂x2

∫ xR

x

u(η, y, t)

(η − x)α−1
dη,

are the left-sided and right-sided Riemann-Liouville fractional derivatives in x direction, and β-order Riesz

fractional derivative ∂βu(x,y,t)
∂|y|β can be defined similarly. Moreover, it is remarkable that the absorbing

boundary condition is imposed on (1.1) based on some actual physical meanings (cf. [1]).
Problems in the form (1.1) cover a series of interesting practical models such as the time fractional

advection-dispersion equations (cf. [2]), fractional mobile-immobile advection-dispersion equations (cf. [3–
5]), fractional kinetic equations (cf. [6–8]) and fractional Fokker-Planck equations (cf. [9, 10]). To construct
a numerical method for solving problem (1.1), the discretizations of the Caputo derivatives and Riemann-
Liouville derivatives are the key points. For the discretization of Caputo derivatives, a popular method is
to use the piecewise linear approximation, i.e. the so-called L1 method (cf. [11–14]). For the discretization
of Riemann-Liouville derivatives, Meerschaert & Tadjeran [15] proposed the shifted Grünwald-Letnikov
formula, whose extended/improved versions can be also found in references [16–20]. Nevertheless, since
the fractional differential operators are nonlocal, most of the numerical methods for fractional differential
equations usually generate dense coefficient matrices, which lead to an expensive computational cost. In
order to improve the computational efficiency of the methods, some effective techniques have been developed.
For example, Wang, Wang & Sircar [21] introduced the fast Fourier transform for the methods with Toeplitz-
like coefficient matrix. In addition, some other accelerating methods have been also presented, such as the
multigrid method, the fast ADI method, the preconditioned conjugate gradient method, the multilevel
circulant preconditioned method and the Kronecker product splitting (KPS) method (cf. [22–28]).

Motivated by the above research, for problem (1.1), we here develop an implicit difference scheme along
with an accelerating strategy. The paper is organized as follows. In Section 2, an implicit difference scheme
for problem (1.1) is proposed. In Section 3, the stability and convergence analysis of the difference scheme are
analyzed and thus the corresponding criteria are derived. In Section 4, by combining the KPS preconditioner
(cf. [27, 28]) with the GMRES method (cf. [29]), an accelerating strategy is given. Numerical experiments
are presented in Section 5 to support the theoretical findings.

2. An implicit difference scheme

Let N1, N2,M ∈ N, τ = T−t0
M , h1 = xR−xL

N1+1 and h2 = yR−yL

N2+1 , and define the following grid sets:

Ω̄h =
{

(xi, yj) : xi = xL + ih1, 0 ≤ i ≤ N1 + 1; yj = yL + jh2, 0 ≤ j ≤ N2 + 1
}

,

Ωτ =
{

tm : tm = t0 +mτ, 0 ≤ m ≤ M
}

, Ωh = Ω̄h ∩ Ω, ∂Ωh = Ω̄h ∩ ∂Ω, Ωhτ = Ωh × Ωτ .

Under condition: u(·, ·, t) ∈ C(2)([t0, T ]), the following equalities hold:

C
t0
Dγ

t u(x, y, tm) =
1

Γ(1− γ)

m
∑

s=1

∫ ts

ts−1

u(x, y, ts)− u(x, y, ts−1)

τ

dξ

(tm − ξ)γ
+O(τ2−γ)

=
τ−γ

Γ(2− γ)

m
∑

s=1

b(γ)m−s [u(x, y, ts)− u(x, y, ts−1)] +O(τ2−γ), (2.1)

where b(γ)s = (s+ 1)1−γ − s1−γ satisfies the properties for s ≥ 1:

b(γ)0 = 1, b(γ)s−1 > b(γ)s , (1− γ)s−γ < b(γ)s−1 < (1− γ)(s− 1)−γ . (2.2)
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When dropping the remainder O(τ2−γ) in (2.1), the derived approximation formula can be used for the time
discretization of problem (1.1), that is the so-called L1 method (see e.g. [11–14]). Concerning the space
discretization of problem (1.1), we may apply (1.3) to compute the Riesz fractional derivatives, in which the
Riemann-Liouville fractional derivatives can be approximated by the weighed-shifted Grünwald-Letnikov
difference (WSGD) operator (see e.g. [17]).

In view of the absorbing boundary condition in (1.1), we define a function for y ∈ [yL, yR] and t ∈ [t0, T ]:

û(x) =

{

u(x, y, t), x ∈ [xL, xR],

0, otherwise,

and introduce a set:

Ln+α(R) =

{

v ∈ L1(R) :

∫ +∞

−∞
(1 + |k|)n+α

∣

∣

∣

∣

∫ +∞

−∞
eikxv(x)dx

∣

∣

∣

∣

dk < +∞

}

.

Moreover, we also need the following result from Hao, Sun & Cao [17].

Lemma 2.1. (cf. [17]) Suppose û(x) ∈ L2+α(R) and set

λ1 =
α2 + 3α+ 2

12
, λ0 =

4− α2

6
, λ−1 =

α2 − 3α+ 2

12
, g(α)k = (−1)k

(

α

k

)

,

w(α)
0 = λ1g

(α)
0 , w(α)

1 = λ1g
(α)
1 + λ0g

(α)
0 , w(α)

k = λ1g
(α)
k + λ0g

(α)
k−1 + λ−1g

(α)
k−2 (k ≥ 2),

Lδ
α
x û(x) =

1

hα
1

⌊
x−xL

h1
⌋

∑

k=0

w(α)
k û(x− (k − 1)h1), Rδ

α
x û(x) =

1

hα
1

⌊
xR−x

h1
⌋

∑

k=0

w(α)
k û(x+ (k − 1)h1).

Then

xLD
α
x û(x) = Lδ

α
x û(x) +O(h2

1), xD
α
xR

û(x) = Rδ
α
x û(x) +O(h2

1). (2.3)

Clearly, a result similar to Lemma 2.1 also holds for the variable y. Write Um
i,j = u(xi, yj , tm) and

fm
i,j = f(xi, yj , tm). Applying (2.1), (2.3) and the Taylor expansion to (1.1) yields

a1
Um
i,j − Um−1

i,j

τ
+

a2τ−γ

Γ(2− γ)

m
∑

s=1

b(γ)m−s

(

Us
i,j − Us−1

i,j

)

=a3
Um
i+1,j − Um

i−1,j

2h1
+ a4

Um
i,j+1 − Um

i,j−1

2h2
−

a5
2 cos

(

απ
2

)

hα
1

[

i
∑

k=0

w(α)
k Um

i−k+1,j +
N1−i+1
∑

k=0

w(α)
k Um

i+k−1,j

]

−
a6

2 cos
(

βπ
2

)

hβ
2

[

j
∑

l=0

w(β)
l Um

i,j−l+1 +
N2−j+1
∑

l=0

w(β)
l Um

i,j+l−1

]

+ fm
i,j +Rm

i,j , (xi, yj , tm) ∈ Ωhτ , (2.4)

where

|Rm
i,j | =

{

O(τ + h2
1 + h2

2), when a1 ≠ 0,

O(τ2−γ + h2
1 + h2

2), when a1 = 0and a2 ≠ 0.
(2.5)

Omitting the remainder Rm
i,j in (2.4) and replacing Um

i,j by the corresponding numerical approximation um
i,j ,

an implicit difference scheme for (1.1) can be derived as follows:

a1
um
i,j − um−1

i,j

τ
+

a2τ−γ

Γ(2− γ)

m
∑

s=1

b(γ)m−s

(

us
i,j − us−1

i,j

)
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=a3
um
i+1,j − um

i−1,j

2h1
+ a4

um
i,j+1 − um

i,j−1

2h2
−

a5
2 cos

(

απ
2

)

hα
1

[

i
∑

k=0

w(α)
k um

i−k+1,j +
N1−i+1
∑

k=0

w(α)
k um

i+k−1,j

]

−
a6

2 cos
(

βπ
2

)

hβ
2

[

j
∑

l=0

w(β)
l um

i,j−l+1 +
N2−j+1
∑

l=0

w(β)
l um

i,j+l−1

]

+ fm
i,j , (xi, yj , tm) ∈ Ωhτ , (2.6)

where the initial and boundary values are respectively given by

u0
i,j = u0(xi, yj), (xi, yj) ∈ Ωh; um

i,j = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ m ≤ M. (2.7)

3. Stability and convergence of the implicit difference scheme

This section will deal with the stability and convergence of the implicit difference scheme (2.6)-(2.7). Let

Vh =
{

v : v =
{

vi,j
}

is a grid function onΩ̄hand vi,j = 0if (xi, yj) ∈ ∂Ωh

}

.

On Vh we define the following inner product and the corresponding norm:

(u, v) = h1h2

N1
∑

i=1

N2
∑

j=1

ui,jvi,j , ∥u∥ =
√

(u, u), ∀u, v ∈ Vh.

The following lemma from Vong, Lyu, Chen & Lei [30] will play an important role in our analysis.

Lemma 3.1. (cf. [30]) Let α ∈ (1, 2), N1 ≥ 5 and v ∈ Vh. Then

(Lδ
α
x v, v) + (Rδ

α
x v, v) = h1−α

1 h2

N1
∑

i=1

N2
∑

j=1

[

i
∑

k=0

w(α)
k vi−k+1,j +

N1−i+1
∑

k=0

w(α)
k vi+k−1,j

]

vi,j ≤ − ln 2 c1∥v∥
2,

where c1 > 0 is a constant independent of the stepsizes h1 and h2.

Introducing the following notations for 0 ≤ m ≤ M :

um =
(

um
1,1, u

m
2,1, . . . , u

m
N1,1, u

m
1,2, u

m
2,2, . . . , u

m
N1,2, . . . , u

m
1,N2

, um
2,N2

, . . . , um
N1,N2

)T
,

fm =
(

fm
1,1, f

m
2,1, . . . , f

m
N1,1, f

m
1,2, f

m
2,2, . . . , f

m
N1,2, . . . , f

m
1,N2

, fm
2,N2

, . . . , fm
N1,N2

)T
,

a stability criterion can be derived under the condition: |a1|+ |a2| ≠ 0.

Theorem 3.2. Let N1, N2 ≥ 5. Then implicit difference scheme (2.6)-(2.7) is stable with respect to the
initial value u0 and source term f , namely, the following stability inequalities hold for 1 ≤ m ≤ M :

∥um∥2 ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∥u0∥2 +
τ

2 ln 2 a1c2

m
∑

k=1
∥fk∥2, when a1 ≠ 0and a2 = 0,

∥u0∥2 +
(T − t0)γΓ(1− γ)

2 ln 2 a2c2
max

1≤k≤m
∥fk∥2, when a1 ≠ 0and a2 ≠ 0;

(3.1)

∥um∥2 ≤ ∥u0∥2 +
(T − t0)γΓ(1− γ)

2 ln 2 a2c2
max

1≤k≤m
∥fk∥2, when a1 = 0and a2 ≠ 0, (3.2)

where c2 > 0 is a constant independent of the stepsizes h1, h2 and τ .
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Proof. Multiplying the both sides of (2.6) by h1h2um
i,j and then summing for i = 1, 2, . . . , N1 and

j = 1, 2, . . . , N2 yield

[

a1 +
a2τ1−γ

Γ(2− γ)

]

h1h2

N1
∑

i=1

N2
∑

j=1

(um
i,j)

2−
a3τh2

2

N1
∑

i=1

N2
∑

j=1

(um
i+1,j−um

i−1,j)u
m
i,j−

a4τh1

2

N1
∑

i=1

N2
∑

j=1

(um
i,j+1−um

i,j−1)u
m
i,j

=a1h1h2

N1
∑

i=1

N2
∑

j=1

um−1
i,j um

i,j +
a2τ1−γh1h2

Γ(2− γ)

N1
∑

i=1

N2
∑

j=1

[

b(γ)m−1u
0
i,j +

m−1
∑

s=1

(

b(γ)m−s−1 − b(γ)m−s

)

us
i,j

]

um
i,j

−
a5τh

1−α
1 h2

2 cos
(

απ
2

)

N1
∑

i=1

N2
∑

j=1

(

i
∑

k=0

w(α)
k um

i−k+1,j +
N1−i+1
∑

k=0

w(α)
k um

i+k−1,j

)

um
i,j

−
a6τh1h

1−β
2

2 cos
(

βπ
2

)

N1
∑

i=1

N2
∑

j=1

(

j
∑

l=0

w(β)
l um

i,j−l+1 +
N2−j+1
∑

l=0

w(β)
l um

i,j+l−1

)

um
i,j + τh1h2

N1
∑

i=1

N2
∑

j=1

fm
i,ju

m
i,j . (3.3)

Since um
0,j = um

N1+1,j = um
i,0 = um

i,N2+1 = 0 for 0 ≤ i ≤ N1+1, 0 ≤ j ≤ N2+1 and 0 ≤ m ≤ M , we have that

N1
∑

i=1

N2
∑

j=1

(um
i+1,j − um

i−1,j)u
m
i,j = 0,

N1
∑

i=1

N2
∑

j=1

(um
i,j+1 − um

i,j−1)u
m
i,j = 0. (3.4)

Applying (2.2), (3.4), Lemma 3.1 and the Cauchy-Schwartz inequality to (3.3) implies that, for all ϵ > 0,

[

a1
2

+
a2τ1−γ

Γ(2− γ)

]

∥um∥2 ≤
a1
2
∥um−1∥2 +

a2τ1−γ

2Γ(2− γ)

[

b(γ)m−1∥u
0∥2 +

m−1
∑

s=1

(

b(γ)m−s−1 − b(γ)m−s

)

∥us∥2 + ∥um∥2
]

− ln 2 τc2∥u
m∥2 + τ

(

ϵ∥um∥2 +
1

4ϵ
∥fm∥2

)

, (3.5)

where c2 = − a5

2 cos(απ
2 )

− a6

2 cos(βπ
2 )

. Letting ϵ = ln 2 c2 in (3.5), we obtain

[

a1+
a2τ1−γ

Γ(2−γ)

]

∥um∥2≤a1∥u
m−1∥2+

a2τ1−γ

Γ(2−γ)

[

m−1
∑

s=1

(

b(γ)m−s−1−b(γ)m−s

)

∥us∥2+b(γ)m−1∥u
0∥2
]

+
τ∥fm∥2

2 ln 2 c2
. (3.6)

Setting a2 = 0 in (3.6), the first inequality of (3.1) follows immediately by recursion. Next, we prove the
second inequality of (3.1) by mathematical induction. When a1, a2 ≠ 0, from (2.2) and (3.6) one obtains

[

a1 +
a2τ1−γ

Γ(2− γ)

]

∥um∥2 ≤a1∥u
m−1∥2 +

a2τ1−γ

Γ(2− γ)

m−1
∑

s=1

(

b(γ)m−s−1 − b(γ)m−s

)

∥us∥2

+
a2τ1−γ

Γ(2− γ)
b(γ)m−1

[

∥u0∥2 +
(T − t0)γΓ(1− γ)

2 ln 2 a2c2
∥fm∥2

]

. (3.7)

Write Pm = ∥u0∥2 + (T−t0)
γΓ(1−γ)

2 ln 2 a2c2
max

1≤k≤m
∥fk∥2. Then from (3.7) it follows that

∥u1∥2 ≤∥u0∥2 +
Γ(2− γ)τ

[a1Γ(2− γ) + a2τ1−γ ]2 ln 2 c2
∥f1∥2 ≤ ∥u0∥2 +

τγΓ(2 − γ)

2 ln 2 a2c2
∥f1∥2 ≤ P1.

Assume now that the second inequality of (3.1) holds for m = 2, 3, . . . , n (1 ≤ n < M). Then, when
m = n+ 1, from (3.7) and the induction hypothesis, one has

[

a1 +
a2τ1−γ

Γ(2− γ)

]

∥un+1∥2 ≤ a1Pn +
a2τ1−γ

Γ(2− γ)

[

n
∑

s=1

(

b(γ)n−s − b(γ)n−s+1

)

Ps + b(γ)n Pn+1

]
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≤a1Pn+1 +
a2τ1−γ

Γ(2− γ)

[

n
∑

s=1

(

b(γ)n−s − b(γ)n−s+1

)

Pn+1 + b(γ)n Pn+1

]

=

[

a1 +
a2τ1−γ

Γ(2− γ)

]

Pn+1,

which implies ∥un+1∥2 ≤ Pn+1. Hence the second inequality of (3.1) is proved.
When a1 = 0 and a2 ≠ 0, from (2.2) and (3.6) one deduces:

∥um∥2 ≤
m−1
∑

s=1

(

b(γ)m−s−1 − b(γ)m−s

)

∥us∥2 + b(γ)m−1

[

∥u0∥2 +
(T − t0)γΓ(1− γ)

2 ln 2 a2c2
∥fm∥2

]

. (3.8)

Based on (3.8) and using a similar proof for the second inequality of (3.1), inequality (3.2) can be also
derived. This completes the proof.

Let

emi,j = Um
i,j − um

i,j , em =
(

em1,1, e
m
2,1, . . . , e

m
N1,1, e

m
1,2, e

m
2,2, . . . , e

m
N1,2, . . . , e

m
1,N2

, em2,N2
, . . . , emN1,N2

)T
,

Rm =
(

Rm
1,1, R

m
2,1, . . . , R

m
N1,1, R

m
1,2, R

m
2,2, . . . , R

m
N1,2, . . . , R

m
1,N2

, Rm
2,N2

, . . . , Rm
N1,N2

)T
,

Then, under the condition: |a1|+ |a2| ≠ 0, scheme (2.6)-(2.7) can be proved to be convergent.

Theorem 3.3. The implicit difference scheme (2.6)-(2.7) has the following error estimates for 1 ≤ m ≤ M :

∥em∥ =

{

O(τ + h2
1 + h2

2), when a1 ≠ 0,

O(τ2−γ + h2
1 + h2

2), when a1 = 0and a2 ≠ 0.
(3.9)

Proof. Subtracting (2.6) from (2.4) yields

a1
emi,j − em−1

i,j

τ
+

a2τ−γ

Γ(2− γ)

m
∑

s=1

b(γ)m−s

(

esi,j − es−1
i,j

)

=a3
emi+1,j − emi−1,j

2h1
+ a4

emi,j+1 − emi,j−1

2h2
−

a5
2 cos

(

απ
2

)

hα
1

[

i
∑

k=0

w(α)
k emi−k+1,j +

N1−i+1
∑

k=0

w(α)
k emi+k−1,j

]

−
a6

2 cos
(

βπ
2

)

hβ
2

[

j
∑

l=0

w(β)
l emi,j−l+1 +

N2−j+1
∑

l=0

w(β)
l emi,j+l−1

]

+Rm
i,j , (xi, yj, tm) ∈ Ωhτ . (3.10)

Since by (2.5) there exists c0 > 0 such that, for all i, j,m,

|Rm
i,j | ≤

{

c0(τ + h2
1 + h2

2), when a1 ≠ 0,

c0(τ2−γ + h2
1 + h2

2), when a1 = 0and a2 ≠ 0,
(3.11)

a similar derivation process as in Theorem 3.2 shows that:

• when a1 ≠ 0and a2 = 0,

∥em∥ ≤

√

√

√

√

τ

2 ln 2 a1c2

m
∑

k=1

∥Rk∥2 ≤

√

c20(T − t0)(xR − xL)(yR − yL)

2 ln 2 a1c2
(τ + h2

1 + h2
2);

• when a1 ≠ 0and a2 ≠ 0,

∥em∥ ≤

√

(T − t0)γΓ(1 − γ)

2 ln 2 a2c2
max

1≤k≤m
∥Rk∥ ≤

√

c20(T − t0)γ(xR − xL)(yR − yL)Γ(1 − γ)

2 ln 2 a2c2
(τ + h2

1 + h2
2);
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• when a1 = 0and a2 ≠ 0,

∥em∥ ≤

√

(T−t0)γΓ(1−γ)

2 ln 2 a2c2
max

1≤k≤m
∥Rk∥ ≤

√

c20(T − t0)γ(xR − xL)(yR − yL)Γ(1− γ)

2 ln 2 a2c2
(τ2−γ +h2

1+h2
2).

Therefore, the theorem is proved.

4. GMRES method with the KPS preconditioner

Generally speaking, when the scheme (2.6)-(2.7) is applied to problem (1.1), a large-scale linear system
will emerge, which needs an expensive computational cost. In order to improve the computational efficiency,
in this section, we will consider an efficient implementation strategy by using the GMRES method (cf. [29])
with the KPS preconditioner (cf. [27, 28]).

Let INi be the Ni ×Ni identity matrix, BNi = tridiag
{

− 1, 0, 1
}

∈ RNi×Ni, and set

d1 =
a2τ1−γ

Γ(2 − γ)
, d2 = −

a3τ

2h1
, d3 = −

a4τ

2h2
, d4 =

a5τ

2 cos
(

απ
2

)

hα
1

, d5 =
a6τ

2 cos
(

βπ
2

)

hβ
2

,

Um = um, Gm = a1u
m−1 + d1

[

b(γ)m−1u
0 +

m−1
∑

s=1

(

b(γ)m−s−1 − b(γ)m−s

)

us

]

+ τfm,

Wξ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w(ξ)
1 w(ξ)

0

w(ξ)
2 w(ξ)

1 w(ξ)
0

...
...

. . .
. . .

w(ξ)
Ni−1 w(ξ)

Ni−2 · · · w(ξ)
1 w(ξ)

0

w(ξ)
Ni

w(ξ)
Ni−1 · · · w(ξ)

2 w(ξ)
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, where (ξ, i) = (α, 1)or (β, 2).

With the above notations, scheme (2.6) can be cast into the following form with m = 1, 2, . . . ,M :
[

(a1 + d1)IN1N2
+ IN2

⊗
(

d2BN1
+ d4Wα + d4W

T
α

)

+
(

d3BN2
+ d5Wβ + d5W

T
β

)

⊗ IN1

]

Um = Gm. (4.1)

Scheme (4.1) is an N1N2-dimensional linear system, which may be very large when N1 and/or N2 is large.
Thus, applying a classical direct method to solve (4.1), a heavy computational cost would be required. In
order to accelerate the computation of scheme (4.1), in the following, we will give a preconditioned method.
Write

Kα =

(

a1 + d1
2

)

IN1
+ d2BN1

+ d4Wα + d4W
T
α , Kβ =

(

a1 + d1
2

)

IN2
+ d3BN2

+ d5Wβ + d5W
T
β .

Then, the coefficient matrix in (4.1) reads A := IN2
⊗Kα +Kβ ⊗ IN1

, and can be split into the following
form with parameters θ1, θ2 > 0:

A = P (θ1, θ2)−R(θ1, θ2), (4.2)

where

P (θ1, θ2) =
1

θ1 + θ2
(θ1IN2

+Kβ)⊗ (θ2IN1
+Kα), R(θ1, θ2) =

1

θ1 + θ2
(θ2IN2

−Kβ)⊗ (θ1IN1
−Kα).

In our preconditioned method, P (θ1, θ2) will be considered as a preconditioner: its invertibility is assured
by the following criterion.
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Lemma 4.1. Assume that θ1, θ2 are two positive parameters subject to

− min
ν∈σ(Kα)

ℜ(ν) <
θ2 − θ1

2
≤ min

µ∈σ(Kβ)
ℜ(µ), (4.3)

where σ(·) denotes the spectrum of the given matrix. Then P (θ1, θ2) is invertible.

Proof. By the well-known properties of the Kronecker product (see e.g. [31]), the eigenvalues of P (θ1, θ2)
are given:

λ =
(θ1+µ)(θ2+ν)

θ1 + θ2
=

1

θ1+θ2

(

θ1 + θ2
2

−
θ2 − θ1

2
+µ

)(

θ1 + θ2
2

+
θ2 − θ1

2
+ν

)

, ν ∈ σ(Kα), µ ∈ σ(Kβ).

Then, from (4.3), it follows that µ − θ2−θ1
2 ≥ 0 and ν + θ2−θ1

2 > 0. This, together with θ1, θ2 > 0, implies
that λ > 0. Hence P (θ1, θ2) is invertible.

When P (θ1, θ2) is invertible, we write G(θ1, θ2) = P−1(θ1, θ2)R(θ1, θ2), that is

G(θ1, θ2) =
[

(θ1IN2
+Kβ)

−1(θ2IN2
−Kβ)

]

⊗ [(θ2IN1
+Kα)

−1(θ1IN1
−Kα)].

Then P−1(θ1, θ2)A = IN1N2
−G(θ1, θ2) and thus scheme (4.1) is equivalent to

P−1(θ1, θ2)AUm = [IN1N2
−G(θ1, θ2)]Um = P−1(θ1, θ2)Gm, m = 1, 2, . . . ,M. (4.4)

System (4.4) can be solved by using the GMRES method, where P (θ1, θ2) is a preconditioner (i.e. KPS
preconditioner). By using the similar proofs as those of Theorems 3.1 and 3.2 in [27], we can derive the
following result.

Theorem 4.2. Assume that θ1, θ2 are two positive parameters subject to (4.3). Then the spectral radius
ρ(G(θ1, θ2)) of matrix G(θ1, θ2) satisfies that

ρ(G(θ1, θ2)) ≤ r(θ1, θ2) := max
ν∈σ(Kα+

θ2−θ1
2

IN1)

∣

∣

∣

∣

∣

θ1+θ2
2 − ν

θ1+θ2
2 + ν

∣

∣

∣

∣

∣

< 1,

and the minimum value r(θ∗1 , θ
∗
2) of the function r(θ1, θ2) is given by

r(θ∗1 , θ
∗
2) =

(√

νmax + µmin

νmin + µmin
− 1

)(√

νmax + µmin

νmin + µmin
+ 1

)−1

,

where

θ∗1 =
√

(νmin + µmin)(νmax + µmin)− µmin, θ∗2 =
√

(νmin + µmin)(νmax + µmin) + µmin,

in which νmin and νmax denote the minimum and maximum eigenvalues of Kα, respectively, and µmin is the
minimum eigenvalue of Kβ.

It follows from Theorem 4.2 that, for all positive parameters θ1, θ2 satisfying (4.3), the eigenvalues
of P−1(θ1, θ2)A are located in a circle centered at (1, 0) with radius smaller than 1. This shows that
the preconditioner P (θ1, θ2) can accelerate the convergence rate of the GMRES method since a clustered
spectrum often translates in rapid convergence of the GMRES method (see e.g. [32]).
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5. Numerical experiments

In this section, we present some numerical experiments to illustrate the computational accuracy and
efficiency of the GMRES method with the KPS preconditioner for solving the difference scheme (2.6) or
(4.1), where the parameters θ1 and θ2 will be taken as the optimal ones indicated in Theorem 4.2. In order
to show the computational advantage of the preconditioned method, we will also give a comparison of the
following three methods for solving (4.1):

• Method I: using the matrix left-division command in MATLAB;

• Method II: GMRES method without preconditioner;

• Method III: GMRES method with the KPS preconditioner.

The initial guesses for Methods II-III are taken as their approximation at the previous time-step, the
restarting value is chosen as 20 and the stopping criterion of the iteration is

∥Gm −AU (k)
m ∥

∥Gm − AU (0)
m ∥

≤ 10−6,

where U (k)
m denotes the kth-approximation to Um. Moreover, we will always set h1 = h2 = h and compute

the global error and the temporal and spatial convergence orders respectively by the following formulas:

E(h, τ) = max
0≤m≤M

∥em∥, Order1 = log2

[

E(h, τ)

E(h, τ/2)

]

, Order2 = log2

[

E(h, τ)

E(h/2, τ)

]

.

Example 5.1. Consider the initial-boundary problem in the form (1.1) with

a1 = a2 = a5 = a6 = 1, a3 = a4 =−1, u0(x, y) = [x(2−x)y(2−y)]2, t0 = 0, T = 1, Ω = (0, 2)×(0, 2), (5.1)

and source function f(x, y, t) being assigned such that the problems have a common exact solution u(x, y, t) =
exp(−t)[x(2−x)y(2− y)]2. For convenience, we write the discrete systems (4.1) corresponding to the above
problems as Q1(α,β, γ), where α,β, γ are (suitable) free parameters.

Applying Methods I-III with h = 1/60 and τ = 1/3, 1/6, 1/12, 1/24 (resp. h = 1/3, 1/6, 1/12, 1/24
and τ = 1/1000) to the discrete systems Q1(1.2, 1.8, γ) with γ = 0.1, 0.5, 0.9 (resp. Q1(α,β, 0.5) with
(α,β) = (1.2, 1.8), (1.4, 1.6), (1.5, 1.5)), the CPU times (in second), global errors and convergence rates in
time (resp. in space) are listed in Table 1 (resp. Table 2). It can be seen from Tables 1-2 that Methods I-III
almost have the same accuracy under the same spatial and temporal stepsizes, and can reach the theoretical
accuracy stated in Theorem 3.3. By comparing the CPU times, we can find that the computational efficiency
of Method III is optimal among the three methods.

The average iteration numbers per time-step versus the different parameters θ1, θ2 of Method III for
Q1(1.2, 1.8, 0.5) with h = τ = 1/16 (resp. h = τ = 1/32) is plotted in Figure 1 (a) (resp. Figure 1 (b)). From
Figure 1, we can observe that there is a good range of parameters θ1, θ2 (including θ∗1 , θ

∗
2) for the convergence

of Method III. This also implies that the selection of parameters θ∗1 and θ∗2 in Method III is appropriate. In
Figure 2 (a)-(b), we display the spectrums of matrices A and P−1(θ∗1 , θ

∗
2)A for Q1(1.2, 1.8, 0.5) with h = τ =

1/32, respectively. These figures show that matrix A maybe ill-conditioned while matrix P−1(θ∗1 , θ
∗
2)A has

tightly clustered eigenvalues around (1,0), which implies that Method III can converge rapidly. Moreover,
in Figure 3 we plot the error surfaces of Method III with h = τ = 1/32 for Q1(1.2, 1.8, 0.5) at t = 0.5 and
t = 1, respectively. This, again, testifies the effectiveness of Method III.

Example 5.2. Consider the following initial-boundary problem in the form (1.1) with

{

a1 = 0, a2 = a3 = a4 = 1, a5 = −2 cos
(

απ
2

)

, a6 = −2 cos
(

βπ
2

)

,

u0(x, y) = 0, t0 = 0, T = 1, Ω = (0, 1)× (0, 1),
(5.2)
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Table 1: CPU times, global errors and convergence rates in time of Methods I-III with h = 1/60 for Q1(1.2, 1.8, γ).

Method I Method II Method III
γ τ CPU E(h, τ) Order1 CPU E(h, τ) Order1 CPU E(h, τ) Order1
0.1 1/3 166.77 1.5606e–2 – 4.65 1.5606e–2 – 1.92 1.5606e–2 –

1/6 326.77 8.4553e–3 0.8841 7.47 8.4554e–3 0.8841 3.49 8.4554e–3 0.8841
1/12 651.17 4.4454e–3 0.9276 11.86 4.4454e–3 0.9275 6.22 4.4455e–3 0.9275
1/24 1290.17 2.3263e–3 0.9343 19.52 2.3264e–3 0.9342 11.88 2.3264e–3 0.9343

0.5 1/3 166.73 1.8303e–2 – 4.45 1.8303e–2 – 1.91 1.8303e–2 –
1/6 324.59 9.2990e–3 0.9770 6.97 9.2990e–3 0.9770 3.40 9.2991e–3 0.9770
1/12 648.00 4.7046e–3 0.9830 11.35 4.7046e–3 0.9830 6.28 4.7047e–3 0.9830
1/24 1283.12 2.3766e–3 0.9852 18.68 2.3767e–3 0.9851 11.89 2.3767e–3 0.9852

0.9 1/3 164.28 2.6212e–2 – 4.28 2.6212e–2 – 1.91 2.6212e–2 –
1/6 324.77 1.3810e–2 0.9245 6.53 1.3810e–2 0.9245 3.37 1.3810e–2 0.9245
1/12 653.93 7.0496e–3 0.9701 10.37 7.0496e–3 0.9701 6.15 7.0497e–3 0.9701
1/24 1288.85 3.5514e–3 0.9891 17.39 3.5516e–3 0.9891 11.84 3.5515e–3 0.9892

Table 2: CPU times, global errors and convergence rates in space of Methods I-III with τ = 1/1000 for Q1(α, β, 0.5).

Method I Method II Method III
(α,β) h CPU E(h, τ) Order2 CPU E(h, τ) Order2 CPU E(h, τ) Order2
(1.2,1.8) 1/3 1.66 5.5429e–2 – 9.99 5.5426e–2 – 1.77 5.5429e–2 –

1/6 5.48 1.3788e–2 2.0072 13.87 1.3784e–2 2.0075 5.28 1.3787e–2 2.0073
1/12 25.46 3.4115e–3 2.0149 31.64 3.4083e–3 2.0159 18.75 3.4114e–3 2.0149
1/24 419.10 8.6726e–4 1.9759 99.52 8.6319e–4 1.9813 73.17 8.6761e–4 1.9752

(1.4,1.6) 1/3 1.68 5.4782e–2 – 10.09 5.4781e–2 – 1.78 5.4782e–2 –
1/6 5.52 1.3364e–2 2.0353 14.14 1.3363e–2 2.0354 5.27 1.3364e–2 2.0353
1/12 25.17 3.2843e–3 2.0248 31.76 3.2826e–3 2.0254 18.81 3.2824e–3 2.0255
1/24 413.83 8.3716e–4 1.9720 99.77 8.3520e–4 1.9747 72.87 8.3573e–4 1.9736

(1.5,1.5) 1/3 1.68 5.4686e–2 – 9.99 5.4687e–2 – 1.79 5.4686e–2 –
1/6 5.51 1.3308e–2 2.0389 14.04 1.3307e–2 2.0390 5.23 1.3306e–2 2.0391
1/12 25.68 3.2689e–3 2.0254 31.54 3.2681e–3 2.0257 18.60 3.2668e–3 2.0262
1/24 429.34 8.3402e–4 1.9707 98.73 8.3104e–4 1.9755 72.55 8.3275e–4 1.9719
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(a) (b)

Figure 1: (a) Iteration numbers versus parameters θ1, θ2 for Q1(1.2, 1.8, 0.5) with h = τ = 1/16; (b) Iteration numbers versus
parameters θ1, θ2 for Q1(1.2, 1.8, 0.5) with h = τ = 1/32.
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Figure 2: (a) The spectrum of matrix A for Q1(1.2, 1.8, 0.5) with h = τ = 1/32; (b) The spectrum of matrix P−1(θ∗
1
, θ∗

2
)A for

Q1(1.2, 1.8, 0.5) with h = τ = 1/32.
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Figure 3: Error surfaces of Method III with h = τ = 1/32 for Q1(1.2, 1.8, 0.5) at t = 0.5 and t = 1, respectively.
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and source function f(x, y, t) being assigned such that the problems have a common exact solution u(x, y, t) =
216[tx(1 − x)y(1 − y)]4. For convenience, we write the discrete systems (4.1) corresponding to the above
problems as Q2(α,β, γ).

Taking h = 1/⌊2(1/τ)
2−γ
2 ⌋ and τ = 1/8, 1/16, 1/32, 1/64 (resp. h = 1/8, 1/16, 1/32, 1/64 and τ = 1/500),

then applying Methods I-III to the discrete systems Q2(1.2, 1.8, γ) with γ = 0.1, 0.5, 0.9 (resp. Q2(α,β, 0.5)
with (α,β) = (1.2, 1.8), (1.4, 1.6), (1.5, 1.5)), the CPU times (in second), global errors and convergence rates
in time (resp. in space) are listed in Table 3 (resp. Table 4). From Tables 3-4, we can see that the
three methods almost have the same accuracy under the same spatial and temporal stepsizes and reach the
theoretical accuracy shown in Theorem 3.3. By comparing the CPU times, we see that the computational
efficiency of Method III is optimal among the three methods.

In Figure 4 (a) (resp. Figure 4 (b)), we plot the average iteration numbers per time-step versus the
parameters θ1, θ2 of Method III for Q2(1.2, 1.8, 0.5) with h = τ = 1/16 (resp. h = τ = 1/32). From Figure
4, it can be seen that there is a wide range of the parameters θ1, θ2 (including θ∗1 , θ

∗
2) where the convergence

of Method III is optimal. This also indicates that the selection of parameters θ∗1 and θ∗2 in Method III is
appropriate. In Figure 5, we display the spectrums of matrices A and P−1(θ∗1 , θ

∗
2)A for Q2(1.2, 1.8, 0.5) with

h = τ = 1/32, respectively. This shows that matrix A maybe ill-conditioned, while matrix P−1(θ∗1 , θ
∗
2)A has

tightly clustered eigenvalues around (1,0), which implies that Method III can converge rapidly. Moreover,
in Figure 6 we plot the error surfaces of Method III with h = τ = 1/32 for Q2(1.2, 1.8, 0.5) at t = 0.5 and
t = 1, respectively. This further confirms the effectiveness of Method III.

Table 3: CPU times, global errors and convergence rates in time of Methods I-III with h = 1/⌊2(1/τ)
2−γ
2 ⌋ for Q2(1.2, 1.8, γ).

Method I Method II Method III
γ τ CPU E(h, τ) Order1 CPU E(h, τ) Order1 CPU E(h, τ) Order1
0.1 1/8 0.11 5.0989e–3 – 0.30 5.0989e–3 – 0.15 5.0989e–3 –

1/16 0.60 1.6361e–3 1.6399 0.53 1.6361e–3 1.6399 0.37 1.6361e–3 1.6399
1/32 22.48 4.3751e–4 1.9029 5.61 4.3751e–4 1.9029 1.97 4.3751e–4 1.9029
1/64 1925.92 1.1785e–4 1.8924 85.80 1.1785e–4 1.8923 14.01 1.1785e–4 1.8924

0.5 1/8 0.05 1.3741e–2 – 0.10 1.3741e–2 – 0.04 1.3741e–2 –
1/16 0.15 5.1860e–3 1.4058 0.24 5.1860e–3 1.4058 0.13 5.1860e–3 1.4058
1/32 1.11 1.6794e–3 1.6267 1.06 1.6794e–3 1.6267 0.55 1.6794e–3 1.6267
1/64 21.26 6.1878e–4 1.4404 5.81 6.1879e–4 1.4404 2.74 6.1878e–4 1.4404

0.9 1/8 0.03 2.3876e–2 – 0.09 2.3876e–2 – 0.03 2.3876e–2 –
1/16 0.07 1.4304e–2 0.7391 0.16 1.4304e–2 0.7391 0.06 1.4304e–2 0.7391
1/32 0.21 7.0726e–3 1.0161 0.34 7.0727e–3 1.0161 0.19 7.0726e–3 1.0161
1/64 0.78 3.4066e–3 1.0539 1.02 3.4066e–3 1.0539 0.57 3.4066e–3 1.0539
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Table 4: CPU times, global errors and convergence rates in space of Methods I-III with τ = 1/500 for Q2(α, β, 0.5).

Method I Method II Method III
(α,β) h CPU E(h, τ) Order2 CPU E(h, τ) Order2 CPU E(h, τ) Order2
(1.2,1.8) 1/8 0.88 2.1360e–2 – 3.54 2.1360e–2 – 0.97 2.1360e–2 –

1/16 3.40 4.9726e–3 2.1028 5.37 4.9726e–3 2.1028 2.83 4.9726e–3 2.1028
1/32 38.68 1.2196e–3 2.0276 17.26 1.2196e–3 2.0276 10.48 1.2196e–3 2.0276
1/64 965.18 3.0426e–4 2.0030 96.55 3.0426e–4 2.0030 41.67 3.0426e–4 2.0030

(1.4,1.6) 1/8 0.85 2.6132e–2 – 3.73 2.6132e–2 – 0.95 2.6132e–2 –
1/16 3.68 5.9927e–3 2.1245 5.79 5.9927e–3 2.1245 2.80 5.9927e–3 2.1245
1/32 28.86 1.4619e–3 2.0354 15.71 1.4619e–3 2.0354 10.68 1.4619e–3 2.0354
1/64 990.25 3.6408e–4 2.0055 64.48 3.6409e–4 2.0054 42.07 3.6409e–4 2.0054

(1.5,1.5) 1/8 0.89 2.6898e–2 – 3.61 2.6898e–2 – 0.99 2.6898e–2 –
1/16 3.66 6.1509e–3 2.1286 5.80 6.1509e–3 2.1286 2.83 6.1509e–3 2.1286
1/32 27.93 1.4990e–3 2.0368 15.37 1.4990e–3 2.0368 10.64 1.4990e–3 2.0368
1/64 1029.21 3.7322e–4 2.0059 60.23 3.7323e–4 2.0059 42.52 3.7322e–4 2.0059

(a) (b)

Figure 4: (a) Iteration numbers versus parameters θ1, θ2 for Q2(1.2, 1.8, 0.5) with h = τ = 1/16; (b) Iteration numbers versus
parameters θ1, θ2 for Q2(1.2, 1.8, 0.5) with h = τ = 1/32.
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Figure 5: (a) The spectrum of matrix A for Q2(1.2, 1.8, 0.5) with h = τ = 1/32; (b) The spectrum of matrix P−1(θ∗
1
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)A for

Q2(1.2, 1.8, 0.5) with h = τ = 1/32.
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Figure 6: Error surfaces of Method III with h = τ = 1/32 for Q2(1.2, 1.8, 0.5) at t = 0.5 and t = 1, respectively.
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