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We present a theory of stratified truth STµ with a µ-operator, where terms representing fixed points of stratified
monotone operations are available. We prove that STµ is relatively intepretable into Quine’s NF (or subsystems
thereof). The motivation is to investigate a strong theory of truth, which is consistent by means of stratification,
i.e. by adopting an implicit type theoretic discipline, and yet is compatible with self-reference (to a certain
extent). The present version of STµ is an enhancement of the theory presented in [2].
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1 The theory STµ of stratified truth

We investigate a strong theory STµ of truth, which is consistent by means of stratification, i.e. by adopting an
implicit type theoretic discipline. To a certain extent, the theory is compatible with forms of self-reference and it
is actually a sort of generalized µ-calculus (see [1] for a general reference and [12]).

Before describing the precise syntax of the theory and an appropriate notion of stratification, let us anticipate
a few informal considerations. First of all, the whole universe structure has a built-in reflection mechanism: if A
represents a given proposition, there is an object represented by [A], which is transformed into a statement of a
higher level by applying the truth predicate T to [A]. This means that, in order to preserve consistency, we have
to keep track of this natural level stratification: if [A] is given type level i, T ([A]) is assigned type i+ 1.

We also stress that truth is regarded as a predicate T , which has a wider domain than usual truth predicates:
T applies not quite to sentences of an inductively defined formal language, but to objects of the given universe,
which play the role of propositions (henceforth termed as propositional objects). Hence the universe can be
regarded as a sort of abstract syntax, which is closed under constructors representing logical operations, and
which includes propositional objects [A] and predicative objects [x|A].

No type restriction is imposed in forming [A] and [x|A]; but, as we shall see in the next subsection, the use of
these expressions has to be suitably restricted according to the initial type-theoretic intuition.

If we exclude equality which is assumed as given, truth T is the only predicate of our language. But we also
assume that there is a primitive operation pred, such that, roughly, pred(t, s) expresses the fact that the object
represented by s falls under the concept represented by t. T and pred allow to express predication: if [x|A]
represents a predicate P defined by a given formula A, the result of the application of P to a, is rendered by
pred([x|A], a). Hence the claim that a falls under P simply becomes the claim that pred([x|A], a) is true, i.e.
T (pred([x|A], a)).

One may wonder if self-referential constructions are, to a limited extent, allowed in the present framework.
The answer is positive, but we stress that the present treatment is different from self-reference in the case of
standard formal languages L (e.g. first order Peano arithmetic or ZFC), where one makes use of a substitution
operation acting on Gödel numbers of L-formulas and L-terms. In the present framework, we assume that the
universe is closed under a fixed point operator acting on terms, which depend extensionally on their parameters

This paper arose from the talks presented at the Conference Ouroboros 2018. Formal Criteria of Self-Reference in Mathematics and
Philosophy, Hausdorff Center for Mathematics, Bonn 16.2-18.2, 2018, and at the Conference in honour of Gerhard Jäger’s 65th birthday,
Bern, December 12-13, 2018. The research has been suppported by PRIN 2017 (Florence Research unit), and the University of Florence
(Fondi di ateneo 2018-2019).
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2 A. Cantini: Stratified Truth

and are homogeneously stratified, i.e. arguments and values are assigned the same type. Roughly, the idea is that,
if a propositional function F is extensional in a parameter x of given type i, then there is a fixed point c of type
i, i.e. such that F (c) = c. Of course, one has to clarify what is the meaning of extensional in x and the notion
of type assignment in a formally untyped framework. Once clarified, these requirements are sufficient to sterilize
self-reference and Liar’s arguments: according to the basic intuition, if tr(y) is the object representing the truth
of y, tr(y) is type raising, i.e. is assigned type one greater than y itself. Hence no fixed point of tr(y) or of its
negation will arise.

As to the justification, self-reference will follow by the set theoretic representation of logical constructors and
as a consequence of (a variant of) the Knaster-Tarski theorem.

1.1 The syntax of STµ
Definition 1.1 The language LT . Besides the logical constants ∧, ¬, ∀ countably many individual variables,

parentheses, LT includes:

(i) a unary predicate T for truth, a binary predicate = for equality;

(ii) binary function symbols id, pred, and, pair; unary function symbols tr, neg, all, left, right, suc; an indi-
vidual constant 0;

(iii) binding operators: [− |−] (abstraction); µ (fixed point).

id, pred, tr internally represent basic constructors (i.e. constructors for atomic formulas), while neg, and, all
internally represent logical constructors; pair, left, right represent an ordered paring operation and its corre-
sponding projections.

If E is an expression, i.e. a term or a formula of the language, FV (E) denotes the set of free variables of E.

Definition 1.2 [Terms and formulas of STµ] We give a simultaneous inductive definition of the notions of (1)
term; (2) term positive (negative) in a list ~x of variables1; (3) formula; (4) formula positive (negative) in a list ~x.

(i) Variables and the individual constant 0 are terms;

(ii) 0 is positive in ~x, and every variable v is positive in ~x, for every ~x; if v does not occur in ~x, v is also negative
in ~x; if y /∈ FV (E), E being an expression, then E is Pos(y) as well as Neg(y);

(iii) if t, s are terms, then

– t = s, Tt are formulas;

– all(t), suc(t), neg(t), tr(t), left(t) and right(t) are terms, as well as id(t, s), and(t, s), pair(t, s),
pred(t, s);

(iv) ifA,B are formulas, then ¬A,A∧B, ∀xA are formulas, and FV (∀xA) = FV (A−{x}); ifA is a formula,
[x|A] is a term such that FV ([x|A]) = FV (A− {x});

(v) if t is positive (negative) in ~x and s is positive (negative) in ~x, then pair(t, s), and(t, s), id(t, s), left(t),
right(s), suc(t), neg(t), all(t) are all positive (negative) in ~x;

(vi) if t is positive (negative) in ~x, pred(t, s), T (pred(t, s)), are positive (negative) in ~x;

(vii) if t is positive (negative) in ~x, then T (neg(pred(t, s))) is negative (positive) in ~x;2

(viii) ifA is Pos(~x) (Neg(~x)), then ¬A is Neg(~x) (Pos(~x)); ifA, B are Pos(~x) (Neg(~x)), thenA∧B, ∀vA, [y|A]
are Pos(~x) (Neg(~x)) (provided y not occurring in ~x);

1 The case of a single variable x is of course included.
2 See the σ-interpretation in Definition 5.6 in NF for a motivation, and the axiom implying that T is well-defined on predication

pred(f, t).
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(ix) if t is a term with y free and positive in y, µy.t is a term where y is bound; moreover, if y is distinct from
the variables in the list ~x and t is Pos(~x) (Neg(~x)), then µy.t is Pos(~x) (Neg(~x)).

Remark 1.3

1. The present notion of positivity is motivated by the fact that under the intended set theoretic interpretation
certain terms and formulas are monotone in their free parameters with respect to ⊆, see Definition 5.6 and
Fact 5.2.

Just to avoid misunderstandings, we stress that, if t, s are in Pos(~x), id(t, s) is in Pos(~x), but t = s, ¬t = s
are neither in Pos(~x) nor Neg(~x). On the contrary, at the atomic level, Pos(~x) and Neg(~x) are preserved
only by pred-operation and by Tpred-application, and inherited under abstraction [−|−].

E.g. T (pred([x|T (pred(a, x))], y)) is positive in a, as well as neg(pred([x|T (pred(a, x))], y)), while

T (neg(pred([x|T (pred(a, x))], y)))

is negative in a.

2. The set theoretic language can be regarded as a sublanguage of LT , once we stipulate

x ∈ a := T (pred(a, x))

a ⊆ b := ∀x(x ∈ a→ x ∈ b)

Note that a is positive in x ∈ a, as expected.

Remark 1.4 The syntactical structures of terms in STµ can be entangled and nested, as illustrated by the
simple examples below.

(i) If t(y, x, z) is positive in y, x and negative in z, µy.t(y, x, z) is a term positive in x and negative in z, and
hence µxµy.t(y, x, z) is a term negative in z.

(ii) A(a, b, x) := T (pred(a, x)) ∧ ¬T (pred(b, x)) is positive in a, negative in b, and hence µy.[x|A(y, b, x)] is
a term negative in b by the definition above, clause (ix).

By the preceding item, the term

[u|¬T (pred(µy.[x|A(y, b, x)], u))]

is positive in b and hence we have the term

µz.[u|¬T (pred(µy.[x|A(y, z, x)], u))].

(iii) Consider the formulasA(x, y, a),B(x, y, a) which are positive in x and negative in y. Then µx[u|A(x, y, u)]
is negative in y and hence B(z, µx[u|A(x, y, u)], a) is positive in z and in y.

Hence the term µz.[z|B(z, µx[u|A(x, y, u)], a)] is positive in y, and we finally have the term

µy.[y|µz.[z|B(z, µx[a|A(x, y, a)], a)]].

(iv) The previous item makes clear in which sense the present version STµ of the theory is an enhancement
over the theory discussed in [2]: STµlanguage is more expressive in that it contains terms which are not
well-formed in the old theory, e.g. those containing abstracts [x|A].

In order to state the T-schema and the comprehension schema, we extend the discipline of types to arbitrary
expressions E of the new language. The basic idea is that predication makes sense only in agreement with a
suitable modification of Quine’s stratification: informally, a predicate (represented by) t truly applies to s, where
s is assigned type i, only if t is assigned type i+ 1. Similarly, truth has an implicit hierarchical structure: when
we apply the predicate T to (a propositional object represented by) the term t, T must be assigned a level higher
than the type assigned to t.

Copyright line will be provided by the publisher



4 A. Cantini: Stratified Truth

Definition 1.5 (Stratification of terms and formulas) If E is an expression, E is stratified iff it is possible to
assign a natural number (type in short) to each term occurrence and to each T -occurrence of E, so that:

1. all free occurrences of the same variable in any subexpression of E have the same type;

2. in each expression of the form pred(t, s) the type of t is one greater than the type of its argument s;
pred(t, s) is assigned the type of t;

3. each expression of the form tr(t) is assigned a type one greater than the type of t; in each expression of the
form T (t) the predicate T is assigned a type one greater than the type of t;

4. in each expression of the form t = s, id(t, s), pair(t, s), and(t, s) the type of t is the same type as s; id(t, s),
pair(t, s), and(t, s) are assigned the same type of t (and hence of s);

5. each expression of the form neg(t), all(t), left(t), right(t), suc(t) is assigned the same type of t;

6. each term of the form [x |C] is assigned a type one greater than the type assigned to x, and all the free
occurrences of x in C receive the same type;

7. in each expression of the form ∀xA, if x is free in A, then the free occurrences of x in A and the occurrence
of x in ∀x receive the same type;

8. each term of the form µyt(y, ~x) is assigned the same type as y and t, and all the free occurrences of ~x in t
receive the same type.

9. A formula (term) is n+ 1-stratified iff it is stratified by means of 0, . . . , n.

Remark 1.6 Within the same statement, different occurrence of T can be assigned different type labels and
this makes sense of the idea of typical ambiguity in the semantical framework we are dealing with. Observe
also that the definition of stratification imposes a homogeneity condition on and(t, s) and pair(t, s); a semantical
justification is to be found in the Quinean interpretation developed in section 5 below.

Definition 1.7 We inductively introduce A 7→ [A] with FV (A) = FV ([A]):

[t = s] := id(t, s)

[T (t)] := tr(t)

[¬A] := neg([A])

[A ∧B] := and([A], [B])

[∀xA] := all([x |A])

Definition 1.8 (P-Form) If an object x is in the range of the logical constructors, then it is called a P-form:

Pfor(x) ⇔ ∃y(x = tr(y)) ∨ ∃z(x = neg(z) ∨ x = all(z)) ∨
∨∃u∃v(x = id(u, v) ∨ x = and(u, v))

Roughly, a P-form is an object which is (possibly) apt to represent a proposition. Observe that Pfor(x) is
stratified (assign 1 to x, u, v, z, 0 to y).

1.2 Axioms of STµ

STµ consists of the classical logical calculus (say, Hilbert-style) with equality and, in addition:
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1. Compositional T-axioms:

T (id(x, y))↔ x = y;

T (neg(id(x, y)))↔ ¬x = y;

T (tr(x))↔ T (x);

T (neg(tr(x)))↔ ¬T (x);

T (neg(neg(x)))↔ T (x);

T (and(x, y))↔ T (x) ∧ T (y);

T (neg(and(x, y)))↔ T (neg(x)) ∨ T (neg(y));

T (all(f))↔ ∀xT (pred(f, x));

T (neg(all(f)))↔ ∃xT (neg(pred(f, x)))

2. T-consistency:

¬(T (a) ∧ T (neg(a)))

3. T is well-defined on predication:

T (pred(f, x)) ∨ T (neg(pred(f, x)))

4. Stratified β-conversion: if A is stratified,

T (pred([x|A], u)) ↔ T ([A[x := u]])

T (neg(pred([x|A], u))) ↔ T ([¬A[x := u]])

Roughly, this schema states that, insofar as stratified conditions and truth contexts are involved, predicate
abstraction and predicate application behave as inverse to each other.

5. Self-reference: if t is positive in the list y, ~x and stratified,

∀~x(t(µyt(y, ~x), ~x) = µyt(y, ~x))

6. µ-Extensionality: if two terms positive (negative) in ~x, y and stratified, are pointwise equal, then the respec-
tive fixed points coincide:

∀~x∀y(t(y, ~x) = s(y, ~x))→ ∀~x(µyt(y, ~x) = µys(y, ~x))

7. Minimality: if t is positive in the list y, ~x and stratified,

∀~x(t(a, ~x) ⊆ a→ µyt(y, ~x) ⊆ a)3

8. P-form:

T (x) → Pfor(x)

¬Pfor(x) → T (neg(x))

The P-form axioms grant that true objects lie in the range of logical constructors; furthermore, any object
inaccessible to logical constructors is classified as (representing) False.

3 We follow the notation of remark 1.3.
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6 A. Cantini: Stratified Truth

9. Ontological axioms: basic constructors and logical constructors are injective, but not surjective, and their
images are disjoint; standard projections. In details, if f , g are distinct basic or logical constructors, f unary
and g binary (including pair), then:

f(x) = f(y)→ x = y

g(x, y) = g(u, v)→ x = u ∧ y = v

∀y(0 6= suc(y))

∀x∀y∀z(f(x) 6= g(y, z))

∃x¬Pfor(x)

left(pair(x, y)) = x ∧ right(pair(x, y)) = y

Remark 1.9 The equivalence between T (neg(tr(x)) and ¬T (x) is strongly non-kripkean and makes the truth
predicate closer to its classical counterpart. A similar comment holds for the clause involving predication. Note
that suc satifies the standard axioms for successor.

2 Stratified truth in STµ

Not surprisingly, T is provably internally undefined on (the simplest variant of) the Liar; but, interestingly, T
internally believes this fact.

Proposition 2.1

(i) For some closed term L,

STµ ` ¬T (L) ∧ ¬T (neg(L)).

Morover

STµ ` T (¬T (L) ∧ ¬T (neg(L))).

(ii)

STµ ` T (neg(pred(f, x)))↔ ¬T (pred(f, x))

P r o o f. As to (i), by self-reference choose L = neg(L) = µy.neg(y). Then apply logic, T -consistency and
the axioms relating T with tr, neg and and.

(ii): by T-consistency and the axiom that T is well-defined on predication.

Proposition 2.2 (Uniform stratified T-schema) If A is stratified, STµ proves:

∀x(T ([A(~x)])↔ A(~x))

P r o o f. We check by simultaneous induction on A

(T ([A])↔ A) ∧ (T ([¬A])↔ ¬A)

If A is of the form t = s, T (t), apply the corresponding axioms of STµ.
If A is of the form B ∧C, even if B ∧C is stratified, [B ∧C] may be not.4 However, by ∀-instantiation of the

compositional axiom about T and ∧, we obtain

T ([B ∧ C])↔ T ([B]) ∧ T ([C])

4 For instance, T (x)∧T ([Tx]) is stratified (e.g. assign 0 to x, 1 to the first occurrence of T and 2 to the second); but [T (x)∧T ([Tx])]
is not, as it fails to meet the homogeneity condition required by and.
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where the left hand side is not stratified in general, while the right hand side is stratified and IH5 can be safely
applied to it.

If A is of the form ¬B, apply the compositional STµ-axioms involving negated ∧, double negation, and IH.
Let us consider the case of a negated universal quantifier. Then we use the axioms relating T , ¬∀, together

with β-conversion and IH in the final step:

T ([¬∀xA]) ↔ T (neg(all([x|A])))

↔ ∃uT (neg(pred([x|A], u)))

↔ ∃uT ([¬A[x := u]])

↔ ∃u(¬A[x := u]) ≡ ¬∀xA

The case of positive ∀ is similar.

The stratified T-schema implies that T strongly deviates from the behaviour of self-referential truth predicates
à la Kripke-Feferman, which cannot in general be applied to the truth axioms themselves, nor to arbitrary logical
axioms. On the contrary, T provably believes that it is two-valued and consistent; further, it recognizes that each
closure condition is also internally true.

Corollary 2.3 (i) STµ proves:

T ([T (a) ∨ ¬T (a)])

T ([¬(T (a) ∧ T (neg(a)))])

(ii) Moreover, if Axiom is an instance of a compositional T-axiom or T-welldefinedness, STµ proves T ([Axiom]).

P r o o f. Observe that the consistency statement as well as tertium non datur for T and the compositional
axioms are stratified; hence the claim is a consequence of the stratified truth schema.

Remark 2.4 One may wonder whether the fixed point property can be extended, e.g. up to include the
constructors tr, pred and combinations thereof. It is immediate to see that the answer is negative. Indeed,
assume that there exists e such that

e = neg(tr(e))

Then T (e) ↔ T (neg(tr(e))) ↔ ¬T (e): contradiction! The reason is that, roughly, as we shall see in the model
construction, neither x 7→ tr(x) nor x 7→ pred(y, x) are monotone (in the sense of set theoretic inclusion) with
respect to x.

We conclude by showing that STµ proves that its truth predicate is indeed the fixed point of a natural positive
operator. Let V(x, T ) be the formula:

{ ∃v(¬Pfor(v) ∧ x = neg(v)) ∨
∨ ∃w1((x = [T (w1)] ∧ T (w1)) ∨
∨(x = [¬T (w1)] ∧ ¬T (w1))) ∨

∨ ∃w2(x = neg(neg(w2)) ∧ T (w2)) ∨
∨ ∃w3∃w4((x = id(w3, w4) ∧ w3 = w4) ∨
∨(x = neg(id(w3, w4)) ∧ w3 6= w4)) ∨

∨ ∃w5∃w6(((x = and(w5, w6)) ∧ T (w5) ∧ T (w6)) ∨
∨(x = neg(and(w5, w6)) ∧ (T (neg(w5)) ∨ T (neg(w6))))) ∨

∨ ∃f((x = all(f) ∧ ∀zT (pred(f, z))) ∨
∨(x = neg(all(f)) ∧ ∃zT (neg(pred(f, z)))))}

Remark 2.5 The formula is stratified: assign 1 to x, v, w2, w3, w4, w5, w6, f ; assign 0 to z and w1; all
occurrences of T are assigned type 2, except those acting on w1.

5 Henceforth IH stands for induction hypothesis in short.
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8 A. Cantini: Stratified Truth

Theorem 2.6 (Fixed Point Principle)

∀x(T (x)↔ V(x, T ))

P r o o f. ⇒: let T (x). Then Pfor(x). If x = neg(y) and not Pfor(y), clearly V(x, T ). If x = neg(y)
but Pfor(y), we distinguish several cases and we apply the T-compositional axioms from left to right. E.g. if
x = neg(id(u, v)), then ¬u = v and we conclude V(x, T ).
⇐: if V(x, T ), we again argue by cases using T-axioms from right to left.

Corollary 2.7 (Internal Fixed Point Principle)

T [∀x(T (x)↔ V(x, T ))]

P r o o f. The statement of the fixed point theorem is stratified: hence apply the theorem and the stratified
T-schema.

3 Embedding the µ-calculus over arithmetic into STµ

3.1 STµ with numbers

Definition 3.1

1. pair(t, s) := (t, s), left(t) := (t)0, right(t) := (t)1

2. N = µy.t(y), where t(y) := [x|x = 0 ∨ ∃z(z ∈ y ∧ x = suc(z))]

3. <N= µy.r(y), where

r(y) = [x|x = ((x)0, (x)1) ∧ ((x)0 = 0 ∧ (x)1 6= 0) ∨
∨((x)1 = suc((x)0)) ∨ ∃z(((x)0, z) ∈ y ∧ (z, (x)1) ∈ y))]

Proposition 3.2 (STµ)

1. 0 ∈ N ∧ ∀x(x ∈ N → suc(x) ∈ N)

2. x ∈ N ∧ x 6= 0→ ∃y(y ∈ N ∧ x = suc(y))

3. if A(x) is stratified, A(0) ∧ (∀x ∈ N)(A(x)→ A(suc(x))→ ∀x ∈ N.A(x)

4. <N is irreflexive, transitive and connected on N ; it satisfies, provably in STµ:

∀a∀b((0 <N a) ∧ (a <N suc(a)) ∧ (a <N suc(b)↔ a ≤N b))

3.1.1 On the strength of STµ
Lubarsky ( [12, p.296]) introduced a µ-calculus over Peano arithmetic, in which least fixed points rather than
arbitrary fixed fixed points are required to exist. In the µ-calculus, it is possible to define sets of natural numbers,
which occur higher up in the constructible hierarchy (see [12, p.292 and corollary, p.295]). On the proof-theoretic
side, a formal system over Peano arithmetic PA(µ), which embodies the µ-calculus, has been defined and inves-
tigated (see [7, Definition 1.3, p. 1463]). It turns out that PA(µ) is proof-theoretically very strong, as made
apparent by Theorem 1.6 in [7, p.1463]) (the paper refers to Möllerfeld’s Ph.D. thesis [13] for proofs).

We now briefly outline PA(µ).

Definition 3.3

Copyright line will be provided by the publisher
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(i) The language Lµ of PA(µ) is the standard language of second order arithmetic – as given in [17, p.2] and
supplemented by the set constructor µ. It includes as individual terms the standard terms of the language of
second order arithmetic, i.e. individual (number) variables, individual constants 0, 1 and terms inductively
generated from variables and constants by application of the function symbols for plus and times. X , Y , Z,
U , etc., are used as (meta) symbols for second order variables; they are intended to range over subsets of
natural numbers.

(ii) The set terms and formulas of Lµ, as well as the collections POS(X) and NEG(X) of X-positive and
X-negative Lµ-set terms and formulas are simultaneously generated by the following inductive clauses:

1. Every set variable V is a set term of Lµ and belongs to POS(X), for any X; moreover, it belongs to
NEG(X), for all X different from V .

2. If t, s are arithmetical terms, t = s, t < s are formulas, which belong to POS(X) and to NEG(X), for
all X .

3. If S is a set term of Lµ and r is a number term, then r ∈ S is a formula of Lµ; if S belongs to POS(X)
[NEG(X)], then r ∈ S belongs to POS(X) [NEG(X)].

4. If A is a formula of Lµ, then ¬A is a formula; if A belongs to POS(X) [NEG(X)], then ¬A belongs
to NEG(X) [POS(X)].

5. If A and B are formulas of Lµ, then so also is (A ∧ B). If A and B belong to POS(X) [NEG(X)],
then (A ∧B) belongs to POS(X) [NEG(X)].

6. If A is a formula of Lµ, then ∀xA, ∀Y A are formulas; if A belongs to POS(X) [NEG(X)], then ∀xA,
∀Y A ( with Y distinct from X) belong to POS(X) [NEG(X)].

7. if A(u,X) is a formula with no bound set variable, positive in X , then µxX.A(x,X) is a set term of
Lµ, in which all free occurrences of the variables X and x are bound by the set term constructor µ. If U
is distinct from X and A belongs to POS(U) [NEG(U)], then µxXA(x,X) is a set term in POS(U)
[NEG(U)].

We assume that ∧, ¬, ∀ as primitive logical constants and we let A∨B, ∃xA, ∃XA as abbreviations for ¬(¬A∧
¬B), ¬∀x¬A, ¬∀X¬A (in the given order).

An arithmetical formula is a formula in the language without set variables; it belongs to POS(X) and
NEG(X), for every X .

Definition 3.4 The axioms of PA(µ) include, besides standard classical logic for the two sorts of natural
numbers and subsets of natural numbers:

1. standard axioms for 0, successor, plus, times, natural ordering <, the axiom of induction (as given, say,
in [17, Definition I.2.4]);

2. arithmetical comprehension ACA: if A is a formula of Lµ with no bound set variables, ∃X∀u(u ∈ X ↔
A(u));

3. for each first-order A(u,X) formula of Lµ positive in X , the axiom stating that I := µxX.A(x,X, Y ) is
the least fixed point of the operator defined by A:

• ∀x(x ∈ I ↔ A(x, I)

• ∀Y (∀x(x ∈ Y ↔ A(x, Y ))→ I ⊆ Y )

Then we can prove:

Proposition 3.5 (Lower bound on STµ) PA(µ) is interpretable in STµ.

P r o o f. The argument is straightforward, but we sketch it. Firstly, define a translation A 7→ Aτ of the
language of PA(µ) into the language of STµ by simultaneous induction on the definition of individual term, set
term and formula. Then choose the set N of Definition 3.1 as domain of first order variables and the subsets of
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10 A. Cantini: Stratified Truth

N as domain of second order variables. Formally, this means that, if X is a second order variable, we choose a
fresh variable x and translate t ∈ X as T (pred(x, t)). Then (X ⊆ N) is τ -translated into the language of STµas:

∀u(T (pred(x, u))→ T (pred(N, u))

Hence we inductively define: (∀XA(X))τ := ∀x(x ⊆ N → Aτ [X := x]).6

Then apply µ-axioms in STµ, in order to interpret the µ-term I in the Definition 3.4; again the µ-axioms
are required to define the translation of the operations + and ×, as the least functional relations, satisfying
the standard recursive equations. As to the translation of the arithmetical comprehension schema ACA, simply
observe that, if A is an arithmetical formula of Lµ, the term [x | Aτ (u)] is stratified, and hence we can apply
stratified β-conversion and the schema 2.2.

4 Background on NF

Let Ls be the elementary set theoretic language, which comprises the binary predicate symbols ∈. Ls–terms are
simply individual variables (x, y, z, . . .); prime formulas (atoms) have the form t ∈ s, t = s (t, s terms). Ls–
formulas are inductively generated from prime formulas by means of sentential connectives and quantifiers. The
elementary set theoretic language L+

s is obtained by adding to Ls the abstraction operator {− |−}; L+
s –terms

and formulas are then simultaneously inductively generated. The clause for introducing class terms has the form:
if ϕ is a formula, then {x |ϕ} is a term where FV ({x |ϕ}) = FV (ϕ− {x}) (FV (E) is the set of free variables
occurring in the expression E).
Two terms (formulas) are called α–congruent, if they only differ by renaming of bound variables; we identify
α–congruent terms (formulas).

4.1 Stratified comprehension

As usual for Quine’s systems, we need stratification; we also define a restricted notion thereof, which is motivated
by the consideration of “loosely predicative” class existence axioms (see Definition 1.1, [3], p.131).

(i) ϕ is stratified iff it is possible to assign a natural number (type in short) to each term occurrence 7 of ϕ in
such a way that

– if t ∈ s is a subformula of ϕ, the type of s is one greater than the type of t; if t = s is a subformula of
ϕ, the type of s is the same as the type of t;

– all free occurrences of the same variable in any subformula of ϕ have the same type;

– if x is free in ψ and ∀xψ is a subformula of ϕ, then the ‘x’ in ∀x and the free occurrences of x in ψ
receive the same type;

– if t := {x |β} occurs in ϕ, x is free in β, then t is assigned a type one greater than the type assigned to
x, and all the free occurrences of x in β receive the same type.

(ii) {x |ϕ} is stratified if ϕ is stratified;

(iii) a stratified term {x |ϕ(x, ~y)} is loosely predicative iff for some type i ∈ ω, {x |ϕ(x, ~y)} has type i + 1,
no (free or bound) variable of ϕ(x, ~y) is assigned type greater than i + 1; a stratified term {x |ϕ(x, ~y)}
is predicative iff {x |ϕ(x, ~y)} is loosely predicative and in addition no quantified variable of ϕ(x, ~y) is
assigned the same type as {x |ϕ(x, ~y)} itself.

(iv) ϕ is n+ 1–stratified iff ϕ is stratified by means of 0, . . . , n.

For instance,
⋃
a = {x | (∃y ∈ a)(x ∈ y)} is not loosely predicative, since it requires type 2, but

⋃
a itself has

type 1; a ∩ b = {x |x ∈ a ∧ x ∈ b} is predicative.

6 Aτ [X := x] is the formula we obtain by replacing each occurence of formulas of the form s ∈ X by Tpred(x, s).
7 Individual constants included; these can be given any type compatible with the clauses below.
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Definition 4.1 The system NF comprises:

(i) predicate logic for the extended language 8;

(ii) extensionality: ∀x∀y(x =e y → x = y), where

t =e s :⇔ ∀x(x ∈ t↔ x ∈ s)

(iii) explicit comprehension SCA: if ϕ is stratified, then

∀u(u ∈ {x |ϕ(x, ~y)} ↔ ϕ(u, ~y))

Other systems

(iv) NFP (NFI) is the subsystem of NF, where SCA is restricted to (loosely) predicative abstracts.

(v) NFk (NFIk, NFPk) is the subsystem of NF (NFI, NFP), where (at most) k types are allowed for stratifica-
tion.

Remark 4.2 By a theorem of Crabbé ( [3, p.134, Theorem 1]), NFI is provably consistent, say, in third
order arithmetic (at most). The details of the (different) consistency proofs for NFI can be found in [3] and
in [8, Theorem 3, p.187].
In order to carry out a Kripke-like construction in the NF-systems and to represent the syntax, we shall essentially
exploit Quine’s homogeneous pairing operation, which does require extensionality and the existence of a copy
of the natural numbers. But it is not difficult to check that Quine’s pairing is indeed well-defined already in NFI.
First of all, the collection of Fregean natural numbers is a set in NFI.

Definition 4.3

∅ = {x |x 6= x};
V = {x |x = x}
0 = {∅};
a+ 1 = {x ∪ {y} |x ∈ a ∧ y /∈ x};
ClN (y)⇔ 0 ∈ y ∧ ∀x(x ∈ y → (x+ 1) ∈ y);

N = {x | ∀y(ClN (y)→ x ∈ y)}

NFI proves the existence of N ; in fact, by inspection, all sets in Definition 4.3 are loosely predicative. Fur-
thermore, we have, provably in NFI:

Lemma 4.4 (NFI) Let {x |ϕ(x)} be loosely predicative.

ClN ({x |ϕ(x)})→ N ⊆ {x |ϕ(x)}; (1)

(∀x)(x ∈ N ↔ x = 0 ∨ (∃y ∈ N )(x = y + 1)); (2)

∅ /∈ N ∧ (∀x ∈ N )(V /∈ x); (3)

(∀x ∈ N )(x+ 1 6= 0); (4)

(∀x ∈ N )(∀y ∈ N )(x+ 1 = y + 1→ x = y) (5)

Clearly N is infinite by (3) above. As to the proof, (3) holds in NFI + Union, as NFI+Union ≡ NF by [3,
p.131, Lemma 1], and NF proves (3) according to a famous result of Specker (see [18], [4, pp.48-49]). On the
other hand, NFI + ¬Union implies (3) by [3, p.135]. The claims (2), (1) with the Peano axioms are provable in
NFI ((5) requires the second part of (3)).

8 If the abstraction operator is assumed as primitive, the extended logic contains the schema

∀u(ϕ(u)↔ ψ(u))→ {x |ϕ(x)} = {x |ψ(x)}
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12 A. Cantini: Stratified Truth

Definition 4.5 (Quine’s homogeneous pairing; see [15, Chap.10, pp.281–284], [16, p.380])

φ(a) = {y | y ∈ a ∧ y /∈ N} ∪ {y + 1|y ∈ a ∧ y ∈ N};
θ1(a) = {φ(x) |x ∈ a};
θ2(a) = {φ(x) ∪ {0} |x ∈ a};
(a, b) = θ1(a) ∪ θ2(b);

Q1(a) = {z |φ(z) ∈ a};
Q2(a) = {z |φ(z) ∪ {0} ∈ a}

The definitions above are (at most) loosely predicative and hence the universe of sets is closed under the
corresponding operations, provably in NFI.

We below exploit the fact that Quine’s pairing operation and its projections are⊆-monotone in both arguments:
indeed, the definitions of (a, b), Q1(a), Q2(a) are positive in a, b.9

Lemma 4.6 We have, provably in NFI:

1. φ(a) = φ(b)→ a = b ;

2. 0 /∈ φ(a);

3. θi(a) = θi(b)→ a = b, where i = 1, 2;

4. (x, y) = (u, v)→ x = u ∧ y = v.

5. each projection Qi (i = 1, 2) is ⊆–monotone; moreover the map x, y 7−→ (x, y) is surjective and ⊆–
monotone in each variable:

x ⊆ u → Q1(x) ⊆ Q1(u) ∧Q2(x) ⊆ Q2(u)

x = (Q1(x), Q2(x))

x ⊆ u ∧ y ⊆ w → (x, y) ⊆ (u,w)

The proof hinges upon the properties of N and the successor operation (see [15, Chap.10, pp.280]).

Lemma 4.7 (Fixed point) Let A(x, a) be a formula which is positive in a. Assume that

ΓA(a) = {x |A(x, a)}

is loosely predicative, where x, a are given types i, i+ 1 respectively. Then NFI proves the existence of a set c of
type i+ 1, such that:

(i) ΓA(c) ⊆ c ;

(ii) ΓA(a) ⊆ a ⇒ c ⊆ a.

The proof is standard: observe that the set

c := {x | ∀d(ΓA(d) ⊆ d→ x ∈ d)}

is loosely predicative.

9 Reminder: a formula A(x, a) is positive in a if every free occurrence of a in the negation normal form of A is located in atoms of the
form t ∈ a, which are prefixed by an even number of negations and where a /∈ FV (t).
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5 Embedding stratified truth in NF

5.1 Generating truth

We use Quine’s pairing for representing logical constructors, and Lemma 4.7 to interpret the truth predicate.
Definition 5.1

¬̇x := (0, x);

x∧̇y := (1, (x, y));

∀̇f := (2, f);

∈̇xy := (3, (x, y));

=̇xy := (4, (x, y))

We also write [x = y] for (=̇xy). If {x} denotes the singleton, we let

[x ∈ y] := ∈̇{x}y = y · x

Under the dot-application, the universe of sets becomes an applicative structure. y ·x is stratified only if y and
x are given the types i+ 1 and i (respectively), and the result of applying y to x is one greater than the type of x.

By Lemma 4.6:
Fact 5.2

(i) ¬̇x, x∧̇y, ∀̇f , =̇xy are ⊆-monotone in x, y.

(ii) y · x is ⊆-monotone in y.

We now model the Kripke-Feferman notion of self-referential truth within the abstract framework of Quine’s
set theory. First of all, in analogy with the notion of P-form (Definition 1.8), let

Pfr(x) ⇔ ∃u∃v(x = [u ∈ v]) ∨ ∃z(x = ¬̇z ∨ x = ∀̇z) ∨ (6)
∨∃w1∃w2((x = [w1 = w2]) ∨ (x = w1∧̇w2)) (7)

Pfr(x) is stratified (assign 1 to x, v, w1, w2 and 0 to u, z). The truth predicateW is introduced as the fixed point
of a stratified positive (in a) operator T (x, a), which encodes the recursive clauses for partial self-referential truth
and is given by the formula

∃y ( x = ¬̇y ∧ ¬Pfr(y)) ∨
∃u∃v∃w [ (x = [u ∈ v] ∧ u ∈ v) ∨

∨ (x = ¬̇[u ∈ v] ∧ ¬u ∈ v) ∨
∨ (x = [v = w] ∧ v = w) ∨
∨ (x = [¬v = w] ∧ ¬v = w) ∨
∨ (x = ¬̇¬̇v ∧ v ∈ a) ∨
∨ (x = v∧̇w ∧ v ∈ a ∧ w ∈ a) ∨
∨ (x = ¬̇(v∧̇w) ∧ (¬̇v ∈ a ∨ ¬̇w ∈ a)) ∨
∨ (x = ∀̇v ∧ ∀z(v · z ∈ a)) ∨
∨ (x = ¬̇∀̇v ∧ ∃z(¬̇v · z ∈ a))]

Clearly Ψ(a) := {x | T (x, a)} is ⊆-monotone in a and is predicative in the sense of 4.1 (iii): it receives type 2
once we assign type 0 to u, z, type 1 to x, y, v, w, type 2 to a, no quantifier acts on variables of type 2.

Definition 5.3

ClT (a) := ∀x(T (x, a)→ x ∈ a)

W := {x | ∀a(ClT (a)→ x ∈ a)}
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14 A. Cantini: Stratified Truth

The Fixed Point Lemma 4.7 immediately implies:

Proposition 5.4 NFI proves:

1. ∃y(y = W );

2. ∀a(T (a,W )→ a ∈W );

3. ClT (a)→W ⊆ a.

Remark 5.5 The interpretation of the truth predicate requires an inductive definition over the universe which
still yields a set, i.e. an object of the universe. This makes essential use of the peculiar impredicative features of
NFI. If we should try to carry out such definition over the standard set theoretic universe of ZFC, T would result
in a proper class, and hence we should be forced to apply an impredicative theory of classes à la Morse-Kelley.

Definition 5.6 We inductively (and simultaneously) specify a translation (−) 7→ (−)σ of terms and formulas
of STµ into NF; below we use (−,−), Q1, Q2, W for the corresponding set theoretic notions of Definitions 4.5,
5.3, 5.1:

xσ := x

0σ = 0

(suc(t))σ = (tσ) + 1

(pair(t, s))σ = (tσ, sσ)

(left(t))σ = Q1(tσ)

(right(t))σ = Q2(tσ)

(pred(t, s))σ = [sσ ∈ tσ]

(T (t))σ = tσ ∈W
(tr(t))σ = [tσ ∈W ]

(t = s)σ = (tσ = sσ)

(id(t, s))σ = [tσ = sσ]

(A ∧B)σ = Aσ ∧Bσ

(and(t, s))σ = tσ∧̇sσ

(¬A)σ = ¬Aσ

(neg(t))σ = ¬̇tσ

(∀xA)σ = ∀x(A)σ

(all(t))σ = ∀̇tσ

[x|A]σ = {x|Aσ}
(µy.t(y, ~x))σ = {u|∀z(tσ(z, ~x) ⊆ z → u ∈ z)}

Lemma 5.7 (Preservation Lemma)

(i) IfA (respectively t) is a stratified formula (term) of STµ, thenAσ (tσ) is a formula (term), which is stratified
in the sense of NF,10 such that FV (Aσ) = FV (A) (FV (tσ) = FV (t)).

(ii) Furthermore, if t(y, ~x) (A(y, ~x)) is stratified positive (negative) in y, then tσ(y, ~x) (Aσ(y, ~x)) is stratified
⊆-monotone (⊆-anti-monotone)11 in y.

10 Explicit typing of T (x) yields T 1(x0), while (T (x))σ = x1 ∈ W 2. But T (x) can also be typed as T 2(x1) modulo type shifting.
Hence the σ-map is type-preserving, i.e. the same type assignment to variables and terms of A is involved, provided we take into account
type shifting.

11 This means: if a ⊆ b, then tσ(a, ~x) ⊆ tσ(b, ~x) and [u|A(u, a, ~x)]σ ⊆ [u|A(u, b, ~x)]σ (respectively tσ(b, ~x) ⊆ tσ(a, ~x) and
[u|A(u, b, ~x)]σ ⊆ [u|A(u, a, ~x)]σ).
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P r o o f. Proceed by simultaneous induction on the definition of term (formula), possibly positive (negative)
in given parameters.

If A := T (t) is stratified, then so is t; hence by IH tσ is stratified as well as tσ ∈W .
Let A := t = s be stratified. Then so are tσ and sσ . But this implies that (t = s)σ ≡ tσ = sσ is stratified.
Let tσ := (pred(s, r))σ be stratified. Then tσ = [rσ ∈ sσ] is stratified too, since by IH sσ is assigned a type

which is one greater than the type assigned to rσ . The cases where t (A) is built up by means of and, id, all, tr
(∧, ∀) are straightforward by IH.

If t := [x|A], then Aσ is stratified, whence tσ := [x|Aσ] is stratified.
Let t := µy.r(y, x) be stratified. Then by IH r(y, ~x) is stratified and positive (negative) in y, x. Hence

(µyr(y, x))σ = {u|∀z(rσ(z, x) ⊆ z → u ∈ z)} is stratified and rσ(y, x) is positive in y and x. Hence
(µyr(y, x))σ is positive in x; thus, if a ⊆ b,

(µyr(y, a))σ ⊆ (µyr(y, b))σ.

If t(y, ~x) := pred(r, s) is stratified positive (negative) in y, r has type one greater than the type of s and r is
positive (negative) in y. Hence by IH rσ is stratified monotone in y with type one greater than the type of sσ ,
which is also stratified. It follows by definition of the σ-translation, the property of monotonicity of Lemma 4.6
and Quine’s pairing that t(y, ~x)σ is stratified and monotone in y.

Let us check the case where
t(y, ~x) = id(s(y, ~x), r(y, ~x))

Then we have to show that, if v ⊆ w, t(v, ~x)σ ⊆ t(w, ~x)σ . By IH we have

u ⊆ w → s(u, ~x) ⊆ s(w, ~x)

u ⊆ w → r(u, ~x) ⊆ r(w, ~x)

The conclusion again follows by item 5 of the Lemma 4.6, definition of id and Quine’s pairing. The remaining
cases when t is built up by means of neg, all are similar.

Lemma 5.8 If A is a stratified formula of STµ, NF proves:

Aσ[x := u]↔ [Aσ[x := u]] ∈W

P r o o f. By induction on A, applying the previous lemma and Proposition 5.4 on W . We only consider the
case of the universal quantifier. Then by applying stratified comprehension in the last step:

[∀xA]σ ∈W ↔ ∀u([u ∈ [x|Aσ]] ∈W )

↔ ∀u(u ∈ [x|Aσ])

↔ ∀uAσ[x := u] ≡ (∀uA)σ[x := u]

Lemma 5.9 NF proves the σ-translation of extensionality:

(∀x(x ∈ a↔ x ∈ b)→ a = b)σ

P r o o f. Assume the σ-translation of the antecedent of extensionality, i.e.

(∀x(x ∈ a↔ x ∈ b))σ

Then apply Proposition 5.4.

The σ-translation induces an interpretation into NF.
Theorem 5.10 If STµ ` A, then NF ` Aσ .

P r o o f. It is enough to prove the σ-translation of the STµ-axioms. We repeatedly use Proposition 5.4 and the
independence (or injectivity) of the chosen representation for the logical and descriptive symbols (see Definition
5.1).
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16 A. Cantini: Stratified Truth

(i) T is total on predication. Consider e.g. the σ-translation of

T (pred(y, x)) ∨ T (neg(pred(y, x))

This amounts to verify

([x ∈ y] ∈W ↔ x ∈ y) ∧ ([¬x ∈ y] ∈W ↔ ¬(x ∈ y)), (8)

which in turn follows from the second and third clauses of the inductive definition of W . By (8) also

([x ∈ y] ∈W ∨ [¬x ∈ y] ∈W (9)

for every x, y. Hence if we choose y := W , we obtain:

([x ∈W ] ∈W ∨ [¬x ∈W ] ∈W (10)

But (10) implies the σ-translation of the T -axioms involving tr. The verification of the extant cases (=, ∧,
∀) is also routine.

(ii) T-consistency. Then we must prove the corresponding σ-translation, i.e.

¬(x ∈W ∧ (¬̇x) ∈W )

Choose ψ(x) := ¬((¬̇x) ∈W ). Then {x|ψ(x)} is a set in NFI and it is easy to check:

∀x(T (x, {x|ψ(x)})→ ψ(x))

The conclusion is a consequence of Proposition 5.4, item 3.

(iii) Stratified β-conversion: we want, if A is stratified,

(T (pred([x|A], u))σ ↔ T [A[x := u]])σ

But by definition of W with Proposition 5.4, stratified comprehension and Lemma 5.7, we have:

(T (pred([x|A], u))σ ↔ [u ∈ [x|Aσ]] ∈W )

↔ u ∈ [x|Aσ]

↔ Aσ[x := u]

↔ [Aσ[x := u]] ∈W
↔ (T [A[x := u]])σ

The remaining β conversion schema is similar.

(iv) Self-reference: let t(y, ~x) be stratified positive (negative) in y. Then by Lemma 5.7, tσ(y, ~x) is stratified
positive in y. Hence µyt(y, ~x)σ = {u|∀z(tσ(z, ~x) ⊆ z → u ∈ z)} satisfies the due fixed point equation by
Lemma 4.7.

(v) µ-extensionality: straightforward.

(vi) Logical operators are injective: the σ-translation of the corresponding axioms is sound, simply because the
logical operators act as ordered sequence operators, built upon Quine’s ordered pair.

(vii) Logical operators are not surjective: in fact there are objects (e.g.(4, a)) which differ from ¬̇x, x∧̇y, ∀̇ and
∈̇xy (use Lemma 4.4). The images of the logical operators are trivially disjoint (we use distinct Fregean
numbers as labels), and there are objects which are not P-forms, e.g. any ordered pair (∅, a).

Remark 5.11 The full strength of stratified comprehension is exploited in interpreting predication. Once
predication is restricted to loosely stratified (or predicative) formulas, the resulting version of STµ becomes
reducible to a consistent subsystem of NF.
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6 Conclusion: stratified truth?

Let us try to assess some limits of the theory.
Why stratification? On one hand, that there is a type raising when we move from the mere claim of A to the

claim of T [A], can on intuitive grounds be conceded (at least according to the present author). And this is a good
reason to pursue the typed theories of truth12. On the other hand, our practice with natural language tends to
support the idea that we have to deal with the truth predicate, without any further type qualification; hence types
ought to be left implicit or possibly avoided. Stratification can be regarded as a way to make both sides coexist.
Of course, the awkward aspect is that we do appeal to a theory, which has certain unnatural features. Moreover,
the consistency of STµ relies in its full strength upon a discipline – stratification – which is not fully understood,
as shown by the yet unsolved (?) problem whether NF be consistent or not.

An additional unsatisfactory point is that the syntactical apparatus of STµ is, at the present stage of formal-
ization, rather complex, and the stratification device is not so transparent as the corresponding explicit typed
versions of truth.

Nevertheless, though type-theoretic in essence, STµ allows limited, yet non-trivial forms of self-reference,
which are based after all on a semantical construction. And these limitations are apparently essential, in order
to preserve consistency. In contrast with usual formal theories of truth, a distinctive feature of STµ is that it
allows forms of direct self-reference (to make this clear with an example from recursion theory, the second
recursion theorem instantiates indirect self-reference, while the first recursion theorem typically supports direct
self-reference).

A positive interesting point might be that the compositional axioms of truth receive an unrestricted formaliza-
tion in STµ, and the truth predicate believes that they are true (in sharp contrast, say, with Kripke-like systems). If
we compare STµ with other strong axiomatic systems of truth, we must stress that a high degree of impredicativ-
ity is gained. The ground for it is the idea that the basic membership relation is well-defined and given, as made
clear by the axiom of well-definedness for truth, and by the semantical clauses in NF governing the operator for
inductively defining truth.

As to the relation with the literature, Holmes [9] explores the possibility that formal semantics is expressed
in Quine’s NFU, i.e. NFU with urelemente. In particular he shows that the reason why Tarski’s argument fails,
is not the undefinability of truth, but that the quotation operation becomes type-raising, causing the predicate
needed for the ‘Tarski sentence’ to be unstratified and blocking diagonalization. Now, as already seen, something
related happens in our case: the operation for encoding formulas of the form T (x), ¬T (x) is also type raising,
and this forbids a form of the Liar leading to inconsistency. Of course, this is at present only a surface analogy.
Indeed, a comparative look at [9] makes clear a specific limitation of STµ: its truth predicate T is not intended
for metamathematical applications, as it is not defined on the inductively defined set of (codes of) sentences of
the given formal language, say, of NF itself. T can only be applied to objects of the intended universe, which
stand for propositions, whatever this means. In other words, the truth notion of STµ is an ontological notion, and
is alien to standard semantical arguments, which make use of truth or satisfaction for inductively testing some
form of (partial) soundness of the provability tools.

Just as the study of axiomatic theories of truth over standard set theory ZFC has been recently developed
(see [5]), the investigation of axiomatic notions of truth over non-standard set theories like NF might be the next
reasonable step to the present work.

7 Appendix I: the largest fixed point operator

By analogy with the µ-calculus, we can consistently extend our language and theory with the binding operator ν
and the corresponding axioms:

• if t is positive in the list y, ~x and stratified,

∀~x(t(νyt(y, ~x), ~x) = νyt(y, ~x))

12 For a thorough critical discussion of the distinction between typed and type-free theories of truth, we send the reader to [6], especially
part II, and chapters 10-11 in part III.

Copyright line will be provided by the publisher



18 A. Cantini: Stratified Truth

• ν-Extensionality: if two terms positive (negative) in ~x, y and stratified, are pointwise equal, then

∀~x∀y(t(y, ~x) = s(y, ~x))→ ∀~x(νyt(y, ~x) = νys(y, ~x))

• Maximality: if t is positive in the list y, ~x and stratified,

∀~x(a ⊆ t(a, ~x)→ a ⊆ νyt(y, ~x))

If we extend the σ-translation 5.6 to ν-terms by stipulating

(νy.t(y, ~x))σ = {u|∃z(z ⊆ tσ(z, ~x) ∧ u ∈ z)}

then the Theorem 5.10 naturally extends to the system STµ with the ν-operator and its axioms.

8 Appendix II: on Yablo’s paradox in a stratified frame

We consider a formalization of Yablo’s paradox [19] in STµ. Define

t(f, x) = [∀y2(y2 ∈ N3 ∧ y2 > x2 → ¬T 4(pred(f3, y2))]13

Proposition 8.1

¬∃f∀x ∈ N(f · x = t(f, x))

Indeed, the term t is stratified, but not positive in f . And the paradox shows that no solution to the equation
above in f can exist.

8.1 Yablo’s argument I

Recall that, if W is the truth set in NF, then

pred(f, t) = [t ∈ f ]

= (∈̇, ({t}, f)

tr(t) = [t1 ∈W 2]

= (∈̇, ({t1}2,W 2)

Both expressions are positive (negative) in f , W , but NOT in t; W has type 2. Note that, if N is the set of natural
numbers a la Frege in NF, then

[k2 > n2] = [∃x2(x2 ∈ N3)(k2 = x2 + n2)]

8.2 Yablo’s argument II

• Yablo sequences in NF. Consider the function

f · x = [∀y(y ∈ N ∧ y > x→ ¬y ∈ f)]

= all[y|y ∈ N ∧ y > x→ ¬y ∈ f ]

= ∀̇{y2|y2 ∈ N3 ∧ y2 > x2 → ¬y2 ∈ f3}

Remark 8.2 This is not monotone in f ! But it is stratified. On the other hand there exists f such that

T (pred(f, x)) ↔ T [∀y(y ∈ N ∧ y > x→ T (pred(f, y)))]

↔ T (all[y|y ∈ N ∧ y > x→ T (pred(f, y))])

↔ ∀̇{y2|y2 ∈ N3 ∧ y2 > x2 → y2 ∈ f3}
13 For the reader’s sake, we have explicitly attached the type indices.
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