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Introduction

My PhD thesis is organized in three main chapters which are the realization of three

main works. The first work reported in Chapter 1 is a joint work with my tutor Alessan-

dra Mattei, associate professor in the Department of Statistics, Computer Science,

Applications “G. Parenti” (DiSIA) of Florence, where I started my PhD in 2016. We

titled our work “Assessing causal effects of extra compulsory learning on college students’

academic performances”. The second work reported in Chapter 2 is a joint work with

Alessandra Mattei and the associate professor in DiSIA Michela Baccini. We titled

our work “The role of prior knowledge and numerical information in communicating

epidemiological results to the population. A Bayesian Principal Stratification approach”.

Finally, the third work, reported in Chapter 3, is a joint work with Corwin Zigler,

associate professor in the Department of Statistics and Data Sciences (College of Natural

Sciences) and in the Department of Women’s Health (Dell Medical School) of Austin, and

with Joseph Koopmeiners, associate professor and interim division head in biostatistics in

School of Public Health in Minnesota. We titled this work “Stratification via Propensity

Score and Bayesian Additive Regression Trees approaches to estimate PATT from RCT”.

In these three works we formulate causal research questions rather than association

research question. Standard statistical analyses aim to assess the associations between

variables, conducting inference to estimate parameters which govern the joint distribu-

tions of the variables involved. The main goal of standard statistical analyses is to learn

from informations of the past in order to better predict the future according with new

informations provided. The assumption behind the standard statistical analyses is that

the experimental conditions do not change between past and future.

Causal analyses work under the assumption that experimental conditions may change

because of several factors, e.g. changes due to the treatments or external interventions.

The term “treatment” is referred to any action applied to a unit, e.g. physical object,

individual person. A unit changes during the time, therefore, from a causal point of view

one unit in a specific time is different from the same in an other time. Thus, a given

unit is different by itself after the application of a treatment. Let apply a treatment to a

unit and let observe the effect of this treatment on the outcome for that unit. Since that

unit after the application of the treatment is not the same of those one it was before the

application, we are not able to observe what would have been the outcome if an other

type of treatment had been applied.

What the effect of a treatment on a given unit is rather than the effect of an other

vii
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treatment on the same unit, defines a causal research question.

Specifically, given a treatment X the potential outcome for that treatment of a given

unit is the outcome we would observe if treatment X would be applied to that unit.

Given two different treatments X and Y the comparison between the related potential

outcomes of a given unit is defined as causal effect.

Unfortunately, for every unit we almost observe one potential outcome, since that at a

fixed time we can apply only one treatment and after the application the unit is not the

same of those one before the application.

Thus, we cannot learn the value of causal effect from just a single realized potential

outcome.

If we want to estimate the causal effect we need to compare observed outcomes, that is

observed realizations of potential outcomes considering multiple units.

Involving more units requires also to make assumptions related to the assignment

mechanism of the several treatments involved. One of the aim of these assumptions is

to guarantee the absence of manipulation of the assignment of the treatment.

The randomization ensures that the assignment of the treatment is independent of the

potential outcomes as well as independent of other variables. Therefore, the missing

potential outcomes are missing at random. Thus, comparisons between realizations of

potential outcomes under a given treatment and those under an other treatment produce

unbiased estimate of the causal effect of interest.

In the three works reported in my PhD thesis, we address the causal research questions

within the potential outcome framework highlighting the key role of the randomization.

Specifically, for the first work, we adopt the probabilistic formulation of the sharp-

Regression Discontinuity Designs, introduced by Li et al. (2015), to assess the causal

effect of the extra compulsory learning on college students’ academic performances

dealing with multivariate outcome.

In the second work randomization is given by design. For these two works we also apply

the principal stratification approach to conduct causal inference. Principal stratification

approach consists in dividing units in latent strata defined by the vector of the all possible

realizations of potential outcomes of a fixed post treatment variable, or more than one

post treatment variable. The basic idea behind principal stratification approach is that

comparisons of potential outcomes within each stratum are always causal effects. In the

two works we appeal to principal stratification for different reasons. In the first work, we

use the principal stratification approach in order to deal with the problem of truncation

by “death”. In the second work, we appeal to the principal stratification approach in

order to investigate the difference of the treatments’ effects taking into account the

presence of an intermediate variable which may be affected by the treatments itself.

In the third work we move the focus from the randomization of the assignment mecha-

nism of treatment versus the randomization of the sample selection mechanism, dealing

with the problem of the external validity of Randomized controlled trial results.

Briefly, below it is reported an abstract of each work.
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Assessing causal effects of extra compulsory learning on college students’

academic performances

In this work we investigate about the role of the entry test in an Italian University.

In Italian universities candidates freshmen must take an entrance exam. Candidates who

obtain a test score less than or equal to a prefixed threshold may enrol in the University

but must comply with additional educational requirements, named OFA (Italian acronym

for Obblighi Formativi Aggiuntivi). The OFA assignment rule appeals to a (sharp)

Regression Discontinuity (RD) design with the entrance exam score acting as forcing

variable. In this work we aim at assessing causal effects of the OFA status using data

from a School of Engineering of a specific Italian State University. For sub-populations

of units for which our RD design can be described as a local randomized experiment, we

draw inference on the causal effects of OFA on students’ academic performances measured

using two variables: the number of University credits awarded and the corresponding

average grade. These outcome variables suffer from the problem of truncation by death.

The truncation is due to the academic career status: after the entry test participants

may decide to not enrol or if they enrol they could not take exams. We deal with these

issues using the framework of principal stratification and adopting a Bayesian approach

to inference. Our analyses reveal weak positive OFA effect on University credits and

negligible effects on average grade for a suitable selected sub-population of students who

enrol in University and take exams.

The role of prior knowledge and numerical information in communicating

epidemiological results to the population. A Bayesian Principal Stratifica-

tion approach

In this work we contribute to the existing literature on the role of the format used

on communicating results in the field of epidemiology. We use data from a recent

randomized experiment conducted on a sample of residents in Livorno, an Italian city

classified as a high environmental risk area according to the Seveso Directive. The main

goal is to understand if people judgements about local risks for population health are

influenced by the statistical indicators used in risk communication (Baccini et al., 2019).

The enrolled people are randomized to reply to different questionnaires, which define

our binary treatment, where the same epidemiological results are expressed using two

types of risk indexes: % of excess risk (%ER) and time needed to harm (TNH). Then

the respondents are requested: 1) to classify the mortality results for three different

cancers (Sexual Gland Cancer (SGC), Tthyroid Gland Cancer (TGC) and Lung Cancer

(LC)), according to their concern: from most alarming to least alarming. 2) Express in

a scale from 0 to 10 their concern about mortality from cancer in Livorno area (YD).

We are particularly interested in investigating the difference of the treatments’ effects

with respect to the contribution, in responding to the questionnaire items, of the a priori

knowledge about environmental and health issues, which can be itself affected by the

treatment. We deal with this issue using a principal stratification approach. Formally,
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we define principal strata on a post-treatment variable denoting if people declare to

have answered basing of the communicated numbers or on other elements. In particular,

we focus on the relative effect of the two risk indexes in the stratum of people that

base their answer on numbers under both treatments, and we evaluate if the use of an

indicator rather than the other inhibits the respondent from basing her/his answer on

the numerical results. We adopt a model based Bayesian approach to inference.

Results differ among the outcomes analysed, suggesting a sensible difference between

treatments’ effects on classification SGC as most alarming, as well as for TGC and

outcome YD; on the other hand negligible effect on classification of LC.

Stratification via Propensity Score and BART approaches to estimate PATT

from RCT

In this work we contribute to the existing literature on the external validity of Ran-

domized Controlled Trials (RCTs). The aim of RCTs is to test the effectiveness of a

new treatment. The random assignment of the treatment in these types of experimental

designs ensures the absence of manipulation of the results. However, results obtained by

RCTs may not have external validity in such case, that is they are not generalizable to

a Target Population (TP). Several factors may cause the absence of generalizability of

the results from RCT, e.g. the eligibility criteria for the inclusion in the RCT provide

a sample not well representative of the TP and/or the treatment may have different

version between RCT sample and TP.

Here, we formulate estimators based on two approaches: 1)the Stratification via Propen-

sity Score (SvPS) approach, where the propensity score in this case is the probability to

be selected in the RCT sample; 2)Bayesian Additive Regression Trees (BART) approach.

We use these estimators for double aims: evaluate the external validity of RCT results

and, in case for which RCT results are generalizable, estimate the Population Average

Treatment effect on Treated (PATT) from the Sample Average Treatment Effect (SATE)

within the potential outcomes framework.

The estimators we propose provide estimates of the PATT with negligible bias. Perfor-

mance of the SvPS estimator does not differ from those one of BART estimator.

Finally, we present an analysis of Medicare simulated data where we first evaluate

the external validity of a Corevalve trial results, then we estimate the PATT effect

of the Trans-catheter Aortic Valve Replacement (TAVR) vs the Surgical Aortic Valve

Replacement (SAVR) on days until the first complication occurrence.



Chapter 1

Assessing causal effects of extra compulsory

learning on college students’ academic performances

KEYWORDS: Bayesian inference, Local randomization, Potential outcomes, Multiple

Outcomes, Principal Stratification, Regression discontinuity designs

1.1 Introduction

In Italy, students need to take an entry test before enrolling in University. The aim of

the pre-test is to give a measure of students’ aptitude in various areas such as science,

maths, and language skills. The test may provide useful information to both individuals

and institutions. It allows candidate freshmen to self-evaluate their aptitude for the

chosen college program. Schools can use the test results as a proxy of the skills of

potential freshmen for subjects of their college programs and for efficiently planning

teaching support for weaker students, who get a low score in the test. Recently, schools

in Italian Universities have introduced so-called additional learning obligations, named

OFA (Italian acronym for Obblighi Formativi Aggiuntivi): a participant with a test

score less than or equal to a prefixed threshold may enrol in the University but s/he

must comply with additional compulsory learning, by taking an extra exam.

In this work we are interested in assessing causal effects of OFA on students’ career

status and academic performances at the end of the first academic year for students who

participated in the entrance exam for enrolling in the School of Engineering of a given

Italian State University in 2011. We focus only on one school of a specific University

because different Universities use different thresholds for assigning students to OFA, and

the arguments and the structure of the entry tests are different across different types of

schools depending on the type of major 1. Students’ career status is measured by an

indicator equal to one for active students, that is, students who take and pass at least

one exam during the first academic year and zero for inactive students, who do not either

take or pass any exam. Academic performances are measured using the awarded number

of University educational credits (UCs) and the corresponding average grade, defined

1We generally refer to the School of Engineering of a given Italian State University because, for
confidentiality issues, we cannot name the specific institution.

1
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as the weighted average of grades with weights given by the UCs. In Italy, a pre-fixed

number of UCs is assigned to each university exam. One credit usually corresponds

to 25 hours of work, including both class work (lessons, exercises, labs etc), as well as

home study. For each academic year, full-time students are required to complete an

average quantity of work sets at 60 credits. Credits are obtained by passing exams, so

they are a measure of the quantity of a student’s work. The average grade is a measure

of the quality of the student’s performance. The choice of focussing on these outcome

variables is compelling. In fact, in Italy, a high percentage of students, around 20%, is

classified as inactive at the end of the first academic year. Moreover, active students

with a poor aptitude for the subjects of the chosen college program may not perform very

well, taking a low number of exams with respect to planned number of exams and/or

receiving low grades (see, e.g., the last report of the National Agency for the Evaluation

of Universities and Research Institutes, ANVUR2). Therefore, assessing causal effects of

OFA on these variables is of great interest in policy, providing evidence on whether OFA

are effective in hindering students’ inactivity and low academic performances.

The receipt of OFA depends on the test score falling below or above a predetermined

threshold. This allocation rule motivates us to adopt the regression discontinuity (RD)

design framework for evaluation. The RD design – a quasi-experimental design for causal

inference – was first introduced in psychology by Thistlethwaite and Campbell (1960)

and has became increasingly popular since the late 1990s in statistics, social science,

economics and, more recently also in epidemiology and the medical sciences. In RD

designs, the assignment to the treatment is determined, at least partly, by the realized

value of a variable, usually called the forcing or running variable, falling on either side of

a prefixed threshold. The basic idea underlying a RD analysis is that one can compare

units with very similar values for the forcing variable, but different levels of treatment,

to draw causal inference of the treatment at the threshold.

The Italian university OFA allocation rule defines a sharp RD design with the test score

acting as forcing variable. In the sharp RD designs, the original form of the design, the

treatment status is assumed to be a deterministic step function of the forcing variable.

All students who obtain a test score falling below a prefixed threshold receive OFA, and

all students who obtain a test score falling above the threshold do not receive OFA.

In the traditional approach to RD designs, the forcing variable is viewed as a pre-

treatment covariate and RD designs are usually described as quasi-experimental designs

with a non-probabilistic assignment mechanism. The literature has dealt with the lack

of overlap invoking smoothness assumptions for the relationship between the outcome

and the forcing variable, such as continuity of conditional regression functions (or the

conditional distribution functions) of the outcomes given the forcing variable. Under

these smoothness assumptions, which imply randomization at the single threshold value

(Battistin and Rettore, 2008), we can identify causal effects at the threshold, but inference

needs to rely on some kind of extrapolation: observations near the known threshold are

2The full report is available in https://www.anvur.it/wp-content/uploads/2019/01/ANVUR-
Completo-con-Link.pdf



3

used to derive estimates of treatment effects at the threshold, using global polynomial

series estimators or local-polynomial (non-)parametric regression methods and their

asymptotic proprieties. See, e.g., Lee (2008); Lee and Lemieux (2010); Imbens and

Lemieux (2008); Athey and Imbens (2016) and the edited volume by Cattaneo and

Escanciano (2016) for literature reviews on the classical approach to RD design. In real

applications, large-sample approximations might be unreliable, especially if the sample

size around the threshold is small, and exact inference might be preferable.

Building on the original idea by Thistlethwaite and Campbell (1960), RD designs have

been often described as designs that lead to locally randomized experiments around the

threshold (e.g., Lee, 2008; Lee and Lemieux, 2010). Expanding on this interpretation,

a recent strand of the literature (e.g., Cattaneo et al., 2015; Li et al., 2015; Sales and

Hansen, 2015; Mattei and Mealli, 2016) has introduced a formal and well-structured

definition of the conditions under which RD designs can be formally described as local

randomized experiments. In this work we embrace this new perspective, adopting the

approach described in Li et al. (2015) and Mattei and Mealli (2016).

This approach embeds RD designs in a framework that is fully consistent with the

potential outcome approach to causal inference (e.g., Rubin, 1974, 1978), providing

a formal definition of the hypothetical experiment underlying RD designs, based on

a formal description of the assignment mechanism, as a unit-exchangeable stochastic

function of covariates and potential outcomes.

A distinguishing feature of this approach is to view the forcing variable as a random

variable with a probability distribution, rather than as a pre-treatment variable, and to

assume that there exist at least a sub-population of units around the threshold where

a local overlap assumption holds, and where the forcing variable, and therefore the

treatment status, can be seen as randomly assigned. Under this framework focus is on

local causal effects, that is, causal effects for sub-populations of units where the local

overlap and local randomization assumptions hold.

In our study, this approach leads to focus on local causal effects of OFA on students’

academic career and academic performances at the end of the first year for sub-populations

of test participants with realized values of the test score falling in a neighbourhood

around the threshold.

In this framework our work makes interesting methodological contributions. Causal

inference on students’ academic career and academic performances, measured by the

awarded number of UCs and the average grade is, however, not trivial due to post-

assignment complications. We set up an approach for defining and drawing inference on

causal effects of OFA on multiple outcomes, for which potential outcomes are defined

only on specific sub-groups of units. First, some students may decide to not enrol in the

School of Engineering (preferring to not enrol at all, enrol in another school, or enrol in

the School of Engineering of another University). Academic career and performances in

the School of Engineering of interest for students who do not enrol are not defined: they

are truncated by death/ not enrolment (Zhang and Rubin, 2003; Rubin, 2006). Second,

some students who enrol in the School of Engineering may be inactive. For this type of
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students the average grade is again not defined: it is truncated by death/inactivity. We

focus on describing and addressing these complications in our study using the framework

of principal stratification (Frangakis and Rubin, 2002). Specifically we first cross-classify

test participants with respect to the joint potential values of the enrolment status and

of the academic career status under each OFA status. Principal stratification makes it

clear that (i) causal effects on students’ academic career and the awarded number of

UCs are well defined only for test participants who would always enrol in the School of

Engineering we are focusing on irrespective of whether they receive or do not receive

OFA (always-enrolled students); (ii) causal effects on average grade are well defined only

for always-enrolled test participants who would always take and pass exams irrespective

of whether they receive or do not receive OFA (always-active students). We use a

model-based Bayesian approach for inference which is particularly attractive in RD

settings where the analysis may rely on a small sample size, because it not relies on

asymptotic approximations. From a Bayesian perspective, all inferences are based on the

posterior distributions of causal estimands, which are functions of potential outcomes.

Moreover the Bayesian approach is particularly useful for accounting for uncertainties

and for pooling information from the data in complex settings like RD designs, especially

in the presence of post-assignment complications. We specify a joint model for the

awarded number of UCs and the average grade, which allows us to naturally account for

the correlation between the two outcomes.

1.2 The OFA Data Set

We use data coming from the cohort of students who took the entry test for the

Engineering area in 2011. The data were collected thanks to the collaboration between

one School of Engineering and CISIA3.

In 2011 the entrance exam for the schools of Engineering consisted of 80 items subdivided

in 4 areas: Math-level 1 (20 items), Science (20 items), Logic (15 items), Reading

Comprehension (15 items), and Math-level 2 (10 items). The test score is calculated

as follows: 1 point for each right answer, −0.25 points for each wrong answer, and 0

points for each no-answer, so the test score takes on values in the interval [−20, 80].

The test score acts as forcing variable in our study. Formally, consider a sample of N

subjects who participated in the entrance exam in 2011. Let Si denote the test score

for participant i. The treatment status, that is, the OFA status, denoted by Zi, is a

deterministic function of Si: Zi = I{Si ≥ s0}, where I{·} is the indicator function and

s0 = 16 is the prefixed threshold by the School of Engineering considered in the study.

Thus, if a participant has a value of the test score, Si, falling above the threshold s0 = 16,

Zi = 1 and s/he does not receives OFA, and Zi = 0 and s/he does receive OFA otherwise.

Given the support of the test score variable, setting the threshold at s0 = 16 is equivalent

to require that a test participant correctly answers to at least 16% of the test items to

3CISIA is a para-university company born in 2005. CISIA organizes and supervises the entrance
exam for various schools of Engineering and, recently, also for other schools of Italian State Universities.
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enrol without OFA.

Four variables were measured after each participant i was assigned OFA status, Zi: E
obs
i ,

the enrolment status, equal to 1 for participants who enrol in the school of Engineering,

and 0 otherwise; Cobs
i , the career status, equal to 1 for active students, that is, students

who pass at least one exam during the first academic year, and 0 for inactive students,

that is, students who pass no exam during the first academic year; Y obs
i,UC , the number of

UCs awarded at the end of the first academic year; and Yi,G, the average grade at the end

of the first academic year. Let Yobs
i = (Y obs

i,UC , Y
obs
i,G ). It is worth noting that the career

status, Cobs
i , and the two variables measuring students’ academic performances, Y obs

i,UC and

Y obs
i,G , are not defined for test participants who do not enrol: they are truncated by ‘death.’

Because ‘death’ is due to the decision of not enrolling in the school of Engineering, we

refer to those variables as truncated by not enrolment for test participants who decide

to not enrol. We set Cobs
i = Y obs

i,UC = Y obs
i,G = ∗ if participant i does not enrol in the

school of Engineering (Eobs
i = 0), where ∗ is a non-real value. Moreover students who

enrol (Eobs
i = 1) but are inactive (Cobs

i = 0) award zero UCs (Y obs
i,UC = 0) and thus, their

average grade is not defined, that is, it is truncated by ‘death.’ We refer to average

grade for inactive students as truncated by inactivity, because ‘death’ is due to inactivity.

Again we set Y obs
i,G = ∗ for inactive students.

For each test participant, i, we also observed a vector of covariates, Xi: gender, high

school grade, high school type (categorical variable with 4 levels) high school year (a

binary variable that indicates if a participant finished the high school the year before

the entry test), an indicator for irregular high school career, and an indicator for living

far-away from the campus.

Our focus is on assessing causal effects of the OFA status on academic career, and number

of UCs awarded at the end of the first year after the enrolment and corresponding average

grade properly accounting for the irregular OFA assignment rule, which defines a (sharp)

RD design, and the problem of truncation by ‘death’.

1.3 Overlap Assumption and Potential Outcomes

Following Li et al. (2015) and Mattei and Mealli (2016), we view the forcing variable,

S, as a random variable with a probability distribution, and formulate the following

assumption:

Assumption 1.1. (Local Overlap). Let U be the random sample (or population) of

units in the study. There exists a subset of units, Us0 , such that for each i ∈ Us0 ,
Pr(Si < s0) > ε and Pr(Si ≥ s0) > ε,

for some sufficiently large ε > 0.

Assumption 1.1 is essentially a local overlap assumption, implying that there exists at

least one sub-population of subjects, each of whom has a probability of having a value

of the forcing variable (test score) falling on both sides of the threshold, s0, sufficiently

faraway from both zero and one. It is worth noting that Assumption 1.1 does not require
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that the sub-population Us0 is unique; it only requires that there exists at least one

sub-population Us0 for which Assumption 1.1 holds. Assumption 1.1 is a local overlap

assumption in the sense that a subject who obtain a value of the test score falling very

faraway from the threshold does not probably belong to any sub-population Us0 and

may have a zero probability of having a value of the test score falling on the other side

of the threshold.

Under Assumption 1.1 each subject belonging to a sub-population Us0 has a non-

zero marginal probability of being assigned to either receiving or not receiving OFA:

0 < Pr(Zi = 1) < 1 for all i ∈ Us0 .
Under Assumption 1.1 focus is on local causal effects for a sub-population, Us0 , rather

than on causal effects at the threshold, which are the causal estimands typically considered

in RD designs. We frame our discussion in the potential outcome approach to causal

inference, where causal effects are defined as comparisons of potential outcomes on a

common set of units. Therefore, to formally define causal effects we need to introduce

potential outcomes for each post-treatment variable.

The test score is the assignment variable: each unit in the sub-population Us0 can be

exposed to alternative values of the test score. Therefore, in principle, potential outcomes

need to be defined as function of the forcing variable. Let s = [si]i∈Us0 be a vector of

values of the test score for units belonging to a sub-population Us0 . For each unit i ∈ Us0
let Ei(s), Ci(s), Yi(s) denote the potential outcomes for the post-treatment variables,

Ei, Ci and Yi, respectively. We restrict the set of potential outcomes by assuming a

modified Stable Unit Treatment Value Assumption (SUTVA, Rubin, 1980), specific to

RD settings (Mattei and Mealli, 2016):

Assumption 1.2. (Local RD-SUTVA). For each i ∈ Us0 , consider two treatment statuses

z
′
i = I(s′i ≤ s0) and z

′′
i = I(s

′′
i ≤ s0), with possibly s

′
i 6= s

′′
i . If z

′
i = z

′′
i , that is, if either

s
′
i ≤ s0 and s

′′
i ≤ s0, or s

′
i > s0 and s

′′
i > s0, then Ei(s

′
) = Ei(s

′′
), Ci(s

′
) = Ci(s

′′
), and

Yi(s
′
) = Yi(s

′′
).

Assumption 1.2 guarantees (1) the absence of interference between individuals, i.e., the

value of the test score (and the OFA status) of one unit do not affect outcomes of other

units; and (2) potential outcomes depend on the forcing variable solely through the

treatment indicator, z, but not directly, so that, values of the test score variable leading

to the same OFA status define the same potential outcomes.

Assumption 1.2 allows us to write Ei(s), Ci(s), and Yi(s) as Ei(zi), Ci(zi) and Yi(zi),

respectively, for each unit i ∈ Us0 , where zi = I{si ≥ s0}. Therefore under local RD-

SUTVA for each unit within Us0 there exist only two potential outcomes for each post-

treatment variable, Ei ≡ (Ei(0), Ei(1)), Ci ≡ (Ci(0), Ci(1)) and Yi ≡ (Yi(0),Yi(1)):

they are the values of each post-treatment variable if the unit had a value of the test

score falling below and above the threshold, respectively.
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1.4 Principal Stratification and Principal Causal Effects

Under local overlap and local RD-SUTVA, causal effects are defined as comparisons of

the no OFA versus OFA potential outcomes for a common set of units in Us0 . They are

local causal effects in that they are causal effects for units belonging to a sub-population

Us0 . We focus on finite population average causal effects. Let NUs0 be the number of

students in Us0 : NUs0 =
∑N

i=1 I{i ∈ Us0}.
The finite population average causal effect of being exempt from OFA versus not being

exempt from OFA on the decision to enrol is:

ACEUs0 (E) = E [Ei(1) | i ∈ Us0 ]−E [Ei(0) | i ∈ Us0 ] =
1

NUs0

∑
i∈Us0

[Ei(1)− Ei(0)] .

(1.1)

The definition of causal effects on students’ academic career and students’ academic

performances is challenging due to the problem of truncation by death, that is, by

enrolment and inactivity: for z = 0, 1, Ci(z) = ∗, and Yi,UC(z) = ∗ if Ei(z) = 0; and

Yi,G(z) = ∗ if either Ei(z) = 0 or Ei(z) = 1 and Ci(z) = 0.

1.4.1 Principal Strata

We deal with the problem of truncation by death using the principal stratification

framework (Frangakis and Rubin, 2002). A principal stratification with respect to a

post-treatment variable (which may be multivariate) defines a cross-classification of

subjects into groups, named principal strata, defined by the joint potential values of

that post-assignment variable under each of the assignments being compared.

In our study we classify participants in the entry test with respect to joint indicator for

enrolment and academic career status. Formally, the principal strata are defined by the

values of the following vector: Bi = (Ei, Ci) = (Ei(0), Ei(1), Ci(0), Ci(1)). Thus, there

are nine principal strata representing nine types of individuals:

Never-enrolled students. Students who would not enrol irrespective of the OFA

status:

NE∗∗ ≡ {i : Ei(0) = 0, Ei(1) = 0, Ci(0) = ∗, Ci(1) = ∗}

Note that the academic career is truncated by not enrolment for never-enrolled

test-participants.

OFA-compliant inactive students. Students who would enrol but would be inactive

if exempt from OFA and would not enrol if not exempt from OFA:

OC∗0 ≡ {i : Ei(0) = 0, Ei(1) = 1, Ci(0) = ∗, Ci(1) = 0}

OFA-compliant active students. Students who would enrol and would be active if
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exempt from OFA and would not enrol if not exempt from OFA:

OC∗1 ≡ {i : Ei(0) = 0, Ei(1) = 1, Ci(0) = ∗, Ci(1) = 1}

We refer to the union of OFA-compliant inactive and active students as OFA-Compliers:

OC = OC∗0 ∪OC∗1 ≡ {i : Ei(0) = 0, Ei(1) = 1}.

They are students who would enrol if exempt from OFA and would not enrol if not

exempt from OFA.

Always-active students. Students who would always enrol and would always have an

active academic career irrespective of the OFA status:

AE11 ≡ {i : Ei(0) = 1, Ei(1) = 1, Ci(0) = 1, Ci(1) = 1}

Never-active students. Students who would always enrol but would never have an

active academic career irrespective of the OFA status:

AE00 ≡ {i : Ei(0) = 1, Ei(1) = 1, Ci(0) = 0, Ci(1) = 0}

OFA-inactive students. Students who would always enrol irrespective of the OFA

status, but who would have an active academic career if exempt from OFA, and

an inactive academic career if not exempt from OFA:

AE01 ≡ {i : Ei(0) = 1, Ei(1) = 1, Ci(0) = 0, Ci(1) = 1}

OFA-active students. Students who would always enrol irrespective of the OFA status,

but who would have an inactive academic career if exempt from OFA, and an

active academic career if not exempt from OFA:

AE10 ≡ {i : Ei(0) = 1, Ei(1) = 1, Ci(0) = 1, Ci(1) = 0}

We refer to the union of always-active, never-active, OFA-inactive, and OFA-active

students as always-enrolled students :

AE = AE11 ∪ AE00 ∪ AE01 ∪ AE10 =≡ {i : Ei(0) = 1, Ei(1) = 1}.

They are students who would always enrol in the University irrespective of the OFA

status.

OFA-defiant inactive students. Students who would enrol but would have an inac-

tive academic career if not exempt from OFA and would not enrol if exempt from

OFA:

OD0∗ ≡ {i : Ei(0) = 1, Ei(1) = 0, Ci(0) = 0, Ci(1) = ∗}
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OFA-defiant active students. Students who would not enrol if exempt from OFA

and would enrol and would have an active academic career if not exempt from

OFA:

OD1∗ ≡ {i : Ei(0) = 1, Ei(1) = 0, Ci(0) = 1, Ci(1) = ∗}

We refer to the union of inactive and active defiant-enrolled students as OFA defiers :

OD = OD0∗ ∪OD1∗ =≡ {i : Ei(0) = 1, Ei(1) = 0}.

They are students who would not enrol if exempt from OFA and enrol if not exempt

from OFA.

In our study appears very plausible to rule out the existence of OFA defiers, invoking

the following monotonicity assumption:

Assumption 1.3. (Monotonicity of Enrolment) For all i ∈ Us0 , Ei(0) ≤ Ei(1).

Underlying this assumption is the notion that test participants who do not receive

OFA are unlikely to decide to not enrol whether they would have enrolled if they had

received OFA. Monotonicity would be violated if, for instance, some test participants,

who would not enrol when assigned to OFA, would decide to enrol when not assigned

to OFA, because they feel that they could benefit from OFA. We believe that it is

unlikely there are many students of this type. In fact, test participants who receive

OFA and enrol must attend an additional course and take the corresponding exam;

they can start their academic career by taking University exams according to their

engineering program, only if they successfully pass this extra exam. Nevertheless, the

assumption of monotonicity of enrolment is not testable. Therefore, we also conduct a

Bayesian sensitivity analysis with respect to the assumption of monotonicity of enrolment.

We focus on a simplified setting where focus is on assessing causal effects of OFA on

academic career, C, and investigate how the posterior distributions of the proportions of

principal strata defined by the joint potential value of the enrolment indicator under

each OFA status, Ei = (Ei(0), Ei(1)), and the posterior distribution of the causal effect

on academic career derived under monotonicity change when we relax the monotonicity

assumption. The sensitivity analysis suggests that results are robust with respect to the

monotonicity assumption. Moreover we find that the posterior probability that there are

OFA defiers is very small, less than 5% when the monotonicity assumption is relaxed

(see Appendix 1.9.3 for technical details on the sensitivity analysis w.r.t. Assumption 3

and results from it). Given the insights underlying the monotonicity assumption and the

results from the sensitivity analysis, we make Assumption 1.3 throughout our discussion.

Under Assumption 1.3, the causal effect on enrolment, ACEUs0 (E), in Equation (1.1) is
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the proportion of OFA compliers in Us0 :

ACEUs0 (E) = Pr (Bi = OD∗0 | i ∈ Us0) + Pr (Bi = OD∗1 | i ∈ Us0)

=
1

NUs0

∑
i∈Us0

I{Bi = OC∗0}+
1

NUs0

∑
i∈Us0

I{Bi = OC∗1}.

1.4.2 Principal Causal Effects

Because principal strata are not affected by assignment, we can define causal effects

conditional on the principal strata, known as principal causal effects.

Principal stratification with respect to the bivariate variable (Ei, Ci) makes it clear that

a well-defined real value for the average causal effect of OFA on students’ academic

career exists only for the subgroup of always enrolled-students belonging to Us0 , because

for the other types of students either Ci(0) = ∗ or Ci(1) = ∗. We refer to it as the

survivor average causal effect (SACE) on students’ academic career:

SACEUs0 (C) =

∑
i∈Us0

[Ci(1)− Ci(0)] I{Bi ∈ {AE11, AE00, AE01, AE10}}∑
i∈Us0

I{Bi ∈ {AE11, AE00, AE01, AE10}}

=

∑
i∈Us0

I{Bi ∈ AE01} −
∑

i∈Us0
I{Bi ∈ AE10}∑

i∈Us0
I{Bi ∈ {AE11, AE00, AE01, AE10}}

(1.2)

where the second equality follows because for i ∈ Us0 , Ci(1)−Ci(0) = 0 ifBi = AE11, AE00;

Ci(1)− Ci(0) = 1− 0 if Bi = AE01; and Ci(1)− Ci(0) = 0− 1 if Bi = AE10.

Similarly, a well-defined real value for the average causal effect of OFA on University

credits, Yi,UC , exists only for the subgroup of always-enrolled students belonging to Us0 .
We refer to it as survivor average causal effect on University credits:

SACEUs0 (UC) =

∑
i∈Us0

[Yi,UC(1)− Yi,UC(0)] I{Bi ∈ {AE11, AE00, AE01, AE10}}∑
i∈Us0

I{Bi ∈ {AE11, AE00, AE01, AE10}}
.

(1.3)

The survivor average causal effect on University credits, SACEUs0 (UC), can be written

as weighted average of survivor average causal effects on University credits across the

four types of always-enrolled students (Never-active, OFA-inactive, OFA-active and

Always-active students):

SACEUs0 (UC) = SACEUs0 (UC | AE00) · πAE00|AE + SACEUs0 (UC | AE01) · πAE01|AE +

SACEUs0 (UC | AE10) · πAE10|AE + SACEUs0 (UC | AE11) · πAE11|AE,

where

πAEc|AE =

∑
i∈Us0

I{Bi = AEc}∑
i∈Us0

I{Bi ∈ {AE11, AE00, AE01, AE10}}

is the proportion of students of type AEc among always-enrolled students, for c ∈ {0, 1}2.
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It is worth noting that:

SACEUs0 (UC | AE00) = 0

SACEUs0 (UC | AE10) = 0−E[Yi,UC(0) | i ∈ Us0 ]
SACEUs0 (UC | AE01) = E[Yi,UC(1) | i ∈ Us0 ]− 0

SACEUs0 (UC | AE11) = E[Yi,UC(1) | i ∈ Us0 ]−E[Yi,UC(0) | i ∈ Us0 ]

Thus, we are particularly interested in SACEUs0 (UC | AE11), the average causal effect

of OFA on UCs for always-active students for which both Yi,UC(0) > 0 and Yi,UC(1) > 0.

Finally we are interested in the causal effect of OFA on the average grade at the end of

the first academic year. A well-defined real value for this causal effect exists only for

always-active students because both Yi,G(1) and Yi,G(0) are defined on R only for this

group. Formally, we focus on the survivor average causal effect of OFA on average grade

for always-active students:

SACEUs0 (G) =

∑
i∈Us0

[Yi,G(1)− Yi,G(0)] I{Bi = AE11}∑
i∈Us0

I{Bi = AE11}
. (1.4)

1.5 Local Randomization

In order to draw inference on the causal effects of interest we need to introduce some

assumption on the treatment assignment mechanism. Following Li et al. (2015) we

formalize the concept of a RD design as local randomized experiment invoking the

following assumption:

Assumption 1.4. (Local Randomization). For each i ∈ Us0 ,

Pr (Si | Ei(0), Ei(1), Ci(0), Ci(1),Yi(0),Yi(1),Xi) = Pr (Si) .

Assumption 1.4 implies that for each unit within the sub-population, i ∈ Us0 , a Bernoulli

trial has been conducted, with individual assignment probabilities depending only on the

distribution of the forcing variable, not on either the potential outcomes or pre-treatment

variables: Pr (Si ≥ s0 | Ei(0), Ei(1), Ci(0), Ci(1),Yi(0),Yi(1),Xi) = Pr (Si ≥ s0) =

= Pr (Zi = 1). In other words, Assumption 1.4 implies that the treatment is randomly

assigned in some small neighbourhood, Us0 , of s0.

In our study the local randomization assumption appears to be reasonable. It is plausible

to believe that for students with a value of the test score falling in a small neighbourhood

of the threshold, the probability of falling on both sides of the threshold depends neither

on the potential outcomes nor on pre-treatment variable. Moreover we can reasonably

consider extremely difficult, if not impossible, for students to manipulate the value of the

test score in order to end up on the right side of the threshold. Indeed participants have

no information on the questions included in the test until the day of the test, the test is

anonymous and related to participant only through a bar code, and the correction is
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carried out by computers. Local RD-SUTVA (Assumption 1.2) and local randomization

(Assumption 1.4) are reasonable assumptions for units belonging to Us0 , but may be

debatable for subjects with a value of the test score very far-away from the threshold.

For subjects whose score is either very low or very high, (1) RD-SUTVA may fail to

hold because potential outcomes may directly depend on the value of the test score;

and (2) local randomization may fail to hold because the test score may depend on

some unobserved variable, such as motivation and ability, which may be related to the

subsequent decision of enrolling and to the subsequent academic career and performances

irrespective of the value of the test score.

1.6 Inference on Local Principal Causal Effects for a Sub-population Us0

1.6.1 Selection of a Sub-population Us0

Assumptions 1.1, 1.2 and 1.4 imply that there exists at least one sub-population Us0
where the treatment (being exempt from OFA versus not being exempt from OFA) has

been assigned according to a classical randomized experiment. Therefore if at least

a true sub-population Us0 were known, we could draw inference on causal effects for

the sub-population Us0 using standard methods for analysing randomized experiments,

possibly suffering from post-treatment complications such as truncation by death (e.g.

Zhang and Rubin, 2003; Rubin, 2006; Imbens and Rubin, 2015; Mattei and Mealli, 2007).

Unfortunately, in practice, the true sub-populations Us0 are usually unknown, and we

need to select at least one sub-population Us0 .
In principle, a sub-population may come in any shape or form. Following Li et al. (2015),

we focus on symmetric intervals about s0, invoking the following assumption:

Assumption 1.5. (Shape of the Overlap Set). There exists h > 0 such that for each

ε > 0, Pr(s0 − h ≤ Si ≤ s0 + h) > 1− ε for each i ∈ Us0 .

Under Assumption 1.5, selecting suitable sub-populations Us0 for causal inference means

selecting values for the bandwidth, h, such that Assumptions 1.1-1.4 hold for the

sub-group of units with values of the test score Si in [s0 − h, s0 + h]. We adopt the

approach proposed by Li et al. (2015), which relies on the local randomization assumption

(Assumption 1.4).

Assumption 1.4 implies that within a sub-population Us0 all observed and unobserved

covariates are well balanced between the two sub-samples defined by the OFA status,

that is, between participants who are assigned to OFA and participants who are not

assigned to OFA have similar characteristics. Therefore, any test of the null hypothesis

of no effect of assignment on covariates for units in Us0 should fail to reject the null. A

rejection can be interpreted as evidence against the local randomization assumption. If

we are not able to reject the null, we can consider Us0 as a suitable sup-population for

causal inference under the assumption that all relevant variables known (or believed) to

be related to both treatment assignment and the potential outcomes are observed.
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Assessing balance in the observed covariates raises problems of multiple comparisons.

We account for multiplicities using a Bayesian hierarchical mixed model, where we use a

mixture for the prior distribution of the eligibility parameters by assigning a point mass

on equality of the means of the covariates between subjects who are exempt from OFA

and subjects who are not (Berry and Berry, 2004; Li et al., 2015; Mattei and Mealli,

2016). See Appendix 1.9 for technical details on model assumptions and specification of

the prior distributions and for computational details.

This Bayesian procedure provides a measure of the risk (posterior probability) that

a chosen interval around s0, defines a sub-population of units that does not exactly

matches any true Us0 , including units for which Assumptions 1.1-1.4 do not hold.

We apply this Bayesian procedure for assessing the balance of the covariates between the

two groups defined by the OFA status for various sub-populations defined by different

bandwidths, h. Table 1.1 shows the posterior probabilities that the covariates have

the same distributions between the group of test participants who are exempt from

OFA and the group of test participants who are not exempt from OFA, for bandwidths

h = 2.0, 2.5, 3.0, 3.5, 4.0. As we can these probabilities are greater than 30% for h = 2.0

and h = 2.5. For larger bandwidths there is some evidence that the two groups of

test participants defined by the OFA status differs in some background characteristics,

making the local randomization assumption untenable. Specifically we find that the

categorical variable “high school type” is not well balanced between the two groups

of test participants, with a very low posterior probability for the category Science for

values of h grater than 2.5. These results lead us to focus on the sub-population of

test participants with a value of the test score falling in a neighbourhood of h = 2.5

around the threshold s0 = 16: Us0 = {i ∈ U : 13.5 ≤ Si ≤ 18.5}. Because the score

ranges between -20 and 80, scores in the interval [13.5; 18.5] correspond to percentages

of success ranging between 13.5% and 18.5%.

Unfortunately there exists a non zero probability that the chosen interval around the

threshold defines a sub-population that includes units who do not belong to any true

sub-population, Us0 . In order to account for the presence of these units, the analyses are

conducted conditioning on both the value of the forcing variable (the test score) and

covariates.

1.6.2 Parametric Models

For the units within the selected sub-population Us0 , we conduct causal inference using

a model-based Bayesian principal stratification analysis under Assumptions 1.1-1.4. The

structure for Bayesian principal stratification inference was first developed in Imbens

and Rubin (1997) for the special case of non-compliance. Building on Imbens and Rubin

(1997) and Li et al. (2015), we assume parametric models for the conditional distribution

of the principal stratum membership defined by Bi = (Ei, Ci) given the test score and

pre-treatment variables, and for the conditional distribution of potential outcomes for

students’ academic performances, Yi(0) and Yi(1), given the test score, pre-treatment
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variables and principal stratum membership. All distributions are parametrized so that

conditional on a general parameter, denoted by θ, the model has an independent and

identical distribution (i.i.d.) structure.

Formally, we use the following linear transformation of the forcing variable: S̃i = (Si−s0)/10.

We factorize the conditional distribution of Bi = (Ei, Ci) given the test score and the

covariates as

Pr
(
Bi = b | S̃i,Xi;θ

)
= Pr

(
Ei = e | S̃i,Xi;θ

)
· Pr

(
Ci = c | Ei = e, S̃i,Xi;θ

)
for b ∈ {NE∗∗, AE00, AE11, AE01, AE10, OC∗0, OC∗1}; e ∈ {NE,AE,OC}; and c ∈ {(∗, ∗),
(∗, 0), (∗, 1), (0, 0), (1, 1), (0, 1), (1, 0)}.
We specify a conditional probit model for the principal strata defined by the enrolment

status,

Ei ∈ {AE,NE,OC}, given S̃i = (Si − s0)/10 and Xi

πi(AE) ≡ Pr(Ei = AE | S̃i,Xi;θ) = Pr(E∗i (AE) ≤ 0 | S̃i,Xi;θ),

πi(NE) ≡ Pr(Ei = NE | S̃i,Xi;θ) = Pr(E∗i (AE) > 0, E∗i (NE) ≤ 0 | S̃i,Xi;θ),

πi(OC) ≡ Pr(Ei = OC | S̃i,Xi;θ) = 1− Pr(Ei = NE | S̃i,Xi;θ)−
Pr(Ei = AE | S̃i,Xi;θ),

where εi,AE ∼ N (0, 1) and εi,NE ∼ N (0, 1), and εi,AE and εi,NE are independent.

Note that Pr(Ci = (∗, ∗) | Ei = NE, S̃i,Xi;θ) = 1 and Pr(Ci = c | Ei = NE, S̃i,Xi;θ) = 0

for c ≡ (c0, c1) 6= (∗, ∗).
We specify four conditional probit models for Ci, given Ei = AE, S̃i and Xi:

πi(00 | AE) ≡ Pr(Ci = (0, 0) | Ei = AE, S̃i,Xi;θ)

= Pr(C∗i (0, 0) ≤ 0 | Ei = AE, S̃i,Xi;θ),

πi(01 | AE) ≡ Pr(Ci = (0, 1) | Ei = AE, S̃i,Xi;θ)

= Pr(C∗i (0, 0) > 0, C∗i (0, 1) ≤ 0 | Ei = AE, S̃i,Xi;θ),

πi(11 | AE) ≡ Pr(Ci = (1, 1) | Ei = AE, S̃i,Xi;θ)

= Pr(C∗i (0, 0) > 0, C∗i (0, 1) > 0, C∗i (1, 1) ≤ 0 | Ei = AE, S̃i,Xi;θ),

πi(10 | AE) ≡ Pr(Ci = (1, 0) | Ei = AE, S̃i,Xi;θ)

= 1− πi(00 | AE)− πi(01 | AE)− πi(11 | AE)

where εi,AEc ∼ N (0, 1), independently, for c = (0, 0), (0, 1), (1, 1).

We have Pr(Ci = (∗, ∗) | Ei = AE, S̃i,Xi;θ) = Pr(Ci = (∗, 0) | Ei = AE, S̃i,Xi;θ) =

Pr(Ci = (∗, 1) | Ei = AE, S̃i,Xi;θ) = 0.

Similarly we have Pr(Ci = c | Ei = OC, S̃i,Xi;θ) = 0 for c ∈ {(∗, ∗), (0, 0), (1, 1),

(0, 1), (1, 0)}; Pr(Ci = c | Ei = OC, S̃i,Xi;θ) > 0 only for c ∈ {(∗, 0), (∗, 1)} under

Assumption 1.3. Therefore we specify a probit model for Ci, given Ei = OC, S̃i and Xi:

Ci = (∗, 0) | Ei = OC if C∗i (∗, 0) = β
(0)
OC∗0

+ S̃iβ
(S)
OC∗0

+ X′iβ
(X)
OC∗0

+ εi,OC∗0 ≥ 0
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where εi,OC∗0 ∼ N (0, 1).

We now need to specify a parametric model for the conditional distribution of po-

tential outcomes for students’ academic performances, Yi(z) = (Yi,UC(z), Yi,G(z)),

z = 0, 1, given the forcing variable, S̃i, pre-treatment variables, Xi, and principal

stratum membership, Bi. To this end, it is useful to factorize the conditional distribution

of Yi(z) = (Yi,UC , Yi,G) as product of the marginal distribution of University credits,

Yi,UC(z) | Bi, S̃i,Xi, and the conditional distribution of average grade given University

credits, Yi,G(z) | Yi,UC(z), Bi, S̃i,Xi. We assume that conditional on S̃i, Xi, Bi and θ,

the potential outcomes Yi(0) and Yi(1) are independent4.

University credits is a discrete variable with support in {∗} ∪ {0, 6, 9, 12, . . . , 60}. We

have that Yi,UC(z) is not defined for test participants who would not enrol under OFA

status z, z = 0, 1, and Yi,UC(z) = 0 for test participants who would enrol but would be

inactive under OFA status z, z = 0, 1. Thus, Pr
(
Yi,UC(z) = ∗ | Bi = b, S̃i,Xi

)
= 1 for

(z, b) = (0, NE∗∗), (1, NE∗∗), (0, OC∗0), (0, OC∗1); and Pr
(
Yi,UC(z) = 0 | Bi = b, S̃i,Xi

)
= 1 for (z, b) = (0, AE00), (1, AE00), (0, AE01), (1, AE10), (1, OC∗0). For (z, b) ∈ {(0, AE11),

(1, AE11), (1, AE01), (0, AE10), (1, OC∗1)}, the variable University credits takes on values

in {6, 9, 12, . . . , 60}. We specify a Poisson regression model with the canonical link func-

tion for the following linear transformation of University credits: Ỹi,UC(z) =
Yi,UC(z)

3
−2,

which has support {0, 1, 2, . . .}.
Formally, we assume that ỸUCi(z) | Bi = b, Si,Xi;θ ∼ Poisson(λi(z, b)), where

log(λi(z, b)) = γ
(0)
z,b + S̃iγ

(S)
z,b + X′iγ

(X)
z,b ,

for (z, b) ∈ {(0, AE11), (0, AE01), (1, AE11), (1, AE10), (1, OC∗0)}.
Potential outcomes for average grade, Yi,G(z), z = 0, 1, have support on {∗}∪[18, 30], and

we have Pr
(
Yi,G(z) = ∗ | Yi,UC(z), Bi = b, S̃i,Xi

)
= 1 for (z, b) ∈ {(0, NE∗∗), (1, NE∗∗),

(0, OC∗0), (1, OC∗0), (0, OC∗1), (0, AE00), (1, AE00), (0, AE01), (1, AE10)}.
For (z, b) ∈ {(0, AE11), (1, AE11), (1, AE01), (0, AE10), (1, OC∗1)}, Yi,G(z) is a well

defined random variable with support on [18, 30].

We model these five outcome distributions using truncated log-normal regressions: let

Ỹi,G(z) = log(Yi,G(z)), then Ỹi,G(z) | Yi,UC , Bi = b, S̃i,Xi ∼ T N (τi(z, b), σ
2
z,b), with

support [log(18− 1/3), log(30 + 1/3)], where

τi(z, b) = η
(0)
z,b + S̃iη

(S)
z,b + Ỹi,UC(z)η

(UC)
z,b + X′iη

(X)
z,b .

Because the sample size is relatively small, in order to avoid imprecise estimates, we

assume equality of some slope coefficients in the outcomes’ models: γ(X) ≡ γ
(X)
z,b for

(z, b) ∈ {(0, AE11), (1, AE11), (1, AE01), (0, AE10), (1, OC∗0), (1, OC∗1)}; and η(X) ≡ η
(X)
z,b

for (z, b) ∈ {(0, AE11), (1, AE11), (1, AE01), (0, AE10), (1, OC∗1)}. We also impose the

4Because Yi(0) and Yi(1) are never jointly observed, we cannot expect to learn anything about
the partial correlation between them from the data given S̃i, Xi, Bi and θ (Rubin, 1978; Imbens and
Rubin, 1997).
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following prior equalities: σ2
AE ≡ σ2

0,AE11
= σ2

1,AE11
= σ2

0,AE10
= σ2

1,AE01
in the truncated

log-normal regression models for average grade for always-enrolled students..

We assume that parameters are a priori independent, and we use multivariate normal

prior distributions for the regression coefficients and Scaled-Inverse-χ2 distributions for

the parameters σ2
AE and σ2

1,OC of the truncated log-normal models. See Appendix 1.9 for

details on the specification of the prior distributions. In Appendix 1.9 we also assess the

sensitivity of the results with respect to the specification of the prior distributions for

the parameters σ2
AE and σ2

1,OC of the log-normal models, by using uninformative priors.

The results appear to be robust changing only slightly under uninformative priors for

σ2
AE and σ2

1,OC .

It is worth noting that although we specify probit and conditional probit models for

binary and categorical covariates, respectively, alternative specification, such as logit and

multinomial logit models, could be used, too (e.g., Hirano et al., 2000). We opt for probit

and conditional probit models for computational convenience given that, conditional on

latent variables, the full conditional distributions of the parameters of these models have

a closed form, from which we can easily sample. Nevertheless, we expect that results

would be very similar.

The posterior distribution has a complex form involving mixtures due to the fact that

the observed groups defined by the observed OFA status, Z, the observed status, Eobs,

and the observed academic career status, Cobs, comprise mixtures of principal strata

(see Table 1.3). Indeed we cannot generally observe the principal stratum which a unit

belongs to, because for each unit only one potential outcome is observed for each post-

treatment variable, depending on the treatment actually received. We deal with these

computational issues developing an MCMC algorithm which uses the Data Augmentation

(DA) method of Tanner and Wong (1987) to impute the missing Emis
i = Ei(1− Zi) and

Cmis
i = Ci(1− Zi). Results shown in the next section are based on a chain which was

run for 25 000 iterations, burning the first 5 000 iterations.

1.7 Causal Inference for the Sub-population Us0

Tables 1.4 and 1.5 show the posterior medians and 95% posterior credible intervals

(PCIs) of the posterior distributions of the principal strata proportions and of the

causal estimands under monotonicity (Assumption 1.3). The estimated proportions

of the principal strata suggest that most of test participants who obtain a test score

between 13.5 and 18.5 are either always-enrolled students or never-enrolled students:

there are around 47% always-enrolled students, more than 40% never-enrolled students

and around 11% OFA compliers. Under monotonicity the proportion of OFA compliers

is the causal effect of the OFA status on the decision to enrol, ACEUs0 (E), which is not

negligible (see also Table 1.5). Among OFA compliers 71% are active students, that

is, students who would take and pass at least one exam if they did not received OFA.

Among always-enrolled students, 43% are always-active students, 26% are OFA-inactive

students, around 19% are OFA-active students and 12% are never-active students.
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The posterior median of the survivor causal effect on academic career for always-enrolled

students, SACEUs0 (C), is equal to 3% and the 95% posterior credible interval ranges from

−0.003 to 0.071. The posterior probability that SACEUs0 (C) is positive is approximately

96%. A positive value of SACEUs0 (C) suggests that being exempt from OFA increases

the probability of being an active student. Thus, there appears to be some evidence that

being exempt from OFA helps students to start their academic career taking and pass

at least one exam.

The posterior median of the survivor causal effect on University Credits for always-

enrolled students, SACEUs0 (UC), is 1.634 suggesting that always-enrolled students who

are exempt from OFA award on average about one more credit than always-enrolled

students who are not exempt from OFA. Nevertheless the 95% posterior credible interval

of SACEUs0 (UC), covers zero and is rather wide (95% PCI = [−7.378, 10.614]), so that

SACEUs0 (UC) is no significant at the 5% level. The posterior median of the survivor

causal effect on University Credits for the sub-group of always-enrolled students who

are always active irrespective of their OFA status, SACEUs0 (UC | AE11), is 3.137, and

thus, is positive and larger than the posterior median of the survivor causal effect on

University Credits for all the always-enrolled students. This effect, however, is estimated

very imprecisely: the 95% posterior credible interval, [−14.848, 22.414], is very wide

and spread around zero. It is worth noting that freshmen of the school of Engineering

are expected to award 60 UCs by the end of the first year, taking exams to which are

generally assigned 6, 9 or 12 UCs. Therefore our findings suggest that being exempt

from OFA versus not being exempt from OFA does not significantly affect the number

of passed exams: students take approximately the same number of exams irrespective of

their OFA status.

The estimated survivor average causal effect on average grade for always-active students,

SACEUs0 (G), is positive, but small and statistically negligible: the posterior median

is an increase of the average grade of just 0.41 points, and the 95% posterior credible

interval covers zero. As we can seen in the right graph in Figure 1.1 the posterior

distribution of SACEUs0 (G) is almost symmetric around zero. Figure 1.2 shows the

joint distribution of SACEUs0 (UC | AE11) and SACEUs0 (G), which suggests that there

exists a very weak (if any) correlation between the effects of the OFA status on UCs

and on average grade for always-active students.

1.8 Conclusions

We focus on assessing casual effects of the OFA status on academic career and per-

formances at the end of the first academic year for students who take the entrance

test for the School of Engineering of a given Italian State University. The OFA as-

signment rule appeals to a (sharp) RD design with the entrance exam score acting as

forcing variable. Following Li et al. (2015), we formally describe our RD design as a

local randomized experiment. For the sub-population of units for which the critical

assumptions hold, we define the causal estimands of interest using the framework of
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principal stratification, which allow us to properly deal with the problem of truncation

by “death” that affects our outcome variables: academic career status and University

credits, which are truncated by not enrolment, and average grade, which is truncated

by enrolment and by inactivity. We conduct causal inference on local principal causal

effects using a model-based Bayesian approach. In our application we find little evidence

that being exempt from OFA has any beneficial effects on students’ academic career

and performances for the sub-population of test participants who obtain a test score

between 13.5 and 18.5. The strongest evidence is that being exempt from OFA appears

to increase the probability of being an active students for always-enrolled students.

Being exempt from OFA appears also to increase the number of UCs for always-enrolled

students, although the estimated effect is small and with large posterior variability.

We interpret this result as evidence that students who are assigned OFA because they

obtain a test score less than 16 points may delay the start of their academic career

and thus, have a higher risk to be inactive or award a lower number of UCs during

the first academic year than students who are not assigned OFA, because they must

comply with additional compulsory learning, by attending an extra course and taking

an extra exam. Indeed, we find a slightly larger effect of OFA on number of UCs for

always-active students, even if this effect is estimated very imprecisely. Therefore, our

analysis suggests that for the sub-population of test participants who obtain a test score

falling in a symmetric interval around the threshold, s0 = 16, defined by a bandwidth

equal to h = 2.5, being exempt from OFA may encourage always-enrolled students to

promptly activate their academic career and to award a higher number of UCs, affecting

students’ academic performances from a quantitative standpoint. Nevertheless, being

exempt from OFA does not seem significantly affect the quality of always-active students’

academic performances as measured by average grade.

In our application study we focus on a school of Engineering of a specific University.

It would be interesting to consider all schools of Engineering that adopted the same

entrance exam in 2011. However, this extension raises some challenges because different

schools use different thresholds to define the OFA status. A valuable topic for future

research is to investigate the heterogeneity of the effect with respect to the threshold.

1.9 Appendix

1.9.1 Bayesian Selection of the Subpopulations

We used a hierarchical Bayesian model for assessing the balance of the covariates between

the two groups defined by the OFA status: the exempt from OFA group and the not

exempt from OFA group. The posterior distributions of the parameters are obtained

from Markov chain Monte Carlo (MCMC) methods.

Let X1, X2, X3, X4, X5, and X6 denote the six observed covariates where X1, X2, X3,

and X6 are binary variables for gender, high school year; irregular high school career;

and living far away from the campus; X4 is a categorical variable for high school type

with 4 categories; and X5 is high school grade, a continuous variable with support in
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[60, 100]. Under the model specification described in Section 5.1 of the main text, the

joint posterior distribution of the parameters is

p(σ2
γ0
, µγ0 , σ

2
γ1
, µγ1 , πγ1 , σ

2
5, γ01, γ02, γ03,γ04, γ05, γ06, γ11, γ12,γ14, γ13, γ15, γ16 | X,Z) ∝

p(σ2
γ0
, µγ0 , σ

2
γ1
, µγ1 , πγ1)×

p(σ2
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γ0
, µγ0 , σ

2
γ1
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L(σ2
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The full conditional distributions for the hyper-parameters are

σ2
γ0
| µγ0 , γ01, γ02, γ03,γ04, γ05, γ06 ∼ IG
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with Nγ0 = 8 and Nγ1 = 8 are the number of γ′0s and γ′1s.

The full conditional distributions for the parameters are as follows:

Parameters of the distribution of the continuous variable, X5 (High school grade):

σ2
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2
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Parameters of the distribution of the binary variables, X1 (Sex), X2 (High school Year),

X3 (Irregular Career) and X6 (Far-away resident):

Let X∗ij ∼ N (γ0j + γ1jZi, 1), j = 1, 2, 3, 6 a latent variable such that Pr(Xij = 1) =

Pr(X∗ij > 0). The distribution of X∗ij | γ0j, γ1j,X,Z is N (γ0j + γ1jZi, 1) truncated to

the left of zero if Xij = 1 and truncated to the right of zero if Xij = 0.

We have
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2
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Parameters of the distribution of the categorical variables, X4 (High school type):

Let K = 4 be the number of values/levels for X4 and let X
∗(k)
i4 ∼ N (γ04 + γ14Zi, 1),
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K = 1, . . . , K−1, be independent latent variables such that Pr(Xi4 = 1) = Pr
(
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)
,
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The MCMC algorithm we use to sample from the posterior distributions of the param-

eters simulates successively from the above full conditional distributions. The data

augmentation method is used to impute at each step the latent variables underlying

binary and categorical covariates. Simulations from the mixture distributions for the

values of γ11, γ12, γ13,γ14, γ15, and γ16 use Metropolis-Hastings step (Berry and Berry,

2004). Specifically, we draw from a point mass at zero with probability 0.5 and a Normal

distribution centred on the current value of the parameter. Let γcand1j be the candidate

value and γ
(t)
1j the current value at iteration t. For simplicity we omit superscript (k) for

j = 4. Define

rj =
p
(
γcand1j | γ0j, πγ1 , σ

2
γ1
, µγ1 ,X,Z

)
p
(
γ

(t)
1j | γ0j, πγ1 , σ

2
γ1
, µγ1 ,X,Z

) ,
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where γ0j = γ0j for j = 1, 2, 3, 5, 6. The candidate draw is accepted with probability

r =



rj if γcand1j = γ
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1j = 0

1√
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}
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(t)
1j 6= 0

where σ2
MH is the variance of the Normal proposal distribution.

1.9.2 Bayesian Principal Stratification Inference: MCMC Algorithm

Under the model specification described in Section 1.6.2 we have:

πi(AE) ≡ Pr(Ei = AE | S̃i,Xi;θ) = Pr(E∗i (AE) ≤ 0 | S̃i,Xi;θ),

πi(NE) ≡ Pr(Ei = NE | S̃i,Xi;θ) = Pr(E∗i (AE) > 0, E∗i (NE) ≤ 0 | S̃i,Xi;θ),

πi(OC) ≡ Pr(Ei = OC | S̃i,Xi;θ) = 1− Pr(Ei = NE | S̃i,Xi;θ)−
Pr(Ei = AE | S̃i,Xi;θ),

where

E∗i (AE) = α
(0)
AE + S̃iα

(S)
AE + X′iα

(X)
AE + εi,AE, εi,AE ∼ N (0, 1)

E∗i (NE) = α
(0)
NE + S̃iα

(S)
NE + X′iα

(X)
NE + εi,NE, εi,NE ∼ N (0, 1).

with εi,AE and εi,NE independent.

πi(00 | AE) ≡ Pr(Ci = (0, 0) | Ei = AE, S̃i,Xi;θ)

= Pr(C∗i (0, 0) ≤ 0 | Ei = AE, S̃i,Xi;θ),

πi(01 | AE) ≡ Pr(Ci = (0, 1) | Ei = AE, S̃i,Xi;θ)

= Pr(C∗i (0, 0) > 0, C∗i (0, 1) ≤ 0 | Ei = AE, S̃i,Xi;θ),

πi(11 | AE) ≡ Pr(Ci = (1, 1) | Ei = AE, S̃i,Xi;θ)

= Pr(C∗i (0, 0) > 0, C∗i (0, 1) > 0, C∗i (1, 1) ≤ 0 | Ei = AE, S̃i,Xi;θ),

πi(10 | AE) ≡ Pr(Ci = (1, 0) | Ei = AE, S̃i,Xi;θ)

= 1− πi(00 | AE)− πi(01 | AE)− πi(11 | AE)

where C∗i (c) = β
(0)
AEc

+ S̃iβ
(S)
AEc

+ X′iβ
(X)
AEc

+ εi,AEc with εi,AEc ∼ N (0, 1), independently, for

c = (0, 0), (0, 1), (1, 1).

πi(∗0 | OC) ≡ Pr(Ci = (∗, 0) | Ei = OC, S̃i,Xi;θ) = Pr(C∗i (∗, 0) > 0 | Ei = OC, S̃i,Xi;θ)
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where C∗i (∗, 0) = β
(0)
OC∗0

+ S̃iβ
(S)
OC∗0

+ X′iβ
(X)
OC∗0

+ εi,OC∗0 with εi,OC∗0 ∼ N (0, 1).

For (z, b) ∈ {(0, AE11), (0, AE01), (1, AE11), (1, AE10), (1, OC∗0)}:

f
(UC)
i,z (y | b) ≡ Pr

(
ỸUCi(z) = y | Bi = b, Si,Xi;θ

)
=

1

y!
λi(z, b)

ye−λi(z,b)

where

log(λi(z, b)) = γ
(0)
z,b + S̃iγ

(S)
z,b + X′iγ

(X)
z,b ,

For (z, b) ∈ {(0, AE11), (1, AE11), (1, AE01), (0, AE10), (1, OC∗1)}, let Ỹi,G(z) = log(Yi,G(z))

and

f
(G)
i,z (ỹ | Ỹi,UC(z), Bi = b, S̃i,Xi) =

1√
2πσ2

z,b

exp

{
1

2σ2
z,b

[ỹ − τi(z, b)]2
}

Φ

 log(b)− τi(z, b)√
σ2
z,b

− Φ

 log(a)− τi(z, b)√
σ2
z,b

 ,

where

τi(z, b) = η
(0)
z,b + S̃iη

(S)
z,b + Yi,UC(z)η

(UC)
z,b + X′iη

(X)
z,b ,

and a = log(18− 1/3) and b = log(30 + 1/3).

Recall that we impose the following prior equalities: γ(X) ≡ γ
(X)
z,b for (z, b) ∈ {(0, AE11),

(1, AE11), (1, AE01), (0, AE10), (1, OC∗0), (1, OC∗1)}; η(X) ≡ η
(X)
z,b for (z, b) ∈ {(0, AE11),

(1, AE11), (1, AE01), (0, AE10), (1, OC∗1)}; and σ2
AE ≡ σ2

0,AE11
= σ2

1,AE11
= σ2

0,AE10
= σ2

1,AE01
.

Prior distribution

We assume that parameters are a priori independent, and we use multivariate normal

prior distributions for the regression coefficients and Scaled-Inverse-χ2 prior distributions

for the variances of the truncated log-normal models. Formally, αe ≡ [α
(0)
e , α

(S)
e ,α

(X)
e ]

∼ N (µ
αe

;σ2
αeI); e = AE,NE; βAEc ≡ [β

(0)
AEc

, β
(S)
AEc

,β
(X)
AEc

] ∼ N (µ
βAEc

;σ2
βAEc

I), c = (0, 0),

(0, 1), (1, 1); βOC∗0 ≡ [β
(0)
OC∗0

, β
(S)
OC∗0

,β
(X)
OC∗0

] ∼ N (µ
βOC∗0

;σ2
βOC∗0

I); γz,b ≡ [γ
(0)
z,b , γ

(S)
z,b ] ∼

∼ N (µ
γz,b

;σ2
γz,b

I), (z, b) ∈ {(0, AE11),(1, AE11), (1, AE01), (0, AE10),(1, OC∗1)}, and

γ(X) ∼ N (µ
γ(X)

; σ2
γ(X)

I); ηz,b ≡ [η
(0)
z,b , η

(S)
z,b , η

(UC)] ∼ N (µ
ηz,b

;σ2
ηz,b

I), (z, g) ∈ {(0, AE11),

(1, AE11), (1, AE01), (0, AE10), (1, OC∗0), (1, OC∗1)}, η(X) ∼ N (µ
η(X)

; σ2
η(X)

I), σ2
AE ∼

∼ Scale−inv−χ2(ν, τ 2) and σ2
OC∗1

∼ Scale−inv−χ2(ν, τ 2), where ν = 0.02 and τ 2 = 1.

We specify weakly informative priors using (multivariate) normal prior distributions

centered in zero and variances equal to 10: µ
αe

, µ
βAEc

µ
βOC∗0

µ
γz,b

, µ
γ(X)

µ
ηz,b

, µ
η(X)

and

µ
η(UC) are all null vectors, and σ2

αe = σ2
βAEc

= σ2
βOC∗0

= σ2
γz,b

= σ2
γ(X)

= σ2
ηz,b

= σ2
η(X)

= 10.
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Let

θ = (α
(0)
AE, α

(S)
AE,α

(X)
AE , α

(0)
NE, α

(S)
NE,α

(X)
NE, β

(0)
AE00

, β
(S)
AE00

,β
(X)
AE00

, β
(0)
AE01

, β
(S)
AE01

,β
(X)
AE01

,,

β
(0)
AE11

, β
(S)
AE11

,β
(X)
AE11

, β
(0)
OC∗0

, β
(S)
OC∗0

,β
(X)
OC∗0

,

γ
(0)
0,AE10

, γ
(S)
0,AE10

, γ
(0)
0,AE11

, γ
(S)
0,AE11

, γ
(0)
1,AE01

, γ
(S)
1,AE01

, γ
(0)
1,AE11

, γ
(S)
1,AE11

, γ
(0)
1,OC∗1

, γ
(S)
1,OC∗1

,γ(X),

η
(0)
0,AE10

, η
(S)
0,AE10

, η
(UC)
0,AE10

, η
(0)
0,AE11

, η
(S)
0,AE11

, η
(UC)
0,AE11

, η
(0)
1,AE01

, η
(S)
1,AE01

, η
(UC)
1,AE01

,

η
(0)
1,AE11

, η
(S)
1,AE11

, η
(UC)
1,AE11

,

η
(0)
1,OC∗1

, η
(S)
1,OC∗1

, η
(UC)
1,OC∗1

,η(X), σ2
AE, σ

2
OC)

denote the vector of the parameters, and let p(θ) denote the prior distribution for the full

parameter vector, which is the product of the above prior distributions under assumption

of prior independence of the parameters.

Posterior distribution

The posterior distribution of the parameters is obtained from Markov chain Monte Carlo

(MCMC) methods. The Markov chain algorithm that we adopt is based on a sequence

of Metropolis-Hastings and Gibbs sampler steps. The algorithm uses the data augmen-

tation (DA) method to impute at each step the missing principal stratum indicators,

Bi = (Ei, Ci), and to exploit the complete principal strata posterior distribution to

update the parameters.

Specifically, let Z = [Zi]i∈Us0 , Eobs = [Eobs
i ]i∈Us0 , Cobs = [Cobs

i ]i∈Us0 , Yobs
UC = [Y obs

i,UC ]i∈Us0 ,

Yobs
G = [Y obs

i,G ]i∈Us0 , S = [Si]i∈Us0 and X = [Xi]i∈Us0 . We first obtain the joint posterior

distribution of (θ,Emis,Cmis) from a Gibbs sampler by iteratively sampling from

p(θ | Z,Eobs,Cobs,Emis,Cmis,Yobs
UC ,Y

obs
G ,S,X;Us0),

p(Emis | Z,Eobs,Cobs,Yobs
UC ,Y

obs
G ,S,X,θ;Us0),

and

p(Cmis, | Z,Eobs,Emis,Cobs,Yobs
UC ,Y

obs
G ,S,X,θ;Us0).

This procedure, in turn, provides the marginal posterior distribution

p(θ | Z,Eobs,Cobs,Yobs
UC ,Y

obs
G ,S,X;Us0)

and thus the posterior of the causal estimands of interest (see the following section for com-
putational details). The key to the posterior computation is the evaluation of the complete
principal-strata posterior distribution p(θ | Z,Eobs,Cobs,Emis,Cmis,Yobs

UC ,Y
obs
G ,S,X;Us0),



26 Chapter 1. Assessing causal effects of OFA on college students’ academic performances

which has a simple form without any mixture component:

p(θ | Z,Eobs,Cobs,Emis,Cmis,Yobs
UC ,Y

obs
G ,S,X;Us0) ∝ p(θ)×∏

i∈Us0
:Zi=0,1,Bi=NE

πi(NE)×

∏
i∈Us0 :Zi=0,1,Bi=OC∗0

πi(OC) · πi(∗0 |OC)×
∏

i∈Us0 :Zi=0,Bi=OC∗1

πi(OC) · πi(∗1 |OC)

∏
i∈Us0

:Zi=0,Bi=AE00

πi(AE) · πi(00 | AE)×
∏

i∈Us0
:Zi=0,Bi=AE01

πi(AE) · πi(01 | AE)×

∏
i∈Us0

:Zi=0,Bi=AE11

πi(AE) · πi(11 | AE) · f (UC)
i,0 (Ỹ obs

i,UC | AE11) · f (G)
i,0 (Ỹ obs

i,G | Yi,UC(0), AE11)×

∏
i∈Us0 :Zi=0,Bi=AE10

πi(AE) · πi(10 | AE) · f (UC)
i,0 (Ỹ obs

i,UC | AE10) · f (G)
i,0 (Ỹ obs

i,G | Yi,UC(0), AE10)×

∏
i∈Us0 :Zi=1,Bi=AE10

πi(AE) · πi(10 | AE)×

∏
i∈Us0

:Zi=1,Bi=AE11

πi(AE) · πi(11 | AE) · f (UC)
i,1 (Ỹ obs

i,UC | AE11)f
(G)
i,1 (Ỹ obs

i,G | Yi,UC(1), AE11)×

∏
i∈Us0

:Zi=1,Bi=AE01

πi(AE) · πi(01 | AE) · f (UC)
i,1 (Ỹ obs

i,UC | AE01)f
(G)
i,1 (Ỹ obs

i,G | Yi,UC(1), AE01).

Details of calculations

Given (B(t),θ(t)) = (E(t),C(t),θ(t)), the principal strata indicator and the state of the

chain at time t, the state of the chain at time t+ 1 follows from applying the following

steps.

1. Sample B(t+1). Note that conditional on θ and the observed data, Z, Eobs, Cobs,

Yobs
UC , Yobs

G , X, S̃, the Bi are independent. Moreover, we have:

Pr(Bi = b | θ(t), Zi, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0)

= Pr(Ei = e | θ(t), Zi, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0)×

Pr(Ci = c | θ(t), Zi, Ei = e, Eobs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0).

Exploiting the above factorization we first sample Ei. We have:

• Pr(Ei = NE | θ(t), Zi, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) = 1 if Zi = 1, Eobs

i = 0,

• Pr(Ei = NE | θ(t), Zi, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) ∝

πi(NE)

πi(NE) + πi(OC)
if Zi = 0, Eobs

i = 0,

• Pr(Ei = AE | θ(t), Zi, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) = 1, if Zi = 0, Eobs

i = 1,

• Finally for observations with Zi = 1, Eobs
i = 1,
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Pr(Ei = AE | θ(t), Zi, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0)

∝ πi(AE) · [πi(00 | AE) + πi(10 | AE)

+πi(11 | AE) · fUCi,1 (Ỹ obs
i,UC | AE11) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , AE11)

+πi(01 | AE) · fUCi,1 (Ỹ obs
i,UC | AE01) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , AE01)]×

{πi(AE) · [πi(00 | AE) + πi(10 | AE)

+πi(11 | AE) · fUCi,1 (Ỹ obs
i,UC | AE11) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , AE11)

+πi(01 | AE) · fUCi,1 (Ỹ obs
i,UC | AE01) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , AE01)]

+πi(OC) · [πi(∗0 | OC)

+πi(∗1 | OC) · fUCi,1 (Ỹ obs
i,UC | OC∗1) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , OC∗1)]}−1.

Given Ei we then sample Ci with probability

• for observations with Zi = 0, 1, Ei = NE,Eobs
i = 0

Pr(Ci = (∗, ∗) | θ(t), Zi, Ei, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) = 1;

• for observations with Zi = 1, Ei = OC,Eobs
i = 1 and Cobs

i = 0

Pr(Ci = (∗, 0) | θ(t), Zi, Ei, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) = 1;

• for observations with Zi = 1, Ei = OC,Eobs
i = 1 and Cobs

i = 1

Pr(Ci = (∗, 1) | θ(t), Zi, Ei, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) = 1;

• for observations with Zi = 0, Ei = OC,Eobs
i = 0, we have

Pr(Ci = (∗, 0) | θ(t), Zi, Ei, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) ∝

∝ πi(∗0 | OC)

πi(∗0 | OC) + πi(∗1 | OC)
;

• for observations with Zi = 0, Ei = AE,Eobs
i = 1 and Cobs

i = 0, we have

Pr(Ci = (0, 0) | θ(t), Zi, Ei, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0) ∝

∝ πi(00 | AE)

πi(00 | AE) + πi(01 | AE)
;
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• for observations with Zi = 0, Ei = AE,Eobs
i = 1 and Cobs

i = 1 we have

Pr(Ci = (1, 1) | θ(t), Zi, Ei, E
obs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0)

∝ πi(11 | AE) · fUCi,0 (Ỹ obs
i,UC | AE11) · fGi,0(log(Y obs

i,G ) | Ỹ obs
i,UC , AE11)

×[πi(11 | AE) · fUCi,0 (Ỹ obs
i,UC | AE11) · fGi,0(log(Y obs

i,G ) | Ỹ obs
i,UC , AE11)

+πi(10 | AE) · fUCi,0 (Ỹ obs
i,UC | AE10) · fGi,0(log(Y obs

i,G ) | Ỹ obs
i,UC , AE10)]−1;

• for observations with Zi = 1, Ei = AE,Eobs
i = 1 and Cobs

i = 1 we have

Pr(Ci = (1, 1) | θ(t), Zi, Ei = AE,Eobs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0)

∝ πi(11 | AE) · fUCi,1 (Ỹ obs
i,UC | AE11) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , AE11)

×[πi(11 | AE) · fUCi,1 (Ỹ obs
i,UC | AE11) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , AE11)

+πi(01 | AE) · fUCi,1 (Ỹ obs
i,UC | AE01) · fGi,1(log(Y obs

i,G ) | Ỹ obs
i,UC , AE01)]−1;

• for observations with Zi = 1, Ei = AE,Eobs
i = 1 and Cobs

i = 0 we have

Pr(Ci = (0, 0) | θ(t), Zi, Ei = AE,Eobs
i , Cobs

i , Y obs
i,UC , Y

obs
i,G ,Xi, S̃i;Us0)

∝ πi(00 | AE)

πi(00 | AE) + πi(10 | AE)
.

2. Sample the latent variables E∗i (AE) and E∗i (NE):

(a) Sample the latent variable E∗i (AE) from N (α
(0)(t)

AE + α
(S)(t)

AE S̃i + α
(X)(t)

AE Xi, 1)

truncated to (−∞, 0) if Ei = AE and to (0,∞) if Ei 6= AE.

(b) Sample the latent variable E∗i (NE) fromN (α
(0)(t)

NE + α
(S)(t)

NE S̃i + α
(X)(t)

NE Xi, 1)

truncated to (−∞, 0) if Ei = NE and to (0,∞) if Ei 6= NE.

3. Sample the coefficients α
(t+1)
e ≡ [α

(0)(t+1)

e , α
(S)(t+1)

e ,α
(X)(t+1)

e ] from N (µαe ; Σαe), for

e = AE,NE.

Let SX =
[
1|S̃|X

]
denote the N × (p+ 2) matrix with ith row equals to (1, S̃i, Xi1,

. . . , Xip).

(3.a) Sample α
(t+1)
AE from N (µαAE ,ΣαAE) where

µαAE = ΣαAE

(
(σ2

αAE
I)−1µ

αAE
+ SX′E∗(AE)

)
and

ΣαAE =
(
(σ2

αAE
I)−1 + SX′SX

)−1

(3.b) Let SXOC,NE denote the sub-matrix of SX with E
(t+1)
i = OC or E

(t+1)
i = NE

and let E∗NE,OC(NE) be the sub-vector of E∗(NE) for units with E
(t+1)
i = OC

or E
(t+1)
i = NE.
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Sample α
(t+1)
NE from N (µαNE ,ΣαNE) where

µαNE = ΣαNE

(
(σ2

αNE
I)−1µ

αNE
+ SX′OC,NEE∗OC,NE(NE)

)
and

ΣαNE =
(
(σ2

αNE
I)−1 + SX′OC,NESXOC,NE

)−1

4. Sample the latent variables C∗i given Ei = AE, which we denote with C∗i (c) |AE,

from N (β
(0)(t)

AEc
+ β

(S)(t)

AEc
S̃i + β

(X)(t)

AEc
Xi, 1) truncated to (−∞, 0) if Ci = c, and to

(0,∞) if Ci 6= c, for c ∈ {(0, 0), (0, 1), (1, 1)}.

5. Sample the coefficients:

β
(t+1)
AEc

≡ [β
(0)(t+1)

AEc
,β

(S)(t+1)

AEc
,β

(X)(t+1)

AEc
] from N (µβAEc

,ΣβAEc
), for c ∈ {(0, 0), (0, 1),

(1, 1)}, given Ei = AE

5.a Sample β
(t+1)
AE00

from N (µβAE00
,ΣβAE00

) where

µβAE00
= ΣβAE00

(
(σ2

βAE00
I)−1µ

βAE00

+ SX′C∗(0, 0) |AE
)

and

ΣβAE00
=
(

(σ2
βAE00

I)−1 + SX′SX
)−1

5.b Let SXAE01,AE10,AE11 denote the sub-matrix of SX with C
(t+1)
i = (0, 1) |AE or

C
(t+1)
i = (1, 0) |AE or C

(t+1)
i = (1, 1) |AE and let C∗AE01,AE10,AE11

(0, 1) |AE
be the sub-vector of C∗(0, 1) |AE for units with C

(t+1)
i = (0, 1) |AE or

C
(t+1)
i = (1, 0) |AE or C

(t+1)
i = (1, 1) |AE.

Sample β
(t+1)
AE01

from N (µβAE01
,ΣβAE01

) where

µβAE01
= ΣβAE01

(
(σ2

βAE01
I−1)µ

βAE01

+ SX′AE01,AE10,AE11
C∗AE01,AE10,AE11

(0, 1) |AE
)

5.c Let SXAE10,AE11 denote the sub-matrix of SX with C
(t+1)
i = (1, 0) |AE or

C
(t+1)
i = (1, 1) |AE

and let C∗AE10,AE11
(1, 1) |AE be the sub-vector of C∗(1, 1) |AE for units with

C
(t+1)
i = (1, 0) |AE or C

(t+1)
i = (1, 1) |AE.

Sample β
(t+1)
AE11

from N (µβAE11
,ΣβAE11

) where

µβAE11
= ΣβAE11

(
(σ2

βAE11
I)−1µ

βAE11

+ SX′AE10,AE11
C∗AE10,AE11

(1, 1) |AE
)

and

ΣβAE11
=
(

(σ2
βAE11

I−1) + SX′AE10,AE11
SXAE10,AE11

)−1
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6. Sample the latent variables C∗i given Ei = OC, e.g. C∗i (c) |OC from:

N (β
(0)(t)

OC∗0
+β

(S)(t)

OC∗0
S̃i+β

(X)(t)

OC∗0
Xi, 1) truncated to (−∞, 0) if Ci = (∗, 0) and to (0,∞)

if Ci = (∗, 1).

7. Sample the coefficients: β
(t)
OC∗0

≡ [β
(0)(t+1)

OC∗0
, β

(S)(t+1)

OC∗0
,β

(X)(t+1)

OC∗0
] fromN (µβOC∗0

,ΣβOC∗0
),

for Ci = (∗, 0), given Ei = OC. Where

µβOC∗0
= ΣβOC∗0

(
(σ2

βOC∗0
I)−1µ

βOC∗0
+ SX′C∗(0, 0) |AE

)
and

ΣβOC∗0
=
(

(σ2
βOC∗0

I)−1 + SX′SX
)−1

For each i ∈ Us0 with Bi = b and Zi ≡ I{Si ≥ s0} = z, we draw the rest of the

coefficients involved in the distributions of the two outcomes, ỸUC and ỸG, in

sequence as follows:

8. Sample the coefficients for the distribution of outcome ỸUC : γ
(0)(t+1)

0,AE10
,γ

(S)(t+1)

0,AE10
,

γ
(0)(t+1)

0,AE11
, γ

(S)(t+1)

0,AE11
, γ

(0)(t+1)

1,AE01
, γ

(S)(t+1)

1,AE01
, γ

(0)(t+1)

1,AE11
, γ

(S)(t+1)

1,AE11
, γ

(0)(t+1)

1,OC∗1
, γ

(S)(t+1)

1,OC∗1
, γ(X)(t+1)

in

sequence, conditional on all the others.

In our specification, we could not draw directly from the appropriate full con-

ditional distributions of the parameters related to the outcome distribution of

University Credits; therefore we calculate the complete-data posterior density up

to a normalizing constant at any parameter value, and use Metropolis-Hastings

steps.

Specifically, to draw γ
(0)(t+1)

0,AE10
, we:

8.a draw candidate value γcand from N (γ
(0)(t)

0,AE10
, σ2

MH), where γ
(0)(t)

0,AE10
is the value

of the parameter at time t, σ2
MH is the variance of the Normal proposal

distribution;

8.b evaluate the complete-data posterior density of θ at parameter vector θ
(t)

γcand
,

that is the vector of the parameters’ values at iteration t replacing the value

of the parameter γ
(0)(t)

0,AE10
with γcand;

8.c evaluate the complete-data posterior density of θ at parameter vector θ(t);

8.d sample a value from a Uniform distribution, U(0, 1)

8.e accept the candidate draw if the ratio between the value at step 8.b and the

value at step 8.c is strictly less than the value sampled at step 8.d.

We then repeat the steps 8.a-8.e in sequence for parameters

γ
(S)
0,AE10

, γ
(0)
0,AE11

, γ
(S)
0,AE11

, γ
(0)
1,AE01

, γ
(S)
1,AE01

, γ
(0)
1,AE11

, γ
(S)
1,AE11

, γ
(0)
1,OC∗1

, γ
(S)
1,OC∗1

,γ(X).
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9. Sample the coefficients involved in the mean of the distribution of the outcome ỸG,

for which a truncated log-normal distribution to the interval [log(18−1/3), log(30+1/3)]

is specified.

Also here in a similar way done in step 8, we calculate the complete-data posterior

density up to a normalizing constant at any parameter value, and use Metropolis-

Hastings steps in sequence for the parameters: η
(0)(t+1)

0,AE10
, η

(S)(t+1)

0,AE10
, η

(UC)(t+1)

0,AE10
, η

(0)(t+1)

0,AE11
,

η
(S)(t+1)

0,AE11
, η

(UC)(t+1)

0,AE11
, η

(0)(t+1)

1,AE01
, η

(S)(t+1)

1,AE01
, η

(UC)(t+1)

1,AE01
, η

(0)(t+1)

1,AE11
, η

(S)(t+1)

1,AE11
, η

(UC)(t+1)

1,AE11
, η

(0)(t+1)

1,OC∗1
,

η
(S)(t+1)

1,OC∗1
, η

(UC)(t+1)

1,OC∗1
, η(X)(t+1)

, σ2(t+1)

AE .

10. Sample values for parameters σ2(t+1)

AE , σ2(t+1)

1,OC , which are the variances of the outcome

distribution ỸG for stratum AE and OC respectively.

Specifically, to draw σ2(t+1)

AE we use the proposal defined by a truncated normal

distribution, truncated in [a, b] = [0,+∞), T N [a,b](µ, σ), we proceed with the

following steps:

10.a draw candidate value σ2,cand
AE from T N [a,b](σ

2(t)

AE −
φ(a)− φ(b)

Φ(b)− Φ(a)
· σMH , σ

2
MH),

where σ2(t)

AE is the value of the variance for strata AE at time t, σ2
MH is the

variance of the truncated normal proposal distribution, φ(·) is the probability

density function of the standard normal distribution and Φ(·) is the related

cumulative distribution function;

10.b evaluate c.d.p.dcand the complete-data posterior density of θ at parameter

vector θ
(t)

σ2,cand
AE

, that is the vector of the parameters’ values at iteration t

replacing the value of the parameter σ2(t)

AE with σ2,cand
AE ;

10.c evaluate c.d.p.dold the complete-data posterior density of θ at parameter

vector θ(t);

10.d sample a value from a Uniform distribution, U(0, 1)

10.e accept the candidate draw σ2,cand
AE if the value of the following ratio:

rr =
c.d.p.dcand
c.d.p.dold

·
dT N [a,b](σ

2(t)

AE , µ = σ2,cand
AE − ω · σMH , σ

2
MH)

dT N [a,b](σ
2,cand
AE , µ = σ2(t)

AE − ω · σMH , σ2
MH)

is strictly less than the value sampled at step 10.d. Where ω =
φ(a)− φ(b)

Φ(b)− Φ(a)
,

dT N [a,b] is the density function of the truncated normal distribution in [a,b].

We repeat steps 10.a-10.e also for σ2(t+1)

1,OC .
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1.9.3 Sensitivity analyses

Sensitivity analysis w.r.t. Assumption 3 (Monotonicity of enrolment)

Assumption 3 of Monotonicity of enrolment allows to rule out the existence of OFA

defiers principal stratum. In order to show the plausibility of this assumption we

conduct a sensitivity analysis w.r.t. Assumption 3. In Bayesian analysis we can assess

the sensitivity of the results to the monotonicity assumption by examining how the

posterior distributions for the causal estimands change. Given the reduced sample size

we conduct a sensitivity analysis with respect to the monotonicity assumption using a

simplified setting where focus is on assess causal effects of OFA on the career indicator,

C. Table 1.6 and Figure 1.3 respectively show posterior medians and 95% posterior

credible intervals for the causal estimands of interest and the posterior distribution of the

Survivor Average Causal Effects (SACEs) on students’ academic career, SACEUs0 (C),

with and without the monotonicity assumption. Results appear to be robust with respect

to the monotonicity assumption. Both analyses suggest that most students are either

always-enrolled or never-enrolled students: there are more than 56% always-enrolled

students and more than 43% of never-enrolled students. The posterior median of the

proportion of OFA compliers is approximately zero. The probability that there are

OFA compliers is about 34.2% without monotonicity and 47.9% with monotonicity. In

absence of monotonicity the posterior median of the proportion of OFA defiers is also

approximately zero and probability that there are OFA defiers is less than 5%. The

estimate of the Survivor average causal effect is approximately equal to 5.4%, with a

standard deviation of 0.059, in absence of monotonicity and to 5.5%, with a standard

deviation of 0.067 under monotonicity. In both scenarios the posterior probability that

SACE is positive, that is, that not receiving OFA increases the probability of being an

active student, is approximately 80% and the posterior distributions of SACE with and

without monotonicity look very similar.

Sensitivity analysis w.r.t. prior specifications for σ2
AE and σ2

1,OC

We assess the sensitivity of the results with respect to the Scaled-Inverse-χ2 prior

distributions for the parameters σ2
AE and σ2

1,OC of the truncated log-normal distributions

of ỸG by repeating the analysis using the following uninformative prior distributions:

p(σ2
AE) ∝ 1/σ2

AE and p(σ2
1,OC) ∝ 1/σ2

1,OC Tables 1.7 and 1.8 show the posterior medians

and 95% posterior credible intervals (PCIs) of the posterior distributions of the principal

strata proportions and of the causal estimands under monotonicity (Assumption 3)

obtained using these priors. Results obtained are in line with those obtained using the

Scaled-Inverse-χ2 prior distribution for the variance parameter, σ2
e . The comparison

between Tables 4 and 5 in the main text and Tables 1.7 and 1.8 suggests that our

findings are robust with respect to the specification of the prior distribution for the

parameters σ2
AE and σ2

1,OC : the results change only slightly under the two alternative

prior specifications.
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Table 1.1: Posterior probabilities of zero mean differences between groups of test
participants defined by the OFA status.

Bandwidth
h = 2.0 h = 2.5 h = 3.0 h = 3.5 h = 4.0

Covariate (sample size) (n = 297) (n = 365) (n = 434) (n = 498) (n = 571)
Gender 0.901 0.886 0.902 0.901 0.898
High school Year 0.301 0.378 0.205 0.274 0.393
(2011 vs <2011)
Irregular career 0.871 0.898 0.872 0.893 0.905
High school type (Baseline: Other)

Humanity 0.884 0.867 0.849 0.883 0.898
Science 0.454 0.375 0.116 0.163 0.100
Tech 0.884 0.867 0.849 0.883 0.898

High school Grade 0.908 0.926 0.892 0.880 0.796
Far-away resident 0.890 0.885 0.871 0.897 0.890

Table 1.2: Means for the sub-populations Us0 , of the observed post treatment variables
E, C, YUC and YG grouped by the OFA status Zi.

Variables Zi = 1 Zi = 0
Eobs 0.613 0.514
Cobs 0.714 0.625
Y obs
UC 22.588 19.159
Y obs
G 22.322 21.869
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Table 1.3: Observed strata defined by the observed OFA status, Z, the observed status,
Eobs, and the observed academic career status, Cobs, and corresponding latent principal
strata (under Assumption 1.3). Symbol ∗ denotes that post treatment variable is
truncated by the career status.

(Zi, E
obs
i , Cobs

i ) Y obs
i,UC Y obs

i,G Principal Strata

(0, 0, ∗) ∗ ∗ OC∗0 or OC∗1 or NE∗∗
(0, 1, 0) 0 ∗ AE00 or AE01

(0, 1, 1) > 0 ∈ [18, 30] AE11 or AE10

(1, 0, ∗) ∗ ∗ NE∗∗
(1, 1, 0) 0 ∗ AE00 or AE10 or OC∗0
(1, 1, 1) > 0 ∈ [18, 30] AE11 or AE01 or OC∗1

Table 1.4: Posterior median and 95% Posterior Credible Interval (PCI) based on the
quantiles of the posterior distributions of the proportions of principal strata defined
by Ei and by (Ei, Ci) (left panel); and the proportions of principal strata defined by
Ci among always-enrolled students (Ei = AE) and among OFA compliers (Ei = OC)
(right panel).

Principal Stratum 50% 2.5% 97.5% Principal Stratum 50% 2.5% 97.5%
NE∗∗ 0.419 0.392 0.430
AE 0.471 0.315 0.545
AE00 0.055 0.022 0.112 00 | AE 0.122 0.044 0.246
AE01 0.121 0.063 0.156 01 | AE 0.257 0.176 0.321
AE10 0.088 0.033 0.123 10 | AE 0.188 0.085 0.246
AE11 0.200 0.134 0.249 11 | AE 0.431 0.376 0.490
OC 0.110 0.030 0.282
OC∗0 0.033 0.011 0.079 ∗0 | OC 0.289 0.184 0.458
OC∗1 0.077 0.019 0.205 ∗1 | OC 0.711 0.542 0.816

Table 1.5: Posterior median and 95% Posterior credible interval (PCI) based on the
quantiles of the posterior distribution of survivor average causal effects of OFA on:
Enrolment (E), Career status (C), University Credits (UC) and average Grade (G).

Causal effect 50% 2.5% 97.5%
ACEUs0 (E) 0.110 0.030 0.282
SACEUs0 (C) 0.033 -0.003 0.071
SACEUs0 (UC) 1.634 -7.378 10.614
SACEUs0 (UC | AE11) 3.137 -14.848 22.414
SACEUs0 (G) 0.410 -2.000 2.420
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Figure 1.1: Histogram of the posterior distributions of SACEUs0 (UC | AE11),
SACEUs0 (G) and SACEUs0 (UC) and corresponding posterior densities (derived us-
ing a kernel smoothing).
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Figure 1.2: Simulation scatterplot of the joint posterior distribution of
SACEUs0 (UC | AE11) and SACEUs0 (G).
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Table 1.6: Posterior median, 95% Posterior Credible Interval (PCI) based on the quantiles
of the posterior distributions of the proportions of principal strata defined by Ei and of
SACEUs0 (C): without monotonicity (left panel) and with monotonicity (right panel)

Without Monotonicity With Monotonicity
Principal Stratum 50% 2.5% 97.5% 50% 2.5% 97.5%
AE 0.567 0.490 0.567 0.567 0.485 0.567
NE 0.433 0.373 0.433 0.433 0.370 0.433
OC 0.000 0.000 0.132 0.000 0.000 0.142
OD 0.000 0.000 0.008
SACEUs0 (C) 0.053 -0.065 0.175 0.053 -0.069 0.213
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Figure 1.3: Posterior distributions of the Survivor Average Causal Effect on students’ aca-
demic career (SACEUs0 (C)) with (solid line) and without (dashed line) the monotonicity
assumption.

Table 1.7: Results of sensitivity analysis w.r.t. prior specification for σAE and σOC∗1 .
Posterior median and 95% Posterior Credible Interval (PCI) based on the quantiles
of the posterior distributions of the proportions of principal strata defined by Ei and
by (Ei, Ci) (left panel); and the proportions of principal strata defined by Ci among
always-enrolled students (Ei = AE) and among OFA compliers (Ei = OC) (right panel).

Principal Stratum 50% 2.5% 97.5% Principal Stratum 50% 2.5% 97.5%
NE∗∗ 0.419 0.392 0.433
AE 0.479 0.323 0.556
AE00 0.052 0.019 0.112 00 | AE 0.111 0.041 0.241
AE01 0.126 0.071 0.162 01 | AE 0.265 0.183 0.325
AE10 0.090 0.044 0.129 10 | AE 0.192 0.105 0.246
AE11 0.205 0.134 0.252 11 | AE 0.432 0.378 0.48
OC 0.104 0.019 0.271
OC∗0 0.030 0.008 0.077 ∗0 | OC 0.291 0.143 0.500
OC∗1 0.071 0.014 0.200 ∗1 | OC 0.709 0.500 0.857

Table 1.8: Results of sensitivity analysis w.r.t. prior specification for σAE and σOC∗1 .
Posterior median and 95% Posterior credible interval (PCI) based on the quantiles of
the posterior distribution of survivor average causal effects of OFA on: Enrolment (E),
Career status (C), University Credits (UC) and average Grade (G).

Causal effect 50% 2.5% 97.5%
ACEUs0 (E) 0.104 0.019 0.271
SACEUs0 (C) 0.036 -0.003 0.071
SACEUs0 (UC) 0.292 -9.365 8.938
SACEUs0 (UC | AE11) 0.714 -17.359 19.548
SACEUs0 (G) 0.713 -1.742 2.834





Chapter 2

The role of prior knowledge and numerical

information in communicating epidemiological

results to the population

A Bayesian Principal Stratification approach

Key words: Epidemiological results, Risk index, Causal effect, Principal Stratification,

Bayesian Inference.

2.1 Introduction

The communication of the risk is important in every field: from marketing to medicine.

The format used to communicate the risk is itself important. In the medical field, recent

literature investigates about which measures of risk are more easily understandable to

also less expert people, and thus which measures might be preferable to use for presenting

results on risk studies (e.g. Akl et al., 2011; Zipkin et al., 2014)

In this work we contribute to the existing literature on risk communication by analyzing

data from a study on the communication of epidemiological results to the population,

conducted in the high environmental risk area of Livorno, in the center of Italy. In the

study, to which we refer to, from now on, as “the Livorno study”, a random sample of

residents in the area of Livorno was randomized to respond to different questionnaires, in

which the same epidemiological results on cancer mortality were expressed by two alterna-

tive risk indexes: % excess risk (% ER) and time needed to harm (TNH) (Farinella et al.,

2017). The objective of the study was to investigate whether residents’ concern about the

occurrence of specific health outcomes was influenced by the statistical indicator used to

communicate the associated epidemiological results. Individuals’ degree of concern was

measured using a quantitative scale ranging from 1 to 10, where 1 means no troubled

and 10 means extremely troubled. Additionally, the participants were asked to rank

mortalities from three types of cancers (Sexual Glands Cancer, SGC, Thyroid Gland

Cancer, TGC, Lung Cancer, LC) from the most to the least alarming one (see Farinella

et al., 2017, for details on the questionnariares and the study design ). Baccini et al.

(2019) previously analyzed these data finding that (i) the probability of a high degree of

39
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concern was larger under TNH than under %ER; and (ii) people perceived mortality

from sexual glands cancer as more alarming and mortality from thyroid gland cancer as

less alarming under TNH than under %ER, whereas the use of the two alternative risk

indexes did not impact the rank assigned to lung cancer.

In this work we further investigate the role of the two alternative statistical indicators

by analyzing the mechanisms by which they affected individuals’ reactions. Specifically,

we are interested in understanding whether the two alternative risk indexes affected

individuals’ concern degree differently depending on the answer behaviours that is,

whether individuals’ answers were mainly driven either by the communicated numeri-

cal/statistical information or by his/her a-priori knowledge about the the diseases and

the environmental risk in the area of Livorno. In order to address this issue we take

advantage of a closed-ended question introduced in the questionnaire to get information

about the answer behaviour, asking the participant to auto-report the main driving

factor of his/her response to the previous items: communicated numbers or a priori

knowledge.

We frame our discussion within the potential outcome approach to casual inference,

viewing the type of risk index as the treatment variable. From this perspective, our

focus is on studying whether treatment effects on individuals’ degree of concern are het-

erogeneous with respect to the individuals’ answer behaviour. Because the auto-reported

answer behaviour is a post-treatment variable, which may be affected by the treatment,

we cannot conditioning on the observed value of the individuals’ answer behaviour. We

deal with this issue using the principal stratification framework (Frangakis and Rubin,

2002) under which the quantities of interest are principal causal effects. In our case, the

principal causal effects are causal effects for latent sub-populations of units defined by

joint values of individuals’ answer behaviour under the two risk indexes. For inference

we use a Bayesian model-based approach (Rubin, 1978).

The work is organized as follows. Section 2.2 we present the Livorno study. In Section

2.3 we re-formulate the research question of the Livorno study as a causal inference

problem introducing the basic concepts of the potential outcome approach in the context

of our study. In Section 2.4 we define the principal stratification of units with respect

to the auto-reported answer behaviour and the principal causal effects of interest. In

Section 2.5 we display Bayesian models to conduct causal inference. We then conclude

presenting the results in Section 2.6 and some general observations in Section 2.7.

2.2 The Livorno study

The data come from a randomized experiment conducted on a sample of residents in the

area of Livorno, an italian city located on the western coast of Tuscany. Livorno and

the neighbouring municipality of Collesalvetti are classified as a high-risk environmental

site according to the Seveso Directive (82/501/EC, 96/82/EC) due to the presence of a

commercial harbour and several petrochemical plants producing high levels of pollution.

The size of the respondents is 319. Participants are randomly assigned to reply to
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different questionnaires, where two alternative risk indexes are used to communicate the

same epidemiological results concerning the health profile of the Livorno-Collesalvetti

population between 2001 and 2006. The risk indexes used are: the percentage of excess

of risk of death in Livorno-Collesalvetti in respect to Tuscany, %ER = 100 ∗ (O−E)/E,

where O is the observed number of deaths from a specific cause in the area during the

period of interest, and E is the corresponding expected number of deaths, calculated

according to the regional rates by age, gender and deprivation level; and the time needed

to harm (TNH), i.e. the number of days one has wait on average to observe 1 death in

excess in the Livorno area, taking Tuscany as the reference area, TNH = N/(O − E),

where N is the total number of days in the period of interest. It is worth noting that

the two risk indexes provide the same information when coupled with the total number

of deaths, but %ER, represents a relative measure of excess, while TNH is an absolute

measure of excess.

Let Zi denote the indicator of questionnaire/risk index assigned to person i, i = 1, . . . , n,

n = 319. For each person i the questionnaire collects information on a set of background

characteristics, Xi, including numerical skills, age, gender and smoking behaviour, and

on the two following variables about the individual concern:

• The degree of concern about mortality measured on a quantitative scale ranging

form 1 to 10. Here we will consider a binary version of this variable. Specifically

let YDi be the binary variable taking on value 1 if the degree of concern about

mortality is larger than 5 and 0 otherwise (see Baccini et al., 2019, for a sensitivity

analysis with respect to the choice of the cutoff point).

• A categorical variable, Yclassi , with six categories, corresponding to the six possible

alarm-based rankings (1st, 2nd, 3rd) of the following three cancers: sexual glands can-

cer (SGC), thyroid gland cancer (TGC) and lung cancer (LC). We use the follow-

ing labels: Yclassi = y, with y ∈ Y = {1, 2, 3, 4, 5, 6} where 1 = (SGC, TGC,LC),

2 = (SGC,LC, TGC), 3 = (TGC, SGC,LC), 4 = (TGC,LC, SGC), and for the

last two categories 5 = (LC, SGC, TGC), 6 = (LC, TGC, SGC)}. For instance, if

a participant considers SGC as the most alarming cancer and LC as the least alarm-

ing cancer, and thus ranks TGC in the second position in the alarm classification,

then (1st, 2nd, 3rd) = (SGC, TGC,LC), and Yclassi = 1.

Finally, let Wi denote a binary variable equal to 1 if participant i replies that s/he

answered to the questions about the level of concern on the basis of the communicated

epidemiological results and 0 if s/he replies that s/he answered on the basis of her/his a

priori knowledge/experience about either diseases or pollution in the resident area. We

refer to this variable as the data-based-answer indicator.

2.3 The Livorno study as a causal study

The aim of the study is to evaluate whether the communication of the epidemiologi-

cal results using %ER-risk index versus TNH-risk index affects individuals’ response
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behaviour, represented by the data-based-answer indicator W , and risk perception as

measured by YD and Yclass, and investigating whether the effect on YD and Yclass are

heterogeneous with respect to W . We propose to reach these goals by re-formulating our

research questions as a causal inference problem, where the indicator of the risk index

used in the questionnaire, Z, is viewed as treatment variable and using the principal

stratification framework to properly define causal effects adjusted for the post-treatment

answer behaviour, W . According to the potential outcome approach (e.g. Rubin, 1974,

1978), we define potential outcomes for each post-treatment variable. Under the Stable

Unit Treatment Value Assumption (SUTVA, Rubin, 1980), for each unit there exist

two potential outcomes for each post-treatment variables: Wi(%ER) and Wi(TNH);

YDi(%ER) and YDi(TNH); and Yclassi(%ER) and Yclassi(TNH), which are the values

of Wi, YDi and Yclassi that, possibly contrary to facts, would have been observed for unit

i under %ER-risk and TNH-risk, respectively.

We investigate whether the use of %ER-risk index versus TNH-risk index affects W , YD
and Yclass focusing on the following causal estimands:

τW = E[Wi(%ER)−Wi(TNH)] = Pr(Wi(%ER) = 1)− Pr(Wi(TNH) = 1), (2.1)

τYD = E[YDi(%ER)− YDi(TNH)] = Pr(YDi(%ER) = 1)− Pr(YDi(TNH) = 1), (2.2)

τYclass(A) = Pr(Yclassi(%ER) ∈ A)− Pr(Yclassi(TNH) ∈ A), (2.3)

where A is a non empty subset of the power set of Y = {1, 2, 3, 4, 5, 6}. We, also, denote

with ASGC := {1, 2}, ATGC := {3, 4} and with ALC := {5, 6} three of the possible empty

subsets of Y = {1, 2, 3, 4, 5, 6}.
For instance, the lung cancer is classified as the most alarming cause of death if

Yclassi ∈ ALC therefore τYclass(ALC) is the causal effect of the %ER versus TNH risk

index on the classification of lung cancer as the most alarming cause of death.

For any individual, only one of the two potential outcomes is observed, depending on

the questionnaire the individual is assigned to. Let:

W obs
i = Wi(%ER)I{Zi = %ER}+Wi(TNH)I{Zi = TNH}

Y obs
Di

= YDi(%ER)I{Zi = %ER}+ YDi(TNH)I{Zi = TNH}
Y obs
classi

= Yclassi(%ER)I{Zi = %ER}+ Yclassi(TNH)I{Zi = TNH}

denote the observed variables. Being the type of questionnaire/risk index randomly as-

signed, treatment assignment does not depend on either potential outcomes or covariates,

and simple comparisons of the observed groups defined by type of risk index provide

valid estimates of the causal estimands in Equations (2.1), (2.2) and (2.3). Tables 2.1

and 2.2 present some summary statistics for the sample of 319 individuals included in

the Livorno study, grouped by risk index type, Zi (Table 2.1), and data-based-answer

indicator W obs
i (Table 2.2). As we can see in Table 2.1 the overall mean of the observed

outcome Y obs
Di

is around 92%, indicating that around 92% of the respondents show a

degree of concern about mortality larger than 5. Columns 2 and 3 in Table 2.1 provide
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simple moment-based estimates of the quantities in Equations (2.1), (2.2) and (2.3).

Thus, the difference between the observed percentages of Y obs
Di

under %ER and TNH is

negative and lower than 7%.

Moreover simple moment-based estimates of the quantities in Equations (2.3) for

A = ASGC , ATGC , ALC suggest that τYclass(ASGC) is negative and higher, in abso-

lute value, than 16%; τYclass(ATGC) is positive and around the 13%; τYclass(ALC) is

positive and equal to 3%.

2.4 Principal stratification w.r.t. data-based-answer indicator

In order to better understand the mutual role of risk index and prior knowledge in

affecting the participants’ answers, it is worthwhile to investigate the heterogeneity of

the effects on risk perception with respect to the response behaviour identified by the

data-based-answer indicator, W . Because the indicator W may be affected by the type of

risk index used in communication, we deal with this issue using the principal stratification

framework (Frangakis and Rubin, 2002). The (basic) principal stratification with respect

to the indicator W cross-classifies subjects into four latent groups, named principal

strata, defined by the joint potential values of W , (Wi(%ER),Wi(TNH)). Formally,

individuals can be grouped into the following four latent groups:

• Never Empirical: NE ≡ {i : Wi(%ER) = Wi(TNH) = 0}, participants who would

never answer on the bases of the communicated data irrespective of the type of

risk-index:

• Always Empirical: AE ≡ {i : Wi(%ER) = Wi(TNH) = 1}, participants who would

always answer on the bases of the communicated data irrespective of the type of

risk-index

• Confident with %ER-risk index: C%ER ≡ {i : Wi(%ER) = 1,Wi(TNH) = 0},
participants who would answer on the bases of the communicated data under the

%ER-risk index, but who would not answer on the bases of the communicated

data under the TNH-risk index

• Confident with TNH-risk index: CTNH ≡ {i : Wi(%ER) = 0,Wi(TNH) = 1},
participants who would answer on the bases of the communicated data under the

TNH-risk index, but who would not answer on the bases of the communicated

data under the %ER-risk index

Let Gi ∈ PS := {NE,AE,C%ER, CTNH} denote the principal stratum membership.

Principal Strata are not affected by treatment assignment, therefore, we can define

causal effects conditional on the principal strata, known as principal causal effects:

τ gYD = E[YDi(%ER)− YDi(TNH) | Gi = g] (2.4)

= Pr(YDi(%ER) = 1 | Gi = g)− Pr(YDi(TNH) = 1 | Gi = g),
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τ gYclass(A) = Pr(Yclassi(%ER) ∈ A | Gi = g)− Pr(Yclassi(TNH) ∈ A | Gi = g), (2.5)

for g ∈ PS = {NE,AE,C%ER, CTNH}.
It is worth noting that the causal effect on the data-based-answer indicator in Equa-

tion (2.1) can be re-written as difference between the probability of being confident

with %ER-risk index and the probability of being confident with TNH-risk index:

τW = Pr(Gi = C%ER)− Pr(Gi = CTNH).

Moreover, the causal effects on τYD and τYclass in Equations (2.2) and Equation (2.3)

can be re-written as weighted average of principal causal effects in Equations (2.4) and

Equation (2.5) with weights the principal stratum proportions:

τYD =
∑
g∈PS

τ gYD Pr(Gi = g) and τYclass(A) =
∑
g∈PS

τ gYclass(A) Pr(Gi = g).

The principal stratification framework makes it clear that only for the AE group, com-

prising subjects who would always answer using the epidemiological results irrespective

of whether they are communicated in terms of %ER or TNH, we can hope to learn

something about the causal effect of the type of risk index on risk perception. For the

C%ER and CTNH groups, causal effects on risk perception, YD and Yclass, are completely

confounded with causal effects on W , and NE individuals never answer using the epi-

demiological results irrespective of whether they are communicated in terms of %ER or

TNH.

We can reasonably expect that causal effects of risk index on risk perception, as measured

by YD and Yclass, for NE are zero or negligible, so that, a type of exclusion restriction

for NE holds. Nevertheless we do not impose a priori this type of exclusion restriction.

2.5 Models

We adopt a Bayesian model-based approach to inference, where the potential outcomes

are viewed as random variables, some observed and some unobserved. Bayesian principal

stratification requires to specify two sets of models: (1) a statistical model for the

principal stratum membership (conditional on covariates); and (2) statistical models

for the potential outcomes of the main endpoints conditional on principal stratum

membership and covariates and a prior distribution (e.g. Imbens and Rubin, 1997).

We conduct two parallel distinct principal stratification analyses, one for the degree

of concern YD, and one for the ranking variable Yclass. It is worth noting that in

the questionnaires the question about whether the individual answers either using the

communicated epidemiological results or his/her a-priori knowledge/experience is related

to Yclass. Nevertheless it is reasonable to believe that an individual uses the same

criterion even when s/he answers the question about the degree of concern. Therefore

we conduct a principal stratification analysis for both outcomes, with W as intermediate

variable. We expect that the resulting classification of subjects into the four latent

groups, NE,AE,C%ER, CTNH, will be similar, with differences mainly due to sampling
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variability.

Principal Stratum Submodel

We specify conditional probit models for principal stratum membership Gi ∈ PS = {AE,

NE, C%ER, CTNH}, given the set of covariates Xi:

πi(AE) ≡ Pr(Gi = AE | Xi;θ) = Pr(G∗i (AE) ≤ 0 | Xi;θ),

πi(NE) ≡ Pr(Gi = NE | Xi;θ) = Pr(G∗i (AE) > 0, G∗i (NE) ≤ 0 | Xi;θ),

πi(CTNH) ≡ Pr(Gi = CTNH | Xi;θ) = Pr(G∗i (AE) > 0, G∗i (NE) > 0G∗i (CTNH) ≤ 0 | Xi;θ),

where

G∗i (g) = αg + X′iα
(X)
g + εi,g

are latent variables with εi,AE, εi,NE and εi,CTNH
independent random variable with

standard Normal distribution. Clearly, we have

πi(C%ER) ≡ Pr(Gi = C%ER | Xi;θ)

= 1− Pr(Gi = AE | S̃i,Xi;θ)− Pr(Gi = NE | Xi;θ)− Pr(Gi = CTNH | Xi;θ)

The prior distributions for the principal stratum submodel are αg ≡ [αg,α
(X)
g ] ∼ N (µ

αg
, σ2

αgI),

for g = AE,NE,CTNH, where µ
αg

are vector of zeros and σ2
αg are hyperparameters set

at 100.

Submodel for YD

For the submodel on YD, we use a probit specification, given principal stratum member-

ship and covariates:

πDi,zg ≡ Pr(YDi(z) = 1 | Gi = g,Xi;θ) = Pr(Y ∗Di(z) > 0 | Gi = g,Xi;θ)

where

Y ∗Di(z) = βzg + X′iβ
(X)
zg + εi,zg,

with εi,zg i.i.d. random variables with εi,zg ∼ N (0, 1), z = %ER, TNH, and g = NE,

AE, C%ER, CTNH. Because of the relative small sample size, in order to avoid imprecise

estimates, we assume equality of the slope coefficients: β(X) ≡ β
(X)
zg , for all pairs (z, g)

∈ {(%ER,NE), (TNH,NE), (%ER,AE), (TNH,AE), (%ER,C%ER), (TNH,C%ER),

(%ER,CTNH), (TNH,CTNH)}. We assume that the parameters of the degree of concern

submodel βzg, z = %ER, TNH, and g = NE,AE,C%ER, CTNH, and β(X) are a-priori

independent and independent of αg, g = NE,AE,C%ER, CTNH. Their prior distributions

are βzg ∼ N (µ
βzg
, σ2

βzg
); and β(X) ∼ N (µ

β(X) , σ
2
β(X)I), where µ

βzg
= 0 µ

β(X) is a vector

of zeros, and σ2
βzg

and σ2
β(X) are set at 100.
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Submodel for Yclass

We specify conditional probit models for Yclass, given principal stratum membership and

covariates,

πi,zg(1) ≡ Pr(Yclassi(z) = 1 | Gi = g,Xi;θ) = Pr(Y ∗,1classi
(z) ≤ 0 | Gi = g,Xi;θ),

and for the other categories j=2,3,4,5

πi,zg(j) ≡ Pr(Yclassi(z) = j |, Gi = g,Xi;θ)

=
∏
k<j

Pr(Y ∗,kclassi
(z) > 0 | Gi = g,Xi,θ)× Pr(Y ∗,jclassi

(z) ≤ 0 | Gi = g,Xi;θ),

where

Y ∗,jclassi
(z) = γ(j)

zg + X′i γ
(X,j)
zg + ε

(j)
i,zg, ε

(j)
i,zg ∼ i.i.d. N (0, 1),

for j = 1, 2 . . . , 5, z = %ER, TNH and g ∈ {NE,AE,C%ER, CTNH}, and

πi,zg(6) ≡ Pr(Yclassi(z) = 6 | Gi = g,Xi;θ) = 1−
5∑
j=1

Pr(Yclassi(z) = j | Gi = g,Xi;θ)

=
5∏
j=1

Pr(Y ∗,jclassi
(z) > 0 | Gi = g,Xi;θ).

We again assume equality of the slope coefficients: for j = 1, . . . , 5, γ(X,j) ≡ γ
(X,j)
zg , for all

couples (z, g) ∈ {(%ER,NE), (TNH,NE), (%ER,AE), (TNH,AE), (%ER,C%ER),

(TNH,C%ER), (%ER,CTNH), (TNH,CTNH)}. We assume that the parameters of the

rank submodel, γzg, z = %ER, TNH, and g = NE, AE, C%ER, CTNH, and γ(X,j),

j = 1, 2, 3, 4, 5, are a-priori independent and independent of αg, g = NE,AE,C%ER, CTNH.

Their prior distributions are γzg ∼ N (µ
γzg

, σ2
γzg); and γ(X,j) ∼ N (µ

γ(X,j) , σ
2
γ(X,j)I), where

µ
γzg

= 0 µ
γ(X,j) are vectors of zeros, and σ2

γzg and σ2
γ(X,j) are set at 100.

Posterior distributions are simulated from Markov chain Monte Carlo (MCMC) algo-

rithms, which involve Gibbs sampler steps and use the Data Augmentation (DA) method

of Tanner and Wong (1987) to impute at each iteration the missing principal stratum

membership. The chains are run for 10 000 iterations burning the first 2 000 iterations.

2.6 Results

We present a summary of the posterior distributions of the estimands defined in Equa-

tions (2.1), (2.2) and (2.4), (2.3) and (2.5). In Tables 2.3 and 2.4 we report the results

provided by the analysis on the outcome YD, in Table 2.5 and in Table 2.6 the results from

the analysis related to the outcome Yclass. For this last analysis we also report in Table

2.7 summary statistics of the posterior distributions of the estimands defined in Equa-

tions (2.3) and (2.5), for subsets Al1>l2 , where l1 6= l2, and l1, l2 ∈ {SGC, TGC,LC},e.g.

ASGC>TGC is defined by the categories y ∈ Y = {1 . . . 6} such that the rank assigned
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to SGC is greater than the rank assigned to TGC. In each table, we report posterior

median, 95% and 90% Posterior Credible Intervals (PCIs).

We first discuss the results from the principal stratification analysis for degree of concern,

YD. The proportion of principal strata (Column 2 Table 2.3) show that there exists

a high proportion of Never Empirical (NE) participants, suggesting that most of the

participants would not have answered to the questions relying on communicated data,

irrespective by the risk index type used.

Causal estimand τW provides information about the effect of the two alternative risk

indexes on the data-based answer indicator W . Its posterior median is −0.012 (Table 2.3,

Column 2), with PCI(95%)=(−0.052, 0.002) and PCI(90%)=(−0.044,−0.002) indicating

that the proportion of people that base their response about the level of concern on the

communicated data is slightly higher under TNH than under % ER, even if the PCIs

include the zero. The median of the posterior distribution of τYD is negative, −0.057,

suggesting that participants show more concern if TNH is used instead of %ER.

The causal effects are negative also within each principal stratum (see τ gYD , with g ∈ {AE,

NE, C%ER, CTNH}), but, if we exclude the AE-stratum, the PCIs are wide and include

the null hypothesis of no effect. In the AE-stratum the posterior median of the effect is

the highest, around 0.08; this value can be interpreted as the net effect of TNH versus

%ER.

Let consider now the results provided by the principal stratification analysis for Yclass.

The posterior median of τW is greater, in absolute value, than that one obtained by

the previous analysis on YD and the PCIs cover only negative values: it is −0.057 with

PCI(95%)=(−0.136,−0.015) and PCI(90%)=(−0.123,−0.021). This indicates that there

exists a difference in the data-based answer indicator Wi if one risk index is used instead

of an other. In particular, the proportion of people that base their response on the

communicated data is higher under TNH than under %ER.

Column 2 of Table 2.5 shows the posterior median of the estimands τYclass(Al) for

l ∈ {SGC, TGC,LC}. We can observe that the posterior median of τYclass(ASGC) is

negative and that of τYclass(ATGC) is positive, both with PCIs that do not include the

zero (τYclass(ATGC) = 0.120, τYclass(ALC) = 0.028 ). The posterior median of τYclass(ALC)

is positive, but with PCI including zero.

Let focus now on the principal causal effect for the AE-stratum which we remind to

be the stratum who allows us to learn about the causal effect of the risk index on the

ranking assigned to the three causes of death (Table 2.6 Column 2). The posterior

distribution of τAE
Yclass

(ALC) seems to indicate that there is no effect of the indicator of

the risk index, Z, on the probability of assigning rank 1 to LC. On the contrary, there is

an effect of the risk index indicator on the probability of indicating SGC and TGC as

the most alarming causes of death, as shown by the PCIs estimated for τAE
Yclass

(ASGC)

and τAE
Yclass

(ATGC). In particular, the probability of assigning rank 1 to SGC is higher

under TNH than under %ER. Viceversa for TGC.

Finally, let consider the subsets Al1>l2 which define the all possible comparisons between

ranks of two of the three types of cancers. Table 2.7 shows summary statistics of
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the posterior distributions of the causal effects τ
Yclass

(Al1>l2). Specifically, first rows of

Column 2 report the posterior median of the expected values under Z = %ER and

Z = TNH, respectively. Results suggest that participants consider as more alarming LC

than SGC or TGC under both types of risk index, this explains the posterior medians

of τ
Yclass

(ALC>SGC) and τ
Yclass

(ALC>TGC) lower than the others. The τ
Yclass

(ALC>SGC) is

positive, around 0.059, with PCI including the zero, suggesting an higher probability of

zero effect of the risk index used on communicating data, irrespective by which one of

the two types. The τ
Yclass

(ALC>TGC) is negative, −0.077. The PCIs in this case suggest

an effect of the risk index used, on communicating data: PCI(95%)=(−0.159, 0.004)

with the upper limit close to zero, but with the ∼ 97% of values of the posterior for

τ
Yclass

(ALC>TGC) lower than zero.

Considering the others posterior medians of the probabilities (Table 2.7), we can con-

clude that after LC, the classification keeps the SGC as more alarming than TGC,

Pr(Yclassi(%ER) ∈ ASGC>TGC) and Pr(Yclassi(TNH) ∈ ASGC>TGC) are both higher than

the 50%; τ
Yclass

(ASGC>TGC) is negative, −0.088. The PCIs also in this case suggest an

effect of the risk index used, on ranking SGC as more alarming cause of death than

TGC.

According the posterior distribution of the rank assigned to the three causes of death

under TNH and %ER, which can be derived from the posterior distribution of Yclass,

we obtain the corresponding Cumulatives Rankograms (CRks) (Figure 2.1). The CRk

for a specific cancer l represents the probability that cancer l is classified among the k

most worrisome ones, where k ranges from one to three. For each CRk, we calculate

also the surface under it, so called SUCRA Salanti et al. (2011), which can also be

interpreted as the average proportion of cancers classified as least alarming than cancer l.

Thus, a value of SUCRA(l) equal to one means cancer l always ranks first. Table 2.8

reports posterior median and PCIs for the three SUCRAs under both treatment arms.

SUCRA(LC) posterior median is around 75% under both treatment arms, suggesting

that LC has high probability to be classified as the most alarming cause of deaths among

the three types of cancer. Figure 2.1 shows the same conclusion graphically: the CRk

of LC (black curve) is above the others under both treatment arms. Considering the

CRk(SGC) (red curve) and the CRk(TGC) (green curve), they switch under %ER after

rank 2, suggesting that the rank of SGC and TGC as 2nd or 3rd vary if one risk index is

used instead an other.

2.7 Conclusions

In this work we explore the role of the numerical format in communicating epidemiologi-

cal results to the population and its relationship with the a priori knowledge.

Motivated by “the Livorno study” we address our aim by re-formulating it as a problem

of causal inference, using the principal stratification approach within the potential

outcome framework.

The causal effects of using different risk indexes on the level of concern of the respondents,
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YD, and on the ranking assigned to three diseases, Yclass, may be confounded with the

causal effect on the “response behaviour” as identified by the indicator W . For this

reason we define four principal strata with respect to the couple of potential outcomes of

the indicator W : Never Empirical (NE), Always Empirical (AE), Confident with %ER

risk index (C%ER) and Confident with TNH risk index (CTNH) strata, which identify

four potential profile of individuals as the related names well describe.

The AE-stratum is then identified as the only stratum from which we can learn about

the effect of the relative effect of the two risk indicators.

In fact, individuals belonging to AE-stratum look at communicated data irrespective of

the numerical format of the communicated results, therefore in this stratum the causal

effects on YD and Yclass are not confounded with the causal effect on response behaviour,

W .

The results show that the highest proportion of persons, ∼ 63 − 69% (percentage of

persons belonging to the NE-stratum) do not consider numbers in any form, around 25%

(percentage of persons belonging to the AE-stratum) of them answer on the basis of the

reported results. Focusing on those persons who always look at communicated data, i.e.

AE persons, the two indicators, %ER and TNH risk index, induced different levels of

concern and different ranking. These results raises issues which are important in the

prospective of facilitating public health communication and promoting equal access to

information across society.
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Table 2.1: Livorno study: Means/Prevalences for the sample and classified by risk
index, Zi.

Variables All Zi = %ER Zi = TNH
(n = 319)

Risk index (Zi = TNH) 0.498 0.502
Data-based-answer indicator (W obs

i ) 0.313 0.352 0.275
Background variables
Age 51.091 51.176 51.006
Gender (Male) 0.495 0.516 0.475
Smoking behaviour

No smoker 0.571 0.553 0.588
Ex smoker 0.223 0.220 0.225
Smoker 0.207 0.226 0.188

Numerical skills 0.790 0.767 0.812
Outcome variables
Degree of concern (Y obs

D ) 0.917 0.885 0.949
Rank (Yclass)

1 = (SGC,TGC,LC) 0.041 0.013 0.069
2 = (SGC,LC,TGC) 0.135 0.082 0.188
3 = (TGC, SGC,LC) 0.088 0.132 0.044
4 = (TGC,LC, SGC) 0.091 0.113 0.069
5 = (LC, SGC,TGC) 0.367 0.403 0.331
6 = (LC,TGC, SGC) 0.279 0.258 0.300

Table 2.2: Livorno study: Means/Prevalences for the sample grouped by risk index, Zi,
and observed data-based-answer indicator, W obs

i .
Zi = %ER Zi = TNH

Variables W obs
i = 0 W obs

i = 1 W obs
i = 0 W obs

i = 1
(n = 319)

Data-based-answer indicator (W obs
i ) 0.645 0.352 0.725 0.275

Background variables
Age 52.427 48.875 52.526 47.000
Gender (Male) 0.505 0.536 0.491 0.432
Smoking behaviour

No smoker 0.592 0.482 0.534 0.727
Ex smoker 0.175 0.304 0.250 0.159
Smoker 0.233 0.214 0.216 0.114

Numerical skills 0.728 0.839 0.802 0.841
Outcome variables
Degree of concern (Y obs

D ) 0.893 0.821 0.905 0.977
Rank (Yclass)

1 = (SGC,TGC,LC) 0.013 0.000 0.031 0.038
2 = (SGC,LC,TGC) 0.057 0.025 0.062 0.125
3 = (TGC, SGC,LC) 0.019 0.113 0.031 0.012
4 = (TGC,LC, SGC) 0.063 0.050 0.031 0.038
5 = (LC, SGC,TGC) 0.296 0.107 0.300 0.031
6 = (LC,TGC, SGC) 0.201 0.057 0.269 0.031
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Table 2.3: Summary statistics of the posterior distributions of estimands for YD: Posterior
Median, 95% and 90% Posterior Credible Intervals (PCIs)

ESTIMANDS 50% PCI(95%) PCI(90%)

Pr(Gi = AE) 0.286 (0.234, 0.338) (0.243, 0.320)
Pr(Gi = NE) 0.690 (0.631, 0.740) (0.641, 0.723)
Pr(Gi = C%ER) 0.003 (0.000, 0.019) (0.000, 0.013)
Pr(Gi = CTNH) 0.015 (0.000, 0.066) (0.001, 0.043)
τW −0.012 (−0.052, 0.002) (−0.044,−0.002)
τYD −0.057 (−0.125, 0.001) (−0.114,−0.008)

Table 2.4: Summary statistics of the posterior distributions of principal causal effects
for YD: Posterior Median, 95% and 90% Posterior Credible Intervals (PCIs)

ESTIMANDS 50% C.I(95%) C.I(90%)

τAE
YD

−0.079 (−0.191, 0.000) (−0.171,−0.011)
τNE
YD

−0.034 (−0.109, 0.042) (−0.096, 0.015)
τ%ER

YD
−0.029 (−1.000, 0.883) (−1.000, 0.717)

τTNH
YD

−0.026 (−1.000, 0.869) (−1.000, 0.704)

Table 2.5: Summary statistics of the posterior distributions of estimands for Yclass:
Posterior Median, 95% and 90% Posterior Credible Intervals (PCIs)

ESTIMANDS 50% PCI(95%) PCI(90%)

Pr(Gi = AE) 0.253 (0.187, 0.310) (0.197, 0.300)
Pr(Gi = NE) 0.634 (0.560, 0.696) (0.572, 0.686)
Pr(Gi = C%ER) 0.026 (0.011, 0.049) (0.013, 0.045)
Pr(Gi = CTNH) 0.082 (0.038, 0.173) (0.043, 0.158)
τW −0.057 (−0.136,−0.015) (−0.123,−0.021)
τYclass(ASGC) −0.148 (−0.226,−0.072) (−0.212,−0.084)
τYclass(ATGC) 0.120 (0.046, 0.195) (0.059, 0.184)
τYclass(ALC) 0.028 (−0.064, 0.118) (−0.048, 0.102)
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Table 2.6: Summary statistics of the posterior distributions of principal causal effects
related to Yclass: Posterior Median, 95% and 90% Posterior Credible Intervals (PCIs)

ESTIMANDS 50% PCI(95%) PCI(90%)

τAE
Yclass

(ASGC) −0.627 (−0.784,−0.442) (−0.761,−0.474)
τNE
Yclass

(ASGC) −0.035 (−0.136, 0.062) (−0.119, 0.045)
τ%ER

Yclass
(ASGC) 0.882 (0.153, 1.000) (0.237, 1.000)

τTNH
Yclass

(ASGC) 0.158 (−0.451, 0.543) (−0.318, 0.481)

τAE
Yclass

(ATGC) 0.49 (0.250, 0.937) (0.29, 0.892)
τNE
Yclass

(ATGC) 0.091 (0.011, 0.161) (0.024, 0.15)
τ%ER

Yclass
(ATGC) −0.797 (−1.000,−0.07) (−1.000,−0.143)

τTNH
Yclass

(ATGC) −0.496 (−0.993,−0.027) (−0.948,−0.135)

τAE
YLC

0.127 (−0.269, 0.348) (−0.198, 0.318)
τNE
YLC

−0.054 (−0.166, 0.061) (−0.147, 0.042)
τ%ER

YLC
0.000 (−0.745, 0.100) (−0.623, 0.044)

τTNH
YLC

0.399 (−0.167, 0.964) (−0.084, 0.828)

Table 2.7: Summary statistics for estimands Pr(Yclassi(%ER) ∈ Al1>l2),
Pr(Yclassi(TNH) ∈ Al1>l2) τYclass (Al1>l2), with l1 6= l2, l1, l2 ∈ {SGC, TGC,LC}: Poste-
rior Median, 95% and 90% Posterior Credible Intervals (PCIs) .

ESTIMANDS 50% PCI(95%) PCI(90%)

Pr(Yclassi(%ER) ∈ ALC>SGC) 0.752 (0.686, 0.810) (0.698, 0.802)
Pr(Yclassi(%ER) ∈ ALC>TGC) 0.735 (0.673, 0.797) (0.683, 0.787)
Pr(Yclassi(%ER) ∈ ASGC>LC) 0.248 (0.19, 0.314) (0.198, 0.302)
Pr(Yclassi(%ER) ∈ ASGC>TGC) 0.502 (0.432, 0.578) (0.443, 0.566)
Pr(Yclassi(%ER) ∈ ATGC>SGC) 0.498 (0.422, 0.568) (0.434, 0.557)
Pr(Yclassi(%ER) ∈ ATGC>LC) 0.265 (0.203, 0.327) (0.213, 0.317)

Pr(Yclassi(TNH) ∈ ALC>SGC) 0.692 (0.628, 0.752) (0.637, 0.742)
Pr(Yclassi(TNH) ∈ ALC>TGC) 0.814 (0.752, 0.868) (0.763, 0.859)
Pr(Yclassi(TNH) ∈ ASGC>LC) 0.308 (0.248, 0.372) (0.258, 0.363)
Pr(Yclassi(TNH) ∈ ASGC>TGC) 0.591 (0.516, 0.663) (0.527, 0.652)
Pr(Yclassi(TNH) ∈ ATGC>LC) 0.409 (0.337, 0.484) (0.348, 0.473)
Pr(Yclassi(TNH) ∈ ATGC>SGC) 0.186 (0.132, 0.248) (0.141, 0.237)

τ
Yclass

(ALC>SGC) 0.059 (-0.025, 0.143) (-0.011, 0.131)

τ
Yclass

(ALC>TGC) -0.077 (-0.159, 0.004) (-0.145, -0.01)

τ
Yclass

(ASGC>LC) -0.059 (-0.143, 0.025) (-0.131, 0.011)

τ
Yclass

(ASGC>TGC) -0.088 (-0.190, 0.020) (-0.176, 0.002)

τ
Yclass

(ATGC>SGC) 0.088 (-0.020, 0.190) (-0.002, 0.176)

τ
Yclass

(ATGC>LC) 0.077 (-0.004, 0.159) (0.011, 0.145)
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Table 2.8: Posterior median, PCI(95%) and PCI(90%) of SUCRA, under TNH and %ER,
for the three types of cancer.

TNH %ER
50% PCI(95%) PCI(90%) 50% PCI(95%) PCI(90%)

SUCRA(LC) 0.752 (0.702 0.799) (0.710 0.791) 0.743 (0.688 0.794) (0.697 0.787)
SUCRA(SGC) 0.449 (0.394 0.506) (0.403 0.496) 0.376 (0.330 0.422) (0.338 0.416)
SUCRA(TGC) 0.298 (0.248 0.353) (0.256 0.343) 0.381 (0.322 0.440) (0.331 0.430)

Figure 2.1: Cumulative rankograms for Lung cancer (black curve) Sexual Glands cancer
(red curve), Thyroid gland cancer (green curve) mortalities, under TNH (on the left)
and %ER (on the right).
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3.1 Introduction

Randomized Controlled Trials (RCTs) have a lot of benefits, e.g. they ensure the absence

of manipulation of the assignment of the treatment removing any selection bias from

the sample. On the other hand the results provided by RCTs may not have external

validity for the population of interest (Target Population, TP).

Several factors could be related to this lack: gap between the RCT sample and the

TP due the eligibility criteria in the trial, i.e. unbalancing of the observed covariates

between RCT sample and TP; difference of the treatment protocols and interventions,

or different level of treatment between RCT sample and TP.

In case for which results obtained by RCT are generalizable to the TP, how the Popula-

tion Average Treatment effect on Treated (PATT) can be estimated from RCT?

Existing approaches to estimate PATT require a sub-classification or matching process

of the treated and controls individuals within the RCT.

Define subgroups, such that within each one the characteristics of the membership are

similar, needs to established criteria which may provide bias estimates of the causal

effect of interest. Approaches like the pair-matching (1-1, in each subclass one treated

is matched with one control), matching with multiple controls (1-nc, in each subclass

one treated is matched to nc controls ) or the full matching (nt − 1 or 1− nc, in each

subclass nt treated are matched to one control or one treated is matched to nc controls)

[Rosenbaum (2019)] have been employed in study related to the generalizability of results

from RCT to a TP [Stuart et al. (2001), Stuart (2010), Cole and Stuart (2010)].

Hartman et al. (2015) exploit a new matching approach, the genetic matching (a gener-

alization of previous matching approaches, which uses an evolutionary search algorithm

developed by Diamond and Sekhon (2013) to maximize the balance of observed covariates

55
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across matched treated and controls individuals). This last one approach has been shown

in Diamond and Sekhon (2013) to perform better, in terms of bias reductions of the

estimates, than other Machine Learning Algorithms as random forests and boosted

classification and regression trees (CART). Nevertheless, it requires high computational

costs, dependent by the sample size, which may not be feasible for large samples.

Other approaches proposed to estimate the PATT involve the Bayesian Additive Re-

gression Trees (BART) algorithm introduced by Chipman et al. (2010) (Nethery et al.,

2019, e.g.). BART approach is different by the previous ones; it does not require any

sub-classification procedure, it consists on using the response surface model to estimate

the covariate-outcome relationships in the RCT and then it uses these estimates to

predict population treatment effects in the TP. BART approach implicitly assumes: 1)

the covariates overlap, Nethery et al. (2019), between the two groups, RCT sample

and the TP, 2)a correct model specification used to describe associations between the

outcome and the covariates. Therefore, in the hypothetical situation for which the

associations between outcome and covariates differs between the two groups (RCT and

TP) and/ or 1), 2) are violated, BART may provide bias estimates.

In the current work we contribute to the existing literature pointing out the exact

circumstances under which the RCT results are generalizable to the TP. We show a

series of complications which prevent a direct extension of the results of a RCT to the

TP. Thus, we introduce two sets of estimators in order to evaluate the external validity

of RCT results to the TP and to estimate the PATT from RCT.

The two sets of estimators, we propose, are based on two approaches: the Stratification

via Propensity Score (SvPS) approach and BART approach. We refer to those two sets

of estimators as the SvPS estimators and the BART estimators, respectively.

Specifically, for the first set of estimators, the SvPS estimators, we adapt the SvPS

approach, introduced by Lunceford and Davidian (2004) to estimate the treatment effects

from observational data.

Randomization is the key point of SvPS approach. The basic idea behind the SvPS

approach is to construct subgroups within which the sample selection can be considered

at random. The subgroups are defined by the quantiles of the Propensity Score (PS),

where the PS is referred to the probability to be selected in the RCT sample conditioning

on a set of covariates, unless the usual definition of it1, Rosenbaum and Rubin (1983).

Randomization allows comparisons between the two groups defined by the indicator of

membership in RCT, such that significant statistical difference of the outcome of interest

between the two groups suggests the absence of exchangeability between them that is

results obtained by the RCT are not generalizable.

The work is organized as follows: in Section 3.2 we introduce the notations adopted and

we report the Generalizability Assumptions (Hartman et al. (2015)) required to identify

the PATT from the RCT.

In Section 3.3 we illustrate the SvPS approach and BART approach; we define the two

1In Rosenbaum and Rubin (1983), the propensity score is defined as the probability to be assigned
to the treatment conditional on a set of observed covariates.
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sets of estimators, SvPS estimators and BART estimators, which allow 1) to evaluate

the external validity of the results obtained from RCT (Section 3.3.1) and 2) to estimate

the PATT from RCT data (Section 3.3.2).

In Section 3.4 we provide data generation and analyses to illustrate the performances of

the SvPS and BART estimators described in Section 3.3; we investigate about the exact

circumstances under which checking the external validity of RCT results and estimating

PATT might prove difficult depend on details of the setting, e.g. misspecification of the

PS model. In Section 3.5 we conduct analysis for Medicare simulated data, to assess

whether results from a Clinical trial, on the effectiveness of Trans-catheter Aortic Valve

Replacement (TAVR) versus the Surgical Aortic Valve Replacement (SAVR), can be

appropriately adjusted and generalized to the broader Medicare population (MP). Also

for this last analysis we apply the SvPS approach and the BART approach. We then

conclude in Section 3.6.

3.2 Notations and Assumptions

In this Section we introduce the notations we use and the assumptions required to

identify the PATT from RCT results. We denote with uppercase letters the random

variables and with lowercase letters the related realizations, or constants.

Let Si be the indicator of membership in RCT, assuming value 1 if individual i belongs to

the RCT sample, 0 if s/he is a member of the TP. Let Zi be the indicator of the treatment

assigned and received (we assume compliance) which takes value 1 if individual i is

assigned to the treatment and 0 otherwise. Let Xi be the vector of observed covariates

for individual i. Finally, we denote with Yi the post treatment variable for individual i,

our primary outcome of interest.

Given the indicator Si of the sample membership and the indicator Zi of the treat-

ment assigned, we denote with Bi = (Si, Zi) the two-dimensional vector taking values

b ∈ B := {(0, 0), (0, 1), (1, 0), (1, 1)}. Given Bi, four are the potential outcomes for the

post treatment variable Yi, one for each value of Bi. Formally, given individual i, we

denote these potential outcomes with Yi(b) = Yi(s, z), for b ∈ B. Specifically, Yi(s, z) is

the outcome we would observe for individual i if her/his indicator membership were s

and s/he received the treatment z. Comparisons between potential outcomes are causal

effects. Based on the indicator Si and Zi we define the following casual effects:

τSATE = E[Yi(1, 1)− Yi(1, 0) | Si = 1]

τSATC = E[Yi(1, 1)− Yi(1, 0) | Si = 1, Zi = 0]

τSATT = E[Yi(1, 1)− Yi(1, 0) | Si = 1, Zi = 1] (3.1)

that are the Sample Average Treatment Effect (SATE), the Sample Average Treatment

effect on Controlled individuals (SATC) and the Sample Average Treatment effect on

Treated individuals (SATT), respectively. In a similar way we define other three casual
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effects, for those belonging in the TP, as follows:

τPATE = E[Yi(0, 1)− Yi(0, 0) | Si = 0]

τPATC = E[Yi(0, 1)− Yi(0, 0) | Si = 0, Zi = 0]

τPATT = E[Yi(0, 1)− Yi(0, 0) | Si = 0, Zi = 1] (3.2)

Our main focus is on estimand τPATT . In general, in the TP the treatment is not

randomly assigned, thus, the three populations causal effect estimates may be affected

by bias. Hartman et. al provide assumptions under which population treatment effects

can be identified from RCT data. We can also refer to this set of assumptions as the

Generalizability Assumptions (G.Ass.). The assumption we start with, we consider

necessary but not sufficient for the identification of the PATT from RCT data, is related

to the sample mechanism.

Assumption 3.1 (Probabilistic sample mechanism).

0 < Pr(Si = 1 | Xi) < 1, ∀i

Assumption 3.1 ensures that the subgroup of treated and control individuals in the RCT

sample is well representative of the TP, given a set of covariates Xi. We assume here,

for simplicity, that the set of covariates involved in the sample mechanism is the same

for treated and controlled individuals.

Assumption 3.2 (Consistency under Parallel Studies).

Yi(0, 1) = Yi(1, 1) Ass.3.2.1 (3.3)

Yi(0, 0) = Yi(1, 0) Ass.3.2.2 (3.4)

Assumption 3.2 can be considered as a revisiting of the Sharp null hypothesis, Fisher

(1935). For each individual i, fixing a treatment arm, z, the related potential outcome

would be the same if that individual belonged to the s′ group unless to the s group,

Yi(s, z) = Yi(s
′, z). Assumption 3.2 is also similar to Assumption of consistency under

parallel design in Imai et al. (2013).

If Assumption 3.2 holds, we can write Yi(s, z) as Yi(z) for any s and z, since that the

potential outcome for treatment z is independent by the indicator of membership in RCT.

Assumption 3.3 (Strong Ignorability of Sample Assignment for Treated under

treatment).

(Yi(0, 1), Yi(1, 1)) ⊥ Si | (Xi, Zi = 1)

An implication of Assumption 3.3 is that the expected values of potential outcomes for

treated is equal to the expected value of the potential outcomes for treated for those
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individuals treated in the RCT sample, adjusted by the distribution of the covariates of

treated in TP. Formally we have:

E[Yi(s, 1) | Si = 0, Zi = 1] =E01{E[Yi(s, 1) | Xi, Si = 1, Zi = 1]}

=

∫
ΩX01

E[Yi(s, 1) | Xi, Si = 1, Zi = 1] · f(Xi) dXi, (3.5)

for s = 0, 1. Where ΩX01 is the space of the all possible values of the vector of covariates

Xi in the treated group of the TP; f(Xi) is the related density function.

Assumption 3.4 (Strong Ignorability of Sample Assignment for Controls un-

der treatment).

(Yi(0, 0), Yi(1, 0)) ⊥ Si | (Xi, Zi = 1)

Assumption 3.4 is the equivalent of Assumption 3.3 for potential outcomes for controls,

for those individuals treated. In a similar way this last assumption implies that the

expected values of potential outcomes for controls is equal to the expected value of the

potential outcomes for controls, for individuals treated in the RCT sample adjusted by

the distribution of the covariates of treated in TP. Formally we have:

E[Yi(s, 0) | Si = 0, Zi = 1] =E01{E[Yi(s, 0) | Xi, Si = 1, Z − i = 0]}

=

∫
ΩX01

E[Yi(s, 0) | Xi, Si = 1, Zi = 0] · f(Xi) dXi, (3.6)

for s = 0, 1. Finally, the last, but not least, assumption we need to specify in order to

conduct causal inference is the Stable individual Treatment Value Assumption (SUTVA).

SUTVA consists of two parts. 1) No Interference-part which states that the potential

outcome of individual i, Yi(s, z), is not affected by the potential outcomes of any other

individual Yj(s
′, z′). 2) No Hidden Variations of Treatments part: no different form

of a specific treatment level for a generic individual i, regardless of her/his indicator

membership Si. Under Assumptions 3.1-3.4 and SUTVA assumptions, as defined in

Hartman et al. (2015), it follows the Theorem 3.1

Theorem 3.1 (Generalizability of the results of RCT ). If Assumption 3.2 and

SUTVA hold and if

E01{E[Yi(s, 1) | Xi, Si = 0, Zi = 1]} −E01{E[Yi(s, 0) | Xi, Si = 0, Zi = 1]}
= E01{E[Yi(s, 1) | Xi, Si = 1, Zi = 1]} −E01{E[Yi(s, 0) | Xi, Si = 1, Zi = 1]} (3.7)

or if Assumption 3.1, 3.3 and 3.4 hold, then Yi(s, z) = Yi(s
′
, z) = Yi(z) and it follows

τPATT = E01{E[Yi(1) | X, Si = 1]} −E01{E[Yi(0) | Xi, Si = 1]} = E01[τSATEXi
| Xi]

(3.8)
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Theorem 3.1 shows how to identify the PATT from RCT data, that is τPATT can be

derived adjusting the SATE by the covariates distribution of treated individuals in TP.

Specifically, on the right hand of Equation 3.8, expression E01{τSATEXi
| Xi} denotes

the weighted average of τSATEXi
quantities with weights according to the distribution of

Xi in the treated group of the TP. Each τSATEXi
refers to the average treatment effect

within the subgroup of treated individuals in the RCT whose characteristics match those

of the treated subgroup in the TP with values of the covariates equal to Xi.

3.3 SvPS approach and BART approach

In the introduction of this work, we shortly described some of the existing approaches

to estimate the PATT from RCT. In this section we focus on SvPS approach and BART

approach.

SvPS approach, as the name suggests, basically requires a sub-classification process

of the individuals in RCT and those ones in the TP and exploits the all informations

provided by the RCT group.

Usually, the Propensity Score (PS) is defined as the probability to be exposed to a

treatment conditioning on a set of covariates, Xi, Rosenbaum and Rubin (1983). Here,

and for the rest of this work, we refer to the PS as the probability to be selected in

the RCT conditioning on a set of covariates. Formally, we denote this probability with

ps(Xi) = Pr(Si = 1 | Xi) for a general individual i.

The SvPS approach, we propose, consists on defining K strata, Qj, for j = 1 . . . K,

based on the quantiles qj of the PS.

The sample mechanism is usually under the control of the researcher (in designing the

study, choosing the set of covariates for which Assumption 3.1 holds) as well as under

control of participants (once they are selected, they can decide to participate or not

to the trial). Therefore, in most of the case the true PS is known. In case for which

we do not have information about the sample mechanism, we first estimate the PS

from the observed data, by assuming that the ps(Xi) follows a logistic regression model

ps(Xi) = Pr(Si = 1 | Xi) =
exp(Xiβ)

(1 + exp(Xiβ))
. We denote with p̂s(Xi) the estimated PS

for individual i and with q̂j the estimated quantile, for j = 1 . . . K.

The estimated quantiles q̂j, j = 1 . . . K, are obtained sorting the individuals by their

estimated PS in increasing order; the ordered group is then partitioned in K strata, Q̂j,

such that the cardinality of each one is proportional to N
K

, where N is the size of the

group we estimated the PS on.

Given a stratum Q̂j all individuals membership have an estimated p̂s(Xi) ≤ q̂j , where q̂j
is the estimated j-quantile. Within each stratum individuals membership have similar

probabilities to be selected in the sample conditioning on a given set of covariates, that is,

within each Q̂j , we can assume the assignment to the sample at random. Randomization

allows for a direct comparison between the two groups defined by the indicator S, within

each stratum.
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SvPS approach requires also to fix the number of strata we want to split out individuals.

Strata may contain residual confounding due to the fact that each one has individuals

with similar propensity score, but not exactly the same.

Here, we fix the number of strata, K, at 5 as suggested in Rosenbaum and Rubin

(1983)-Rosenbaum and Rubin (1984) and adopted in most published applications. This

choice may avoid some residual confounding within strata.

Nevertheless, SvPS approach assumes that i) the PS model is correctly specified, ii)

within each stratum each covariate is well balanced between the two groups defined by

the S indicator. Checking ii) is recommended [Rosenbaum and Rubin (1984),Perkins

et al. (2000)] and in case for which the balance is not achieved it is necessary to redefine

the model of the PS.

BART approach is a model based approach and it consists on using a response surface

model to estimate the relationship between covariates and the primary outcome in the

RCT (for treated and controls separately), then it exploits the estimates to predict the

outcome for those individuals in the TP according with their covariates distribution.

Since that we aim to estimate the PATT, we focus on the treated in the TP and we

refer to Y fit
i (s, z)|Si=0,Zi=1 as the general predicted potential outcome for an individual i

treated in the TP. Specifically, we consider two of the four potential outcomes for an

individual i treated in the TP and we refer to the related predicted value as following:

• Y fit
i (1, 1)|Si=0,Zi=1 := the predicted potential outcome for treated in RCT for an

individual i treated in TP. That is the predicted outcome individual i, membership

of the TP, would have had if s/he has been sampled in the RCT and assigned to

the treatment arm.

Y fit
i (1, 1)|Si=0,Zi=1 is obtained by 1) using a response surface model to estimate the

relationship between covariates and the primary outcome in the treated group

of RCT 2) using the estimates to fit the potential outcome for treated in RCT for

those individuals treated in the TP according with their covariates distribution.

• Y fit
i (0, 0)|Si=0,Zi=1 := the predicted potential outcome for control in TP for an

individual i treated in TP. That is the predicted outcome individual i, membership

of the TP, would have had if s/he has been assigned to the control arm in the TP.

Y fit
i (0, 0)|Si=0,Zi=1 is obtained by 1) using a response surface model to estimate the

relationship between covariates and the primary outcome in the control group

of RCT 2) using the estimates to fit the potential outcome for control in TP for

those individuals treated in the TP according with their covariates distribution.

The main assumptions required in BART approach are 1) the covariates overlap between

the two groups, RCT sample and the TP; 2) a correct model specification used to

describe associations between the outcome and the covariates.

Next sections show in details how to apply SvPS approach and BART approach to 1)

verify the external validity of RCT results 2) estimate the PATT from RCT results.
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3.3.1 SvPS approach and BART approach to verify the external validity of

RCT results

The external validity of RCT results suggests that individuals in RCT are exchangeable

with those one in the TP. Exchangeability of the individuals is reflected in the equality

of the potential outcomes distribution for the indicator of membership in the RCT, Si,

given Zi = z. Nevertheless, for each individual i we almost observe one of the four

potential outcomes, the other are missing. We refer to Y obs
i =

∑
b∈B Yi(b)I(Bi = b) as

the potential outcome observed for individual i.

Thus, we are not able to test the equality of the potential outcomes’ distribution for

the indicator Si, given Zi. In order to better judge the plausibility of the G.ass., with

consequent external validity of RCT results, we define the following causal effect:

τ(S,1) = EXi
{E[Yi(1, 1)− Yi(0, 1) | Zi = 1,Xi]}, (3.9)

that is the weighted mean of the expected value of the difference between the two

potential outcomes Yi(1, 1) and Yi(0, 1). The potential outcomes in Equation 3.9 are

potential outcomes for the indicator membership in RCT for those individuals treated.

The weights are defined in accordance with the distribution of Xi. If Assumptions 3.1,

3.2.1, 3.3 and SUTVA hold, then it follows that the causal effect τ(S,1) is zero. On the

other hand, if the causal effect τ(S,1) is not zero and it is also not negligible we can

conclude that one or more of the assumptions 3.2.1, 3.3 and SUTVA are not plausible.

Here, we focus on checking the negligible effect of τ(S,1).

We first adopt SvPS approach for checking the negligible effect of τ(S,1). Let GT be the

group defined by treated belonging to the RCT sample and those belonging to the TP,

formally GT = {i : (Si, Zi) = (0, 1) or (1, 1)}, we denote with NGT the related size. Let

XT be the NGT × ncov matrix such that the lth column of the ith row of XT contains the

value of the observed covariate l associated to individual i.

We estimate the PS on these ncov covariates, assuming there are no other unmeasured

covariates involved on the sample selection.

Specifically, we introduce the following estimator of the quantity τ(S,1):

τ̂ SvPS

(S,1) =
K∑
j=1

(
nj
NGT

)
{n−1

1j

NGT∑
i=1

SiY
obs
i I(p̂s(Xi) ∈ Q̂j)−n−1

0j

NGT∑
i=1

(1−Si)Y obs
i I(p̂s(Xi) ∈ Q̂j)}

(3.10)

where n1j is the number of treated individuals of the RCT sample and n0j is the number

of treated individuals of the TP both in stratum Q̂j; I(·) is the indicator function.

Quantities
nj
NGT

are proportional to 1
K

, therefore we can replace them with 1
K

in Equation

3.10, this provides a weighted average of the causal effects τ(S,1)|Q̂j , which are the

equivalent of τ(S,1) in Equation 3.9 conditioning on stratum j.

Given the estimator τ̂ SvPS

(S,1) we calculate the Confidence Interval with level confidence

(1−α)%, C.I.(1−α)%(τ(S,1)), approximating the overall variance of τ̂ SvPS

(S,1), σ
2
τ̂SvPS
(S,1)

, by treating
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τ̂ SvPS

(S,1) as the average of K independent, within stratum, sampling effect estimates as:

σ̂2
τ̂SvPS
(S,1)

=
1

K2

K∑
j=1

σ̂2
j

assuming that each stratum has equal number of individuals, where σ̂2
j denotes the

estimate of the variance of the difference between the mean of the outcomes for treated

individuals in the RCT sample and those treated in the TP, in stratum j.

Formally, σ̂2
j = n−1

1j s
2
1j + n−1

0j s
2
0j, with s2

1j = n−1
1j

∑NGT
i=1 I(p̂si ∈ Q̂j)[Si(Y

obs
i − ȳ1j)

2]

s2
0j = n−1

0j

∑NGT
i=1 I(p̂si ∈ Q̂j)[(1 − Si)(Y

obs
i − ȳ0j)

2]; ȳ1j = n−1
1j

∑NGT
i=1 I(i ∈ Q̂j)SiYi;

ȳ0j = n−1
0j

∑NGT
i=1 I(i ∈ Q̂j)(1− Si)Yi. The estimated C.I.(1−α%)(τ(S,1)) provides an inter-

val estimation of τ(S,1), if it covers zero and its width satisfies the criteria established a

priori by the research, we conclude that τ(S,1) is negligible, that is Assumption 3.3 holds,

otherwise we can conclude that one or more Assumptions: 3.2.1, 3.3, SUTVA, are violated.

Given the estimand τ(S,1) defined in (3.9), we propose the following estimator using

BART approach:

τ̂BART

(S,1) :=
1

N01

N01∑
i

Y fit
i (1, 1)|Si=0,Zi=1 −

1

N01

N01∑
i

Zi(1− Si)Y obs
i , (3.11)

where N01 is the number of individuals treated in the TP.

The predicted value Y fit
i (1, 1)|Si=0,Zi=1 is fitted under the Assumption 3.3, if the estimated

value of τ̂BART
(S,1) is not negligible this suggests that one or more of the Assumptions 3.2.1,

3.3, SUTVA, are violated.

Finally, an other assumption required to identify the PATT from RCT data is the

Assumption 3.4, which involves potential outcomes for control for those treated in TP,

Yi(0, 0)|Zi=1. This last quantity is not observed, it is missing since that for those treated

in TP we can observed at most the potential outcome under treatment. Moreover, we

could have in some case study the absence of the control group in the TP, Stuart et al.

(2001). It follows that we cannot apply the illustrated approach above in a similar way to

check if there exists a negligible effect of the indicator S for controls, for those individuals

treated:

τ(S,0) = EXi
{E[Yi(0, 0)− Yi(1, 0) | Zi = 1,Xi]}. (3.12)

In such situation we consider plausible Assumption 3.4, because of the randomization

of the treatment in the RCT. Specifically, the randomization of the treatment in RCT

guarantees the absence of manipulation of the assignment of the treatment, individuals

in the treated group are exchangeable with those in the control group in RCT; potential

outcomes are independent by the indicator of the treatment assigned. Given the negligible

effect of the sample indicator S for those individuals treated, for transitivity we can,

therefore, assume that τ(S,0) is negligible. Thus, the average potential outcomes for
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control for those treated in the TP, Yi(0, 0)|Zi=1, is obtained by the average outcomes for

control for those controls in the RCT sample adjusting for the covariates distribution of

the treated group in TP.

3.3.2 SvPS approach and BART approach for estimating PATT

Under the validity of Assumptions 3.1, 3.2.2, 3.3, 3.4 and SUTVA, Theorem 3.1 ensure

the correct identification of PATT from RCT sample.

In this section we introduce the SvPS approach and BART approach for estimating

the PATT. We first start showing the procedure using SvPS approach. Let consider

the group given by the union of the treated group in the TP and the RCT sample:

G = {i : (Si, Zi) = (0, 1), (1, 1), or (1, 0)}, we denote with NG the related size. Let XG

the NG×ncov matrix of observed covariates for the NG individuals in G. We estimate the

PS, in case for which it is not known, including these covariates in the model, assuming

there are no other unmeasured covariates involved on the sample selection.

Based on the estimated PS, we then create K strata, Q̂j , given by the estimated quantiles

q̂j, for j = 1 . . . K.

Within each stratum the sample selection is at random, as well as the assignment

mechanism to the treatment, for those in the RCT, because of the randomization of

the assignment in the RCT sample. Randomization of the assignment to the treatment

allows for direct comparisons between the group of treated and the group of controls for

those individuals in the RCT within each quantiles Q̂j. The estimator for PATT using

the strata created is then given by the following:

τ̂ SvPS

PATT =
K∑
j=1

nj,01

N01

τ̂SATE|Q̂j
, (3.13)

where τ̂SATE|Q̂j
is the estimated SATE within stratum Q̂j. Formally,

τ̂SATE|Q̂j
=

1

nj,11

nj∑
i=1

ZiSiY
obs
i I(p̂s(Xi) ∈ Qj)−

1

nj,10

nj∑
i=1

(1− Zi)SiY obs
i I(p̂s(Xi) ∈ Qj),

with nj,11 the number of treated individuals from the RCT sample in quantile Q̂j; nj,10

the number of control individuals from the RCT sample in quantile Q̂j; nj ∼ NG
K

the

size of quantile Q̂j; nj,01 the number of treated individuals from TP in quantile Q̂j and

N01 the total number of treated individuals in the TP.

The estimator proposed applying BART approach exploits partially the information

derived from RCT. It is defined as follows:

τ̂BART

PATT :=
1

N01

N01∑
i=1

(1− Si)ZiY obs
i − 1

N01

N01∑
i=1

(1− Si)ZiY fit
i (0, 0)|Si=0,Zi=1 (3.14)

As we can see, while SvPS approach exploits the SATE, that is information from treated



65

and control individuals in RCT, BART approach only uses informations from the control

group in RCT.

Here the validity of Assumption 3.4 has a crucial role: it ensures that the potential

outcome for controls is independent by the indicator of the membership in RCT, for

those individuals treated. Thus, the control group in RCT is exchangeable with the

treated group in TP: Yi(0, 0)|Si=0,Zi=1 = Yi(1, 0)|Si=0,Zi=1, therefore the predicted po-

tential outcome Y fit(0, 0)|Si=0,Zi=1 places the role of the imputed potential outcome

Yi(0, 0)|Si=0,Zi=1.

3.4 Performances of SvPS and BART estimators

In this Section we show the performance of SvPS estimators and BART estimators

introduced in previous sections to evaluate the external validity of RCT results and to

estimate the PATT from RCT results.

We propose several scenarios, some for which RCT results have external validity and some

for which they don’t. We conduct the analyses simulating datasets of size: N = 50 000

and N = 10 000. In all scenarios simulations consists of nine covariates (Xki , k = 1 . . . 9)

with distributions described in Table 3.1; the sampling indicator, Si, follows a logistic

distribution described in Table 3.2, such that RCT sample size is around 2% of the

total dataset size; the binary treatment Zi which we assume randomly assigned with

probability equal to 0.5 for individuals in the RCT sample, while we assume individuals

in TP all treated; a continuous outcome, Yi, having normal distribution N(µ, σ2), with

mean µ described in Table 3.2 Column 2 and variance, σ2, equal to one.

In Scenario A we simulate datasets such that we have an heterogeneous distribution of

the outcome under treatment between RCT sample and TP. The mean of the outcome

distribution for treated individuals in RCT differs by that one of the treated individuals

in TP for a constant quantity equal to 1.2. The covariates involved in the sample

selection are all predictors for the outcome.

Also in Scenario B, we simulate datasets for which the distribution of the outcome

under treatment is heterogeneous between the two groups (TP and RCT), but it is not

constant because of the interaction term given by the sample indicator, Si, the treatment

indicator, Zi, and the covariates X1i introduced in the mean of the outcome, µB Table

3.2 Column 2. In this Scenario we simulate the hypothetical situation for which covariate

X1i is associated with both the outcome and the treatment, that is variable X1i is an

effect modifier, but only for those individuals belonging to the RCT.

In the other scenarios, C-E, the simulated datasets are such that we have negligible

effects of the sample mechanism on the outcome distribution for treated, that is effect

τ(S,1) is negligible. Focusing on scenarios C and D, the difference between these two

scenarios relies on the relationship between covariates involved in the sample mechanism

model and those in the outcome distribution. While in Scenario C part of the covariates

involved in the sample mechanism are predictors for the outcome, in Scenario D all of

the covariates involved in the sample mechanism are predictors. In addition, in Scenario
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D we introduce an interaction between Zi and covariate X1i in the mean of the outcome

µD, Table 3.2 Column 2, that is like in Scenario B, X1i is an effect modifier, but in this

case also for individuals in the TP. In all scenarios A-D, we assume the knowledge of

the sample mechanism, that is a correct specification of the PS model.

In order to show how the SvPS approach is sensitive to the correct specification of the

PS, we propose other two scenarios, scenario D-bis and E, where we suppose a priori a

misspecification of the PS. Specifically, in scenario D-bis we estimate the PS, excluding,

from the related model, covariates X1i and X2i which are also involved in the mean of the

outcome distribution. In scenario E we estimate the PS excluding from the model two

covariates, X1i and X3i , which do not have any relation with the outcome distribution.

For each scenario we simulate 1 000 datasets according with the distributions of the co-

variates (Xki , k = 1 . . . 9), the outcome (Yi), the sample indicator (Si) and the treatment

indicator (Zi) described above. We fix at 5 the number of strata, and we choose the

level of the confidence equal to 95%. We apply the procedure introduced in Section

3.3.1, for checking the negligible effect τ(S,1) after a primary checking of the well bal-

ancing of the covariates between the RCT group and the TP group, within the strata.

Figure 3.1 displays, over the one thousands draws, the standardized difference of the

means/prevalences of the covariates between the two groups, Austin (2009), for the all

Scenarios proposed.

As we can see, in scenarios for which the PS is misspecified, we have that the standardized

difference of the means/prevalences for those covariates excluded by the PS model is

higher than the others.

Table 3.3 shows the results obtained by SvPS approach to estimate τ(S,1) and its

C.I.95%(τ(S,1)), for the different dataset sizes. In details, for each scenario in Table 3.3

are reported: the true value of τ(S,1) (Column 3); the bias of the estimator τ̂ SvPS

(S,1)(Column

4); the estimated variance of τ̂ SvPS

(S,1), σ̂
2
τ̂SvPS
(S,1)

, (Column 5); the Mean Square Error (MSE)

(Column 6); one of the interval estimate calculated among the 1 000 simulated datasets

(Column 7).

Looking at the bias (Table 3.3, Column 4) we can observe that it is not high among the

scenarios where the PS is correctly specified, less than 0.2, and strictly close to zero in

Scenario A. Also the MSE among these scenarios is never high, it is around 0.02. For

those scenarios where the PS is misspecified we have different results. As we expected,

in scenario D-bis, where the PS is incorrectly estimated an the covariates excluded by

the model are predictors for the outcome, we have that the bias is higher than that one

calculated in scenario D, with a correct estimate of the PS.

In scenario E, even if the PS is incorrectly estimated, since that the excluded covariates

are not predictors of the outcome, the bias is low.

These results suggests that SvPS estimator provides estimate of τ(S,1) with low bias,

under a correct estimate of the PS.

For Scenarios A-D we also apply BART approach to check the generalizability of the

RCT results, we use function bart, of BayesTree package of the R software and we

keep the default parameters, in order to predict outcome Y fit
i (1, 1) for those individuals
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treated in the TP. For simplicity, we report in Table 3.4, with analogue structure to Table

3.3, results obtained by BART approach for dataset size equal to 10 000. Looking at

the bias of the estimator τ̂BART
(S,1) we can observe it is lower than that one of the estimator

introduced in SvPS approach, τ̂ SvPS
(S,1) , in each scenario. Also BART approach provides

estimate of τ(S,1) with low bias.

In Scenario C, D, D-bis and E the interval estimate for τ(S,1) covers zero, therefore we can

conclude that with confidence level of 95% we have a negligible effect τ(S,1): the results

obtained in RCT can be extended to the TP.

For these last scenarios, we apply, therefore, the stratification approach described in

Section 3.3.2 to estimate the PATT for each one of the 1 000 simulated datasets.

Results are summarized in Table 3.5: in Column 2 is reported the true PATT; in

Column 4 is reported the bias of the estimator τ̂ SvPS
PATT; in Column 5 is reported the

estimated variance, σ̂2
τ̂SvPS
PATT

; and finally, in Column 6 it is reported the Mean Square Error

(MSE) of the estimator proposed.

Results are also reported in Figure 3.2 which shows the box plot of the estimated PATT

values for the 1 000 draws of Scenario C and D, it also displays the true PATT with a

black point at 5 for Scenario C, at 7.5 for Scenario D and D-bis and at 5 for Scenario E.

The bias of the estimator τ̂ SvPS
PATT, Table 3.5 Column 4, is higher in Scenario D-bis than in

the others, it is around 0.30, this shows how this estimator is sensitive to the correct

specification of the PS if the covariates involved in the model sampling are also predictors

of the outcome. The MSE, Table 3.5 Column 6, in scenarios C-D and E is strictly close

to the variance of the estimator, σ2
τ̂PATT

. Results obtained suggest that SvPS approach

also provides estimate of τPATT with negligible bias under a correct specification of the

PS model.

Finally, we apply BART approach to estimate the PATT in scenario C and D. For

semplicity also these last analyses are conducted for dataset size equal to 10 000. Results

are displayed in Table 3.6, which has a similar structure to Table 3.5. As we can see the

absolute value of the bias of the estimator τ̂BART
PATT , Table 3.6 Column 4, is strictly close to

that one of the estimator τ̂ SvPS
PATT in both scenarios C-D.

3.5 Medicare data, analysis of simulated data

In this section we conduct analysis on simulated Medicare data, according to a motivating

problem of cardiology. Patients with high risk of aortic stenosis are often not candidate

for surgical replacement because of the increased risk of operative complications or

death. In such patients as alternative it is suggested to apply a less invasive treatment.

Here, we want to assess the effect of the Core-Valve Trans-Catheter Aortic Valve

Replacement (TAVR) versus Surgical Aortic Valve Replacement (SAVR), on days until

first complication (our primary end point) in the TP defined by treated individuals with

high risk of aortic stenosis, registered in Medicare database.

Medicare data collects informations of individuals in the US who are aged ≥ 65 years,

individuals with disabilities aged < 65 years, and individuals with end-stage renal disease.
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Medicare database includes anagraphic informations like gender, age, race and health

informations.

In order to reach our goal we use results from a simulated clinical trial, simulated miming

one of the trial of Corevalve Network. The trial counts 1184 participants randomized to

receive the TAVR vs SAVR. Here, we suppose to have no information about the criteria

of enrollment of individuals. The TP counts 21369 individuals of Medicare dataset who

received the TAVR.

We first apply the SvPS and BART approaches proposed in Section 3.3.1 to check if

there exists any heterogeneity on the outcome distribution under treatment between

the TP and the randomized clinical trial. Given the absence of information about the

enrollment criteria in the trial, here we estimate the PS excluding the covariates with

low prevalence (less than 5%).

Figure 3.3 shows, for each covariate, the standardized difference between the means,

prevalences, in the two groups RCT and TP; Pre-stratification process (blue points) and

Post-stratification process (orange points) while in Table 3.7 we report the means of the

covariates with a low prevalence respect to the indicator of the trial membership, RCT

with Si = 1 and TP with Si = 0. As we can see, post-stratification the standardized

differences decrease.

The estimated causal effect τ̂ SvPS
(S,1) is equal to 0.758, that is less than one day difference,

the C.I.95%(τ(S,1)) is [-0.199, 1.714] and it covers zero. The C.I.95%(τ(S,1)) defines a time

lapse of around 0-2 days not so wide, this suggests a negligible effect of the indicator of

the trial membership, Si, on the primary outcome. The estimated variance, σ̂2
τ̂SvPS
(S,1)

is

0.119, not so high.

Similar conclusions are provided by BART approach. Using estimator τ̂BART
(S,1) the estimated

causal effect is 0.107 with C.I.95%(τ(S,1)) = [−0.155, 0.314]. Results provided by both

approaches suggests negligible effect of the indicator of the trial membership, Si, that is

no significant heterogeneity on average for the outcome distribution under treatment

between the two groups.

We than apply the SvPS approach and BART approach, described in Section 3.3.2, to

estimate the PATT using RCT data. The estimated PATTs using the two approaches

do not differ so much, they are respectively, 3.091 and 2.504. The outcome of interest

measures the number of days until first occurrence of a complication, results suggest a

positive effect of the TAVR vs SAVR on it. On average those who receive the TAVR

shows a first occurrence of complication 2/3 days later than those who receive SAVR.

3.6 Conclusions

In this work we aimed to assess the PATT exploiting the RCT results. We first focus

on evaluating the external validity of the RCT results, introducing the causal effect

τ(S,1). The causal effect τ(S,1) allows us to learn about any heterogeneity of the outcome

distribution between the RCT and the TP under treatment. The heterogeneity may be

due to several factors as: a RCT not representative of the TP or a different version of
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the treatment between the two groups (RCT and TP) irrespective of creating a RCT

group whose well matches the characteristics of the TP.

A significant heterogeneity on the outcomes distribution under treatment, between TP

and RCT, suggests the absence of external validity of RCT results.

We adopted two approaches, SvPS and BART, providing two estimators for τ(S,1) and two

for τPATT under the validity of G.Ass. The two approaches differ in terms of procedure

and informations used, but produce similar results.

SvPS approach needs a correct PS model specification, in case for which the sample

mechanism is not known to the researcher, and it exploits the all informations provided

by the RCT. BART approach needs a correct model specification for the outcome of

interest and it exploits partially the informations provided by the RCT.

The SvPS estimators, τ̂ SvPS

(S,1) and τ̂ SvPS
PATT, produce estimates of the quantities of interest

with low bias as shown in the simulation studies discussed in Section 3.4. Also BART

estimators, τ̂BART

(S,1) and τ̂BART
PATT produce estimates of the quantities of interest with low bias,

weakly lower than those ones of SvPS approach’s estimators.

All of the G.ass. are important in order to identify the PATT from the RCT results.

Nevertheless, it would be interesting to consider like a valuable topic for future research

the departure from Assumption 3.1 under which the RCT sample is well representative

of the TP given a set of pre-treatment variables.
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Table 3.1: Distribution of the six covariates: five continuous with normal distribution
and one dichotomous following Bernoulli distribution.

X1i ∼ N(5, 2) X4i ∼ N(0, 1) X7i ∼ Be(p = 0.70)
X2i ∼ N(60, 2) X5i ∼ Be(p = 0.65) X8i ∼ Be(p = 0.90)
X3i ∼ N(2, 1) X6i ∼ N(0, 1) X9i ∼ Be(p = 0.10)

Table 3.2: The probability of the sample selection and the mean of the outcome
distribution for scenarios A-D.

SCENARIO Pr(Si = 1 | Xi) = ps and Mean of the outcome distribution Yi ∼ N(µ, 1)

A
p
(s,A)

(Xi) =
exp(0.5 + 0.1X1i − 0.1X2i + 0.4X3i − 0.3X4i + 0.3X5i)

1 + exp(0.5 + 0.1X1i − 0.1X2i + 0.4X3i − 0.3X4i + 0.3X5i)
µA = −3.85 + 1.2Zi ∗ Si + 0.5X1i − 2X2i − 0.5X3i + 2X4i + 2X6i + 2Zi

B
p
(s,B)

(Xi) =
exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i)

1 + exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i)
µB = −3.85 + 5Zi + 0.5Zi ∗ Si ∗X1i + 0.1X2i − 0.5X3i + 2X4i + 2X6i

C
p
(s,C)

(Xi) =
exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i + 0.3X5i)

1 + exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i + 0.3X5i)
µC = −3.85 + 5Z + 0.5X1 − 2X2 − 0.5X3 + 2X4 + 2X6 + 0.10S ∗ Z

D
p
(s,D)

(Xi) =
exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i)

1 + exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i)
µD = −3.85 + 5Zi + 0.5Zi ∗X1i − 2X2i − 0.5X3i + 2X4i + 2X6i + 0.10Si ∗ Zi

E
p
(s,E)

(Xi) =
exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i)

1 + exp(1.5 + 0.1X1i − 0.1X2i + 0.1X3i + 0.1X4i)
µE = −3.85 + 5Zi − 2X2i + 2X4i + 2X6i + 0.10Si ∗ Zi
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Table 3.3: Performance of the SvPS approach to check the generalizability of the results
from RCT to the TP. Simulation studies A-E.

SCENARIO External τ(S,1) Bias σ̂2
τ̂SvPS
(S,1)

MSE C.I.95%(τ(S,1))

Validity

For dataset size 50 0000
A No 1.2 0.012 0.020 0.020 (0.606, 1.990)
B No 2.50 0.114 0.007 0.020 (2.141, 3.009)
C Yes 0.101 0.119 0.006 0.019 (-0.122, 0.757)
D Yes 0.101 0.116 0.0069 0.0204 (-0.294, 0.728)

D-bis Yes 0.101 1.012 0.034 1.058 (0.632, 1.797)
E Yes 0.101 0.099 0.006 0.016 (-0.127, 0.669)

For dataset size 10 0000
A No 1.2 0.025 0.121 0.169 (0.676, 3.210)
B No 2.50 0.121 0.052 0.067 (1.095, 4.094)
C Yes 0.101 0.120 0.064 0.078 (-1.653, 1.463)
D Yes 0.101 0.123 0.052 0.067 (-1.302, 1.696)

D-bis Yes 0.101 1.017 0.192 1.226 (-0.089, 2.893)
E Yes 0.101 0.099 0.0389 0.049 (-0.911, 1.417)

Table 3.4: Performance of BART approach to check the generalizability of the results
from RCT to the TP. Simulation studies A-D.

SCENARIO External τ(S,1) Bias σ̂2
τ̂ BART
(S,1)

MSE C.I.95%(τ(S,1))

Validity

For dataset size 10 0000
A No 1.20 0.004 0.025 0.025 (1.116,1.521)
B No 2.50 0.065 0.019 0.023 (2.332, 2.720)
C Yes 0.101 0.061 0.024 0.027 (-0.148,0.242)
D Yes 0.101 0.069 0.018 0.023 (-0.130,0.256)

Table 3.5: Performance of the SvPS to estimate the PATT from RCT.
SCENARIO τPATT τ̂ SvPS

PATT Bias σ2
τ̂SvPS
PATT

MSE

For dataset size 50 0000
C 5 4.412 0.104 0.051 0.062
D 7.5 7.952 0.124 0.065 0.077

D-bis 7.502 8.048 0.303 0.090 0.182
E 5.002 5.031 0.105 0.034 0.045

For dataset size 10 0000
C 5 4.962 0.088 0.459 0.467
D 7.5 7.540 0.106 0.363 0.374

D-bis 7.502 7.565 0.286 0.460 0.541
E 5.002 4.860 0.078 0.261 0.266
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Table 3.6: Performance of BART approaches to estimate the PATT from RCT.
SCENARIO τPATT τ̂BART

PATT Bias σ̂2
τ̂BART
PATT

MSE

C 5.002 4.812 -0.071 0.022 0.027
D 7.5 7.431 -0.059 0.019 0.023

Table 3.7: Prevalence of covariates excluded by the PS model, Pre-stratification and
Post-stratification for those participants in RCT and those in the TP.

Covariates Pre-Stratification Post-Stratification
(with prevalence <0.05) S=0 S=1 S=0 S=1
Cancer 0.033 0.036 0.033 0.033
Dementia 0.017 0.014 0.017 0.011
Depression 0.030 0.028 0.030 0.030
Fibrosis-Chronic 0.010 0.012 0.010 0.012
Funct-Dis 0.012 0.018 0.012 0.022
Hyper-Dis 0.014 0.008 0.014 0.008
Hx-MI 0.051 0.052 0.051 0.051
LiverDis 0.010 0.014 0.010 0.012
Maj-Cancer 0.027 0.026 0.027 0.027
Metas-CA 0.005 0.003 0.005 0.005
PCMalnut 0.014 0.013 0.014 0.012
ParkinsonHuntington 0.009 0.008 0.009 0.008
PsychDis 0.010 0.013 0.010 0.011
Seizure disorder 0.009 0.009 0.009 0.009
Severe Hematological 0.006 0.008 0.006 0.008
Sub-Abuse 0.015 0.017 0.015 0.018
Trauma 0.033 0.033 0.033 0.034
Un-Angina 0.042 0.044 0.042 0.046
Vertebral Fractures 0.009 0.007 0.009 0.006
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Figure 3.1: Box plots of standardized difference of the means, in 1 000 draws, for each
covariate, between the RCT group and the TP group, for the all scenarios.
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Figure 3.2: Boxplot of the estimated PATT values, in 1 000 draws, using SvPS approach,
for: Scenario C (on the top left), Scenario D (on the top right), Scenario D-bis (on the
bottom left) and Scenario E (on the bottom right). The true PATT in all scenarios is
shown by the black points.
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Figure 3.3: Standardized difference of the means/prevalences between the two groups,
RCT and TP, for covariates of Medicare Data included in the PS model.
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