
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Algorithms for `0-norm
Optimization Problems

Tommaso Levato

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Algorithms for `0-norm
Optimization Problems

Tommaso Levato

Advisors:

Prof. Marco Sciandrone Prof. Fabio Schoen

Head of the PhD Program:

Prof. Paolo Frasconi

Evaluation Committee:
Prof. Manlio Gaudioso, Università della Calabria
Prof. Fabio Tardella, Sapienza Università di Roma

XXXII ciclo — October 2019

A Mamma e Babbo

ii

Acknowledgments
First, I would like to thank ProfessorsMarco Sciandrone and Fabio Schoen: you have
been way better advisors than what I have been as a PhD student. I also would like
to thank Giampaolo Liuzzi and Francesco Rinaldi, as coauthors and supervisors, for
their support and advice.

Finally, thanks to my friends and colleagues of the Global Optimization Labora-
tory (LabGOL), who have shared this journey with me: Francesco, Enrico, Guido,
LeonardoD.G., LeonardoG., Alessandro, Giulio,Matteo, Federica, Roberta, Alessio,
Luca. I am fortunate to have had you by my side.

iii

Abstract

This thesis concerns `0-norm optimization problems, where we are inter-
ested in finding solutions with few nonzero components. This characteristic is
of interest in a number of different fields, such as portfolio optimization, signal
processing and machine learning. In this thesis, we propose three methods for
the solution of `0-norm optimization problems, satisfying suitable convergence
guarantees.

In the first part, wepropose amixed-integer approach for dealingwith cardi-
nality constrained optimization problems, under additional convex constraints
and with a nonconvex objective function. We state theoretical convergence re-
sults stronger than those recently presented in the literature. We also com-
pare the numerical performance of our approach with two state-of-the-art al-
gorithms, and the results obtained show that our method is competitive.

The second contribution is an inexact version of a popular penalty decom-
position algorithm known in literature. We prove that this inexact variant satis-
fies the same convergence guarantees as the exact algorithm, which makes our
method suitable to deal with nonconvex objective functions. We also provide
a derivative-free extension for the case where first order information are not
available, and we show that this adaptation maintains the same convergence
guarantees as the original smooth version.

Finally, we propose an optimization method for sparse multiobjective prob-
lems where one of the objectives is the `0-norm. The approach is based on con-
cave approximations of the `0-norm, and the obtained approximated problem
is shown to be equivalent, in some sense, to the original one. We propose an
algorithm based on line searches along suitable descent directions to provide
a good approximation of the Pareto front of the original multiobjective prob-
lem. We show that our method is competitive against different state-of-the-art
multiobjective algorithms, in both the single point and Pareto front cases.

Contents

Contents 1

1 Introduction 3

2 Amixed-integer algorithm for nonconvexproblemswith cardinality con-
straint 7
2.1 Preliminaries . 8
2.2 The Mixed-Integer Approach . 11
2.3 Discrete neighborhoods . 15
2.4 Algorithmic framework . 17
2.5 Convergence analysis . 18
2.6 Numerical results . 24
2.7 Conclusions . 29

3 Apenalty decomposition approach for nonconvex cardinality constrained
optimization 31
3.1 Preliminaries . 32
3.2 Inexact Penalty Decomposition approach 34
3.3 A Derivative-Free extension . 39
3.4 Conclusions . 45

4 A concave optimization-based approach for sparse multiobjective pro-
gramming 47
4.1 Preliminaries . 48
4.2 Concave approximations . 50
4.3 The algorithm . 59
4.4 Numerical results . 61
4.5 Conclusions . 68

Bibliography 69

A Publications 73

1

Chapter 1

Introduction

Sparse solutions to optimization problems are desirable for different reasons: they
are more robust to noise, they are simpler to realize and, most importantly, they are
simpler to understand and to explain. Parsimoniousmodels are, therefore, desirable
in various practical settings: portfolio optimization (Deng et al. (2012); Mutunge
and Haugland (2018)), compressed sensing (Eldar and Kutyniok (2012)), machine
learning (Miller (2002); John et al. (1994)) and so on. However, this feat is hard
to obtain: in general, retrieving the sparsest solution to an optimization problem is
NP-Hard (Natarajan (1995)).

Essentially, sparsity can be either imposed or encouraged. In otherwords, we can
either constrain our solutions to be sparse, or we can express a preference towards
sparse solutions. More formally, given a generic feasible set X ⊆ Rn, we consider
two different formulations: the first is the cardinality constrained problem

min
x

f (x)

s.t. x ∈ X,
‖x‖0 ≤ s,

(1.1)

where f : Rn → R is a continuously differentiable function, 0 < s < n and ‖ · ‖0 is
the so-called “`0-norm”, i.e., the cardinality of the support of x:

‖x‖0 = |{i | xi 6= 0}| . (1.2)

Here, each feasible point cannot exceed a predefined cardinality, specified by the
parameter s. The second formulation is the `0-penalty problem

min
x

f (x) + λ‖x‖0

s.t. x ∈ X,
(1.3)

where λ > 0 is a fixed parameter. Here, instead, sparsity of the solution is not
guaranteed.

3

4 Introduction

These two problems are strictly related, though not equivalent (Nikolova (2016);
Soubies et al. (2017)). The choice between these two variants is not trivial and offers
different solution strategies, which have to be carefully considered for the applica-
tion at hand.

A common thread, or threat, runs through the previous formulations: the `0-
norm is not continuous, let alone differentiable or convex. Standard optimization
techniques are therefore generally inapplicable in this context. In general, solution
strategies can be roughly categorized in two kinds of approaches: build new op-
timization methods specifically designed to work with the `0-norm, or recast the
problem at hand into a problem where standard optimization techniques are appli-
cable, trying to ensure that the resulting optimization program is somewhat equiv-
alent to the original one. In reference to the relevant literature of the field, we have
a variety of different classes of related approaches, comprising (but not limited to):

• convex relaxations (Tibshirani (1996); Efron et al. (2004); Zou andHastie (2005)),

• global optimization approaches (Bertsimas and Shioda (2009); Bertsimas et al.
(2016); Bienstock (1996); Boudt and Wan (2019)),

• decompositionmethods (Bai et al. (2016); DiGangi et al. (2019); Lu andZhang
(2013)),

• concave approximations (Rinaldi et al. (2010); Di Lorenzo et al. (2012)),

• iterative thresholding (Blumensath and Davies (2008); Xu et al. (2012)),

• multiobjective approaches (Anagnostopoulos and Mamanis (2010); Brito and
Vicente (2014)),

and so on.
The line between the two main kinds of approaches described earlier can be

blurred at times, but there are a number of methods that strongly fit this catego-
rization. For example, the Lasso approach (Tibshirani (1996)) is entirely based on
the use of the convex `1-norm in place of the `0-norm, while the iterative threshold-
ing algorithms are instead designed taking into account the specific characteristics
of the `0-norm.

Summing up, there are a lot of different ways to tackle the daunting task of min-
imizing `0-norm optimization problems. In this regard, this thesis proposed three
novelmethods for the resolution of `0-norm optimization problems. In our view, the
methods we propose fit into the “reformulation” category, meaning that we try to
bridge the gap between the inherently nonsmooth nature of the `0-norm term with
standard smooth optimization techniques. The reason is simple: this choice opens
up a lot of opportunities in the way we approach the problem and in the solution

5

strategies we can pick from, and this results in a huge amount of research directions
that can be followed.

Another important thing to note is the fact that our methods do not require the
convexity of the objective function, unlike some important state-of-the-art methods.
In fact, although in the literature the convexity assumption is not always explicitly
stated, it is often required in practice, typically through exact minimizations of sub-
problems in an iterative scheme (see, e.g., Beck and Eldar (2013); Lu and Zhang
(2013)). This observation, moreover, does not only hold in practical settings, but
also in the convergence analysis, which assumes that global minima can be found at
each iteration. In case of a nonconvex objective, this can be prohibitive. The meth-
ods we propose, instead, only rely on the differentiability of the objective function,
without any convexity assumptions. This feat is achieved by replacing exact min-
imizations with line search procedures along suitable descent directions, typically
related to the gradient of the objective function.

We now briefly describe the contributions of this thesis. In Chapter 2, taking
inspiration from Burdakov et al. (2016), we first recast problem (1.1) into a mixed
integer formulation, where added binary variables are used to express implicitly the
original cardinality constraint. Essentially, each binary variable indicates whether
the related original variable is constrained to be 0 or not. Then, we apply an opti-
mization strategy based on local searches and the exploration of different “discrete
neighborhoods” of the current iterate, following the strategy proposed in Lucidi
et al. (2005) for general mixed integer problems. Informally, at each iteration, the
idea is to first look for a set of promising variables, fixing the others at 0, and then
to improve the chosen free variables by using standard local search techniques. In
this way, we separate the task of finding a small subset of variables from the true
optimization phase, which in principle can be carried out with any standard opti-
mization technique.

InChapter 3wepropose a penalty decompositionmethod for problem (1.3). Fol-
lowing the approach in Lu and Zhang (2013), the idea is to duplicate the variables
of the problem to split the constraints between the original and the new variables.
In particular, the cardinality constraint is assigned to the added variables, while the
original variables are free to move. As in the previous work, the idea is to separate
the two tasks of choosing a small subset of variables and of optimizing the selected
ones. This is done by employing an alternate minimization scheme between the two
sets of variables. To ensure feasibility of the limit points, the distance between the
original and the new variables is penalized in the objective function, constructing a
series of optimization problems where this penalty gets increasingly bigger.

Lastly, considering problem (1.3), it can be argued that the nature of this prob-
lem is inherentlymultiobjective: we have to deal with the (usually) conflicting goals
of reducing some kind of cost, embodied by f (x), trying to do so with as little com-

6 Introduction

ponents as possible. Roughly speaking, the λ parameter encodes a priority between
the two objectives, resulting in different solutions for different values of λ. In other
words, we can argue that problem (1.3) can be well represented by the multiobjec-
tive program

min
x

f (x), ||x||0
s.t. x ∈ X

or, more generally, by the multiobjective problem

min
x

f1(x), f2(x), . . . , fm−1(x), ||x||0
s.t. x ∈ X,

(1.4)

for some continuously differentiable functions f1(x), . . . , fm−1(x) : Rn → R. In
Chapter 4 we propose to reformulate problem (1.4) by replacing the `0-norm ob-
jective with a smooth concave approximation function, as proposed in Rinaldi et al.
(2010) for single objective problems. This allows the use of gradient-descent re-
lated algorithms as a solution strategy. The approximated problem obtained has
been shown to be equivalent, in some sense, to the original multiobjective problem.
To compute an approximation of the Pareto front, we propose an algorithm that it-
eratively improves the current list of non-dominated points using a set of descent
directions, as in Fliege and Vaz (2016).

Chapter 2

A mixed-integer algorithm for
nonconvex problems with cardinality
constraint

In this chapter, we consider the following cardinality constrained problem:

min
x

f (x)

s.t. ‖x‖0 ≤ s,
x ∈ X,

(2.1)

where f : Rn → R is a continuously differentiable function, nonconvex in general,
and X ⊆ Rn is a closed convex set. As shown in, e.g., Burdakov et al. (2016), prob-
lem (2.1) can be stated as a mixed integer program equivalent, in a certain sense,
to the original one. Essentially, we insert new binary variables y ∈ {0, 1}n to ex-
press which components xi must be equal to zero, ensuring the satisfaction of the
cardinality constraint.

Here, we tackle the mixed integer reformulation by applying a resolution strat-
egy adapted from the MIVAM approach defined in Lucidi et al. (2005). The idea
is to explore different “discrete neighborhoods" of the current solution, which are
configurations of the integer variables defining the chosen components that we can
set different than zero. The associated continuous variables are then optimizedwith
a standard line search technique.

Another work that guided us towards the choice of a mixed integer approach
is the Greedy Sparse-Simplex (GSS) approach proposed in Beck and Eldar (2013).
The GSS method iteratively refines the current point by optimally moving a single
component. In our view, the iterative exact minimization of each single component
is a combinatorial approach in disguise, strongly related to the definition of our
discrete neighborhoods.

7

8 Mixed integer nonconvex CC-optimization

Our neighborhood, in fact, consists of points obtained by swapping pairs of com-
ponents: one currently set to zero, one currently different from zero. This explicit
combinatorial approach is, in principle, relatively similar to theGSS approach, while
it does not require exact minimizations. Moreover, we also adapt our approach to
the case where the convex set X is a strict subset of Rn, which GSS does not treat out
of the box and has not yet been theoretically analyzed.

2.1 Preliminaries
In this section we give a brief summary of the two approaches that inspired our
work. First, we consider the Greedy Sparse-Simplex method proposed in Beck and
Eldar (2013), suited for the resolution of problem (2.1) in the case where X = Rn,
i.e. when the only constraint is the cardinality constraint. Then, we summarize the
Regularization method proposed in Burdakov et al. (2016), which can be applied
when X is a general subset of Rn. In what follows, the support of x is defined by

I1(x) = {i | xi 6= 0}

while its complement is
I0(x) = {i | xi = 0}.

We denote by xI the subvector of x identified by the components contained in an
index set I.

Greedy Sparse-Simplex Method
The Greedy Sparse-Simplex method (GSS) is an iterative method that, at each iter-
ation, tries to improve the current point moving a single component. Depending on
the cardinality of the current point xk, two things can happen:

• if ‖xk‖0 < s, the next iterate is the best point among the n different points xi

obtained by moving in an optimal way each single component while keeping
fixed the others:

xi = xk + tiei where ti = arg min
t

f (xk + tei);

• if ‖xk‖0 = s, the next iterate is the best point among the n · s different points
xi,j defined as:

xi,j = xk − xk
i ei + tjej where tj = arg min

t
f (xk − xk

i ei + tej),

where i ∈ I1(xk) and j = 1, . . . , n.

2.1 Preliminaries 9

The method stops when the current iterate is kept fixed after an iteration. It can
be shown that the method converges to a CW-minimum (CW = component-wise),
defined as follows.

Definition 2.1.1 (CW-minimum). A vector x∗ is a CW-minimum if:

‖x∗‖0 < s and
f (x∗) = min

t∈R
f (x∗ + tei) ∀i = 1, . . . , n;

or

‖x∗‖0 = s and

f (x∗) ≤ min
t∈R

f (x∗ − x∗i ei + tej) ∀i ∈ I1(x∗), ∀j = 1, . . . , n.

This algorithm is simple, intuitive, and its theoretical analysis is quite elegant.
Moreover, the notion of CW-minimum is an optimality condition which is quite
strong and usually identifies quality points. However, the need for exact minimiza-
tionsmakes themethod impractical when the objective function is nonconvex. Also,
as already stated, the method cannot be employed when X ⊂ Rn.

Regularization Method
Problem (2.1) can be reformulated into the following mixed-integer program:

min
x,y

f (x)

s.t. e>y ≥ n− s,
xiyi = 0, ∀i = 1, . . . , n,
x ∈ X,

y ∈ {0, 1}n.

(2.2)

As proposed by Burdakov et al. (2016), we could relax the mixed-integer program
2.2 into the following smooth problem:

min
x,y

f (x)

s.t. e>y ≥ n− s,
xiyi = 0, ∀i = 1, . . . , n,
x ∈ X,

0 ≤ yi ≤ 1, ∀i = 1, . . . , n.

(2.3)

It can be shown (ref. Burdakov et al. (2016)) that, if X is polyhedral convex, then the
feasible set of problem2.3 satisfies a suitable constraint qualification. In otherwords,
in this case, KKT stationarity is indeed a necessary optimality condition. In general,

10 Mixed integer nonconvex CC-optimization

however, the feasible set of problem 2.3 may violate each standard constraint quali-
fication.

In any case, the authors base their discussion and their method on the following
definitions of stationarity. In the sequel, for notational purposes, we will sometimes
replace the functions defining X with functions h : Rn → Rm and g : Rn → Rp.
Definition 2.1.2. Let (x∗, y∗) be feasible for the relaxed problem 2.3. Then (x∗, y∗)
is called
(a) S-stationary (S = strong) if there exist multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn

such that the following conditions hold:

∇ f (x∗) +
m

∑
i=1

λi∇gi(x∗) +
p

∑
i=1

µi∇hi(x∗) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x∗) = 0, ∀i = 1, . . . , m,
γi = 0, ∀i such that y∗i = 0.

(2.4)

(b) M-stationary (M = Mordukhovich) if there exist multipliers λ ∈ Rm, µ ∈ Rp

and γ ∈ Rn such that the following conditions hold:

∇ f (x∗) +
m

∑
i=1

λi∇gi(x∗) +
p

∑
i=1

µi∇hi(x∗) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x∗) = 0, ∀i = 1, . . . , m,
γi = 0, ∀i such that x∗i 6= 0.

(2.5)

Note that M-stationarity is a weaker condition than S-stationarity, as it does not
impose conditions on the components for which both x∗i and y∗i are equal to 0.

The followingproposition, proven in Burdakov et al. (2016), shows that S-stationarity
is equivalent to KKT stationarity. As a consequence, M-stationarity is a weaker con-
cept than KKT stationarity.
Proposition 2.1.1. Let (x∗, y∗) be feasible for the relaxed problem 2.3. Then (x∗, y∗) is a
usual KKT point if and only if (x∗, y∗) is an S-stationary point.

M-stationarity, instead, can be understood realizing that x∗ isM-stationary if and
only if it is a KKT point for the problem

min
x

f (x)

s.t. x ∈ X,
xi = 0, ∀i : x∗i = 0.

(2.6)

Note that, while S-stationarity depends on y∗, M-stationarity is a condition that
only depends on the original variable x∗. In otherwords, a “wrong" vector y∗ can de-
stroy S-stationarity, while an M-stationary point x∗ remains M-stationary indepen-
dently of the vector y∗ that is associated to it, as long as (x∗, y∗) is feasible. Moreover,

2.2 The Mixed-Integer Approach 11

even though M-stationarity is a condition that is relatively weak, it is a necessary
optimality condition under mild regularity conditions on the feasible set X, usually
satisfied in practice.

Our interest in the concept of S-stationarity and M-stationarity is twofold:

1. the regularizationmethod proposed by Burdakov et al. (2016) converges to an
M-stationary point;

2. S-stationarity is implied by the concept of stationarity proposed in Lucidi et al.
(2005), as we will show in the next section.

2.2 The Mixed-Integer Approach
Following Lucidi and Piccialli (2004); Lucidi et al. (2005), a different way to char-
acterize problem (2.2) is by defining notions of local minima and stationary points
suited for mixed-integer problems. From here onwards, we will use the following
notation:

Y = {y | y ∈ {0, 1}n, e>y ≥ n− s},
X (y) = {x ∈ X | xiyi = 0 ∀i = 1, . . . , n}. (2.7)

The definitions of local minimizer and stationary point are based on a suitable
definition of neighborhood of a feasible point, which has to take into account the
mixed-integer nature of the problem. For the moment, we refer to this notion of
“discrete neighborhood” with the notation N (x∗, y∗), that will be formally defined
in the next sections.

Definition 2.2.1. A feasible point (x∗, y∗) is said to be a local minimizer of problem
(2.2) with respect to the feasible discrete neighborhood N (x∗, y∗) if there exists an
ε > 0 such that for all (x̂, ŷ) ∈ N (x∗, y∗)

f (x∗) ≤ f (x) ∀x ∈ B(x̂, ε) ∩ X (ŷ), (2.8)

where N (x∗, y∗) is a finite set of feasible points.

We refer to the notion of stationarity we employ within this chapter as MIVAM-
stationarity, formally defined next.

Definition 2.2.2. A feasible point (x∗, y∗) is said to be a MIVAM-stationary point of
problem (2.2) with respect to the feasible discrete neighborhood N (x∗, y∗) if

(i) the point x∗ is a stationary point of the continuous problem

min f (x)
s.t. x ∈ X (y∗);

(2.9)

12 Mixed integer nonconvex CC-optimization

(ii) every (x̂, ŷ) ∈ N (x∗, y∗) satisfies f (x̂) ≥ f (x∗);

(iii) for every (x̂, ŷ) ∈ N (x∗, y∗) such that f (x̂) = f (x∗), the point x̂ is a stationary
point of the continuous problem

min f (x)
s.t. x ∈ X (ŷ).

(2.10)

Now, points (i) and (iii) of MIVAM-stationarity depend on an underlying no-
tion of stationarity that has to be specified. Here, we concentrate on KKT station-
arity. Under these premises, it is fairly easy to see that MIVAM-stationarity implies
S-stationarity.

In fact, we now show a couple of results that clarify the relationship between the
different optimality conditions we have defined, namely, CW-minima (Definition
2.1.1), S-stationarity (Definition 2.1.2) and MIVAM-stationarity.

Relationships between optimality conditions
We start by proving thatMIVAM-stationarity is a stronger optimality condition than
S-stationarity.
Proposition 2.2.1. Let (x∗, y∗) be a MIVAM-stationary point of problem 2.2. Then, it is
an S-stationary point.
Proof. If (x∗, y∗) is MIVAM-stationary, in particular wemust have (point (i)) that x∗

is stationary w.r.t. the following problem:
min

x
f (x)

s.t. hi(x) = 0, ∀i = 1, . . . , m,
gi(x) ≤ 0, ∀i = 1, . . . , p,
xiy∗i = 0, ∀i = 1, . . . , n.

(2.11)

Rearranging, the previous problem can be rewritten as
min

x
f (x)

s.t. hi(x) = 0, ∀i = 1, . . . , m,
gi(x) ≤ 0, ∀i = 1, . . . , p,

xi = 0, ∀i : y∗i = 1.

(2.12)

This means that there exist multipliers λ ∈ Rm, µ ∈ Rp and γ ∈ Rn such that the
following conditions hold:

∇ f (x∗) +
m

∑
i=1

λi∇gi(x∗) +
p

∑
i=1

µi∇hi(x∗) + ∑
{i|y∗i =1}

γiei = 0,

λi ≥ 0, λigi(x∗) = 0, ∀i = 1, . . . , m.

(2.13)

2.2 The Mixed-Integer Approach 13

That is:
∇ f (x∗) +

m

∑
i=1

λi∇gi(x∗) +
p

∑
i=1

µi∇hi(x∗) +
n

∑
i=1

γiei = 0,

λi ≥ 0, λigi(x∗) = 0, ∀i = 1, . . . , m,
γi = 0, ∀i such that y∗i = 0.

(2.14)

Therefore, (x∗, y∗) is an S-stationary point.
CW-minima, instead, satisfy a stronger optimality condition thanMIVAM-stationarity,

as shown in the following example.
Example 2.2.1. Consider the following problem:

min
x

f (x) = 1
4 x4

1 +
2
3 x3

1 −
3
2 x2

1

s.t. ‖x‖0 ≤ 1,

where x ∈ R2. The objective f (x1), reduced for simplicity to the onlymeaningful component
x1, has a local minimum in x̄1 = 1 and a global minimum in x∗1 = −3, with f (x̄1) = − 7

12
and f (x∗1) = −

45
4 .

Letting x̄ = [x̄1, 0] and ȳ = [0, 1], we have that (x̄, ȳ) is a stationary point of

min
x,y

f (x) = 1
4 x4

1 +
2
3 x3

1 −
3
2 x2

1

s.t. y1 + y2 ≥ 1,
x1y1 = 0,
x2y2 = 0,

y1, y2 ∈ {0, 1}.

In fact, since x̄1 is a local minimum for f (x1), point (i) of Definition 2.2.2 is automatically
satisfied. Moreover, every (x, y) ∈ N (x̄, ȳ) is such that x1 = 0, which means that f (x) =
0 > f (x̄), so also point (ii) of Definition 2.2.2 is satisfied (and point (iii) is irrelevant).

However, we have that f (x̄) = − 7
12 > mint∈R f (x̄− x̄1e1 + te1) = f (x∗1) = −45/4.

Therefore, x̄ is not a CW-minimum.
In the case where X = Rn, another optimality condition is given by the concept

of BF-point.
Definition 2.2.3 (BF-point). A point x∗ is a BF-point if:

• ‖x∗‖0 < s implies that ∇i f (x∗) = 0 for all i = 1, . . . , n;

• ‖x∗‖0 = s implies that ∇i f (x∗) = 0 for all i ∈ I1(x∗).
It is quite easy to realize that the CW-minimum condition is stronger than the

concept of BF-point, as shown in Beck and Eldar (2013). It also holds that MIVAM-
stationary points are automatically BF-points, as we prove in the following propo-
sition.

14 Mixed integer nonconvex CC-optimization

Proposition 2.2.2. Let (x∗, y∗) be a MIVAM-stationary point. Then, x∗ is a BF-point.

Proof. There are two cases:

1. ‖x∗‖0 = s. By point (i) of Definition 2.2.2, there exist multipliers γ ∈ Rn such
that

∇ f (x∗) + ∑
{i|y∗i =1}

γiei = 0.

Therefore, we must have that ∇i f (x∗) = 0 for all i ∈ {i | y∗i = 0} ⊇ I1(x∗).

2. ‖x∗‖0 < s. As in the previous case, we get that∇i f (x∗) = 0 for all i ∈ {i | y∗i =

0}. Consider then an index j such that y∗j = 1, which implies that j ∈ I0(x∗).
By definition of N (x∗, y∗), there exists a point (x̂, ŷ) ∈ N (x∗, y∗) such that
x̂ = x∗ and ŷj = 0. Then, by point (iii) of Definition 2.2.2, we must have that
∇j f (x̂) = ∇j f (x∗) = 0. In other words, ∇i f (x∗) = 0 for all i = 1, . . . , n.

The BF optimality condition is, in fact, weaker thanMIVAM-stationarity, as shown
in the next example.

Example 2.2.2. Consider the following problem:

min
x

(x1 − 2)4 + (x2 − 1)2

s.t. ‖x‖0 ≤ 1,

and let x∗ = [0, 1]>. It is easy to see that x∗ is a BF-point. Moreover, let y∗ = [1, 0]>. Note
that (x∗, y∗) is feasible for the mixed integer reformulation

min
x,y

(x1 − 2)4 + (x2 − 1)2

s.t. y1 + y2 ≥ 1,
x1y1 = 0,
x2y2 = 0,

y1, y2 ∈ {0, 1}

and also note that there does not exist a vector y 6= y∗ such that y ∈ Y , x∗ ∈ X (y). In
other words, y∗ is the only possible vector such that the pair (x∗, y∗) is feasible for the mixed
integer reformulation.

Let x̂ = [1, 0]> and ŷ = [0, 1]>. By definition, (x̂, ŷ) ∈ N (x∗, y∗). Moreover, f (x̂) =
2 < f (x∗) = 16. Therefore, point (ii) of Definition 2.2.2 is not satisfied and so (x∗, y∗) is
not a stationary point.

2.3 Discrete neighborhoods 15

To summarize, we have the following chains of implications:

CW-minimum (X = Rn)

MIVAM-stationary (X ⊆ Rn)

S-stationary (X ⊆ Rn)

M-stationary (X ⊆ Rn)

BF-point (X = Rn)

2.3 Discrete neighborhoods
The crucial point in the mixed-integer approach is choosing suitable discrete neigh-
borhoods. Before we define a concrete discrete neighborhood, however, we tweak
the usual notion of convergence to a point, taking into account the discrete nature
of the problem. In particular, we have the following definition.
Definition 2.3.1. A sequence {(xk, yk)} converges to a point (x̄, ȳ) if for any ε > 0
there exists an index kε such that for all k ≥ kε we have that yk = ȳ and ‖xk− x̄‖ < ε.

We now give a formal definition of discrete neighborhood of a feasible point,
denoted by N (x, y).
Definition 2.3.2. Let (x, y) be a feasible point for problem (2.2). A discrete neigh-
borhood N (x, y) is a finite set of feasible points different from (x, y).

We also state the following “continuity” assumption on the discrete neighbor-
hoods we explore, equivalent to the lower semicontinuity of a point-to-set function
as defined in Berge (1963).
Assumption 2.3.1. Let {(xk, yk)} be a sequence converging to (x̄, ȳ). Then, for any (x̂, ŷ) ∈
N (x̄, ȳ), there exists a sequence {(x̂k, ŷk)} converging to (x̂, ŷ) such that (x̂k, ŷk) ∈ N (xk, yk).

The assumption is, in its essence and its consequences, a definition of the possible
discrete neighborhoods. To keep matters concrete, we give an example of a possible
discrete neighborhood.
Example 2.3.1. A n × n permutation matrix is a square matrix obtained from the n × n
identity matrix by a permutation of rows. Let H be a permutation matrix obtained, for
instance, by interchanging two rows, say i and j. The point

x̂ = Hx

16 Mixed integer nonconvex CC-optimization

is such that
x̂h = xh h 6= i, j x̂i = xj, x̂j = xi,

so that ‖x̂‖0 = ‖x‖0. Let Γ = {H1, H2, . . . , Hp} be a given set of permutation matrices
obtained by interchanging two rows. Note that the maximum cardinality p of Γ is n(n−1)

2 .
Given a feasible point (x, y), i.e. point such that y ∈ Y and x ∈ X (y), we define N (x, y)
as follows:

N (x, y) = {(x̂l, ŷl) : x̂l = Hlx, ŷl = Hly, l = 1, . . . , p},

i.e.,N (x, y) is obtained by swapping pairs of variables (both continuous and binary). Note
that the swap produces the same point (x, y) in the case that it is performed by two null
components of x (corresponding to two components of y equal to 1).

Now, a discrete neighborhood, by definition, is a set of feasible points. In the case
where X ⊂ Rn, swapping variables, as done in Example 2.3.1, may result in points
that are not feasible. For this reason, we initially consider an easier version of prob-
lem (2.2) where X = Rn.

Proposition 2.3.1. The point-to-set map N (x, y) defined in Example 2.3.1 satisfies as-
sumption 2.3.1.

Proof. If {(xk, yk)} converges to (x̄, ȳ), then for any ε > 0 there exists an index kε

such that for all k ≥ kε we have that yk = ȳ and ‖xk − x̄‖ < ε. Let (x̂, ŷ) ∈ N (x̄, ȳ),
i.e., for some l ∈ {1, . . . , p} we have

x̂ = Hl x̄, ŷ = Hl ȳ.

Let {(x̂k, ŷk)} be the sequence such that (x̂k, ŷk) = (Hlxk, Hlyk) for all k. Note that
(x̂k, ŷk) ∈ N (xk, yk) for all k since Hl ∈ Γ.

For k sufficiently large we have yk = ȳ. This implies that ŷk = Hlyk = Hl ȳ = ŷ.
Moreover we can write

lim
k→∞

x̂k = lim
k→∞

Hlxk = Hl x̄ = x̂,

and hence we may conclude that (x̂k, ŷk) ∈ N (xk, yk) and {(x̂k, ŷk)} converges to
(x̂, ŷ).

To generalize the previous proposition to the case where X ⊂ Rn, we replace
each (x̃, ỹ) ∈ N(x, y) with the point (x̂, ŷ), where ŷ = ỹ and x̂ = ΠX (ŷ)(x̃). In other
words, first we “permute" (x, y) as in Example 2.3.1, then we project the x part onto
X with the projection operator ΠX (ŷ)(·). In the following, we will refer to this new
discrete neighborhood as NC(x, y).

2.4 Algorithmic framework 17

Proposition 2.3.2. Let {(xk, yk)} be a sequence converging to (x̄, ȳ). Then, NC(x̄, ȳ) sat-
isfies assumption 2.3.1.

Proof. Let (x̂, ŷ) ∈ NC(x̄, ȳ). Similarly to Proposition 2.3.1, let (x̃, ỹ) = p(x̄, ȳ),
where p is the permutation associated to (x̂, ŷ). Note that ŷ = ỹ. For each k,
let (x̃k, ỹk) = p(xk, yk). Then, consider the point (x̂k, ŷk) such that ŷk = ỹk and
x̂k = ΠX (ŷk)(x̃k). By definition, (x̂k, ŷk) ∈ NC(xk, yk). Moreover, as in Proposition
2.3.1, for k sufficiently large we get that ŷk = ŷ.

Following the same arguments of the proof of Proposition 2.3.1, we get that x̃k →
x̃. Since ΠX (ŷ)(·) is continuous, this entails that Πŷ

X (x̃k)→ Πŷ
X (x̃), which is saying

that x̂k → x̂. The claim holds.

2.4 Algorithmic framework

Here, we discuss an algorithmic framework for the resolution of problem (2.2).
Roughly speaking, the approach can be described as an alternate minimization be-
tween the continuous and the discrete variables, ensuring that each iterate remains
feasible.

In the first phase, we try to improve the continuous part of our solution by doing
a local search, of some sorts, around the current iterate xk, producing a new can-
didate x̃k. Here, we consider an Armijo-type line search applied to the projected
gradient descent direction, formalized in Algorithm 1.

Algorithm 1: Projected-Gradient Line Search (PGLS)
1 input: y ∈ Y , x ∈ X (y), γ ∈ (0, 1

2), δ ∈ (0, 1), α = 1.
2 Step 1: Set x̂ = ΠX (y) [x−∇ f (x)], d = x̂− x.
3 Step 2: If

f (x + αd) ≤ f (x) + γα∇ f (x)>d,

set x̃ = x + αd and exit.
4 Step 3: Set α = δα and go to Step 2.

The second phase, instead, tries to explore the discrete neighborhood NC(x̃k, yk).
If one of the points in the discrete neighborhood ensures a sufficient decrease of the
objective function, we pick it as our new point (xk+1, yk+1) and move on to the next
iteration. Otherwise, for any point (x̂k, ŷk) in NC(x̃k, yk) which is not significantly
worse (in terms of the objective value) than the current candidate, we perform a con-

18 Mixed integer nonconvex CC-optimization

tinuous local search around x̂k. The algorithm is formally defined in Algorithm 2.
Algorithm 2:MISO

input: y0 ∈ Y , x0 ∈ X (y0), ξ ≥ 0, θ ∈ (0, 1), η0 > 0, µ0 > 0, δ ∈ (0, 1).
Step 0: Set k = 0.
Step 1: Compute x̃k by PGLS(xk, yk).
Step 2: If there exists (x̂k, ŷk) ∈ NC(x̃k, yk) such that

f (x̂k) ≤ f (x̃k)− ηk,

set xk+1 = x̂k, yk+1 = ŷk, ηk+1 = ηk and go to Step 5.
Step 3: Define Wk = {(x, y) ∈ NC(x̃k, yk) | f (x) ≤ f (x̃k) + ξ}.
3.1: If Wk 6= ∅, choose (x′, y′) ∈Wk, set j = 1, xj = x′.
Otherwise, go to Step 4.
3.2: Compute xj+1 by PGLS(xj, y′).
3.3: If f (xj+1) ≤ f (x̃k)− ηk, set xk+1 = xj+1, yk+1 = y′, ηk+1 = ηk and go to
Step 5.
3.4: If

∥∥∥xj −ΠX (y′)
[
xj −∇ f (xj)

]∥∥∥ >
∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥+ µk,
set j = j + 1 and go to 3.2. Otherwise, set Wk = Wk \ {(x′, y′)} and
go to 3.1.

Step 4: Set xk+1 = x̃k, yk+1 = yk. If f (xk+1) ≤ f (xk)− ηk, set ηk+1 = ηk.
Otherwise set ηk+1 = θηk.
Step 5: Set µk+1 = δµk, k = k + 1 and go to Step 1.

2.5 Convergence analysis
In this section, we prove a set of theoretical results concerning the properties of the
sequences produced by Algorithm 2. The analysis that follows is strongly related to
the ones carried out in Lucidi and Piccialli (2004); Lucidi et al. (2005), with small
modifications. First, we state some suitable assumptions.
Assumptions

A1. The gradient ∇ f (x) is Lipschitz-continuous, i.e., there exists a constant L > 0
such that

‖∇ f (x)−∇ f (x̄)‖ ≤ L ‖x− x̄‖

for all x, x̄ ∈ Rn.

A2. Given y0 ∈ Y , x0 ∈ X (y0) and a scalar ξ > 0, the level set

L(x0, y0) = {(x, y) ∈ X (y)×Y | f (x) ≤ f (x0) + ξ}

is compact.

2.5 Convergence analysis 19

First, we prove a property of Algorithm 1 that will play an important role in the
convergence analysis of Algorithm 2.

Proposition 2.5.1. Given a feasible point (x, y), Algorithm 1 produces a feasible point (x̃, y)
such that

f (x̃) ≤ f (x)− σ
(∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥) ,

where the function σ (·) ≥ 0 is such that if σ
(
th)→ 0 then th → 0.

Proof. By definition, d = x̂− x, where x̂ = ΠX (y) [x−∇ f (x)]. By the properties of
the projection operator, we can write

(x−∇ f (x)− x̂)>(x− x̂) ≤ 0,

which, with simple manipulations, implies that

∇ f (x)>d ≤ −‖d‖2 = −
∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥2
. (2.15)

By the instructions of the algorithm, either α = 1 or α < 1. If α = 1, then
x̃ = x + d satisfies

f (x̃) ≤ f (x) + γ∇ f (x)>d ≤ f (x)− γ
∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥2
. (2.16)

If α < 1, we must have that

f (x + αd) ≤ f (x) + γα∇ f (x)>d, (2.17)

f
(

x +
α

δ
d
)
> f (x) + γ

α

δ
∇ f (x)>d. (2.18)

Applying the mean value theorem to equation (2.18), we get

∇ f
(

x + θ
α

δ
d
)>

d > γ∇ f (x)>d,

where θ ∈ (0, 1). Adding and subtracting ∇ f (x)>d, and rearranging, we get

(1− γ)∇ f (x)>d >
[
∇ f (x)−∇ f

(
x + θ

α

δ
d
)]>

d.

By the Lipschitz-continuity of ∇ f (x), we can write[
∇ f (x)−∇ f

(
x + θ

α

δ
d
)]>

d ≥ −L
α

δ
‖d‖2 ,

which means that
(1− γ)∇ f (x)>d > −L

α

δ
‖d‖2 ,

20 Mixed integer nonconvex CC-optimization

Rearranging, we get
δ

L
(1− γ)∇ f (x)>d > −α ‖d‖2 . (2.19)

This last inequality, together with (2.15), yields
δ

L
(1− γ)∇ f (x)>d > α∇ f (x)>d, (2.20)

and substituting in equation (2.17) we finally get

f (x̃) < f (x) + γ
δ

L
(1− γ)∇ f (x)>d ≤ f (x)− γ

δ

L
(1− γ)

∥∥∥x−ΠX (y) [x−∇ f (x)]
∥∥∥2

.

This last inequality, together with (2.16), implies that

f (x̃) ≤ f (x)− σ
(∥∥∥x−ΠX (y) [x−∇ f (x)]

∥∥∥)
where

σ (t) = γ min
{

1,
δ

L
(1− γ)

}
t2.

We can now state a couple of preliminary theoretical results. We first show that
Algorithm 2 is well-posed.

Proposition 2.5.2. For each iteration k, Step 3 of Algorithm 2 terminates in a finite number
of steps.

Proof. Suppose by contradiction that Steps 3.1-3.4 generate an infinite loop, so that
an infinite sequence of points {xj} is produced for which∥∥∥xj −ΠX (y′)

[
xj −∇ f (xj)

]∥∥∥ >
∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥+ µk > 0 ∀j.
(2.21)

By proposition 2.5.1, for each j we have that

f (xj+1)− f (xj) ≤ −σ
(∥∥∥xj −ΠX (y′)

[
xj −∇ f (xj)

]∥∥∥) , (2.22)

where σ (·) ≥ 0. The sequence { f (xj)} is therefore nonincreasing. Moreover, (2.22)
implies that ∣∣∣ f (xj+1)− f (xj)

∣∣∣ ≥ σ
(∥∥∥xj −ΠX (y′)

[
xj −∇ f (xj)

]∥∥∥) . (2.23)

By assumption A2, { f (xj)} is lower bounded. Therefore, recalling that { f (xj)} is
nonincreasing, we get that { f (xj)} converges, which implies that∣∣∣ f (xj+1)− f (xj)

∣∣∣→ 0.

2.5 Convergence analysis 21

By (2.23), we get that σ
(∥∥∥xj −ΠX (y′)

[
xj −∇ f (xj)

]∥∥∥)→ 0, and, by the properties
of σ (·), we finally get that

∥∥∥xj −ΠX (y′)
[
xj −∇ f (xj)

]∥∥∥ → 0, and this contradicts
(2.21).

The next proposition shows some properties of the sequences generated by the
algorithm, which will play an important role in the subsequent analysis.

Proposition 2.5.3. Let {(xk, yk)}, µk and ηk be the sequences produced by the algorithm.
Then:

(i) the sequence {(xk, yk)} is bounded;

(ii) the sequence { f (xk)} is nonincreasing and convergent;

(iii) the set Ku = {k | ηk < ηk−1} of unsuccessful iterates is infinite;

(iv) limk→∞ µk = 0;

(v) limk→∞ ηk = 0;

(vi) limk→∞

∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥ = 0.

Proof. (i) The instructions of the algorithm imply that each point (xk, yk) belongs
to the level set L(x0, y0), which is compact by assumption A2. Therefore,
{(xk, yk)} is bounded.

(ii) The instructions of the algorithm and proposition 2.5.1 imply that { f (xk)}
is nonincreasing, and assumption A2 implies that { f (xk)} is lower bounded.
Hence, { f (xk)} converges.

(iii) Suppose that Ku is finite. Then there exists k̄ > 0 such that all iterates satisfying
k > k̄ are successful, i.e.,

f (xk) ≤ f (xk−1)− ηk−1,

and ηk = ηk−1 = η > 0 for all k ≥ k̄. Since η > 0, this implies that { f (xk)}
diverges to −∞, in contradiction with point (ii).

(iv) If k ∈ Ku, then ηk+1 = θηk, where θ ∈ (0, 1). Since Ku is infinite, the claim
holds.

(v) Since, for all k, µk+1 = δµk, where δ ∈ (0, 1), the claim holds.

22 Mixed integer nonconvex CC-optimization

(vi) By proposition 2.5.1, we have that

f (x̃k)− f (xk) ≤ −σ
(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥) .

By the instructions of the algorithm, f (xk+1) ≤ f (x̃k), and so we can write

f (xk+1)− f (xk) ≤ −σ
(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥) ,

i.e., ∣∣∣ f (xk+1)− f (xk)
∣∣∣ ≥ σ

(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥) .

Since { f (xk)} converges, we get that σ
(∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥)→ 0.
By the properties of σ (·), we get that

∥∥∥xk −ΠX (yk)

[
xk −∇ f (xk)

]∥∥∥→ 0.

Before stating the main theorem of this section, it is useful to summarize some
theoretical properties of the subsequence {(xk, yk)}Ku of the unsuccessful iterates.

Proposition 2.5.4. Let {(xk, yk)} be the sequence of iterates generated by Algorithm 2, and
let Ku = {k | ηk < ηk−1}. Then:

(i) {(xk, yk)}Ku admits accumulation points;

(ii) for any accumulation point (x∗, y∗) of the sequence {(xk, yk)}Ku , every (x̂, ŷ) ∈ NC(x∗, y∗)
is an accumulation point of a sequence {(x̂k, ŷk)}Ku where (x̂k, ŷk) ∈ NC(xk, yk).

Proof. (i) By proposition 2.5.3, {(xk, yk)} is bounded. Therefore, {(xk, yk)}Ku is
also bounded, and so it admits accumulation points.

(ii) proposition 2.3.2 implies that every (x̂, ŷ) ∈ NC(x∗, y∗) is an accumulation
point of a sequence {(x̂k, ŷk)}Ku , where (x̂k, ŷk) ∈ NC(xk, yk).

We can now prove the main theoretical result of this section.

Theorem 2.5.1. Let {(xk, yk)} be the sequence of iterates generated by Algorithm 2. Every
accumulation point of {(xk, yk)}Ku is a stationary point of problem (2.2).

Proof. Let (x∗, y∗) be an accumulation point of {(xk, yk)}Ku . We must show that
conditions (i)-(iii) of definition 2.2.2 are satisfied.

(i) The result follows from propositions 2.5.3, (vi).

2.5 Convergence analysis 23

(ii) Since Ku is an infinite subset of unsuccessful iterations, recalling that xk =

x̃k−1, yk = yk−1, and setting x̂k = x̂k−1, ŷk = ŷk−1 for all (x̂k−1, ŷk−1) ∈
NC(x̃k−1, yk−1), the tests at Step 2 and 4 fail at iteration k, and therefore

f (x̂k) > f (xk)− ηk−1 (2.24)

for all (x̂k, ŷk) ∈ NC(xk, yk). Since the sequence { f (xk)} is nonincreasing
(propositions 2.5.3, (ii)), we can write

f (x∗) ≤ f (xk) < f (x̂k) + ηk−1. (2.25)

for all (x̂k, ŷk) ∈ NC(xk, yk). Taking limits, the result follows frompropositions
2.5.3(v), 2.3.1, and from the continuity of f .

(iii) Note that point (ii) of 2.5.3 ensures the existence of f ∗ ∈ R satisfying

lim
k→∞

f (xk) = f (x∗) = f ∗. (2.26)

Consider any (x̂, ŷ) ∈ NC(x∗, y∗) such that

f (x̂) = f ∗. (2.27)

Proposition 2.5.4 implies that (x̂, ŷ) is an accumulation point of a sequence
{(x̂k, ŷk)}Ku , where (x̂k, ŷk) ∈ NC(xk, yk). Since k ∈ Ku, we have that xk =

x̃k−1, yk = yk−1. Setting x̂k = x̂k−1, ŷk = ŷk−1 for all (x̂k−1, ŷk−1) ∈ NC(x̃k−1, yk−1),
by (2.26) and (2.27) we get, for k sufficiently large,

f (x̂k) < f (xk) + ξ.

Therefore, for such values of k, (x̂k, ŷk) ∈ Wk, and Steps 3.2-3.4 produce the
points x2

k , . . . , xj∗k
k (where j∗k is the finite number of iterations of Steps 3.2-3.4

until the test at Step 3.4 fails), which, by the instructions at Step 3.2 and by
proposition 2.5.1, satisfy

f (x̂k) ≥ f (x2
k) ≥ . . . ≥ f (xj∗k

k). (2.28)

Since k ∈ Ku, Step 3.3 fails, and we can write

f (xj∗k
k) > f (x̃k)− ηk ≥ f (xk)− ηk−1. (2.29)

Moreover, as the sequence {(x̂k, ŷk)}Ku converges to the point (x̂, ŷ), by (2.26),
(2.27), (2.28), (2.29), and by point (v) of (2.5.3), we obtain

f ∗ = lim
k→∞,k∈Ku

f (x̂k) = lim
k→∞,k∈Ku

f (x2
k) = lim

k→∞,k∈Ku
f (xk) = f ∗. (2.30)

24 Mixed integer nonconvex CC-optimization

By proposition 2.5.1, we have that

f (x2
k) ≤ f (x̂k)− σ

(∥∥∥x̂k −ΠX (ŷk)

[
x̂k −∇ f (x̂k)

]∥∥∥) , (2.31)

which can be rewritten as∣∣∣ f (x2
k)− f (x̂k)

∣∣∣ ≥ σ
(∥∥∥x̂k −ΠX (ŷk)

[
x̂k −∇ f (x̂k)

]∥∥∥) . (2.32)

Taking limits for k→ ∞, k ∈ Ku, we finally get∥∥∥x̂−ΠX (ŷ) [x̂−∇ f (x̂)]
∥∥∥ = 0, (2.33)

and the claim holds.

2.6 Numerical results
To assess the performance of the proposed approach, we compared Algorithm 2
with the Greedy Sparse-Simplex method proposed in Beck and Eldar (2013) and
with the Penalty Decomposition approach by Lu and Zhang (2013) on a set of car-
dinality constrained least squares problems of the form

min
x
‖Ax− b‖2

s.t. ‖x‖0 ≤ s,
(2.34)

where A ∈ Rm×n, b ∈ Rn. We considered three different values of n, namely, n ∈
{20, 100, 1000}, and for a fixed n we considered the following values of m and s:

• m ∈ {n ∗ 0.25, n ∗ 0.5, n ∗ 0.75},

• s ∈ {n ∗ 0.1, n ∗ 0.2, n ∗ 0.3, n ∗ 0.4, n ∗ 0.5}.

Therefore, we considered 45 different configurations of n, m and s. For each given
configuration, we randomly generated 100 instances of problem (2.34). In partic-
ular, matrix A and vector b are generated as in Beck and Eldar (2013), while the
optimal solution x∗ was generated by setting 2 · s randomly chosen components x∗i
to either 1 or −1.

Exact minimization
One of the characteristics of the least squares problems we consider in this section is
the fact that the subproblem w.r.t. any given subset of components admits a closed-
form solution. In other words, after choosing a subset of s potentially nonzero com-
ponents, the corresponding candidate solution of problem (2.34) is easy to obtain.

2.6 Numerical results 25

In the context of Algorithm 2, this means that we can replace the local search w.r.t.
the continuous variables with the exact minimization w.r.t. the chosen components.
Therefore, alongside the “vanilla” implementation of Algorithm 2, we also report
the result obtained by the “exact minimization” implementation. In the following,
wewill refer to these two implementations asMISOLS andMISOEXACT, respectively.

Implementation details
The parameters of Algorithm 2 have been set as follows:

• ξ = 10−2,

• θ = 0.5,

• η0 = 10−5.

For what concerns µ0 and δ, we actually keep the value of µ fixed to 10−6.
For the Greedy Sparse-Simplexmethodwe used the implementation available at

https://sites.google.com/site/amirbeck314/software. The implementation of
the Penalty Decomposition method can be found at http://people.math.sfu.ca/
~zhaosong/. We used the default values of the parameters for each method.

As for the stopping criterion, we run each algorithm for a maximum of 200 iter-
ations.

Results
Here, we show the performance profiles (Dolan and Moré (2002)) w.r.t. the ob-
jective function values obtained by the different algorithms. In particular, for each
problem and each algorithm, we consider the objective function f (x̄), where x̄ is the
retrieved solution1.

The results are depicted in figures 2.1-2.3. While we stress the fact that the scope
of this work is mainly theoretical, we feel that MISO stands its ground against the
two state-of-the-artmethodswe compare it against. This is especially true for n = 20
and n = 100, while the PD approach seems to be quite strong for the large scale case
n = 1000, particularly for large values of m.

The comparison against GSS instead, shows thatMISO outperforms it numerous
times across the different configurations, especially for higher values of n. This is
particularly interesting since the GSS approach, with its iterative exploration of sin-
gle components, embodies a philosophy which is not too distant from the ideas at
the foundation of MISO.

1Note that this metric is adequate, since it is always nonnegative and a lower value is better. To
avoid numerical problems when the best objective value obtained is 0, we add a small constant (0.1)
to each objective value computed.

https://sites.google.com/site/amirbeck314/software
http://people.math.sfu.ca/~zhaosong/
http://people.math.sfu.ca/~zhaosong/

26 Mixed integer nonconvex CC-optimization

0 1 2 3
0.0

0.5

1.0

s=
2

m=5

0.0 0.5 1.0 1.5 2.0

m=10

0.0 0.2 0.4 0.6 0.8 1.0

m=15

0 1 2 3
0.0

0.5

1.0

s=
4

0 1 2 3 0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

s=
6

0 1 2 3 0 1 2 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

s=
8

0 1 2 3 0 1 2 3 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

s=
10

0.0 0.5 1.0 1.5 2.0 0 1 2 3

GSS

PD
MISOLS

MISOEXACT

n=20

Figure 2.1: Performance profiles computed over the 15 configurations of m and s for
n = 20.

2.6 Numerical results 27

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

s=
10

m=25

0.0 0.2 0.4 0.6 0.8 1.0

m=50

0.0 0.2 0.4 0.6 0.8 1.0

m=75

0 1 2 3
0.0

0.5

1.0

s=
20

0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

s=
30

0 1 2 3 0.0 0.5 1.0 1.5 2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

s=
40

0 1 2 3 4 0.0 0.5 1.0 1.5 2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

s=
50

0 1 2 3 0 1 2 3

GSS

PD
MISOLS

MISOEXACT

n=100

Figure 2.2: Performance profiles computed over the 15 configurations of m and s for
n = 100.

28 Mixed integer nonconvex CC-optimization

0 1 2 3
0.0

0.5

1.0

s=
10
0

m=250

0.0 0.2 0.4 0.6 0.8 1.0

m=500

0.0 0.2 0.4 0.6 0.8 1.0

m=750

0 2 4 6
0.0

0.5

1.0

s=
20
0

0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0

0 2 4 6
0.0

0.5

1.0

s=
30
0

0 1 2 3 4 0.0 0.5 1.0 1.5 2.0

0 2 4 6
0.0

0.5

1.0

s=
40
0

0 2 4 6 0 1 2 3

0 2 4 6
0.0

0.5

1.0

s=
50
0

0 2 4 6 8 0 1 2 3 4 5

GSS

PD
MISOLS

MISOEXACT

n=1000

Figure 2.3: Performance profiles computed over the 15 configurations of m and s for
n = 1000.

2.7 Conclusions 29

2.7 Conclusions
In this chapter we introduced a mixed integer approach for cardinality constrained
optimization problems with nonconvex objective function, under additional convex
constraints. Themethod is based on the exploration of discrete neighborhoods of the
current iterate, making sure the cardinality constraint is satisfied, which is followed
by an optimization phase based on line searches on the chosen free variables.

Under mild assumptions, we proved the convergence of this iterative scheme
to points satisfying a suitable optimality condition, stronger than many optimality
conditions commonly used in the literature.

We tested the effectiveness of our approach on a set of cardinality constrained
least squares problem, and compared the results against two state-of-the-art algo-
rithms, namely GSS and PD. The results show that our algorithm is competitive, and
even better than our competitors in a decent number of cases.

Chapter 3

A penalty decomposition approach for
nonconvex cardinality constrained
optimization

Another popular approach for dealing with cardinality constrained problems is the
Penalty Decomposition method proposed in Lu and Zhang (2013), informally in-
troduced in the previous chapter. The method deals with problems like

min
x

f (x)

s.t. x ∈ X,
h(x) = 0,
g(x) ≤ 0,
‖x‖0 ≤ s,

(3.1)

where f : Rn → R, g : Rn → Rm, h : Rn → Rp are continuously differentiable
functions and X ⊆ Rn is a closed convex set.

The approach is based on an equivalent formulation that introduces auxiliary
variables y with the added constraint x = y. Then, we replace the original cardinal-
ity constraint with the term ‖y‖0 ≤ s. The equality constraint is thenmoved into the
objective function in a suitable penalization term, resulting in a series of subprob-
lems in which the penalty gets increasingly bigger. Each subproblem is minimized
in an alternating fashion between x and y, where the x step is a the minimization of
a smooth nonlinear problem and the y step is a simple projection on the cardinality
constraint. This “variable splitting” scheme, as it is also known in literature, is then
guaranteed to converge to a feasible point of problem (3.1) which satisfies a suitable
necessary optimality condition.

This approach, although powerful and efficient, suffers from an important the-
oretical shortcoming: the algorithm, and the following convergence analysis, as-
sumes that in the minimization phase w.r.t. x we are able to find a global solution

31

32 Penalty decomposition approach for nonconvex CC-optimization

of a general nonconvex problem, which can be prohibitive, even in the case where
X = Rn and the additional constraints h(x), g(x) are not present.

In this chapter, we consider an “unconstrained” version of problem (3.1), i.e.,
problems of the form

min
x

f (x)

s.t. ‖x‖0 ≤ s,
(3.2)

and we propose a variant of the algorithm that replaces the original exact mini-
mization step with an Armijo-type line search, more suited to deal with nonconvex
objective functions.

We prove that this adaptation enjoys the same theoretical guarantees as the orig-
inal algorithm, andwe also provide additional conditions ensuring the convergence
to stronger optimality conditions. Moreover, we also provide a derivative free ex-
tension, performing the x minimization step with line searches along the coordinate
axes.

In the next section, we provide some details about the original Penalty Decom-
position approach proposed in Lu and Zhang (2013).

3.1 Preliminaries
Problem (3.2) can be equivalently stated as

min
x,y∈Rn

f (x)

s.t. ‖y‖0 ≤ s,

x = y.

(3.3)

For simplicity, in the following, we will refer to the set {y ∈ Rn | ‖y‖0 ≤ s} as Y.
Defining, for any τ > 0, the function

qτ(x, y) = f (x) +
τ

2
‖x− y‖2, (3.4)

we can then consider the sequence of subproblems

min
x,y∈Rn

qτ(x, y)

s.t. ‖y‖0 ≤ s.
(3.5)

This idea leads to the original Penalty Decomposition algorithm, formalized in Al-
gorithm 3.

3.1 Preliminaries 33

Algorithm 3: Penalty Decomposition
1 Input: τ0 > 0, θ > 1, x0 = y0 ∈ Rn s.t. ‖x0‖0 ≤ s, a sequence {εk} s.t. εk → 0,

Γ ≥ max{ f (x0), minx qτ0(x, y0)}.
2 for k = 0, 1, . . . do
3 ` = 0
4 u0 = xk

5 if minx qτk(x, yk) ≤ Γ then
6 v0 = yk

7 end
8 else
9 v0 = y0

10 end
11 while ‖∇xqτk(u

`, v`)‖ > εk do
12 u`+1 = arg minu qτk(u, v`)
13 v`+1 = arg minv∈Y qτk(u

`+1, v)
14 ` = `+ 1
15 end
16 τk+1 = θτk
17 xk+1, yk+1 = u`, v`

18 end
19 Output: The sequence {xk}.

Under suitable assumptions, it can be shown that the Penalty Decomposition
method converges to points satisfying the following necessary optimality condition,
namely, the Lu-Zhang conditions, introduced in Lu and Zhang (2013)1.
Definition 3.1.1. We say that a point x̄ ∈ Rn satisfies Lu-Zhang first order optimality
conditions if there exists a set I ⊆ {1, . . . , n} such that |I| = s, x̄i = 0 for all i ∈ Ī =
{1, . . . , n} \ I and ∇i f (x̄) = 0 for all i ∈ I.

It is trivial to realize that the concept of BF-stationarity introduced earlier (Defi-
nition 2.2.3) implies Lu-Zhang conditions. The converse is not necessarily true, i.e.,
Lu-Zhang conditions are weaker than BF-stationarity. We show this with the fol-
lowing example.
Example 3.1.1. Let

f (x) = (x1 − 1)2 + x2
2 + (x3 − 1)2

and s = 2. The point x̄ = [1 0 0] satisfies Lu-Zhang conditions but it is not BF-stationary.
Indeed, let J = {1, 2}. We have that x̄j = 0 for all j ∈ J̄ and ∇i f (x̄) = 0 for all i ∈ J.

1The original definition given in Lu and Zhang (2013) takes into account additional constraints
h(x) = 0, g(x) ≤ 0. Here, we restate the original condition into an equivalent but simplified form
when X = Rn.

34 Penalty decomposition approach for nonconvex CC-optimization

Thus x̄ is Lu-Zhang stationary. On the other hand, ‖x̄‖0 < 2, and ∇3 f (x̄) 6= 0, i.e., it is
not BF-stationary.

Before delving into the technical details of this work, we state the following as-
sumption on the objective function f (x).

Assumption 3.1.1. The objective function f (x) is coercive.

As we now show, under Assumption 3.1.1, it also holds that the penalized func-
tion qτ(x, y) is coercive.

Lemma 3.1.1. The function qτ(x, y) defined in (3.4) is coercive on Rn×Rn.

Proof. Suppose that {(xk, yk)} is a sequence such that either ‖xk‖ → ∞ or ‖yk‖ → ∞.
If ‖xk‖ → ∞, then f (xk)→ ∞ as f (x) is coercive, and so does qτ(xk, yk).
If ‖yk‖ → ∞, then either ‖xk‖ → ∞ and we are in the previous case, or

‖xk − yk‖ → ∞. In the latter case, qτ(xk, yk) → ∞ as f (x) is coercive and, con-
sequently, bounded below.

3.2 Inexact Penalty Decomposition approach
Algorithm 3 requires the exact solution of a potentially nonconvex optimization
problem at steps 5 and 12, which can be prohibitive in practice. To address this
issue, we propose a modification of the algorithm for nonconvex optimization.

The proposed procedure is described in Algorithm 4. The global optimization
step of a possibly nonconvex function has been replaced by a descent step along the
gradient of qτk w.r.t. the x block. The stepsize is computed by the classical Armijo
backtracking line search.

We now address the properties of the Inexact Penalty Decomposition method.
First, we show that Algorithm 4 is indeed well posed.

Proposition 3.2.1. Algorithm 4 does not loop infinitely between steps 11-14.

Proof. Suppose by contradiction that, at a certain iteration k, the sequence {u`, v`}
is infinite. From the instructions of the algorithm, we have

qτk(u
`+1, v`+1) ≤ qτk(u

0, v0).

Hence, {u`, v`} ⊂ L0(qτk), which is compact from the coercivity of qτk .
Therefore, there exists K ⊆ {0, 1, . . .} such that (u`, v`) →K (ū, v̄). From the

instructions of the algorithm we have

qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`) = qτk(u
` − α`∇xqτk(u

`, v`), v`) < qτk(u
`, v`).

3.2 Inexact Penalty Decomposition approach 35

Algorithm 4: Inexact Penalty Decomposition
1 Input: τ0 > 0, θ > 1, x0 = y0 ∈ Rn s.t. ‖x0‖0 ≤ s, a sequence {εk} s.t. εk → 0.
2 for k = 0, 1, . . . do
3 ` = 0
4 xtrial = xk − α∇xqτk(xk, yk) with α computed by Armijo line search
5 if qτk(xtrial, yk) ≤ f (x0) then
6 u0, v0 = xk, yk

7 end
8 else
9 u0, v0 = x0, y0

10 end
11 while ‖∇xqτk(u

`, v`)‖ > εk do
12 u`+1 = u` − α`∇xqτk(u

`, v`) with α` computed by Armijo line search
13 v`+1 = arg minv∈Y qτk(u

`+1, v)
14 ` = `+ 1
15 end
16 τk+1 = θτk
17 xk+1 = u`

18 yk+1 = v`

19 end
20 Output: The sequence {xk}.

Since f is continuously differentiable, ∇xqτk(u, v) = ∇ f (u) + τ(u− v) is continu-
ous, therefore ∇xqτk(u

`, v`)→K ∇xqτk(ū, v̄).
The sequence {qτk(u

`, v`)} is decreasing, so it admits a limit, which may be −∞.
But, recalling the continuity of qτk , we have that qτk(u

`, v`)→K qτk(ū, v̄). Hence, the
whole sequence converges to qτk(ū, v̄).

Then we have

lim
`→∞

qτk(u
`, v`)− qτk(u

` − α`∇xqτk(u
`, v`), v`) = 0. (3.6)

Therefore, from the properties of Armijo line search we have

lim
`∈K
`→∞

∥∥∥∇xqτk(u
`, v`)

∥∥∥ = 0,

a contradiction.
Now, we can turn to the convergence analysis of the algorithm. We start by prov-

ing the existence of limit points of the generated sequence.

Proposition 3.2.2. Let {xk, yk} be the sequence generated by Algorithm 4. Then {xk, yk}
admits cluster points.

36 Penalty decomposition approach for nonconvex CC-optimization

Proof. Consider a generic iteration k. Since instructions 12-13 of the algorithm both
do not increase the value of qτk , we have that

qτk(xk+1, yk+1) ≤ ... ≤ qτk(u
1, v0) = qτk(u

0 − α0∇xqτk(u
0, v0), v0). (3.7)

From the definition of (u0, v0), we either have (u0, v0) = (xk, yk) or (u0, v0) =

(x0, y0). In the first case, we have, by the definition of xtrial, that

qτk(u
0 − α0∇xqτk(u

0, v0), v0) = qτk(xtrial, yk) ≤ f (x0),

where the last inequality holds, as in this case the condition at line 5 is satisfied. In
the second case we have

qτk(u
0 − α0∇xqτk(u

0, v0), v0) ≤ qτk(u
0, v0)

= qτk(x0, y0)

= f (x0) +
τk
2
‖x0 − y0‖2 = f (x0).

So, putting everything back together in (3.7) we get

qτk(xk+1, yk+1) ≤ f (x0). (3.8)

But, by the definition of qτk it also holds

f (xk+1) ≤ qτk(xk+1, yk+1).

Then f (xk+1) ≤ f (x0). As k is arbitrary, it follows that {xk+1} ⊂ L0, which is a
compact set by the coercivity assumptions; hence {xk} is bounded.

From equation (3.8), we also have

qτk(xk+1, yk+1) = f (xk+1) +
τk
2
‖xk+1 − yk+1‖2 ≤ f (x0).

Dividing by τk we get

‖xk+1 − yk+1‖2 ≤ 2
f (x0)− f (xk+1)

τk
.

Taking the limits for k→ ∞, recalling the boundedness of {xk+1} and that τk → ∞,
we have that {yk+1} is also a bounded sequence. Hence, the sequence {xk, yk} is
bounded and therefore admits limit points, as we wanted to prove.

Proposition 3.2.3. Let {xk, yk} be the sequence generated by Algorithm 4. Suppose that
(x̄, ȳ) is a limit point of {xk, yk}, i.e. (xk, yk)→K (x̄, ȳ). Then, (x̄, ȳ) is a feasible point for
problem (3.3), and x̄ is feasible for problem (3.2).

3.2 Inexact Penalty Decomposition approach 37

Proof. From the instructions of the algorithm, for each k we have that

‖∇ f (xk+1) + τk(xk+1 − yk+1)‖ ≤ εk.

Dividing both sides by τk, we get∥∥∥∥∥∇ f (xk+1)

τk
+ (xk+1 − yk+1)

∥∥∥∥∥ ≤ εk
τk

.

Taking limits for k → ∞, k ∈ K, recalling that τk → ∞, εk → 0 and that {∇ f (xk)}K
is bounded as ∇ f is continuous, we get

‖x̄− ȳ‖ = lim
k∈K

k→∞

‖xk − yk‖ ≤ 0,

and the statement holds recalling that ‖ȳ‖0 ≤ s by the lower semi-continuity of
‖ · ‖0.

We now analyze the stationarity properties of the limit points generated by the
algorithm. To this aim, let us define the index set I(x) of the largest active variables
(in absolute value) at a generic point x ∈ Rn, satisfying the following properties:

I(x) ∈ arg max
S⊆{1,...,n}

|S|

s.t. |S| ≤ s,

i ∈ S⇒ xi 6= 0,

|xi| ≥ |xj| ∀ i ∈ S, ∀ j /∈ S.

(3.9)

For simplicity, in the following we will assume that problem (3.9) provides a
unique definition of I. In practice, this assumption can be assured by explicitly
defining how ambiguous cases should be handled. Also, note that I(x) = {i ∈
{1, . . . , n} | xi 6= 0} if ‖x‖0 ≤ s.

Proposition 3.2.4. Let {xk, yk} be the sequence generated by Algorithm 4. Suppose that
(x̄, ȳ) is a limit point of {xk+1, yk+1}, i.e. (xk+1, yk+1)→K (x̄, ȳ). Then x̄ satisfies Lu-
Zhang conditions for problem (3.2). Moreover, if there exists K1 ⊂ K s.t. ‖xk+1‖0 = ‖x̄‖0

for all k ∈ K1 or ‖xk+1‖0 < s for all k ∈ K1, x̄ is BF-stationary for problem (3.2).

Proof. From Proposition 3.2.3, x̄ = ȳ. Moreover, from the instructions of the algo-
rithm, at each iteration k we have that

‖∇ f (xk+1) + τk(xk+1 − yk+1)‖ ≤ εk

and
yk+1 = arg min

y∈Y
qτk(xk+1, y).

38 Penalty decomposition approach for nonconvex CC-optimization

It is easy to see that

yk+1
i = xk+1

i for i ∈ I(xk+1),

yk+1
i = 0 for i ∈ Ī(xk+1).

Recalling the BF necessary optimality conditions, we have that

∇yI(xk+1)
qτk(xk+1, yk+1) = 0 if |I(xk+1)| = s,

∇yqτk(xk+1, yk+1) = 0 if |I(xk+1)| < s,

i.e.,
−τk(xk+1

i − yk+1
i) = 0

{
∀ i ∈ I(xk+1) if |I(xk+1)| = s,
∀ i ∈ {1, . . . , n} if |I(xk+1)| < s.

(3.10)

There are finitely many possible sets I(xk+1), therefore at least one of them is re-
peated infinitely on K. Thus, let us assume that K1 ⊆ K is such that I(xk+1) = I for
all k ∈ K1. From the instructions of the algorithm we have that

‖∇ f (xk+1) + τk(xk+1 − yk+1)‖ → 0. (3.11)

Now, let I? = I(x̄) and let us address the relation between I and I?. The case |I| <
|I?| is impossible, since (xk+1, yk+1) →K1 (x̄, ȳ) and so, if |ȳi| > 0, then |yk+1

i | > 0
for k sufficiently large. Therefore, |I| ≥ |I?|. Moreover, I ⊇ I?, otherwise there
would exist i such that yk+1

i = 0 for all k ∈ K and ȳi 6= 0, which is absurd by similar
reasonings as above.

Hence, we have the following possible cases:

(i) |I| = s, I = I?;

(ii) |I| < s;

(iii) |I| = s, I ⊃ I?.

We will address these three cases one at a time:

(i) Let i ∈ I = I?; from (3.11) we have

∇i f (xk+1) + τk(xk+1
i − yk+1

i)→K1 0,

while from (3.10) it follows that

τk(xk+1
i − yk+1

i) = 0 ∀ k ∈ K1.

Therefore,
∇i f (xk+1)→K1 ∇i f (x̄) = 0 ∀ i ∈ I?,

i.e., BF conditions hold and hence Lu-Zhang hold too.

3.3 A Derivative-Free extension 39

(ii) Let i ∈ {1, . . . , n}; similarly to the previous case we have that

∇i f (xk+1) + τk(xk+1 − yk+1)→K1 0

and
τk(xk+1

i − yk+1
i) = 0 ∀ k ∈ K1,

from which we can derive

∇i f (xk+1)→K1 ∇i f (x̄) = 0 ∀ i ∈ {1, . . . , n},

i.e., BF conditions, and consequently Lu-Zhang conditions, hold.

(iii) Let i ∈ I. By similar reasonings as in case 1., we can derive

∇i f (xk+1)→K1 ∇i f (x̄) = 0.

Therefore Lu-Zhang conditions are satisfied selecting the index set I.

Putting everything together, we have from (i), (ii) and (iii) that Lu-Zhang condi-
tions are always satisfied, while from (i) and (ii) we can assert BF-stationarity under
the assumption of the proposition.

As we can see, the proposed inexact version of the algorithm enjoys the same
convergence properties as the original exact scheme. We also provided a better char-
acterization of the algorithm, showing that the limit points are BF-stationary if none
of the components goes to zero asymptotically.

A real case where the PD method is employed in practice on cardinality con-
strained problems with nonconvex objective is that of Neural Networks compres-
sion. In fact, it has been shown in Carreira-Perpinan and Idelbayev (2018) that
the PD method provides in practice great results even if the x minimization step
is performed by a surrogate of the arg min operator. There is however no theoretical
analysis supporting the quality of the reported results. Employing our inexact pro-
cedure would yield such theoretical support. Moreover, the convergence analysis
we conducted somehow hints why local minimization was sufficient in practice for
the PD algorithm to work.

3.3 A Derivative-Free extension
First order information about the objective function is fundamental for the PDmeth-
ods we have considered thus far. However, there are applications where gradients
are not available. Such lack of information has an impact for the applicability of
Algorithm 4, particularly w.r.t. the x update step and the inner stopping criterion.

40 Penalty decomposition approach for nonconvex CC-optimization

In this section, we propose a derivative-free modification of Algorithm 4 that,
similarly to Fasano et al. (2014); Liuzzi et al. (2016); Lucidi and Sciandrone (2002),
updates x by line search steps along the coordinate axes and employs a stopping
criterion based on the length of such steps.

The derivative-free PDmethod is described in Algorithm 5. In the x update step,
we employ as search directions the coordinate and anti-coordinate directions. A ten-
tative step length α̃i is associated to each of these directions. At every iteration, all
search directions are considered one at a time; a derivative-free line search is per-
formed along each direction, according to Algorithm 6. If the tentative step size
does not provide a sufficient decrease, il will be reduced for the next iteration. If
on the other hand the tentative step size is of sufficient decrease, an extrapolation
procedure is carried out; the tentative step size for that same direction at the succes-
sive iteration will be the longest one tried in the extrapolation phase that provides a
sufficient decrease. That same step length is also used to move along the considered
direction, provided that it is at least as large as εk; otherwise, no movement is done
along the direction. The inner loop then stops when all tentative step sizes have
become smaller than εk.

Hereafter, we show that Algorithm 5 enjoys the same convergence properties as
its “smooth” counterpart. First, we prove that the line search procedure does not
loop infinitely inside our procedure.

Proposition 3.3.1. Assume the objective function f is coercive. Then, Algorithm 6 termi-
nates in a finite number of iterations.

Proof. In order to prove the thesis, we have to show that Algorithm 6 does not loop
infinitely between steps 5-8. Assume by contradiction that this is not the case. Then,
from the instructions of the algorithm, we have

f (x + σkα0d) ≤ f (x)− γσ2kα2
0‖d‖2

for any k ∈ N. From the continuity and the coercivity of f , we know that it is
bounded below. We also have γσ2kα2

0 → ∞. Thus

f (x + σkα0d) ≤ f (x)− γσ2kα2
0‖d‖2 → −∞,

which violates the boundedness of f .

Note that qτk satisfies the assumptions of Proposition 3.3.1 for every τk. We now
show that the inner loop of Algorithm 5 also terminates in finite time.

Proposition 3.3.2. Algorithm 5 does not loop infinitely between steps 18-37.

3.3 A Derivative-Free extension 41

Algorithm 5: Derivative-Free Inexact Penalty Decomposition
1 Input: τ0 > 0, θ > 1, δ ∈ (0, 1), x0 = y0 ∈ Rn s.t. ‖x0‖0 ≤ s, a sequence {εk}

s.t. εk → 0, D = {d1, . . . , d2n} = {e1, . . . , en,−e1, . . . ,−en}.
2 for k = 0, 1, . . . do
3 α̃0 = e ∈ R2n

4 ` = 0
5 for i = 1, . . . , 2n do
6 α̂i = LineSearch(qτk(x, yk), di, 1, xk)
7 if α̂i > εk then
8 xtrial = xk + α̂idi
9 break

10 end
11 end
12 if qτk(xtrial, yk) ≤ f (x0) then
13 u0, v0 = xk, yk

14 end
15 else
16 u0, v0 = x0, y0

17 end
18 while maxi=1,...,2n {α̃`i } > εk do
19 u`(0) = u`

20 for i = 1, . . . , 2n do
21 α`i = LineSearch(qτk(u, v`), di, α̃`i , u`(i− 1))
22 if α`i = 0 then
23 α̃`+1

i = δα̃`i
24 end
25 else
26 α̃`+1

i = α`i
27 end
28 if α`i > εk then
29 u`(i) = u`(i− 1) + α`i d`i
30 end
31 else
32 u`(i) = u`(i− 1)
33 end
34 end
35 u`+1 = u`(2n)
36 v`+1 = arg minv∈Y qτk(u

`+1, v)
37 ` = `+ 1
38 end
39 τk+1 = θτk
40 xk+1 = u`

41 yk+1 = v`

42 end
43 Output: The sequence {xk}.

42 Penalty decomposition approach for nonconvex CC-optimization

Algorithm 6: LineSearch
1 Input: f : Rn → R, d ∈ Rn, α0 ∈ R+, x ∈ Rn, γ ∈ (0, 1), σ > 1.
2 α = α0

3 if f (x + αd) ≤ f (x)− γα2‖d‖2 then
4 Let β = α;
5 repeat
6 Set α = β;
7 Set β = σα;
8 until f (x + βd) > f (x)− γβ2‖d‖2;
9 return α;

10 end
11 Set α = 0;
12 return α

Proof. Assume by contradiction that the algorithm loops infinitely. Then, for all ` =
0, 1, . . ., there exists i ∈ {1, . . . , n} such that α̃`i > εk. Moreover, from the instructions
of the algorithm, we have

qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`) ≤ qτk(u
`(i), v`) ≤ qτk(u

`(i− 1), v`) ≤ qτk(u
`, v`),

i.e., {qτk(u
`, v`)} is a non-increasing sequence. It thus has limit q̄, which is finite

from the coercivity of qτk .
Consider now the sequence {α̃`i } for i ∈ {1, . . . , n}. We can split the sequence of

iterations {0, 1, . . .} into two subsequences K1 and K2, where for all ` ∈ K1, recalling
that ‖di‖ = ‖ ± ei‖ = 1, it holds

qτk(u
`(i− 1) + α̃`i σsd`i , v`) ≤ qτk(u

`(i− 1), v`)− γ(α̃`i σs)2,

α̃`+1
i = α`i = α̃`i σs,

for some s ∈N, while for all ` ∈ K2 we have

α̃`+1
i = δα̃`i .

Consider the sequence K1. For all ` ∈ K1 we have:

qτk(u
`+1, v`+1) ≤ qτk(u

`+1, v`)

≤ qτk(u
`(i), v`)

≤ qτk(u
`(i− 1), v`)− γ(α̃`i σs)2

≤ qτk(u
`(0), v`)− γ(α̃`i)

2

= qτk(u
`, v`)− γ(α̃`i)

2.

3.3 A Derivative-Free extension 43

Assume that K1 is infinite. Then, taking the limits for ` → ∞, ` ∈ K1, recalling
that qτk(u

`, v`)→ q̄, we get

q̄ ≤ q̄− γ lim
`→∞
`∈K1

(α̃`i)
2 ≤ q̄,

which implies that
α̃`i →K11 0. (3.12)

We have therefore that for ` ∈ K1 sufficiently large, α̃`i ≤ εk.
Consider now K2 and assume it is infinite. If K1 is finite, then there exists ¯̀ such

that ` ∈ K2 for all ` ≥ ¯̀, which implies α̃`i = δ`−
¯̀
α̃

¯̀
i , i.e., α̃`i ≤ εk for ` sufficiently

large.
So, let us assume K1 is also infinite. For all ` ∈ K2, let m` be the maximum index

on {0, 1, . . .} such that m` ∈ K1, m` < ` (m` is the index of the last iteration in K1

preceding `). Then it holds
α̃`i = δ`−m`α

m`
j . (3.13)

Assume by contradiction that there exist infinite ˆ̀ ∈ K1 such that α
ˆ̀
i > εk (call this

subsequence K̂). For any of such indices, recalling previous reasonings, it holds

qτk

(
u ˆ̀+1, v ˆ̀+1

)
≤ qτk

(
u ˆ̀ , v ˆ̀

)
− γ

(
α

ˆ̀
i

)2
< qτk

(
u ˆ̀ , v ˆ̀

)
− γε2

k.

Taking the limits for ˆ̀ ∈ K̂, recalling that qτk(u
`, v`) has limit q̄, we get

q̄ ≤ q̄− γε2
k < q̄,

which is absurd.
Then, for ` ∈ K2 sufficiently large, we have that α

m`
i ≤ εk, which, together with

(3.13), implies again that α̃`i ≤ εk.
Combining the results obtained on K1 and K2 and recalling that i is arbitrary we

get
max

i=1,...,n
{α̃`i } ≤ εk

for ` sufficiently large, a contradiction.

Next, we prove a technical result concerning the directional derivatives of qτk

with respect to the variables xi.

Proposition 3.3.3. Assume for all k that α̃0
i > εk for all i = 1, . . . , 2n. Then, for all

k = 1, 2, . . . and for all i = 1, . . . , 2n there exists ρk
i ∈ (0, cεk) such that

∇xqτk(xk+1 + ρk
i di, yk+1)Tdi > −cεk,

with c = max{σ, 1/δ}.

44 Penalty decomposition approach for nonconvex CC-optimization

Proof. Let ` be the index of the last inner iteration. By definition of `, we must have
that α̃`+1

i ≤ εk for all i = 1, . . . , n. From the instructions of the algorithm this implies
that we have u`+1 = u`(2n) = . . . = u`(0) = u` and consequently v`+1 = v`.
Consider any i ∈ {1, . . . , 2n}. We have to cases:

• α̃`+1
i = δα̃`i ; in this case, α̃`i did not satisfy the sufficient decrease condition in

the LineSearch procedure, i.e.

qτk(u
` + α̃`i di, v`)− qτk(u

`, v`) > −γ(α̃`i)
2. (3.14)

From the Mean Value Theorem, we can write:

qτk(u
` + α̃`i di, v`)− qτk(u

`, v`) = α̃`i∇xqτk(u
` + ρ`i di, v`)Tdi, (3.15)

for some ρ`i ∈ (0, α̃`i). From (3.14), (3.15), it follows:

∇xqτk(u
` + ρ`i di, v`)Tdi > −γα̃`i = −

γ

δ
α̃`+1

i ≥ −γ

δ
εk,

where ρ`i ∈ (0, εk/δ).

• α̃`+1
i = α`i ; we know, from the instructions of the LineSearch procedure, that

qτk(u
` + σα`i di, v`)− qτk(u

`, v`) > −γ(σα`i)
2. (3.16)

From the Mean Value Theorem, we can write:

qτk(u
` + σα`i di, v`)− qτk(u

`, v`) = σα`i∇xqτk(u
` + ρ`i di, v`)Tdi, (3.17)

for some ρ`i ∈ (0, σα`i). From (3.16),(3.17), it follows:

∇xqτk(u
` + ρ`i di, v`)Tdi > −γσα`i = −γσα̃`+1

i ≥ −γσεk,

where ρ`i ∈ (0, σεk).

In both cases we thus have

∇xqτk(u
` + ρ`i di, v`)Tdi > −cεk (3.18)

for some ρ`i ∈ (0, cεk), c = max{σ, 1/δ}.
Since α̃`+1

i ≤ εk for all i = 1, . . . , 2n, from the instructions of the algorithm we
have u`+1 = u` and consequently v`+1 = v`. Hence, equation (3.18) holds for
(xk+1, yk+1).

We are finally able to show that the gradients of the penalty function w.r.t. x go
to zero in the limit.

3.4 Conclusions 45

Proposition 3.3.4. Let {xk+1, yk+1} be the sequence generated by Algorithm 5. Then

lim
k→∞
‖∇xqτk(xk+1, yk+1)‖ = 0. (3.19)

Proof. From Proposition 3.3.3, we know that for all k = 1, 2, . . . and for all i =

1, . . . , 2n there exists ρk
i ,∈ (0, cεk) such that

∇xqτk(xk+1 + ρk
i di, yk+1)Tdi > −cεk,

with c = max{σ, 1/δ}. SinceD = {d1, . . . , d2n} = {e1, . . . en,−e1, . . . ,−en}, we have
in particular that, for all i = 1, . . . , n

∇xqτk(xk+1 + ρk
i ei, yk+1)Tei > −cεk,

−∇xqτk(xk+1 − ρk
i+nei, yk+1)Tei > −cεk

Taking limits for k→ ∞, recalling that εk → 0 and ρk
i ∈ (0, cεk), we get

lim
k→∞
∇xqτk(xk+1 + ρk

i ei, yk+1)Tei = lim
k→∞
∇xqτk(xk+1, yk+1)Tei ≥ 0

lim
k→∞
∇xqτk(xk+1 − ρk

i+nei, yk+1)Tei = lim
k→∞
∇xqτk(xk+1, yk+1)Tei ≤ 0

from which we get the thesis.

With Proposition 3.3.4 at hand, the rest of the convergence analysis can be de-
rived almost exactly following the same reasonings as in the “smooth” case. We
have therefore that the following statements hold.

Proposition 3.3.5. Let {xk, yk} be the sequence generated by Algorithm 5. Then {xk, yk}
admits cluster points.

Proposition 3.3.6. Let {xk, yk} be the sequence generated by Algorithm 5. Suppose that
(x̄, ȳ) is a limit point of {xk, yk}, i.e. (xk, yk)→K (x̄, ȳ). Then, (x̄, ȳ) is a feasible point for
problem (3.3), and x̄ is feasible for problem (3.2).

Proposition 3.3.7. Let {xk, yk} be the sequence generated by Algorithm 5. Suppose that
(x̄, ȳ) is a limit point of {xk+1, yk+1}, i.e. (xk+1, yk+1)→K (x̄, ȳ). Then x̄ satisfies Lu-
Zhang conditions for problem (3.2). Moreover, if there exists K1 ⊂ K s.t. ‖xk+1‖0 = ‖x̄‖0

for all k ∈ K1 or ‖xk+1‖0 < s for all k ∈ K1, x̄ is BF-stationary for problem (3.2).

3.4 Conclusions
In this chapterwe introduced an inexact version of the PenaltyDecompositionmethod,
based on line searches, for cardinality constrained problems which is applicable in

46 Penalty decomposition approach for nonconvex CC-optimization

practice even when the objective function is nonconvex. We proved that the pro-
posed procedure has the same convergence guarantees as the original scheme that
requires exact minimization steps, and we also provide additional conditions to
guarantee the convergence to a stronger necessary optimality condition.

We also proposed aderivative-free extension, aimed at solving optimizationprob-
lems without the use of first order information. The approach is based on a suit-
able search scheme along the coordinate axes, using standard derivative-free line
searches. The convergence analysis carried out shows that this extension enjoys the
same convergence guarantees as the smooth case.

Chapter 4

A concave optimization-based
approach for sparse multiobjective
programming

In this chapter we consider sparse multiobjective optimization problems, i.e., prob-
lems where one of the objectives is the `0-norm. Formally, we consider problems of
the form

min
x∈Rn

(f1(x), f2(x), . . . , fm−1(x), ||x||0)

s.t. x ∈ X
(SMOP)

where fi : Rn → R, i = 1, . . . , m, m ≥ 2 and X ⊂ Rn is a compact convex set.
To deal with the difficulties brought by the use of the `0-norm, following the

approach of Rinaldi et al. (2010), we propose to replace the `0-norm objective by
means of smooth concave approximating functions. In this way, we are able to con-
vert (SMOP) into a smooth problem. Further, we prove that such an approximating
problem enjoys some nice equivalence properties with respect to the original com-
binatorial one. Then, we define an optimization algorithm based on the steepest de-
scent framework for smooth multiobjective optimization Fliege and Svaiter (2000);
Fukuda and Drummond (2014).

In the following, we will denote by F : Rn → Rm the vector-valued function
defined by

F(x)
4
= (f1(x), f2(x), . . . , fm−1(x), ‖x‖0).

Given any two vectors u, v ∈ Rp, we write

u < v ⇔ ui < vi, for all i = 1, . . . , p

u 5 v ⇔ ui ≤ vi, for all i = 1, . . . , p

u ≤ v ⇔ u 5 v and u 6= v.

47

48 Multiobjective sparse optimization

4.1 Preliminaries
In the context of multiobjective optimization, the notion of optimality used in the
single objective case is not adequate. To this end, we define the concepts of Pareto
dominance and Pareto optimality, as stated below.
Definition 4.1.1 (Pareto dominance). Given two vectors x, y ∈ Rn, we say that x
(strictly) Pareto dominates y when

F(x) 5 F(y)
(

F(x) ≤ F(y)
)
.

Ideally, a solution x∗ ∈ X of problem (SMOP) would be a point such that x∗

Pareto dominates each other feasible point x ∈ X, i.e.,
F(x∗) 5 F(x), for all x ∈ X.

Unfortunately, such a point x∗ very seldom exists. Therefore, we usually consider
the following definitions of optimality.
Definition 4.1.2 (Weak Pareto optimality). A point x∗ ∈ X is a weak Pareto optimal
point for problem (SMOP), if there does not exist any x ∈ X such that

F(x) < F(x∗).

Definition 4.1.3 (Pareto optimality). A point x∗ ∈ X is a Pareto optimal point for
problem (SMOP), if there does not exist any x ∈ X such that

F(x) ≤ F(x∗).

Using these definitions, our goal is to identify the so-called Pareto front of the
problem, i.e., the set of non-dominated points.

The steepest descent framework for smooth multiobjective
optimization
Optimization algorithms are usually defined with reference to some definition of
stationarity, i.e, necessary optimality conditions useful to identify “good” points.
In the context of multiobjective optimization, a common stationarity condition em-
ployed in practice is the concept of Pareto-stationarity. First, let us consider the prob-
lem

min Fs(x) = (f1(x), . . . , fm(x))

s.t. x ∈ X,
(4.1)

where fi : Rn → R, i = 1, . . . , m are continuously differentiable functions and X is
a convex, compact set.

4.1 Preliminaries 49

Definition 4.1.4 (Pareto stationarity). A point x∗ ∈ X is Pareto stationary for prob-
lem (4.1) if, for all y ∈ X, an index j ∈ {1, . . . , m} exists such that

∇ f j(x∗)>(y− x∗) ≥ 0.

It can be easily shown that, if x∗ is a Pareto optimal point for problem (4.1),
then x∗ is Pareto stationary for problem (4.1). In other words, Pareto-stationarity
is in fact a necessary optimality condition. The inverse implication does not hold in
general, but it can be proven for particular cases like, e.g., when Fs is a strictly convex
continuously differentiable map.

Thanks to Definition 4.1.4, when x̄ ∈ X is not a Pareto stationary point, we know
that a y ∈ X must exist such that v = y − x̄ is a descent direction for all the ob-
jective functions fi, i = 1, . . . , m, at x̄. This observation leads quite naturally to the
definition of an iterative optimization scheme, as we now explain in detail.

First, for any given x ∈ X, we define the function gx : X → R by

gx(y) = max
i=1,...,m

∇ fi(x)>(y− x).

Note that gx is continuous, piecewise linear, and convex. By the compactness of X,
gx admits a global minimum on X; hence, we denote respectively by θ(x) and y(x)
the global minimum value and a global minimum point of gx over X, i.e.,

θ(x) = min
y∈X

gx(y) (4.2)

y(x) ∈ arg min
y∈X

gx(y). (4.3)

Problem (4.2) is a finite minimax problem with linear component functions. It can
thus be trivially restated as the following problem:

min
y,β

β

∇ fi(x)>(y− x) ≤ β, i = 1, . . . , m,

y ∈ X.

(4.4)

Furthermore, from Fliege and Svaiter (2000), we report the following proposi-
tion.

Proposition 4.1.1. Given problem (4.1), let θ : X → R be defined as in (4.2). Then the
following statements hold:

• θ is a continuous function;

• θ(x) ≤ 0, for all x ∈ X;

• x∗ ∈ X is Pareto stationary for problem (4.1) if and only if θ(x∗) = 0.

50 Multiobjective sparse optimization

We now introduce the steepest descent direction for the vector valued mapping
Fs at x.

Definition 4.1.5 (Steepest descent direction). Given any point x ∈ X, the steepest
descent direction for Fs at x is

v(x) = y(x)− x,

where y(x) is given by (4.3).

The idea now is quite simple: as long as our current point is not stationary, we
compute the steepest descent direction and we search for a better point along this
direction. The algorithm, which we formally define next, was originally proposed
and analyzed in Fliege and Svaiter (2000) (J(x) denotes the Jacobian of the vector
of objective functions).

Algorithm 7: Steepest Descent Algorithm (SDA)
Data: x0 ∈ X, γ ∈ (0, 1)
Compute θ(x0), v(x0) and set k = 0
while θ(xk) < 0 do
Compute αk = 2−βk with βk the smallest non-negative integer s.t.

Fs(xk + αkv(xk)) ≤ Fs(xk) + γαk J(xk)v(xk).

Set xk+1 = xk + αkv(xk), and k = k + 1
Compute θ(xk) and v(xk)

end while

4.2 Concave approximations
The steepest descent framework we defined in the previous section is based on the
computation of the gradients of the objective functions. In other words, we need a
smooth problem to be able to use it.

To this end, we consider smooth concave approximating functions to convert
(SMOP) into a smooth problem. This approach is motivated by the fact that

‖x‖0 =
n

∑
i=1

s(|xi|),

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and s(t) = 0 for
t ≤ 0. The idea is then to replace the discontinuous step function with a continu-
ously differentiable concave function.

4.2 Concave approximations 51

The basic idea of replacing the `0-norm with a concave functions is well known
in the literature, and can be traced back to Mangasarian (1996). Here, as done by
Rinaldi et al. (2010); Di Lorenzo et al. (2012) in the single objective case, we study the
equivalence between the concave smooth formulation and the original nonsmooth
problem.

More in detail, we first rewrite problem (SMOP) into the following equivalent
program:

min
x,y

(f1(x), f2(x), . . . , fm−1(x), ||y||0)

s.t. x ∈ X,
−y ≤ x ≤ y,

(4.5)

where inequality −y ≤ x ≤ y is intended component-wise, i.e. −yi ≤ xi ≤ yi,
i = 1, . . . , n. Secondly, we prove a set of equivalence results between problem (4.5)
and a problem of the form

min F(x, y) =

[
f1(x), . . . , fm−1(x),

n

∑
i=1

f u(yi)

]
s.t. x ∈ X,

− y ≤ x ≤ y.

(4.6)

where f u : R+ → R is a smooth function depending on a parameter u ∈ U ⊆ R.
Note that the added variables y and the related constraint −y ≤ x ≤ y is a mod-

eling trick to remove the absolute value from the original concave approximation
term ∑n

i=1 f u(|xi|).
We now introduce the following assumption on the parameterized function f u.

Assumption 4.2.1. There exists ū ∈ U such that, for any infinite sequence {uk} → ū we
have that:
(i) for each yi ≥ 0, lim

k→∞
f uk(yi) is well defined;

(ii) for each yi > 0, it follows f uk(0) < f uk(yi) and

lim
k→∞

f uk(0) < lim
k→∞

f uk(yi) < ∞;

(iii) for any ȳi > 0, and for any sequence {yk
i } → ȳi, we have

lim
k→∞

f uk(yk
i) = lim

k→∞
f uk(ȳi);

(iv) for each yi ≥ 0, one of the following conditions holds: either

lim
k→∞

f uk(yi) =

{
1 if yi > 0,

0 if yi = 0,
(4.7)

52 Multiobjective sparse optimization

or
lim
k→∞

f uk(0) = −∞. (4.8)

It can be shown that, when U = R+, Assumption 4.2.1 is satisfied, for instance:

- by f u(yi) = 1− e−uyi , with ū = +∞, which satisfies condition (4.7);

- by f u(yi) = log(u + yi), with ū = 0, which satisfies condition (4.8).

In particular, we note that, whenever condition (4.7) holds, it results

lim
k→∞

n

∑
i=1

f uk(yi) = ‖y‖0. (4.9)

Now, concerning the connections between problem (4.6) and problem (SMOP),
the following statement holds.

Proposition 4.2.1. Let {uk} be a sequence such that lim
k→∞

uk = ū and let {(xk, yk)} be a
sequence such that (xk, yk) is weakly Pareto optimal for problem (4.6) with u = uk, and
yk = |xk|. Then, {(xk, yk)} has limit points and every limit point (x̄, ȳ) is such that x̄ is
weakly Pareto optimal for problem (SMOP).

Proof. By the assumptions, for all k it results xk ∈ X and yk = |xk|. Hence, as X is
compact, the sequence {(xk, yk)} admits limit points. We proceed by contradiction
and assume that there exists an infinite subset K ⊆ {1, 2, . . .} such that

lim
k∈K,k→∞

(xk, yk) = (x̄, ȳ),

and x̄ is not weakly Pareto optimal for problem (SMOP). Then, there must exist a
point v ∈ X such that

F(v) < F(x̄). (4.10)
Recalling the continuity of functions f1, . . . , fm−1, we get that, for k ∈ K sufficiently
large, the following inequalities hold:

fi(v) < fi(xk) i = 1, . . . , m− 1. (4.11)

Moreover, from (4.10), recalling that ȳ = |x̄|, it follows that

||v||0 < ||x̄||0 = ||ȳ||0. (4.12)

Let yv be such that yv = |v|. Then, (v, yv) is feasible for problem (4.6). Therefore,
recalling that (xk, yk) is weakly Pareto optimal for problem (4.6) and taking (4.11)
into account, for k ∈ K sufficiently large we must have that

n

∑
i=1

f uk(yk
i) ≤

n

∑
i=1

f uk(yv
i) =

n

∑
i=1

f uk(|vi|). (4.13)

4.2 Concave approximations 53

Consider any i ∈ {1, . . . , n} such that ȳi > 0. From assumption (iii), it follows that

lim
k→∞

f uk(ȳi) = lim
k→∞

f uk(yk
i) = li. (4.14)

Then, given any positive ε such that nε < 1, two positive integers k1(ε) and k2(ε)

exist such that
f uk(ȳi) ≤ li +

ε

2
, for all k ≥ k1(ε),

f uk(yk
i) ≥ li −

ε

2
, for all k ≥ k2(ε).

Thus, for k sufficiently large, we obtain

f uk(ȳi) ≤ f uk(yk
i) + ε. (4.15)

Now, let us consider any index i ∈ {1, . . . , n} such that ȳi = 0. Using assumption
(ii), we have, for all k,

f uk(ȳi) ≤ f uk(yk
i). (4.16)

From (4.15) and (4.16), we get that for k sufficiently large, we can write
n

∑
i=1

f uk(ȳi) ≤
n

∑
i=1

f uk(yk
i) + nε. (4.17)

Condition (4.13) implies that
n

∑
i=1

f uk(ȳi) ≤
n

∑
i=1

f uk(yv
i) + nε =

n

∑
i=1

f uk(|vi|) + nε. (4.18)

Let us now distinguish two cases.

Case I: Suppose that condition (4.7) holds. Using (4.9), we have

lim
k→∞

n

∑
i=1

f uk(ȳi) = ‖ȳ‖0 = ‖x̄‖0,

lim
k→∞

n

∑
i=1

f uk(yv
i) = ‖yv‖0 = ‖v‖0.

Hence, taking limits for k→ ∞ in (4.18), we obtain

‖ȳ‖0 ≤ ‖v‖0 + nε.

From the above relation and (4.12), it follows

‖v‖0 + 1 ≤ ‖ȳ‖0 ≤ ‖v‖0 + nε,

which contradicts the fact that nε < 1.

54 Multiobjective sparse optimization

Case II: Suppose that condition (4.8) holds. First, we rewrite relation (4.18)
as follows:

∑
ȳi>0

f uk(ȳi) + (n− ‖ȳ‖0) f uk(0) ≤ ∑
yv

i >0
f uk(yv

i) + (n− ‖yv‖0) f uk(0) + nε,

from which we obtain

(‖yv‖0 − ‖ȳ‖0) f uk(0) ≤ ∑
yv

i >0
f uk(yv

i)− ∑
ȳi>0

f uk(ȳi) + nε.

Taking limits for k → ∞, using (4.12), the fact that ‖yv‖0 = ‖v‖0 and condition
(4.8), we get that the left member of the above relation tends to+∞, while the right
member tends to a finite value (see assumption (ii)), a contradiction.

Remark 4.2.1. In general, it turns out that weak Pareto optimality is the best we can aim
for, even if we consider a sequence {(xk, yk)} of Pareto points for the approximated problem,
instead of the weak Pareto optimality used in Proposition (4.2.1). To have a better under-
standing of this point, we provide the following example.

Example 4.2.1. Consider the following multiobjective optimization problem:

min
x∈R

(−x, ‖x‖0)

s.t.− 1 ≤ x ≤ 1.

It is easy to see that the only Pareto optimal points are x = 0 and x = 1, whose objective
vectors are (0, 0) and (−1, 1), respectively.

Consider now the sequence of smooth approximating problems

min
x,y

(−x, f uk(y))

s.t.− 1 ≤ x ≤ 1,

− y ≤ x ≤ y,

(Puk)

indexed by the sequence {uk}. Consider, for example, the function f uk(y) = 1− e−uky. It is
easy to see that, for any chosen value of uk > 0, the point (1

2 , 1
2) is Pareto optimal for problem

(Puk). Then, consider the sequence {(xk, yk)} such that xk = 1
2 and yk = 1

2 for every k.
Taking the limits for k → ∞, xk → x̄ = 1

2 , which is not Pareto optimal for the original
problem, since its objective vector is F(x̄) = (−1

2 , 1). However, x̄ is a weak Pareto optimal
point for the original problem.

The same reasoning still holds if we consider the function f uk(y) = log(uk + y).

4.2 Concave approximations 55

Polyhedral sets
When X is a polyhedral set, the approximated problem is characterized by stronger
equivalence results, as we now show. First, we state the following assumption.

Assumption 4.2.2. The polyhedral set X has at least a vertex.

Denoting by T the feasible set of (4.6), i.e.,

T = {x, y ∈ Rn | x ∈ X,−y ≤ x ≤ y},

Wenow show that the equivalence in terms ofweak Pareto points does not only hold
asymptotically, but also “finitely". We first prove this property for the exponential
approximation.

Proposition 4.2.2. Suppose that X is a non-empty polyhedral set, and let f u(y) = 1−
e−uy. There exists a value ū > 0 such that, for any u ≥ ū, problem (4.6) admits a weak
Pareto point which is also a weak Pareto point for the original problem (SMOP).

Proof. As shown in (Rinaldi et al., 2010, prop. 5), for each u ≥ ū, there exists a
solution (x(u), y(u)) to the problem

min
n

∑
i=1

f u(yi)

s.t. x ∈ X,
−y ≤ x ≤ y

(4.19)

which is also a solution to the sparse problem

min ‖y‖0

s.t. x ∈ X,
−y ≤ x ≤ y.

(4.20)

Since (x(u), y(u)) minimizes one of the objectives of both problem (4.6) and prob-
lem (SMOP), it must be at least a weak Pareto point for both problems.

The previous result, with minor modifications, also holds for the logarithmic
approximating function.

Proposition 4.2.3. Suppose that X is a non-empty polyhedral set, and let f u(y) = log(u+

y). Assume that problem (4.20) admits a solution y∗ such that ‖y∗‖0 < n. There exists a
value ū > 0 such that, for any u ∈ (0, ū], problem (4.6) admits a weak Pareto point which
is also a weak Pareto point for the original problem (SMOP).

Proof. As in the previous proposition, the result follows from (Rinaldi et al., 2010,
prop. 6).

56 Multiobjective sparse optimization

In case problem (4.20) admits a single solution, the point (x(u), y(u)) defined
in the previous propositions is a Pareto point for the original problem, since there
cannot be another feasible point that improves or matches the zero norm objective
value ‖y(u)‖0. This observation is formally stated in the following corollary.

Corollary 4.2.1. Suppose that problem (4.20) admits a single solution y∗. Then:

1. if f u(y) = 1− e−uy, there exists a value ū > 0 such that, for any u ≥ ū, problem
(4.6) admits a weak Pareto point which is also a Pareto point for the original problem
(SMOP);

2. if ‖y∗‖0 < n and f u(y) = log(u + y), there exists a value ū > 0 such that, for any
u ∈ (0, ū], problem (4.6) admits a weak Pareto point which is also a Pareto point for
the original problem (SMOP).

We now provide a couple of equivalence results in terms of Pareto points. First,
when the first m− 1 objective functions are concave, there exists a finite parameter ū
such that every u “better” than ū (i.e., u ≥ ū for property (4.7) or u ≤ ū for property
(4.8)) yields a Pareto point of the approximated problem which is a Pareto point of
the original problem.

Proposition 4.2.4. Assume that the first m− 1 functions are concave functions bounded
below on the polyhedral set T. Let {uk} be a sequence such that lim

k→∞
uk = ū and let f u(y)

be a function satisfying condition (4.9). Then, there exists an index k̄ such that for all k ≥ k̄
there exists a Pareto point of the approximated problem which is a Pareto point of the original
problem.

Proof. Consider the scalarized functions

F(x, y) = w1 f1(x) + w2 f2(x) + . . . + wm−1 fm−1(x) + wm‖y‖0

Fu(x, y) = w1 f1(x) + w2 f2(x) + . . . + wm−1 fm−1(x) + wm

n

∑
i=1

f u(yi),

with wh > 0 for h = 1, . . . , m.
We know that any global minimum point of F(x, y) over T is a Pareto point for

the original problem, and any global minimum point of Fu(x, y) over T is a Pareto
point for the approximated problem.

Function Fu(x, y) is concave and bounded below on T and hence admits a mini-
mum point which is a vertex of T.

Now, in order to prove the thesis, by contradiction assume that there exists a se-
quence {uk} such that uk → ū and, denoted by (xk, yk) the optimal vertex of Fuk(x, y),
we have that (xk, yk) is not a Pareto point of the original problem.

4.2 Concave approximations 57

The number of vertices is finite, so there exists an infinite subset K such that
(xk, yk) = (x̄, ȳ) for all k ∈ K. Since (x̄, ȳ) is not a Pareto point for the original
problem it can not be a global minimum point of F(x, y) over T, and hence there
exists a point (x̂, ŷ) ∈ T such that

F(x̂, ŷ) < F(x̄, ȳ). (4.21)

As (x̄, ȳ) is an optimal vertex for Fuk(x, y), we can write

Fuk(x̄, ȳ) ≤ Fuk(x̂, ŷ).

Taking the limits for k ∈ K and k→ ∞, recalling from condition (4.9) that

lim
k∈K,k→∞

n

∑
i=1

f uk(yi) = ‖y‖0,

we obtain
F(x̄, ȳ) ≤ F(x̂, ŷ),

which contradicts (4.21).

To conclude this section, we show that under some technical assumptions on the
approximating function, the equivalence in terms of Pareto points also holds asymp-
totically without requiring the concavity of all the objective functions. It is worth
noting that these technical conditions are mild and are satisfied by, for example, the
exponential approximating function: f u(yi) = 1− e−uyi .

Proposition 4.2.5. Assume that the first m− 1 functions are bounded below on the poly-
hedral set T. Let {uk} be a sequence such that lim

k→∞
uk = ū and let f u(y) be a function

satisfying Assumption 4.2.1 and condition (4.7). Assume also that the following conditions
hold for each u ≥ 0:

1. ∑n
i=1 f u(|yi|) ≤ ‖y‖0 for all y ∈ Rn,

2. f u(y) ≥ 0 for all y ≥ 0,

3. f u(y) ≤ f u(z) for all 0 ≤ y ≤ z.

Let wi > 0, i = 1, . . . , m be a set of positive weights and let {(xk, yk)} be a sequence such
that (xk, yk) is a solution of the scalar problem

min
m−1

∑
i=1

wi fi(x) + wm

n

∑
i=1

f uk(yi)

s.t. x ∈ X,

− y ≤ x ≤ y.

(4.22)

58 Multiobjective sparse optimization

Then, each accumulation point {(x̄, ȳ)} of the sequence {(xk, yk)} is such that x̄ is a Pareto
point for the original problem (SMOP).

Proof. By condition 3, we can assume without loss of generality that yk = |xk|, and
let (x̄, ȳ) be an accumulation point of the sequence {(xk, yk)}, i.e. there exists a
subsequence K such that limk∈K,k→∞(xk, yk) = (x̄, ȳ). By definition, we have that
ȳ = |x̄|.

Suppose by contradiction that x̄ is not a Pareto point for problem (SMOP). This
implies that x̄ is not a solution of the scalar problem

min
m−1

∑
i=1

wi fi(x) + wm‖x‖0

s.t. x ∈ X,

(4.23)

i.e. there exists a z ∈ X such that
m−1

∑
i=1

wi fi(z) + wm‖z‖0 <
m−1

∑
i=1

wi fi(x̄) + wm‖x̄‖0. (4.24)

By definition of (xk, yk), for all k ∈ K we have that

m−1

∑
i=1

wi fi(xk) + wm

n

∑
i=1

f uk(yk
i) ≤

m−1

∑
i=1

wi fi(z) + wm

n

∑
i=1

f uk(|zi|). (4.25)

By condition 1, ∑n
i=1 f uk(|zi|) ≤ ‖z‖0 for all uk ≥ 0, and so, from (4.24) and (4.25),

we can write:
m−1

∑
i=1

wi fi(xk) + wm

n

∑
i=1

f uk(yk
i) ≤

m−1

∑
i=1

wi fi(z) + wm‖z‖0 <
m−1

∑
i=1

wi fi(x̄) + wm‖x̄‖0.

(4.26)
Define the index set I = {i | ȳi 6= 0}. Then, from condition 2 it follows that

m−1

∑
i=1

wi fi(xk) + wm ∑
i∈I

f uk(yk
i) ≤

m−1

∑
i=1

wi fi(z) + wm‖z‖0 <
m−1

∑
i=1

wi fi(x̄) + wm‖x̄‖0.

(4.27)
Taking limits for k ∈ K, k→ ∞, recalling condition (iii) of Assumption 4.2.1 and the
fact that ȳ = |x̄|, we get that

m−1

∑
i=1

wi fi(x̄) + wm‖x̄‖0 <
m−1

∑
i=1

wi fi(x̄) + wm‖x̄‖0, (4.28)

a contradiction.

4.3 The algorithm 59

4.3 The algorithm
Inspired by the work in Fliege and Vaz (2016), in this section we propose an algo-
rithm (see Algorithm 8) to approximate the Pareto front of problem (SMOP). The
algorithm is based on the iterative refinement of a set of non-dominated points, us-
ing a set of descent directions.

First, let us denote
fm(y) =

n

∑
i=1

f u(yi),

so that problem (4.6) can be rewritten as

min F(x, y) = (f1(x), . . . , fm−1(x), fm(y))

s.t. x ∈ X,

− y ≤ x ≤ y.

(4.29)

From now on, we consider z = (x, y)> as the set of optimization variables.
The skeleton of our algorithm is composed of three fundamental phases: an ini-

tialization phase, a search phase and a refining phase.
Initialization phase: the list is initialized with a set of non-dominated solutions.

For simplicity, we consider the case in which the list is initialized with a singleton.
Hence, given a feasible point z0 and a stepsize α0 > 0, we initialize the list Z0 =

{(z0, α0)}.
Search phase: we try to improve the set of non-dominated points, iterating over

the list Zk. At every iteration, we select a pair (z, α) and we generate the following
set of points:

S(z, α) = {(z + αdi, α0) | ∇ fi(z)Tdi < 0, i ∈ 1, . . . , m} (4.30)

where each direction di is a feasible descent direction in z for the corresponding
objective function fi. Then, the list Zk+1 is updated only considering non-dominated
solutions of the set Zk ∪ S(z, α). If Zk+1 = Zk, i.e. no new points are added to the list,
then the iteration is considered unsuccessful and the stepsize related to the point z
is decreased by a factor δ < 1. The rationale is that of spreading a set of initial
points by separately considering the single objective functions, aiming to obtain an
approximation of the Pareto front that is “uniform”, intuitively, w.r.t. each objective
function.

Refining phase: in order to drive the obtained non-dominated points towards
the Pareto front, themultiobjective steepest descent strategy is applied for each point
of the list Zk.

A few comments are in order:

60 Multiobjective sparse optimization

Algorithm 8:MultiObjective Sparse Optimization (MOSO)
1 input: a nonempty, finite set of pairs Z0 = {(z0, α0)}, where every z0 is a

non-dominated point, α0 > 0, δ < 1 and γ < 1.
2 ouput: a Pareto front approximation Z∗.
3 Set k← 0.
// Start Search phase

4 while stopping criterion not satisfied do
5 Select a pair (z, α) ∈ Zk.
6 Compute the set of points S(z, α) as in (4.30).
7 Set iter_success← f alse.
8 if S(z, α) 6= ∅ then
9 Set L← Zk ∪ S(z, α).
10 Set Ltmp ← {(w, αw) ∈ L | @z̄ ∈ L s.t. F(z̄) ≤ F(w)}.
11 if Ltmp 6= Zk then
12 Set Zk+1 ← Ltmp.
13 iter_success← true.
14 end
15 else
16 Ltmp = Zk.
17 end
18 if not iter_success then
19 Set Zk+1 ← Ltmp \ {(z, α)} ∪ {(z, δ · α)}.
20 end
21 Set k← k + 1.
22 end

// End Search phase

23 Set Z f ← ∅.
// Start Refining phase

24 for each z ∈ Zk do
25 z∗ ← steepest_descent_algorithm(z, γ).
26 Z f ← Z f ∪ {z∗}.
27 end

// End Refining phase

• The search phase stops when one of the following criteria is satisfied: all the
stepsizes related to the list Zk are lower than a positive tolerance or amaximum
number of function evaluations is reached1.

• In the search phase we consider two different feasible descent directions per
objective, computed with the Projected Gradient and Frank-Wolfe method re-

1A computation of the vector F(x) counts as a single function evaluation. A computation of the
gradient vector ∇F(x) counts as n function evaluations.

4.4 Numerical results 61

spectively. Moreover, we also include the common steepest descent direction,
which, as described in Section 4.1, can be computed by retrieving the solution
(τ∗, x∗, y∗) of the problem

min
τ,x,y

τ

s.t. ∇ fi(x̄)>(x− x̄)− τ ≤ 0, i = 1, . . . , m− 1,

∇ fm(ȳ)>(y− ȳ)− τ ≤ 0,

x ∈ X,

− y ≤ x ≤ y,

(4.31)

and setting dz = (dx, dy) = (x∗ − x̄, y∗ − ȳ).

• The notion of dominatedpoint is referred to the original objective vector (f1(x),
f2(x), . . . , fm−1(x), ||x||0), i.e., we consider the actual `0-norm, not the approx-
imation.

4.4 Numerical results

Implementation details

For numerical experiments we use a concave approximation of the `0-norm using
the logarithmic approximation:

||x||0 ≈
n

∑
i=1

log(ε + xi). (4.32)

We made this choice since, in our experiments, the logarithmic approximation ob-
tained better results than the exponential approximation.

Parameters of algorithm MOSO have been set as follows:

ε = 10−5, δ = 0.5,
α0 = 1, αmin = 10−7

γ = 10−6,

where αmin represents the tolerance on the stepsizes for the search phase.

62 Multiobjective sparse optimization

Numerical results on sparse portfolio selection problems
To assess the effectiveness of Algorithm 8, we consider the following portfolio selec-
tion problem:

min
x∈Rn

− µ>x
x>Qx

, ‖x‖0

s.t. e>x = 1,

0 ≤ x ≤ b,

(4.33)

where µ ∈ Rn and Q ∈ Rn×n are the vector of expected returns and covariance
matrix, respectively, and b is a resource constraint. This problem is obtained from
the standard Markowitz model

min
x∈Rn

x>Qx

s.t. e>x = 1,

µ>x ≥ R,

0 ≤ x ≤ b

(4.34)

replacing the objective function x>Qx with the so-called “Sharpe ratio" (which takes
into account both the variance x>Qx and the expected return µ>x), and by adding
‖x‖0 as a further objective. In our experiments, we set b = 1.

The data used in the following experiments consists of daily data for securities
from the FTSE 100 index, from 01/2003 to 12/2007. Such data is public and available
from the website http://www.bolsapt.com. The three datasets are referred to as
DTS1, DTS2, andDTS3, and are formed by 12, 24, and 48 securities, respectively. The
assets we considered for the generation of the datasets are those used in Brito and
Vicente (2014). Moreover, we also included three datasets from the Fama/French
benchmark collection (FF10, FF17, and FF48, with cardinalities 10, 17, and 48), using
the monthly returns from 07/1971 to 06/2011 (forty years) given there for a number
of industry security sectors. More information about these last three datasets can
be found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html. For further details on these 6 dataset, see Brito and Vicente (2014).

We mainly compare the performance of MOSO with the Direct Multisearch (DMS)
algorithm (Custódio et al. (2011))with its setup defined in Brito andVicente (2014),
where a custom approach to deal with the equality constraint is proposed. More-
over, we set the maximum number of function evaluations to 200, 000 and we con-
sider the variables with absolute value lower than 10−8 as zero. For completeness,
in the final part of the section we also considered the Pareto front approximations
obtained by three othermultiobjective algorithms, namely NSGA-IIDeb et al. (2002)
(via the gamultiobj function included in the MATLAB© Global Optimization Tool-

http://www.bolsapt.com
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

4.4 Numerical results 63

box MATLAB Optimization Toolbox (2018)), MOFEPSO Sinan Hasanoglu and Dolen
(2018) and NOMAD Le Digabel (2011).

The spirit of these experiments is to compare the “non-smooth” derivative-free
approach, on which DMS, NSGA-II, MOFEPSO and NOMAD are based, with the steepest
descent approach we employ in our approach. Note, however, that the results we
report in the following sections are with respect to the original vector of objectives
of problem (SMOP), i.e., considering the actual ‖x‖0 objective.

Single point comparison

Here, we first show a comparison on the “single point” scenario, i.e. when only one
Pareto point has to be retrieved, between MOSO and DMS2. Since the goal is to obtain a
single Pareto point, the list Zk is always composed of a single solution. To maintain
a single point, wemodify the search phase in MOSO as follows: we update the current
solution only if the algorithm is able to find a point that strictly dominates it in the
set L. More formally, lines 9-14 of Algorithm 8 are replaced by the following:

Set L← S(z, α).
for each ẑ ∈ L do
if ẑ strictly dominates Zk then

Zk ← ẑ.
iter_success← true.

end if
end for

In Table 4.1, we report the results obtained on the DTS1, DTS2, DTS3, FF10, FF17
and FF48 datasets. We run both MOSO and DMS starting from 100 different initial
points (each time, we use the same initial point for both algorithms). The list Linit
of initial points is the following:

Linit = {e1, . . . , en, xn+1, . . . , x100},

where ei ∈ Rn is the i-th unit vector3 and all the xi ∈ Rn are random dense feasible
points. For each dataset, we report:

• the number of times the point obtained by MOSO strictly dominates the one
obtained by DMS (column MOSO-Wins);

• the number of times the point obtained by DMS strictly dominates the one ob-
tained by MOSO (column DMS-Wins).

2The other algorithms do not provide this functionality.
3For the DTS1, DTS2 and DTS3, n is equal to 12, 24, 48, respectively. For the FF datasets, n is

equal to 10, 17 and 48, respectively.

64 Multiobjective sparse optimization

MOSO-Wins DMS-Wins
DTS1 36 3
DTS2 95 1
DTS3 70 6
FF10 92 0
FF17 94 0
FF48 90 10

Table 4.1: Single point comparison for DTS and FF problems.

The results show the effectiveness of MOSO. In fact, MOSO is able to outperform DMS

on every dataset, dominating the DMS solution considerably often.

Pareto front comparison

In order to assess the performance of our approach, we compute the purity and
spread metrics defined in Custódio et al. (2011) for each solver. We recall that the
purity metric measures the quality of the generated front, i.e. how good the non-
dominated points computed by a solver are with respect to those computed by any
other solver. Here, a higher value is a better value. The spread metrics, instead,
measure the uniformity of the generated front in the objectives space. In particular,
the spread Γ metric is defined as the maximum `∞ distance between adjacent points
in the retrieved Pareto front. The spread ∆ metric is related to the standard devia-
tion of the `∞ distances between adjacent points in the retrieved Pareto front. Here,
instead, a lower value is a better value.

First, the solvers were initialized with the singleton {x0}4 such that:

x0 =
[
0, . . . , 0, 1

]>
. (4.35)

In Table 4.2, purity and spread metrics scores are reported for the considered prob-
lems. Note that we do not consider the NSGA-II and MOFEPSO solvers here, since
they are evolutionary algorithms that thrive when started with a list of points and
for which an initialization with a single point would be unfair.

The obtained results show the effectiveness of our solver with respect to the pu-
rity metric. With respect to the spread Γ metric, it is easy to see that, generally, when
MOSO is the best algorithm, the performance ratios of the other solvers are very high,
while when it is outperformed the performance ratio is low. With respect to the
spread ∆ metric, a degenerate case happens for both theDTS2 and the FF48 datasets.
In fact, DMS is not able to extend the Pareto front. Since the computation of spread
∆ requires the mean distance between consecutive points in the front, it can be set

4This initialization is suggested in Brito and Vicente (2014).

4.4 Numerical results 65

Purity
Prob/Alg MOSO DMS NOMAD
DTS1 0.71 0.17 0.2
DTS2 1 1 0
DTS3 0.94 0.22 0.06
FF10 1 0.5 0.25
FF17 1 0.5 0.25
FF48 1 1 0

Spread Γ
Prob/Alg MOSO DMS NOMAD
DTS1 2.66 2.11 5
DTS2 3.81 12 11
DTS3 3.29 9 2
FF10 1 1 1
FF17 1 1 2
FF48 1 5 3.43

Spread ∆
Prob/Alg MOSO DMS NOMAD
DTS1 0.78 0.62 1.14
DTS2 0.70 ∞ 0.98
DTS3 0.85 0.78 0.70
FF10 0.89 0.52 1.16
FF17 0.68 0.5 0.92
FF48 0.93 ∞ 1.04

Table 4.2: Purity and Spread tables for DTS and FF problems starting with a single-
ton.

to ∞ when only one point is retrieved. In the other problems, DMS seems to be the
most robust choice w.r.t. this metric.

To sumup, MOSO is clearly thewinnerw.r.t. the puritymetric, and is a good choice
also for the spread Γ metric; while it may suffer a little bit w.r.t. the spread ∆ metric,
overall it shows a good level of performance.

In the second case, the five algorithms where compared when initialized with a
list of points. More precisely:

- we tested the solvers starting from a list of 5 random points for each feasible
cardinality (e.g., with n = 12 variables the starting list contains 12 · 5 = 60
points), and we executed the algorithms with 5 different random seeds ob-
taining 30 total instances;

- we compute the performance profilesDolan andMoré (2002) of the five solvers
considering all the 30 instances of the problems.

Concerning the comparison betweenMOSOand the other 4 approaches, the pro-
files confirm the results obtained with the singleton initialization. In fact, our solver
outperforms the others in terms of purity and spread Γ as in the singleton case. For
the spread ∆ metric, MOSO is outperformed, but maintains a reasonable level of
performance.

66 Multiobjective sparse optimization

Figure 4.1: Performance profiles computed over the 30 instances of portfolio prob-
lems starting from a random list of points.

Numerical results on 3-objective optimizazion problems
To further assess the performance of our approach, we also considered a set of box
constrained problems with 3 objective functions, where the third objective is the
`0-norm. The problems are of the form

min
x∈Rn

(f1(x), f2(x), ‖x‖0)

s.t. 0 ≤ x ≤ b,
(4.36)

where b = 10 · 1. In particular, we consider the following three problems (BK1,
MOP2, QV1) from the dataset used in Cocchi et al. (2018); Custódio et al. (2011):

1. BK1:
f1(x) = ‖x‖2

f2(x) = ‖x− 5 · 1‖2 (4.37)

2. MOP2
f1(x) = 1− e−∑n

i=1(xi+1/
√

n)2

f2(x) = 1− e−∑n
i=1(xi−1/

√
n)2 (4.38)

3. QV15:

f1(x) =
1
n

n

∑
i=1

(
x2

i − 10 cos(2πxi) + 10
)

f2(x) =
1
n

n

∑
i=1

(
(xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10

)
.

(4.39)

5The functions are made continuously differentiable by removing the 1/4 roots.

4.4 Numerical results 67

in which the || · ||0 function represents the third objective function.

Single point comparison

As in the previous case, we begin our analysis with the “single point” scenario, as
explained in section 4.4. The results are reported in Table 4.3.

MOSO-Wins DMS-Wins
BK1 22 0
MOP2 27 0
QV1 20 0

Table 4.3: Single point comparison for the 3 objectives problems.

As in the previous case, MOSO outperforms DMS in each problem.

Pareto front comparison

We now report the results in terms of Pareto front approximations obtained on the
3 objectives datasets6. First, we report the results obtained by MOSO and DMSwith the
singleton initialization in Table 4.4. In general, MOSO works reasonably well when
compared to DMS, in terms of Purity and Spread ∆. The Spread Γ metric, instead,
sees DMS as the clear winner.

The results obtained with the “list” initialization are reported in Figure 4.2. In
particular, the results are obtained by executing the algorithms on the 3 problems
with five different list initializations, as explained in section 4.4.

6The NOMAD algorithm is not reported since the available implementation does not support
problems with more than 2 objectives.

Purity
Prob/Alg MOSO DMS

BK1 1 0.91
MOP2 0.81 0.88
QV1 1 0.95

Spread Γ
Prob/Alg MOSO DMS

BK1 25 1.25
MOP2 2 1.26
QV1 26 1

Spread ∆
Prob/Alg MOSO DMS

BK1 1.25 1.99
MOP2 1.26 1.96
QV1 2 1.96

Table 4.4: Purity and Spread tables for the BK1, MOP2 and QV1 problems starting
with a singleton.

68 Multiobjective sparse optimization

Figure 4.2: Performance profiles computed overall the 15 instances of 3 objective
problems starting from a random list of points.

The numerical results show the effectiveness of the proposed algorithm also on
3-objective optimization problems in terms of the Purity and the Spread Γ metrics as
in the portfolio case, while with respect the Spread ∆ it is outperformed by NSGA-II

but it is comparable with the other three solvers.

4.5 Conclusions
In this chapter, we have proposed a smooth formulation for constrained sparse mul-
tiobjective optimization problems on a compact convex set, by replacing the original
discontinuous `0-norm objective with concave approximation functions. A series
of equivalence results between the smooth reformulation and the original problem
were stated.

We have also proposed an algorithm for solving sparse multiobjective optimiza-
tion problems. The proposed approach computes an approximation of the true
Pareto front exploiting first order information (multiobjective steepest descent al-
gorithm) in order to improve the set of non dominated solutions.

Wehave compared ourmethod against a state-of-the-art algorithm, namelyDMS,
on a set of sparse multiobjective optimization problems. The obtained numerical
results show the effectiveness of the proposed algorithm both in computing a sin-
gle Pareto solution and in computing an approximation of the entire Pareto front.
For what concerns the Pareto front approximation, a further comparison with three
other algorithms for multiobjective optimization, namely NSGA-II, MOFEPSO and
NOMAD, confirmed the effectiveness of the proposed approach.

Bibliography

Anagnostopoulos, K. and Mamanis, G. (2010). A portfolio optimization model
with three objectives and discrete variables. Computers & Operations Research,
37(7):1285–1297.

Bai, Y., Liang, R., and Yang, Z. (2016). Splitting augmented lagrangian method
for optimization problems with a cardinality constraint and semicontinuous vari-
ables. Optimization Methods and Software, 31(5):1089–1109.

Beck, A. and Eldar, Y. (2013). Sparsity constrained nonlinear optimization: Optimal-
ity conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509.

Berge, C. (1963). Topological Spaces: Including a Treatment of Multi-valued Functions,
Vector Spaces and Convexity. Macmillan.

Bertsimas, D., King, A., and Mazumder, R. (2016). Best subset selection via a mod-
ern optimization lens. The Annals of Statistics, 44(2):813–852.

Bertsimas, D. and Shioda, R. (2009). Algorithm for cardinality-constrained
quadratic optimization. Computational Optimization and Applications, 43(1):1–22.

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic
programming problems. Mathematical Programming, 74(2):121–140.

Blumensath, T. and Davies, M. E. (2008). Iterative thresholding for sparse approxi-
mations. Journal of Fourier Analysis and Applications, 14(5):629–654.

Boudt, K. and Wan, C. (2019). The effect of velocity sparsity on the performance of
cardinality constrained particle swarm optimization. Optimization Letters.

Brito, R. P. and Vicente, L. N. (2014). Efficient cardinality/mean-variance portfolios.
In SystemModeling and Optimization, Springer series IFIP Advances in Information
and Communication Technology, pages 52–73. Springer, Berlin, Heidelberg.

Burdakov, O., Kanzow, C., and Schwartz, A. (2016). Mathematical Programs with
Cardinality Constraints: Reformulation by Complementarity-Type Conditions
and a Regularization Method. SIAM Journal on Optimization, 26(1):397–425.

69

70 BIBLIOGRAPHY

Carreira-Perpinan, M. A. and Idelbayev, Y. (2018). "learning-compression" algo-
rithms for neural net pruning. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8532–8541.

Cocchi, G., Liuzzi, G., Papini, A., and Sciandrone, M. (2018). An implicit filter-
ing algorithm for derivative-freemultiobjective optimizationwith box constraints.
Computational Optimization and Applications, 69(2):267–296.

Custódio, A. L., Madeira, J. F. A., Vaz, A. I. F., andVicente, L. N. (2011). Directmulti-
search for multiobjective optimization. SIAM Journal on Optimization, 21(3):1109–
1140.

Deb, K., Pratap, A., Agarwal, S., andMeyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

Deng, G.-F., Lin, W.-T., and Lo, C.-C. (2012). Markowitz-based portfolio selection
with cardinality constraints using improved particle swarm optimization. Expert
Systems with Applications, 39(4):4558–4566.

Di Gangi, L., Lapucci, M., Schoen, F., and Sortino, A. (2019). An efficient optimiza-
tion approach for best subset selection in linear regression, with application to
model selection and fitting in autoregressive time-series. Computational Optimiza-
tion and Applications.

Di Lorenzo, D., Liuzzi, G., Rinaldi, F., Schoen, F., and Sciandrone, M. (2012). A
concave optimization-based approach for sparse portfolio selection. Optimization
Methods and Software, 27(6):983–1000.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with per-
formance profiles. Mathematical Programming, 91(2):201–213.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.
The Annals of Statistics, 32(2):407–499.

Eldar, Y. C. and Kutyniok, G. (2012). Compressed sensing: theory and applications.
Cambridge university press.

Fasano, G., Liuzzi, G., Lucidi, S., and Rinaldi, F. (2014). A linesearch-based
derivative-free approach for nonsmooth constrained optimization. SIAM Journal
on Optimization, 24(3):959–992.

Fliege, J. and Svaiter, B. (2000). Steepest descent methods for multicriteria optimiza-
tion. Mathematical Methods of Operations Research, 51(3):479–494.

BIBLIOGRAPHY 71

Fliege, J. andVaz, A. (2016). AMethod for ConstrainedMultiobjectiveOptimization
Based on SQP Techniques. SIAM Journal on Optimization, 26(4):2091–2119.

Fukuda, E. H. and Drummond, L. M. G. (2014). A survey on multiobjective descent
methods. Pesquisa Operacional, 34(3):585–620.

John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the subset
selection problem. InMachine Learning Proceedings 1994, pages 121–129. Elsevier.

Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear optimization with the
MADS algorithm. ACM Transactions on Mathematical Software, 37(4):1–15.

Liuzzi, G., Lucidi, S., and Rinaldi, F. (2016). A derivative-free approach to con-
strained multiobjective nonsmooth optimization. SIAM Journal on Optimization,
26(4):2744–2774.

Lu, Z. and Zhang, Y. (2013). Sparse Approximation via Penalty Decomposition
Methods. SIAM Journal on Optimization, 23(4):2448–2478.

Lucidi, S. and Piccialli, V. (2004). A derivative-based algorithm for a particular class
ofmixed variable optimization problems. OptimizationMethods and Software, 19(3-
4):371–387.

Lucidi, S., Piccialli, V., and Sciandrone, M. (2005). An Algorithm Model for Mixed
Variable Programming. SIAM Journal on Optimization, 15(4):1057–1084.

Lucidi, S. and Sciandrone, M. (2002). A derivative-free algorithm for bound con-
strained optimization. Computational Optimization and Applications, 21(2):119–142.

Mangasarian, O. L. (1996). Machine Learning via Polyhedral Concave Minimization,
pages 175–188. Physica-Verlag HD, Heidelberg".

MATLAB Optimization Toolbox (2018). MATLAB R2018b Global Optimization
Toolbox v4.0. The MathWorks, Natick, MA, USA.

Miller, A. (2002). Subset Selection in Regression. Chapman &Hall/CRCMonographs
on Statistics & Applied Probability. CRC Press.

Mutunge, P. and Haugland, D. (2018). Minimizing the tracking error of cardinality
constrained portfolios. Computers & Operations Research, 90:33–41.

Natarajan, B. K. (1995). Sparse Approximate Solutions to Linear Systems. SIAM
Journal on Computing, 24(2):227–234.

Nikolova, M. (2016). Relationship between the optimal solutions of least squares
regularizedwith `0-normand constrained by k-sparsity.Applied andComputational
Harmonic Analysis, 41(1):237–265.

72 BIBLIOGRAPHY

Rinaldi, F., Schoen, F., and Sciandrone, M. (2010). Concave programming for mini-
mizing the zero-norm over polyhedral sets. Computational Optimization and Appli-
cations, 46(3):467–486.

Sinan Hasanoglu, M. and Dolen, M. (2018). Multi-objective feasibility enhanced
particle swarm optimization. Engineering Optimization, 50(12):2013–2037.

Soubies, E., Blanc-Féraud, L., and Aubert, G. (2017). A Unified View of Ex-
act Continuous Penalties for `2-`0 Minimization. SIAM Journal on Optimization,
27(3):2034–2060.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1):267–288.

Xu, Z., Chang, X., F., X., and Zhang, H. (2012). l1/2 regularization: A thresholding
representation theory and a fast solver. IEEE Transactions on Neural Networks and
Learning Systems, 23(7):1013–1027.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elas-
tic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320.

Appendix A

Publications

Journal papers
1. F. Ceccarelli, M. Sciandrone, C. Perricone, G. Galvan, E. Cipriano, A. Galligari,

T. Levato, T. Colasanti, L. Massaro, F. Natalucci, F. R. Spinelli, C. Alessandri,
G. Valesini, F. Conti, “Biomarkers of erosive arthritis in systemic lupus erythe-
matosus: Application of machine learning models”, PLOS ONE, volume:13,
pages:1–12, 2018. Candidate’s contributions: participated in designing the
application, in the implementation of the algorithm and in carrying out nu-
merical experiments.

2. G. Galvan, M. Lapucci, T. Levato, M. Sciandrone, “AnAlternating Augmented
Lagrangianmethod for constrainednonconvex optimization”,OptimizationMeth-
ods and Software, to appear, pages:1–19, 2019. Candidate’s contributions: par-
ticipated in the theoretical analysis, in the implementation of the algorithm
and in carrying out numerical experiments.

3. G. Cocchi, T. Levato, G. Liuzzi, M. Sciandrone, “A concave optimization-based
approach for sparse multiobjective programming”, Optimization letters, to ap-
pear, pages:1–22, 2019. Candidate’s contributions: participated in the theo-
retical analysis and in carrying out numerical experiments.

Papers under review
• L. Galli, T. Levato, F. Schoen, L. Tigli, “Prescriptive Analytics for Inventory

Management in Health Care”, Journal of the Operational Research Society. Can-
didate’s contributions: participated in the literature review, in designing the
algorithmic framework and in carrying out numerical experiments.

73

74 Publications

• M. Lapucci, T. Levato, M. Sciandrone, “A Class of Convergent Inexact Penalty
DecompositionMethods for Cardinality Constrained Problems”, Journal of Op-
timization Theory and Applications. Candidate’s contributions: participated in
the theoretical analysis.

Other
• T. Levato, F. Rinaldi, M. Sciandrone, “A Novel Method for Cardinality Con-

strained Optimization”, to be submitted. Candidate’s contributions: partici-
pated in the theoretical analysis, implemented the algorithm and carried out
numerical experiments.

	Contents
	Introduction
	A mixed-integer algorithm for nonconvex problems with cardinality constraint
	Preliminaries
	The Mixed-Integer Approach
	Discrete neighborhoods
	Algorithmic framework
	Convergence analysis
	Numerical results
	Conclusions

	A penalty decomposition approach for nonconvex cardinality constrained optimization
	Preliminaries
	Inexact Penalty Decomposition approach
	A Derivative-Free extension
	Conclusions

	A concave optimization-based approach for sparse multiobjective programming
	Preliminaries
	Concave approximations
	The algorithm
	Numerical results
	Conclusions

	Bibliography
	Publications

