
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Deep Learning Methods for
Document Image Understanding

Samuele Capobianco

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Deep Learning Methods for
Document Image Understanding

Samuele Capobianco

Advisors:

Prof. Simone Marinai
Prof. Kimbal Marriott

Head of the PhD Program:

Prof. Paolo Frasconi

Evaluation Committee:
Prof. Stefano Ferilli, Dipartimento di Informatica, Universitá di Bari
Prof. Josep Lladós, Computer Vision Center, Universitat Autònoma de Barcelona

XXXII ciclo — October 2020

What we think, we become.
– Siddharta Gautama

ii

Acknowledgments
The journey towards getting a Ph.D. is full of up and downs, failure and successes.
Very special gratitude goes out to all down at Regione Toscana for helping and pro-
viding the funding for Pegaso fellowship.

I would like to expressmy deep and sincere gratitude tomy first research advisor
Prof. Simone Marinai for giving me the opportunity to do research and providing
invaluable guidance throughout this research. In particular, I would like to thank
my second research advisor, Prof. KimMarriott, for the hospitality received during
my research period at Monash University and for his participation in the survey
who helped me get results of better quality.

I am also grateful to Prof. Andrew David Bagdanov and Prof. Jean-Marc Ogier,
the members of my supervisor committee, for their patience and support in over-
coming numerous obstacles I have been facing through my research. I would also
like to thank the experts who were involved in this research: Prof. Paolo Frasconi
and Prof. Luca Facheris.

With a specialmention toDaniele Baracchi, Alessandro Lazzeri, StefanoMartina,
Francesco Orsini, La Ode Husein ZT, Amin Zadenoori, Zahra Ziran, and AI Team in
general. I would also like to acknowledge my colleague Anuradha Madugalla, and
undergraduates Giulio Bazzanti, Niccolo Biondi, Andrea Gemelli, Andrea Marino,
Leonardo Scommegna for their contributions to my research. It was fantastic to
have the opportunity to work the majority of my research in your company. What a
cracking place to work!

Last but not least, I would like to thank mymother for supporting me spiritually
throughout writing this thesis and my life in general. Furthermore, this research
path would not have been possible without my darling Martina, thanks for every-
thing.

And finally, last but by no means least, also to everyone in the impact hub, it was
a great sharing laboratory with all of you during the last three years.

iii

Abstract

Document image understanding involves several tasks including, among
others, the layout analysis of historical handwritten and the symbol recognition
in graphical documents. The understanding of document images implies two
processes, the analysis and the recognition, which are complex tasks. Moreover,
each application domain has a specific information structure which increases
the complexity of the understanding process.

In the last years, manymachine learning approaches have been presented to
address document image understanding. In this research, we present a series
of deep learning methods to address different application domains: historical
handwritten and graphical documents understanding. We show the difficul-
ties encountered when applying these techniques and the proposed solutions
for each application domain. We cope with the problem of working with su-
pervised deep networks that require to have a large dataset for training. We
address the over-fitting related to the scarcity of labeled data showing several
solutions to prevent this issue in these application domains.

First, we show our contributions to historical handwritten layout analysis.
We propose a toolkit to generate structured synthetic documents emulating the
actual document production process. Synthetic documents can be used to train
systems to perform layout analysis. Then, we study the use of deep networks
for counting the number of records in each page of a historical handwritten
document. Furthermore, we present a novel approach for the extraction of text
lines in handwritten documents using another deep network to label document
image patches as text lines or separators. Related to the page segmentation,
we propose a fully convolutional network trained by a domain-specific loss for
classifying pixels to segment semantic regions on handwritten pages.

Second, we propose a novel interactive annotation system to help users to la-
bel symbols at the pixel level for the graphical symbol understanding problem.
Using the proposed interactive system we can improve the annotation results
and reduce the time-consuming process of labeling data. Using this system, we
built a novel floor plan image dataset for object detection. We show prelimi-
nary results by using state-of-the-art deep networks to detect symbols on this
dataset.

In the end,weprovide an extensive discussion for each task addressed show-
ing the obtained results and proposing future works.

Contents

Contents 1

1 Introduction 3
1.1 Goals of this Thesis . 5
1.2 Contributions of the Thesis . 6
1.3 Outline . 7

2 Deep Learning for Document Analysis 9
2.1 Document analysis and recognition applications 9
2.2 Deep Learning methods . 13
2.3 Representation Learning for object recognition 14
2.4 Object detection . 24
2.5 Semantic segmentation . 26
2.6 Variational Autoencoder . 31
2.7 Labeling systems . 33
2.8 Summary . 34

3 Validating Deep Learning models 35
3.1 Layout analysis datasets . 35
3.2 Floor plan datasets . 38
3.3 Evaluation metrics . 41
3.4 Summary . 43

4 Generating training data 45
4.1 Labeling graphical documents for symbol detection 46
4.2 Clustering visually similar structured documents 54
4.3 A Toolkit to generate structured documents 56
4.4 Modeling datasets . 62
4.5 Generating graphical symbols . 65
4.6 Summary . 74

5 Record counting in historical handwritten documents 75

1

2 CONTENTS

5.1 Record counting system . 76
5.2 Convolutional models . 78
5.3 Evaluating system . 79
5.4 Experiments . 80
5.5 Summary . 86

6 Historical handwritten page analysis 89
6.1 Patch-based system for text line extraction 90
6.2 Evaluating patch-based system . 94
6.3 Pixel-wise page segmentation . 99
6.4 Evaluating pixel-wise page segmentation 103
6.5 Summary . 105

7 Conclusions 107
7.1 Future works . 108
7.2 Contributions . 109

A Publications 111

Bibliography 113

Chapter 1

Introduction

In this thesis, we investigate document image understanding by using deep learning
methods addressing an assortment of challenging applications. Document image
understanding includes the logical comprehension of arbitrary documents. This
process transforms the informative content into a logical content representation.
This transformation involves high-level deduction which is difficult to be computed
by an automatic system.

For example, a picture from an identity card contains information that a hu-
man can easily read and understand, assigning a meaning to each informative re-
gion. Anyway, the understanding document image is not just a matter of translating
graphical symbols into text form but assigning a semantic structure to the extracted
knowledge.

Understanding the document images is a difficult task because each application
domain has a specific information structure. For example, an image from a busi-
ness letter or one historical document image need two different understanding ap-
proaches to transform the informative content into a well-organized format.

Document image understanding is related also to graphics. Graphical symbols
are considered as visual design or icon which represent the informative content re-
lated to the document context. In particular, the visual elements are special draw-
ings of specific object categories that differ from real image representations.

In this research, we address the document image understanding process in two
different application domains: historical handwritten and graphical documents. We
see the peculiarities of these topics and howwe can solve the related issues by using
deep learning methods.

A historical handwritten collection can be produced by various writers through
the time showing different character shapes or writing styles. Moreover, the aging
of documents caused degradations which make harder the layout analysis and text
recognition tasks.

The historical value of these documents requires digitization for better preserva-

3

4 Introduction

tion in Digital Libraries. One of the primary aims of digital libraries is to collect and
organize information that can be accessed all over the world. Clearly, digital infor-
mation needs less space than paper-based information reducing the library costs.
Another advantage coming from the digitization, is the reduction of the access time
to the information. Digitization is also a way to preserve paper information from
the damage and wearing effect of time. Having digitized documents it is possible
to use automatic techniques to analyze and extract structured information from the
original document. To extract the content from different handwritten collections,
we require suitable methods.

In the last years, manymachine learning approaches have been presented to rec-
ognize text or analyze layout in historical documents. In this research, we present a
series of machine learning methods to understand historical handwritten collection
showing the difficulties encountered when applying the proposed methods.

Graphical documents contain symbols which are related each others, these re-
lations have different meaning depending on the domain. These symbols are com-
posed of line drawings as lines, arcs, etc. Graphical symbol recognition is one of
the most active research area in document image understanding field. Diagrams
are composed of visual elements used to describe the domain content. Some of
the most relevant application domains which use graphical recognition techniques
belong to engineering fields: electrical and logic circuit diagrams, engineering dia-
grams, architectural drawings, and maps.

Considering how wide is the variety of documents for some of these two pro-
posed tasks the main purpose of this thesis is to devise efficient methods for doc-
ument image understanding both in handwritten and graphical documents. We
investigate how recent deep learning methods can advance layout analysis in his-
torical documents or detect symbols in floor plan images.

Recently, deep learningmethods have solvedmany complex problems achieving
state of the art performances. These techniques are mainly focused on training neu-
ral network architectures able to solve a wide variety of pattern recognition tasks.
The most important applications in computer vision are based on deep learning ar-
chitectures, but the great success of these techniques is also related to the amount
of training data available for learning in these application domains.

One of the first ingredients for the initial progress in deep learning has been the
advent of fast graphics processing units (GPUs) which allowed the researchers to
train networks 10 or 20 times faster than before[70]. The second ingredient to have
better results with deep learning models is related to the training data that should
represent the complexity of real data in a given application.

A large number of parameters have to be learned when we train a deep learning
architecture meaning a huge labeled dataset is necessary. Labeling data is a hard
time-consuming job, it is not easy to find public labeled datasets for every task and

1.1 Goals of this Thesis 5

we often need to label data when we address novel problems.
In this thesis, we propose different deep learning architectures to address his-

torical handwritten and graphical document understanding. We focus on super-
vised learning methods showing different training methodologies to solve over-
fitting caused by the scarce quantity of labeled data.

1.1 Goals of this Thesis
In this thesis, we want to investigate the use of new techniques to improve the capa-
bility for document imageunderstanding to address various tasks. We are interested
to explore the use of deep neural network architectures recently proposed in other
domains, such as in computer vision. In particular, we want to address the layout
analysis on historical handwritten documents and graphical symbol understanding
on floor plan images.

The layout analysis on historical handwritten documents is complex because
each application domain has different document structures. This problem is a good
test case for deep learning architectures. Unfortunately, another related problem
is the scarcity of labeled data for training models which makes the learning more
complex. Over-fitting occurs when models achieve good performance on the train-
ing data, while they do not generalize well on unseen data. We study and extend
deep learning methods to apply on this topic to prevent over-fitting. For this topic
we ask the following questions:

• Is it possible to generate synthetic handwritten documents useful to extend a
small labeled collection?

• Canweuse synthetic documents to train deep networks on the layout analysis?

• Canwe segment historical handwritten documents into regions training adeep
network with soft-constraints based on layout information?

Then, the graphical symbol understanding is addressed in this thesis, similar
problems related to those pointed out before need to be treated in this domain. Also
for this topic, the main aspect to solve is how to manage data for learning. Starting
from scratch, annotating data is a very labor-intensive task and we want to reduce
this time-consuming process. For this topic we have other questions to address:

• Is it possible to reduce the time for annotating data in the graphical symbol
domain?

• Can we learn to generate graphical symbols directly from few labeled draw-
ings?

6 Introduction

• Is it possible to use deep learning methods to detect objects on graphical doc-
uments?

Our research is focused therefore on learning from data, especially when we
want to train deep architectures with a scarce quantity of labeled data. We aim
to contribute to the understanding and development of deep network models to
produce systems able to learn in these conditions and definingwell-suited solutions
for the proposed topics.

Weuse deep architectures because differently to othermachine learning approaches,
deep networks can learn useful representations from rawdatamaking this approach
more suitable to different tasks. Our research also shows as layout analysis and
graphical symbol understanding can be solved by using the representation learning
capability of deep networks. On the other hand, deep learning methodologies give
a set of general-purpose solutions to use in different contexts and it is possible to
solve specific challenges in different domains adding ad-hoc operations in the same
computational flow.

1.2 Contributions of the Thesis
This research is focused on solving different document image understanding tasks
with deep learning methods. We made a valid step forward historical handwritten
layout analysis. We explored deep learning solutions on graphical symbol under-
standing proposing a novel dataset. We summarize the major contributions of the
thesis as follows:

• We have proposed a novel document generator to produce structured histori-
cal handwritten pages to efficiently extend the training data improving perfor-
mances on layout analysis. Combining the generator ability with deep learn-
ing architectures we can obtain good results with less labeled data.

• We have developed deep architectures based on different learning schemas to
address page segmentation and text line extraction in historical documents.
The first is a patch-based convolutional network to extract contiguous text
lines. The second is a fully convolutional network trained by a domain-specific
loss for classifying pixels to segment semantic regions on the page.

• Labeling data is a labor-intensive task, especially when we need to label small
and sparse objects. We have developed a toolkit to help the user to label sym-
bols at the pixel level. Using the proposed interactive toolkit we can improve
annotation results and reduce the time-consuming process of labeling data.

1.3 Outline 7

• We have investigated how to use deep learning methods for generating and
detecting symbols in floor plan images to improve results having scarce data.
A generativemodel can produce new symbol instances similar to the originals.

The code and dataset related to this research are accessible online and, we hope
these contributions will be extended by other researchers improving the work done
till now.

1.3 Outline
This thesis is organized in other six chapters as follows:

• Chapter 2: A brief introduction on document analysis and recognition (DAR)
tasks. Followed by an introduction to deep learning methods for computer
vision and DAR systems.

• Chapter 3: The effective performance evaluation of deep networks models re-
quire datasets and metrics. We present datasets used in this research and also
metrics to validate the obtained results.

• Chapter 4: Learningdeepmodels in a supervisedmanner needs a lot of labeled
data. We show several techniques to label, select and generate data useful for
training models.

• Chapter 5: The layout analysis for handwritten documents is a complex task.
We show a deep learning solution to understand structured documents by
counting page records.

• Chapter 6: On historical handwritten document we want segment pages into
different semantic regions. We propose two solutions for text line extraction
and page segmentation based on different deep network architectures.

• Chapter 7: We close this final dissertation highlighting on the obtained results
and how to improve this research with possible future works.

Chapter 2

Deep Learning for Document Analysis

The information extraction fromdocuments, either scanned or digital-born, requires
the integration of several techniques in Document Analysis and Recognition (DAR).
DARapplications are built to compute a suitable symbolic representation from input
documents by computer systems.

Several applications in DAR field are traditionally related to the processing of of-
fice documents. Recently, the community research aims to use DAR techniques also
on ancient/historical documents in digital libraries and natural images containing
textual information.

This is important also nowadays since new application scenarios require the dig-
itization of large collections of historical documents and an increasing number of
documents are digitally produced.

Several competencies in computer science are needed to develop DAR systems,
in particular, image processing, pattern recognition, and artificial intelligence are
common skills useful to build these kinds of applications.

A very good introduction to DAR systems has been proposed by [86]. The au-
thors propose an overview of DAR systems. It is important to also give a brief intro-
duction to deep learning methods applied to computer vision and document image
understanding tasks.

2.1 Document analysis and recognition applications
Common DAR techniques have been used to develop commercial and research-
driven systems. It is possible to define two broad categories related to DAR ap-
plication which are business-oriented and user-centered ones.

For business-oriented applications, we can include automatic check processing
(amount reading, signature verification), invoice reading andpage classification sys-
tems. Instead, for a user-centered application, we can mention software for general
purpose asOCRwhich is useful to extract information fromapaper form. Moreover,

9

10 Deep Learning for Document Analysis

other tools have been developed to improve access to documents in digital libraries
and the processing of historical documents.

Large collections of digitized documents are available on the Internet, these dig-
ital libraries are a source of knowledge to extract by DAR techniques.

We can describe the document content with two different aspects, physical and
logical structures. The physical structure describes the visual object and their relative
positions on the document. The logical structure assigns to each object a suitable
meaning.

Processing steps
DAR applications, following other Pattern Recognition Systems, include four princi-
pal components as pre-processing, object segmentation (or detection), object recog-
nition, andpost-processing. The pre-processing aims at improving the quality of im-
ages before other computation phases. The object segmentation allows identifying
(detect) basic objects (or sub-parts) in the document. The object recognition, or clas-
sification, deals with assigning a category label to a document. The post-processing
manages the results from the previous phases into a final symbolic representation
which represents the computed result.

DAR applications can be categorized into two principal approaches: top-down
or bottom-up. The major differences between these two approaches are related to
the structure of the document layout. When document structure is prior knowl-
edge of the analysis, it is possible to use a model-driven approach. Instead, when
the document structure is not known in advance it is possible to use a data-driven
approach.

Preprocessing
The document acquisition process used to digitize the original paper is the first step
in document analysis. Using the flatbed scanner is possible to create a digitized
version of paper-based documents, in digital libraries also book scanners can be
used to produce an electronic image from the source.

Pre-processing operations are useful to prepare data for the following analysis
phases. The same operation in document image analysis transforms the input into
a better image representation.

To reduce the image noise or produce a better representation, one possible solu-
tion is to filter the input image whose value in a generic position (i, j) is related to
the input values in a neighborhood of the point (i,j). The main classes of filtering
operations are binarization, noise reduction, and signal enhancement.

Binarization is the process of converting a greyscale pixel image to a binary im-
age, one common solution for this task is to use a threshold on the input to sep-

2.1 Document analysis and recognition applications 11

arate pixels into two categories (black, white). The Otsu method [94] is a way to
find a threshold considering the histogram of pixel values. Then, iterating through
all the possible values, it is possible to evaluate the measure of spread related to
the foreground and background variance. The best value is the computed thresh-
old. Sauvola method [105] is a local thresholding technique that is useful for images
where the background is not uniform.

Many feature enhancement algorithms have been applied as preprocessing in
the document analysis field, the difference of gaussian (DoG) is one of them. Hav-
ing grayscale images, it is possible to compute DoG by subtracting two different
blurred versions of an original image (two blurred images are obtained by convolv-
ing the original grayscale images with Gaussian kernels having differing standard
deviations).

Classification in DAR
Document image classification is an important task to identify the document struc-
ture. This task is used in various Document Image Processing Pipelines, such as in
document retrieval, information extraction, and text recognition. Document clas-
sification is considered overall as a learning of the document layout to classify it
in a genre. The basic assumption behind document classification approaches is the
observation that we are often able to identify the document function by simply look-
ing to its organization considering, e.g., the space between cells, the font used, the
number of columns.

It is possible to summarize the various DAR sub-tasks in which solutions are
based on supervised classifiers. Most of these approaches consider specially de-
signed local and global features along with their combinations for classification.
Generally, document image classification approaches are divided into two major
groups, structure/layout based, and content-based.

We can find several approaches to structure or content based on document clas-
sification. Recent research has used various techniques, from region-based analysis
to whole image analysis, and at the same time, from handcrafted features to rep-
resentation learning way. In [67] the authors proposed a method based on patch-
codewords over different regions of the image as a "bag-of-words" representation to
be used for the retrieval of document images with chosen layout characteristics. It
uses spatial relationships between patches partitioning recursively the input image
in vertical and horizontal parts and then compute a histogram of patch-codewords.
Another work has been proposed by [60] where they want to index linear singular-
ities and curved handwritten shapes in documents images. Using a Curvelet trans-
form they can represent several scales of details for the handwritten shape to detect
oriented and curved fragments. The adaptable system described in [8] is capable of

12 Deep Learning for Document Analysis

learning the logical structure of documents. This structure induces to cluster and
organize a concept hierarchy to classify unknown documents. The first approach
based on Convolutional Neural Networks to classify document genres is proposed
by [69]. In their work, they use a simple CNN using dropout and ReLU activation
function. In [51] the authors proposed a large dataset to train a Convolutional Neu-
ral Network to classify 16 document genres.

Layout Analysis
In document analysis research, layout analysis is one important task to segment and
recognize a document page into regions having a homogeneous content. Physical
layout analysis is used to identify the geometric page structure. The logical layout
analysis assigns a logical meaning to each region generating the logical structure of
the document.

The twomajor approaches for layout analysis are bottom-up and top-downmeth-
ods. Localizing connected components with subsequent aggregation in higher-level
structures is a bottom-up approach. Then, the top-down analysis considers the
whole page to segment in larger components to smaller sub-components. Top-down
methods are faster but need documents with a regular layout.

The logical layout analysis assigns a meaning to previously identified regions by
physical analysis method. Often, physical and logical analysis have been computed
concurrently assigning meaning to blocks during the prediction phase.

The task to extract homogeneous components from a page image is named page
segmentation. It is possible to define a physical layout analysis task as a combination
of page segmentation and classification. One of the most important applications is
to extract text-line or segment characters from printed document images. Several
techniques have been presented to address text line segmentation on historical doc-
uments [75]. Instead, one common solution to detect and recognize text in printed
documents is an optical character recognition (OCR) named Tesseract [112] which
includes line finding, features/classification methods, and an adaptive classifier.

Drawings understanding
Architectural floorplans define indoor spaces and these drawings are designed by
software that produces a vector-graphics representation. Often, this representation
needs to be rasterized to print or digital media for publication. In this way, we lose
representation which we need to reconstruct the lost information from a rasterized
floor-plan image.

In particular, the visual elements are special drawings for specific object cate-
gories that differ from real image representations. In the case of floor plans, we

2.2 Deep Learning methods 13

have mainly black and white symbols that map the real object shape. One inter-
esting application in this research field is [32] where the authors propose a system
for generating synthetic graphics documents (including floor plans) that contain vi-
sual symbols in a real context. However, symbols in [32] are nearly identical one
to the other and do not show significant and realistic variability between different
instances of the same type of objects.

Recently, another work [129] has been proposed to address the object detection
task in the floorplan image by using a deep network architecture. In Section 4.5 we
propose a solution to generate graphical symbolswith a suitable generative network.

2.2 Deep Learning methods
In the early day of the Artificial Intelligence era, machines were able to solve tasks
following hard-coded programs. Defining soft or hard rule was possible to solve
well-defined, logical problems but not complex tasks as object recognition or docu-
ment classification tasks. Machine learning and deep learning techniques have been
developed to solve this (and more) complex tasks.

Machine learning is a sub-field of Artificial Intelligence research that aims to
build data-drivenmodels to solve complex tasks. Machine learning systems usually
need a lot of data used to build predictive analytics models.

Building good machine learning methods is heavily dependent on the choice of
data representation (or features) on which they are applied. The data representa-
tion is the first step to deploy machine learning algorithms designing preprocessing
pipelines and data transformations directly on input data. Feature engineering is
the most labor-intensive phase where the goal is to describe input data to perform
better machine learning solutions[12]. Automatic feature engineering is a current
hot topic in machine learning to learn representation directly from input data.

In most of the case, it is difficult to design suitable hand-craft features able to
improve the learning algorithm performances. Representation learning is a set of
methods to build algorithms able to discover object representation from raw data
automatically. Learned representations are obtaining better performance compared
to the use of hand-designed features [46].

Deep learning techniques are based on representation-learningmethods that can
learnmultiple levels of representationwith linear or non-linear transformation start-
ing at raw data into a representation at a more abstract level. The methods are very
good to discover intrinsic patterns in high dimensional data solving very complex
tasks in different domains [70]. One common way to train this kind of neural net-
work is based on an algorithm named stochastic gradient descent (SGD) which can
update network parameters after computing a gradient vector of the objective func-
tion related to the learning process.

14 Deep Learning for Document Analysis

We could split machine learning into several sub-fields related to the type of
learning [107]. In this thesis, we are interested in two types of learning: supervised
and unsupervised. The learning process involves an interaction between learner
and environment, this interplay defines the nature of learning.

One of the most common forms of machine learning, deep or not, is supervised
learning. In this scenario the learner uses a predefined experience to gain expertise,
each training example contains a label (experience) used to train the model. The
acquired expertise during the training phase is used to predict the unseen test set
examples.

In unsupervised learning, there is anydifference between training and test dataset
because, for the learner, data are without labels. In this case, the goal is to learn a
representation for input data distribution preserving its structure.

In the following sections, wewill explain somedeep learning techniques for com-
puter vision. In particular, we will show the reason why deep learning methods
have gained a lot of interest in academia and business companies.

We will see three different aspects for image understanding which are similar
to document image understanding. Object recognition, it takes an image as input
and computes a class label of a set of categories. Object detection, it takes an image
as input and computes object classification and localization on all the objects in the
image detectingmultiple bounding boxes. Semantic segmentation, it takes an image
as input labeling each pixel with a class of objects.

2.3 Representation Learning for object recognition
Data representation is very important for the performance ofmachine learning algo-
rithms. Many researchers around the world have worked hard to deploy machine
learning algorithms in a more general way, these networks can capture the inter-
nal representation of the data to which they are applied. These efforts have been the
basis for research named "representation learning". It is based on learning represen-
tations of the data that make it easier to extract useful information when building
classifiers or other predictors [12].

During the application of deep learning on various tasks, it was empirically ob-
served that layer-wise stacking of feature extraction often yielded better represen-
tations, e.g., in terms of classification error [36, 68], and in quality of the invariance
properties of the learned features [47]. These approaches are based on the compu-
tation of several transformation layers to capture the intrinsic properties of the train
data. In several computer vision works, a powerful approach is based on more ba-
sic knowledge of merely the topological structure of the input dimensions. Based
on such a structure, one can define local receptive fields [57], so that each low-level
feature will be computed from only a subset of the input: a neighborhood in the

2.3 Representation Learning for object recognition 15

Figure 2.1: LeNet neural network is composed of 2 convolutional layers, 2 subsam-
pling layers, and 3 fully connected layers. It is used for digit classification adapted
by [71].

topology (e.g. a sub-image at a given position). This idea comes from the recep-
tive field properties found on the primary visual cortex of vertebrate species. A
good way, then, is to discover the topological structure of the input by moving the
receptive field like a local feature extractor: this corresponds to a convolution that
transforms the input into a similarly shaped feature map.

In the following sections, we will show how deep networks learn a representa-
tion directly from raw data during the training phase. We put more emphasis on
Convolutional Neural Network (CNN) architectures which are the most used deep
architectures in computer vision.

LeNet

A successful neural network model for handwritten digit recognition is the Convo-
lutional Neural Network proposed by [71]. This model combines three architectural
ideas to obtain scale or distortion invariance: local receptive fields, shared weights,
and spatial or temporal sub-sampling. A typical convolutional neural network for
the digit recognition is shown in 2.1. In this model, as in a biological way, the neu-
rons can extract elementary visual features such as edge, end-points, corners. These
features are then combined by the subsequent layers to detect high-order features.
In the end, the computed features are treated as representation features to be classi-
fied with Multilayer Perceptron classifier (MLP). Units in the transformation layers
are organized in planes where all the units of the same plane share the same set
of weights. These output planes are called feature maps, where every feature map
corresponds to a convolution result for a shared filter weight.

To understand better the model[71], we can see that the first convolutional layer
is organized by six feature maps computed by six shared weights named receptive
fields on the input layer. In this case, the first receptive field dimension is a con-
nected window formed by 5x5 pixels. Each unit has 25 inputs, and therefore 25

16 Deep Learning for Document Analysis

trainable coefficients and a trainable bias. The receipt fields are moved on the in-
put with overlapping. The feature maps in a layer use different sets of weights and
bias. Each unit in the feature map is applying a non-linear activation function con-
cerning the result of the linear combination between the input part and its receptive
field. The operation is equivalent to convolution, followed by an additive bias and
a squashing function, which is the motivation for the model named "convolutional
network". An interesting property of the convolutional layers is that if the input
is shifted, the feature map output will be shifted by the same amount, but it will
be left unchanged otherwise. This property is the base of the robustness of con-
volutional networks having distortions of the input. The second hidden layer is a
sub-sampling layer. This layer comprises six feature maps, one for each feature map
in the previous layer. The receptive field of each unit is an area input 2× 2 in the
previous layers corresponding feature map. Each unit computes the average of its
four inputs, multiplies it by a trainable coefficient, adds a trainable bias, and passes
the result through an activation function (sigmoid). Contiguous units have non-
overlapping and contiguous receptive fields. Consequently, a sub-sampling layer
reduces the previous layer to half the number of rows and columns. The trainable
coefficient and bias control the effect of the sigmoid non-linearity [71]. The "trans-
formation layer" is composed of a convolutional layer followed by a sub-sampling
layer. So, the model is formed by two "transformation layer". The second "transfor-
mation layer" has a different number of parameters but it is structured in the same
way. The approach is the same, so that, the model is scalable for each input data.
In the end, the computed features are the input for a fully-connected classifier com-
posed of two hidden layers and one output layer. This model is formed by a lot of
parameters, so the challenging problem was to train all of them and find the opti-
mal ones. The solution proposes to use the back-propagation method [102]. It is a
solution for the general problem of minimizing a function for a set of parameters.
Using gradient-based learning it is generally much easier to minimize a reasonably
smooth, continuous function than a discrete (combinatorial) function [71]. Con-
volutional Neural Networks eliminate the need for hand-crafted feature extractors.
This model was innovative, however, its application to more challenging problems
was limited by the computation resources available at that time. New advances in
computing capabilities due to the wide introduction on Graphical Processor Units
(GPUs) contributed to a renewed interest for Convolutional Neural Networks in re-
cent years.

Alexnet on Imagenet
The Alexnet [65] model uses two GPUs in a parallel way, sharing featuremaps. That
was the first approach and destroyed the competition with other models based on
hand-crafted feature extractors.

2.3 Representation Learning for object recognition 17

Figure 2.2: Some example from Imagenet

The entire net is based on the state-of-the-art layer in deep learning techniques,
using the Convolutional Neural Network as an "optimized" feature extractor. The
architecture of this network is summarized in Figure 2.3. In this model [65], there
are several transformation layers based on convolutional and pooling transforma-
tion, newer learningmechanisms as activation function, normalization, overlapping
pooling and a trick to reduce overfitting.

A novel non-linear activation function, inspired by the human brain, the closest
activation function to brain activation, is the Rectifier Linear function [88]. The re-
sults of this function on other Neural Networks has proved the great ability to limit
the overfitting and improve the learning. One of the best characteristics demon-
strated by this function is the sparse representation with true zero as an output
value. This representation is sparse and robust to small input changes, with efficient
variable-size representation and it is highly linear separable from the computed fea-
tures.

A Local Response Normalization [65] defines a local normalization scheme. It

18 Deep Learning for Document Analysis

Figure 2.3: The Alexnet architecture adapted from [65].

works on the previous layer output in this way:

bi
x,y = ai

x,y/

k + α
min(N−1,i+n/2)

∑
j=max(0,i−n/2)

(aj
x,y)

2

the response-normalized activity bi

x,y computes the sum over n “adjacent” kernel
maps at the same spatial position, and N is the total number of kernels in the layer.
The constants k, n, α, and β are hyper-parameters whose values are determined
using a validation set (k = 2, n = 5, α = 10−4, β = 0.75). This normalization is
applied after applying the ReLU nonlinearity function.

Overlapping pooling is an operation to summarize the outputs of neighboring
groups of neurons in the same kernel map. Traditionally, the neighborhoods sum-
marized by adjacent pooling units that do not overlap (e.g., [58, 71]). In the tradi-
tional models, the local pooling has the stride equal to the pooling window size.
The size of the pooling kernel is 3 with a step size of 2.

The Alexnet architecture [65] has a deep structure withmore layers than the past
models. In this way, more parameters used to perform a better regression with re-
spect to the objective function. So, this network maximizes the multinomial logistic
regression objective, which is equivalent to maximizing the average across training
cases of the log-probability of the correct label under the prediction distribution.
This neural network architecture has 60 million parameters. With so many parame-
ters, the overfitting problem will likely destroy this approach. They used two tech-
niques to resolve this issue, data augmentation, and dropout.

• Data augmentation: A simple way to reduce the over-fitting during a training
pass on image data is to artificially enlarge the dataset adding new "similar"
images. The data augmentation consists of generating image translations and
horizontal reflections. The way to increase the dataset is to extract random
224 × 224 patches (and their horizontal reflections) from the training image

2.3 Representation Learning for object recognition 19

256× 256. This increases the size of the training set butmaintaining the dataset
input variance.

• Droupout: this technique consists of setting to zero the output of each hid-
den neuron with probability 0.5. The neurons which are “dropped out” in
this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples
a different architecture, but all these architectures share weights [56]. Dur-
ing testing, they use all the neurons but they multiply their outputs by 0.5 to
approximate the predictive distribution produced by the dropout networks.

This model [65] has been the milestone for Object Recognition task using Con-
volutional Neural Networks. Several works followed this approach, but with other
improvements. The learning is the base of the result, they trained the model using
stochastic gradient descentwith a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. The authors [65] found that a small amount of weight decay
is important for learning the model. In this case, the weight decay is not merely a
regularizer but it is used to reduce the training error [65]. The update rule forweight
w was:

vi+1 := 0.9 · vi − 0, 0005 · ε · wi − ε〈 ∂L
∂w
|wi〉Di

wi+1 := wi+1 + vi+1

where i is the iteration index, v is the momentum variable, ε is the learning rate and
〈 ∂L

∂w |wi〉Di is the average over the ith batch Di of the derivative of the objective with
respect tow, evaluated at wi. The authors [65] initialize theweight in each layer from
a zero-mean Gaussian distribution with a standard deviation of 0.01. The authors
[65] evaluated the bias initialization with different values for each layer. They used
an equal learning rate for all layers, which they adjusted manually throughout the
training. The authors [65] trained the network for roughly 90 epochs through the
training set of 1.2 million images, which took five to six days on two NVIDIA GTX
580 3GB GPUs.

Network in Network
The Alexnet model [65] consists of alternatively stacked convolutional layers and
spatial pooling layers. The convolutional layers generate featuremaps by linear con-
volutional filters followed by nonlinear activation functions (rectifier, sigmoid, tanh,
etc.). In this way, we could obtain good discriminant features, but we know that the
latent conceptswhich should to be learned are not always linearly separable. ACNN
computes several convolutional transformations followed by a non-linear transfor-
mation, this linear convolution is sufficient for abstraction when the instances of the

20 Deep Learning for Document Analysis

latent concepts are linearly separable. Working with several filters for each convo-
lutional layer could help us to cover all variations on the latent concepts. However,
having too many filters for a single concept, that imposes extra work on the next
layer, so it needs to consider all combinations of variations from the previous layer
[48]. A good idea to reduce the number of feature map is proposed in the Maxout
Network [49] where affine feature maps are the direct results from linear convolu-
tion without applying the activation function. The idea proposed by Lin et al. [76]
is to develop a general function approximator when the distributions of the latent
concepts are more complex. Network in Network [76] (NIN) can compute more dis-
criminant features obtaining more linearly separable concepts only adding an MLP
trainable approximator function. MLP works with the backpropagation algorithm
becoming the best option for this task. It is possible to see this part as a micro-
network integrated into a classic CNN structure to obtain a better abstraction for all
levels of features. In this general prospective, the authors [76] propose to add two
MLP layers after the classical convolutional transform. The author [76] defines this
computational part as "mlpconv" layer, it is depicted in Figure 2.4 where the trans-
formation is computed on the input channels. To obtain this transformation layer

Figure 2.4: Mlpconv transformation layer.

it is possible to use only the classic convolutional layer followed by two convolu-
tional layer with a 1 by 1 kernel. It is a Fully Convolutional Network, it computes
only convolutional and pooling transformation. Instead, to have a fully connected
layer after the computed features, the author [76] propose a strategy called global
average pooling to replace the traditional fully connected layers on CNN. The idea
is to generate one feature map for each corresponding concept of the classification
task in the last mlpconv layer. Instead of adding fully connected layers on top of
the feature maps, they compute the average of each feature map, and the resulting
vector is fed directly into the softmax layer. In the end, the structure of NIN [76] is
a stack of mlpconv layers, on top of which we fined the global average pooling and
the objective cost layer.

2.3 Representation Learning for object recognition 21

VGG Network
After the first real improvement with AlexNet [65], other researchers developed
novelmodels using a similar approach. With the born of several development frame-
works, the research has gainedmore helps to develop newmodels. The first interest-
ing framework to implement Neural Network models is Theano [10, 14]. After that,
the second famous framework is Caffe [59] based on DeCaf [34] milestone. The de-
veloped frameworks helped the researcher to create a quickly novel model obtained
good results.

An example is a researchmade by Simonyan et al. [111] following the same prin-
ciples inspired by Cirasan et al.[26] and Krizhevsky et al. [65]. The authors [111]
implemented a very deep Convolutional Neural Network which obtained good re-
sults in object recognition. The architecture has an input size of 224× 224 pixels.
The only preprocessing made on the input is subtracting the mean RGB value, com-
puted on the training set, from each pixel. The classification is computed by a stack
of convolutional layers, where the receipt fields are very small: 3× 3 and 1× 1.

• The receipt field 3 × 3 is the smallest window to capture the notion of left-
/right, up/down and center. The convolution stride is fixed to 1 pixel; the
spatial padding used 1 pixel for 3× 3 convolutional layers.

• To use 1× 1 convolution filters in some configuration, which can be seen as
a linear transformation of the input channels (followed by non-linearity). The
convolution stride is fixed to 1 pixel without spatial padding. The idea to use
1× 1 con layers is the way to increase the non-linearity of the decision function
without affecting the receptive fields of the convolutional layers [111]. It works
as a transformation into the space of the same dimensionality for the input
channels to obtain more discriminant features and an additional non-linearity
using the rectification function. This approach is used in the “Network in Net-
work” architecture [76].

Spatial pooling is computed to sub-sample the feature maps reducing the pa-
rameter dimension. Max-pooling is performed over a 2 × 2 window, with stride
2. The number of channels used in the whole net starts with 64 for the first con-
volutional layer increasing by a factor of 2 after each max-pooling layer until 512 a
the last convolutional layer. In effect, this model has a different configuration and
it depends about the depth of the net, we can find a small configuration with 11
weight layers to a large configuration with 19 weight layers in the network. A stack
of convolutional layers is followed by three Fully-Connected (FC) layers: the first two
have 4096 channels each, the third performs 1000-way classification and thus con-
tains 1000 channels (one for each class). The final layer is the soft-max layer. This
model [111] is quite different from the previously developed models. Rather than

22 Deep Learning for Document Analysis

using relatively large receptive fields in the first convolutional layers (e.g. 11× 11
with stride 4 in (Krizhevsky et al., [65]), or 7× 7 with stride 2 in (Zeiler & Fergus
[127]), the authors [111] use very small 3× 3 receptive fields throughout the whole
net, which are convolved with the input at every pixel (with stride 1). The reason
is that the convolutional layers larger than 3× 3 compute a transformation could be
obtained with a sequence of 3× 3 convolution with no sub-sampling in between. It
is possible to obtain a convolutional layer 5 × 5 with a sequence of two 3× 3 convo-
lutional layer, or a convolutional layer with a sequence of three 3× 3 convolutional
layer [111]. In this way, the transformation could incorporate several non-linear rec-
tification layers instead of a single one, which makes the decision function more
discriminative. Another advantage is that the model has less parameter to train,
the authors [111] explain that, with a convolutional layer with a receipt field 5 x 5
we have 25 x C parameters (channels) to train with respect to have with a receipt
field 3× 3 only 9 x C + 9 x C = 18 x C parameters. The training pass is made us-
ing the multinomial logistic regression objective with mini-batch gradient descent
on back-propagation with momentum proposed by LeCun et al. [71]. In this case,
the batch size was set to 256, momentum to 0.9. The training was regularized by
weight decay (the L2 penalty multiplier set to 5 · 10−4) and dropout regularization
for the first two fully-connected layers (dropout ratio set to 0.5). The learning rate
was initially set to 10−2 , and then decreased by a factor of 10when the validation set
accuracy stopped improving. One problem to solve when we want to train a deep
convolutional net is the weights initialization because a bad initialization can stall
learning due to the instability of gradient in deep nets [111]. The authors train be-
fore a less depth model then using this pre-trained weights to initialize the deepest
model. Exist another way to initialize the weights with a random procedure using
the prior information from the model structure Glorot & Bengio [45]. The data aug-
mentation is similar to the previous model Alexnet [65], but in this case, scaling two
times concerning the shorter dimensions and achieving better results. This model
is implemented with a branch from the publicly available C++ Caffe toolbox [59].
The Caffe [59] framework allows to perform training and evaluation on multiple
GPUs installed in a single system, as well as train and evaluate on full-size images
or multiple scales. Multi-GPU training exploits data parallelism and is carried out
by splitting each batch of training images into several GPU batches, processed in
parallel on each GPU. They trained the model using a system equipped with four
NVIDIA Titan Black GPUs and took 2–3 weeks of learning [111].

Googlenet
The most straightforward way of improving the performance of deep neural net-
works is by increasing their size. This is the baseline for the novel convolutional
neural network named Inception [113]. But not only this feature is only specific

2.3 Representation Learning for object recognition 23

Figure 2.5: The Googlenet architecture.

for this net. During the evolution of the convolutional models, larger size models
have a larger number of parameters being more prone to over-fitting, especially if
the number of labeled examples in the training set is limited. Another important
characteristic is that increasing the network size is dramatically increased the use
of computational resources. The Inception [113] architecture is a sophisticated net-
work topology construction algorithm that tries to approximate a sparse structure
for vision networks and covering the hypothesized outcome by dense, readily avail-
able components [7]. The Inception [113] architecture is the baseline for the novel
model named GoogLeNet. It is an homage to Yann LeCuns pioneering LeNet5 [71].
This model is a deeper and wider Inception network where all the convolutions use
rectified linear activations. The network is 22 layers deep counting only layers with
parameters (or 27 layers counting also pooling layers). The overall number of lay-
ers (independent building blocks) used for the construction of the network is about
100. In Figure 2.5 is depicted as the structure of the deep and large model based on
Inception idea previously defined.

ResidualNets

Make deeper networks it is hard becausewhen the network depth increase, accuracy
gets saturated and then degrades rapidly. The notorious problem of vanishing/ex-
ploding gradients is one problem related to deep neural networks [13].

Comparing a shallower network and its deeper network version adding more
layers (identity mapping layers) onto it, we see as current SGD solvers are not able
to train deeper networks that produce better performance than shallower version
[54].

In [54] the authors address the degradation problemby introducing a deep resid-
ual learning framework. Considering H(x) as an underlying mapping to be fit by a
few stacked layers, it is possible to say that multiple nonlinear layers can asymptot-

24 Deep Learning for Document Analysis

ically approximate complicated functions (this hypothesis is still an open question).
In this way, assuming that input and output have the same dimensions, also the
residual function H(x) − x can be asymptotically approximated with few stacked
layers. Defining F(x) := H(x)− x the residual function, it is possible to have the
original function as F(x) + x motivated by the counter-intuitive phenomena about
the degradation problem. With the residual learning reformulation, if identitymap-
pings are optimal, the solversmay simplydrive theweights of themultiple nonlinear
layers toward zero to approach identity mappings [54]. Always in [54], the exper-
iments confirm as the identity mapping is reasonable preconditioning to improve
results in deeper neural networks.

In [54], the authors propose to define a residual block composed by few stacked
layers defined as y = F(x, Wi)+ x where x and y are the input and the output vectors
of the layers and F(x, Wi) is the residual mapping to be learned. Defining a residual
block composed by two convolutional layers as F = W2σ(W1x) + x where σ is RELU
activation function, the operation F + x is performed by a shortcut connection and
element-wise addition. The shortcut does not introduce parameters or complexity
for the training phase.

The experiments in [54] prof as the residual block in very deep neural networks
improve results in object recognition and detection task in different image datasets.

2.4 Object detection
In these last years, many solutions have been proposed to solve the object detection
which is based on Convolutional Neural Networks. In this section, we show some
state of the art deep networks from object detection.

Region Based Approaches

In this last years, many state-of-the-art CNN-based deep learning for object detec-
tion has been proposed to classify and localize objects on input images which are
based on a pipeline composed by region proposal followed by the detection phase.

Region-CNN (R-CNN) proposed by [44] uses selective-search ([116]) to detect
2000 object proposals, for each bounding box the feature extraction is done through
pre-trained CNN architecture. In the end, the feature vector is fed into an SVM
to classify the presence of the object. To predict the object location inside region
proposals, the model can compute four values which are offset values to increase
the precision of the bounding box. This solution is very slow and it is dependent on
an external algorithm that cannot be trained with the whole system.

Fast R-CNN also proposed by [43] is an improved version of the previous archi-
tecture following a similar idea. In Fast R-CNN the whole input image is fed to the

2.4 Object detection 25

CNNmodel generating convolutional feature maps and it is possible to identify the
region proposed by a predefined search method (selective search, . . .) on computed
maps. On squared features, the RoI pooling layer can compute the most discrim-
inant features to fed into classification and regression layers to classify the object
category and detect the bounding box area inside the proposed region.

Faster R-CNN proposed by [98] is an improved version which follows some con-
cepts. In previous versions the bottleneck is the region proposal phase which is
separated into the whole architecture, it is a very slow and time-consuming process
affecting the performance of the network. For Faster R-CNN region proposal phase
is substituted by Region Proposal Network (RPN). Thewhole input image is fed into
CNN model (VGG, ResNet, . . .) to compute feature maps, then RPN uses a sliding
window approach to compute each location over the feature maps. For each loca-
tion, nine anchor boxes are used as three scales (128, 256 and 512) and three aspect
ratios (1:1, 1:2, 2:1) for generating region proposals. The region proposal network is
trained with Faster R-CNN sharing the same CNN backbone feature maps. In this
way, RPN generates region proposal which is used by ROI pooling layer to com-
pute the most discriminant features. Then, following Fast R-CNN architecture, the
model computes classification score and bounding box area to detect objects. Faster
R-CNN is trained with a unique loss function that combines RPN and detection net-
works. [89] proposes non-maximum suppression (NMS)which is used to reduce the
number of detected objects according to classification score and overlapping areas.

Feature pyramid networks
Detecting objects at different scales is a challenging task for an object detection sys-
tem. One approach could be considered the same input image at different scale
computing the result for each scale. Another proposed approach named Feature
Pyramid Network (FPN) in [77] which creates a pyramid of feature and use them
for object detection. As said by [77], Feature Pyramid Network is a feature extractor
designed for such the pyramid conceptwith accuracy and speed inmind. It replaces
the feature extractor of detectors like Faster R-CNN [98] and generates multiple fea-
ture map layers (multi-scale feature maps) with better quality information than the
regular feature pyramid for object detection.

Single Shot Detector
Differently to region-based networks that need two shots for object detection task,
Single Shot Detector (SSD) [80] has been proposed to take one single shot to detect
multiple objectswithin the image. SSD ismuch faster comparedwith two-shot RPN-
based approaches. In SSD, a pre-trained CNN has been used to compute feature
maps which are fed into a 3× 3 convolutional layer to compute k bounding box for

26 Deep Learning for Document Analysis

each location. These k bounding boxes have different sizes and aspect ratios. Then,
for each bounding box, the network computes classification scores and four offsets
relative to the original default bounding box shape. A unique loss function is used
to train the multi-box detector network.

Symbol detection in floor plan images

Recovering the symbol information from a rasterized floorplan image is a hard task.
One solution [79] has been proposed to solve this task where the authors want to
transform the rasterized floorplan image into an intermediate floorplan representa-
tion to describe the whole image. The authors propose a deep network to extract
low-level geometric and semantic information into a set of junctions that are com-
bined by integer programming solution. Moreover, the authors have manually an-
notated 870 floorplan images for training as well as for quantitative evaluation.

2.5 Semantic segmentation
We have seen several models for classification implemented using Convolutional
Neural Networkswith various structures. Nowwewill see how the learned features
figure out the concept and how we could use this information to localize the object
on the input image.

Deep inside convolutional networks

Almost all the previous ConvNets models are trained on the large-scale ImageNet
challenge dataset and it can predict the class of the input image. This kind of ar-
chitecture computes a transformation from an input image to a class score after
several layer transformations. Every layer computes a transformation on the pre-
vious output channels. The layers are convolutional, pooling and fully connected
units which compute a classification score concerning the learned concepts. Com-
puting the layers transformation we obtain feature maps with several channels for
each layer which are spatial representations from the input image. Simonyan et al.
[110] present a method to compute a class saliency map, specific to a given image
and class. The intuition is to separate the foreground from background pixels using
the backpropagation algorithm. Given an image I0, a class c and a ConvNet model
which defines a class score function Sc(I), we could to rank the pixels of I0 based on
their influence on the score Sc(I0). Using a deep ConvNet, the class score Sc(I) is a
highly non-linear function of I, so we can approximate Sc(I) with a linear function
in the neighborhood of I0:

Sc(I) ≈ wT I + b

2.5 Semantic segmentation 27

Figure 2.6: Saliencymap computed over some input image extracted from Imagenet
adopted from [110].

where w is the derivative of Sc for the image I at the point (image) I0:

w =
∂Sc

∂I
The more intuitive description about the derivative of the class score with re-

spect to an input image is to consider the area more representative for each layer
transformation and combine all these information together. We consider the model
as a stack of layer computation, the gradient ∂ fi

∂x of the model f (x) with respect to
input image x could be define:

∂ fi

∂x
=

∂ fi

∂g(n−1)

∂g(n−1)

∂g(n−2)
...

∂g(2)

∂g(1)
=

∂g(n)

∂x(n)
∂g(n−1)

∂x(n−1)
...

∂g(1)

∂x

In this way we could obtain the pixel area where the extracted features classify the
object in the input. In Figure 2.6 are presented some result about the saliency map
computed on winning class with respect to the input image.
Another point of view of this approach is proposed by Simon et al. [109] where they
define a "part detector discovery" (PDD) based on analyzing the Gradient Maps of
the network outputs.

Fully convolutional networks
We have seen several models that work with receipt fields for convolutional trans-
formation. These models compute several non-linear transformations to obtain a
classification score. Using a general point of view, we could say that each layer of
data in a ConvNet is a three-dimensional array of size d × h × w, where h and w
are spatial dimensions, and d is the feature or channel dimension. ConvNet mod-
els are invariant to the translation. Their basic components (convolution, pooling,

28 Deep Learning for Document Analysis

Figure 2.7: From ConvNet to fully ConvNet adopted by [81].

and activation functions) operate on local input regions and depend only on rela-
tive spatial coordinates [81]. Every transformation is spatially related so each part
of input corresponds a part of the output on feature map In this way, the basic com-
ponents are independent with respect to the input size but depend only by kernel
sizes. While a general deep net computes a general nonlinear function, a net with
only spatial layers computes nonlinear filtering over the input. These models using
only spatial transformation could be called deep filters or fully convolutional net-
works. A fully convolutional neural network naturally operates on an input of any
size and produces an output of corresponding (possibly resampled) spatial dimen-
sions. In this way, all transformations are spatial transformation during the forward
and backward pass. Considering the entire image we could obtain a better result
than computing patch-by-patch representation. We have seen typical recognition
nets that take fixed-sized inputs and produce non-spatial outputs. We know full
convolutional nets are more adaptive to variable input dimensions. Every "classic"
model could be transformed in a fully convolutional net, we only need to reshape
the fully connected weights layers into a convolutional transformation so it could
be spatially dimension independent. We can figure in Figure 2.7 how the model
transformation adapts the weights for the classification task into weights for spatial
representation. These models compute a spatial output and naturally adapted to
dense problems like semantic segmentation. Every classic convolutional network
can be transformed in a fully ConvNet which computes a spatial big filter trans-
formation. An example could be Alexnet [65], after the previous transformation it
maps an input 224 × 224 in a final feature map of 7 × 7 units. In that work [81],
they proposed a model to make a semantic segmentation on images using a fully
ConvNet model considering the entire pixel ground truth. The fast way to connect
the resulted feature map to a dense pixel representation of the ground truth is to
reshape computed features with interpolation. For instance, simple bilinear inter-

2.5 Semantic segmentation 29

Figure 2.8: Fully convolutional neural network in action adapted by [81].

polation computes each output yij from the nearest four inputs by a linear map that
depends only on the relative positions of the input and output cells. An interpola-
tion is an upsampling with a factor f , it could be seen as a convolutional operator
with stride 1

f named backward convolution (or deconvolution) with an output stride
of f . This kind of upsampling is performed in-network for end-to-end learning by
back-propagation from the pixel-wise loss. This approach could be compared with
patch wise training because each batch consists of all the receptive fields of the units
below the loss for an image (or collection of images). While this ismore efficient than
a uniform sampling of patches, it reduces the number of possible batches. We could
obtain the random patch selection on the input using DropConnect mask [123] be-
tween the output feature map and the loss. In the end, they cast a pre-trained VGG
[111] classifiers into FCNs to predict a dense classification with in-network upsam-
pling and a pixel-wise loss. They train for segmentation by fine-tuning. An example
of the entire architecture is depicted in the Figure 2.8

U-Net

Several architectures have been proposed to address the semantic segmentation.
One model that gained attention in biomedical image segmentation is the U-net
[101]. In thesis, we propose a neural network that is strongly inspired by the U-
netmodel to solve object segmentation in a couple of document image understand-
ing tasks. By inspecting the architecture in Figure 2.9 we can notice the U-shaped
model where the first part consists of a contracting path and the second consists of
an expansive path.

The contracting path consists of many encoding operations composed by convo-
lutional operators with kernel 3× 3, stride 1, and max-pooling operator with kernel
2× 2 stride 2, respectively. In this way, the model is able to learn a data representa-
tion based on many local transformations computed by sequential convolution and
pooling operations. In particular, for each transformation layer, we have two con-

30 Deep Learning for Document Analysis

Figure 2.9: The model architecture. Different transformations are depicted in dif-
ferent colors. The Input Layer is identified in gray, Convolutional Layers in white,
Max Pooling in yellow, green for Upsampling Layers, blue for Combination Layers
and red for the Softmax.

volution operation followed by a pooling operation. The number of filters for each
transformation layer is variable andwe adapted these values to our problem. In par-
ticular, in the first layer, we have 32, in the second 64, in the third 128, in the forth
256, and in the last 512 filters.

The expansive path consists of several decoding operations composed of upsam-
pling and convolutional operators. Having a look at Figure 2.9, for each decoding
step the features are concatenated with the computed feature maps from the con-
tracting path (with the same shape). Still, in the same decoding layer, two convolu-
tional operations with kernel 3× 3 and stride 1 are applied to the previously com-
puted features. The expansive path proposes the same number of filters for each
decoding layer, but in reverse order with respect to the contracting path. All the
convolutional operators use Rectified Linear Units (ReLUs) as an activation func-
tion. In the final layer one single 1× 1 convolutional linear operator is used to map
the last features into the number of desired output channels.

We will see in Section 6.3 how we use this network for historical handwritten
document segmentation.

Instance segmentation

As we have seen in this brief introduction, the object recognition task is related to
classify object category inside a given input image, instead, for object detection, we
intend to provide not only the object category but also indicate the position on the
image.

Instance segmentation is a task related to the previous which has obtained a lot
of interest from the research community. In this task, we want to detect each object

2.6 Variational Autoencoder 31

identifying their boundaries at the detailed pixel level.
Mask R-CNN [52] is a region-based deep network architecture for instance seg-

mentation task. It follows a similar approach to Faster R-CNN [98] but locating each
pixel of every object in the image instead of the bounding boxes. It is based on Faster
R-CNN with Feature Pyramid Network [77], having a multi-scale output features,
for each output layerwe find a fully convolutional network to produce amaskwhich
represents the detected object silhouette. We use this network for object detection
in floorplan image at Section 4.1.

2.6 Variational Autoencoder
In machine learning, we have two families of learning method: discriminative and
generative algorithms. Mathematically, a discriminative algorithmmap features (x)
to predefined labels (y) with the formulation p(y|x). Differently, generative algo-
rithms attempt to predict features (x) given a certain label or category (y) with the
formulation p(x|y).

Differently from sparse [97], denoising [118] autoencoders, Variational Autoen-
coders are probabilistic generative models which are structured as directed graph-
ical models and parameterized as neural networks [62]. Following [62], we assume
that observed data are generated by some random process involving unobserved la-
tent variables z. Considering X as set of samples {x(1), x(2), . . . , x(n)}, we can define
a joint probability [16] of the model as p(x, z) = p(x|z)p(z)where for each sample i,
zi ∼ p(z) and xi ∼ p(x|z).

We know the true posterior density p(z|x) = p(x,z)
p(x) and the marginal likeli-

hood (evidence) p(x) =
∫

p(x|z)p(z)dz are in many cases intractable [62]. Varia-
tional Bayesian (VB) inference is useful to approximate the true posterior distribu-
tion p(z|x) with qλ(z|x) by family λ of densities over the latent variable [16]. In
this way we want that our proposal distribution qλ(z|x) to be close to p(z|x) which
means minimizing their Kullback-Leibler (KL) divergence [66].

KL(qλ(z|x)||p(z|x)) = E[log qλ(z | x)]−E[log p(x, z)] + log p(x) (2.1)

We see in Equation 2.1 that KL(qλ(z|x) || p(z|x)) is related to the computation of
log p(x). Computing p(x) is intractable as well as the previous KL-divergence [61].
Considering qλ(z|x), the evidence lower bound L(λ) (ELBO) is useful for optimizing
log p(x) [16]:

log p(x) ≥ L(λ) = E[log p(x, z)]−E[log qλ(z | x)] (2.2)

because one property of L(λ) is to be the lower bound of the log probability of the
observations.

32 Deep Learning for Document Analysis

Examining the L(λ) gives intuitions about the optimal variational density. We
rewrite the L(λ) as a sum of the expected log likelihood of the data and the KL
divergence between the prior p(z) and previous qλ(z|x) [16]:

L(λ) = −KL(qλ(z|x)||p(z)) + Eqλ(z|x)[log p(x | z)] (2.3)

The family of proposal distributions qλ(z|x) has been chosen so that the lower
bound L(λ) is easy to differentiate and optimize. To compute andminimize the KL-
divergence between the approximated and exact posteriors, we can maximize the
evidence lower bound L(λ)which is equivalent [16] (but computationally tractable).

Considering X as the set of samples, each xi is related to its z latent variable, so
it is possible to decompose L(λ) into a sum where each term depends on a single
point xi having:

L(λ)i = −KL(qλ(z|xi)||p(z)) + Eqλ(z|xi)
[log p(xi|z)] (2.4)

equivalent to previous Equation 2.3 but related to prior and likelihood terms [61].

Neural Network
Using neural networks it is possible to approximate the posterior qλ(z|x) and the
likelihood p(x|z) by learning some networks parameters φ and θ to maximize the
evidence lower bound L(λ) (Equation 2.4). In particular this can be done for both
the encoder and the decoder as proposed in [61].

Encoder

We define an inference network to approximate posterior qλ(z|x) as qφ(z|x, λ) (pa-
rameters φ related to Equation 2.1) which takes x input data and computes outputs
parameters to model the chosen λ family distribution.

Wewill assume that the true posterior takes on approximate Gaussian formwith
an approximately diagonal covariance, so

log qφ(z|xi) = logN (z; µi, σ2 I) (2.5)

where the µ mean and σ standard deviation (modeled as λ in the previous defini-
tion related to Equation 2.1) of the approximate posterior are outputs of the encoder
network.

Let z be a continuous random variable and z ∼ qφ(z|x). It is possible to express
the random variable z as a deterministic variable gφ(ε, x) where ε is an auxiliary
variable with independent marginal p(ε) and gφ(·) is a trainable network with φ

parameters.

2.7 Labeling systems 33

Actually, having z as a normally-distributed variable with mean µ and standard
deviation σ, we can sample z as µ + σ� ε, where ε ∼ N (0, 1) is a noise variable. In
this way, it is possible to define a trainable network by backpropagation algorithm
which can approximate the true posterior distribution.

Decoder

Then, we can define the generative model pθ(z)pθ(x|z) as a generative network
which takes the latent variable z and computes the data distribution pθ(x|z) mod-
eled by parameters θ. In the current case the decoding term log pθ(xi|zi) is modeling
as a Bernoulli distribution related to the observed data.

Loss function

It is possible to train the network by maximizing the evidence lower bound L(λ) in
Equation (2.4). For each sample xi, the loss function will be:

Li(φ, θ) = −KL(qφ(z|xi)||pθ(z)) + Ez∼qφ(z|xi)
[log pθ(xi|z)] (2.6)

where zi = gφ(εi, xi) and ε ∼ p(ε). Considering a mini-batch gradient descent
algorithm, the loss function will bus the sum over all the mini-batch samples.

In Equation 2.6 the first term acts as a regularizer, the second term is the expected
negative log-likelihood to encourage the decoder to learn data reconstruction.

2.7 Labeling systems
Deep learning architectures need tons of data for the training process. We need
toolkits to facilitate annotating data. Following some tools proposed for this task.

Labelme [104] is a tool focused on scene annotation which also has web and mo-
bile versions allowing collaborative work. This tool provides functionalities such as
drawing polygons, querying images, and browsing the database. The user may la-
bel a new object by clicking control points along the object’s boundary and finishes
by clicking on the starting control point. One open-source version in Python has
been released at the link.

A Graphical Annotation Tool [42] based on region-based has been proposed to
build a hierarchical representation of images. Using Partition Trees the system can
navigate through the image segments selecting the object components.

SmartAnnotator [125], an interactive system to facilitate annotating raw RGBD
image combining incremental learning method to label prediction and 3D structure
inference and refinements to help users in the annotation process.

In Section 4.1 we will show our interactive labeling system used to label objects
in floor plan images for instance segmentation task.

34 Deep Learning for Document Analysis

2.8 Summary
In this chapter we have introduced some DAR application systems which are also
addressed by deep learning methods. The major point to recall are as follows:

• Feature learning directly from raw data has obtained very good results on the
object recognition. These CNN architectures have gained a lot of interest in
many application fields. We will use some of these architectures in this re-
search.

• CNN-based object detectors are complex architectures to classify and localize
objects on an input image. We will see an application of one specific deep
network in Section 4.1.

• Deep architectures for semantic segmentation task to classify pixels which be-
long to a semantic category. We will show how to use an FCN-based architec-
ture for layout analysis at Section 6.3

• Variational Autoencoders are generative models that add a probabilistic ap-
proach to constraint the low-dimensional representation. We will use this ap-
proach to generate floor plan symbols at Section 4.5

• Labeling systems are useful toolkits for annotating data. These systems can
help researchers to create labeled data for learning systems. We will show our
annotation toolkits in Section 4.1.

Chapter 3

Validating Deep Learning models

Validating deep learning methods requires datasets useful for training and clear
evaluation metrics to measure and compare the obtained results. In this chapter,
we present some datasets used in this thesis. Then, we also explain the evaluation
metrics used in the experiments.

3.1 Layout analysis datasets

In computer visions and also in document understanding there are several datasets
for different applications used to validatemachine learning solutions. Some of these
datasets are public while others are private collections.

Tobacco

ImageNet is an image dataset [33], it contains millions of images according to the
WordNet hierarchy totaling 3.2 million images. ImageNet contains general real-
world images of categories like car, scooter, tiger, monkey, ship, web category, etc. It
has been used to train models for object recognition and detection tasks.

The Tobacco dataset [74] shows several challenges includingmultiple fonts, poor
quality and the presence of relevant information in handwritten annotations. To-
bacco dataset consists of 5590 tax-form images and 3482 non-tax-form images orga-
nized in 10 classes, including Memo, E-mail, Resume, Letter, Report, Forms, Adver-
tisement, Scientific, Note, Letter. It used to compare different approaches for genre
classification. Images in categories such as Advertisement, Resume, Report, News
exhibit a high variation in structure, and images of different genres may have a sim-
ilar structure. This dataset has been used in [2] for genre classification taking into
account only the document aspect by training a suitable neural network.

35

36 Validating Deep Learning models

Figure 3.1: Some examples from Saintgall dataset

Saintgall

For page analysis task it is no easy to find public databases. HisDoc [39] is a scien-
tific research project dedicated to the textual heritage, it aims to the development of
a complete processing chain for analysis, recognition, indexation, and retrieval of
historical documents. It presents some datasets for developing handwriting recog-
nition and layout analysis systems.

One of them is SaintGall dataset presented in [40]. It contains a handwritten his-
toricalmanuscriptwith hagiographyVita sancti Galli byWalafrid Strabin in the Latin
language from the 9th century. The original manuscript is housed at the Abbey Li-
brary of Saint Gall, Switzerland. The manuscript has been most likely written by
one single hand in Carolingian script with ink on parchment. Carolingian minus-
cules are predominant, but some upper script letters emphasize the structure of the
text and some richly ornamented initials. The Saint Gall database includes 60 pages,
1410 text lines, and 11,597 words. Each page is written in a single column that con-
tains 24 text lines. The database is freely downloadable and it is provided with
layout descriptions in XML format. The document images in the original dataset
have an average size of 3328× 4992 pixels. The ground truth information is gath-
ered from the Hisdoc Divadia site1. A couple of examples from the collection are
shown in Figure 3.1.

3.1 Layout analysis datasets 37

Figure 3.2: Some examples from Esposalles dataset

Esposalles

In Archives of the Cathedral of Barcelona, it is possible to find theMarriage Licenses
Books which are composed of 291 books with information of approximately 600,000
unions celebrated in 250 parishes between 1451 and 1905.

Eachmarriage license contains information about the husband’s occupation, hus-
band’s and wife’s former marital status, socioeconomic position signaled by the fee
imposed on them, and in some cases, fathers’ occupations, place of residence or
geographical origin.

The original documents have been digitized at 300 dpi in true colors (≈ 2750×
3940 pixels). The set of books includes approximately 550,000 marriage licenses
from 250 parishes [100].

From this collection, volume 208 has 593 pages where the first 200 pages have
been labeled at pixel level [5]. In [5] the authors also selected 150 pages for training,
10 pages as the validation set and the remaining 40 for testing. A couple of examples
from the collection are shown in Figure 3.2.

Brandenburg

Through our research collaboration with Ancestry, we have the chance to work with
Brandenburg collection containing 78781 images and only the number of records on
each page is available. We can see one example page from Brandenburg collection in
Figure 3.3 (a). However, this collection contains pages with significantly different
layouts, we need to group similar pages by using rule-based clustering technique
explained in Section 4.2. After the selection, we obtain 4, 956 pages with a more

1http://diuf.unifr.ch/main/hisdoc/divadia

38 Validating Deep Learning models

(a) Example for counting task (b)Branden-ancestry example

Figure 3.3: Some examples from Brandenburg dataset.

homogeneous layout. This selected collection will be more useful to test our system
for record counting tasks proposed at Chapter 7.

Textline detection

A subset of Brandenburg collection consists of 54 structured documents written in
English by several writers. This subset, named Branden-ancestry, has been labeled at
the text line level. The line ground truth has been produced using one tool specifi-
cally developed to manually segment the lines. We can see one example of this sub-
collection in Figure 3.3 (b). In Section 6.1 we will see how we use Branden-ancestry
to evaluate our proposed solution for text line extraction.

3.2 Floor plan datasets

UAB-CVC

The CVC collection [31] comprises 122 scanned floor plan documents which are di-
vided into four different subsets concerning their origin and style. It contains doc-
uments of different qualities, resolutions and modeling styles. In the ground truth,
we can find structural symbols: rooms, walls, doors, windows, parking doors, and
room separations. We have annotated also non-structural symbols (bed, toilet, bath-
tub, shower, sink) using the labeling system proposed at Section 4.1

3.2 Floor plan datasets 39

(a) ISTA (b) Flo2Plan

Figure 3.4: Some examples from two floor plan datasets

ISTA

This is a collection of Middle Eastern floor plan images that come from one archi-
tecture company. Initially, this collection was named d2 as mentioned in [129]. This
dataset is composed of 160 labeled images for the object detection task.

Since these design drawings come from one single architectural firm, the sym-
bol contained in these images are more homogeneous than other collections. This
collection is composed of 160 images, with an amount of 7788 labeled objects which
are divided into 12 classes. in the next Section 3.2 we will see another floor plan
image dataset which contains a larger intra-class variance. We show in Figure 3.4
one example from ISTA collection.

Flo2Plan

Collecting floorplan dataset is difficult because these drawings are covered by copy-
right. We developed a tool to search floor plan images from Google Image Search
Engine by content description. Using this proposed tool we downloaded from sev-
eral websites in different countries (Italy, Usa, France, Germany) a few thousand of
images organized by name and content information. Unfortunately, almost half of
the downloaded images were not good for our needs. We selected the best floor
plan image manually.

40 Validating Deep Learning models

Figure 3.5: Pre-processing phase: from input object to cleaned output object.

This collected dataset named flo2plan contains 452 heterogeneous floor plan im-
ages with different scales and RGB colors. Moreover, downloading from different
websites, in this dataset we can find also blurry or watermarked images. Part of this
collection comes from d1 dataset in [129]. In Figure 3.4 we show one example from
flo2plan collection.

After the selection, we labeled the dataset at the pixel level using the interac-
tive labeling system explained in Section 4.1. We created a labeled dataset with an
amount of 11517 symbol instances divided into 13 object categories: door, sink, toi-
let, bathtub, shower, bidet, table, chair, couch, armchair, hotplate, night table, bed.
For each object category, we have a large object-size variance.

Differently to ISTA collection (Section 3.2), in this dataset, we can find a large
intra-class variance which makes the object detection task more difficult concerning
other datasets.

To give more structural information to the system, we developed a tool to group
objects by their relationship. We defined 4 macro categories: bathroom, bedroom,
table-chair, kitchen. In this way, we can group objects into these categories noting
object relationship into ground truth information.

Flo2Plan Symbols
The Flo2Plan and ISTA dataset contain several symbol instances that are very well
annotated. Having the ground truth at the pixel level, it is possible to extract sym-
bols automatically. The extracted symbols have different sizes and, often, they are

3.3 Evaluation metrics 41

affected by noise. To normalize the data we perform a suitable pre-processing to
reduce the aspect variability helping the model training.

To produce a dataset which less size variability, we rescale the input symbols
to a fixed size transforming symbols to a square shape by padding the shortest di-
mension with background values, then we use bilinear interpolation to reshape the
padded image into a fixed size (128× 128). To remove the artifact, we use aGaussian
filter followedby a binarization operation (Otsu [94]). The results of these operations
are shown in Figure 3.5, we can see one example for each category before and after
the pre-processing phase.

Dataset # floor plans # beds # armchairs # toilet
ISTA 200 559 1366 346

flo2plan 454 413 456 1042

Table 3.1: Number of symbols for each dataset.

Since both datasets are labeled at the object level, it is possible to extract locations
of symbols according to their coordinates and produce a collection of heterogeneous
symbols.

The total number of objects is shown in Table 3.1, we can notice that the images
in the flo2plan dataset are more affected by noise than those in ISTA dataset. More-
over, all the images in ISTA dataset come from one architectural firm, in this way all
instances from each category are very similar to each other, instead, flo2plan has a
lot of variations for object size, noise, and distortions.

3.3 Evaluation metrics
In this section, we present the measure used in the following application in docu-
ment understanding research fields.

Precision, Recall and F1score

In information retrieval task the two most frequent measures used to evaluate the
solution method effectiveness are Precision and Recall.
Precision (P) is the fraction of retrieved documents that are relevant.

Precision =
|relevant_items ∩ retrieved_items|

|retrieved_items|
Recall (R) is the fraction of relevant document that are retrieved.

Recall =
|relevant_items ∩ retrieved_items|

|relevant_items|

42 Validating Deep Learning models

In binary classification, F1score is a measure which considers the harmonic mean of
precision and recall.

F1score = 2 · Precision · Recall
Precision + Recall

Accuracy, Mean Accuracy
Informally, accuracy is the fraction of predictions our model got right. Formally,
accuracy has the following definition:

Accuracy =
|relevant_items|
|items|

Having a multiclass prediction task, we can compute the accuracy per class and
then compute the average on the classes. This accuracy is named "mean accuracy"
measure.

Jaccard Index
The Jaccard coefficient or Intersection over Union is defined to measure the similar-
ity and diversity between two finite sample sets.

J(A, B) =
|A ∩ B|
|A ∪ B|

If A and B are empty set, J(A, B) = 1.
This coefficient also defined Intersection over Union measures the overlap be-

tween two sets. It is used in the case when we want to compare a detected rectangle
area and ground truth rectangle area as IoU = overlap_area

union_area

Mean Average Precision
In Information Retrieval, Mean Average Precision (mAP) provides the measure of
quality across recall levels [85].

mAP(Q) =
1
Q

|Q|

∑
j=1

1
mj

mi

∑
k=1

Precision(Rjk)

where relevant documents qj ∈ Q is {di, . . . dmj} and Rjk is the set of ranked
retrieval results from top result until you get to document dk.

This measure is also be used in Object Detection task in Pascal VOC competition
[37].

3.4 Summary 43

Mean absolute error
Considering two continuous variables, Y and Ŷ, we want to measure the average
distance between their values. Assume Y and Ŷ are variables of predicted versus
observed values from a regression trained model. Mean Absolute Error (MAE) is
the average distance between each value respectively. The mean absolute error is
given by:

MAE(Y, Ŷ) = ∑n
i |yi − ŷi|

n

3.4 Summary
In this chapter, we presented the datasets and metrics used in our research. The
major point to recall are as follows:

• We saw some public datasets used for layout analysis which come from digital
libraries.

• We proposed also a Brandenburg, a private collection of birth records whichwe
will use in Chapter 5, in Section 4.2 and Section 4.3 for layout analysis tasks. A
subset Branden-ancestry from this collection will be used in Section 6.1 for text
line extraction.

• We produced a floor plan image dataset named flo2planwhich can be used for
object detection (in Section 4.1) for training and testing suitable deep network
architectures. Moreover, we will see in Section 4.5 how to use the extracted
symbols from flo2plan to train a generative model for symbol generation.

Chapter 4

Generating training data

In the last years, extensive use of deep learning techniques brought an improvement
of results in a wide range of research areas, especially in computer vision. Deep
learning architectures have a large set of free parameters that have to be learned in
the training. To achieve the best trainedmodels we need large datasets to learn these
parameters. Often, the labeled data are limited, in some case we need to augment
the training data in some way. In this chapter, we will show different approaches to
produce training data.

As we have seen in Section 2.7, it is very important to have labeling systems able
to help users during the annotation process. In particular, we propose one interac-
tive labeling system to annotate graphical documents quickly. Creating labeled data,
we will show how to train a deep network for object detection in floor plan images.
We will compare our proposed deep learning approach to other classic methods for
symbol recognition and symbol spotting.

In the historical document domain it is important to have large collections to
address layout analysis task. If we have a collection with a large variance of layout
structures becomes very hard to learn a model which could fit the data distribution,
especially if the number of examples is not enough to cover all the aspects of the
data distribution. We will explore a technique to select similar document images
by using a rule-based selection method. This approach can select documents with
a homogeneous layout from the Brandenburg dataset (Section 3.1). We will show in
Chapter 5 a way to use the selected pages to train a system for record counting.

We will also show one toolkit to generate synthetic documents to simulate a
structured document production process. Moreover, we will present a system for
generative modeling that uses a model trained on a symbol images to generate new
samples imitating the initial symbol dataset.

45

46 Generating training data

Figure 4.1: The floor plan editing tool

4.1 Labeling graphical documents for symbol
detection

In computer vision, instance segmentation (Section 2.5) is one of the most labor-
intensive annotation tasks because it requires pixel-level accuracy. Many systems
have been created to solve this task, most of them are useful to label real scene im-
ages.

In this section we show two labeling systems used for two different purposes:
SlothV2, and ActiveLabelMe. With the first tool, we can correct recognition errors
made by a floor plan recognition system; the second is used to label a floorplan
dataset for instance segmentation.

After a brief introduction of the floor plan recognition system proposed in [84]
we show SlothV2 in action; then, the ActiveLabelMe tool can be used to label a floor
plan image and to produce instance segmentation ground truth.

SlothV2
We have created a proof-of-concept editor for annotating floor plan images which
gives everyone a chance to correct the recognition output from the floor plan recog-
nition system summarized in the following sub-section. We decided to extend a
pre-defined labeling system to describe images named Sloth1. Sloth is a tool to label

1https://github.com/cvhciKIT/sloth

4.1 Labeling graphical documents for symbol detection 47

image and video data for computer vision research, it is possible to define polygons
or rectangular bounding boxes around the regions in input documents. We defined
several semantic categories to label a floor plan image, in the end, the user can save
the created items in a structured JSON file. The tool can read JSON files to initial-
ize the annotations. In this use-case, the tool takes a JSON file produced by the
proposed recognition system and the related input image. It displays the original
image highlighting recognized graphic symbols such as text doors, walls, windows,
rooms, etc. The user can delete or add new annotations to correct the recognized
symbols updating the information in the initial JSON file. A screenshot of the tool
is shown in Figure 4.1.

Floor plan recognition system
The system is a pipe-line that consists of a chain of image processing elements.
Each layer defines different transformation functions implemented in Python with
OpenCV, an open-source computer vision and machine learning software library.

The pipeline processing consists of nine different steps: pre-processing, clean the
image removing thin lines, then, find connected components considering their aspect-
ratio and covered area. The text identification and recognition, optical character recog-
nition (OCR) is performed on the textual connected components to identify and rec-
ognize text labels. Followed by structure object recognition, the target is to classify the
found graphical connected components like walls, doors, windows, and stairs. The
connected components corresponding to walls are segmented and categorized as
internal or external walls based on their average thickness. Sometimes cause the
external walls found in the floor plan image may contain gaps, then, the close exter-
nal walls step, we need to close walls with a gap to properly detect rooms. To detect
closet (closet is a tall cupboard or wardrobe with a door, used for storage) we need
to restore some removed line during the pre-processing step, using the recognized
text labels (‘closet’,‘cupboard’, ‘wardrobe’) it is possible to identify and to compute
the right bounding box. In the room identification step, it is used a similar approach
to [3] for recognizing rooms. It is often required to detect sub-areas in the open plan
regions, it is time to do an open plan partitioning [83] generating candidate parti-
tions for each sub-area in the open plan. Object/furniture identification is a parallel
step where the target is to recognize furniture objects. It computes an adjacency
graph between the found connected components and a symbol dictionary.

The result of the whole pipeline is high-level description generation of the text,
walls, doors, windows, stairs, single-use rooms and open plan areaswhich are saved
into JSON file. Using the proposed annotation system (SlothV2) we can label data
and correct recognition errors made by the recognition system proposed before.

This system exports an accessible floor plan description in a JSON file having
three formats: text description, tactile floor plan or GraVVITAS presentation. Based

48 Generating training data

on the formative study, an entire floor plan view and individual room views are
generated in the desired format. The entire floor plan view contains information
about doors, windows, walls, stairs, rooms, text labels and unknown elements in
the floor plan. More details can be found in [84].

ActiveLabelMe
We propose an interactive labeling system that helps the user to label object in-
stances at the pixel level. To apply this software on floor plan images, we define
a set of tools to help the labeling process.

Considering floor plan images, the background is often uniform and the objects
are usually small and close with each other. Having this kind of problem, we did
not find any existing system able to help users in labeling tasks properly.

Using a pre-existing open-source software named "labelme" [104] it is possible
to annotate images with polygons assigning one object category for each defined
polygon. We decided to extend [120] by adding some useful features.

Initially, with the software proposed by [120], it was possible to define only poly-
gons around symbols and to assign a label to defined symbols. To make the label-
ing job easier, we added a function allowing users to annotate objects with rectangle
areas. In this way, doing only 2 mouse clicks we can define the left-top and right-
bottom coordinates for the bounding box.

(a) Seleted area (b) Best Keypoints

Figure 4.2: How the interactive labeling system computes best key-points to detect
object silhouette

Labeling many small objects from scratch is a tedious task, to simplify it we
added a function to label objects semi-automatically using the output from a trained
graphical symbol detector [129]. In this way, users can check and edit the detected

4.1 Labeling graphical documents for symbol detection 49

objects by using this tool. Labeling data in this active mode can reduce the time-
required.

In architectural floor plan images, the background has more or less a uniform
color, we want to define a technique to localize a symbol inside one selected area.
We define this feature as implementing the following mechanism.

We detect the edges by the difference of gaussian (DoG) at different scales, then
we define a fixed grid (stride by 3 pixels) on image and for each cell, we compute to
maximum DoG value in the neighborhood. We call these values key-point. Select-
ing a rectangle area, we select the best key points inside the area, then we segment
the instance mask computing the convex hull on the selected key points. After this
computation, if we need to correct the computed mask, it is possible to add or re-
move key points to detect a better object silhouette.

In Figure 4.2 we show a selected area from the input image (a) finding several
key points computed by a multi-scale difference of gaussian (DoG) technique (b).
In Figure 4.2b we show in yellow the DoG output value which corresponds to the
most probable area to find edges related to the object contour. On the edges area,
we can find the best key points (red points) used to compute the object contour by
the convex hull.

In Figure 4.3 we show how it is possible to edit the computed contour after the
bounding box selection. In window (a) we can see the selected area from the input
image, then it is possible to edit key points in thewindow (b) and check the obtained
contour by the convex hull in the third window (c). Inside window (b) it is possible
to see how Delaunay tessellation connects key-points during the editing phase.

We added another tool to the system to group labeled instances in a super-category.
This tool allows the user to group objects related to their relationship. It is possible
to select objects defining a rectangle area to group selected instances into a super-
category.

Figure 4.3: Editing tool to correct and improve the computed object contour

50 Generating training data

Object detection in Floorplan images

One of the most exciting topics for the graphics recognition community is symbol
recognition. Many different approaches described in the literature [25, 27] work on
logical diagrams, engineering drawings, maps, etc. In the last years, many other
graphics recognition methods have been proposed.

One of themajor problems in symbol recognition is to combine segmentation and
recognition. It is important to understand the logical and semantic structures from
graphics-rich documents: technical documentation, maps, schemas. The methods
developed to understand graphics-rich documents have beenproved to be of interest
to the problem of indexing the information for efficient retrieval and browsing [114].

In [115] the authors define a way to localize possible symbols reducing the com-
putational complexity without using full recognitionmethods. In this way, it is pos-
sible to define a task named symbol spotting as a kind of middle-line technique com-
bining recognition and segmentation. The major difference between symbol recog-
nition and symbol spotting is that in the first method we want to find the location
and recognize every symbol in the document; the second method can be viewed
as a kind of retrieval system where the user selects a symbol from the document
defining a query by example.

There are many difficulties to locate graphical symbols in huge collections of
documents, as the presence of distortions, occlusions and geometric transformations
in graphical documents make the symbol recognition a challenging task. Although
well-known hand-craft document descriptors perform quite good recognition, these
techniques are time-consuming and onlywork for recognizing isolated shapes [103].

In [103] the authors propose a method to represent document regions as a com-
position of object primitives. Every described document region is associated with
a code computed by a hashing function. Computing a connected component anal-
ysis, the system can describe all the object regions, subsequently, each component
is polygonally approximated to take the chains of adjacent segments. To compute
a code for each polyline it is possible to use their proposed hash function. Then,
describing the query example with their proposed approach it is possible to detect
similar symbols in the input image.

Anotherwork [35] explains how to represent a documentwith a graph, detecting
symbols by using a (sub)graph matching technique. A graph allows catching struc-
tural properties of the symbol primitives (especially various kinds of line drawings).
They represent a document considering the detected critical points as nodes and
joining the lines to nodes as edges. Then, a factorization step is useful to split the
graph into a set of all acyclic paths. By using Locality-SensitiveHashing it is possible
to organize similar paths in the same neighborhood in hash tables. A query by ex-
ample approach is performed by a spatial voting scheme evaluating pre-computed
paths from the database.

4.1 Labeling graphical documents for symbol detection 51

We have seen several methods to perform symbol spotting in floor plan images
which need complex mechanisms to describe documents with suitable data struc-
tures. In the following, we explore the use of deep learning techniques for object
detection in floor plan images. Using these techniques it is possible to localize and
recognize symbols in a single step.

We propose to detect symbols on plans using a deep architecture based on Faster
R-CNN [98]. This network has been used on real scene images to recognize and to
localize objects. There are many differences in object detection considering floor
plan or real scene images. Comparing COCO dataset [78] composed by real scene
images and flo2plan dataset at Section 3.2 composed by floor plan images. We can
see in Figure 4.4 these main differences. In COCO dataset we have RGB image, ob-
jects are not very small considering the input size and are quite far from each other.
Instead in flo2planwe small objects close each other.

(a) COCO example (b) flo2plan example

Figure 4.4: Comparing one image from COCO [78] dataset and flo2plan dataset

Having this kind of task we need to adapt our data and network model to use
Faster R-CNN architecture. We use ResNet [53] backbone starting from pre-trained
weights on ImageNet dataset.

Feature Pyramid Network

In flo2plan dataset, the object sizes have large inter-class and extra-class variances.
To address this problem we need to use a network capable to manage a multi-scale
object representation. One solution is to use Feature Pyramid Network [77] which
can construct a multi-scale, pyramidal hierarchy during deep convolutional net-
work processing. This network has surpassed all existing heavily-engineered single-
model architectures for object detection, and,moreover, it computes different output
at different scales.

52 Generating training data

This multi-scale architecture manages different anchors at different scales learn-
ing better representations, also for small objects. It is possible to define anchor size
and stride similar to classic Faster R-CNN [98].

Adding perturbation to learn more robust features

The flo2plan collection is a very small dataset considering the large number of net-
work parameters which we need to learn during the training phase. One solution to
reduce over-fitting is to inject random perturbation inside the network [6, 72]. The
backbone network is a composition of residual blocks with different channels.

The residual block formulation in ResNet 50:

y = RELU(F(x, w) + x)

where

F(x, w) = BNγ2,β2(ConvOp(RELU(BNγ1,β1(ConvOp(x, w1))), w2))

Having convolutional operator (ConvOp), batch normalization (BN) andRelu ac-
tivation function (RELU). We decide to inject random perturbation inside the resid-
ual block as:

y = RELU(ε(F(x, w)))

where the perturbation ε is:

ε(x) = x +N (0, σx)

In this way, we inject perturbation with σ value is 0.1 directly inside the residual
block during the training phase.

Preliminary Results

We perform several experiments on the flo2plan dataset to test different Faster R-
CNN model versions. In particular, we check how the object size is important to
detect symbols in floorplan images. We use ResNet-50 as a backbone network for
the experiments setting different anchor-ratio and stride. The number of output
neurons is related to the dataset classes. The evaluation metrics used to compare
results is based on Mean Average Precision (mAP) with Intersection over Union >
0.5 as default for Pascal Object Detection Task [37].

We test three Faster R-CNNversion: Faster R-CNNC4, single-scale model where
the computed features are fed into classification and regression layer to classify and
localize object; Faster R-CNN with Feature Pyramid Network, multi-scale model
with a classification and localization layer per anchor-scale; Mask R-CNN, similar to

4.1 Labeling graphical documents for symbol detection 53

Table 4.1: Floor plan object detection, the obtained results

Backbone Model Weights Inp.Size Anchors mAP50
50 Faster/C4 I 1024 (32, 64, 128, 256, 512) 0.4832
18 FPN I 1024 (32, 64, 128, 256, 512) 0.4871
50 FPN R 1024 (32, 64, 128, 256, 512) 0.4060
50 FPN I 1024 (32, 64, 128, 256, 512) 0.6336
50 FPN I 1024 (16, 32, 64, 128, 256) 0.6492
50 FPN/Mask I 1024 (16, 32, 64, 128, 256) 0.6405
50 FPN I 2048 (32, 64, 128, 256, 512) 0.6887
50 FPN I 2048 (16, 32, 64, 128, 256) 0.6927
50 FPN+Noise I 2048 (16, 32, 64, 128, 256) 0.6902
50 FPN/Mask I 2048 (16, 32, 64, 128, 256) 0.7089
50 FPN/Mask I 1024,1536,2048 (16, 32, 64, 128, 256) 0.7183

Faster R-CNN with Feature Pyramid Network and also segmentation layer to com-
pute instance mask. We consider scale jitter data augmentation technique defining
three image scales: 1024, 1542, and 2048 pixels.

We show in Table 4.1 the computed results, we can see different performance
related to different architectures. The Faster R-CNNwith FPNhas better results than
a singe-scale model. Multi-scale representation helps the network to detect small
objects improving the overall result. Moreover, we tested also ResNet 18 having the
worst results. It is also important to use pre-trained weights (I) concerning start
training from scratch (R).

Another important aspect in Table 4.1 is the input scale, we can see as larger scale
has better results, it is come out because reducing input scale, also the object size is
reduced performing worse results. Moreover, also the anchor-ratio for Region Pro-
posal Network is important, having smaller anchor sizes we obtained better results.

We have seen that using Mask R-CNN for instance segmentation we can get bet-
ter results than other models. We can say that using the ground truth with mask
information improves the network capability to learn better object representations.
Unfortunately, noise injection does not improve the performance in Faster R-CNN
with FPN. We need to investigate more in this direction to understand the reason.

In the end, considering the oldest methods for symbol spotting explained at the
beginning of this section, our proposed deep network detects symbols in one step
learning more suitable features to describe all patterns in the document. Moreover,
we have proposed ad-hoc feature learning tricks (FPN, random perturbations) in-
side the network computational process making this methodology very competitive
with respect to the oldest segmentation-recognition paradigm.

54 Generating training data

4.2 Clustering visually similar structured documents
In Section 3.1 we have presented a private collection named Brandenburgwhich con-
tains a large variety of document layout. We need a procedure to discover similari-
ties in the dataset considering a defined page fingerprint. In the following section,
we explain the procedure to select pages to deal with relatively similar images. This
solution has been published in [22].

To build one homogeneous subset one visual scan of all the images is infeasible.
In the following section, we show the procedure to select similar pages automatically
given a predefined template.

In Section 5.4 we will see the experiments done using the dataset produced by
this approach.

Page fingerprint

The selection of the sub-set of pages is based on a page description (like a fingerprint)
that is based on the column structure that is defined by the spatial organization of
the vertical ruling lines. To represent the pages we therefore first identify the verti-
cal lines in the top half part of the page by using the Hough transform. The vertical
lines identified in one page are shown in red in Figure 4.5. The relative line posi-
tion computed in the center of the top half part of the page (along the blue dotted
line) defines the page fingerprint. Along the blue line, we compute the distances
between neighboring lines that define the column width. Excluding lines too close
to the page borders the fingerprint is made by considering the list of distances be-
tween neighboring vertical lines. In the example in Figure 4.5 the fingerprint is:
F = (d(1, 2), d(2, 3), . . . , d(12, 13)) where d(i, j) is the distance between the i-th and
j-th vertical lines.

Figure 4.5: Page fingerprint.

Finding similar pages

Using the previous approachwe can define one fingerprint for each page. Aswe can
see from Figure 4.5 the scanned images are noisy and in particular, the identification

4.2 Clustering visually similar structured documents 55

of vertical lines is not reliable in the center and at the borders of the image. This noise
is incorporated in the fingerprint that is not unique for very similar pages.

To identify the pages most similar to one prototype page we represent this page
with one subset of the page signature, one pattern, which represents only the columns
that are correctly identified in most cases. For instance, the pattern that defines the
example page is P = (d(1, 2), d(2, 3), . . . , d(5, 6)).

The distance between one page fingerprint F and one pattern descriptor P can
be computed (when |P| < |F|) by:

D(F, P) = min
j∈0,...,|F|−|P|−1

(|P|−1

∑
i=0
|Fj+i − Pi|

)
(4.1)

where |P| and |F| denote the length of the vector P and F respectively.
D(F, P) defines the smallest distance between the pattern P and one subset of the

descriptor F. By using this distance it is possible to estimate the similarity between
each document and the pattern and therefore select a subset of pages (with distance
below a given threshold) from the larger dataset. In this way, we obtained the 4, 956
pages used in the experiments in the Brandenburg collection.

(a) Input image (b) First segmen-
tation

(c) Second segmen-
tation

Figure 4.6: One example page from the Brandenburg dataset.

As a side effect of this column alignment, it is also possible to crop the left page in
a two-page document and use only this portion for the subsequent steps. In Figure
4.6 we show the whole page and in Figure 4.6b the cropped area. As we can see
from the image, the cropped part needs to be cleaned by removing the noisy parts
on the top and bottom. These parts are removed by first binarizing the page and the
identifying the largest blobs in the top and bottom part of the page obtaining the
image shown in Figure 4.6c.

56 Generating training data

This last image is used as input to the neural network. Since the records span the
whole two-pages image (Figure 4.6a) it is possible to count the number of records
only considering the smaller image in Figure 4.6c. In this way, we can reduce the im-
age size and we can deal with less noisy pages. It is therefore also easier to generate
the synthetic pages.

4.3 A Toolkit to generate structured documents
The generation of synthetic datasets is one common procedure when the labeled
dataset is not large enough or when the production of ground truth is expensive.
Several works use this approach to improve the results in different tasks. For in-
stance, in [50] is proposed the creation of synthetic datasets to perform text localiza-
tion in natural images. To address the ImageNet challenge, the data augmentation
approach proposed in [65] consists of image translations, horizontal reflections, and
patch extractions.

To address document image analysis, the generation of synthetic document im-
ages has been adopted for many years now. The seminal work by Baird (e.g. [9])
studied the problem of document image degradation and how to model it to im-
prove the document recognition algorithms. Using the model proposed it is possi-
ble to generate synthetic data sets used in training classifiers for document image
recognition systems. These techniques have been applied particularly to address
printed documents and OCR algorithms.

In the area of historical printed documents, [63] proposed one solution for word
spotting by generating synthetic image words. After one suitable pre-processing
step, performed to segment words on the document images, the word matching
involves the comparison of one query word synthetically generated with all the in-
dexed words.

In [55] it is proposed one relevant approach for the automatic generation of ground-
truth information that can be used to design a complete system for solving docu-
ment image analysis and understanding tasks. In particular, it is possible to de-
fine the document structure through an XML file and appropriate stylesheets. The
system produces synthetic documents with ground truth information that can be
used for page segmentation, layout structure analysis, and other tasks. In the area
of handwriting recognition, cursive fonts have been used to synthetically generate
handwritten documents [30]. More sophisticated models, not needed in our task,
have been proposed as well [15].

In this Section we describe one open-source toolkit, called DocEmul, that can
be used to support the researchers to generate synthetic documents that emulate a
real structured handwriting collection. This toolkit has been published in [19]. The
main focus of the system is in the generation of structured synthetic Documents i.e.

4.3 A Toolkit to generate structured documents 57

Figure 4.7: Flowchart of the synthetic document production process. It is possible
to set the document structure, the fonts and the dictionaries used to generate the
pages.

documents with a record-like structure. To the best of our knowledge, this is one
important novelty of the proposed tool. By using theDocEmul toolkit it is possible to
use the synthetic data to address document analysis tasks also when the real labeled
datasets are too small for a suitable model training. In particular, we aim to design
one generator for structured documents where each pagemight be composed of one
header (usually at the top of the page) and several records that are written in the rest
of the page. If we think of a structured document as a sort of handwritten table with
different columns, every record can be considered as composed by several text lines
and in turn, each line can be formed by a variable number of cells (text boxes).

We depict in Figure 4.7 one overview of all the implemented tools that can be
used to generate synthetic handwritten documents. Starting from some example
pages selected from the collection which we want to model, it is possible to extract
the page background. This background is then used as a substrate where records
will be written, each record could have variable structures using different cursive
fonts. Moreover, it is possible to extend the synthetic collection by adding random
noise, page rotations, and other visual variations.

To indirectly evaluate theDocEmul toolkitwe considered the task of record count-
ing in historical handwritten documents by using deep architectures proposed at
Chapter 5. The target is, therefore, to count the number of records on each page and
not to explicitly segment each record. This task can be seen as the first step towards
layout analysis and record segmentation.
We performed some experiments on two collections: one benchmark dataset pro-
posed in [5] for addressing the segmentation of historical handwritten documents
and one collection composed by images provided by Ancestry (the global leader
in family history and consumer genomics) through our research collaboration. We
propose an open-source toolkit for the semi-automatic generation of synthetic hand-
written documents containing records following a general structure. The Python

58 Generating training data

code, together with document structures and some generated images can be freely
downloaded2.

The DocEMul toolkit makes it possible tomodel the document aspect generating
synthetic documents that look similar to actual pages. The toolkit is designed to
emulate the document production process imitating the different ways adopted by
the writers to create a kind of document collection.

In Figure 4.6(c) we present some examples of real documents that we want to
emulate. The collections are composed of handwritten structured documentswhere
the production process created a table-like structure composed of several columns
and a variable representation of records.

In these documents, we need to model different aspects of the page. Historical
documents could have degradations caused by aging and storage conditions which
complicate the task. To properly model these artifacts, it is useful to model also
the background. In this toolkit, this is achieved by extracting it directly from real
images. Since several writers participated in the collection production during the
time, usually we can find different writing styles and also the record structure could
change with some variations from page to page. These are some of the possible
variations that could be seen in historical handwritten collections which make the
task challenging.

The DocEmul toolkit is composed of separate modules which could work to-
gether or at different times. In the following, we describe each module in detail.

Background Extraction

To extract the page background from real pages, we need to remove only the ink
used to write the text on the paper and therefore no layout analysis is performed
on the documents. The first step is to localize background pixels on the page by
using binarization algorithms. The use of binarization in DocEmul is finalized at
identifying and preserving pixels that most likely belong to the background and
not at exactly identifying foreground pixels. One inaccurate binarization is there-
fore acceptable for the subsequent steps. The aim is therefore to find pixels to erase
replacing them with a generated background. In the tool it is possible to use two
different algorithms for the binarization task, the choice depends on the noise we
want to preserve for the background extraction. The tool can use the Otsu [94] and
the Sauvola [105] binarization algorithms. By identifying the foreground pixels it
is possible to substitute them with suitable values that resemble the background.
In particular, we "clean" the foreground pixels by replacing them with the average
value of background pixels in aW×Wwindow centered over each foreground pix-

2https://github.com/scstech85/DocEmul

https://github.com/scstech85/DocEmul

4.3 A Toolkit to generate structured documents 59

Figure 4.8: An example for the background extraction step. We compare the inpaint-
ing by biharmonic functions with our approach.

els. Usually, the window size is 20× 20, but this is a changeable parameter of the
tool.

By using this module, it is possible to obtain some background pages from a few
pages in the collection which we want to model. We have compared this approach
with image inpainting by biharmonic functions [29] from scikit-image [117], we can
see in Figure 4.8 as the inpainting technique produces not usable background for
our task.

In Chapter 5 we will see as the background extraction from real pages can help
for training the models.

Structuring Handwritten Pages

To produce handwritten structured pages, the idea is to define one "ad hoc" general
structure tomodel one collection adding randomvariability in the generation phase.
Following the approach proposed in [11], we propose a model-driven generation
technique defining a flexiblemodel used to create synthetic documents adding some
visual variations.

Having a look at real document collections that we want to emulate we can un-
derstand the general page structure for a given collection. Some of the features that
can be inferred from the collection and that can be modeled in the tool are the fixed
structure of the records and the presence of preprinted structures (e.g. vertical lines).
These are examples of features that should be defined to produce synthetic pages
that resemble as most as possible the real collection.

We aim to create one flexible description to define the most important document
features easily. We use an XML file to define the configurations needed to create
the synthetic pages. This file is used to characterize the header structure, the record
structure, the fonts, the dictionaries, and the graphic objects which need to be used.

60 Generating training data

Figure 4.9: Page structure defined in the XML file.

Record and Header Structures

We model the record as one group of text lines where each line contains several
textboxes defined as cells. We can set the height for each text line and the interline
spacing between consecutive text lines. It is also possible to define a probability to
write the text line on the page, in this way we add some variability to the document.

Each text line contains cells that extend the text line attributes defined above. It
is also possible to define other attributes for each text box. For instance, the font
and the dictionary used to write the text, the horizontal position and the width of
the text box. Moreover, we can add some position variability to simulate a random
variation of the text flow. It is also possible to define the probability of adding one
cell to the structure, therefore, generating records with a variable number of items
according to the model.

After defining the record structure it is possible to define one or more groups
of records where each type of record has associated one probability of appearing
in the document. In this way, we can define multiple structures of records and the
morphology of the pattern which we want to model. We describe the document
header like other records, however, in this case, it is not repeatable.

Fonts and Dictionaries

We can assign different options for each cell, in particular, we can define the font
to write the text in these cells. It is possible to use different fonts downloaded from
web sites. We can also define a set of dictionaries to use during the production phase
and we can associate one dictionary to each cell.

4.3 A Toolkit to generate structured documents 61

Graphic Objects

To model some types of documents it is possible to add graphic objects to the doc-
ument. Using this tool we can add objects as lines or boxes that can be filled with a
fixed color or with salt and pepper noise.

Figure 4.10: UML diagram to define the document structure used by the toolkit.

Generating Documents

In the document generation, some areas are defined to specify the regions where
we are going to print the document contents. In Figure 4.9 we graphically illustrate
the main areas. The blue area describes the header of the page. The record of the
header, like other records, can contain mandatory fields (e.g. the page number) and
other fields that are added according to a specified probability distribution.

The corpus area defines the part of the pagewhere records are printed. Any page
generated by the programwill contain records in the area below the header and end-
ing between the min_corpus_height and the max_corpus_height delimiters. The
area depicted in green defines the zone on the page where one record is generated.

Data Augmentation

One module of the toolkit allows augmenting an input dataset modifying real im-
ages with some artificial transformations. In particular, we can add salt and pepper
noise in the whole page or random sub-areas of the page. We can randomly rotate
the page choosing the angle in a fixed range [−A◦, A◦]. It is also possible to add a
scale variability to the document.

Model Specification

To better understand how to model one collection, we present the architecture used
to define the page structure. In Figure 4.10 we show the UML diagram describing
the XML model used to define the page structure.

62 Generating training data

We can define a document (Document) setting the size (height, width) and the cor-
pus area between the minCorpusHeight and the maxCorpusHeight delimiters. More-
over, the tool generates a random number of records (maxAppendRecords) to fill the
document in the previously defined corpus area. A document could contain graphic
objects as lines or rectangles. It is possible to define them using the related class
(GraphicObject) which defines the absolute position and also the probability to ap-
pear in the document.

To obtain an abstract document as a record container, we have defined an ab-
stract concept for the record (AbstractRecord). This class is used to define the
structure of the record. In structured documents, we can have a header record
(HeaderRecord) which appears at most one time for a page containing several data
records (DataRecord). Using the previous definition, an abstract record is composed
of several groups of text lines (GroupTextLine) which are used to define a structured
record. The text lines (Line) are associated with the group, we can define the height
with a random variation (textHProb) for each line and also the probability to appear
during the generation.

Defining a document as a container of text lines, the tool generates a document
starting from the top to the bottom of the page, for each text line we define the inter-
line space (vspace) concerning the next text line. A text line is composed of several
text boxes (Cell) to fill with text. To obtain more variability, a cell is associated with
a random position and the probability to appear in the document. A cell is associ-
ated with a font (Font) used to write the text extracted randomly from a dictionary
(Dictionary).

The generation phase creates synthetic documents composed of only text and
graphic objects over a transparency layer saved in RGBA file format. It is useful
to generate different versions of the same collection but with different background
pages.

4.4 Modeling datasets
We used the Esposalles collection (containing 200 pages) and the Brandenburg (con-
taining 4, 956 pages) to evaluate the toolkit capability to generate synthetic docu-
ments emulating the real collections. These are only examples of possible uses of
the toolkit that is designed to be general and suitable to model also other collec-
tions.

Esposalles

This collection is one benchmark dataset proposed by [5] containing historical hand-
written documents. These structured documents are composed of records that we

4.4 Modeling datasets 63

Figure 4.11: Esposalles dataset

can model with our toolkit. In Figure 4.12 we show one example page from the
dataset. We will see in Chapter 5 this toolkit in action, in the experiments, when we
generate 81, 060 synthetic documents images containing several records between 3
and 9. The inputs have a resolution of size 366× 256 pixels with black/white values.

Figure 4.11 is depicted as an image for the dataset which we want to emulate.
Having a look at the page, we can see how it is structured. In particular, on the
top, we can find the header composed of two lines. We can, therefore, model the
header as a record with two lines where the top line has only one cell to show the
page number. The second line contains the text as a title. The page contains 6 records
and each record is structured differently. In Figure 4.11we also show some extracted
records and their structure. Having a look at these records we can observe that the
structure for each record could change on the same page.

It is possible to simulate the production process using the toolkit anddefining the
document structure in the XML format and using some cursive fonts: “Scriptina”,
“A glitch in time” and “Love letter tw”; downloaded from http://www.dafont.com
and Italian text as the dictionary.

In Figure 4.12we show some synthetic images generated to emulate theEsposalles
dataset. The two images are generated with different fonts.

Brandenburg

This collection is a private dataset from the Ancestry company and it is composed
of structured documents. In Figure 4.14 we show one example page from the col-
lection. We will see in Chapter 5 this toolkit in action, in the experiments, when we
generate 61, 914 synthetic images containing several records between 1 and 10.

http://www.dafont.com

64 Generating training data

Figure 4.12: Esposalles dataset. One real image (left) and two generated pages using
the same resulution in input to the networks.

Figure 4.13: Brandenburg dataset

We can observe that the document structure is more complex than in the previ-
ous collection.

Figure 4.13 is depicted as one image from the dataset which we want to emulate.
Again, on the top, we can find the header record. This page contains 8 records and
each record is structureddifferently. Moreover, we also show some extracted records
and their structure.

It is possible to simulate the production process using the toolkit and defining
the document structure in the XML format using various cursive fonts “Scriptina”,
“A glitch in time”, “Love letter tw”, and “Taken by vultures”; downloaded from
http://www.dafont.com and Italian text as the dictionary.

In Figure 4.14 we show some synthetic image generated to emulate the Branden-
burg dataset.

We show in Chapter 5 how to use the documents generated by DocEmul toolkit
to train a deep neural network to solve the proposed record counting task.

http://www.dafont.com

4.5 Generating graphical symbols 65

Figure 4.14: Brandenburg dataset. One real image (left) and two generated pages

4.5 Generating graphical symbols

The generation phase proposed in Section 4.3 is based on a document structure de-
fined by user experience. Recently, another solution to generate synthetic data uses
neural network as generative models. These networks can model the intrinsic struc-
ture of objects or symbols given an input dataset.

Recently, various works in document image analysis use generative models to
generate objects in this domain. In [62], the authors propose to use VAEs to gen-
erate different classes of handwritten numbers starting from the MNIST dataset of
handwritten digits. In handwriting writer identification, VAEs are used to learn the
generative model of a Japanese character dataset [126]. The authors propose to use
Convolutional VAE to improve character generation accuracy.

One generative model based on GANs has been proposed for staff line removal
as a preprocessing step in music score recognition [64]. The authors propose to use
a U-Net network as Generator to produce staff-less images at the output similar to
denoising autoencoders. Then the discriminator tries to differentiate between the
generated images and ground-truth staff-less images.

Generating fonts automatically is another task where GANs have been applied
successfully. In [1] Abe et al. propose a class discriminative Deep Convolution GAN
(DCGAN) with the support of a classification network to refine the generated data.
Including class representation inside the DCGAN architecture the model can pro-
duce robust fonts. Moreover, introducing a classification network along the genera-
tive model improves the generation ability of the system.

Overall, from these papers, we can notice that it is very difficult to generate sym-
bols resembling those made by designers using deep learning techniques. Human
designers have different skills to represent symbols that are difficult to generate
properly by machine learning approaches.

66 Generating training data

(a) Encoder (b) Decoder

Figure 4.15: The model architecture. Different transformations are depicted in dif-
ferent colors.

A Variational Convolutional Autoencoder

In this section, we describe how to prepare the data to train the Convolution Vara-
tional Autoencoder (ConvVAE).

Considering the difficulties in the symbol dataset, we build a VAE following the
guidelines in Section 2.6 adding convolutional operators to learn better represen-
tations. To address the floor plan symbols generation, we propose the following
architecture as depicted in Figure 4.15.

The encoder is composed of three convolutional layers with kernel 3× 3 stride
1 followed by max-pooling with kernel 2× 2 stride 2, respectively. In the end, we
have a convolutional layer with kernel 3 × 3 followed by a fully-connected layer.
The learned features are fed into two fully connected layers which produce mean
and variance representations related to the latent variable which we want to model.
The sampling operation takes as input the computed mean and variance, then it
computes the ε value from a normal distribution ε ∼ N (0, 1). Other information
related to the filter and network structure are in Figure 4.15 (encoder).

The decoder network aims to generate the input data from the computed z latent
variable. To reduce checkerboard pattern artifacts we defined a decoder network as
a series of "resize-convolution" operations [93]. The latent variable (z) is fed into a
fully connected layer for starting the reconstruction phase. After that, the decoder
continues to reconstruct the data with several convolutional and upsampling layers
mirroring the encoder process but in reverse order.

All the layers use Rectified Linear Units (ReLUs) activation function. Finally,
the last convolutional layer computes the reconstructed input by sigmoid activation
function. More details on this network are shown in Figure 4.15 (decoder).

For the trainingphase, weuse theADAMoptimizerwith a learning rate of 0.0001.
The loss function has been described in equation 2.6. We use the early stopping cri-
terion to stop the training phase evaluating the loss score on validation dataset [46].

4.5 Generating graphical symbols 67

Figure 4.16: Selected symbols.

Evaluate the Generated Data

In this section we describe the experiments done on different floor plan datasets ex-
plaining how to extract graphical symbols from labeled floor plan images. We train
one model for each category and then we show the results evaluating the trained
models and their different performances.

For these experiment, we extract graphical symbols from labeled floor plan im-
ages. We train onemodel for each category and then we show the results evaluating
the trained models and their different performances.

Symbol selection

The symbol dataset presented here contains many object categories, we decide to
select only some categories. We select three different object categories including bed,
armchair, and toilet because they are present in all of our floor plans with different
aspect variations.

In one experiment we want to evaluate how VAEs can manage the possible data
variations. We select first bed symbols considering their size and shape, and select-
ing images composed by bed objects with single or double size (or other graphical
variations). Moreover, we decide to set a fixed orientation to bed images with verti-
cal shape and the pillow on the top part.

Then, we select toilet objects with a fixed vertical position having only two orien-
tations (base part on the top or the bottom shape), in this way the dataset has only
this hidden peculiarity to learn during the training phase. In the end, we collect
armchair objects maintaining their original shapes and orientations.

68 Generating training data

To fully understand structures and variabilities on the data, in Figure 4.16 we
show some examples extracted from the two corresponding datasets (bed, toilet,
and armchair). Before to start experiments, for each category we split the related
dataset into different training and validation sets avoiding any ambiguity for the
training and testing phases.

Considering how we have collected symbols from each category, we define one
model for each semantic class to understand how themodel can code the input sym-
bol into embedded space evaluating the quality of reconstruction data. In particular,
wewant to putmore emphasis on how the learned variable latent space can organize
different graphical aspects in an unsupervised manner. We explore the variable la-
tent space computed from an input image used as a seed to discover how the model
represents data. We compare the results obtained by VAEs to results obtained by an
autoencoder without variational inference regularization.

Results
In the following, we analyze the results obtained in the experiments, considering
the capability proved by the VAE. We propose a subsection for each experiment.

Bed

The extracted symbols from flo2plan are not that much uniform, the trained model
generates bed symbolswhich are affected by small distortions, this effect comes from
the high variability on the data which makes the training much harder.

In ISTA dataset, bed symbols are very similar to each other, in this way it is eas-
ier for the model to train and also generate the related patterns. After the training
phase, we have seen as the model is able to encode similar objects very close in-
side the latent space. After the inference step, we use the encoded input to generate
a series of symbols sampling from its neighborhood. In Figure 4.17 we represent
the reconstructed input (red rectangle) surrounded by other reconstructed symbols
sampled from the neighborhood of encoded input. Apparently, although such im-
ages seems to be identical or very similar, they are affected by very small perturba-
tions appearing plausible symbols.

Computing the inference of test set samples, we can inspect how themodelmaps
input samples inside the latent space. In Figure 4.18 is shown the computed latent
space where each point is related to the input image. We can see that double and
single beds are very distinct and the details are also differentiated.

Armchair

The experiments for these symbols are quite their original from those described
above. The seats taken from the ISTA dataset are very uniform and there are not

4.5 Generating graphical symbols 69

Figure 4.17: Grid of generated beds from flo2plan

many differences as in the case of beds and toilets. Therefore, the images repre-
senting the seats have been left in different positions, to verify the VAEs ability to
discriminate the orientation of each image. In Figure 4.19 we show the computed
latent space for armchair symbols (ISTA test set), notice different underlined clus-
ters related to precise positions of the seats, as in the upper left corner or in lower
right.

In flo2plan dataset we have less armchair than in the other dataset (Table 3.1),
moreover the armchair instances are very different in position and shape. In the
learned latent space there is not much homogeneity. We see how between the two
features that the VAE is expected to learn, the different position and shape, it has
basically only learned one, namely the shape, since the amount of data is limited to
train the model properly. This is observable in the generation phase, where, even
with a small neighborhood, images are generated similar to the input symbol, but
with differences in positions, as can be seen in Figure 4.20.

Toilet

For this category of floor plan symbols, we study the VAEs ability to discriminate
two possible positions of toilet: facing upwards and downwards. In Figure 4.21
we show the learned latent space: in the upper part there are all the toilets turned

70 Generating training data

Figure 4.18: The embedded representations computed by VAE over bed symbols
from ISTA dataset

downwards and in the lower part those upwards. Have a look to Figure 4.22, you
can see another behaviour of our model during the reconstruction phase. The VAE
is able to denoise the input symbol (#rec1), and also in its neighborhood there exist
different scales (#rec2) and without any noise (#rec3).

Variational Autoecoder vs Autoecoder

We want to describe the differences between using VAE architecture over Autoen-
coder (AE). To do so, we define an AEwhere the latent variable (z) is not a Guassian
variable and does not use the VB inference to approximate the true posterior. For
these reasons, the learned embedding space does not follow a normal distribution.

4.5 Generating graphical symbols 71

Figure 4.19: Latent distribution of ISTA armchair

Figure 4.20: Grid of generated armchair from flo2plan

Considering Figure 4.23, we can see that any feature discrimination is performed in
the latent space.

The proposed model has reported satisfactory results. It has the capability to
map the data correctly and to discriminate, in the latent space, the various types
of processed objects almost correctly. What follows is a generation that produces
examples similar to those in input, and also improves some defects of the input
images, such as drawing a continuous line in images that had a non-continuous
outline. The VAE has also the ability to remove the noise in the input image and to
generate, moving in its neighborhood, new images similar to the input one without

72 Generating training data

Figure 4.21: Latent distribution of flo2plan toilet

4.5 Generating graphical symbols 73

input #rec1 #rec2 #rec3

Figure 4.22: Using VAE as a denoising decoder

Figure 4.23: The embedded representations computed byAE over bed symbols from
ISTA dataset

the noise and with different scale. We prove also the advantages of using VAE, for
its ability to learn better learning space than an AutoEncoder.

What could further improve the developed VAE would be the availability of ad-
ditional data in order to make the model able to recognize more different features
at the same time, as we shown for armchairs. It would also be possible to assess
whether the images generated are recognizable by an Object Recognition model,

74 Generating training data

trained to recognize the components of a house; this could also lead to data aug-
mentation for floor plans. It will be possible to draw new ones replacing the old
components with those generated by the model.

4.6 Summary
In this chapter we have seen several techniques to create training data. We can sum-
marize them as follows:

• Labeling floor plan images is a labor-intensive task. It is possible to label these
images by using the proposed interactive annotation tool to reduce the time of
labeling.

• Detect symbols in floor plans is a difficult task, especially when we have a
small training dataset. The old-fashioned techniques used to address symbol
spotting based on the segmentation-recognition paradigm are very complex
to use in any document image structure. Using deep architectures we could
detect objects having good performances and defining a general framework.

• It is possible to cluster structured handwritten documents by using a rule-
based method to select similar pages from a very large collection.

• Generating synthetic documents from a few labeled examples it is possible by
using the DocEmul toolkit. The toolkit has data augmentation, background
extraction, and other useful features to generate structured handwritten doc-
uments.

• Generating floor plan symbols with graphical variation is possible by training
a Variational Autoencoder. This method learns a good representation in the
latent space obtaining also interesting side effects as denoising function.

Chapter 5

Record counting in historical
handwritten documents

One important application area for the processing of handwritten documents is re-
lated to information extraction fromhistorical documents coming from census, birth
records, and other public or private collections. The pages in these documents are
often semi-structured and contain a variable number of records, each record follows
a general structure but does not have a fixed number of lines or items. For instance,
in a given document there might be records with more or fewer details according
to the information available. By completely recognizing the content of these doc-
uments it is possible to reconstruct genealogies and perform demographic studies
[17] [28] [38] [91].

When analyzing handwritten historical records it is possible to explicitly seg-
ment each record identifying its position in the page or to count the number of
records on each page. It is clear that the former task provides more information,
but is also more complex. On the other hand, often the solution of some sub-tasks
can provide valuable information to the users before, or instead of, recognizing the
whole content. In particular, when the recognition of handwriting is difficult, and
the transcription is performed by human annotators, one accurate count of the num-
ber of records in one collection can provide useful information to foresee the amount
of data available in the digitized documents and therefore give an estimate of the
conversion costs. One example of page with records highlighted is shown in Figure
5.1.

One solution to the record segmentation task has been proposed in [5] where the
authors perform structure detection and page segmentation applied to marriage li-
cense books. The latter books are handwritten documentswhere each page contains
a variable number of records. Each record is composed of three main logical entities
(body, name, and tax) and the number of records in each page is variable. In [5] dif-
ferent approaches to perform record and cell segmentation (including 2D Stochastic

75

76 Record counting in historical handwritten documents

Figure 5.1: The records in the document on the left are shown with different colors
on the right.

Context Free Grammars) are compared. As an indirect result of this segmentation
step, it is possible to count the number of records on each page.

5.1 Record counting system

Figure 5.2: An overview of the proposed system to train and predict the number of
records in an handwritten collection.

Object counting in an image is a relevant task in computer vision, with several
applications in real-world problems. One solution for object counting has been pro-
posed in [113] where the authors aim to recover a density function related to one
input image and enumerate the objects. The density function is a real-value func-
tion over the pixel grid and the integral over this representation is expected tomatch
the overall objects count.

The authors also highlight two approaches for object counting. Counting by detec-
tion is based on detecting the objects and then counting them. In counting by regres-
sion the objects are counted by using only input image features and object counting
is cast as a classification (or regression) problem and to cover all the dataset vari-
abilities a large training set is usually required.

5.1 Record counting system 77

In recent years, deep architectures have been proposed to address many com-
puter vision tasks and object counting is not an exception. More specifically, several
tasks in document image analysis applications have been often addressed with ar-
tificial neural networks [87].

We address the record counting problem by using deep Convolutional Neural
Networks (CNNs) [71]. To the best of our knowledge, this is the first time that these
techniques have been applied to this task. One related work [106] investigates the
task of even digits counting in synthetic images generated from the MNIST dataset
employing CNNs. The authors apply the same approach also to count pedestrians
by creating synthetic images to extend the initial dataset. People counting by us-
ing convolutional neural networks have been addressed also by [122] [124] [128]. In
particular [122] and [128] compute the density function (like in [73]) by using CNNs
and then the integral over the image domain of the density function is used to count
the number of items. On the other hand in [124] there is no density map and one
regression neuron is the network output whose value is expected to identify the
number of people in the image patch. One similar approach (with one regression
neuron in output) is proposed in [96] for the task of fruit counting. What is com-
mon to all these methods is the assumption that individual items to be counted (i.e.
people, fruits or cells in microscopy images) cover a relatively small portion of the
image. Moreover, single items can be often modeled as Gaussian kernels centered
on the location of the objects (or slightly more complexmodels, like in [128]). In sev-
eral works, it is also assumed, for training and testing purposes, that the position of
each item is known and can be used for the network training.

On the other hand in the application addressed in this chapter the items (records)
span large portions of the image, that are often nearly completely covered by records.
Also, the information about the position of each record is not available for the most
challenging dataset used in our experiments. Therefore it was not possible to use
the above methods for attaching the records counting task described in this work.

It is well known that to train CNNs it is important to use a large dataset of labeled
instances. To the best of our knowledge, there is no large data set annotated on the
basis of the number of records in the pages and therefore we need to find a solution
to this lack of data. This is not an uncommon problem and, when dealing with pat-
tern recognition tasks by using a learning system, common solutions to the scarcity
of data are based on the generation of synthetic data and the use of data augmenta-
tion. In the first case, synthetic data that emulate real ones are generated with one
suitable application. In data augmentation, the number of real data is increased by
adding distortions or noise to the existing ones. The best practice requires to use
the generated data only for training the system, while the performance should be
always computed on real data. In the item counting task synthetic images of fruits
are for instance generated in [96].

78 Record counting in historical handwritten documents

In the area of document image analysis and recognition, synthetic data genera-
tion has been used for instance tomodel the character degradation [82] or to generate
synthetic documents for performance evaluation of symbol recognition systems in
the area of graphics recognition [32]. In the field of handwriting processing, hand-
written documents have been generated by using standard cursive fonts with an
approach that is important for our research [30].

We present in Figure 5.2 one overview of the proposed approach for counting
records, this work has been published in [22]. As we can notice, one Toolkit [20]
(explained at Section 4.3) is used to generate a large dataset of pages used for the
preliminary training of the CNN. Real data are then used to fine-tune the model
and to asses the system performance in the test set. Concerning the architecture
(presented at Section 2.3), we modified the AlexNet architecture [65], the Network in
Network (NIN) architecture [76], and the VGG16 architecture [111]. In all the cases
wemodified the input size and the final and output layers in order to fit to the record
counting problem.

To evaluate the proposed approach we used two collections: one Benchmark
dataset proposed in [5] for addressing the segmentation of historical handwritten
documents (Esposalles collection explained at Section 3.1); one collection composed
by images provided by Ancestry (Brandenburg collection explained at Section 3.1).

Considering Brandenburg, we need to select a useful subset of handwritten pages
to use in the following Experiments. At Section 4.2 we have seen a rule-based tech-
nique used to select similar documents automatically.

5.2 Convolutional models
The first model used to count the number of records is based on the well-known
Alexnet architecture [113], where we changed the input size and replaced the out-
put classification layer with one regression neuron, trained to count the number of
records in the page. According to [106] we cast the counting problem as a regression
one. In Figure 5.3 (top) we graphically depict the corresponding architecture.

In the secondmodel, we extended theNetwork inNetwork [76] (NIN) architecture,
originally the output of the global average pooling is fed into one softmax layer.
In this architecture, we have one single feature map as an output map that is fol-
lowed by one global average pooling to compute the prediction about the number
of records. In Figure 5.3 (bottom) we graphically depict the corresponding architec-
ture.

The third model used to count the number of records is based on the VGG16
architecture [111], where we changed the input size and replaced the output classi-
fication layer with one regression neuron, trained to count the number of records in
the page.

5.3 Evaluating system 79

Figure 5.3: Architectures used in the experiments. Top: Regression layer added to
the NIN model. Bottom: regression layer added to the AlexNet model. A similar
change is considered for the VGG16 architecture.

The input dimensions slightly change according to the dataset. In all the cases
we scale the images preserving the original proportions to reduce the network input
size and improve generalization. With the Esposalles dataset the input images have
been scaled to 366× 256, while with the Brandenburg dataset the images have been
scaled to 450 × 190. In both cases, we used binarized images (obtained with the
Sauvola algorithm [105]) as input for both the training and test.

5.3 Evaluating system

As previously mentioned, to evaluate the proposed techniques we used the Espos-
alles collection (containing 200 pages) and the Brandenburg one (containing 4, 956
pages after clustering technique presented at Section 4.2). In both cases, we gener-
ated synthetic data as described in Section 4.3.

For the Esposalles collection we generated 81, 060 synthetic pages with associated
information about the number of records on each page. The synthetic dataset con-
tains pages with several records comprised between 3 and 9 even if the Benchmark
collection in [5] contains only pages with 5, 6, or 7 records each.

80 Record counting in historical handwritten documents

The distribution of the 4, 956 pages in the Brandenburg collection is as follows
(where (X, Y) means X pages with Y records): (127, 1), (273, 2), (356, 3), (485, 4),
(574, 5), (806, 6), (813, 7), (833, 8), (689, 9). The distribution is not balanced, but
there is a large number of pages for each number of records. For this collections we
generated 61, 914 synthetic pages with a number of records comprised between 1
and 11.

The variability of the Brandenburg collection is significantly higher than the Es-
posalles one not only because the number of records in each page range from 1 to 9
but mostly because the pages come from different sources and the layout is variable
(some examples are shown in Figure 5.5).

5.4 Experiments

In this section we describe the experiments performed to analyze the record count-
ing. Two main approaches are considered for training the models (Figure 4.7).
In the first case, we use only real data for the training phase considering the cross-
validation data for stopping the training.
In the second case, we first train the network using only synthetic images (real im-
ages are used as a validation set to stop the learning). This pre-trained network is
subsequently fine-tuned using the real images in the training set that are different
from those used as a validation set.
In both cases, the test is made with one disjoint set of real images and suitable mea-
sures are computed for performance evaluation.

Performance evaluation

As presented at Section 3.3, the system performance are measured with two values.
The Accuracy is the percentage of pages where the number of records is correctly
identified.
The Error, similar to Mean Absolute Error (MAE), is the percentage of errors in the
record count when deciding on one page at a time. This value is defined according
to Equation (5.1)where ri is the actual number of records in page i, pi is the predicted
value (bpi +

1
2c is the rounded predicted value), and N is the number of test pages.

Error =

N
∑

i=1

∣∣∣bpi +
1
2c − ri

∣∣∣
N
∑

i=1
ri

(5.1)

5.4 Experiments 81

Esposalles
In the Esposalles collection we performed several experiments to identify the best
training strategy and compare the results obtained by the proposed approach with
those described in [5] considering the same split of the data in training, validation,
and test datasets (we refer to this partitioning of data as Benchmark Split). Due to
the limited size of the dataset in [5] we performed also stratified cross-validation to
estimate the error rate on a larger dataset.

Esposalles: Benchmark Split

In the Benchmark experiments, we compare the results obtained by our systemwith
those presented in [5] using the same split (150 pages for training, 10 for validation,
and 40 for test).

Table 5.1: Esposalles dataset. Comparing different backgrounds in the Benchmark
split.

Model Initial Training Accuracy Error
weights (%) (%)

AlexNet Random Synth/W 85.0 2.6
AlexNet Synth/W Real+DA 95.0 0.8
AlexNet Random Synth/E 90.0 1.7
AlexNet Synth/E Real+DA 97.5 0.4

In the first experiment (Table 5.1) we evaluated the impact of the use of a white
background (Synth/W) instead of the background extractedwith the procedure de-
scribed in Section 4.3 (Synth/E) when building the synthetic dataset. In both cases,
the initial training is made with the synthetic images and the 160 training and vali-
dation images are used to stop the training. In the fine-tuning, we first augmented
the 160 training and validation images (see [18] for additional details) and therefore
used 1350 pages for fine-tuning and 90 as a validation set. We compared the two
training data using the AlexNet architecture and concluded that in general, it is bet-
ter to use a real background than a white one. In the subsequent experiments, we
always used extracted backgrounds.

In the second experiment, we verified that training a network pre-trained on Im-
agenet dataset might provide better results concerning a random initialization of
the weights (Table 5.2). In particular, for both the AlexNet and the NIN architec-
tures one 100% accuracy is achieved by training the pre-trained network with syn-
thetic data only. On the other hand, when using randomly initialized weights we
need to perform a fine-tuning with real data to achieve the 100% accuracy with NIN

82 Record counting in historical handwritten documents

Table 5.2: Esposalles dataset. Random initialization vs pretrained Imagenet in the
Benchmark split.

Model Initial Training Accuracy Error
weights (%) (%)

AlexNet Imagenet Synth 100.0 0.0
AlexNet Random Synth 90.0 1.7
AlexNet Synth Real+DA 97.5 0.4

NIN Imagenet Synth 100.0 0.0
NIN Random Synth 95.0 0.9
NIN Synth Real+DA 100.0 0.0

(97.5% with AlexNet). In the subsequent experiments with the Esposalles dataset,
we trained networks pre-trained on Imagenet.

Table 5.3: Esposalles dataset. Results on Benchmark split.

Model Initial Training Accuracy Error
weights (%) (%)

AlexNet Imagenet Real 87.5 2.14
AlexNet Imagenet Synth 100.0 0.0

NIN Imagenet Real 100.0 0.0
NIN Imagenet Synth 100.0 0.0

VGG16 Imagenet Real 92.5 1.29
VGG16 Imagenet Synth 100.0 0.0

[Alvaro et al][5] 80.0 -

In the third experiment, we considered one recent deepmodel still pre-trained on
Imagenet (the VGG16 architecture [111]). In Table 5.3 we report the results obtained
on the benchmark split when considering three architectures: AlexNet, NIN, and
VGG16. For each architecture, we compare the performance when fine-tuning the
Imagenet network with real data (without the data augmentation considered in the
first two experiments) and when training it with synthetic data like in the second
experiment, but without performing a fine-tuning. We can notice that the training
with real data has in general worst performance concerning the training with the
synthetic data.

In Table 5.3 we also compare the results achieved by our system with that re-
ported in [5] where the right number of records is predicted for 80% of the test doc-
uments. It is very important to observe that the system in [5] is designed to segment

5.4 Experiments 83

the records and therefore the record counting is only one additional information
that is computed from the segmentation.

From this experiment, we can notice that the networks trained with Synthetic
data provide one 100% accuracy also without fine-tuning. With these data, the NIN
slightly outperforms the other architectures.

Table 5.4: Esposalles dataset. Average results with five fold cross-validation.

Model Initial Training Accuracy Error
weights (%) (%)

NIN Imagenet Real 94.5 0.9
NIN Imagenet Synth 97.1 0.5

VGG16 Imagenet Real 86.1 2.4
VGG16 Imagenet Synth 93.5 1.1

Esposalles: Five Fold Cross-validation

Since the number of labeled pages in the Esposalles collection is limited, in this ex-
periment we tested the system with a fivefold stratified cross-validation. The Espos-
alles dataset contains 44 pages with 5 records, 152 with 6 records and only 4 with 7
records. The five folders contain, on average, 40pages each. In each foldwe used 160
pages to perform the fine-tuning using 142 pages for training and 18 as validation
set; we left the remaining 40 pages for evaluating the performance on real data.

In Table 5.4we report the average values of the results obtained in the five folders.
In this experiment, we considered the two most promising architectures: NIN and
VGG16. Like in Table 5.3 we compared the training using only real data of networks
pre-trained on Imagenet and training the same networks using synthetic data. In
both cases, one network trained using only synthetic data outperforms one network
trained using a very limited number of real data. It is worth recalling here that
for each folder we use for the Real training on average 142 real training data (the
validation set contains 18 pages). In the training (Synth) we use 81, 060 synthetic
pages while the validation and test sets are the same as the Real training.

Brandenburg
The second main group of experiments is made using the 4, 956 pages of the Bran-
denburg collection described in Section 5.3. Since this dataset is significantly larger
than the Esposalles, we made more detailed experiments. In particular, we analyze
the change of performance when varying the training set size. We split the pages
into three sets: 3, 165 pages for training, 796 for validation and 995 for the test.

84 Record counting in historical handwritten documents

Table 5.5: Brandeburg dataset. Comparison of different architectures (Random ini-
tialization of weights).

Model Initial Training Accuracy Error
weights (%) (%)

Alexnet Random Real 66.53 6.19
Alexnet Random Synth 46.63 12.40
Alexnet Synth Real 74.87 4.40

NIN Random Real 74.47 4.53
NIN Random Synth 51.26 9.84
NIN Synth Real 77.79 3.96

NIN + FC Random Real 76.38 4.18
NIN + FC Random Synth 48.34 10.72
NIN + FC Synth Real 76.98 4.06

NIN softmax Random Real 69.35 6.93
NIN softmax Random Synth 45.60 14.26
NIN softmax Synth Real 69.09 6.98

Once again the first experiments have beenperformed to identify themost promis-
ing architectures (Table 5.5). We considered architectures based on the AlexNet and
NIN models using a random initialization of weights. For NIN we considered one
versionwith the global average pooling as last layer (NIN inTable 5.6) and onewith a
fully connected layer as last layer (NIN+FC in Table 5.6). In the last case, the weights
are initialized to compute the average over the input features map. The best results
are obtained with the NIN with global average pooling. We also considered one ar-
chitecturewith the output based on one softmax layerwith 9 outputs corresponding
to the number of classes (NIN softmax in Table 5.6). Not surprisingly, in the latter
case, we obtained the worst results.

Also in this first experiment with the Brandeburg dataset the NIN architecture
outperforms the AlexNet one confirming the results for the Esposalles collection.
In almost all cases, the finetuning of a network initially trained on synthetic data
improves the results on the test set concerning the training only on real data (without
data augmentation).

One exception is the NIN softmax experiment. However, it is worth noticing that
the Accuracy and Error are worst than in the other tests. Apart from the softmax
NIN in all the cases the finetuning of a network trained with synthetic data has
higher Accuracy and lower Error with respect to a network trained on real data only.

Since this collection is larger than the Esposalles one we considered also one ex-
periment where all the training and test are made with real data and the networks

5.4 Experiments 85

are pre-trained on Imagenet (Table 5.6). For the Alexnet and NIN architectures,
the best results are obtained when finetuning with real data one network initially
trained with synthetic data. On the other hand, the training with only real data on
VGG16 pre-trained on Imagenet provides the best overall results.

Table 5.6: Brandeburg dataset. Comparison of different architectures (Imagenet ini-
tialization of weights).

Model Initial Training Accuracy Error
weights (%) (%)

Alexnet Imagenet Real 70.55 5.26
Alexnet Imagenet Synth 55.58 10.09
Alexnet Synth Real 79.90 3.66

NIN Imagenet Real 82.51 2.98
NIN Imagenet Synth 57.59 9.14
NIN Synth Real 83.22 3.08

VGG16 Imagenet Real 86.23 2.35
VGG16 Imagenet Synth 60.20 7.46
VGG16 Synth Real 85.93 2.48

Table 5.7: Brandeburg dataset. Varying the size of the data used for training or for
finetuning.

Initial Trainset size
Model Measure(%) weights Training 1/8 1/4 1/2 1/1

Alexnet
Accuracy Imagenet Real 44.22 51.15 57.39 70.55

Synth Real 65.93 71.96 77.89 79.90

Error Imagenet Real 11.55 9.61 7.99 5.26
Synth Real 6.89 5.43 4.13 3.66

NIN
Accuracy Imagenet Real 56.08 61.81 73.57 82.51

Synth Real 67.44 71.76 76.18 83.22

Error Imagenet Real 8.49 7.04 4.61 2.98
Synth Real 6.29 5.48 4.51 3.08

VGG16
Accuracy Imagenet Real 70.45 72.96 79.19 86.23

Synth Real 74.07 76.98 80.60 85.93

Error Imagenet Real 5.56 4.89 3.60 2.35
Synth Real 4.83 4.26 3.46 2.48

86 Record counting in historical handwritten documents

One of the claims of this research is that when the number of training data avail-
able is limited, then the performance can be improved by using synthetic data. To
investigate the effect of the number of training pages used for finetuning, in Table
5.7 we show the results of two of the experiments described in Table 5.6 (training
with real data one network pre-trained on Imagenet and finetuning with real data
one network trained on synthetic data) when using different sizes for the real train-
ing set. For example, the smallest training set contains 396 images (1/8 of the total
3, 165 pages available for training) and the corresponding validation set contains 104
images. The test sets are left unchangedwith respect to the experiments in Table 5.6.

Except for VGG16 trained with 100% of the data, in all the cases the finetuning of
a network trained with synthetic data outperforms the same model only trained on
real data. We can also notice that in general, the gap between the two approaches
narrows when the size of the training set increases.

To provide additional information on the results we show in Figure 5.4 the con-
fusion matrix for the results obtained with the VGG16 model. It is worth to notice
that for nearly all the types of pages the results are in a range of ±1 with respect to
the correct record count.

To further analyze the results in Figure 5.5 we show some pages in the collec-
tion with five records. From these examples, we can notice how variable are the
pages in the collection. The pages are grouped in the Figure according to the results
achieved when training one VGG16 model with the two experiments summarized
in Table 5.7. The number of records for pages in the first group is correctly identified
with both approaches. On the other hand, the number of records for pages in the
second group is not identified by either method. For instance, the first two pages in
the group have a long comment at the bottom, while in the last one the first record
has been canceled and therefore is not counted in the ground-truth.
For the groups in the bottom part of Figure 5.5 the two approaches provide differ-
ent results. In the first two pages, the first record is very difficult to read and faded
and this type of degradation was probably not properly modeled by the synthetic
document generator. The latter tool was, however, able to model the irregular dis-
tribution of records in the last three examples, that are probably rare in real training
pages.

5.5 Summary
In this chapter we have explained how to use a CNN-based architecture to count
the number of records contained in handwritten documents. We can summarize
this chapter as follows:

• Having structured documents it is useful to perform record counting to eval-

5.5 Summary 87

Figure 5.4: Confusion matrix for the best VGG16 model.

uate the collection content.

• It is possible to use CNN-based architecture to count the number of records
contained inside a page only if we have enough labeled data for training.

• Using DocEmul is possible to produce synthetic data to train a deep network
properly.

• Pre-trainednetworks and synthetic data to extend the original dataset are good
combinations to train deep models to prevent over-fitting.

88 Record counting in historical handwritten documents

Imagenet: C Synth: C Imagenet: E Synth: E

Imagenet: C Synth: E Imagenet: E Synth: C

Figure 5.5: Brandenburg dataset. Examples of pages and record counting results for
the VGG16 model and training starting from Imagenet or Synthetic initial weights
(as in Table 5.7). C means a correct record count, while E means an error in the
record count.

Chapter 6

Historical handwritten page analysis

Handwritten historical documents arewidely available inDigital Libraries and archives.
As we have seen in Chapter 5, understanding handwritten historical documents is
a challenging task that includes several sub-problems. One of the first steps is to
segment and extract text lines which could be recognized in subsequent phases
to understand the document content. The layout analysis of handwritten docu-
ments can be very difficult, because of the variable layout structure, the presence
of decorations, different writing styles and degradations due to the aging of doc-
uments. In the last years, different techniques have been proposed to address this
task [24, 99, 119]. In particular, to extract text lines from handwritten documents
we can consider two types of related problems. Considering the page segmenta-
tion task the target is to split a document image into regions of interest [24]. These
approaches extract regions of interest which are considered as text lines and often
provide similar results when considering handwritten documents.

Among several solutions proposed to solve this task, some use assumptions sim-
plify the approach. In [90] the authors assume that for each text line there is one path
from one side of the image to the other that crosses only one text line. Based on this
assumption, they trace the text line after the blurred image transformation extract-
ing directly the text lines. One old-fashioned technique to detect text lines in the
historical document is based on the Run Length Smearing Algorithm (RLSA) [121].
In [92] the authors propose to extract text lines with a modified version of RLSA,
in this case, they add connected components, whitespaces, punctuation marks, and
skeleton of the strokes knowledge to the smearing process.

Later, it has been proposed another solution [41] where the authors can extract
text lines from handwritten pages using Hough transform and the page structure
as prior knowledge. Another great solution [8] has been proposed to segment text
lines constructing distance transform directly on the gray-scale images and comput-
ing two types of seams (medial seams and separating seams) on that. The medial
seam means the text area of a text line, the separating seam means the path that

89

90 Historical handwritten page analysis

passes between two consecutive rows. The medial and separating seams are com-
puted using dynamic programmingwhich relies on generating an energymap. This
energymap is based on the constructed distance transform and encodes theminimal
cost of the valid paths.

In Section 2.2, many different CNN architectures have been presented to solve
several computer vision tasks. One important task is the image semantic segmen-
tation whose goal is to classify each image pixel into one of several different classes
highlighting homogeneous object regions. One interesting solution adopts a Fully
Convolutional Network (FCN) [108] composed only by convolutional and pooling
operations used to learn representations based on local spatial input to compute
pixel-wise predictions. The FCNs concerning CNNs architectures do not use fully
connected layers and use upsampling layers as deconvolutional operators.

In this chapter, we show two different approaches to layout problems which use
prior information to perform document analysis effectively.
The first approach addresses text line extraction. We define a CNNmodel to classify
extracted patches from an input image to detect different document regions as text
lines. This approach has been published in [21]
The second system is based on an FCN network to segment input image into docu-
ment semantic regions. This system has been described in [23]

6.1 Patch-based system for text line extraction

In our research we deal with handwritten documents having different layouts. As
we know, on each page, the distance between text lines is quite regular. We can use
this prior knowledge to streamline the document analysis, then we can localize the
text lines and the line separators by using a suitably trained neural network model.

Firstly, to train a patch-based CNNmodel we need to create a suitable document
representation. To this purpose, for each training page, we estimate the average
distance between text lines, then we extract rectangle random patches with height
related to the previously estimated line distance. The extracted patches are labeled
according to ground truth information and used to train the convolutional network.
Subsequently, we design a text line separator. For each test page, we estimate the
average distance between text lines and use this information to extract dense patches
that are classified using the trainedmodel. The classified patches are then combined
to obtain an overall page segmentation.

In the following sections, we describe in detail how we estimate the patch di-
mension to create the dataset for training the CNN model. Then, we analyze the
proposed application scenario and discuss the results obtained from experimental
datasets.

6.1 Patch-based system for text line extraction 91

(a) Input image (b) Projection lines

(c) Computed maximum peaks

Figure 6.1: Steps to estimate the dsistance between text lines in one page.

Adaptive estimation of patch dimension

This text line segmentation approach is based on a patch-wise representation of doc-
ument images. A patch is expected to cover an image region containing text or back-
ground. Therefore, in the pre-processing phase, we need to estimate the average
distance between text lines. As we can notice in Figure 6.1 there is a certain regu-

92 Historical handwritten page analysis

larity in the distance between two contiguous text lines, and this regularity can be
used to set the height of patch size for each page. Subsequently, we can define two
semantic regions: a patch could be labeled as text line separator (the patch covers
separators between contiguous text lines); a patch could be labeled as text (the text
is contained in the patch).

Estimate average text line distance

To estimate the average text line distance we need to compute several steps. In the
first step, we remove black bands at the top and bottom borders of the page. Then,
we compute the projection profile along the vertical dimension and find its local
maxima. So, we retain only the peaks larger than 20% of the maximum.

Considering these peaks, we can compute the distribution of distances between
pairs of neighboring peaks. This set of values can be fitted by two centroids using
the k-means algorithm. In the end, we take the minimum centroid which defines
the average distance between lines. The main steps are depicted in Figure 6.1 where
we show one input image, the computed projection profiles, and the peaks used to
define the distance distribution.

With this procedure, it is possible to estimate the text line distance for each page.
This distance is subsequently used to define the size of the patches extracted from
the page.

Patch definition

After the average text line distance estimation, ĥ, we define the patch size (height,
width) as (ĥ ·

√
2, ĥ√

2
). The patch height is defined to capture almost two contigu-

ous text lines with one separator (space or other) in between. The patch size has
been chosen after some preliminary tests. In general, we can observe that the clas-
sification of variable-size patches is a good option to be independent of the text line
distance in the input image. A dense patch extraction with overlapping can cover
all the lines providing a good hint in the presence of text line separators.

Patch-based classification system

Taking into account the physical structure of the documentswe can define two types
of areas: the text line and the separator (page area between two contiguous text
lines). For the subsequent steps, it is also useful to define the median line and the
separator line. Themedian line on the text is the middle line between the top profile
and the bottom profile. The separator line is the middle line between two consecu-
tive median lines in the text area. We can see these lines in Figure 6.2, in particular,
we show three text lines extracted from one page representing the top and bottom

6.1 Patch-based system for text line extraction 93

Figure 6.2: Examples of separator and median lines and the corresponding top and
bottom profiles.

profiles with black lines, the separator and median lines in blue and red. These two
types of lines can be used to label the extracted patches and subsequently train a
CNN-based system for line segmentation task. However, the previous information
is not always available in the ground truth of the document dataset. Therefore we
need to compute this representation from the available ground truth data.

For example, the ground truth of the Saint Gall dataset (more details in Section
3.1) is available as pixel-label images defining the text area. In this case, we can
compute the median line for each text line starting from the pixel-level information.
After that, we compute the separator line as the midpoint between two consecutive
median lines. In Figure 6.4 we can see one example of the Saint Gall dataset and the
corresponding ground truth information. Using this information we can compute
the previously defined guidelines to label the extracted patches.

Unfortunately, sometimes the ground truth data does not contain this pixel-level
labeling. In these cases, we manually define only the separator lines and use this
information to identify also text lines. More details on how to extract and label
patches are described in Section 6.2. Using the document structure and the ground
truth information, we can label each patch as separator, text, or background. The
assigned class depends on the area covered by the patch on the document.

Network architecture

In Section 2.2wehave seen several convolutional network architectures, for this topic
we have extended Network in Network [76] (NIN) model. This architecture (Figure
6.3) consists of some stacked blocks (mlpconv layer) where each block is composed
by a classical convolutional operator followed by a Multi Layer Perceptron (Figure
2.4).

For this topic, we use a modified version of the original architecture. In the first
mlpconv layer we have a convolutional layer with a kernel dimension of 3× 7× 7
computing 96 feature maps with stride 2 and padding 3. In the second mlpconv
layer we have a convolutional layer with a kernel dimension 96× 5× 5 computing
256 feature maps with stride 1 and padding 2. In the third mlpconv layer we have

94 Historical handwritten page analysis

Figure 6.3: The architecture of the model. Different transformations are depicted
with different colors. Themlpconv transformation is depicted in orange, the pooling
undersampling in green and the input and output layer in white. The output result
is composed by three classes.

a convolutional layer with a kernel dimension 256× 3× 3 computing 384 feature
maps with stride 1 and padding 1. After that, we have a dropout layer [56] which
randomly selects 50% of input neurons during the training phase. In the fourth
mlpconv layer we have a convolutional layer with a kernel dimension 384 × 3 × 3
computing 1024 featuremapswith stride 1 and padding 1. For the lastmlpconv layer,
we define the number of featuremaps according to the number of classes in our task.
We compute the global average pooling over the previous feature maps providing
them to the softmax layer which models the distribution over the class labels. We
use the stochastic gradient descent to train a model initialized with random weight
values. The training is stopped on the best classification accuracy on a validation set.
We use the Adam optimization algorithm [61] with a fixed learning rate of 0.0001
with momentum (0.9, 0.999) for the training phase.

The overall architecture can be seen in Figure 6.3. The model is composed of
four mlpconv and pooling layers. In orange, we denote the mlpconv transformation,
in green the pooling transformation layer. For the last mlpconv we compute 1024
feature maps until the second inner product, instead, for the last inner product we
have the number of neurons according to the output classes.

6.2 Evaluating patch-based system

In this section, we describe the experiments on two different datasets comparing the
results obtained by the proposed system.

Extracted patches

As previously mentioned, the first step is to extract patches needed to train the
model. This extraction is based on the ground truth of the training set. As previ-
ouslymentioned, for this researchwe consider two datasets having different ground
truth information.

6.2 Evaluating patch-based system 95

(a) sample (b) text lines

(c) median and separator
lines

Figure 6.4: In (a) one page from the Saint Gall dataset, in (b) the corresponding
ground truth pixel-wise representation for each text line, in (c) the computed me-
dian text lines in red and the separator text lines in blue.

In the Saint Gall dataset, we have one XML file for each document that describes
very detailed layout information. The XML file contains a pixel-wise representation
for each text line. One example of this dataset is presented in Figure 6.4 where we
can see an input document, a pixel-wise representation of the ground truth for each
text line, the computed median text line, and the text separator.

The ground truth produced for the Branden-ancestry dataset defines only the sep-
arator line between two adjacent text lines. In Figure 6.5 we can see one image ex-
ample and its ground truth image.

96 Historical handwritten page analysis

(a) Input (b) Ground truth

Figure 6.5: An input image from Branden-ancestry collection with its ground truth
image.

Considering these labeled datasets we can build a large patch dataset to learn the
proposed CNNmodel. We have seen how to compute the average distance between
text lines; using this information we can extract a patch with suitable dimensions
to understand the document structure. Following the ground truth guidelines, in
the first dataset, we can define patches for three classes (text, separator, and back-
ground) while only two classes can be considered for the second dataset. We can
easily control the number of training patches for each class defining a uniform dis-
tribution of labeled patches. We then scale each extracted patch to a fixed size of
128× 64 pixels.

In these two experiments for each class, we considered 100, 000 training patches
and 30, 000 validation patches. We extract patches from each test image as described
in the following sub-section. For instance in the Saint Gall dataset the number of
patches for each page is around 600, 000 (the number is not fixed since the patches
are not extracted for background areas).

Textline identification

The text line identification is made by extracting dense patches on the test images.
Using a slidingwindowwith the estimated dimensions, we classify the patches. The
model used gives us an estimate of the probability for each class. This information
can be used to infer the position of the lines in the image. We move the sliding
window on the image with a stride size equal to 10% of the patch width and 1% of
the patch height. In this way, we can compute several scores for the same position.
We then compute the average probability along the horizontal direction concerning

6.2 Evaluating patch-based system 97

Figure 6.6: Textline identification: for each patch one prediction is computed and
results are combined to segment the page into three classes: background in blue,
text line in green and separator in red.

(a) input (b) probability map (c) results over input image

Figure 6.7: Probability Map to localize text line separators. In (a) the input image,
in (b) the probability map computed by our framework and in (c) the results after a
threshold over the input image.

the patch dimension. This approach is depicted in Figure 6.6 where we describe
the test procedure. In particular, we can see how we extract dense patches form the
input image and also how we compute the probability score for the whole page.

Preliminary Results
We present preliminary results obtained by our proposed system.

In the Branden-ancestry dataset, the ground truth considers only text line sep-
arators, therefore we can have only two classes: text separator and no text separator

98 Historical handwritten page analysis

(a) input image (b) results for separator lines (c) results for text lines

Figure 6.8: Results obtained on the dataset with three classes. In (a) the input image,
in (b) the results for separator lines and in (c) the results for text lines.

(background or text). The architecture used for this task is the same presented be-
fore. However, in the last mlpconv we have one output from two computed feature
maps. After the testing phase, in Figure 6.7 we show the model results displaying
only the probability score computed by the softmax operator. Moving a window
over the input image, we compute a probability score for each position. We can de-
fine the text areas computing the average probability score as we can see in Figure
6.7b. This probability score represents the text line separator presence. The final
result will be a probability map where we can discover the separator position. In
this case, having only two classes, we define a global threshold on the probability
density map predicting the text line separator. The prediction results considering
a predefined global threshold can be seen in Figure 6.7c where we choose 0.7 as a
threshold value to detect the text line separators.

In theHisDoc project, we have amore detailed ground truthwherewe can define
median text lines and separator text lines. Using this information, we can use the
proposed solution to predict three classes: text, separator, and background. With
this information, we can infer the text and separator line positions. An example of
this approach is shown in Figure 6.8 where we can see two different results, one for
each class. In Figure 6.8b we highlight the area between text line (separator class),
while in Figure 6.8c we we highlight the text line area (text line class).

6.3 Pixel-wise page segmentation 99

(a) Original page (b) Original ground truth

Figure 6.9: One document example from the dataset and its ground truth image.
The background area is in red, decoration in blue and text in green.

6.3 Pixel-wise page segmentation
In this section, we address the page segmentation using one Fully Convolutional
Network and assigning different weights to the image pixels to compute an ad-hoc
training loss designed to address the proposed task. In this way, we aim at classify-
ing with better results in some areas of the image that are more critical to perform
the text line extraction, without using dedicated post-processing techniques.

We segment historical handwritten pages byusing one FCN-basednetworkwhich
is trained directly on document image (large) patches to produce a pixel-wise pre-
diction to recognize different regions of interest in the input image. The documents
addressed in our experiments have three different semantic classes: background,
text, and decoration. An example of one input image with its ground truth can
be seen in Figure 6.9, differently from Section 6.1, we use all the information from
ground truth data to produce a pixel-wise classification.

Several architectures have been proposed to address the semantic segmentation.
One model that gained attention in biomedical image segmentation is the U-net
[101]. We propose a neural network that is strongly inspired by the U-net model
to segment each page in different semantic regions. To map the features into a clas-
sification score we use the Softmax operator to predict the probability score related
to the semantic segmentation. In particular, we compute pixel-wise classification
scores to determine a class for each input pixel. In the basic approach, we use the

100 Historical handwritten page analysis

Figure 6.10: Moving a sliding window over the input image, we compute a pixel-
wise classification score for each patch. The results are combined by averaging the
scores of overlapping patches.

cross-entropy loss function to train the model from random weights initialized us-
ing the technique proposed by [45]. This loss function is then modified to take into
account the peculiarities of the proposed problem which we want to explain in this
section.

To build the training set we randomly crop several patches with a fixed size from
each document image. To maximize the differences between training patches the
maximum overlap between patches is set to 25%. Similarly to Section 6.1 for the test-
ing phase, we systematically extract document patches from the input image with
an overlap of 50%. For each pixel, the final prediction is the average of the probabil-
ity scores computed by the neural network for all the overlapping probability maps
as illustrated in Figure 6.10.

Weighting the loss function
Performing a good page segmentation is a difficult operation caused by several re-
lated issues. One significant problem is the unbalanced pixel class distribution.
Having a look at Figure 6.9 we can see that the pixel distribution is highly unbal-
anced for background pixelswith respect to the foreground pixels (considering fore-
ground as text and decoration parts). We can notice also that some background pix-
els are very important to segment text lines. Often the text lines are very close to

6.3 Pixel-wise page segmentation 101

each other and in this case, some misclassification errors of pixels between two text
lines could give rise to significant problems for properly segmenting contiguous text
lines.

The model is trained using a categorical cross entropy. One possibility to give
different cost values to the input during the training is to add one weighted map to
the loss function

WCE = − ∑
x∈Φ

w(x) log pq(x)(x) (6.1)

where Φ ⊂ Z2 is the set of pixel positions, q : Φ→ 1, . . . , K maps input pixels to the
class label of the predicted distribution p (K is the number of classes), w : Φ → R+

is the weight function that maps each pixel x to a suitable weight.
Considering Equation 6.1, we define a weighted map function w(x) which as-

signs a cost to each pixel considering the class frequency and the contributionwhich
could provide in the segmentation task. Considering the set of pixels Φ in the mini-
batch used to compute the loss function, we define aweight map to balance the class
frequency and also to put more attention in specific areas that are useful to segment
different regions properly. Therefore, the weight map includes two aspects of the
document, background and foreground areas. Formally, the weight map assigns to
a pixel x one weight balancing the pixel class frequency with a factor α and man-
aging the background pixels with a predefined weight mask β(x) (described in the
following section), such that:

w(x) =

{
α x ∈ Φ f

β(x) x ∈ Φb
(6.2)

where the foreground pixels Φ f ⊂ Φ represent text and decoration areas, while
Φb ⊂ Φ represent background pixels.

Considering Φ the set of pixels for each mini-batch, the foreground pixel fre-
quency is a variable number (usually |Φ f | < |Φb|). To balance the foreground areas,
we apply a factor α as |Φb|

|Φ f |
computed for each mini-batch. Having a pixel weight re-

lated to the class frequency we can balance the loss function improving the training.
As previously mentioned, not all background pixels have the same importance

concerning the overall performance. In particular, misclassification errors between
contiguous text lines could give rise to improper segmentation of the text lines. To
address this problem, we define one training rule weighting more the background
pixels between different regions (text lines or decorations). This topological con-
straint is a rule which could be defined directly into the weighted map (Equation
6.2) defining a weighed mask β(x) for the background area as described in the fol-
lowing.

102 Historical handwritten page analysis

Figure 6.11: Creation of the weighted mask of a ground truth page. In the third
image, after merging the GT for region 1 and region 2 we can see pixels closer to
both regions give a larger contribution to the weight mask.

Weighting background pixels

The weighted mask β(x) gives more emphasis on background pixels considering
the distance between two contiguous lines. The background pixels have a classifi-
cation cost inversely proportional to the distance between two contiguous text lines.
To this purpose, the weight mask assigns to each background pixel one value con-
sidering the distance to the nearest line (a larger distance gives a smaller value and
vice versa). For the other background pixels, the weight masks β(x) returns a fixed
(neutral) weight value.

To compute the weight mask β(x) we first transform the ground truth image
representation from three to two region categories by merging text and decorator
as foreground and the rest are background pixels. Considering this representation,
taking a foreground region per time, we compute the distance transform which de-
signs level curves from the region borders to a defined maximum distance d. An
example of these level curves is shown in Figure 6.11 (region one) where the level
curve value (in false colors) decreases when increasing the distance from the closest
region border.

These level curves encode one information useful to consider the distance to the
nearest regions. Iteratively, computing a level curve for each region and summing-
up these values we can produce an overall weight mask. In this way, when the
regions are close to each other, the level curves are summed providing a larger value
when the regions are closer. The largest value is obtainedwhen the distance between
the two regions is only one pixel. We force the range of values for the level curves
to be between 0 and 1. By using a factor λ to multiply α (Section 6.3) we obtain
that some pixels (close to text border) in the background area have the mask values
larger than foreground regions.

Considering a binary representation I of the ground truth image, for each re-

6.4 Evaluating pixel-wise page segmentation 103

gion ri at time i, we compute the level curves on the basis of the distance transform
distd(ri) limiting this representation until amax distance d. We can consider the area
around all the region borders with a maximum distance of d is a dilation operation
with kernel d.

In this way, the mask for an image with N regions is:

β(x) =

{
1 + λα

2d · (∑
N
i distd(ri)) x ∈ dilated(I)

1 otherwise
(6.3)

where dilated is themorphological dilation operator with kernel d useful to consider
the area where the weight mask has a variable number. For the remaining pixels in
the page, the weight mask maps pixels to a neutral value.

We illustrate in Figure 6.11 the approach to compute the weight mask. Starting
from a ground truth image we compute a binary representation with foreground
regions and background. For each region, we compute the distance curve levels as
dist(ri) which are sequentially summed with the next region representations. The
final result is the computed mask for all the pixels x ∈ dilated(I) which are the
critical pixels where we want to put more emphasis during the training to learn
background representation. To provide a better idea about the critical pixels, in
Figure 6.12 we highlighted in red the critical pixel areas.

6.4 Evaluating pixel-wise page segmentation
In this section we describe the experiments performed to test the previously pro-
posed model to segment historical document images. The tests have been made on
the Saint Gall dataset (Section 3.1).

We evaluate the model performance using four metrics applied to semantic seg-
mentation proposed by [108]. These measures are based on pixel accuracy and re-
gion intersection over union (IU). In particular, we evaluate the performance using:
pixel accuracy, mean pixel accuracy, mean IU, and frequencyweighted IU (f.w. IoU).

Let nij be the number of pixels of class i predicted to belong to class j (in total
there are ncl classes), and ti = ∑j nij be the total number of pixels of class i. We can
express the measures as:

• Pixel accuracy

pix.acc. = ∑i nii

∑i ti
(6.4)

• Mean accuracy

mean.acc =
1

ncl
∑

i

nii

ti
(6.5)

104 Historical handwritten page analysis

(a) input (b) crical pixels

Figure 6.12: Given a input page, we can define the critical pixel areas (red) around
the semantic regions found into the ground truth representation.

Model pix.acc. mean.acc. mean.IoU f.w.IoU
Baseline (CE Loss) 98.07 95.12 90.80 96.27
Weighted (CE Loss) 98.03 94.75 90.88 96.18
Chen et al. [24] 98 90 87 96

Table 6.1: Results for overall performance measures.

• Mean IoU (Intersection over Union)

mean.IoU =
1

ncl
∑

i

nii

ti + ∑j(nji − nii)
(6.6)

• Frequency weighted IoU

f .w.IoU =
1

∑k tk
∑

i

tinii

ti + ∑j(nji − nii)
(6.7)

The previous metrics are used to define a global evaluation for whole pages. To
better evaluate the performance, we also define one local pixel accuracy considering
only the area around the foreground regions. In Figure 6.12we depict in red the area
around foreground regions where the local pixel accuracy is computed. This area
is important to extract text lines because misclassification pixels in it could give rise
to a wrong layout analysis.

In the experiments, we trained the proposed model using the extracted patches
from the original training pages and learning the parameters by the Stochastic Gra-
dient Descent algorithm. The training dataset is composed of several patches of
size 256× 256 pixels randomly extracted from the input pages. Overall the training
dataset contains 299, 756 patches. We use the test set pages to evaluate the models
comparing the proposed learning methods.

6.5 Summary 105

Model Critical Pixel accuracy DR RA FM
Baseline (CE Loss) 95.65 77.81 83.48 80.55
Weighted (CE Loss) 96.25 81.28 86.18 83.65

Table 6.2: Results for critical pixel classification and text lines extraction [95].

In Table 6.1 we report the results for page segmentation on the Saint gall dataset
and compare with previous results on the same dataset reported by Chen et al. [24].
The proposed model obtains good results compared to [24] the use of the standard
cross-entropy loss. We improve the mean IoU by using the proposed weighted loss.
These metrics evaluate the page segmentation globally, but as we previously men-
tioned somemisclassification errors havemore importance in the final segmentation
results.

The results reported in Table 6.2 show the critical pixel accuracy. This measure
is useful to evaluate the models after the training by different losses. Using the
proposed weighted loss function we can obtain better results which could be useful
to extract text line directly after the page segmentation.

For a qualitative evaluation of results, we show in Figure 6.13 a part of one page
and two results, one from a model trained with cross-entropy loss and the other
from amodel trainedwith the proposedweighted loss. We can notice that themodel
trained with the weighted map can better perform the text line segmentation task.

To evaluate the trained models with the measure proposed by [95] the model
trained by weighted loss obtains Detection Rate (DR) and Recognition Accuracy
(RA) respectively better than the model trained by cross-entropy loss. Comparing
these scores in Table 6.2 the model trained by the proposed approach can extract
more accurate text lines than the baseline model.

The proposed approaches are very good for a pixel-wise classification task; in the
text line extraction, solutions based on deep architectures are not so good compared
to an old-fashioned solution[8]. In [8] the author proposed a method to generate an
energy map encoding the minimal cost of the global valid seams.

Recently, in [4] the authors propose a solution based on an FCNarchitecturewith
post-processing phase based on seam curving. We could extend our pipeline com-
puting seam curving on the resulted feature maps, this post-processing step could
help the system to extract text lines properly improving the overall performances.

6.5 Summary
In this chapter, we presented our results for layout analysis on historical handwritten
documents. The major points to recall are as follows:

106 Historical handwritten page analysis

(a) Input

(b) CE

(c) Weighted CE

Figure 6.13: Different results obtained with one model trained using cross entropy
loss and one with weighted cross entropy loss,

• It is possible to extract whole text line from handwritten pages by using a
patch-based system after an estimating the average distance between contigu-
ous text lines.

• Patch-based convolutional network can classify patches into text or no text re-
gions to detect text lines in historical documents.

• Thepreliminary results obtained by the patch-based systemare a good starting
point to extract text lines showing that CNNs are suitable for this task.

• Fully convolutional based networks can produce very good results for the page
segmentation task

• Defining a domain-specific loss function we can weight pixel classification er-
rors related to their position in page layout. In this way, we can guide the
learning using prior information as soft-constraints.

Chapter 7

Conclusions

In this Ph.D. work, we have addressed document image understanding by using
deep learning methods. We have investigated how to use these techniques on lay-
out analysis of historical handwritten documents and on graphical document under-
standing. Thanks to a large number of parameters, deep networks can fit a variety
of complex datasets. Unfortunately, for the proposed topics, the scarcity of labeled
data for training deep networks in a supervised manner has been one of the major
issues to be addressed in this research. We have proposed several solutions to solve
overfitting by extending the labeled dataset or adapting the learning schema.

In Chapter 2 we presented a brief introduction on document image understand-
ing applications followed by an explanation of recent deep learning methods for
various application domains. Some of these architectures have been applied and
adapted to our research. Chapter 3 was devoted to present the datasets used to eval-
uate the proposed methods. Also, suitable metrics have been presented to compare
results guiding a better understanding of model performance.

In Chapter 4 we tackled the problem of data scarcity proposing an interactive
annotating system that helps users for labeling floor plan images for object detec-
tion. We trained deep network architectures for object detection using our dataset
showing good preliminary results. Our deep learning solution gives detection re-
sults in one step differently to old-fashioned solutions based on the segmentation-
recognition paradigm. Still in Chapter 4 we proposed a dataset selection technique
useful to create a better training data for layout analysis. Since it is important to re-
duce intra-class variance in datasets to improve the learning process, we exploited
out page clustering technique for data selection. In the end, we presented a toolkit to
generate synthetic handwritten documents using a few examples to emulate. With
a similar aim, we proposed a generative model to produce floor plan symbols to be
used for automatic floor plan generation. All these methods are useful to select or
generate data to train deep architectures.

Chapter 5 described a solution for layout analysis in historical handwritten docu-

107

108 Conclusions

ments that addressed record counting. The obtained results demonstrated how the
document generator proposed in Chapter 4 is able to produce synthetic documents
to extend original training data useful to improve the performance of trained deep
networks. We also compared different deep architectures showing their peculiari-
ties.

In Chapter 6 we presented two different approaches for layout analysis in histor-
ical handwritten documents by segmenting text regions. The first was a CNN-based
method for a patch-wise classification to extract contiguous text lines. The second
was a FCN-basedmethod to classify pixels in semantic categories to produce a com-
plete page segmentation.

In this research, we have seen how deep learning methodologies could be con-
sidered as a general framework that could be adopted in different applications. Of
course, themain factor in the learning is data, we have seen also how towork around
this factor generating the data distribution which we want to capture in our predic-
tion tasks. It is possible to use deep networks as general-purpose solutions that can
be specified to a particular need adding ad-hoc operations in the same computa-
tional process.

7.1 Future works

Layout analysis in historical handwritten structured documents and its associated
sub-tasks, such record counting, text line extraction and page analysis have gained
interest from many researchers. As presented in this thesis, new toolkits and deep
network methodologies show very promising generalization capabilities. However,
there is still a long path to explore in order to extend the capability of actual auto-
matic systems to reach a full document image understanding.

Related to layout analysis, we are extending the DocEmul toolkit to identify a
technique to generate the XML configuration file semi-automatically starting from
few real documents. Moreover, we are studying the information that can be ex-
tracted from the feature maps in the convolutional neural networks after the train-
ing on the produced synthetic data. This type of information can be of interest for
understanding which parts of the input image are more informative to perform the
record counting task. The latter study may lead at the end to address the record
segmentation with deep convolutional networks.

Related to graphical document understanding, we will apply modern object de-
tectors to our labeled floor plan images in order to add also the information related
to the spatial relationship between objects trying to improve the results.

7.2 Contributions 109

7.2 Contributions
In this Ph.D. dissertation, we have made both practical and methodological contri-
butions to document image understanding, in terms of historical handwritten layout
analysis and graphical document processing. We have studied the following aspects
of learning deep networks methods for the proposed topics:

• an interactive method to help the user in the graphical document annotation
process;

• clustering techniques on historical handwritten documents;

• rule-based system to emulate the handwriting process;

• generative model to produce graphical symbols;

• generating synthetic data to extend dataset with a small amount of labeled
data;

• define custom loss with prior knowledge for page segmentation to prevent
local errors;

• use deep architectures for object detection in floor plan images.

For document image understanding we dealt with the problems behind histori-
cal handwritten layout analysis and graphical document processing. For historical
handwritten layout analysis, we proposed a novel solution to address the scarcity
of labeled data for training deep networks. These contributions are summarized as
follows:

• weproposed a novelmethod to generate synthetic handwritten and structured
documents for training deep network architectures;

• we extended a small labeled dataset with generated handwritten documents
for training deep architectures;

• we proposed a novel domain-specific training loss for page segmentation task;

For graphical documents the two major contributions could be summarized as
follows:

• we implemented an interactive annotation tool to reduce the time for labeling
documents;

• we made experiments on an object detection system for floor plan image;

Appendix A

Publications

The work of this dissertation has led to a number of peer-reviewed publications and
service to scientific community.

Journal papers
1. SamueleCapobianco, SimoneMarinai “Deepneural networks for record count-

ing in historical handwritten documents.”, PatternRecognition Letters, pages:103–
111, 2019. Candidate’s contributions: designed algorithms, designed soft-
ware toolkit, learning procedure

Peer reviewed conference papers
1. SimoneMarinai, SamueleCapobianco, ZahraZiran, AndreaGiuntini andPier-

luigiMansueto, “Recognition ofConcordances for Indexing inDigital Libraries.”
IRCDL,Accepted, 2020. Candidate’s contributions: document analysis

2. Samuele Capobianco, SimoneMarinai “DocEmul: A Toolkit toGenerate Struc-
tured Historical Documents.” ICDAR, pages:1186–1191, 2017. Candidate’s
contributions: designed algorithms and software toolkit

3. Samuele Capobianco, Simone Marinai “Text Line Extraction in Handwritten
Historical Documents.” IRCDL, pages:68–79, 2017. Candidate’s contribu-
tions: designed algorithms

4. SamueleCapobianco, Luca Facheris, FabrizioCuccoli and SimoneMarinai “Ve-
hicleClassificationBased onConvolutionalNetworksApplied to FMCWRadar
Signals.” TRAP, pages:115–128, 2017. Candidate’s contributions: designed
algorithms

5. Muhammad Zeshan Afzal, Samuele Capobianco, Muhammad Imran Malik,
SimoneMarinai, ThomasM. Breuel, AndreasDengel andMarcus Liwicki “Deep-

111

112 Publications

docclassifier: Document classification with deep Convolutional Neural Net-
work.” ICDAR, pages:1111–1115, 2015. Candidate’s contributions: designed
model for experimets

Workshop papers
1. SamueleCapobianco, Leonardo Scommegna, SimoneMarinai “HistoricalHand-

writtenDocument Segmentation byUsing aWeightedLoss.”,ANNPR, pages:395–
406, 2018. Candidate’s contributions: designed algorithms, desiged loss func-
tion

2. Samuele Capobianco, Simone Marinai “Record Counting in Historical Hand-
written Documents with Convolutional Neural Networks.”,DLPR, 2016. Can-
didate’s contributions: designed algorithms

Papers under review
1. Anuradha Madugalla, Kim Marriott, Simone Marinai, Samuele Capobianco,

CagatayGoncu “CreatingAccessibleOnline Floor Plans forVisually Impaired”,
TACCESS. Candidate’s contributions: labeling system

Bibliography

[1] Abe, K., Iwana, B. K., Holmer, V. G., and Uchida, S. (2017). Font creation us-
ing class discriminative deep convolutional generative adversarial networks. In
ACPR 2017, pages 232–237.

[2] Afzal, M. Z., Capobianco, S., Malik, M. I., Marinai, S., Breuel, T. M., Dengel, A.,
and Liwicki, M. (2015). Deepdocclassifier: Document classification with deep
convolutional neural network. In 13th International Conference on Document Anal-
ysis and Recognition, ICDAR 2015, Nancy, France, August 23-26, 2015, pages 1111–
1115.

[3] Ahmed, S., Liwicki, M., Weber, M., and Dengel, A. (2011). Improved automatic
analysis of architectural floor plans. In 2011 International Conference on Document
Analysis and Recognition, pages 864–869. IEEE.

[4] Alberti, M., Vögtlin, L., Pondenkandath, V., Seuret, M., Ingold, R., and Liwicki,
M. (2019). Labeling, cutting, grouping: an efficient text line segmentationmethod
for medieval manuscripts. CoRR, abs/1906.11894.

[5] Alvaro, F., Fernandez, F. C., Sánchez, J., Terrades, O. R., and Benedí, J. (2015).
Structure detection and segmentation of documents using 2d stochastic context-
free grammars. Neurocomputing, 150:147–154.

[6] An, G. (1996). The effects of adding noise during backpropagation training on a
generalization performance. Neural Computation, 8(3):643–674.

[7] Arora, S., Bhaskara, A., Ge, R., and Ma, T. (2014). Provable bounds for learning
some deep representations. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 584–592.

[8] Asi, A., Saabni, R., and El-Sana, J. (2011). Text line segmentation for gray scale
historical document images. In Proceedings of the 2011 Workshop on Historical Doc-
ument Imaging and Processing, HIP@ICDAR 2011, Beijing, China, September 16-17,
2011, pages 120–126.

[9] Baird, H. S. (2007). The state of the art of document image degradation mod-
elling. In Digital Document Processing, pages 261–279. Springer.

113

114 BIBLIOGRAPHY

[10] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A.,
Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed improve-
ments. Deep Learning andUnsupervised Feature LearningNIPS 2012Workshop.

[11] Becker, C. and Duretec, K. (2013). Free benchmark corpora for preservation
experiments: Using model-driven engineering to generate data sets. In Proceed-
ings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’13, pages
349–358. ACM.

[12] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A
review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–
1828.

[13] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166.

[14] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPUmath
expression compiler. In Proceedings of the Python for Scientific Computing Conference
(SciPy). Oral Presentation.

[15] Bhattacharya, U., Plamondon, R., Dutta Chowdhury, S., Goyal, P., and Parui,
S. K. (2017). A sigma-lognormal model-based approach to generating large syn-
thetic online handwriting sample databases. International Journal on Document
Analysis and Recognition (IJDAR), 20(3):155–171.

[16] Blei, D. M., Kucukelbir, A., andMcAuliffe, J. D. (2016). Variational inference: A
review for statisticians. CoRR, abs/1601.00670.

[17] Bulacu, M., van Koert, R., Schomaker, L., and van der Zant, T. (2007). Layout
analysis of handwritten historical documents for searching the archive of the cab-
inet of the dutch queen. InNinth International Conference on Document Analysis and
Recognition (ICDAR 2007), volume 1, pages 357–361.

[18] Capobianco, S. and Marinai, S. (2016). Record counting in historical handwrit-
ten documents with convolutional neural networks. In Proc. 1st Int.l Workshop on
Deep Learning for Pattern Recognition, DLPR, volume abs/1610.07393.

[19] Capobianco, S. and Marinai, S. (2017a). Docemul: a toolkit to generate struc-
tured historical documents. In 14th IAPR International Conference on Document
Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November 9-15.

[20] Capobianco, S. and Marinai, S. (2017b). Docemul: a toolkit to generate struc-
tured historical documents. https://github.com/scstech85/DocEmul.

https://github.com/scstech85/DocEmul

BIBLIOGRAPHY 115

[21] Capobianco, S. andMarinai, S. (2017c). Text line extraction in handwritten his-
torical documents. InDigital Libraries and Archives - 13th Italian Research Conference
on Digital Libraries, IRCDL 2017, Modena, Italy, January 26-27, 2017, Revised Selected
Papers, pages 68–79.

[22] Capobianco, S. and Marinai, S. (2019). Deep neural networks for record count-
ing in historical handwritten documents. Pattern Recognition Letters, 119:103–111.

[23] Capobianco, S., Scommegna, L., andMarinai, S. (2018). Historical handwritten
document segmentation by using a weighted loss. In Artificial Neural Networks in
Pattern Recognition - 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September
19-21, 2018, Proceedings, pages 395–406.

[24] Chen, K., Seuret, M., Hennebert, J., and Ingold, R. (2017). Convolutional neural
networks for page segmentation of historical document images. In 14th IAPR
International Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto,
Japan, November 9-15, 2017, pages 965–970.

[25] Chhabra, A. K. (1997). Graphic symbol recognition: An overview. In Graph-
ics Recognition, Algorithms and Systems, Second International Workshop, GREC’97,
Nancy, France, August 22-23, 1997, Selected Papers, pages 68–79.

[26] Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M., and Schmidhuber, J.
(2011). Flexible, high performance convolutional neural networks for image clas-
sification. In Proceedings of the Twenty-Second International Joint Conference on Arti-
ficial Intelligence - Volume Volume Two, IJCAI’11, pages 1237–1242. AAAI Press.

[27] Cordella, L. P. and Vento, M. (2000). Symbol recognition in documents: a col-
lection of techniques? IJDAR, 3(2):73–88.

[28] Cruz, F. and Terrades, O. R. (2014). Em-based layout analysis method for struc-
tured documents. In Pattern Recognition (ICPR), 2014 22nd International Conference
on, pages 315–320.

[29] Damelin, S. B. and Hoang, N. S. (2017). On surface completion and im-
age inpainting by biharmonic functions: Numerical aspects. CoRR, eprint
arXiv:1707.06567.

[30] de França Pereira e Silva, G., Lins, R. D., andGomes, C. (2014). Automatic train-
ing set generation for better historic document transcription and compression. In
11th IAPR International Workshop on Document Analysis Systems, DAS 2014, Tours,
France, April 7-10, 2014, pages 277–281.

[31] de las Heras, L.-P., Terrades, O. R., Robles, S., and Sánchez, G. (2015). Cvc-fp
and sgt: a new database for structural floor plan analysis and its groundtruthing

116 BIBLIOGRAPHY

tool. International Journal on Document Analysis and Recognition (IJDAR), 18(1):15–
30.

[32] Delalandre, M., Valveny, E., Pridmore, T., and Karatzas, D. (2010). Generation
of synthetic documents for performance evaluation of symbol recognition& spot-
ting systems. International Journal on Document Analysis and Recognition (IJDAR),
13(3):187–207.

[33] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09.

[34] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Dar-
rell, T. (2014). Decaf: A deep convolutional activation feature for generic visual
recognition. In International Conference in Machine Learning (ICML).

[35] Dutta, A., Lladós, J., and Pal, U. (2013). A symbol spotting approach in graph-
ical documents by hashing serialized graphs. Pattern Recognition, 46(3):752–768.

[36] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S.
(2010). Why does unsupervised pre-training help deep learning? J. Mach. Learn.
Res., 11:625–660.

[37] Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. (2015). The pascal visual object classes challenge: A retrospective.
International Journal of Computer Vision, 111(1):98–136.

[38] Fernández, D., Marinai, S., Lladós, J., and Fornés, A. (2013). Contextual word
spotting in historical manuscripts using markov logic networks. In Proceedings
of the 2nd International Workshop on Historical Document Imaging and Processing,
HIP@ICDAR 2013, Washington, DC, USA, August 24, 2013, pages 36–43.

[39] Fischer, A., Bunke, H., Naji, N., Savoy, J., Baechler, M., and Ingold, R. (2014). The
HisDoc project. Automatic analysis, recognition, and retrieval of handwritten historical
documents for digital libraries, volume 38, page 91–106. De Gruyter.

[40] Fischer, A., Frinken, V., Fornés, A., and Bunke, H. (2011). Transcription align-
ment of latin manuscripts using hiddenmarkovmodels. In Proceedings of the 2011
Workshop onHistorical Document Imaging and Processing, HIP ’11, pages 29–36, New
York, NY, USA. ACM.

[41] Gatos, B., Louloudis, G., and Stamatopoulos, N. (2014). Segmentation of his-
torical handwritten documents into text zones and text lines. In 14th Interna-
tional Conference on Frontiers in Handwriting Recognition, ICFHR 2014, Crete, Greece,
September 1-4, 2014, pages 464–469.

BIBLIOGRAPHY 117

[42] Giro-i Nieto, X., Camps, N., andMarques, F. (2010). Gat: a graphical annotation
tool for semantic regions. Multimedia Tools and Applications, 46(2):155–174.

[43] Girshick, R. (2015). Fast r-cnn. In Proceedings of the 2015 IEEE International Con-
ference on Computer Vision (ICCV), ICCV ’15, pages 1440–1448, Washington, DC,
USA. IEEE Computer Society.

[44] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hier-
archies for accurate object detection and semantic segmentation. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14,
pages 580–587, Washington, DC, USA. IEEE Computer Society.

[45] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and
Statistics.

[46] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[47] Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., and Ng, A. Y. (2009). Measuring
invariances in deep networks. In Bengio, Y., Schuurmans, D., Lafferty, J. D.,
Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information Pro-
cessing Systems 22, pages 646–654. Curran Associates, Inc.

[48] Goodfellow, I. J. (2013). Piecewise linear multilayer perceptrons and dropout.
CoRR, abs/1301.5088.

[49] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio,
Y. (2013). Maxout networks. In Proceedings of the 30th International Confer-
ence on International Conference on Machine Learning - Volume 28, ICML’13, page
III–1319–III–1327. JMLR.org.

[50] Gupta, A., Vedaldi, A., and Zisserman, A. (2016). Synthetic data for text local-
isation in natural images. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2315–2324.

[51] Harley, A. W., Ufkes, A., and Derpanis, K. G. (2015). Evaluation of deep convo-
lutional nets for document image classification and retrieval. In 13th International
Conference on Document Analysis and Recognition, ICDAR 2015, Tunis, Tunisia, Au-
gust 23-26, 2015, pages 991–995.

[52] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 2980–2988.

http://www.deeplearningbook.org

118 BIBLIOGRAPHY

[53] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for im-
age recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

[54] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

[55] Héroux, P., Barbu, E., Adam, S., and Trupin, É. (2007). Automatic ground-truth
generation for document image analysis and understanding. In 9th International
Conference on Document Analysis and Recognition (ICDAR 2007), 23-26 September,
Curitiba, Paraná, Brazil, pages 476–480.

[56] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. (2012). Improving neural networks by preventing co-adaptation of feature de-
tectors. CoRR, abs/1207.0580.

[57] Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurons in the
cat’s striate cortex. Journal of Physiology, 148:574–591.

[58] Jarrett, K., Kavukcuoglu, K., and Lecun, Y. (2009). What is the best multi-stage
architecture for object recognition?

[59] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22Nd ACM International Conference onMultimedia,
MM ’14, pages 675–678, New York, NY, USA. ACM.

[60] Joutel, G., Eglin, V., Bres, S., and Emptoz, H. (2007). Curvelets based queries
for cbir application in handwriting collections. In ICDAR, pages 649–653. IEEE
Computer Society.

[61] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
CoRR, abs/1412.6980.

[62] Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings.

[63] Konidaris, T., Gatos, B., Ntzios, K., Pratikakis, I., Theodoridis, S., and Peranto-
nis, S. J. (2007). Keyword-guided word spotting in historical printed documents
using synthetic data and user feedback. International Journal of Document Analysis
and Recognition (IJDAR), 9(2-4):167–177.

BIBLIOGRAPHY 119

[64] Konwer, A., Bhunia, A. K., Bhowmick, A., Bhunia, A. K., Banerjee, P., Roy, P. P.,
and Pal, U. (2018). Staff line removal using generative adversarial networks. In
ICPR 2018, pages 1103–1108.

[65] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc.

[66] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann.
Math. Statist., 22(1):79–86.

[67] Kumar, J., Ye, P., and Doermann, D. S. (2012). Learning document structure for
retrieval and classification. In ICPR, pages 1558–1561. IEEE Computer Society.

[68] Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring
strategies for training deep neural networks. J. Mach. Learn. Res., 10:1–40.

[69] Le Kang, Jayant Kumar, Peng Ye, Yi Li, and David Doermann (2014). Con-
volutional Neural Networks for Document Image Classification. In International
Conference on Pattern Recognition (ICPR 2014), pages 3168–3172.

[70] Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444.

[71] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE, pages 2278–2324.

[72] Lee, J., Shridhar, K., Hayashi, H., Iwana, B. K., Kang, S., and Uchida, S. (2019).
Probact: A probabilistic activation function for deep neural networks. arXiv
preprint arXiv:1905.10761.

[73] Lempitsky, V. and Zisserman, A. (2010). Learning to count objects in images.
In Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta,
A., editors, Advances in Neural Information Processing Systems 23, pages 1324–1332.
Curran Associates, Inc.

[74] Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., and Heard, J.
(2006). Building a test collection for complex document information processing.
In Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’06, pages 665–666, New York, NY,
USA. ACM.

[75] Likforman-Sulem, L., Zahour, A., andTaconet, B. (2007). Text line segmentation
of historical documents: A survey. Int. J. Doc. Anal. Recognit., 9(2):123–138.

120 BIBLIOGRAPHY

[76] Lin, M., Chen, Q., and Yan, S. (2014a). Network in network. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings.

[77] Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., and Belongie, S. J. (2017).
Feature pyramid networks for object detection. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 936–944.

[78] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. (2014b). Microsoft coco: Common objects in context. In Fleet,
D., Pajdla, T., Schiele, B., and Tuytelaars, T., editors, Computer Vision – ECCV 2014,
pages 740–755, Cham. Springer International Publishing.

[79] Liu, C., Wu, J., Kohli, P., and Furukawa, Y. (2017). Raster-to-vector: Revisit-
ing floorplan transformation. In IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2214–2222.

[80] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., and Berg, A. C.
(2016). SSD: single shot multibox detector. In Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part I, pages 21–37.

[81] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. CVPR (to appear).

[82] Luyen, D. T., Carel, E., Ogier, J. M., and Burie, J. C. (2015). A character degra-
dation model for color document images. In Document Analysis and Recognition
(ICDAR), 2015 13th International Conference on, pages 806–810.

[83] Madugalla, A.,Marriott, K., andMarinai, S. (2017). Partitioning openplan areas
in floor plans. In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), volume 1, pages 47–52. IEEE.

[84] Madugalla, A., Marriott, K., Marinai, S., Capobianco, S., and Goncu, C. (2019).
Creating accessible online floor plans for visually impaired readers. ACM Trans-
actions on Accessible Computing, under review.

[85] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA.

[86] Marinai, S. (2008). Introduction to Document Analysis and Recognition, pages 1–20.
Springer Berlin Heidelberg, Berlin, Heidelberg.

BIBLIOGRAPHY 121

[87] Marinai, S., Gori, M., and Soda, G. (2005). Artificial neural networks for docu-
ment analysis and recognition. IEEE Trans. Pattern Anal. Mach. Intell., 27(1):23–35.

[88] Nair, V. andHinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In Fürnkranz, J. and Joachims, T., editors, ICML, pages 807–814.
Omnipress.

[89] Neubeck, A. and Van Gool, L. (2006). Efficient non-maximum suppression. In
Proceedings of the 18th International Conference on Pattern Recognition - Volume 03,
ICPR ’06, pages 850–855, Washington, DC, USA. IEEE Computer Society.

[90] Nicolaou, A. and Gatos, B. (2009). Handwritten text line segmentation by
shredding text into its lines. In 10th International Conference on Document Anal-
ysis and Recognition, ICDAR 2009, Barcelona, Spain, 26-29 July 2009, pages 626–630.

[91] Nielson, H. and Barrett, W. (2006). Consensus-based table form recognition of
low-quality historical documents. International Journal of Document Analysis and
Recognition (IJDAR), 8(2):183–200.

[92] Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., and Papamarkos, N.
(2010). Segmentation of historical machine-printed documents using adaptive
run length smoothing and skeleton segmentation paths. Image Vision Comput.,
28(4):590–604.

[93] Odena, A., Dumoulin, V., andOlah, C. (2016). Deconvolution and checkerboard
artifacts. Distill.

[94] Otsu, N. (1979). A Threshold Selection Method from Gray-level Histograms.
IEEE Transactions on Systems, Man and Cybernetics, 9(1):62–66.

[95] Pastor-Pellicer, J., Afzal, M. Z., Liwicki, M., and Bleda, M. J. C. (2016). Complete
system for text line extraction using convolutional neural networks and water-
shed transform. In 12th IAPR Workshop on Document Analysis Systems, DAS 2016,
Santorini, Greece, April 11-14, 2016, pages 30–35.

[96] Rahnemoonfar, M. and Sheppard, C. (2017). Deep count: Fruit counting based
on deep simulated learning. Sensors, 17(4):905.

[97] Ranzato, M., Boureau, Y., and LeCun, Y. (2007). Sparse feature learning for
deep belief networks. In NIPS 2007, pages 1185–1192.

[98] Ren, S., He, K., Girshick, R. B., and Sun, J. (2017). Faster R-CNN: towards real-
time object detection with region proposal networks. IEEE Trans. Pattern Anal.
Mach. Intell., 39(6):1137–1149.

122 BIBLIOGRAPHY

[99] Renton, G., Chatelain, C., Adam, S., Kermorvant, C., and Paquet, T. (2017).
Handwritten text line segmentation using fully convolutional network. In First
Workshop ofMachine Learning, 14th IAPR International Conference onDocument Anal-
ysis and Recognition, WML@ICDAR 2017, Kyoto, Japan, November 9-15, 2017, pages
5–9.

[100] Romero, V., Fornés, A., Serrano, N., Sánchez, J.-A., Toselli, A. H., Frinken, V.,
Vidal, E., and Lladós, J. (2013). The esposalles database: An ancient marriage
license corpus for off-line handwriting recognition. Pattern Recognition.

[101] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional net-
works for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Mu-
nich, Germany, October 5 - 9, 2015, Proceedings, Part III, pages 234–241.

[102] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Neurocomputing:
Foundations of research. chapter Learning Representations by Back-propagating
Errors, pages 696–699. MIT Press, Cambridge, MA, USA.

[103] Rusiñol, M. and Lladós, J. (2007). A region-based hashing approach for sym-
bol spotting in technical documents. In Graphics Recognition. Recent Advances and
New Opportunities, 7th International Workshop, GREC 2007, Curitiba, Brazil, Septem-
ber 20-21, 2007. Selected Papers, pages 104–113.

[104] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman,W. T. (2008). Labelme:
A database andweb-based tool for image annotation. International Journal of Com-
puter Vision, 77(1):157–173.

[105] Sauvola, J. J. and Pietikäinen, M. (2000). Adaptive document image binariza-
tion. Pattern Recognition, 33(2):225–236.

[106] Segui, S., Pujol, O., and Vitria, J. (2015). Learning to count with deep object
features. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops.

[107] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, New York, NY, USA.

[108] Shelhamer, E., Long, J., and Darrell, T. (2017). Fully convolutional networks
for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):640–651.

[109] Simon, M., Rodner, E., and Denzler, J. (2014). Part detector discovery in deep
convolutional neural networks. In ACCV.

BIBLIOGRAPHY 123

[110] Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
CoRR, abs/1312.6034.

[111] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. In Proceedings of ICLR 2014, volume abs/1409.1556.

[112] Smith, R. (2007). An overview of the tesseract ocr engine. InNinth International
Conference on Document Analysis and Recognition (ICDAR 2007), volume 2, pages
629–633.

[113] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
CVPR 2015.

[114] Tombre, K. and Lamiroy, B. (2003). Graphics recognition - from re-engineering
to retrieval. In Proceedings of the Seventh International Conference on Document Anal-
ysis and Recognition - Volume 1, ICDAR ’03, page 148, USA. IEEEComputer Society.

[115] Tombre, K., Tabbone, S., and Dosch, P. (2005). Musings on symbol recogni-
tion. In Graphics Recognition. Ten Years Review and Future Perspectives, 6th Interna-
tion Workshop, GREC 2005, Hong Kong, China, August 25-26, 2005, Revised Selected
Papers, pages 23–34.

[116] Uijlings, J., van de Sande, K., Gevers, T., and Smeulders, A. (2013). Selective
search for object recognition. International Journal of Computer Vision.

[117] van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner,
J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image contributors (2014).
scikit-image: image processing in Python. PeerJ, 2:e453.

[118] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. (2010).
Stacked denoising autoencoders: Learning useful representations in a deep net-
work with a local denoising criterion. JMLR, 11:3371–3408.

[119] Vo, Q. N., Kim, S., Yang, H. J., and Lee, G. (2018). Text line segmentation
using a fully convolutional network in handwritten document images. IET Image
Processing, 12(3):438–446.

[120] Wada, K. (2016). labelme: Image Polygonal Annotation with Python. https:
//github.com/wkentaro/labelme.

[121] Wahl, F. M., Wong, K. Y., and Casey, R. G. (1982). Block segmentation and text
extraction in mixed text/image documents. Computer Graphics and Image Process-
ing, 20:375–390.

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme

124 BIBLIOGRAPHY

[122] Walach, E. and Wolf, L. (2016). Learning to Count with CNN Boosting, pages
660–676. Springer International Publishing, Cham.

[123] Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization
of neural networks using dropconnect. In Dasgupta, S. and Mcallester, D., edi-
tors, Proceedings of the 30th International Conference on Machine Learning (ICML-13),
volume 28, pages 1058–1066. JMLR Workshop and Conference Proceedings.

[124] Wang, C., Zhang, H., Yang, L., Liu, S., and Cao, X. (2015). Deep people count-
ing in extremely dense crowds. In Proc. 23rd ACM Int.l Conf. Multimedia, MM ’15,
pages 1299–1302.

[125] Wong, Y.-S., Chu, H.-K., andMitra, N. J. (2015). Smartannotator an interactive
tool for annotating indoor rgbd images. Computer Graphics Forum, 34(2):447–457.

[126] Yamada, T., Hosoe, M., Kato, K., and Yamamoto, K. (2017). The character
generation in handwriting feature extraction using variational autoencoder. In
ICDAR 2017, pages 1019–1024.

[127] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolu-
tional networks. InComputer Vision - ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I, pages 818–833.

[128] Zhang, C., Li, H., Wang, X., and Yang, X. (2015). Cross-scene crowd counting
via deep convolutional neural networks. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 833–841.

[129] Ziran, Z. and Marinai, S. (2018). Object detection in floor plan images. In
ANNPR, 2018, LNCS, pages 383–394.

	Contents
	Introduction
	Goals of this Thesis
	Contributions of the Thesis
	Outline

	Deep Learning for Document Analysis
	Document analysis and recognition applications
	Deep Learning methods
	Representation Learning for object recognition
	Object detection
	Semantic segmentation
	Variational Autoencoder
	Labeling systems
	Summary

	Validating Deep Learning models
	Layout analysis datasets
	Floor plan datasets
	Evaluation metrics
	Summary

	Generating training data
	Labeling graphical documents for symbol detection
	Clustering visually similar structured documents
	A Toolkit to generate structured documents
	Modeling datasets
	Generating graphical symbols
	Summary

	Record counting in historical handwritten documents
	Record counting system
	Convolutional models
	Evaluating system
	Experiments
	Summary

	Historical handwritten page analysis
	Patch-based system for text line extraction
	Evaluating patch-based system
	Pixel-wise page segmentation
	Evaluating pixel-wise page segmentation
	Summary

	Conclusions
	Future works
	Contributions

	Publications
	Bibliography

