
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

Corso di Dottorato in Ingegneria dell’Informazione

Curriculum: Automatica, Ottimizzazione e Sistemi Complessi

Decomposition methods for
constrained nonlinear

optimization

Candidate
Giulio Galvan

Supervisor
Prof. Marco Sciandrone

PhD Coordinator
Prof. Fabio Schoen

ciclo XXXII, 2016-2019

Università degli Studi di Firenze, Dipartimento di Ingegneria
dell’Informazione (DINFO).

Thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Information Engineering. Copyright © 2020 by
Giulio Galvan.

Abstract
This thesis is concerned with decomposition methods for constrained non-
linear optimization. Decomposition methods are a popular and effective
technique to deal with problems which enjoy a special structure either in
their feasible set or in the way the function to be minimized is defined. In
the present thesis three different classes of problems are considered. Each
problem is characterized, in a different way, by a special structure which can
be leveraged upon by decomposition methods.

The first part of the thesis is concerned with problems whose feasible set
can be described by the intersection of two closed convex sets. A modifica-
tion of the Augmented Lagrangian Method is proposed to solve this class of
problems. The algorithm has a close relationship with the ADMM algorithm
against which is thus compared. The convergence of the algorithm is proved
for general nonlinear nonconvex differentiable functions. A modification of
this scheme for nonsmooth function is also proposed.

The second part of the thesis is concerned with decomposition methods
to solve the optimization problems arising from the training of SVMs. The
literature on decomposition methods for SVMs training is huge and several
different decomposition algorithms have been proposed over the last decades.
In state-of-the-art solver, like the popular libSVM, the original problem is
decomposed in several smaller problems usually consisting of 2 variables. In
this thesis we propose a novel way to decompose the problem into bigger
sub-problem (up to 50 variables) and a novel way to solve the sub-problems
themselves. An extensive numerical experimentation shows that this strat-
egy often outperforms state-of-art solvers.

Finally, the last part of the thesis deals with derivative free methods. A
general nonsmooth optimization problem with convex constraints is ”decom-
posed” into a bi-level optimization problem where the upper-level problem
has as an objective a modification of the original objective function and the
lower-level one accounts for the constraints. Such problem is proven to be
equivalent to the original problem. The special structure of the resulting
bi-level problem is simple enough so that the problem can be solved with
standard derivative-free methods. Extensive numerical evidence shows that
the method is competitive with state-of-art solvers for constrained derivative
free optimization and its convergence properties extends nicely to a wider
class of problems.

iv

Contents

Contents v

1 Introduction 1

2 The augmented Lagrangian method for problems with ab-
stract convex constraints 7
2.1 Introduction . 7
2.2 Convergence analysis . 12

3 Two blocks decomposition for the ALM 19
3.1 Introduction . 19
3.2 The algorithm . 22
3.3 Convergence analysis . 24
3.4 Extensions . 32
3.5 A computational example . 33
3.6 Conclusion . 38

4 Two blocks decomposition for the ALM without derivatives 39
4.1 Introduction . 39
4.2 The algorithm . 41
4.3 Convergence analysis . 43

4.3.1 Convergence of DFBox 44
4.3.2 Convergence of AM 46
4.3.3 Convergence of ALTALM 48
4.3.4 Conclusion . 48

5 Two-Level decomposition for training SVMs 49
5.1 Introduction . 49

v

vi CONTENTS

5.2 Decomposition methods for SVM training 50
5.3 The proposed algorithm . 56

5.3.1 Solving the subproblems 56
5.3.2 A novel working set selection rule 58
5.3.3 Convergence properties of the proposed algorithm . . 61

5.4 Numerical experiments . 62
5.4.1 Benchmark problems and experiments setup 63
5.4.2 Computational evidence on inner SMO efficiency . . . 64
5.4.3 Evaluation of different working set sizes 66
5.4.4 Experimental analysis of working set selection rules . 69
5.4.5 Analysis of the effects of adding cached variables . . . 74
5.4.6 Overall evaluation of TLD-ISMO with WSS-MIX . . . 74

5.5 Conclusions . 78

6 Bilevel decomposition of nonsmooth problems with convex
constraints 79
6.1 Introduction . 79
6.2 A novel formulation . 82
6.3 Equivalence of the formulations 84
6.4 Numerical experiments . 87

6.4.1 A first comparison . 91
6.4.2 A parametrization . 91
6.4.3 Final comparison . 92

6.5 Conclusion . 98

A Linesearch properties 99

B Performance metrics 101
B.1 Performance profiles . 101
B.2 Data profiles . 102

C Publications 103

Bibliography 105

Chapter 1

Introduction

Decomposition methods have been extensively studied and effectively em-
ployed to solve different classes of problems in several fields over the last
decades often achieve state-of-art performances. Just as an example they
have been employed to solve portfolio selection problems, or in machine
learning to solve the training problem of Support Vector Machines (SVMs).

These kind of methods tackle an optimization problem by solving a se-
quence of sub-problems obtained by fixing some variables of the problem
and optimizing w.r.t. to the others. Solving a succession of sub-problems
instead of dealing with all the variables at the same time can be a neces-
sity for very large problems where it is impossible to store all the variables
into main memory or when we are working in a distributed environment
where data is scattered around a number of processing units. The advan-
tages of using decomposition methods, however, are not limited to very large
or distributed contexts. In fact, the sub-problems can be considerably easier
to solve (maybe with specialized techniques) than the original problem so
that solving a succession of sub-problems can be a lot faster than applying
standard optimization methods to the original problem. For example

• it may be easy to find the global (or local) minimum of a sub-problem
because it is available in closed form, or because a specialized algorithm
exists,

• by choosing a specific decomposition scheme some of the sub-problems
can be solved in parallel,

1

2 Introduction

• some of the sub-problems can be convex even when the original problem
is not,

• the feasible set of the original problem nicely partition over some group
of variables so that the sub-problems are considerably easier to solve
with standard methods.

Classical decomposition methods for unconstrained optimization work by
partitioning a vector of variables x ∈ Rn in m ≤ n blocks:

x = (x1, x2, . . . , xm),

and by minimizing the objective function f : Rn → R w.r.t. to single
blocks of variables. Which kind of minimization step is employed and in
which order the blocks are selected give rise to different methods with dif-
ferent convergence properties. As a minimization step, for instance, we can
find the global or local minimum of the problem or perform a descent step
with some kind of local search.

We can distinguish between parallel methods where at each iteration all
the blocks of variables are considered and the corresponding sub-problems
solved in parallel and sequential methods where only one block of variables
is considered at a time.

In parallel methods after all the solution of the sub-problems are com-
puted is necessary to choose the new iterate in such a way to ensure the
convergence of the algorithm. In the Jacobi method for instance the new
iterate is chosen as the solution of the sub-problems which enjoys the lower
objective function value.

Sequential methods instead differ in the way the blocks of variables are
selected. In the Gauss-Seidel and in the Block descent methods, for instance,
we loop over all of the m blocks in an orderly fashion while in the Gauss-
Southwell method at each iteration we select the blocks of variables which
mainly violate some optimality condition.

Decomposition methods for unconstrained optimization can be, in most
cases, extended to the constrained case under suitable assumption on the
feasible set. A special case, in which decomposition methods are particularly
useful, is when the feasible set X can be partitioned over the variables so
that X = X1 × X2 × · · · × Xm and the constraints can be expressed as
x1 ∈ X1, x2 ∈ X2, . . . , xm ∈ Xm.

3

Often, however, problems with a particular structure cannot be directly
dealt with general decomposition methods or offer the possibility to devise
specialized methods that leverage upon the particular nature of the problem.

In this thesis we concern ourselves with three different classes of problems
where specialized decomposition techniques can be effectively used.

Decomposition for the augmented Lagrangian method The first
classes of problems we consider consists of problems whose feasible set Ω can
be expressed as the intersection of two (or more) sets Ω = X ∩Y . This offer
the possibility to modify the problem in such a way that the variables nicely
separates over the different sets:

min
x,y

f(x)

s.t. x ∈ X, y ∈ Y,

x− y = 0.

A popular way to solve the latter is the augmented Lagrangian method
(ALM). In its minimization step the method minimize the augmented La-
grangian function w.r.t. both x and y variables before updating the Lagrange
multipliers and the penalty parameter τ :

min
x,y
Lτ (x, y, λ) = f(x) + λT (x− y) +

τ

2
‖x− y‖2 .

In this thesis we propose to modify the method by applying a 2 block
Gauss-Seidel like decomposition scheme to this step. We consider both the
case where f is continuously differentiable and derivatives are available and
the case where f is still differentiable but its derivatives are not available or
too expensive to compute. In the latter we exploit derivative-free techniques
together with the two block decomposition.

Two-level decomposition for SVM training The second class of prob-
lems we consider is constrained quadratic optimization problems that arise
in the training phase of SVMs (in its dual formulation).
Given a data set of n training vectors vi ∈ Rm and their associated labels

4 Introduction

yi ∈ {−1, 1}, the problem is given as:

min
α

f(α) =
1

2
αTQα− αT e

yTα = 0

0 ≤ α ≤ C,

where α ∈ Rn and Q ∈ Rn×n is given by Qij = yiyjKij , where K is the
kernel matrix with Kij = φ(vi)

Tφ(vj), for some mapping φ.
Decomposition methods have been extensively studied over the years and

are currently employed in state-of-the-art solvers like libSVM. A common
approach is to select a group of variables looking at the violation of KKT
conditions (in a Gauss-Southweel fashion) to form the sub-problems. The
dimension of the sub-problem is usually very small often consisting of only
2 variables which yield nice closed form updates.

In this thesis we study a novel way to select the variables that give rise
to bigger sub-problems (from 4 to 50 variables) and we use a second level of
decomposition to solve the sub-problems themselves.

Bi-level decomposition for constrained derivative free optimization
As a last case we consider a general nonsmooth constrained optimization
problem

min f(x)

s.t. x ∈ X,

where f is possibly nonsmooth (and first order information is not available)
and X is a closed convex set. We propose a novel formulation which decou-
ples the objective function and the constraints in the upper and lower levels
of the following bi-level problem:

min
y

f(x) + ε ‖x− y‖

x = argmin
z∈X

‖z − y‖ ,
(1.1)

where ε is any positive number. In this thesis we prove the equivalence in
terms of local and global minima of the latter formulation to the original
problem. Then we show how to apply any given algorithm for nonsmooth
unconstrained optimization to solve the proposed formulation. The obtained
results compare favorably against the state of the art.

5

The thesis is organized as follows. Chapter 2 is devoted to the augmented La-
grangian method. We consider the settings when the constraints are general
abstract convex sets with no explicit formulation and no additional assump-
tions are available. We prove the convergence of ALM in this setting filling
a gap in the literature. This serves as a basis for Chapter 3 where decom-
position in used to modify the ALM scheme. We adapt this approach to
the derivative-free setting in Chapter 4. Then we move to the study of the
SVM training problem in Chapter 5 and finally, in Chapter 6, we deal with
general nonsmooth constrained problems.

6 Introduction

Chapter 2

The augmented Lagrangian
method for problems with
abstract convex constraints

2.1 Introduction
This chapter is concerned with the convergence of the augmented Lagrangian
method (ALM) for constrained optimization problems of the form

min f(x)

g(x) ≤ 0,

x ∈ X,

(2.1)

where f : Rn → R is a continuously differentiable function, g : Rn → Rp,
is component-wise convex and continuously differentiable and X is a closed
convex set.

The augmented Lagrangian for problem (2.1), following [14], is defined
as

Lτ (x, µ) = f(x) +
τ

2

p∑
i=1

[
max

{
0, gi(x) +

µi

τ

}]2
,

where µ is the vector of Lagrangian multipliers and τ the penalty parameter.
With this notation we write the gradient of the augmented Lagrangian as

∇xLτ (x, µ) = ∇f(x) + τ

p∑
i=1

max
{
0, gi(x) +

µi

τ

}
∇gi(x).

7

8
The augmented Lagrangian method for problems with abstract

convex constraints

Note that ∇xLτ is continuous.
Augmented Lagrangian methods work by solving a sequence of sub-

problems of the form

min
x∈X
Lτk(x, µ

k) (2.2)

where µk is the current multiplier estimate and τk the penalty parameter.
After the new iterate xk+1 has been computed by solving (2.2) up to εk-
stationarity (as it will be defined shortly), the multipliers µk are updated
with

µ̃k+1
i = max{0, µk

i + τkgi(x
k+1)}

We focus, in particular, on augmented Lagrangian methods that employ
multiplier safeguarding techniques [3, 4, 14, 16, 17] in contrast to classical
methods [12,28,75,80] as summarized in [46]. In such methods the multiplier
estimate is corrected to ensure its boundedness, for example by means of a
projection onto a bounded set [0, µ̄]:

µk+1
i = Π[0, µ̄]

[
µ̃k+1
i

]
Finally the penalty parameter τk may be increased and the accuracy

increased (by decreasing εk). The complete Augmented Lagrangian method
is given in Algorithm 1.

Algorithm 1: Augmented Lagrangian Method
Input: x0 ∈ X, µ0 > 0, δ > 1, σ ∈ (0, 1), τ0 > 0,

a positive (decreasing) sequence {εk}

1 ‖V 0‖ = +∞
2 for k = 0, 1, . . . do
3 xk+1 ← an εk-stationary point of (2.2)
4 µk+1 = Π[0, µ̄]

(
µk
i + τkgi(x

k+1)
)

5 V k+1
i = min{−gi(xk+1),

µk
i

τk
} i = 1, . . . p

6 if ‖V k+1‖ ≤ σ‖V k‖ then
7 τk+1 = τk,
8 else
9 τk+1 = δτk.

Our interest lies in contexts where 1) no additional assumptions besides
closedness and convexity are made on X and 2) the Lagrangian sub-problems

2.1 Introduction 9

are solved by computing stationary points with increasing accuracy. The
presence of abstract constraints together with the challenge of having to deal
with approximate stationary points is what makes this problem interesting.

If one is able to compute the global minimum of each Lagrangian sub-
problem, in fact, the convergence analysis is straightforward and no assump-
tions on X, beside its closedness, are required [11]. Computing the global
minimum is however, usually, unsuitable with non-convex objective functions
and we thus aim for stationary points. Moreover it is often useful and com-
putationally convenient to start with loosely approximate stationary points
in the early stages of the algorithm and require increasingly accurate solu-
tions as the algorithm progresses. The convergence of ALM in the latter
scenario is very well understood [10, 11] when X = Rn while the case where
additional regularity assumptions can be made on X has been extensively
studied in [4,14]. On the contrary, to the best of our knowledge, no existing
results in the literature prove the convergence to stationary points when we
deal with abstract convex constraints without any regularity assumptions.

The aim of our analysis it thus to prove that the limit points of the
iterates {xk} produced by the ALM algorithm are feasible, i.e. they belong
to the convex set

Ω , {x ∈ Rn | x ∈ X, g(x) ≤ 0},

and are stationary points of problem (2.1) as expressed by the following.

Definition 1 (Stationary point). We say that x̄ ∈ Ω is a stationary point if

∇f(x̄)T (z − x̄) ≥ 0 ∀z ∈ Ω. (2.3)

It is well known that we can equivalently characterize a stationary point
in terms of projection. In particular, it holds the following [11].

Lemma 1. A point x̄ ∈ Ω is a stationary point iff

x̄ = ΠΩ [x̄−∇f(x̄)] , (2.4)

where ΠΩ [x] is the projection of point x over the convex set Ω.

A crucial aspect of the analysis is how we compute approximate solutions
of the Lagrangian sub-problem. Criteria (2.3) and (2.4) for the augmented
Lagrangian sub-problem are written as

∇xLτ (x̄, µ)
T (z − x̄) ≥ 0 ∀z ∈ X

10
The augmented Lagrangian method for problems with abstract

convex constraints

and
x̄ = ΠX [x̄−∇Lτ (x̄, µ)] .

In view of the equivalent characterization of stationarity offered by the
two criteria we can derive two different ways to define ε-stationarity as ex-
pressed by the following two definitions.

Definition 2 (ε-approximate stationary point ASP1). Let ε > 0. We say
that x̄ ∈ X is an ε-approximate stationary point ASP1 for the Lagrangian
sub-problem if

∇xLτ (x̄, µ)
T (z − x̄) ≥ −ε ∀z ∈ X. (2.5)

Definition 3 (ε-approximate stationary point ASP2). Let ε > 0. We say
that x̄ ∈ X is an ε-approximate stationary point ASP2 for the Lagrangian
sub-problem if ∥∥x̄−ΠX [x̄−∇xLτ (x̄, µ)]

∥∥ ≤ ε. (2.6)

As it will emerge from the convergence analysis, while we have a perfect
equivalence between (2.3) and (2.4), choosing as a stopping criterion for
the sub-problems (2.6) in place of (2.5) makes our analysis somewhat more
complex and we have to make additional assumptions on the interaction
between the sequences {εk} and {τk}. On the other hand, criterion ASP1 is
in fact entirely suitable only under boundedness assumptions on the feasible
set: indeed, in the unbounded case, (2.5) often holds if and only if the current
point is also stationary (i.e. ASP1 holds with ε = 0).

A possible way to overcome this limitation could be modifying ASP1 to

∇xLτ (x̄, µ)
T (z − x̄) ≥ −ε ‖z − x̄‖ ∀z ∈ X,

as it has been done in [47, 88] where the convergence of ALM with such
stopping criterion is proven. Note that however, while checking ASP1 is rea-
sonably easy for some classes of problems (for instance solving a LP problem
when X is described by linear constraints), it is not possible to check in a
finite number of iterations whether the latter holds.

Criterion ASP2, on the other hand is easily checked if one is able to
make projections on X and has no limitations in the unbounded case. This
criterion has been employed in [14] where ALM in the setting here considered
is analyzed to some extent. The results contained in [14] are however limited.
In particular from Theorems 6.4 and 6.5 can be deduced the following.

2.1 Introduction 11

Theorem 1. Let {xk} be the sequence produced by the algorithm using
ASP2. Assume further that Ω is not empty. Then each cluster point x̄ =

limk∈K xk is a feasible point of problem (2.1). Moreover it holds that

lim
k→∞
k∈K

∥∥∥∥∥xk+1 −ΠX

[
xk+1 −

(
∇f(xk+1) +

p∑
i=1

∇gi(xk+1)T µ̃k+1
i

)]∥∥∥∥∥ = 0

(2.7)

and

lim
k→∞
k∈K

min{−gi(xk+1), µ̃k+1
i } = 0. (2.8)

Conditions (2.7) and (2.8), introduced and used in [14], are a kind of se-
quential (as opposed to point-wise) optimality conditions which approximate
KKT conditions and are known as approximate KKTs (AKKTs).

Without further conditions on the constraints, however, AKKTs may
hold, even in the case X = Rn, for sequences converging to points that
do not satisfy first order optimality conditions. This is shown in [72] by a
numerical example in two variables (see Remark 3.1 of [72]) concerning the
minimization of a convex function over a convex, compact set. In particular,
it is shown that a sequence satisfying an approximate gradient projection
property (AGP) converges to a feasible point which is not a minimizer of the
convex problem. The AGP property, introduced in [72], is strongly related
to AKKTs and in particular we have that AGP implies AKKTs (as discussed
in [5]) so that the numerical example holds also for AKKTs.

Moreover in the presence of the abstract set of constraints X 6= Rn, to
the best of our knowledge, it has not been proven that AKKTs imply any
condition of stationarity even with additional conditions on the constraints.

Therefore a proper convergence analysis of ALM in the considered set-
tings is lacking. We carry out the convergence analysis of the algorithm in
the following section.

We would like to point out that, although we do not explicitly treat
equality constraints in problem (2.1), it is an easy extension which does
not add much to the analysis but worsen the readability of the paper and
is, hence, omitted. A special case of linear constraints will be dealt with
explicitly in Chapter 3. Note that convex equality constraints can only be
linear.

12
The augmented Lagrangian method for problems with abstract

convex constraints

2.2 Convergence analysis
We begin the discussion by stating the following assumptions.

Assumption 1. The set X ⊆ Rn is closed and convex. The set Ω = {x ∈
Rn | x ∈ X, g(x) ≤ 0} is not empty.

Note that Ω is also convex as it is the intersection of two convex sets.

Assumption 2. The sequence {εk} is such that

lim
k→∞

εk = 0.

In the subsequent analysis we will make use of the following very well
known Lemma (see for instance [14] Theorem 4.1).

Lemma 2. Let {xk+1}, {µk} and {tk} be produce by algorithm ALM. Let x̄
be a limit point of {xk+1}, i.e., there exists an infinite subset K ⊆ {0, 1, . . . , }
such that

lim
k∈K
k→∞

xk+1 = x̄,

and suppose that x̄ ∈ {x ∈ Rn | g(x) ≤ 0, x ∈ X}. Then, for all i = 1, . . . , p

such that gi(x̄) < 0 we have

max{0, µk
i + τkgi(x

k+1)} = 0

for all k ∈ K sufficiently large.

We carry out the analysis for ALM when the ASP1 stopping criterion is
employed first.

Proposition 1 (Feasibility for ASP1). Let {xk+1} be the sequence produced
by algorithm ALM with ASP1. Then each cluster point x̄ of {xk+1} is a
feasible point of problem (2.1), i.e. x̄ ∈ X and g(x̄) ≤ 0.

Proof. Let K ⊂ {0, 1, . . .} such that limk→∞, k∈K xk+1 = x̄. Consider the
two cases:

i) the sequence {τk} is bounded,

ii) lim
k→∞

τk =∞.

2.2 Convergence analysis 13

Case i): since {τk} stays bounded there must exist k̄ such that ‖V k+1‖ ≤
σ‖V k‖ for all k > k̄. This means that

lim
k→∞

‖V k+1‖ = 0

i.e.
lim
k→∞

V k+1
i = lim

k→∞
min

{
−gi(xk+1),

µk
i

τk

}
= 0,

which, since µk
i ≥ 0 for all i and k, implies that

gi(x̄) = lim
k→∞
k∈K

gi(x
k+1) ≤ 0.

Case ii): from the instructions of the algorithm we have, at each iteration,
letting

g̃ki = max

{
0, gi(x

k+1) +
µk
i

τk

}
,

that

∇f(xk+1)T (x− xk+1) ≥ −εk − τk

p∑
i=1

g̃ki∇gi(xk+1)T (x− xk+1) (2.9)

holds for all x ∈ X. Since Ω is not empty we can choose x ∈ {x ∈ X | g(x) ≤
0}. Using the convexity of gi we can bound the last term of (2.9) as follows:

−τk
p∑

i=1

g̃ki∇gi(xk+1)T (x− xk+1) ≥ τk

p∑
i=1

g̃ki (gi(x
k+1)− gi(x))

≥ τk

p∑
i=1

g̃ki gi(x
k+1).

The above inequalities hold since gi are convex (i.e. gi(x) ≥ gi(x
k+1) +

∇gi(xk+1)T (x − xk+1)) and g̃ki = max{0, gi(x
k+1) +

µk
i

τk
} and −g(x) are

nonnegative quantities. Using the latter and dividing (2.9) by τk we get

∇f(xk+1)T (x− xk+1)

τk
≥ − εk

τk
+

p∑
i=1

g̃ki gi(x
k+1). (2.10)

Suppose now, by contradiction, that {i ∈ {1, . . . , p} | gi(x̄) > 0} 6= ∅.
Being τk → ∞, {µk} bounded and g continuous, we have that for k ∈ K

sufficiently large

g̃ki = max

{
0, gi(x

k+1) +
µk
i

τk

}
= 0 ∀ i : gi(x̄) < 0.

14
The augmented Lagrangian method for problems with abstract

convex constraints

Moreover, we have

lim
k→∞,k∈K

∑
i : gi(x̄)=0

max

{
0, gi(x

k+1) +
µk
i

τk

}
gi(x

k+1) = 0.

Thus, taking the limits for k ∈ K, k →∞ in (2.10), we get

0 ≥ lim
k∈K,k→∞

∑
i : gi(x̄)>0

max

{
0, gi(x

k+1) +
µk
i

τk

}
gi(x

k+1)

=
∑

i : gi(x̄)>0

gi(x̄)
2,

which cannot be. Thus the set {i ∈ {1, . . . , p} | gi(x̄) > 0} must be empty,
i.e. x̄ is feasible.

Proposition 2 (Optimality for ASP1). Let {xk} be the sequence gener-
ated by the algorithm with ASP1. Then, every cluster point of {xk+1} is a
stationary point of problem (2.1).

Proof. Let x̄ be a limit point of {xk+1}, i.e., there exists an infinite subset
K ⊆ {0, 1, . . . , } such that

lim
k∈K,k→∞

xk+1 = x̄.

From Proposition 1 we have that x̄ ∈ Ω. Suppose by contradiction that there
exists z ∈ X such that g(z) ≤ 0 and

∇f(x̄)T (z − x̄) < 0. (2.11)

By the instructions of the algorithm we have at each iteration,

∇f(xk+1)T (z − xk+1) ≥

− εk − τk

p∑
i=1

max

{
0, gi(x

k+1) +
µk
i

τk

}
∇gi(xk+1)T (z − xk+1).

2.2 Convergence analysis 15

As similarly done in the proof of Proposition 1 we get

∇f(xk+1)T (z − xk+1)

≥ −εk + τk

p∑
i=1

max

{
0, gi(x

k+1) +
µk
i

τk

}
gi(x

k+1)

= −εk +

p∑
i=1

max
{
0, τkgi(x

k+1) + µk
i

}
gi(x

k+1)

= −εk +
∑

i : gi(x̄)<0

max
{
0, τkgi(x

k+1) + µk
i

}
gi(x

k+1)

+
∑

i : gi(x̄)=0

max
{
0, τkgi(x

k+1) + µk
i

}
gi(x

k+1).

From Lemma (2) we have, for k ∈ K sufficiently large, that∑
gi(x̄)<0

max{0, τkgi(xk+1) + µk
i }gi(xk+1) = 0,

and thus

∇f(xk+1)T (z − xk+1) ≥

− εk +
∑

i : gi(x̄)=0

max{0, τkgi(xk+1) + µk
i }gi(xk+1).

Now, consider the terms

max{0, τkgi(xk+1) + µk
i }gi(xk+1)

If gi(xk+1) ≥ 0 then

max{0, τkgi(xk+1) + µk
i }gi(xk+1)

= max{0, τkgi(xk+1)2 + µk
i gi(x

k+1)}
≥ max{0, µk

i gi(x
k+1)}

≥ min{0, µk
i gi(x

k+1)}.

Otherwise, if gi(xk+1) < 0, we have

max{0, τkgi(xk+1) + µk
i }gi(xk+1)

= min{0, τkgi(xk+1)2 + µk
i gi(x

k+1)}
≥ min{0, µk

i gi(x
k+1)}.

16
The augmented Lagrangian method for problems with abstract

convex constraints

Therefore we can write

∇f(xk+1)T (z − xk+1) ≥ −εk +
∑

i : gi(x̄)=0

min{0, µk
i gi(x

k+1)}.

Taking the limits for k ∈ K, k →∞, recalling that εk → 0, {µk
i } are bounded

and we are considering the indexes i such that gi(x
k+1)→ 0, we get

∇f(x̄)T (z − x̄) ≥ 0.

which contradicts (2.11).

We now turn to ALM with the ASP2 criterion. From [14], Thm 6.5. we
can deduce that each limit point of the sequence of iterates is feasible as
expressed in the following proposition.

Proposition 3 (Feasibility for ASP2). Let {xk+1} be the sequence produced
by algorithm ALM with ASP2. Then each cluster point x̄ of {xk+1} is a
feasible point of problem (2.1) i.e. x̄ ∈ X and g(x) ≤ 0.

Next we prove that limit points are also optimal in the sense of (2.3), or
equivalently (2.4).

Proposition 4 (Optimality for ASP2). Let {xk} be the sequence gener-
ated by the algorithm ALM using ASP2. Suppose that the sequence {εkτk}
is bounded. Then, every cluster point of {xk+1} is a stationary point of
problem (2.1).

Proof. Let x̄ be a limit point of {xk+1}, i.e., there exists an infinite subset
K ⊆ {0, 1, . . . , } such that

lim
k∈K,k→∞

xk+1 = x̄.

We know from Proposition 3 that x̄ ∈ Ω. Suppose by contradiction that
there exists z ∈ X such that g(z) ≤ 0 and

∇f(x̄)T (z − x̄) < 0. (2.12)

From the instructions of the algorithm, letting

g̃ki = max

{
0, gi(x

k+1) +
µk
i

τk

}
,

2.2 Convergence analysis 17

and

x̂k+1 = ΠX

[
xk+1 −∇f(xk+1)− τk

p∑
i=1

g̃ki∇gi(xk+1)

]
,

we have that at each iteration∥∥xk+1 − x̂k+1
∥∥ ≤ εk.

From the properties of projection operator we have, for all x ∈ X, that(
xk+1 −∇f(xk+1)− τk

(
p∑

i=1

g̃ki∇gi(xk+1)

)
− x̂k+1

)T (
x− x̂k+1

)
≤ 0.

Adding and subtracting (xk+1 − x̂k+1 −∇f(xk+1))T (xk+1), choosing x = z

and rearranging, we get:

∇f(xk+1)T (z − xk+1) ≥
−∇f(xk+1)T (xk+1 − x̂k+1) + ‖xk+1 − x̂k+1‖2

+ (xk+1 − x̂k+1)T (z − xk+1)

− τk

(
p∑

i=1

g̃ki∇gi(xk+1)

)T

(z − x̂k+1)

The last term can be bounded as follows:

− τk

(
p∑

i=1

g̃ki∇gi(xk+1)

)T

(z − x̂k+1)

≥ τk

p∑
i=1

g̃ki (gi(x
k+1)− gi(z))− τk

p∑
i=1

g̃ki∇gi(xk+1)T (xk+1 − x̂k+1)

≥ τk

p∑
i=1

g̃ki gi(x
k+1)− τk

p∑
i=1

g̃ki ‖∇gi(xk+1)‖‖xk+1 − x̂k+1‖

In the derivations above, we have added and subtracted xk+1 to the term
(z − x̂k+1) and then used the convexity of gi and g(z) ≤ 0. The first part
of the bound can be further bounded in a similar way as what was done for
the ASP1 case. For k ∈ K sufficiently we have:

τk

p∑
i=1

g̃ki gi(x
k+1) = τk

p∑
i=1

max

{
0, gi(x

k+1) +
µk
i

τk

}
gi(x

k+1)

≥
∑

i : gi(x̄)=0

min{0, µk
i gi(x

k+1)}.

18
The augmented Lagrangian method for problems with abstract

convex constraints

For the second part, recalling ‖xk+1 − x̂k+1‖ ≤ εk, we can write

−τk
p∑

i=1

g̃ki ‖∇gi(xk+1)‖‖xk+1 − x̂k+1‖ ≥ −τk
p∑

i=1

g̃ki ‖∇gi(xk+1)‖εk. (2.13)

Thus, for k ∈ K sufficiently large, we obtain

− τk

(
p∑

i=1

g̃ki∇gi(xk+1)

)T

(z − x̂k+1)

≥
∑

i : gi(x̄)=0

min
{
0, µk

i gi(x
k+1)

}
− τkεk

p∑
i=1

g̃ki ‖∇gi(xk+1)‖

Putting everything back together we obtain, for k ∈ K large enough, that

∇f(xk+1)T (z − xk+1) ≥
−∇f(xk+1)T (xk+1 − x̂k+1) + ‖xk+1 − x̂k+1‖2

+ (xk+1 − x̂k+1)T (z − xk+1)

+
∑

i : gi(x̄)=0

min{0, µk
i gi(x

k+1)}

− τkεk

p∑
i=1

g̃ki ‖∇gi(xk+1)‖.

Taking the limits for k ∈ K, k →∞, recalling that ∇f and ∇gi, i = 1, . . . , p,
are continuous, ‖xk+1− x̂k+1‖ → 0, {µk} is bounded, {τkεk} is bounded and
either τk → ∞ and g̃ki = max{0, gi(x

k+1) +
µk
i

τk
} → gi(x̄) = 0 or τkεk → 0

we get
∇f(x̄)T (z − x̄) ≥ 0,

which contradicts (2.12).

Remark 1. The role of the boundedness assumption of {τk · εk} is that of
ensuring that, in the case that the penalty parameter τk is unbounded, the
measure εk of ASP2 stationarity goes to zero as 1/τk or faster. In practice,
such condition can be imposed as follows. We can set εk+1 = θεk, with
θ < 1. The instructions of the algorithm imply that we have τk+1 ≤ ατk
with α > 1. Then, the condition holds assuming that θα ≤ 1.

Interestingly in the case of ASP1 criterion of stationarity no additional
assumption on the penalty and accuracy parameters is required.

Chapter 3

Two blocks decomposition for
the ALM

3.1 Introduction

In this chapter we consider the problem

min
x

f(x)

s.t. x ∈ X ∩ Y,
(3.1)

where X, Y are nonempty, convex, closed sets, and f : Rn → R is a contin-
uously differentiable function. The case of interest is when the constraints
defining X and Y are easy to treat when considered separately. Just as an
example, consider the problem

min
x

f(x)

s.t. aTx = b,

l ≤ x ≤ u,

(3.2)

where a, l, u ∈ Rn, li < ui for i = 1, . . . , n. Both the sets

X = {x ∈ Rn : l ≤ x ≤ u}, Y = {x ∈ Rn : aTx = b}

are characterized by “simple” (for instance, in terms of projection) con-
straints, differently from the feasible set of the original problem (3.2).

19

20 Two blocks decomposition for the ALM

With this in mind, let us consider the equivalent reformulation

min
x,y

f(x)

s.t. x ∈ X, y ∈ Y,

x− y = 0

where the special structure of the feasible set has been exploited to form two
different blocks of variables with separate and simpler constraints.

A special class of decomposition methods to solve the latter problem is
based on the alternate minimization of the augmented Lagrangian function,
which is given by

Lτ (x, y, λ) = f(x) + λT (x− y) +
τ

2
‖x− y‖2 ,

where τ > 0 is the penalty parameter and λ the Lagrange multipliers. The
special structure of the augmented Lagrangian function makes it possible to
decouple the minimizations w.r.t x and y, trying to exploit the individual
structures of the sub-problems.

A very popular and effective technique belonging to this class of methods
is the Alternating Direction Method of Multipliers (ADMM) [13]. Given the
current iterate (xk, yk, λk), the steps of ADMM are the following

xk+1 ∈ argmin
x∈X

f(x) + λkT (x− yk) +
τ

2

∥∥x− yk
∥∥2 , (3.3)

yk+1 = argmin
y∈Y

λkT (xk+1 − y) +
τ

2

∥∥xk+1 − y
∥∥2 , (3.4)

λk+1 = λk + τ(xk+1 − yk+1). (3.5)

Note that a single iteration of the Gauss-Seidel decomposition method re-
places the full (possibly approximated) minimization of the augmented La-
grangian. The theoretical relationship between ALM and ADMM is deeply
analyzed in [32]. In the general formulation of ADMM the equality con-
straint is defined as Ax+By = c, by stating suitable assumptions on B. For
simplicity, here we restrict to the case x = y. Some possible extensions are
briefly discussed in a later section.

ADMM has been extensively employed in a wide range of applications.
For example the algorithm has been proven to be successful in image restora-
tion [22,96,98], matrix factorization [37,93], wireless networking [50,86].

Classical proofs of convergence for the ADMM algorithm (see, e.g., [13]
and the review in [21]) require the convexity of f and τ > 0 to be fixed.

3.1 Introduction 21

The value of τ is often a critical factor for the performance of the algo-
rithm in practical applications. Several schemes for varying τ = τk across
the iterations have been proposed in literature [38, 43, 91]. A general rule
which comprises most of the approaches [21] is

τk+1 =

δ1τk if

∥∥xk+1 − yk+1
∥∥ > µ

∥∥yk+1 − yk
∥∥ ,

τk/δ2 if
∥∥yk+1 − yk

∥∥ > µ
∥∥xk+1 − yk+1

∥∥ ,
τk otherwise,

(3.6)

where µ, δ1, δ2 > 1. In practice simply starting from low values of τ

and gradually increasing usually works well enough [38, 62]. Convergence,
however, is assured only when τk is eventually held fixed.

The convergence properties for ADMM in the nonconvex case, instead,
are still a vivid topic of research. Convergence to stationary points, in the
nonconvex case, have been proved only for special classes of problems al-
though, even in the general nonconvex case, ADMM performs well in practice
(see for example [25, 49, 54, 85, 94]). Recently, a family of nonconvex prob-
lems, concerning the consensus and sharing formulations, has been studied
in [40] and [92], and convergence results for ADMM have been proved. As
noted in these latter papers, there exists a number of works which deal with
nonconvex ADMM, for instance [44, 85, 94], which prove the convergence
under uncheckable conditions on the sequence of iterates generated by the
algorithm. We refer the reader to [40] and [92] for further details.

Note that in the nonconvex case, besides the theoretical issues, the stan-
dard ADMM requires to compute a global minimum of a nonconvex problem
(see the updating rule of x in (3.3)), and this may be prohibitive in practice.

In this chapter we study a novel algorithm based on the inexact alternate
minimization of the augmented Lagrangian, i.e., a modified Gauss-Seidel de-
composition strategy, in order to exploit the individual structures of the sub-
problems. The main peculiarities of the proposed approach are the following:
1) it is not required to compute the global minimum w.r.t. x, but only a
point where a “sufficient decrease” is obtained; 2) differently from ADMM,
the alternate minimization of the augmented Lagrangian is repeated, before
updating the penalty parameter and the multipliers, until an approximated
stationary point is attained; 3) the penalty parameter τk assumes increasing
values. We state a global convergence result without requiring any convexity
assumption on f .

22 Two blocks decomposition for the ALM

3.2 The algorithm
The method can be viewed as an augmented Lagrangian method based on a
decomposition strategy. In fact the method can be seen as a specialization of
Algorithm 1 for a particular set of constraints and where the sub-problems
are solved with an alternate optimization strategy.

Indeed at each iteration k the function qτ,λ(x, y) , Lτk(x, y, λ
k) is con-

sidered and alternating (possibly inexact) minimizations with respect to x

and y are performed until an approximated stationary point is attained. The
above notation on the the augmented Lagrangian is introduced to emphasize
that λ and τ are fixed parameters in the alternating minimization process.
Then, we update the penalty parameter τk (and λk) and proceed in solving
the resulting new sub-problem until convergence is reached. The key ingre-
dients are, however, how the sub-problem is solved and how τk and λk are
updated. The algorithm may be summarized by the following steps:

(a) given λk and τk the sub-problem

min
x∈X, y∈Y

qτk,λk(x, y)

is solved approximately (with increasing accuracy) determining the
new iterates xk+1, yk+1.

(b) λk+1 is computed by the same rule of ADMM (3.5) appropriately mod-
ified to ensure that the updated vector belongs to a prefixed bounded
set;

(c) a suitable test is performed in order to decide whether or not the new
penalty parameter τk+1 should be larger or remain equal to τk.

We now describe in detail these three steps.

Update of x, y The sub-problem is solved to an approximate stationary
point in the sense of definition (2.6) (ASP2). More precisely we say that a
point (x̄, ȳ) ∈ X × Y is an ε-stationary point if

‖(x̄, ȳ)−ΠX×Y [(x̄, ȳ)−∇qτ,λ(x̄, ȳ)]‖ ≤ εk, (3.7)

where ε > 0 and Π : Rn × Rn → X × Y is the usual projection operator.
We propose to find an ε-stationary point with a two blocks decomposition

3.2 The algorithm 23

algorithm where at each iteration we update x, keeping y fixed, using any
point that yield a sufficient reduction of qτ,λ greater or equal than that ob-
tained by a line search along the projected gradient, and we determine y as
the global minimum of qτ,λ keeping x fixed. This scheme can be viewed as
a modified two-blocks Gauss-Seidel algorithm based on a line search along
a gradient-related direction. Note that the x step allows for different im-
plementations in practical applications preserving convergence properties.
For instance, one could use a closed form solution, if available, or employ
a specialized solver to find a stationary point (w.r.t. x) to some degree of
accuracy. We have reported in the appendix the scheme of the standard
Armijo-type line search and its well-known theoretical properties used in the
convergence analysis.

Algorithm 2: Alternate Minimization (AM)
Input: x0 ∈ X, y0 ∈ Y, ε > 0.

1 t = 0.
2 while (xt, yt) is not an ε-stationary point do
3 find xt+1 such that

qτ,λ(x
t+1, yt) ≤ qτ,λ(x

t + αtd
t, yt),

where dt = ΠX [xt −∇xqτ,λ(x
t, yt)]− xt and αt is obtained with

an Armijo-type line search.
4 find yt+1 such that

yt+1 = argmin
y∈Y

qτ,λ(x
t+1, y).

5 t = t+ 1.

Update of λ Once we have determined an ε-stationary point of the sub-
problem we update λ. We modify the update rule to assure that the sequence
{λk} is bounded. The proposed update rule is

λ̃k+1 = λk + τk(x
k+1 − yk+1),

λk+1 = Π[λm,λM]

[
λ̃k+1

]

24 Two blocks decomposition for the ALM

where both the operations are intended element-wise and −∞ < λm < λM <

+∞ are two fixed parameters.

Update of τ Finally we update τk with

τk+1 =

{
τk if

∥∥xk+1 − yk+1
∥∥ ≤ σ

∥∥xk − yk
∥∥ ,

δτk otherwise,

where σ < 1 and δ > 1. Note that this scheme is different from (3.6) as we
use a condition on the decrease of the distance (in x and y) between succes-
sive iterates. Note also that τk can never decrease.

The complete procedure is shown in Algorithm 3.

Algorithm 3: ALTernating Augmented Lagrangian Method (AL-
TALM)

Input: (x0, y0) ∈ X × Y, λ0

δ > 1, σ ∈ (0, 1), −∞ < λm < λM < +∞, τ0 > 0,

a positive sequence {εk} s.t. limk→+∞ εk = 0.

1 for k = 0, 1, . . . do
2 compute an εk-stationary point (xk+1, yk+1) by Algorithm AM.
3 λ̃k+1 = λk + τk(x

k+1 − yk+1)

4 λk+1 = Π[λm,λM]

[
λ̃k+1

]
5 if

∥∥xk+1 − yk+1
∥∥ ≤ σ

∥∥xk − yk
∥∥ then

6 τk+1 = τk,
7 else
8 τk+1 = δτk.

3.3 Convergence analysis
In the convergence analysis we first prove (see Proposition 6) that the algo-
rithm is well defined, i.e., that AM algorithm attains an ε-stationary point in
a finite number of iterations. To this aim, we need a preliminary result (see
Proposition 5). The global convergence of ALTALM is stated by Theorems
2, 3.

We state the following assumptions.

3.3 Convergence analysis 25

Assumption 3. The sets X ⊆ Rn, Y ⊆ Rn are convex, closed and nonempty.

Assumption 4. The function f : Rn → R is continuously differentiable and
coercive on X, i.e., for all sequences {xk} such that xk ∈ X and

lim
k→+∞

||xk|| = +∞

we have
lim

k→+∞
f(xk) = +∞.

Proposition 5. The function qτ,λ(x, y) is coercive on X × Y for any finite
value of τ, λ.

Proof. Let us consider any pair of sequences {xk} and {yk} such that xk ∈ X,
yk ∈ Y for all k, and at least one of the following conditions holds

lim
k→+∞

‖xk‖ = +∞, (3.8)

lim
k→+∞

‖yk‖ = +∞. (3.9)

Assume by contradiction that there exists an infinite subset K ⊆ {0, 1, . . . , }
such that

lim sup
k∈K,k→+∞

qτ,λ(x
k, yk) 6= +∞. (3.10)

Suppose first that there exists an infinite subset K1 ⊆ K such that

‖xk − yk‖ ≤M (3.11)

for some M > 0 and for all k ∈ K1. Recalling that f is coercive on X, from
(3.8), (3.9) we have that f(xk) → +∞ for k ∈ K1, k → +∞. From (3.11),
as

λT (xk − yk) ≥ −‖xk − yk‖ ‖λ‖ ,

we obtain

lim
k∈K1,k→+∞

qτ,λ(x
k, yk) = lim

k∈K1,k→+∞
f(xk)+λT (xk−yk)+τ

2

∥∥xk − yk
∥∥2 = +∞,

and this contradicts (3.10).

26 Two blocks decomposition for the ALM

Then we must have

lim
k∈K,k→+∞

‖xk − yk‖ = +∞.

As f is coercive and continuous, it is also bounded below on X. Thus, we
have

qτ,λ(x
k, yk) ≥ f̄ − ‖λ‖‖xk − yk‖+ τ

2

∥∥xk − yk
∥∥2 ,

which implies that qτ,λ(x
k, yk)→ +∞ for k ∈ K, k → +∞.

Then, we can conclude that for any infinite set K we have

lim
k∈K,k→+∞

qτ,λ(x
k, yk) = +∞,

and this contradicts (3.10).

In the next proposition we show that Algorithm AM determines in a finite
number of iterations an ε-stationary point. The proof technically exploits the
fact that the x iterate has function value lower or equal than the function
value obtainable through an Armijo-type line search performed along the
descent direction computed by the projected gradient method. Therefore,
we have reported in the appendix, besides the scheme of the standard Armijo-
type line search, its well-known theoretical properties (Proposition 12) used
in the proof of the proposition.

Proposition 6. Algorithm AM determines in a finite number of iterations
a point (x(ε), y(ε)) which is an ε-stationary point for problem

min
x∈X,y∈Y

qτ,λ(x, y).

Proof. Suppose Algorithm AM generates an infinite sequence {xt, yt}. The
instructions of the algorithm imply

qτ,λ(x
t, yt) ≤ qτ,λ(x

0, y0),

and hence, for all t ≥ 0 the point (xt, yt) belongs to the level set L0 =

{(x, y) ∈ X × Y | qτ,λ(x, y) ≤ q(x0, y0)}. From Proposition 5 it follows that
L0 is a compact set. Therefore, the sequence {xt, yt} admits cluster points.
Let (x̄, ȳ) be a cluster point of {xt, yt}, i.e., there exists T ⊆ {0, 1, . . . , } such
that

lim
t∈T,t→+∞

(xt, yt) = (x̄, ȳ).

3.3 Convergence analysis 27

We first show that (x̄, ȳ) is a critical point, i.e.,

(x̄, ȳ) = ΠX×Y [(x̄, ȳ)−∇qτ,λ(x̄, ȳ)]. (3.12)

From the instructions of the algorithm, as

yt = argmin
y∈Y

qτ,λ(x
t, y),

we get
yt = ΠY [y

t −∇yqτ,λ(x
t, yt)],

from which, taking the limits for t ∈ T and t→ +∞, recalling the continuity
of the gradient and of the projection operator, we obtain

ȳ = ΠY [ȳ −∇yqτ,λ(x̄, ȳ)]. (3.13)

Let x̂t = ΠX [xt −∇xqτ,λ(x
t, yt)], so that dt = x̂t − xt. The instructions of

the algorithm imply

qτ,λ(x
t+1, yt+1) ≤ qτ,λ(x

t+1, yt) ≤ qτ,λ(x
t + αtd

t, yt) < qτ,λ(x
t, yt). (3.14)

Recalling the continuity of the gradient and the projection operator, it follows
dt → d̄ for t ∈ T , t → +∞, which implies that ‖dt‖ ≤ M for some M > 0

and for t ∈ T . The sequence {qτ,λ(xt, yt)} is monotone decreasing, qτ,λ(x, y)
is continuous, and hence we have

lim
t→+∞

qτ,λ(x
t, yt) = qτ,λ(x̄, ȳ).

From (3.14) it follows

lim
t∈T,t→+∞

qτ,λ(x
t, yt)− qτ,λ(x

t + αtd
t, yt) = 0.

Then, the hypothesis of Proposition 12 are satisfied and hence we obtain

lim
t∈T,t→+∞

∇xq(x
t, yt)T dt = 0. (3.15)

By the properties of the projection operator we have

(xt −∇xqτ,λ(x
t, yt)− x̂t)T (x− x̂t) ≤ 0 ∀x ∈ X,

and hence we can write

∇xqτ,λ(x
t, yt)T dt ≤ −

∥∥xt − x̂t
∥∥2 . (3.16)

28 Two blocks decomposition for the ALM

Thus, from (3.15) and (3.16), recalling the continuity of the gradient and of
the projection operator we obtain

x̄ = ΠX [x̄−∇xqτ,λ(x̄, ȳ)]. (3.17)

From (3.17) and (3.13) it follows that (3.12) holds.
Then, by the continuity of ∇qτ,λ and ΠX×Y , it follows that for t suffi-

ciently large we have

‖(xt, yt)−ΠX×Y [(x
t, yt)−∇qτ,λ(xt, yt)]‖ ≤ ε,

i.e., (xt, yt) is an ε-stationary point.

We now state the main convergence result.
First we prove that the sequence {xk, yk} admits cluster points and each

cluster point {x̄, ȳ} is such that x̄ = ȳ and x̄ ∈ X∩Y in Theorem 2. Then we
prove that x̄ is also a stationary point for the original problem in Theorem 3.
Note that Theorem 2 and 3 roughly corresponds to Theorems 3 and 4 which
however dealt with general inequality constraints in place of the special case
of linear constraints considered here.

We make the following additional assumption.

Assumption 5. At least one of following conditions holds:

(a) the set X is compact;

(b) the set Y is compact and ‖∇f(x)‖ ≤M , with M > 0, for all x ∈ X.

By adapting the proof of Theorem 6.5 in [15] we can prove the following
result.

Theorem 2. Let {(xk, yk)} be the sequence generated by Algorithm AL-
TALM. Then, the sequence {(xk, yk)} admits cluster points and every cluster
point (x̄, ȳ) is such that x̄ = ȳ ∈ X ∩ Y.

Proof. Suppose first that (a) holds. The sequence {xk} belongs to X and
hence admits cluster points. In order to prove that {(xk, yk)} admits cluster
points it is sufficient to show that

lim
k→+∞

‖xk+1 − yk+1‖ = 0. (3.18)

3.3 Convergence analysis 29

The instructions of the algorithm imply

τk+1 ≥ τk,

so that either τk → +∞ for k → +∞ or τk → τ̄ < +∞ for k → +∞. In the
latter case we necessarily have τk = τ̄ for k sufficiently large, i.e., for k ≥ k̄.
Then, if the sequence {τk} is bounded, taking into account the updating rule
of τk, for k ≥ k̄ we can write

‖xk+1 − yk+1‖ ≤ (σ)k+1−k̄‖xk̄ − yk̄‖,

and this implies that (3.18) holds.
Consider the case that τk → +∞ for k → +∞. The instructions of the

algorithm imply

‖xk+1 −ΠX [xk+1 −∇xqτk,λk
(xk+1, yk+1)]‖ ≤ εk (3.19)

where

∇xqτk,λk
(xk+1, yk+1) = ∇f(xk+1) + λk + τk(x

k+1 − yk+1),

and

‖yk+1 −ΠY [y
k+1 −∇yqτk,λk

(xk+1, yk+1)]‖ ≤ εk, (3.20)

where
∇yqτk,λk

(xk+1, yk+1) = −λk − τk(x
k+1 − yk+1).

Since τk → +∞ for k → +∞, we have 1/τk < 1 for k sufficiently large. From
(3.19) and (3.20), using the nondecreasing property of projections, we can
write

‖xk+1 −ΠX [xk+1 −∇f(xk+1)/τk − λk/τk − (xk+1 − yk+1)]‖ ≤ εk, (3.21)
‖yk+1 −ΠY [y

k+1 + λk/τk + (xk+1 − yk+1)]‖ ≤ εk. (3.22)

Assume by contradiction that (3.18) does not hold. Then, there exists an
infinite subset K ⊆ {0, 1, . . .} such that

‖xk+1 − yk+1‖ ≥ η > 0 ∀k ∈ K. (3.23)

As {xk} belongs to the compact set X, there exists a further subset K1 ⊆ K

such that
lim

k∈K1,k→+∞
xk+1 = x̂.

30 Two blocks decomposition for the ALM

Since {λk} is a bounded sequence and εk → 0 for k → +∞, taking into
account the continuity of the projection, from (3.22) we get

lim
k∈K1,k→+∞

‖yk+1 −ΠY (x
k+1)‖ = 0,

which implies
lim

k∈K1,k→+∞
yk+1 = ŷ = ΠY (x̂).

From (3.21) and (3.22) we get

‖x̂−ΠX [x̂− (x̂− ŷ)]‖ = 0 and ‖ŷ −ΠY [ŷ − (ŷ − x̂)]‖ = 0,

i.e., that (x̂, ŷ) is a solution of the convex problem

min
x∈X,y∈Y

1

2
‖x− y‖2.

Since X ∩ Y 6= ∅, it follows that a point (x?, y?) is a solution of the above
problem if and only if x? = y?. Then, we have x̂ = ŷ, which implies that for
k ∈ K1 and k sufficiently large we can write

‖xk+1 − yk+1‖ ≤ η/2,

and this contradicts (3.23) and hence the thesis is proven under assumption
(a).

Suppose now that (b) holds. The sequence {yk} belongs to Y and hence
admits cluster points. In order to prove that {(xk, yk)} admits cluster points
it is sufficient to show that (3.18) holds.

Reasoning as in the preceding case we can prove (3.21) and (3.22).
Assume by contradiction that (3.18) does not hold. Then, there exists

an infinite subset K ⊆ {0, 1, . . .} such that (3.23) is satisfied for all k ∈ K.
As {yk} belongs to the compact set Y , there exists a further subset K1 ⊆ K

such that
lim

k∈K1,k→+∞
yk+1 = ŷ.

Since {λk} and {∇f(xk)} are bounded sequences, and εk → 0 for k → +∞,
taking into account the continuity of the projection, from (3.21) we get

lim
k∈K1,k→+∞

‖xk+1 −ΠX(yk+1)‖ = 0,

3.3 Convergence analysis 31

which implies
lim

k∈K1,k→+∞
xk+1 = x̂ = ΠX(ŷ).

The rest of the proof is similar to case (a).

In order to prove the global convergence of Algorithm ALTALM we need to
introduce, as stated in the next theorem, a further condition on the param-
eter εk (related to the degree of approximation in solving the sub-problems)
and on the penalty parameter τk that may tend to infinity.

Theorem 3. Let {(xk, yk)} be the sequence generated by Algorithm AL-
TALM. Suppose that the sequence {εkτk} is bounded. Then, every cluster
point (x̄, ȳ) is such that x̄ = ȳ, and x̄ is a stationary point of problem (3.1),
i.e.,

∇f(x̄)T (z − x̄) ≥ 0 ∀z ∈ X ∩ Y. (3.24)

Proof. By Theorem 2 the sequence {xk+1, yk+1} admits cluster points. Let
(x̄, ȳ) be a cluster point of {(xk+1, yk+1)}, i.e., there exists an infinite subset
K ⊆ {0, 1, . . . , } such that

lim
k∈K,k→+∞

(xk+1, yk+1) = (x̄, ȳ),

where x̄ = ȳ ∈ X ∩ Y . In order to prove (3.24), assume by contradiction
that it does not hold, that is, there exists a point ẑ ∈ X ∩ Y such that

∇f(x̄)T (ẑ − x̄) < 0. (3.25)

Let
(x̂k+1, ŷk+1) = ΠX×Y ((x

k+1, yk+1)−∇qτk,λk
(xk+1, yk+1)).

By the properties of the projection we have[
x̂k+1 − (xk+1 −∇xqτk,λk

(xk+1, yk+1))
]T

(ẑ − x̂k+1)+[
ŷk+1 − (yk+1 −∇yqτk,λk

(xk+1, yk+1))
]T

(ẑ − ŷk+1) ≥ 0,

from which it follows

∇f(xk+1)T (ẑ − x̂k+1) + λkT

(ẑ − x̂k+1) + τk(x
k+1 − yk+1)T (ẑ − x̂k+1)

+ λkT

(ŷk+1 − ẑ) + τk(x
k+1 − yk+1)T (ŷk+1 − ẑ)

≥ −(x̂k+1 − xk+1)T (ẑ − x̂k+1)− (ŷk+1 − yk+1)T (ẑ − ŷk+1),

32 Two blocks decomposition for the ALM

which can be rewritten as

∇f(xk+1)T (ẑ − x̂k+1) ≥ (xk+1 − x̂k+1)T (ẑ − x̂k+1) + (yk+1 − ŷk+1)T (ẑ − ŷk+1)+

λkT

(x̂k+1 − ŷk+1) + τk(x
k+1 − yk+1)T (x̂k+1 − ŷk+1).

The instructions of the algorithm imply
∥∥xk+1 − x̂k+1

∥∥ ≤ εk,
∥∥yk+1 − ŷk+1

∥∥ ≤
εk, so that we have

(xk+1 − x̂k+1)T (ẑ − x̂k+1) ≥ −εk
∥∥ẑ − x̂k+1

∥∥ ,
(yk+1 − ŷk+1)T (ẑ − ŷk+1) ≥ −εk

∥∥ẑ − ŷk+1
∥∥ .

Thus we can write

∇f(xk+1)T (ẑ − x̂k+1) ≥− εk
(∥∥ẑ − x̂k+1

∥∥+ ∥∥ẑ − ŷk+1
∥∥)+ λkT

(x̂k+1 − ŷk+1)+

τk(x
k+1 − yk+1)T (x̂k+1 − ŷk+1).

(3.26)

Note that the last term in the latter inequality can be bounded as follows

τk(x
k+1 − yk+1)T (x̂k+1 − ŷk+1)

= τk(x
k+1 − yk+1)T (x̂k+1 − ŷk+1 + xk+1 − yk+1 − xk+1 + yk+1)

= τk
∥∥xk+1 − yk+1

∥∥2 + τk(x
k+1 − yk+1)T (x̂k+1 − xk+1)

− τk(x
k+1 − yk+1)T (ŷk+1 − yk+1)

≥ −2τk · εk
∥∥xk+1 − yk+1

∥∥ .
Recalling that ‖x̂k+1 − xk+1‖ → 0, ‖ŷk+1 − yk+1‖ → 0, ‖xk+1 − yk+1‖ → 0,
we have that both x̂k+1 and ŷk+1 converge to x̄ ∈ X ∩ Y . Thus, taking
limits in (3.26) for k ∈ K and k →∞, recalling that {λk} and {τk · εk} are
bounded we obtain

∇f(x̄)T (ẑ − x̄) ≥ 0,

and this contradicts (3.25).

3.4 Extensions
Here we discuss how to modify the algorithm in order to be able to deal with
the case of a feasible set partitioned in more than two subsets. We consider,
thus, the problem:

min
x

f(x)

s.t. x ∈ X1 ∩X2 ∩ · · · ∩XN ,

3.5 A computational example 33

which is equivalently stated as

min
x

f(x)

s.t. xi ∈ Xi i ∈ [1, . . . , N],

xi = x1 i ∈ [2, . . . , N].

(3.27)

We can apply the two-block version of the algorithm (both ADMM and
ALTALM) to the problem (3.27), where the two blocks are identified by
x = x1 and y = (x2, . . . , xN). The minimization step w.r.t. to the second
block is defined as follows:

(xt+1
2 , . . . , xt+1

N) ∈ argmin
x2∈X2,...,xn∈XN

qτk,λk(xt, y) =

N∑
i=2

λkT

i (xi−xt
1)+

τk
2

∥∥xi − xt
1

∥∥2 ,
where t is the counter of the inner iterations of Algorithm AM. Such problem
can be decomposed into N−1 separable problems and hence solved (possibly
in parallel) by performing N − 1 separate minimizations. Hence the second
minimization step can be replaced by the following N − 1 steps

xi ∈ argmin
xi∈Xi

λkT

i (xi − xt
1) +

τk
2

∥∥xi − xt
1

∥∥2 i ∈ [2, . . . , N].

Finally, as second extension, we can replace the constraint x = y by the more
general constraint Ax+By = c, where x ∈ Rn, y ∈ Rm, c ∈ Rd, A ∈ Rd×Rn

and B ∈ Rd × Rm. The sub-problem is modified as follows

min
x,y

qτ,λ(x, y) , f(x) + λT (Ax+By − c) + τ
2 ‖Ax+By − c‖22

s.t. x ∈ X,

y ∈ Y .

Under the assumption (often stated in the literature) that B has full column
rank, all the convergence results hold with no or minor modifications.

3.5 A computational example
In this section we show, as an example, a nonconvex problem which can be
solved by means of ALTALM. The approach we propose has a resemblance to
ADMM, so we compare its performance with ADMM and its modifications
which employ a varying τ . We do not intend this to be an extensive numerical
study but only a computational experiment to assess the practical advantages
of the modifications introduced by the proposed approach.

34 Two blocks decomposition for the ALM

We consider the Support Vector Machine (SVM) training problem for
classification tasks [83]. In particular, given a training set of input-target
pairs (ui, ai), i = 1, . . . , n with ui ∈ Rd , and ai ∈ {−1, 1}, the constrained
optimization problem for SVM training takes the following form

min
x

f(x) ,
1

2
xTQx− eTx (3.28)

s.t. aTx = 0, (3.29)
0 ≤ xi ≤ C ∀ i ∈ 1, . . . , n, (3.30)

where e is the vector of all ones and Q ∈ Rn×n. The generic element qij of
the matrix Q is given by aiajK(ui, uj), where K(u, z) = φ(u)Tφ(z) is the
kernel function related to the nonlinear function φ that maps the data from
the input space Rd onto the feature space. The matrix Q measures similarity
between data points and must be positive semidefinite to satisfy the Mercer’s
condition. However, in the literature there are kernel matrices formed using
similarity measures which are not positive semidefinite, and therefore the
above problem becomes nonconvex. We will focus on nonconvex problems
obtained by the following indefinite kernel functions proposed in the SVM
literature (see, e.g., [76]).

• The sigmoid kernel:

K(u, v) = tanh(auT v + b),

with either a < 0 or b < 0; in our experiments we set a = 0.2 and
b = −1.

• The gaussian combination kernel:

k(u, v) = exp

(
−‖u− v‖2

σ1

)
+exp

(
−‖u− v‖2

σ2

)
−exp

(
−‖u− v‖2

σ3

)
.

In our experiments we set σ1 = σ2 = 0.01, σ3 = 100.

Assigning x to constraint (3.30) and y to constraint (3.29), the augmented
Lagrangian-based formulation is the following

min
x,y

qτ,λ(x, y) ,
1

2
xTQx− eTx+ λT (x− y) +

τ

2
‖x− y‖2

s.t. aT y = 0,

0 ≤ xi ≤ C ∀ i ∈ 1, . . . , n.

3.5 A computational example 35

Note that, as the set X = {x ∈ Rn : 0 ≤ x ≤ C} is compact, the existence of
cluster points of the sequence {(xk, yk)} generated by Algorithm ALTALM
is ensured by Theorem 2.

The solution to the sub-problem w.r.t. y can be easily obtained in closed
form by the KKT conditions:

−λ− τ(x− y∗) + µ∗a = 0,

aT y∗ = 0,

from which we obtain

µ∗ =
aTλ+ τaTx

‖a‖2
,

y∗ =
λ− µ?a

τ
+ x.

As for the sub-problem w.r.t. x, there are many solvers for quadratic bound-
constrained problems. In our implementation we used the BLEIC algorithm
from [18] checking the condition of “sufficient decrease” at Step 3 of Algo-
rithm AM and stopping the algorithm when an approximate stationary point
w.r.t. x has been attained.

The training set used for the experiments is the liver-disorders dataset
[55], where the number n of instances is 145 and the number d of features is
5.

The parameter C of (3.30) has been set to the default value of 1. The
stopping criterion for all of the tested algorithms has been defined taking into
account the optimality conditions for problem (3.28)-(3.30) reported below
(see, e.g., [58]).

Proposition 7. A feasible point x? is a solution of problem (3.28)-(3.30)
only if

m(x?) ≤M(x?),

where

m(x?) = max{ max
x?
i <C,ai<0

−∇f(x?)i, max
x?
i >0,ai>0

∇f(x?)i},

M(x?) = min{ min
x?
i <C,ai>0

∇f(x?)i, min
x?
i >0,ai<0

−∇f(x?)i}.

Notice that both xk and yk could be chosen as the final output of the
algorithm. We do however choose xk as the final solution. In this way the

36 Two blocks decomposition for the ALM

box constraint is always satisfied by design and we can measure the feasibility
violation with the quantity |aTxk|. Thus, on the basis of Proposition 7, a
suitable stopping criterion is the following

|aTx| ≤ 10−3, (3.31)
m(xk) ≤M(xk) + 10−2. (3.32)

Note that there exist several specialized and very efficient algorithms to solve
the SVM training problem, even in the indefinite, nonconvex case (see for
instance [26]). Here, however, we do not compare our algorithm with the
state-of-art algorithms. We perform, instead, a comparison of

• standard ADMM (fixed τ),

• ADMM with adaptive τk as in (3.6) with µ = 10, α1 = α2 = 2 as
suggested in [21],

• ADMM with increasing τk obtained setting µ = 10, α1 = 2, α2 = 1,

• ALTALM with σ = 0.99, α = 1.0003. As stopping criterion for the
AM algorithm we employ (3.7). The sequence {εk} is computed as
ε0 = 100, εk+1 = (1− 3 · 10−4)εk.

For all of the algorithms the initial point is 0 ∈ Rn, as usual for SVM
problems, and λ0 is set to 0. We say that a run is successful if it satisfies
the stopping criterion (3.31), (3.32) in at most 30000 iterations. For each
kernel we run the algorithms for different values of the parameter τ0 in
{2n | n = 0, 1, . . . , 12}.

The comparison is carried out in number of iterations. Note that this is
a sound comparison, since all of the algorithms, at each iteration, perform
the same exact minimization steps, one w.r.t x, one w.r.t. y (with possibly
different values of λ and τ).

In Figures 3.1-3.2, we report the results, for the two used kernel func-
tions, in terms of number of iterations. We consider both successful and
unsuccessful runs. Thus, when the number of iterations is 30000 the run was
unsuccessful.

The obtained results clearly show the effectiveness of the proposed AL-
TALM with respect to the other ADMM methods. Incremental ADMM
sometimes also proved to be effective, but still less efficient. The other two
methods were almost systematically unsuccessful. On the whole, the compu-
tational results, although limited to a class of nonconvex problems, show the

3.5 A computational example 37

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0 512.0 1024.0 2048.0 5096.0
τ

2×104

3×104

ite

ra
tio

ns

ADMM
ADMM-adaptive
ADMM-increasing
ALTALM

Figure 3.1: Graphical comparison for all of the algorithms in terms of number
of iterations for the sigmoidal kernel.

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0 512.0 1024.0 2048.0 5096.0
τ

104

ite

ra
tio

ns

ADMM
ADMM-adaptive
ADMM-increasing
ALTALM

Figure 3.2: Graphical comparison for all of the algorithms in terms of number
of iterations for the Gaussian mixture kernel.

potential, practical advantages of the proposed algorithm, which combines
the alternate minimization of the two blocks of variables with the updating
of the penalty parameter and of the multipliers.

Finally, we observe that similar computational comparisons between clas-
sical ADMM and ALM based on block Gauss-Seidel decomposition strategies
were performed in [32]. The obtained results showed that ADMM is more
computationally efficient than ALM using block coordinate minimization
methods. However, the penalty parameter, differently from our algorithm,
remains constant throughout all the algorithms tested in [32]. This explains
the difference of the obtained results, and seems to show the practical use-
fulness of varying the penalty parameter according to the strategy of our
decomposition approach embedded in ALM. As observed in [32], varying the
penalty parameter from one iteration to another is more problematic for the

38 Two blocks decomposition for the ALM

ADMM than ALM, even from a theoretical point of view.

3.6 Conclusion
In this chapter we proposed an algorithm which combines the classical aug-
mented Lagrangian method with the alternate minimization strategy of a
modified decomposition Gauss-Seidel algorithm, in order to exploit the pos-
sible structure of a nonconvex problem, whose feasible set is defined by two
groups of constraints that are easy to treat when considered separately.

The contribution to the literature is twofold. First, an alternate mini-
mization phase to solve the sub-problem is introduced. Such step allows us
to deal with the nonconvex case as it does not require to find the global
minima of nonconvex sub-problems.

Second, the global convergence to critical points of the whole algorithm
is proved under mild conditions and without assuming the convexity of the
objective function.

The theoretical results established in the paper can be considered valu-
able taking into account that the convergence properties for alternate minimization-
based methods in the nonconvex case are still a vivid topic of research and
the convergence of the whole algorithm cannot be derived from known re-
sults.

The computational experience, although limited to a class of problems,
seems to show that the proposed algorithm may be computationally advan-
tageous compared with the classical ADMM.

Chapter 4

Two blocks decomposition for
the ALM without derivatives

4.1 Introduction

In this chapter we modify the decomposition approach introduced in Chapter
3 to deal with problems where the derivatives of the objective function F

are not available or too expensive to compute. We still assume F to be
continuously differentiable but we suppose F to be given as the sum of a
“smooth” part and a “black-box” part. We use the term “black-box” for the
g component to indicate that the derivatives of g are not available.

More precisely we write F as the sum of f : Rn → R which is continuously
differentiable and for which we are able to compute the gradient and g :

Rn → R which is also continuously differentiable but whose derivatives are
not available or too expensive to compute.

The problem we consider is thus

min
x

F (x) = f(x) + g(x)

s.t. x ∈ X ∩ Y,
(4.1)

where, as in Chapter 3, the feasible set is given as the intersection of two
convex sets X and Y .

39

40 Two blocks decomposition for the ALM without derivatives

The latter problem can be equivalently stated as

min
x, y

f(x) + g(y)

x ∈ X,

y ∈ Y,

x = y,

and hence be solved with an alternating augmented Lagrangian approach
(ALTALM). Namely, we solve a sequence of sub problems of the form

min
x∈X, y∈Y

qτk,λk
(x, y) , f(x) + g(y) + λT

k (x− y) + τk‖x− y‖2 (4.2)

up to approximate stationarity (as in (3.7)) using the alternate minimiza-
tion strategy (AM). After such a point (xk+1, yk+1) has been obtained the
penalty parameter τk,the accuracy parameter εk and the Lagrange multiplier
estimates are updated as usual:

λ̄k+1 = λk + τk(xk+1 − yk+1) (4.3)
λk+1 = Π[λmin,λmax]

[
λ̄k

]
(4.4)

τk+1 =

{
τk if ‖xk+1 − xk‖ ≤ θ‖xk − yk‖
δτk otherwise

}
, (4.5)

where θ ∈ (0, 1) and δ > 1.
The AM algorithm allow to both 1) separate the the two sets of con-

straints as in Chapter 3 and 2) separate the “smooth” and “black-box” part
of the objective. The AM algorithm works by performing alternate mini-
mization on qτk,λ̄k

(x, y) w.r.t to x (the smooth part) and y the “black-box”
part. The minimization w.r.t. x can carried out with standard smooth op-
timization tools, although from a theoretical point of view it is sufficient
to perform a simple projected gradient step. The minimization w.r.t. y is
carried out with an (iterative) derivative-free procedure. Such a scheme can
be described by the repetition of the following two steps:

xt+1 = xt + αtd
t

yt+1 = H(yt),

where:

- dt is, for instance, the projected gradient, and αt is computed by an
Armijo-type line search;

- H : Rn → Rn is a derivative-free mapping.

4.2 The algorithm 41

4.2 The algorithm
The ALTALM scheme does not need any modification to what was already
described in Chapter 3 but we report it in Algorithm 4 for easy of reference.

Algorithm 4: ALTALM
Input: λ0, (x0, y0) ∈ X × Y ,
δ > 1, σ ∈ (0, 1), τ0 > 0, −∞ < λm < λM < +∞,
a positive sequence {εk} s.t. limk→+∞ εk = 0.

1 for k = 0, 1, . . . do
2 (xk+1, yk+1) = find an εk stationary point of qτk,λk(x, y) with AM
3 λ̃k+1 = λk + τk(x

k+1 − yk+1)

4 λk+1 = Π[λm,λM]

[
λ̃k+1

]
5 if

∥∥xk+1 − yk+1
∥∥ ≤ σ

∥∥xk − yk
∥∥ then

6 τk+1 = τk,
7 else
8 τk+1 = δτk.

The AM procedure, used in Algorithm 4, needs, instead, some modifica-
tions to take into account the “black-box” part.

As already noticed, to carry out the smooth part in AM we simply require
to take a step along the projected gradient direction while for the “black-box”
part we employ the same derivative free technique that, at each iteration k,
is able to find a point yt+1 such that

∥∥yt+1 −ΠY

[
yt+1 −∇qτ,λ(xt+1, yt+1

]∥∥ ≤ µt, (4.7)

where {µt} is a sequence of positive number such that µt → 0. This allows
to employ iterative derivative free schemes with increasing level of accuracy
and not necessarily going for exact stationarity. Note the difference with the
setting studied in Chapter 3 where we could easily take the argmin for the
y component.

In the following, we focus on the case where Y is defined by simple box
constraints, namely Y = {l ≤ y ≤ u} and we exploit as a derivative free
mapping the DFBox algorithm proposed in [68].

According to this algorithm at each iteration the 2n coordinate direction
are explored and if a sufficient decrease of the objective function is found

42 Two blocks decomposition for the ALM without derivatives

Algorithm 5: Alternate Minimization (AM) - DF case
Input: x0 ∈ X, y0 ∈ Y, {µt} s.t. µt > 0 and µt → 0., ε > 0

1 t = 0

2 while (xt, yt) is not an ε-stationary point do
3 find xt+1 such that

qτ,λ(x
t+1, yt) ≤ qτ,λ(x

t + αtd
t, yt),

where dt = ΠX [xt −∇xqτ,λ(x
t, yt)]− xt and αt is obtained with

an Armijo-type line search.
4 find yt+1 such that qτ,λ(x

t+1, yt+1) ≤ qτ,λ(x
t+1, yt) and∥∥yt+1 −ΠY

[
yt+1 −∇qτ,λ(xt+1, yt+1)

]∥∥ ≤ µt (4.6)

t = t+ 1.

the point is updated and the search is started again. Otherwise the initial
step length is reduced. Notice that by controlling µt we roughly control the
number of internal iterations (and hence number of coordinate searches) of
DFBox for each external iteration k. It is usually convenient to start with few
iterations at the beginning and allow the algorithm to run for more iterations
later in the process. Note also that, as will be clearer after the convergence
analysis, we can compute the update yt+1 without actually computing the
gradient w.r.t. to y as (4.6) seems to require.

The pseudocode of this procedure is given in Algorithm 6 w.r.t. the

4.3 Convergence analysis 43

problem miny∈Y g(y).

Algorithm 6: DFBox
Input: g : function to be minimized, y0 ∈ Y, θ ∈ (0, 1), γ > 0, dii =

ei for i = 1, . . . , 1.

1 for k = 0, 1, . . . do
2 z0k+1 = yk
3 for i = 1, . . . , n do
4 α = linesearch (zi−1

k+1, d
i
k, α̃

i
k)

5 if α > 0 then
6 αi

k = α, α̃i
k+1 = αi

k, dik+1 = dik
7 else
8 α = linesearch (zi−1

k+1,−dik, α̃i
k)

9 if α > 0 then
10 αi

k = α, α̃i
k+1 = αi

k, dik+1 = −dik
11 else
12 αi

k = 0, α̃i
k+1 = θα̃i

k

13 zik+1 = zi−1
k + αi

kd
i
k

14 find yk+1 ∈ Y s.t. g(yk+1) ≤ g(znk+1)

15 def linesearch(y, d, α̃, γ, δ):
16 compute αmax s.t. y + αmaxd ∈ Y

17 α = min {α̃, αmax}
18 if α ≤ 0 or g(y + αd) > g(x)− γα2 then
19 return 0

20 else
21 α = α̃

22 while α
δ ≤ αmax and g(y + α

δ d) ≤ g(y)− γ(αδ)
2 do

23 α = α
δ

24 return α

4.3 Convergence analysis
The convergence analysis will be carried out in a bottom up fashion:

• we first show how we can satisfy the approximate stationarity criterion
(4.7) for the black-box part with DFBox,

• then we show that AM converges to such approximate solution in a

44 Two blocks decomposition for the ALM without derivatives

finite number of iterations,

• finally we show that the sequence of approximate solutions produced
by the whole Algorithm converges to a stationary point of the original
problem.

The first part of the analysis is thus devoted to showing that applying
DFBox to the minimization w.r.t. y of qτk,λk

(xk+1, y) we can find a point
yt+1 s.t. criterion (4.7) can be enforced.

4.3.1 Convergence of DFBox
Consider the problem (with an abuse of notation)

min f(x)

l ≤ x ≤ u,

where f is a continuously differentiable function f : Rn → R. Define the
reduced gradient as:

∇red
i f(x) =

max{∇if(x), 0} xi = ui,

min{∇if(x), 0} xi = li,

∇if(x) l < x < u.

(4.8)

From Proposition 3 in [68] we have

Proposition 8. Suppose that f is bounded below on the feasible, that
its gradient is Lipschitz continuous (with constant L). Let {xk+1} be the
sequence produced by Algorithm DFBox. Then,there exist a constants C > 0

such that ∥∥∇red
i f(xk+1)

∥∥ ≤ Cnmax
i
{α̃i

k} (4.9)

It can be shown that the reduced gradient has close relationship with the
projected gradient which we employ in our analysis. In fact, it holds the
following.

Proposition 9. Let f : Rn → R be a continuous differentiable function and
[l, u] represent the box constraints then∥∥∇+f(x)

∥∥ ≤ ∥∥∇redf(x)
∥∥ ∀x ∈ Rn, (4.10)

where ∇+f(x) = x−Π[l,u] [x−∇f(x)] .

4.3 Convergence analysis 45

Proof. We distinguish between the following cases:

i) li < x < ui,

iia) xi = li and ∇if(x) = ε ≥ 0,

iib) xi = li and ∇if(x) = −ε < 0,

iiia) xi = ui and ∇if(x) = −ε ≤ 0,

iiib) xi = ui and ∇if(x) = ε > 0.

In case i) we have ∇red
i f(x) = ∇fi(x) and

∇+
i f(x) =

∇if(x) if li < xi −∇if(x) < ui

x− ui if x− ui > ∇if(x), ∇if(x) < 0

x− li if x− li < ∇if(x), ∇if(x) > 0.

And thus,
∣∣∇+

i f(x)
∣∣ ≤ |∇if(x)| =

∣∣∇red
i f(x)

∣∣.
In case iia) we have ∇red

i f(x) = 0 and xi − ∇if(x) < li which implies
∇+

i f(x) = xi − li = 0. Thus
∣∣∇+

i f(x)
∣∣ = ∣∣∇red

i f(x)
∣∣.

In case iib) we have ∇red
i f(x) = ∇if(x). Thus if xi + ε < ui we have

∇+
i f(x) = ∇if(x) = ∇red

i f(x) otherwise ∇+
i f(x) = xi − ui > −ε and thus∣∣∇+

i f(x)
∣∣ ≤ ∣∣∇red

i f(x)
∣∣.

Cases iiia) and iiib) are analogous to iia) and iib).
Therefore we have

∣∣∇+
i f(x)

∣∣ ≤ ∣∣∇red
i f(x)

∣∣∀i and thus the thesis follows.

Corollary 1. Suppose that f is bounded below on the feasible, that its gra-
dient is Lipschitz continuous (with constant L). Let {xk+1} be the sequence
produced by Algorithm DFBox. Then,there exist a constants C > 0 such
that ∥∥∇+f(x)

∥∥ ≤ ∥∥∇redf(x)
∥∥ ≤ Cnmax

i
{α̃i

k}.

46 Two blocks decomposition for the ALM without derivatives

4.3.2 Convergence of AM
We now prove the convergence of the AM decomposition algorithm. By
simple modifications to Proposition 5, under Assumption 4, we immediately
get the following.

Proposition 10. The function qτ,λ(x, y) is coercive on X × Y .

We then can state the convergence of AM.

Proposition 11. Algorithm AM determines in a finite number of iterations
a point (x(ε), y(ε)) which is an ε-stationary point for problem

min
x∈X,y∈Y

qτ,λ(x, y).

Proof. Suppose Algorithm AM generates an infinite sequence {xt, yt}. The
instructions of the algorithm imply

qτ,λ(x
t, yt) ≤ qτ,λ(x

0, y0),

and hence, for all t ≥ 0 the point (xt, yt) belongs to the level set L0 =

{(x, y) ∈ X×Y | qτ,λ(x, y) ≤ q(x0, y0)}. From Proposition 10 it follows that
L0 is a compact set. Therefore, the sequence {xt, yt} admits cluster points.
Let (x̄, ȳ) be a cluster point of {xt, yt}, i.e., there exists T ⊆ {0, 1, . . . , } such
that

lim
t∈T,t→+∞

(xt, yt) = (x̄, ȳ).

We first show that (x̄, ȳ) is a critical point, i.e.,

(x̄, ȳ) = ΠX×Y [(x̄, ȳ)−∇qτ,λ(x̄, ȳ)]. (4.11)

From the instructions of the algorithm we get∥∥yt = ΠY [y
t −∇yqτ,λ(x

t, yt)]
∥∥ ≤ µt,

from which, taking the limits for t ∈ T and t→ +∞, since µt → 0, recalling
the continuity of the gradient and of the projection operator, we obtain

ȳ = ΠY [ȳ −∇yqτ,λ(x̄, ȳ)]. (4.12)

Let x̂t = ΠX [xt −∇xqτ,λ(x
t, yt)], so that dt = x̂t − xt. The instructions of

the algorithm imply

qτ,λ(x
t+1, yt+1) ≤ qτ,λ(x

t+1, yt) ≤ qτ,λ(x
t + αtd

t, yt) < qτ,λ(x
t, yt). (4.13)

4.3 Convergence analysis 47

Recalling the continuity of the gradient and the projection operator, it follows
dt → d̄ for t ∈ T , t → +∞, which implies that ‖dt‖ ≤ M for some M > 0

and for t ∈ T . The sequence {qτ,λ(xt, yt)} is monotone decreasing, qτ,λ(x, y)
is continuous, and hence we have

lim
t→+∞

qτ,λ(x
t, yt) = qτ,λ(x̄, ȳ).

From (4.13) it follows

lim
t∈T,t→+∞

qτ,λ(x
t, yt)− qτ,λ(x

t + αtd
t, yt) = 0.

Then, the hypothesis of Proposition 12 are satisfied and hence we obtain

lim
t∈T,t→+∞

∇xq(x
t, yt)T dt = 0. (4.14)

By the properties of the projection operator we have

(xt −∇xqτ,λ(x
t, yt)− x̂t)T (x− x̂t) ≤ 0 ∀x ∈ X,

and hence we can write

∇xqτ,λ(x
t, yt)T dt ≤ −

∥∥xt − x̂t
∥∥2 . (4.15)

Thus, from (4.14) and (4.15), recalling the continuity of the gradient and of
the projection operator we obtain

x̄ = ΠX [x̄−∇xqτ,λ(x̄, ȳ)]. (4.16)

From (4.16) and (4.12) it follows that (4.11) holds.
Then, by the continuity of ∇qτ,λ and ΠX×Y , it follows that for t suffi-

ciently large we have

‖(xt, yt)−ΠX×Y [(x
t, yt)−∇qτ,λ(xt, yt)]‖ ≤ ε,

i.e., (xt, yt) is an ε-stationary point.

Remark 2. In practice we can check ε-stationarity with ε = Cnε̄ by sepa-
rately checking if

max
i
{α̃i

k} ≤ ε

after the yt+1 update and if∥∥xt+1 −ΠX

[
xt+1 −∇xqτt,λt

(xt+1, yt+1)
]∥∥ ≤ ε.

48 Two blocks decomposition for the ALM without derivatives

4.3.3 Convergence of ALTALM
We have seen in the preceding sections that algorithm AM (where DFBox is
used for the black-box part) produces iterates (xk, yk) that are εk-stationary
points for the augmented Lagrangian sub-problem (4.2). Hence we have∥∥(xk, yk)−ΠX×Y

[
(xk, yk)−∇qτk,λk

(xk, yk)
]∥∥ ≤ εk,

as required by Algorithm ALTALM.
The following can be deduced from Theorem 3.

Theorem 4. Let {(xk, yk)} be the sequence generated by Algorithm AL-
TALM. Suppose that the sequence {εkτk} is bounded. Then, every cluster
point (x̄, ȳ) is such that x̄ = ȳ, and x̄ is a stationary point of problem (4.1),
i.e.,

∇F (x̄)T (z − x̄) ≥ 0 ∀z ∈ X ∩ Y. (4.17)

4.3.4 Conclusion
In this chapter we extened the ALTALM approach introduced in Chapter 3
to deal with problems where first order information for the objective function
is not completely available. The overall ALTALM scheme is not modified
altough modifications have to be made in the AM procedure. In particular
we employ a derivative-free iterative procedure for the resulting “black-box”
minimization part. With this modification we are able to prove convergence
to stationary point as done in the “smooth” setting.

Chapter 5

Two-Level decomposition for
training SVMs

5.1 Introduction
This chapter is concerned with the optimization problem that arise in the
training phase of Support Vector Machines [19,29]. In particular we refer to
its dual formulation, which is often preferred for non-linear kernels.
Given a data set of n training vectors vi ∈ Rm and their associated labels yi ∈
{−1, 1}, the following linearly and bound constrained quadratic optimization
problem is defined:

min
α

f(α) =
1

2
αTQα− αT e

yTα = 0

0 ≤ α ≤ C,

(5.1)

where e is the n-dimensional vector of all ones, α ∈ Rn and Q ∈ Rn×n is
positive semi-definite. Matrix Q is given by Qij = yiyjKij , where K is
the kernel matrix with Kij = φ(vi)

Tφ(vj), for some mapping φ to a higher
(possibly infinite) dimensional space.

Problem (5.1) has been extensively studied (see the work of [20] or [78] for
an extensive survey on optimization methods for SVM training) by both the
machine learning and optimization communities over the years especially as
data sets are becoming ever larger. Indeed, when the number of data point
n is huge (as in many big data applications) the Hessian matrix Q, which

49

50 Two-Level decomposition for training SVMs

is dense, cannot be fully stored in memory so that standard methods for
quadratic programming cannot be used.

Decomposition methods are particularly well suited to deal with this
issue, since the original problem is divided into a sequence of smaller sub-
problems obtained by fixing subsets of variables. The key aspects of a decom-
position algorithm are hence 1) how we decompose the problem in smaller
sub-problems and 2) how we solve the sub-problems themselves.

We analyze both aspects. Firstly we study how to effectively solve the
sub-problems. In particular we focus on solving sub-problems of more than
two variables, which originate from the novel working set selection rule that
is the second contribution of this work.

This chapter is organized as follows. We review the literature on decom-
position methods for SVM in Section 5.2. Then we summarize the proposed
algorithm in Section 5.3 before giving the details on solution of the sub-
problem in Section 5.3.1 and on the novel working set selection rule in Section
5.3.2. Extensive numerical experiments are presented in Section 5.4, where,
after providing setup details (Section 5.4.1) we analyze first the efficiency
of the solver for the sub-problem (Section 5.4.2), then the performance of
different working set selection rules (Sections 5.4.3, 5.4.4 and 5.4.5), before
comparing the whole algorithm against the state-of-art solver LIBSVM [24]
in Section 5.4.6.

5.2 Decomposition methods for SVM training

The literature on decomposition methods is wide and their convergence prop-
erties very well understood. General decomposition algorithms, however, are
either applied to unconstrained optimization problems or when the feasible
set has a simple structure, for instance the Cartesian product of subsets in
smaller spaces. In SVM training problems, however, the feasible set cannot
be simply partitioned into blocks and hence, custom decomposition methods
are needed.

In a decomposition method for SVM training problems, at each iteration
k two sets of indexes W ⊂ {1, . . . , n} (referred to as working set (WS)) and
W = {1, . . . , n} \W are identified, with q = |W | � n, and a sub-problem of

5.2 Decomposition methods for SVM training 51

the following form is solved.

min
αW

f(αW , αk
W) =

1

2
αT

WQWWαW + pTWαW

yTWαW = −yT
W
αk

W
,

0 ≤ αW ≤ C,

(5.2)

where pW = −eW + QWWαW . The feasible set F(αW) for the sub-problem
is given by {αW ∈ Rq | 0 ≤ αW ≤ C, yTWαW = −yT

W
αW}. To construct

the sub-problem, exploiting the symmetry of Q, columns QW of the Hessian
matrix corresponding to the indexes in W are needed:

QW =

[
QWW

QWW

]
(5.3)

The general framework of a decomposition scheme is described in Algo-
rithm 7.

Algorithm 7: General Decomposition Framework for SVM Train-
ing Problems

1 α0 = 0, ∇f(α0) = −e, k = 0

2 while the stopping criterion is not satisfied do
3 select the working set W k

4 retrieve the columns QW identified by (5.3)
5 set W = W k and compute a solution α?

W of sub-problem (5.2)

6 set αk+1
i =

{
α?
i for i ∈W

aki otherwise
7 set

∇f(αk+1) = ∇f(αk)+QW (αk+1−αk) = ∇f(αk)+
∑
i∈W

Qi(α
k+1
i −αk

i)

where Qi is the i-th column of Q
8 set k = k + 1

9 return α? = αk

In terms of computational cost, the most expensive step at each iteration
of a decomposition method is, especially for large data sets, the computa-
tion of the columns of the Hessian matrix corresponding to the indices in
the working set W . In particular, if each Kij costs O(m) (as with typically
employed kernels), the cost for one column is O(nm). These columns are

52 Two-Level decomposition for training SVMs

needed in (5.3) for setting up sub-problem (5.2) and then at step 6 of Algo-
rithm 7 for updating the gradient. The other operations that may require
a computational effort are, as we will clarify in the following, the working
set selection procedure itself, the solution of sub-problems and the update
of gradient.

The cardinality q of the working set, i.e. the dimension of the sub-
problem, has to be strictly greater than 1, otherwise we would have αk+1 =

αk. Based on q, two cases can be distinguished:

• Sequential Minimal Optimization (SMO) algorithms, where q = 2;

• General Decomposition Algorithms, where q > 2.

The main difference between SMO and General Decomposition Algo-
rithms lies in how the sub-problems are solved. When q = 2, variables can
be updated by an analytical formula, as shown by [79], whereas for larger
working sets the adoption of an iterative method is necessary, e.g., the soft-
ware MINOS [77], the LOQO primal-dual interior point method [45, 81, 90]
or gradient projection [30, 95]. In General Decomposition Algorithms, the
working set rarely contains more than a few tens of variables, otherwise a
single iteration might become too expensive. In fact, the inefficiency and
complexity of QP solvers is the main reason why researchers stopped using
working sets of q > 2 variables and the interest in SMO algorithms arose.

Concerning the working set selection rule (WSSR), let us first consider
SMO algorithms, whose related literature is older and wider. At a feasible
point α, the index sets

R(α) = {h ∈ {1, . . . , n} | 0 < αh < C ∨ (αh = 0 ∧ yh = 1) ∨ (αh = C ∧ yh = −1)}
S(α) = {h ∈ {1, . . . , n} | 0 < αh < C ∨ (αh = 0 ∧ yh = −1) ∨ (αh = C ∧ yh = 1)}

(5.4)

characterize the status of the variables. In particular, it can be shown (see,
e.g., [59]) that α is a solution of (5.1) if and only if

max
i∈R(α)

{−yi∇f(α)i} ≤ min
j∈S(α)

{−yj∇f(α)j}. (5.5)

Given a non-optimal, feasible point α, a pair {i, j} ∈ R(α) × S(α) such
that

−yi∇f(α)i > −yj∇f(α)j

5.2 Decomposition methods for SVM training 53

is referred to as a violating pair. If

i? ∈ argmax
i∈R(α)

{−yi∇f(α)i} j? ∈ argmin
j∈S(α)

{−yj∇f(α)j}, (5.6)

then {i?, j?} is called a most violating pair (MVP).
A classical way of choosing the working set for SMO is choosing a most

violating pair [45, 48]. This selection is cheap to compute, as it is done in
O(n) time, and it can be proved that SMO algorithm with this working set
selection strategy is globally convergent [56, 57]. In the following we will
refer to rule as WSS1. WSS1 is based on first order information: indeed, i?
and j? identify the direction with only two non-null (unit) components that
minimizes the first order approximation

f(αk + d) ' f(αk) +∇f(αk)T d.

Other working set selection rules with global convergence properties are
described by [27], [23], [60], [66] and [33]. Amongst those, the most widely
employed one in practice (e.g., in LIBSVM) is the one from [33], which
exploits second order information. We will refer to this this rule as WSS2.
Since f is quadratic, the exact reduction of the objective value is given by:

f(αk)− f(αk + d) = −∇f(αk)T d− 1

2
dT∇2f(αk)d. (5.7)

Unfortunately, searching the pair of indices that identify the feasible direction
with two non-zero components maximizing the objective decrease requires
O(n2) operations and is thus impractical. The idea is therefore that of
choosing one variable as in WSS1 and, having that fixed, identifying the
other index so that (5.7) is maximized. This is done, assuming the kernel is
positive-definite, by setting

i ∈ argmax
t∈R(αk)

{−yt∇f(αk)t}

j ∈ argmin
h∈S(αk)

{
− δ2ih
ρih
| −yh∇f(αk)h < −yi∇f(αk)i

}
,

(5.8)

where

ρih = Kii +Khh − 2Kih δih = −yi∇f(αk)i + yh∇f(αk)h, (5.9)

being K the kernel matrix. This procedure has cost O(n), even though it is
in fact slightly more expensive than WSS1.

54 Two-Level decomposition for training SVMs

The notion of MVP gives also rise to the simple and widely employed
stopping criterion

m(αk) ≤M(αk) + ε, (5.10)

where ε > 0 and

m(α) = max
h∈R(α)

−yh∇f(α)h M(α) = min
h∈S(α)

−yh∇f(α)h. (5.11)

Note that m(α) ≤ M(α) is exactly the optimality condition (5.5). It has
been proved [59] that all rules selecting constant-factor violating pairs [27]
generate sequences {αk} such that m(αk) −M(αk) → 0, i.e. algorithms of
this type satisfy stopping criterion (5.10) in a finite number of iterations for
any ε > 0. A violating pair {i, j} is referred to as a constant-factor violating
pair if

yi∇f(αk)i − yj∇f(αk)j ≤ σ
(
yi?∇f(αk)i? − yj?∇f(αk)j?

)
, (5.12)

being 0 < σ ≤ 1 and {i?, j?} the MVP. WSS1 and WSS2 are indeed instances
of the constant-factor violating pair rule and thus lead to finite termination.

In Algorithm 8 we summarize the SMO decomposition method with
WSS1, also referred to as SMO-MVP algorithm.

Algorithm 8: SMO-MVP Algorithm
1 α0 = 0, ∇f(α0) = −e, k = 0

2 while m(αk)−M(αk) ≤ ε do
3 select the working set W k = {ik, jk} according to

ik ∈ argmax
i∈R(αk)

−yi∇f(αk)i

jk ∈ argmin
j∈S(αk)

−yj∇f(αk)j

4 set W = W k, W̄ = {1, . . . , n} \W and analytically compute a
solution α?

W of sub-problem (5.2)

5 set αk+1
h =

{
α?
h for h ∈W

akh otherwise
6 set ∇f(αk+1) = ∇f(αk) +Qik(α

k+1
ik
− αk

ik) +Qjk(α
k+1
jk
− αk

jk)

7 set k = k + 1

8 return αk

5.2 Decomposition methods for SVM training 55

As for General Decomposition Methods, a first working set selection rule
has been proposed by [45] and the asymptotic convergence of the decompo-
sition method based on such rule is proved by [56]. The finite termination is
shown by [59]. The scheme used in the SVMlight software, selects a working
set W with an even number q of variables by solving the following problem:

min
d
∇f(αk)T d

yT d = 0, −1 ≤ di ≤ 1 ∀ i = 1, . . . , n,

di ≥ 0 if αk
i = 0, di ≤ 0 if αk

i = C,

|{di | di 6= 0}| ≤ q.

(5.13)

With the above problem, the steepest feasible direction with at most q non-
zero components is identified. Optimal W according to (5.13) can be ef-
ficiently found, similarly as for WSS1, by selecting the q/2 most violating
pairs. In fact, WSS1 is the particular case of (5.13) when q = 2. This selec-
tion strategy guarantees global convergence, at the cost of a limited freedom
in choosing variables. We will also refer to this WSSR in the following as
extended-WSS1.

The theoretical issue about convergence with more arbitrary selection
rules is open. Asymptotic convergence to optimal solutions has not been
proven in this scenario. However, [97] proved finite termination of Algorithm
7 with stopping criterion (5.10) under the assumption that at each iteration
at least one pair of indexes {i, j} ∈ R(αk)× S(αk) is present in the working
set such that

−yi∇f(αk)i > −yj∇f(αk)j + ε.

This result improves the work of [89], where relaxed definitions of sets R(αk)

and S(αk) are considered.
Note that, by the above result, any working set selection rule that inserts

the MVP into the WS is guaranteed to generate a finite sequence of iter-
ates. This fact is quite important, allowing to consider sophisticated mixed
selection strategies without any risk of non-termination. In particular, se-
lection rules can safely be considered that better exploit the commonly used
caching technique, consisting of storing the recently used columns of the
Hessian matrix in order to avoid their recalculation. [35], [67] and [60] have
studied decomposition methods designed to couple convergence properties
and the exploitation of the caching strategy. [84] proposed an experimen-
tally efficient way of choosing the working set based on MVPs and caching,
but asymptotic convergence properties have not been proven for this rule.

56 Two-Level decomposition for training SVMs

Finally, a different approach is proposed by [71] where the primal problem
is modified so that the dual problem has only box constraints. [71] propose
Successive Over-relaxation to solve the problem, while [42] designed a specific
decomposition method, making use of a specialized version of TRON [61] to
solve the sub-problems.

5.3 The proposed algorithm
In this work we propose a new variant of the non-SMO decomposition method
for kernel SVMs training which is based on two main ideas:

• the q-variables sub-problems are solved by means of an inner SMO
procedure, so that no line-search procedures are required;

• a novel working set selection rule for q > 2 variables that exploits both
first and second order information is employed.

An outline of the algorithm is summarized by the pseudocode in Algo-
rithm 9.

Algorithm 9: Two-Level Decomposition Method for SVM Training
1 α0 = 0, ∇f(α0) = −e, k = 0

2 while m(αk)−M(αk) > ε do
3 select the variables which define the working set W ⊂ {1, . . . , n}
4 optionally add some variables to W from the cached columns of

the Hessian matrix.
5 compute αk+1

W solving minαW∈F(αk
W

) f(αW , αk
W
)

6 αk+1
W

= αk
W

7 ∇f(αk+1) = ∇f(αk) +
∑

h∈W Qh(α
k+1
h − αk

h)

8 set k = k + 1

9 return αk

We first detail the solution of the sub-problems (step 5) and than describe
the novel proposed working set selection rule (step 3).

5.3.1 Solving the subproblems

The sub-problem with the q variables in the working set W generated at
each iteration k by the decomposition procedure is given by (5.2). For the

5.3 The proposed algorithm 57

sake of simplicity, let us change the notation to

min
x

1

2
xT Q̃x+ pTx

aTx = b,

0 ≤ x ≤ C.

(5.14)

Except for the fact that the constant term of the equality constraint is not
zero and p 6= e, the sub-problems have exactly the same form as (5.1). Thus,
classical SVM decomposition schemes can be applied also to the solution of
the sub-problems (5.14). In fact, we will show that SMO technique works
extremely well not only on large problems, but also with small problems such
as the sub-problems herein considered.

The efficiency of SMO algorithms mainly comes from the fact that all
the updates of the variables are performed in closed form, not requiring the
computational effort of a line-search algorithm.

These observations led us to adopt SMO-MVP to solve the sub-problems.
We can hence see the whole training algorithm as a two-level decomposition
scheme, where the inner sub-problems are solved by Algorithm 8. In the
following, we will also refer to this two-level decomposition scheme as TLD-
ISMO (Two Level Decomposition with Inner Sequential Minimal Optimiza-
tion).

More in detail, our sub-problems solver is described in Algorithm 10. Let
W = {h1, . . . , hq} so that xi corresponds to αhi and ai corresponds to yhi .

Given a feasible point x for the sub-problem, we can define, similarly as
(5.4), the sets

R̃(x) = {` ∈ {1, . . . , q} | 0 < x` < C ∨ (x` = 0 ∧ a` = 1) ∨ (x` = C ∧ a` = −1)},
S̃(x) = {` ∈ {1, . . . , q} | 0 < x` < C ∨ (x` = 0 ∧ a` = −1) ∨ (x` = C ∧ a` = 1)}.

(5.15)

Then, the most violating pair {i, j} ∈ R̃(x) × S̃(x) at x can be defined,
similarly as (5.6), as

i = argmax
`∈R̃(x)

{−a`((Q̃x)` + p`)} j = argmin
`∈S̃(x)

{−a`((Q̃x)` + p`)}. (5.16)

Finally, we can introduce the quantities

M̃(x) = max
`∈R̃(x)

{−a`((Q̃x)` + p`)} m̃(x) = min
`∈S̃(x)

{−a`((Q̃x)` + p`)},

(5.17)

58 Two-Level decomposition for training SVMs

similarly as (5.11), in order to define the stopping criterion

m̃(x) ≤ M̃(x) + εin, (5.18)

where εin is a tolerance.
At each inner iteration κ we select two variables from W via WSS1. The

small dimension of the sub-problems may not require more sophisticated
selection rules. We then solve the sub-sub-problem

min
xi,xj

1

2

(
xi xj

)(Q̃ii Q̃ij

Q̃ji Q̃jj

)(
xi

xj

)
+

q∑
`=1
` 6=i,j

(Q̃`jx
κ
` xj + Q̃`ix

κ
` xi) + pixi + pjxj

aixi + ajxj = aix
κ
i + ajx

κ
j

0 ≤ xi, xj ≤ C,

(5.19)

which can be done in closed form as described, e.g., by [24]. The subproce-
dure employed to solve the sub-problems is summarized in Algorithm 10. It
is worth remarking that, differently from the case of problem (5.1), matrix
Q̃ is fully available to Algorithm 10 that solves (5.14).

Algorithm 10: Inner SMO Algorithm
1 x0 = αk

W , κ = 0

2 while m̃(xκ)− M̃(xκ) > εin do
3 select {i, j} ⊂W according to (5.16)
4 compute xκ+1

i , xκ+1
j by solving analytically problem (5.19)

5 set xκ+1
` = xκ

` for all ` 6= i, j

6 update the gradients
7 set κ = κ+ 1

8 return xκ+1

The inner solver stops when KKT conditions are (approximately) satis-
fied for the sub-problem. Note that, since we employ Algorithm 8, this is
proven to happen in a finite number of iterations for any εin > 0.

5.3.2 A novel working set selection rule
SMO algorithms are widely considered the state-of-the-art decomposition
methods for Support Vector Machines training (see e.g. [78]), and WSS2
introduced by [33] is accepted as more efficient than WSS1 originally in-
troduced by [48] although numerical experience shows that, while WSS2 is

5.3 The proposed algorithm 59

indeed generally better in terms of number of iterations, WSS1 can still
be competitive in terms of computational time in some cases (as numerical
evidence will show in Section 5.4.4).

The core idea of the proposed working set selection rule is, thus, lever-
aging on the efficiency of the sub-problem solver, to exploit the benefits
of both WSS1 and WSS2 selecting two variables according to WSS1 and
other two variables according to WSS2. Formally, we choose the working set
W = {i1, i2, j1, j2} as follows:

i1 = argmax
h∈R(αk)

{
−yh∇hf(α

k)
}
,

j1 = argmin
h∈S(αk)

{
−yh∇hf(α

k)
}
,

i2 = argmax
h∈R(αk),h6=i1

{
−yh∇hf(α

k)
}
,

j2 = argmin
h∈S(αk),h6=j1

{
−
δ2i2h
pi2h

∣∣∣∣ − yh∇hf(α
k) < −yi2∇i2f(α

k)

}
.

(5.20)

We will refer to the working set selection rule (5.20) as WSS-MIX. As a
matter of fact, swapping the order of the two pairs, i.e., selecting the first
pair by WSS2 and the second one by WSS1, is a possibility. In fact, from
preliminary experiments we observed that such change does not significantly
affect the performance.

A crucial technique employed in all of state-of-the-art decomposition
method for SVM is to cache the most recently computed Hessian matrix
columns for later reuse, thus saving up in the number of kernel computa-
tions. Moreover it has been shown to be beneficial, especially for large data
sets, to make use of the cached columns by augmenting the working set with
additional variables of which the correspondent Hessian columns are cur-
rently cached [84]. This idea fits nicely in our framework, since we are able
to deal with large working sets of variables. We thus enhance WSS-MIX by
adding cached variables.

A refined version of the rule from [84] is proposed by [95]. By such a
rule, the working set is filled as follows: q̄ variables are selected according
to extended-WSS1. Then they add to the working set q − q̄ variables as
described by Algorithm 11. Priority is given to free variables, then lower
bound variables and last upper bound variables. The idea is that upper
bound variables have probably reached their final value, while free variables
are completing the optimization process. Also, indexes that have been in

60 Two-Level decomposition for training SVMs

Algorithm 11: Working Set Filling
Input: W k, |W k| = q̄, W k−1, |W k−1| = q.

1 put

F = {h ∈W k−1 | 0 < αk
h < C},

L = {h ∈W k−1 | αk
h = 0},

U = {h ∈W k−1 | αk
h = C}.

2 while |W k| ≤ q and F \W k 6= ∅ do
3 add to W k the index h ∈ F \W k that has been in the working

set for the least number of iterations.
4 while |W k| ≤ q and L \W k 6= ∅ do
5 add to W k the index h ∈ L \W k that has been in the working

set for the least number of iterations.
6 while |W k| ≤ q and U \W k 6= ∅ do
7 add to W k the index h ∈ U \W k that has been in the working

set for the least number of iterations.

the working set for less iterations are preferred. For our method, we borrow
Algorithm 11 to complete the working set after the first 4 variables are
selected according to WSS-MIX.

[95] fixes arbitrarily the size of the working set at the beginning and then
adaptively tune the proportion of variables that are selected with extended-
WSS1 and with Algorithm 11. Here we follow a slightly different approach
and keep both the number of variables chosen with WSS-MIX and of cached
variables fixed from the beginning.

Identifying the ideal number of extra variables to add at each iteration
for each problem is not an easy task. It seems unlikely that choosing more
than 20 variables is useful; indeed, if the data set is very large, the cache
will typically not be large enough to store more than ∼ 20 - 30 variables,
while if the data set is not enough large, the time saved by not recomputing
kernels is lost in performing unnecessary computation. Furthermore, the
higher cost of solving sub-problems is another reason for not using large
values of q. Indeed, in past non-SMO works q have usually been set around
10 or 20 [42,45].

We found that a rule of thumb for choosing the number of additional
variables with a problem from a given data set can be obtained starting

5.3 The proposed algorithm 61

from the following formula. Let

S =
cachesize
8× n2 ×m

(5.21)

be the fraction of Hessian matrix elements that can be cached (assuming
elements are double precision values) divided by the number of features (the
cost of computing one element of the Hessian is proportional to this quan-
tity). The rule is as follows:

• if S > 10−3 do not select additional variables,

• if 10−5 < S < 10−3 select 6 additional variables to the working set by
means of Algorithm 11,

• if S < 10−5 select 14 additional variables to the working set by means
of Algorithm 11.

The idea is that the addition of cached variables is useful if variables
often get out of cache before being used again and if kernel computation is
expensive; note the cost of computing one Hessian column is O(mn), where
n is the number of examples in the data set and m the number of features.

5.3.3 Convergence properties of the proposed algorithm
To start the discussion we note that the algorithm is well defined i.e. the
inner loop (Algorithm 10) stops in a finite number of steps. This trivially
comes from the finite termination property of SMO-MVP algorithm [57,59].

Finite termination of the whole algorithm is, instead, still an open issue.
Indeed WSS-MIX (both with or without cached variables) does not satisfy
the sufficient conditions for asymptotic global convergence and finite termi-
nation stated by [57, 59]. Under the assumption that the sub-problem are
solved exactly, however, finite termination of the procedure is guaranteed by
the result proven by [97]. Nonetheless, the proposed algorithm solves the
sub-problems up to εin precision and, since M(α) and m(α) are not continu-
ous, even letting εin → 0 does not guarantee that the result from [97] holds.
We can however show that

1. the objective function is monotonically non increasing;

2. at each iteration the variables are updated;

62 Two-Level decomposition for training SVMs

3. the working set changes at every iteration, so that it cannot happen
that the algorithm infinitely loops on the same sub-problem.

Point 1. is trivial, we prove points 2. and 3.
Let Wk be the working set at the (outer) iteration k. Let εin and ε be the

stopping tolerances of the inner and outer loops respectively, with εin ≤ ε.
Let us define

R̄(αk
Wk

) = Wk ∩R(αk) S̄(αk
Wk

) = Wk ∩ S(αk).

From the above definition, we have that if {i, j} ⊂Wk and {i, j} ⊆ R(αk)×
S(αk), then {i, j} ⊆ R̄(αk

Wk
)× S̄(αk

Wk
).

From the instructions of the algorithm and the definition of WSS-MIX,
we have that at the beginning of iteration k there exists {i, j} ⊆ R̄(αk

Wk
)×

S̄(αk
Wk

) such that

−yi∇f(αk)i + yj∇f(αk) > ε. (5.22)

Moreover, from the instructions of Algorithm 10, at the end of the k-th
outer iteration we get αk+1 such that, for all {i, j} ⊆ R̄(αk+1

Wk
)× S̄(αk+1

Wk
), it

holds

−yi∇f(αk+1)i + yj∇f(αk+1) ≤ εin ≤ ε. (5.23)

If it was αk = αk+1, (5.22) and (5.23) would be in contradiction. Therefore
have that αk+1 6= αk, i.e., point 2. holds.

From the definition of WSS-MIX, we also know that the working set
Wk+1 contains a pair {ik+1, jk+1} ⊆ R(αk+1)× S(αk+1) such that

−yik+1
∇f(αk+1)ik+1

+ yjk+1
∇f(αk+1)jk+1

> ε, (5.24)

otherwise the outer stopping criterion would have been satisfied. We will
prove that {ik+1, jk+1} * Wk, so Wk+1 6= Wk. Assume by contradiction
that {ik+1, jk+1} ⊂ Wk. Then, since {ik+1, jk+1} ⊆ R(αk+1) × S(αk+1), it
has to be {ik+1, jk+1} ⊆ R̄(αk+1

Wk
)× S̄(αk+1

Wk
). Thus, both (5.23) for {i, j} =

{ik+1, jk+1} and (5.24) hold, which is absurd. Point 3. is thus proved.

5.4 Numerical experiments
In this section we provide numerical evidence to back up each component of
the proposed algorithm before comparing the efficiency of the method as a

5.4 Numerical experiments 63

Data set Training Size Features Class
splice 1,000 60 small

a1a 1,605 123 small
leukemia 38 7,129 small

a9a 32,561 123 medium size
w8a 49,749 300 medium-size

ijcnn1 49,990 22 medium-size
rcv1.binary 20,242 47,236 large

real-sim 72,309 20,958 large
covtype.binary 581,012 54 huge

Table 5.1: Details of the 9 initial data sets.

whole. We use several data sets of different dimensions from the LIBSVM
collection to obtain different instances of SVM training problems for several
values of the hyper-parameters. We detail the common setup of all the
experiments in the next Section.

5.4.1 Benchmark problems and experiments setup
We initially considered a collection of 9 data sets of different dimension for
binary classification, taken from LIBSVM data sets collection webpage 1.
In Table 5.1 we list them, specifying their characteristics, i.e., number of
examples and features.

To fairly measure the performance of the considered methods, we mimic a
true application context. To do so, we built up our experimental benchmark
as follows: for each data set, we generated a set of 25 RBF kernel SVM
training problems, obtained varying the values of the hyper-parameters C

and γ on a 5×5 grid. The grid takes values from {10k ·C̄ | k = −2,−1, 0, 1, 2}
and {10k · γ̄ | k = −2,−1, 0, 1, 2}, where C̄ and γ̄ are suitable values found
through a preliminary validation procedure conducted with LIBSVM. We
recall that the RBF kernel is defined as

K(v, u) = exp
(
−γ‖v − u‖2

)
.

Note that the classification of a data set in terms of dimensions (i.e.,
the data set scale) partially depends on the cache size. The diversity of

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

64 Two-Level decomposition for training SVMs

datasets we employ allows us to simulate contexts where either the whole
kernel matrix can be stored or repeated and expensive kernel computations
are needed. We roughly grouped the datasets into four classes: small (a1a,
splice, leukemia), medium-size (a9a, w8a, ijcnn1), large (rcv1, real-sim)
and huge (covtype).

In the experiment regarding the inner sub-problems solvers, we employed
stopping condition (5.18) with tolerance εin = 10−5.

As for the various versions of Algorithm 7, the implementation exploits
the structure of LIBSVM [24]. The considered methods share stopping crite-
rion (5.10), with ε = 10−3. Different values of ε have also preliminarily been
tried, leading to similar outcomes as ε = 10−3. The inner stopping tolerance
for TLD-ISMO was again set to εin = 10−5.

5.4.2 Computational evidence on inner SMO efficiency
In order to evaluate the efficiency of the inner SMO scheme at solving sub-
problems arising in Algorithm 7, we compared it against two state-of-art
solvers for problems with bounds and a single linear constraint employed
in decomposition schemes for SVM training. Namely we considered the
Generalized Variable Projection Method (GVPM) proposed by [95] and the
Dai-Fletcher method described in [30].

The inner SMO procedure have been implemented from scratch, while
we used the implementations of GVPM and Dai-Fletcher methods avail-
able at http://cdm.unimo.it/home/matematica/zanni.luca/. All three
algorithms were then employed in the decomposition scheme whose imple-
mentation is highly based on that of LIBSVM [24].

The comparison is carried out on 50 Gaussian kernel SVM training prob-
lems, generated from data sets a1a and splice as described in Section 5.4.1.

For each test problem, we computed the average time spent by each solver
to solve one sub-problem of q variables during a training run conducted with
Algorithm 7 with extended-WSS1. Different vales of q have been consid-
ered, in particular we repeated the experiment for q ∈ {4, 10, 20, 50}. The
results are shown in Figure 5.1. Here, as well as in the rest of the chapter,
comparisons are carried out by means of performance profiles (described in
Appendix B.1).

We can see that, for limited values of q, SMO-MVP is almost always the
best algorithm, often by a large factor. Dai-Fletcher method appears to be
overall superior to GVPM (in accordance with the observations of [95]). As

http://cdm.unimo.it/home/matematica/zanni.luca/

5.4 Numerical experiments 65

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(a) q = 4

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(b) q = 10

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(c) q = 20

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(d) q = 50

Figure 5.1: Performance profiles of mean sub-problem solution time required
by different solvers (SMO-MVP, GVPM, Dai-Fletcher) in the decomposition
method for SVM training with the extended-WSS1, run on 50 RBF kernel
SVM training problems from a1a and splice, for different values of q.

the dimension of the working set grows, the gap in performance shrinks: for
q = 20, the profiles of SMO-MVP and Dai-Fletcher nearly overlap. Finally,
when q = 50, Dai-Fletcher substantially outperforms the other two methods,
which behave similarly.

Now, this trend is in fact not surprising. The good scalability properties
of GVPM and Dai-Fletcher algorithms are known from the literature [95].

The results of the preceding test make us confident that for General
Decomposition Algorithms with q > 2 the Two-Level Decomposition scheme
is the best one to adopt, at least for values of q not too large.

66 Two-Level decomposition for training SVMs

5.4.3 Evaluation of different working set sizes

It is now interesting to evaluate the benefits, if any, of using larger working
sets, being an efficient sub-problems solver available. We thus compare the
performance, in terms of runtime, number of iterations and kernel compu-
tations of Algorithm 7 equipped with the extended-WSS1 the inner SMO
solver, for different values of q. For the case q = 2, the employed algorithm
is nothing but the standard SMO-MVP on the whole problem. The test for
q = 50 was repeated by using the Dai-Fletcher solver, as it appears to be,
from the results in Figure 5.1d, the best solver for such working set size.

This experiment is performed on 150 SVM training problems generated
from data sets a1a, splice, a9a, ijcnn1, w8a and rcv1 as described in
Section 5.4.1. This is a collection of problems from small, medium-sized and
large (although not huge) data sets, constituting therefore a diverse enough
test suite.

The results of the experiment are shown in Figure 5.2. Better perfor-
mance, in terms of runtime, can be observed for the non-extreme working
set sizes. As we could reasonably expect, the number of iterations generally
decreases as the size of the working set increases. On the other hand, we can
see that the number of kernel evaluations has the opposite behavior. We can
interpret the result as follows: choosing more variables altogether has the
advantage of reducing the number of iterations and consequently the number
of times the selection procedure is performed; this is particularly beneficial
with the extended-WSS1, since the cost of this selection rule is constant with
respect to the WS size; however, the variables are selected in a less careful
way: this is paid off by computing possibly unnecessary Hessian columns.
Moreover, the computational effort required to solve the sub-problem be-
comes greater as the size of the working set grows. Therefore, intermediate
values of q, such as q = 4, are not surprisingly good in terms of runtime. It
is interesting to note that the performance of q = 50 does not change much
when the internal solver is changed; we can explain this behavior highlight-
ing that kernel evaluation and working set selection are much more relevant
in determining the total runtime w.r.t. the sub-problem solution. We can
conclude that the availability of an efficient solver for sub-problems with
more than two variables allows to concretely consider the use of non-SMO
decomposition strategy, at least for reasonable values of q. In particular,
more sophisticated and combined variables selection rules can be employed,
and also the caching mechanism can be exploited in a more systematic way.

5.4 Numerical experiments 67

We now turn to evaluating the performance of the novel working set
selection rule.

68 Two-Level decomposition for training SVMs

1.0 1.5 2.0 2.5 3.0 3.5 4.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

q = 2

q = 4

q = 10

q = 20

q = 50

q = 50-DF

(a) Runtime

1 2 3 4 5 6 7 8 9 10

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

q = 2

q = 4

q = 10

q = 20

q = 50

q = 50-DF

(b) Number of (outer) iterations

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

q = 2

q = 4

q = 10

q = 20

q = 50

q = 50-DF

(c) Number of kernel evaluations.

Figure 5.2: Performance profiles of runtimes (a), iterations (b) and number
of kernel evaluations (c) of the decomposition method with extended-WSS1,
run on 150 RBF kernel SVM training problems with different values of q.
The problems were generated from data sets a1a, splice, a9a, w8a, ijcnn1
and rcv1. We employed SMO as inner solver. The test for q = 50 was
repeated using Dai-Fletcher method since from the results in Figure 5.1d it
appears to be the optimal choice for such working set size.

5.4 Numerical experiments 69

5.4.4 Experimental analysis of working set selection rules
We start the discussion on the working set selection rule with a preliminary
comparison of WSS1 and WSS2, both in terms of iterations and CPU time.
The results are given in Figure 5.3.

1.0 1.5 2.0 2.5 3.0

performance ratio

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

2nd order selection

1st order selection

(a) Number of iterations.

1.0 1.5 2.0 2.5 3.0

performance ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

2nd order selection

1st order selection

(b) Runtime.

Figure 5.3: Performance profiles comparing the performance, in terms of
number of iterations and runtime, of SMO equipped with WSS1 and WSS2,
run on 225 RBF kernel SVM training problems. The problems were gen-
erated as described in Section 5.4.1 from data sets a1a, splice, leukemia,
a9a, w8a, ijcnn1, rcv1, real-sim and covtype.

We observe that, in terms of iterations, WSS2 is indeed clearly superior
to WSS1. This confirms the results shown by [33], which make WSS2 more
appealing especially with large datasets (less iterations are assumed to re-
quire less kernel evaluations). However, if we consider the computing time,
the difference is less marked and in a good number of cases WSS1 seems a
fairly good solution. In particular, in about a half of the situations, WSS1
led to a faster training.

An explanation to this inconsistency between iterations and time can be
found in the cost of the working set selection rule itself. In fact, a deeper
analysis of the results revealed that this behavior, although common to all
problems, is particularly pronounced on problems generated from the small
data sets. For such problems the time spent on kernel computations is not
only less dominant (even if still relevant) in the composition of total run-
time, but also it is almost equal for the two different algorithms, since the
Hessian matrix can be entirely stored and thus approximately only Hessian
columns associated with support vectors are computed, once and only once.

70 Two-Level decomposition for training SVMs

Therefore, the computational cost of the variables selection procedure gets
much more weight in such cases.

Finally, let us consider the extensions to the general, non-SMO case of
WSS1 and WSS2. The cost of WSS1 procedure does not depend on the
number of selected variables; on the other hand, the cost of WSS2 linearly
increases with the size of the working set. Therefore, we may expect that
the behavior observed in Figure 5.3 is even more evident when dealing with
General Decomposition Algorithms.

Next, we propose a comparison between all combinations of WSS1 and
WSS2 for q equal to 2 or 4. In particular, we consider

• 4-WSS-MIX: Algorithm 7 with q = 4 and WSS-MIX;

• 2-WSS2: SMO with WSS2;

• 2-WSS1: SMO-MVP;

• 4-WSS1: Algorithm 7 with q = 4 and the extended-WSS1, i.e. the rule
from [45];

• 4-WSS2: Algorithm 7 with q = 4 and an extension of WSS2; in partic-
ular, the generalization of WSS2 that we considered selects two pairs of
variables with WSS2, but for the second pair the “roles” of sets R(αk)

and S(αk) are inverted, so that it’s the variable chosen from S(αk) the
one which is fixed; formally:

i1 = argmax
h∈R(αk)

{
−yh∇hf(α

k)
}
,

j1 = argmin
h∈S(αk)

{
−
δ2i1h
pi1h

∣∣∣∣ − yh∇hf(α
k) < −yi1∇i1f(α

k)

}
,

j2 = argmin
h∈S(αk),h 6=j1

{
−yh∇hf(α

k)
}
,

i2 = argmin
h∈R(αk),h6=i1

{
−
δ2j2h
pj2h

∣∣∣∣ − yh∇hf(α
k) > −yj2∇j2f(α

k)

}
.

(5.25)

We applied the above five algorithms to 175 Gaussian kernel SVM training
problems, obtained from data sets a1a, splice, a9a, w8a, ijcnn1, rcv1 and
real-sim as described in Section 5.4.1. Concerning the methods with q = 4,
we employed the TLD-ISMO scheme.

5.4 Numerical experiments 71

The comparison has been made on the basis of runtime, number of it-
erations and number of kernel evaluations. These three quantities should
provide a sufficiently good insight about the behavior of the algorithms. We
report in Figures 5.4 and 5.5 the results of the tests. Figures 5.4a, 5.4c
and 5.4e illustrate the results on the problems from small data sets (a1a,
splice); Figures 5.4b, 5.4d and 5.4f concern the medium-sized data sets
(a9a, w8a, ijcnn1); Figures 5.5a, 5.5c and 5.5e show the results on the prob-
lems from large data sets (rcv1, real-sim); finally, Figures 5.5b, 5.5d and
5.5f summarize the results upon all 175 problems.

We can observe that with small data sets choosing larger working sets is
convenient in terms of runtime, in particular by using WSS1. In fact, dou-
bling the size of the working set on average reduces the number of iterations
to slightly less than a half. As previously outlined, the number of kernel
evaluations is almost constant w.r.t. the WSSRs. WSS2 and WSS-MIX are
slightly more efficient, in terms of number of iterations, w.r.t. WSS1; how-
ever, when it comes to runtime, WSS1 seems to be the best choice; we can
thus deduce that the cost of the selection procedure itself is particularly
relevant with these problems.

The situation is quite different with large data sets. The presence of at
least one pair of variables selected by WSS2 is often useful to reduce the
number of iterations. This quantity is indeed strictly related to the number
of kernel evaluations in this case, since the cache is relatively small. Being
the runtime almost entirely determined by the cost of kernel computations,
using second order information is thus beneficial.

The case of medium-sized data sets appears to be the most complicated.
The number of iterations, the cost of working set selection rule and the
number of kernel evaluations are all relevant to the total runtime. WSS-
MIX apparently balances these components of the cost to obtain the best
performance overall. It is worth mentioning that for some of these problems,
the absence of variables selected by second order information resulted in
particularly critical cases in terms of iterations.

The aggregate results from all 175 problems show a behavior, not surpris-
ingly, somewhere in between the cases of large data sets and small data sets
and similar to the case of medium-sized data sets. One variable selected us-
ing second order information is necessary in order to avoid disasters in terms
of iterations; at the same time, selecting more variables at once, especially if
most of them are chosen by the cheap WSS1, can reduce the time spent on

72 Two-Level decomposition for training SVMs

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(a) small data sets - runtime

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(b) medium-sized data sets - runtime

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(c) small data sets - number of (outer) itera-
tions

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(d) medium data sets - number of (outer) it-
erations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(e) small data sets - number of kernel evalu-
ations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(f) medium data sets - number of kernel eval-
uations

Figure 5.4: Performance profiles comparing the performance, in terms of
runtime (first row), number of (outer) iterations (second row) and number
of kernel columns evaluations (third row), of Algorithm 7 equipped with
combinations of WSS1 and WSS2, run on problems generated from the small
data sets a1a, splice (first column) and from the medium-sized data sets
a9a, w8a, ijcnn1 (second column).

5.4 Numerical experiments 73

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(a) large data sets - runtime

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(b) all data sets - runtime

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(c) large data sets - number of (outer) itera-
tions

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(d) all data sets - number of (outer) iterations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(e) large data sets - number of kernel evalu-
ations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(f) all data sets - number of kernel evaluations

Figure 5.5: Performance profiles comparing the performance, in terms of
runtime (first row), number of (outer) iterations (second row) and number
of kernel columns evaluations (third row), of Algorithm 7 equipped with
combinations of WSS1 and WSS2, run on problems generated from the large
data sets rcv1, real-sim (first column) and from all the data sets a1a,
splice, a9a, w8a, ijcnn1, rcv1, real-sim.

74 Two-Level decomposition for training SVMs

the selection procedures. WSS-MIX thus appears as the most suited option
to be applied on a generic problem.

5.4.5 Analysis of the effects of adding cached variables
We conclude the analysis on the working set selection rule, before evaluating
the efficiency of the full method, by analyzing the effect of adding additional
cached variables to the working set.

We therefore analyze how the selection of additional “cached” variables
actually affects the total number of kernel evaluations required by Algorithm
7 on both cases of small and large problems.

With small data sets, the Hessian matrix can entirely be stored; therefore,
Hessian columns corresponding to support vectors need to be computed only
once, while, with reasonable WSS rules, few other columns are computed
throughout the optimization process. This consideration is supported by
empirical evidence, as shown in Figure 5.6a, concerning the number of kernels
evaluated by Algorithm 7 with different WSS rules.

On the contrary, with large problems, the selection of the extra variables
corresponding to cached Hessian columns helps much at speeding up the
entire process. In fact, as we see in Figure 5.6b, base WSS-MIX, being an
hybrid rule combining WSS1 and WSS2, has an intermediate behavior w.r.t.
these two basic rules. When the working set is enlarged with the addition of
the stored variables, however, the performance greatly improves.

5.4.6 Overall evaluation of TLD-ISMO with WSS-MIX
In this section, the overall efficiency performance of Algorithm 9 is finally
evaluated. We compare the TLD-ISMO to the most widely used decomposi-
tion schemes for SVM, i.e. SMO methods equipped with WSS1 and WSS2.

Concerning the working set selection rule of TLD-ISMO, rule (5.20) was
integrated with the selection of a number of variables from the preceding
working set according to Algorithm 11. The final dimension of the working
set for each problem was decided by means of the heuristic rule (5.21).

Since we solve a convex problem and for all algorithms we used the same
stopping condition, we obtain from the different algorithms equivalent solu-
tions, except for numerical imprecision issues. This is mirrored also in the
test accuracy of the models obtained by the different algorithms. Therefore,
it makes sense comparing the algorithms in terms of efficiency, i.e. runtime.

5.4 Numerical experiments 75

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

WSS-MIX q=4

WSS-MIX q=10

WSS-MIX q=20

SMO-WSS2

SMO-WSS1

(a) 50 small problems

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

WSS-MIX q=4

WSS-MIX q=10

WSS-MIX q=20

SMO-WSS2

SMO-WSS1

(b) 75 large problems

Figure 5.6: Performance profiles in number of Hessian columns computed by
Algorithm 7 with different WSS rules. WSS-MIX with q = 10 and q = 20

include the addition of 6 and 16 “cached” variables respectively. Figure
5.6a concerns 50 test RBF kernel SVM problems generated from small data
sets a1a and splice as described in Section 5.4.1. Figure 5.6b describes
the results of the experiments on 75 problems from large data sets rcv1,
real-sim and the very large covtype.

We first ran the three algorithms on the 225 RBF kernel SVM training prob-
lems generated from data sets a1a, splice, leukemia, a9a, w8a, ijcnn1,
rcv1, real-sim and covtype as described in Section 5.4.1.

A summary of the obtained results can be found in Figures 5.7 and 5.8.
In Figure 5.7 the performance profile of the efficiency of the three algorithms
on all 225 problems is shown. We can see that not only TLD-ISMO in
general performs better than SMO algorithms, but also it often provides a
significant speed-up.

In Figure 5.8 we show the same comparison, but we focus the analysis
on the different data sets scales. We can observe that the dominance of
TLD-ISMO spreads to any situation.

76 Two-Level decomposition for training SVMs

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

Figure 5.7: Comparison of the efficiency of TLD-ISMO and SMO algorithms
(equipped with WSS1 and WSS2) on all 225 test problems.

5.4 Numerical experiments 77

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(a) 75 problems from the three small data
sets.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(b) 75 problems from the three medium-sized
data sets.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(c) 50 problems from the two large data sets.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(d) 25 problems from the huge data set.

Figure 5.8: Performance profiles comparing the efficiency, in terms of run-
time, of TLD-ISMO and SMO (equipped with WSS1 and WSS2), on different
classes of RBF kernel SVM problems. The problems are obtained, by varying
the hyperparameters, from data sets a1a, splice, leukemia (small), a9a,
w8a, ijcnn1 (medium-sized), rcv1, real-sim (large) and covtype (huge).

78 Two-Level decomposition for training SVMs

5.5 Conclusions
Decomposition schemes are a popular and effective way to solve the opti-
mization problem underlying the training stage of kernel SVMs. A decom-
position algorithm reduces the training problem to the solution of several
smaller sub-problems of 2 or more variables. However, solving sub-problems
of more than two variables is often significantly harder and, thus, not com-
putationally convenient.

In this chapter we proposed a novel way to deal with sub-problems of
more than two variables. Namely, since the sub-problems share the same
structure and formulation of the original SVM training problem, we solved
the sub-problems with the same SMO technique that is used in state-of-art
solvers like LIBSVM to solve the original problem.

Numerical evidence is provided to show that employing SMO to solve the
sub-problems compares favorably, for up to 50 variables, with other state-
of-the-art solvers designed to solve sub-problems of more than two variables,
like GVPM and the Dai-Fletcher method.

We then equipped the decomposition algorithm with a novel working set
selection rule which exploits both first and second order information, with
the addition of “cached variables” for large data sets. The rule yields sub-
problems of a minimum of 4 variables for small data sets to a few tens for
larger ones.

Finally we compared the whole decomposition scheme, where the sub-
problems generated by the novel working set selection rule are solved with
SMO, against state-of-art solvers like LIBSVM. The numerical evidence
shows that the proposed approach significantly outperforms LIBSVM on
a large and diverse range of data sets.

Future work will be devoted to investigate the use of sub-problems of
more than 50 variables, where the benefits of the current approach start to
wear off. A potentially effective way to deal with larger sub-problems could
be that of further decomposing them into sub-sub-problem and use, again,
SMO to solve them in a recursive way.

Chapter 6

Bilevel decomposition of
nonsmooth problems with
convex constraints

6.1 Introduction
In this chapter we consider the optimization of a nonsmooth function f :

Rn → R over a closed convex set, namely

min f(x)

s.t. x ∈ X.
(6.1)

We assume that f is locally Lipschitz continuous and that first order infor-
mation is unavailable or impractical to obtain.

The aim of the optimization, for non smooth problems, is to find a Clarke
stationary point. For unconstrained problems Clarke stationarity is defined
as in the following.

Definition 4 (Clarke stationarity). A point x̄ ∈ X is Clarke stationary
w.r.t. the problem minx∈Rn f(x) if

f◦(x̄; d) ≥ 0 ∀d ∈ Rn,

where
f◦(x; d) = lim sup

y→x, t→0

f(y + td)− f(y)

t
≥ 0

79

80
Bilevel decomposition of nonsmooth problems with convex

constraints

is the Clarke generalized directional derivative

For constrained problems of the form (6.1) a possibility is modifying the
latter using tangent cones.

Definition 5 (Hyper-Tangent Cone). A vector d ∈ Rn is said to be a hyper-
tangent vector to the set X at x̄ ∈ X if there exists ε > 0 such that

y + tw ∈ X ∀y ∈ X ∩B(x, ε), w ∈ B(d, ε), t ∈ (0, ε).

The set of all hyper-tangent vector is called the hyper-tangent cone to X

at x̄ and is denoted TH
X (x̄).

Then from Theorem of [9]) we can state the following.

Definition 6 (Clarke stationarity). A point x̄ ∈ X is Clarke stationary
w.r.t. problem (6.1) if

f◦(x̄; d) ≥ 0 ∀d ∈ TH
X (x̄),

where
f◦(x; d) = lim sup

y→x, y∈X
t→0, y+td∈X

f(y + td)− f(y)

t
≥ 0

is the Clarke generalized directional derivative and TH
X (x̄) the hyper-tangent

cone at x̄.

Literature on derivative-free methods for smooth constrained optimiza-
tion (i.e. when f is differentiable even tough derivatives are not available) is
wide. Several approaches, based on the pattern search methods dating back
to [41], have been developed for bound and linearly constrained problems
in [51] and [52] and for more general type of constraints in [53]. Other works
stem from the seminal works of [36, 64] whose approach has been extended
for box and linearly constrained problems in [69] and [65] while more general
constraints are covered in [63].

The nonsmooth case has seen less development. One of the two major
approaches that have emerged is represented by Mesh adaptive direct search
(MADS) that dates back to [6, 7] and that has been later modified in [1, 8].
This method combines a dense search with an extreme barrier to deal with
the constraints. The second main approach [34] is instead based on an exact
penalty function.

6.1 Introduction 81

In the latter the feasible set is expressed by a possibly nonsmooth set
of inequalities g : Rn → Rm and the original problem is replaced with the
penalized version

min
x

f(x) +
1

ε

m∑
i=1

max{0, gi(x)}. (6.2)

It can be shown (see Proposition 3.6 in [34]) that, under suitable assump-
tions, a value ε∗ exists such that ∀ε ∈ (0, ε∗] every Clarke-stationary point
x̄ of (6.2) is also a stationary point of the original problem. Thus, any al-
gorithm for nonsmooth uncontrained optimization can be applied. In [34],
however, a linesearch based algorithm which employs a dense set of direc-
tions alongside the 2n coordinate directions (CS-DFN) is proposed. This
latter reformulation combined with CS-DFN is shown to compare favorably
against state-of-art MADS based software like NOMAD.

The value of ε∗ is, however in general unknown and choosing a proper
value of ε can be a difficult task. Setting a wrong value of ε can be extremely
harmful to the performance of the algorithm. For example if f is unbounded
outside the feasible set setting too high a value of ε can drive the algorithm
towards minus infinity. On the other hand too small a value (< ε∗), even
if theoretical convergence is assured, can yield extremely poor performances
because the algorithms may be forced to take really small steps near the
boundary of the feasible set.

In this work we propose a novel way of treating “difficult” constraints
that is not based on penalty functions. We assume that the feasible set
X is a closed convex set and that a projection operator onto the feasible
set is available. We do not require X to have an analytical expression nor
make any other regularity assumptions. We do, however, suppose that the
computational effort needed to compute the projection is negligible compared
to the evaluation of the objective function. Indeed, the only computational
cost we consider is the number of evaluation of the objective function.

This chapter is organized as follows. In Section 6.2 we introduce the
proposed reformulation. In Section 6.3 we prove the equivalence between
the novel formulation and the original problem in terms of local and global
minima. Then in Section 6.4 we present some numerical results. In particular
we propose a comparison between the exact penalty approach of [34] and the
proposed reformulation. We make use of the CS-DFN algorithm, used in [34],
for both formulations as to make a fair comparison. Finally we give some
concluding remarks in Section 6.5.

82
Bilevel decomposition of nonsmooth problems with convex

constraints

6.2 A novel formulation
Generalizing a bit, all the approaches that have been proposed in literature
to deal with general constraints, try to steer the search towards the feasible
set by adding (maybe in a sequential manner) to the objective function some
kind of penalty φ, which, in its most general form, can be described by

φ(x) =

{
0 if x ∈ X

> 0 otherwise.
(6.3)

Such function can be a smooth quadratic or an exact nonsmooth penalty, or
also an hard barrier that take +∞ outside the feasible set. The problem is
thus rewritten as

min
x

P (x; ε) = f(x) + εφ(x),

where ε > 0 is a parameter that must be set.
Consider a local minimum of the original problem x∗. We have that, for

some neighborhood B(x∗, δ),

f(x∗) ≤ f(x) ∀x ∈ B(x∗, δ) ∩X.

The idea behind penalty-based approaches is that by making the penalty
large enough (either by making ε large of by using an hard barrier) we have

f(x) + p(x) ≥ f(x∗) + p(x∗) = f(x∗), ∀x ∈ B(x∗, δ) (6.4)

so that x∗ is also a local minima of the penalized problem.
The idea behind the proposed reformulation is, instead, to avoid penalties

by “assigning” to a point x outside the feasible set the value of the objective
function computed at its projection π(x). In this way we do not ever compute
f outside the feasible set and we do not need to “correct” f with a penalty
for points outside the feasible set.

Let π be the projection operator over X defined as

π(x) = argmin
z∈X

‖z − x‖ .

Notice that since X is convex the projection has a unique solution. We can
thus define the problem

min
x

f(π(x))

6.2 A novel formulation 83

where each point outside the feasible set assumes the values of its projection.
In the latter formulation it is guaranteed that no point outside the feasible
set can take a value lower than some point in X. We have however that
all the points that share the some projection (consider a ray perpendicular
to the constraints) share the same function value. To overcome this issue
is sufficient to add to the previous formulation a term that penalizes the
distance of a point from its projection. We thus propose to replace the
original problem with

min
x

f̃(x) = f(π(x)) + ‖x− π(x)‖ . (6.5)

We note also that since the projection operator is continuous we have
that f̃ is continuous. Moreover if f is bounded from below on the feasible
set X then f̃ is bounded on Rn since f̃(x) ≥ f(π(x)) ≥ infx∈X f(x). On
the contrary in the penalty approach f(x) + 1

ε

∑m
i=1 max{0, gi(x)} can be

unbounded.

Consider, as a simple example, the problem HS224 from the test suite [82].

min
x

2x2
1 + x2

2 − 48x1 − 40x2

s.t. x1 + 3x2 ≥ 0

18− x1 − 3x2 ≥ 0

x1 + x2 ≥ 0

8− x1 − x2 ≥ 0

0 ≤ x ≤ 6.

The level curves of the original objective function f and of the modified
problem f̃ are shown in Figure 6.1. Notice how the solution to the prob-
lem x∗ = (4, 4) becomes an unconstrained global minimum in the proposed
formulation.

84
Bilevel decomposition of nonsmooth problems with convex

constraints

−2 0 2 4 6 8 10

x1

−2

0

2

4

6

8

10

x
2

−2 0 2 4 6 8 10

x1

−2

0

2

4

6

8

10

x
2

−560

−480

−400

−320

−240

−160

−80

0

80

160

−288

−256

−224

−192

−160

−128

−96

−64

−32

0

Figure 6.1: Level curves of f (left) and f̃ (right) for problem HS224. The
feasible set is in gray. The solution is in red.

6.3 Equivalence of the formulations
In this section we prove the equivalence between the original constrained
problem (6.1) and the proposed formulation (6.5) in terms of local and global
minima. We also show that modifying the objective function we do not lose
Lipschitz continuity so that if f is (locally) Lipschitz f̃ is (locally) Lipschitz
too. We start with the latter.

Lemma 3. Let f be locally Lipschitz continuous. Then the modified func-
tion f̃ = f(π(x)) + ‖x− π(x)‖ is also locally Lipschitz.

Proof. Let x0 ∈ Rn. Since f is locally Lipschitz there exists L0 and δ0 so
that

|f(x)− f(x0)| ≤ L0 ‖x− x0‖ ∀x ∈ B(x0, δ0).

Now consider f̃ . For every x ∈ B(x0, δ0) we have

|f̃(x)− f̃(x0)| = |f(π(x)) + ‖x− π(x)‖ − f(π(x0))− ‖x0 − π(x0)‖ |
≤ |f(p(x))− f(π(x0))|+ | ‖x− π(x)‖ − ‖x0 − p(x0)‖ |
≤ L0 ‖π(x)− π(x0)‖+ | ‖x− π(x)‖ − ‖x0 − π(x0)‖ |
≤ L0 ‖x− x0‖+ | ‖x− π(x)‖ − ‖x0 − π(x0)‖ |,

where we have used the local Lipschitz continuity of f and the non expansive-
ness property of the projection operation. Now, by the triangular inequality

6.3 Equivalence of the formulations 85

we have ‖x0 − π(x0)‖ ≤ ‖x0 − x‖+ ‖x− π(x)‖+ ‖π(x)− π(x0)‖ so that

‖x0 − π(x0)‖ − ‖x− π(x)‖ ≤ ‖x0 − x‖+ ‖π(x)− π(x0)‖
≤ 2 ‖x0 − x‖ .

The same reasoning applies to the opposite sign −‖x0 − π(x0)‖+‖x− π(x)‖
so that | ‖x− π(x)‖ − ‖x− π(x0)‖ | ≤ 2 ‖x0 − x‖ and we can conclude that

|f̃(x)− f̃(x0)| ≤ (2 + L0) ‖x− x0‖ ∀x ∈ B(x0, δ0).

We now consider the relationship between the global and local minimum
of the two formulations. We first prove that each global (local) minimum
of the original problem is also a global (local) minimum of the proposed
formulation in Lemma 4 and 5.

Lemma 4. Every global minimum of problem (6.1) is also a global minimum
for problem (6.5).

Proof. Let x∗ ∈ X be a global minimum for problem (6.1). Suppose by
contradiction that ∃x̄ ∈ R s.t. f̃(x̄) < f̃(x∗) then

f̃(x̄) = f(π(x̄)) + ‖x̄− π(x̄)‖ < f̃(x∗) = f(π(x∗)) + ‖x∗ − π(x∗)‖ = f(x∗).

Then we have found a point y = π(x̄) ∈ X s.t.

f(y) < f(x∗)− ‖x̄− y‖ < f(x∗),

which is a contradiction.

Lemma 5. Every local minimum of problem (6.1) is also a local minimum
for problem (6.5).

Proof. Let x∗ ∈ X be a local minimum for problem (6.1). Then there exists
a ball B(x∗, ρ) with ρ > 0 s.t.

f(x∗) ≤ f(x) ∀x ∈ B(x∗, ρ) ∩X.

Let x̄ ∈ B(x∗, ρ) and suppose by contradiction that f̃(x̄) < f̃(x∗). Thus we
have

f̃(x̄) = f(π(x̄)) + ‖x̄− π(x̄)‖ < f̃(x∗) = f(π(x∗)) + ‖x∗ − π(x∗)‖ = f(x∗).

86
Bilevel decomposition of nonsmooth problems with convex

constraints

Let y = π(x̄) ∈ X. We have, by the properties of the projection operator
that

‖y − π(x∗)‖ = ‖y − x∗‖ ≤ ‖x̄− x∗‖ ≤ ρ,

so that y ∈ B(x∗, ρ) ∩X. Moreover it holds that

f(y) < f(x∗)− ‖x̄− y‖ < f(x∗),

which is a contradiction.

Moreover since f and f̃ take the same values on X it holds that any global
(local) minimum of the modified problem which belongs to the feasible set
is also o global (local) minimum of the original problem.

Lemma 6. Every global (local) minimum x ∈ X for problem (6.5) is also a
global (local) minimum of problem (6.1).

We now show, in Lemma 7, that no stationary point does exist outside
the feasible region X so that we have a perfect equivalence between global
and local minima in the two formulations as remarked in Corollary 2

Lemma 7. Suppose x̂ ∈ Rn \ X then x̂ is not a stationary point for the
modified problem minx f̃(x).

Proof. We will prove the thesis by showing that there exists a descent direc-
tion at x̂ and hence x̂ cannot be a stationary point.

Consider the projection of x̂ onto the feasible set x̄ = π(x̂). Let d = x̄− x̂

and consider a point x̂+ αd with α ∈ (0, 1]. For every y we have

(x̂+ αd− x̄)T (y − x̄) = (x̂+ α(x̄− x̂)− x̄)T (y − x)

= (1− α)(x̂− x)T (y − x) ≤ 0,
(6.6)

where the latter holds because x̄ = π(x̂). Since the projection has a unique
solution, from (6.6) we conclude that x̄ = π(x̂) = π(x̂+αd) ∀α ∈ [0, 1]. Thus
we have that

f̃(x̂)− f̃(x̂+ αd) = f(x̄) + ‖x̂− x̄‖ − f(π(x̂+ αd))− ‖x̂+ αd− π(x̂+ αd)‖
= f(x̄) + ‖x̂− x̄‖ − f(x̄)− ‖x̂+ α(x̄− x̂)− x̄‖
= ‖x̂− x̄‖ − (1− α) ‖x̂− x̄‖
= α ‖x̂− x̄‖
> 0,

so that d is a descent direction at x̂.

6.4 Numerical experiments 87

By putting together Lemma 4, 5, 6 and 7 we establish the perfect equiva-
lence of the two formulations in terms of local and global minima as expressed
by the following.

Corollary 2. Every global (local) minimum of problem (6.1) is also a global
(local) minimum of problem (6.5) and viceversa.

6.4 Numerical experiments
In the following we propose some numerical experiments to investigate on
the possible advantages of the proposed formulation. As a comparison we
consider the exact penalty approach of [34]. To make a fair comparison we
used the same algorithm to solve both formulations. In particular we used
the CS-DFN algorithm proposed in [34]. In the following we call solver an
algorithm applied to a particular formulation of a given problem. So we
compare the exact penalty solver, i.e. the CS-DFN algorithm applied to
the penalized formulation, and our solver, i.e. the CS-DFN applied to the
proposed formulation.

Test problems. We set up a benchmark composed of 28 problems be-
longing to different classes: general nonlinear functions subjected to 1) non
degenerate linear constraints from the collection [39,82]; 2) degenerate linear
constraints from [2]; 3) general convex constraints again from [39, 82]; and
minmax programs under linear constraints from [70]. The problem are listed
in Table 6.1.

Performance metric. To compare the results we employ data profiles.
Data profiles for unconstrained optimization have been proposed in [73] for
benchmarking derivative free algorithms. We describe data profiles in Ap-
pendix B.

In the constrained case, however, the proposed scheme is not readily
applicable. We propose to modify the convergence test (B.1) by considering
also the constraint violation as follows:

(1− β)(f(x)− fL) + β ‖g+(x)‖ ≤ τ(1− β)(f(x0)− fL) + τβ ‖g+(x0)‖ ,

where β ∈ (0, 1) is new parameter which balances function value and con-
straint violation. We set fL = f∗ since f∗ is available for all the problems
in the test suite.

88
Bilevel decomposition of nonsmooth problems with convex

constraints

problem n m type

HS24 2 5

smooth with linear constraints from [39,82]

HS36 3 7
HS37 3 8
HS44 4 10
HS86 5 15
HS224 2 5
HS231 2 2
HS232 2 5
HS250 3 8
HS331 2 4

AS6(n=6) 6 12

smooth with linear degenerate constraints from [2]

AS6(n=7) 7 14
AS6(n=8) 8 16
AS7(n=6) 6 12
AS7(n=7) 7 14
AS7(n=8) 8 16

HS22 2 2

smooth with convex non linear from [39,82]

HS29 3 1
HS43 4 3
HS65 3 7
HS66 3 8
HS270 5 5

MAD1 2 1

minmax with linear constraints [70]
MAD2 2 1
MAD4 2 1
MAD5 2 1
PENTAGON 6 15
WONG2 10 3

Table 6.1: Benchmark problems details.

Note that by violating the constraints the function values can be lower
than the f∗. Naturally by choosing a high value for β this situation can be
arbitrarily penalized as long as f does not get to −∞. This cases must be
removed before computing the profiles.

We extract different data profiles for different values of both τ and β. In
particular we extract the curves for τ−k with k ∈ {1, 3, 5, 7} and β ∈ {0.9, 0.99}.

6.4 Numerical experiments 89

We set a budget of 1000 function evaluations for all the solvers.

Solvers details As already mentioned for both solver we employ the CS-
DFN proposed in [34]. We recall the scheme of the algorithm in Algorithm 12.

90
Bilevel decomposition of nonsmooth problems with convex

constraints

Algorithm 12: CS-DF
Input: x0 ∈ Rn, θ ∈ (0, 1), γ > 0, η > 0,

α̃i
0 > 0, dii = ei for i = 1, . . . , n.

α̃0, a sequence {dk} of search directions s.t. ‖dk‖ = 1 ∀k

1 for k = 0, 1, . . . do
2 z0k+1 = xk

3 for i = 1, . . . , n do
4 α = linesearch (zi−1

k+1, d
i
k, α̃

i
k, γ, δ)

5 if α > 0 then
6 αi

k = α, α̃i
k+1 = αi

k, dik+1 = dik
7 else
8 α = linesearch (zi−1

k+1,−dik, α̃i
k, γ, δ)

9 if α > 0 then
10 αi

k = α, α̃i
k+1 = αi

k, dik+1 = −dik
11 else
12 αi

k = 0, α̃i
k+1 = θα̃i

k

13 zik+1 = zi−1
k + αi

kd
i
k

14 if maxi=1,...,n{αi
k+1, α̃i

k+1} ≤ η then
15 α = linesearch (znk+1, dk, α̃k, γ, δ)
16 if α > 0 then
17 α̃k+1 = αk

18 else
19 αk = 0, α̃k+1 = θα̃k

20 zn+1
k+1 = znk + αkdk

21 find xk+1 s.t. f(xk+1) ≤ f(zn+1
k+1)

22 def linesearch(x, d, α̃, γ, δ):
23 if f(x+ α̃d) > f(x)− γα̃2 then
24 return 0

25 else
26 α = α̃

27 while α
δ ≤ αmax and f(x+ α

δ d) ≤ f(x)− γ(αδ)
2 do

28 α = α
δ

29 return α

We set δ = 0.5, γ = 10−6, η = 10−6 for Algorithm 12. The dense
sequence of direction {dk} is obtained by Sobol quasi-random generation [87].

6.4 Numerical experiments 91

We used the implementation available at [74]
For the exact penalty solver we employ the adaptive strategy for tuning

ε which is proposed in [34] and is deemed to be the better choice.

6.4.1 A first comparison
We start by comparing ours solver against the exact penalty. The data
profiles are reported in Figure 6.2. From the plots we can see that ours solver
enjoy generally better performance both in term of speed and robustness (or
number of problems eventually solved). We note however that neither solver
manage to solve more than the 60% of the test problems within the budget of
function evaluations when a relatively high precision (τ = 10−7) is required.

6.4.2 A parametrization
In this section we introduce a scale factor ε that controls how much to pe-
nalize points outside the feasible region. Namely we modify our formulation
as

min
x

f(π(x)) + ε ‖x− π(x)‖ .

To understand the effect of ε we start with a qualitative analysis. In
Figure 6.3 we show the iterates of the algorithm when run on same problem
with different values of ε.

From the figure we can see that the iterates for greater values of ε stay
closer to the feasible set while for small values of ε the algorithm is allowed
to stray far from the feasible set.

To understand whether staying closer to the feasible set has a good or
bad effect on the overall optimization process we measure the performance
on the solver for different values of ε. Namely we try ε ∈ {0.1, 1, 10, 100}.
We use the same setup of the previous experiments. In Figure 6.4 we give
data profiles for the different solvers (we include, for later reference, another
configuration (ε = 10, σ = 2) which is explained later in the manuscript).

From Figure 6.4 we can see that choosing an high value of ε yields high
performances when low precision is required but quickly lessen for higher
values of τ . For instance for τ = 10−7, β = 0.99 the algorithm with ε = 100

manages to satisfy the convergence criterion only in roughly 30% of the
test problems. The opposite if true for small values of ε. The algorithm is

92
Bilevel decomposition of nonsmooth problems with convex

constraints

generally slower but can achieve very good solutions if a greater number of
function evaluation is allowed.

After this analysis it is natural to ask if employing an adaptive strategy
for ε may be advantageous. For example one could start with ε set to a large
number and gradually decreasing it to get to accurate solutions.

Coming up with a good schedule for ε that works for all problems can
be an hard task. However, the CS-DFN algorithm offers a good way to
understand in what regime the algorithm is working by looking at the length
of the steps that the algorithm takes at each iteration. We thus propose to
set the value of ε as a function of the set length αk. More precisely we set

εk+1 = σ · αk. (6.7)

In this way at the beginning of the algorithm we can start with a large value
of ε0 and then let it decreasing as the algorithm takes smaller steps.

We found, by manually tuning, that good performances can be obtained
by setting ε0 = 10, σ = 2 although other configuration perform similarly
well. As we can see, again in Figure 6.4, this configuration performs almost
equally well when low or high precision is required. Moreover notice that
when high precision is required we go from less than 60% of solved problems
to 80%.

6.4.3 Final comparison
To end the discussion we propose a final comparison of ours solver, in its pa-
rameterized version, equipped with the adaptive strategy for tuning ε against
the exact penalty approach. The results are reported in Figure 6.5.

We can see that ours solver enjoys better performance for every threshold
of accuracy although the exact penalty can be faster for some problems when
a relatively low precision is required. We note furthermore that the exact
penalty fails to reach accurate solution for a large portion of the test problems
whether, as already noticed, ours solvers manage to reach more than the 80%
of solved problems even when high precision is required. We also report for
completeness the details of function values and constraint violations after
the total budget of function evaluations have been spent in Table 6.2 for
both solvers.

6.4 Numerical experiments 93

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

1.0

d
s
(α

)

exact penalty
ours

(a) τ = 10−1, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

1.0

d
s
(α

)

exact penalty
ours

(b) τ = 10−1, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

exact penalty
ours

(c) τ = 10−3, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

exact penalty
ours

(d) τ = 10−3, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

d
s
(α

)

exact penalty
ours

(e) τ = 10−5, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

d
s
(α

)

exact penalty
ours

(f) τ = 10−5, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

d
s
(α

)

exact penalty
ours

(g) τ = 10−7, β = 0.9

0 200 400 600 800 1000

α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
s
(α

)

exact penalty
ours

(h) τ = 10−7, β = 0.99

Figure 6.2: Data profiles for ours solver and the exact penalty.

94
Bilevel decomposition of nonsmooth problems with convex

constraints

−2 0 2 4 6 8 10

x1

−2

0

2

4

6

8

10

x
2

−2 0 2 4 6 8 10

x1

−2

0

2

4

6

8

10

x
2

−288

−256

−224

−192

−160

−128

−96

−64

−32

0

−288

−252

−216

−180

−144

−108

−72

−36

0

Figure 6.3: Iterates (in red) of CS-DFN for ε = 0.1 (left) ε = 10 (right) for
problem HS224. The feasible set is in grey, the initial point in green. Each
dot is obtained after a search along the 2n coordinate directions and possibly
a direction from the dense sequence.

6.4 Numerical experiments 95

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

1.0

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(a) τ = 10−1, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

1.0

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(b) τ = 10−1, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(c) τ = 10−3, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(d) τ = 10−3, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(e) τ = 10−5, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(f) τ = 10−5, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(g) τ = 10−7, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

eps0=1e+01, sigma=2
eps=1e-01
eps=1e+00
eps=1e+01
eps=1e+02

(h) τ = 10−7, β = 0.99

Figure 6.4: Data profiles for different value of the parameter ε.

96
Bilevel decomposition of nonsmooth problems with convex

constraints

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

1.0

d
s
(α

)

ours
exact penalty

(a) τ = 10−1, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

1.0

d
s
(α

)

ours
exact penalty

(b) τ = 10−1, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

ours
exact penalty

(c) τ = 10−3, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

ours
exact penalty

(d) τ = 10−3, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

ours
exact penalty

(e) τ = 10−5, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

ours
exact penalty

(f) τ = 10−5, β = 0.99

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

ours
exact penalty

(g) τ = 10−7, β = 0.9

0 200 400 600 800 1000

α

0.0

0.2

0.4

0.6

0.8

d
s
(α

)

ours
exact penalty

(h) τ = 10−7, β = 0.99

Figure 6.5: Data profiles for the bilevel and the exact penalty formulation.

6.4 Numerical experiments 97

problem ours (ε0 = 10, σ = 2) exact penalty
∆f ‖g+‖ ∆f ‖g+‖

HS36 4.03e-06 0.00e+00 1.32e+02 0.00e+00
HS37 1.02e-08 0.00e+00 2.40e+01 0.00e+00
HS44 2.88e-12 0.00e+00 0.00e+00 0.00e+00
HS86 8.27e-08 0.00e+00 3.58e+00 0.00e+00
HS224 7.87e-10 0.00e+00 1.47e+00 0.00e+00
HS231 3.74e-06 0.00e+00 3.74e-06 0.00e+00
HS232 9.23e-13 0.00e+00 4.44e-16 0.00e+00
HS250 4.00e-10 0.00e+00 1.32e+02 0.00e+00
HS331 -1.44e-05 0.00e+00 -1.44e-05 0.00e+00

AS6(n=6) 2.12e-28 0.00e+00 3.02e-28 0.00e+00
AS6(n=7) 7.18e-29 0.00e+00 3.40e-28 0.00e+00
AS6(n=8) 1.51e-28 0.00e+00 2.16e-28 0.00e+00
AS7(n=6) 2.59e-20 0.00e+00 1.30e-28 0.00e+00
AS7(n=7) 5.17e-20 0.00e+00 6.17e-28 0.00e+00
AS7(n=8) 5.43e-20 0.00e+00 1.32e-28 0.00e+00

HS22 4.44e-14 0.00e+00 7.06e-09 0.00e+00
HS29 6.22e-13 0.00e+00 5.84e+00 0.00e+00
HS43 1.08e-12 1.22e-15 2.13e+01 0.00e+00
HS65 -3.53e-07 0.00e+00 2.77e-01 0.00e+00
HS66 1.04e-10 0.00e+00 1.43e-02 0.00e+00
HS270 -3.55e-15 0.00e+00 1.00e+00 0.00e+00

MAD1 3.90e-09 6.66e-16 1.38e-01 0.00e+00
MAD2 -2.99e-09 2.41e-10 6.51e-02 0.00e+00
MAD4 3.89e-09 0.00e+00 7.30e-02 0.00e+00
MAD5 -4.62e-09 0.00e+00 2.27e-02 0.00e+00
PENTAGON 4.53e-02 0.00e+00 1.88e-01 0.00e+00
WONG2 6.27e-01 3.55e-15 4.00e+00 0.00e+00

Table 6.2: Details for ours and exact penalty solvers after the maximum
budget of function evaluations have been spent.

98
Bilevel decomposition of nonsmooth problems with convex

constraints

6.5 Conclusion
In this work we proposed to rewrite a nonsmooth optimization problem sub-
jected to convex constraints as an unconstrained parameter-free problem.
Such formulation is proven to be equivalent to the original problem, in terms
of global and local minima. The formulation can be solved by any optimiza-
tion algorithm for nonsmooth optimization.

We compared the proposed formulation against to state-of-art approaches
for constrained nonsmooth optimization. In particular we compared it against
the exact penalty approach. We used the same solver that is shown to de-
liver state-of-art performances for the penalized problem to solve the pro-
posed formulation. The results clearly shows the advantages of the proposed
formulation.

Further work is needed to establish if a prefect equivalence holds also in
terms of Clarke stationary points. Indeed, although it is evident that no
stationary points can exist outside the feasible set and that in the interior
any Clarke stationary point of the reformulation is also a stationary point of
the original problem, we still need to understand if there can be stationary
points on the boundary of the feasible set for the reformulation that are not
stationary points for the original problem.

Appendix A

Linesearch properties

In this Appendix we recall some well known properties for the Armijo-type
line search algorithm used in the proof of Proposition 6. All the results and
their proofs can be easily found, for instance in [11].

Consider the function qτ,λ(x, y) : Rn × Rn → R. Let {(xt, yt)} be a
sequence of points belonging to X×Y . Let dt ∈ Rn be a direction such that
∇xqτ,λ(x

t, yt)T dt < 0 and xt + dt ∈ X. The line search procedure along the
feasible descent direction dt is shown in Algorithm 13.

Algorithm 13: Line search algorithm (LS)
Data: γ ∈ (0, 1), δ ∈ (0, 1).

1 compute

αt = max
j=0,1,...

{δj : qτ,λ(xt + δjdt, yt) ≤ qτ,λ(x
t + δjdt, yt) + γδj∇xqτ,λ(x

t, yt)T dt}

(A.1)

It can be easily seen that the algorithm is well-defined, i.e., there exists
a finite integer j such that αt satisfies the acceptability condition (A.1).
Moreover the following result holds.

Proposition 12. Let T ⊆ {0, 1, . . . , } be an infinite subset such that (xt, yt)→
(x̄, ȳ) for t ∈ T and t → +∞. Assume that ‖dt‖ ≤ M for some M > 0 and
for all t ∈ T . If

lim
t∈T,t→+∞

qτ,λ(x
t, yt)− qτ,λ(x

t + αtd
t, yt) = 0,

99

100 Linesearch properties

then we have
lim

t∈T,t→+∞
∇xqτ,λ(x

t, yt)T dt = 0.

Appendix B

Performance metrics

B.1 Performance profiles
Performance profiles have been proposed by [31] as a mean to compare the
performance of different solvers on a suite of test problems. Performance
profiles provide a unified view of relative performance of the solvers that
overcome the limitations of previous approaches: they dot not involve in-
terpreting long tables of values, nor do they suffer from the shortcomings
of comparing, for instance, the number of wins, the average performance,
quantiles, or other cumulative statistics (as argued by [31]). For these rea-
sons they have been adopted by an ever growing number of researches over
the last decade.

Formally, consider a test suit of P problem and a set of solvers S. For
each solver s ∈ S and problem p ∈ P define

tp,s = the cost for solver s to solve problem p,

where cost is the performance metric we are interested in. For example the
cost can be the number of function evaluations, the number of iterations or
the CPU time. Define also the ratio

rp,s =
tp,s

mins∈S{tp,s}
,

which expresses a relative measure of the performance on problem p of solver
s against the performance of the best solver for this problem. If (and only
if) a solver fails to solve a problem we put rp,s = rM with rM ≥ rp,s ∀s, p.

101

102 Performance metrics

The performance profile for a solver s is thus the function

ρs(τ) =
1

|P|
· |{p ∈ P | rp,s ≤ τ}| ,

which represents the probability for solver s that a performance ratio rp,s
is within a factor τ ∈ R of the best possible ratio. The function ρs(τ) :

[1,+∞] → [0, 1] is, in fact, the cumulative distribution function for the
performance ratio.

The value of ρs(1) is the probability that the solver will win over the rest
of the solvers while limτ→r−M

ρs(τ) is is the probability that the solver solves
a problem.

B.2 Data profiles
Data profiles have been proposed in [73] as a mean to benchmarking derivative-
free optimization algorithms. In this context, in fact, there is usually a lim-
ited computational budget and hence performance profiles are not well suited
tot the task.

Consider a test set of P problems. We fix a tolerance parameter τ and
we say that a problem has been solved by if

f(x)− fL ≤ τ (f(x0)− fL) , (B.1)

where fL is an accurate estimate of the minimum of the problem (we can
set fL = f∗ if f∗ is available). Note that here function values are referred
to the original problem even if the solver employs a reformulation.

Then for each solver s we define its data profile as

ds(α) =
1

|P|

∣∣∣∣{p ∈ P s.t.
nf(τ)

np + 1
≤ α

}∣∣∣∣ , (B.2)

where np is the number of variables of problem p and nf(τ) is the number
of iterations needed to satisfy the convergence criterion (B.1).

Data profiles are extracted for different values of τ to compare the solvers
against different balances of speed versus accuracy.

Appendix C

Publications

103

104 Publications

This research activity has led to several publications in international
journals. These are summarized below.1

1. G. Galvan and M. Lapucci. “On the convergence of inexact augmented
Lagrangian methods for problems with convex constraints”, Operations Re-
search Letters, vol. 47(3), 2019.

2. G. Galvan, M. Lapucci, T. Levato and M. Sciandrone. “An Alternating
Augmented Lagrangian method for constrained nonconvex optimization”,
Optimization Methods and Software, 2019.

3. F. Ceccarelli, M. Sciandrone, C. Perricone, G. Galvan, E. Cipriano, A.
Galligari, T. Levato, T. Colasanti, L. Massaro, F. Natalucci, F.R. Spinelli,
C. Alessandri. G. Valesini and F. Conti. “Biomarkers of erosive arthritis
in systemic lupus erythematosus: Application of machine learning models”,
PLOS ONE, vol. 13(12), 2018.

4. G. Cocchi, L. Galli, G. Galvan and M. Sciandrone. “Machine learning
methods for short-term bid forecasting in the renewable energy market: A
case study in Italy”, Wind Energy, vol 21(5), 2018.

5. F. Ceccarelli, M. Sciandrone, C. Perricone, G. Galvan, F. Morelli, L.N.
Vicente, I. Leccese, L. Massaro, E. Cipriano, F.R. Spinelli, C. Alessandri,
G. Valesini and F. Conti. “Prediction of chronic damage in systemic lupus
erythematosus by using machine-learning models”, PLOS ONE, vol 12(3),
2017.

6. Luca Parca, Gerardo Pepe, Marco Pietrosanto, Giulio Galvan, Leonardo
Galli, Antonio Palmeri, Marco Sciandrone, Fabrizio Ferrè, Gabriele Ausiello,
and Manuela Helmer Citterich “Modeling cancer drug response through
drug-specific informative genes.” Scientific Reports, vol 9, 2019.

Submitted

1. Matteo Lapucci, Marco Sciandrone, Giulio Galvan, and Chih-Jen Lin. “A
Two-Level Decomposition Framework Exploiting First and Second Order
Information for SVM Training Problems”, Journal of Machine Learning Re-
search, 2019. (Submitted)

1The author’s bibliometric indices are the following: H -index = 1, total number of
citations = 3 (source: Scopus on Month September, 2019).

Bibliography

[1] M. Abramson, C. Audet, J. Dennis, and S. Digabel, “Orthomads: A deter-
ministic mads instance with orthogonal directions,” SIAM Journal on Opti-
mization, vol. 20, no. 2, pp. 948–966, 2009.

[2] M. A. Abramson, O. A. Brezhneva, J. E. D. Jr, and R. L. Pingel, “Pattern
search in the presence of degenerate linear constraints,” Optimization Methods
and Software, vol. 23, no. 3, pp. 297–319, 2008.

[3] R. Andreani, E. Birgin, J. Martínez, and M. Schuverdt, “Augmented la-
grangian methods under the constant positive linear dependence constraint
qualification,” Mathematical Programming, vol. 111, no. 1-2, pp. 5–32, 2008.

[4] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, “On aug-
mented lagrangian methods with general lower-level constraints,” SIAM Jour-
nal on Optimization, vol. 18, no. 4, pp. 1286–1309, 2007.

[5] R. Andreani, G. Haeser, and J. M. Martínez, “On sequential optimality con-
ditions for smooth constrained optimization,” Optimization, vol. 60, no. 5, pp.
627–641, 2011.

[6] C. Audet, A. Custódio, and J. Dennis, “Erratum: Mesh adaptive direct search
algorithms for constrained optimization,” SIAM Journal on Optimization,
vol. 18, no. 4, pp. 1501–1503, 2008.

[7] C. Audet and J. Dennis, “Mesh adaptive direct search algorithms for con-
strained optimization,” SIAM Journal on Optimization, vol. 17, no. 1, pp.
188–217, 2006.

[8] ——, “A progressive barrier for derivative-free nonlinear programming,”
SIAM Journal on Optimization, vol. 20, no. 1, pp. 445–472, 2009.

[9] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization, 01 2017.

[10] D. P. Bertsekas, “Multiplier methods: A survey,” Automatica, vol. 12, no. 2,
pp. 133–145, 1976.

[11] ——, Nonlinear Programming. Athena Scientific, 1995.

105

106 BIBLIOGRAPHY

[12] ——, Constrained Optimization and Lagrange Multiplier Methods (Optimiza-
tion and Neural Computation Series). Athena Scientific, 1996.

[13] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[14] E. Birgin and J. Martínez, Practical Augmented Lagrangian Methods for Con-
strained Optimization. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 2014.

[15] ——, Practical Augmented Lagrangian Methods for Constrained Optimization.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014.

[16] E. Birgin, C. Floudas, and J. Martínez, “Global minimization using an aug-
mented lagrangian method with variable lower-level constraints,” Mathemat-
ical Programming, vol. 125, no. 1, pp. 139–162, 2010.

[17] E. Birgin, J. Martínez, and L. Prudente, “Optimality properties of an aug-
mented lagrangian method on infeasible problems,” Computational Optimiza-
tion and Applications, vol. 60, no. 3, pp. 609–631, 2015.

[18] S. Bochkanov, “ALGLIB.” [Online]. Available: http:/alglib.net/

[19] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for op-
timal margin classifiers,” in Proceedings of the Fifth Annual Workshop on
Computational Learning Theory. ACM, 1992, pp. 144–152.

[20] L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Support Vector Machine
Solvers. MIT Press, 2007.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp.
1–122, 2010.

[22] R. Chan, M. Tao, and X. Yuan, “Constrained total variation deblurring mod-
els and fast algorithms based on alternating direction method of multipliers,”
SIAM Journal on Imaging Sciences, vol. 6, no. 1, pp. 680–697, 2013.

[23] C.-C. Chang, C.-W. Hsu, and C.-J. Lin, “The analysis of decomposition meth-
ods for support vector machines,” IEEE Transactions on Neural Networks,
vol. 11, no. 4, pp. 1003–1008, 2000.

[24] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2,
no. 3, p. 27, 2011.

[25] R. Chartrand and B. Wohlberg, “A nonconvex admm algorithm for group
sparsity with sparse groups,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, May 2013, pp. 6009–6013.

http:/alglib.net/

BIBLIOGRAPHY 107

[26] P. Chen, R. Fan, and C. Lin, “A study on smo-type decomposition methods
for support vector machines,” IEEE Trans. Neural Networks, vol. 17, no. 4,
pp. 893–908, 2006.

[27] P.-H. Chen, R.-E. Fan, and C.-J. Lin, “A study on SMO-type decomposi-
tion methods for support vector machines,” IEEE Transactions on Neural
Networks, vol. 17, no. 4, pp. 893–908, 2006.

[28] A. R. Conn, N. I. Gould, and P. L. Toint, “Globally convergent augmented
lagrangian algorithm for optimization with general constraints and simple
bounds,” SIAM Journal on Numerical Analysis, vol. 28, no. 2, pp. 545–572,
1991.

[29] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[30] Y.-H. Dai and R. Fletcher, “New algorithms for singly linearly constrained
quadratic programs subject to lower and upper bounds,” Mathematical Pro-
gramming, vol. 106, no. 3, pp. 403–421, 2006.

[31] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with per-
formance profiles,” Mathematical programming, vol. 91, no. 2, pp. 201–213,
2002.

[32] J. Eckstein and W. Yao, “Understanding the convergence of the alternating
direction method of multipliers: Theoretical and computational perspectives,”
Pacific Journal of Optimization, vol. 11, no. 4, pp. 619–644, 2015.

[33] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using second
order information for training support vector machines,” Journal of Machine
Learning Research, vol. 6, no. Dec, pp. 1889–1918, 2005.

[34] G. Fasano, G. Liuzzi, S. Lucidi, and F. Rinaldi, “A linesearch-based derivative-
free approach for nonsmooth constrained optimization,” SIAM Journal on
Optimization, vol. 24, no. 3, pp. 959–992, 2014.

[35] T. Glasmachers and C. Igel, “Maximum-gain working set selection for SVMs,”
Journal of Machine Learning Research, vol. 7, no. Jul, pp. 1437–1466, 2006.

[36] L. Grippo, F. Lampariello, and S. Lucidi, “Global convergence and stabiliza-
tion of unconstrained minimization methods without derivatives,” Journal of
Optimization Theory and Applications, vol. 56, no. 3, pp. 385–406, Mar 1988.

[37] D. Hajinezhad, T.-H. Chang, X. Wang, Q. Shi, and M. Hong, “Nonnegative
matrix factorization using admm: Algorithm and convergence analysis,” vol.
2016-May. IEEE, 2016, pp. 4742–4746.

[38] B. He, H. Yang, and S. Wang, “Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities,” Journal
of Optimization Theory and Applications, vol. 106, no. 2, pp. 337–356, 2000.

108 BIBLIOGRAPHY

[39] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming
Codes. Berlin, Heidelberg: Springer-Verlag, 1981.

[40] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems,” SIAM
Journal on Optimization, vol. 26, no. 1, pp. 337–364, 2016.

[41] R. Hooke and T. A. Jeeves, “”direct search” solution of numerical and statis-
tical problems.” J. ACM, vol. 8, no. 2, pp. 212–229, 1961.

[42] C.-W. Hsu and C.-J. Lin, “A simple decomposition method for support vector
machines,” Machine Learning, vol. 46, no. 1-3, pp. 291–314, 2002.

[43] Z. Jia, X. Cai, and D. Han, “Comparison of several fast algorithms for projec-
tion onto an ellipsoid,” Journal of Computational and Applied Mathematics,
vol. 319, pp. 320–337, 2017.

[44] B. Jiang, S. Ma, and S. Zhang, “Alternating direction method of multipliers
for real and complex polynomial optimization models,” Optimization, vol. 63,
no. 6, pp. 883–898, 2014.

[45] T. Joachims, “Making large-scale support vector machine learning practical,”
in Advances in Kernel Methods, B. Schölkopf, C. J. C. Burges, and A. J.
Smola, Eds. Cambridge, MA, USA: MIT Press, 1999, pp. 169–184.

[46] C. Kanzow and D. Steck, “An example comparing the standard and
safeguarded augmented lagrangian methods,” Operations Research Letters,
vol. 45, no. 6, pp. 598 – 603, 2017.

[47] ——, “Quasi-variational inequalities in banach spaces: theory and augmented
lagrangian methods,” arXiv preprint arXiv:1810.00406, 2018.

[48] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Im-
provements to Platt’s SMO algorithm for SVM classifier design,” Neural Com-
putation, vol. 13, no. 3, pp. 637–649, 2001.

[49] R. Lai and S. Osher, “A splitting method for orthogonality constrained prob-
lems,” Journal of Scientific Computing, vol. 58, no. 2, pp. 431–449, Feb 2014.

[50] M. Leinonen, M. Codreanu, and M. Juntti, “Distributed joint resource and
routing optimization in wireless sensor networks via alternating direction
method of multipliers,” IEEE Transactions on Wireless Communications,
vol. 12, no. 11, pp. 5454–5467, 2013.

[51] R. Lewis and V. Torczon, “Pattern search algorithms for bound constrained
minimization,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 1082–1099,
1999.

[52] ——, “Pattern search methods for linearly constrained minimization,” SIAM
Journal on Optimization, vol. 10, no. 3, pp. 917–941, 2000.

BIBLIOGRAPHY 109

[53] ——, “A globally convergent augmented lagrangian pattern search algorithm
for optimization with general constraints and simple bounds,” SIAM Journal
on Optimization, vol. 12, no. 4, pp. 1075–1089, 2002.

[54] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms for constrained
tensor factorization via alternating direction method of multipliers,” IEEE
Transactions on Signal Processing, vol. 63, no. 20, pp. 5450–5463, Oct 2015.

[55] M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[56] C.-J. Lin, “On the convergence of the decomposition method for support vec-
tor machines,” IEEE Transactions on Neural Networks, vol. 12, no. 6, pp.
1288–1298, 2001.

[57] ——, “Asymptotic convergence of an SMO algorithm without any assump-
tions,” IEEE Transactions on Neural networks, vol. 13, no. 1, pp. 248–250,
2002.

[58] C. Lin, “A formal analysis of stopping criteria of decomposition methods for
support vector machines,” IEEE Trans. Neural Networks, vol. 13, no. 5, pp.
1045–1052, 2002.

[59] C.-J. Lin, “A formal analysis of stopping criteria of decomposition methods
for support vector machines,” IEEE Transactions on Neural Networks, vol. 13,
no. 5, pp. 1045–1052, 2002.

[60] C.-J. Lin, S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone, “Decomposition
algorithm model for singly linearly-constrained problems subject to lower and
upper bounds,” Journal of Optimization Theory and Applications, vol. 141,
no. 1, pp. 107–126, 2009.

[61] C.-J. Lin and J. J. Moré, “Newton’s method for large bound-constrained
optimization problems,” SIAM Journal on Optimization, vol. 9, no. 4, pp.
1100–1127, 1999.

[62] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with
adaptive penalty for low-rank representation,” in Advances in Neural Infor-
mation Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2011, pp.
612–620.

[63] G. Liuzzi, S. Lucidi, and M. Sciandrone, “Sequential penalty derivative-free
methods for nonlinear constrained optimization,” SIAM Journal on Optimiza-
tion, vol. 20, no. 5, pp. 2614–2635, 2010.

[64] S. Lucidi and M. Sciandrone, “On the global convergence of derivative-free
methods for unconstrained optimization,” SIAM Journal on Optimization,
vol. 13, no. 1, pp. 97–116, 2002.

http://archive.ics.uci.edu/ml

110 BIBLIOGRAPHY

[65] S. Lucidi, M. Sciandrone, and P. Tseng, “Objective-derivative-free methods
for constrained optimization,” Mathematical Programming, vol. 92, no. 1, pp.
37–59, Mar 2002.

[66] S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone, “A convergent decompo-
sition algorithm for support vector machines,” Computational Optimization
and Applications, vol. 38, no. 2, pp. 217–234, 2007.

[67] ——, “A convergent hybrid decomposition algorithm model for SVM train-
ing,” IEEE Transactions on Neural Networks, vol. 20, no. 6, pp. 1055–1060,
2009.

[68] S. Lucidi and M. Sciandrone, “A derivative-free algorithm for bound con-
strained optimization,” Computational Optimization and Applications, vol. 21,
no. 2, pp. 119–142, Feb 2002.

[69] ——, “A derivative-free algorithm for bound constrained optimization,” Com-
putational Optimization and Applications, vol. 21, no. 2, pp. 119–142, Feb
2002.

[70] L. Lukšan and J. Vlcek, “Test problems for nonsmooth unconstrained and
linearly constrained optimization,” Technická zpráva, vol. 798, 2000.

[71] O. L. Mangasarian and D. R. Musicant, “Successive overrelaxation for support
vector machines,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp.
1032–1037, 1999.

[72] J. Martínez and B. Svaiter, “A practical optimality condition without con-
straint qualifications for nonlinear programming,” Journal of Optimization
Theory and Applications, vol. 118, no. 1, pp. 117–133, Jul 2003.

[73] J. Moré and S. Wild, “Benchmarking derivative-free optimization algorithms,”
SIAM Journal on Optimization, vol. 20, no. 1, pp. 172–191, 2009.

[74] naught101, “Sobol random generation code,” https://github.com/naught101/
sobol_seq, 2017.

[75] J. Nocedal and S. Wright, Numerical optimization, 2nd ed., ser. Springer series
in operations research and financial engineering. New York, NY: Springer,
2006.

[76] C. S. Ong, S. Canu, and A. J. Smola, “Learning with non-positive kernels,” in
In Proc. of the 21st International Conference on Machine Learning (ICML).
ACM, 2004, pp. 639–646.

[77] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for
support vector machines,” in Neural Networks for Signal Processing VII. Pro-
ceedings of the 1997 IEEE Signal Processing Society Workshop. IEEE, 1997,
pp. 276–285.

https://github.com/naught101/sobol_seq
https://github.com/naught101/sobol_seq

BIBLIOGRAPHY 111

[78] V. Piccialli and M. Sciandrone, “Nonlinear optimization and support vector
machines,” 4OR, vol. 16, no. 2, pp. 111–149, 2018.

[79] J. C. Platt, “Advances in kernel methods,” B. Schölkopf, C. J. C. Burges,
and A. J. Smola, Eds. Cambridge, MA, USA: MIT Press, 1999, ch. Fast
Training of Support Vector Machines Using Sequential Minimal Optimization,
pp. 185–208.

[80] R. Rockafellar, “Augmented lagrange multiplier functions and duality in non-
convex programming.” SIAM J Control, vol. 12, no. 2, pp. 268–285, 1974.

[81] C. Saunders, M. O. Stitson, J. Weston, L. Bottou, A. Smola et al., “Support
vector machine reference manual,” Technical Report CSD-TR-98-03, 1998.

[82] K. Schittkowski, Ed., More Test Examples for Nonlinear Programming Codes.
Berlin, Heidelberg: Springer-Verlag, 1987.

[83] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. Cambridge, MA, USA:
MIT Press, 2001.

[84] T. Serafini and L. Zanni, “On the working set selection in gradient projection-
based decomposition techniques for support vector machines,” Optimization
Methods and Software, vol. 20, no. 4-5, pp. 583–596, 2005.

[85] Y. Shen, Z. Wen, and Y. Zhang, “Augmented lagrangian alternating direction
method for matrix separation based on low-rank factorization,” Optimization
Methods and Software, vol. 29, no. 2, pp. 239–263, 2014.

[86] Y. Shi, J. Zhang, B. O’Donoghue, and K. Letaief, “Large-scale convex op-
timization for dense wireless cooperative networks,” IEEE Transactions on
Signal Processing, vol. 63, no. 18, pp. 4729–4743, 2015.

[87] I. Sobol, “Uniformly distributed sequences with an additional uniform prop-
erty,” USSR Computational Mathematics and Mathematical Physics, vol. 16,
no. 5, pp. 236 – 242, 1976.

[88] D. Steck, “Lagrange multiplier methods for constrained optimization and vari-
ational problems in banach spaces,” Ph.D. dissertation, PhD thesis (submit-
ted), University of Würzburg, 2018.

[89] N. Takahashi and T. Nishi, “Global convergence of decomposition learning
methods for support vector machines,” IEEE Transactions on Neural Net-
works, vol. 17, no. 6, pp. 1362–1369, 2006.

[90] R. J. Vanderbei, “Loqo: An interior point code for quadratic programming,”
Optimization Methods and Software, vol. 11, no. 1-4, pp. 451–484, 1999.

[91] S. Wang and L. Liao, “Decomposition method with a variable parameter for
a class of monotone variational inequality problems,” Journal of Optimization
Theory and Applications, vol. 109, no. 2, pp. 415–429, 2001.

112 BIBLIOGRAPHY

[92] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex
nonsmooth optimization,” CoRR, vol. abs/1511.06324, 2015.

[93] L. Xu, B. Yu, and Y. Zhang, “An alternating direction and projection algo-
rithm for structure-enforced matrix factorization,” Computational Optimiza-
tion and Applications, pp. 1–30, 2017.

[94] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algorithm
for matrix completion with nonnegative factors,” Frontiers of Mathematics in
China, vol. 7, no. 2, pp. 365–384, Apr 2012.

[95] L. Zanni, “An improved gradient projection-based decomposition technique
for support vector machines,” Computational Management Science, vol. 3,
no. 2, pp. 131–145, 2006.

[96] J. Zhang and B. Morini, “Solving regularized linear least-squares problems
by the alternating direction method with applications to image restoration,”
Electronic Transactions on Numerical Analysis, vol. 40, pp. 356–372, 2013.

[97] Q. Zhang, D. Wang, and Y. Wang, “Convergence of decomposition methods
for support vector machines,” Neurocomputing, vol. 317, pp. 179–187, 2018.

[98] M. Šorel and M. Bartoš, “Efficient jpeg decompression by the alternating
direction method of multipliers.” IEEE, 2017, pp. 271–276.

	Contents
	Introduction
	The augmented Lagrangian method for problems with abstract convex constraints
	Introduction
	Convergence analysis

	Two blocks decomposition for the ALM
	Introduction
	The algorithm
	Convergence analysis
	Extensions
	A computational example
	Conclusion

	Two blocks decomposition for the ALM without derivatives
	Introduction
	The algorithm
	Convergence analysis
	Convergence of DFBox
	Convergence of AM
	Convergence of ALTALM
	Conclusion

	Two-Level decomposition for training SVMs
	Introduction
	Decomposition methods for SVM training
	The proposed algorithm
	Solving the subproblems
	A novel working set selection rule
	Convergence properties of the proposed algorithm

	Numerical experiments
	Benchmark problems and experiments setup
	Computational evidence on inner SMO efficiency
	Evaluation of different working set sizes
	Experimental analysis of working set selection rules
	Analysis of the effects of adding cached variables
	Overall evaluation of TLD-ISMO with WSS-MIX

	Conclusions

	Bilevel decomposition of nonsmooth problems with convex constraints
	Introduction
	A novel formulation
	Equivalence of the formulations
	Numerical experiments
	A first comparison
	A parametrization
	Final comparison

	Conclusion

	Linesearch properties
	Performance metrics
	Performance profiles
	Data profiles

	Publications
	Bibliography

