
Optimal Stealth Trajectory Design
to Deceive Anomaly Detection Process

Enrica d’Afflisio∗, Augusto Aubry†, Paolo Braca∗, Antonio De Maio†, and Leonardo M. Millefiori∗
∗ NATO STO Centre for Maritime Research and Experimentation, La Spezia, Italy

† Department of Electrical and Information Technology Engineering, University of Naples Federico II, Napoli, Italy

Abstract—A new methodology is proposed to deceive an
anomalous trajectory detector by designing ship paths that
deviate from the nominal traffic routes in an optimized way.
The route planning is formalized as a min-max problem (with
respect to surveillance system acquisition instants) focusing on
the Kullback-Leibler (KL) divergence between the statistical
hypotheses of the nominal and the anomalous trajectories as key
performance measure. Modeling the vessel’s dynamic according
to the Ornstein-Uhlenbeck (OU) mean-reverting stochastic pro-
cess, physical, practical, and kinematic requirements are also
accounted for forcing several constraints at the design stage.
A computationally efficient technique is proposed to handle the
resulting non-convex optimization problem, and some case studies
are reported to assess its effectiveness.

Index Terms—Ornstein-Uhlenbeck process, maritime anomaly
detection, statistical hypothesis test, target tracking, automatic
identification system, maritime security, real-world data.

I. INTRODUCTION

Maritime Situational Awareness (MSA) is an important do-
main for many national and international institutions, agencies
and bodies. MSA provides support by responding to the needs
of a wide range of maritime policies as irregular migration,
border control, maritime security, fisheries control, anti-piracy,
oil pollution, smuggling and terrorism. MSA requires infor-
mation from a combination of heterogeneous sensor systems,
such as radars, Synthetic Aperture Radar (SAR), video and in-
frared cameras, and the self-reporting Automatic Identification
System (AIS) [1]. AIS devices are used by ships to regularly
broadcast data about their identity, position, velocity, course,
destination, and other details at predefined intervals.

The analysis of recorded AIS data can be used to identify
recurrent traffic patterns [2], [3]; this is possible because most
of the ships, especially in open sea, seek to optimize fuel
consumption, and therefore tend to maneuver very seldom,
at the same time keeping their speed as much constant as
possible. If a ship exhibits a pattern differing from such
expected one, it can be declared to have an anomalous
behavior, indicating possible illicit activities. From a more
practical perspective instead, operators manually search and
try to predict critical situations, such as potential collisions
and suspicious activities performed by many vessels within
vast sea areas. In order to provide support in these operations,
a number of methods and systems with anomaly detection
capabilities have been proposed [4]. Indeed, over the past
few years, anomaly detection strategies have been applied to

maritime traffic monitoring [2], [3], [5]–[9], to detect, e.g.,
unexpected stops or course changes (path deviations), and,
more generally, any vessel’s anomalous behavior that might be
related to potential suspicious activity. Most of previous ap-
proaches [2], [3], [5], [6] consist in extracting maritime traffic
patterns by mining of historical data, and detecting anomalous
vessel behavior by using unsupervised learning techniques.
More recently, a novel maritime anomaly detector [8], [9],
has been proposed to reveal possible path deviations during
an intentional disablement of the AIS transponder or during
a period without data available, relying only on the available
measurements. Specifically, this detector is based on a hypoth-
esis testing procedure able to identify changes in the long-
run mean velocity parameter of the Ornstein-Uhlenbeck (OU)
process, which was shown [10]–[12] to be a realistic model
for vessels’ dynamics in open sea.

Building on the detection strategy presented in [8], [9],
this work proposes a new methodology to design the optimal
stealth trajectory of a vessel aiming to deviate from a nominal
traffic route, so as to reach a specific location point, where, for
instance, a rendezvous with another ship (for some possible
illegal exchanges) has to occur [13]. To maliciously hide this
task, the vessel turns off its AIS transponder for the time
sufficient to arrive to the specific point, stop there, and then
go back to the expected route. In addition, it is assumed
that, during the AIS device shutdown, the vessel can only
be observed by satellite-based sensors, such as SAR, whose
sequence of possible sensor snapshot positions is supposed
known to the vessel.

The proposed route planning problem aimed at optimally
defining the ship trajectory is formalized as a constrained op-
timization problem, where physical requirements on the mean
velocity dynamic, the compliance of the trajectory with the
underlying OU statistical model, the existence of a time instant
allowing the rendezvous, as well as sea coast impairments are
accounted for at design stage. An efficient solution technique
is proposed to handle the derived non-convex optimization
problem. Remarkably, leveraging the proposed optimization
tool, it is possible to determine optimized surveillance instants
to improve the anomaly detector capability. Interesting case
studies are finally reported to prove the effectiveness of the
proposed planning strategy.

The paper is structured as follows: Section II briefly de-
scribes the maritime scenario, the OU model and the anomaly
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detector [8], [9]; in Section III the route planning strategy is
formalized; the effectiveness of the proposed methodology is
shown through the performance analysis in Section IV, applied
to both synthetic and real-world scenarios. Finally, concluding
remarks and possible future research lines are summarized in
V.

NOTATION

We use boldface for vectors a (lower case), and matrices
A (upper case). The transpose operator is denoted by the
symbols (·)T. I and 0 denote respectively the identity matrix
and matrix with zero entries (their size is determined by the
context). RN , SN and SN++ are respectively the sets of N -
dimensional vectors of real numbers, of N × N symmetric
matrices, and of N ×N positive definite symmetric matrices.
The curled inequality symbol � (and its strict form �) is
used to denote generalized matrix inequality: for any A ∈ SN ,
A � 0 means that A is a positive semi-definite matrix (A � 0
for positive definiteness). ‖x‖A denotes the Mahalanobis
norm induced by the positive definite matrix A. The standard
Euclidean norm is indicated with ‖x‖. Besides, for any set
A, |A| represents the cardinality of A. Finally E[·] denotes
statistical expectation, and, for any optimization problem P ,
v (P) represents its optimal value.

II. MARITIME ANOMALY DETECTION

A. Maritime anomaly scenario

We consider the situation where a vessel is following a
planned trajectory with a nominal velocity v0, and at some
point it turns its AIS device off for a certain time period T , in
order to hide an unexpected deviation from the nominal behav-
ior or simply the communication is interrupted. In particular,
in this work, we focus on the specific event that, in the period
of disablement of the AIS transponder, the vessel loiters for
some time in a targeted location, possibly to meet another ship,
even if the case of a generic anomalous trajectory can be easily
handled by the anomaly detection strategy proposed in [8]. At
the end of the period T , the AIS device is switched back on,
and the vessel restores its nominal navigating conditions. More
details are provided in [8] about the aforementioned maritime
anomaly detection.

During the silent period, the vessel is assumed to move
according to a piecewise OU model with a sequence of N
unknown long-run mean velocities, comprised in the matrix
V = [v1,v2, . . .vN ] ∈ R2,N , which identifies an N -section
path. The nominal vessel’s positions along this path, corre-
sponding to each junction point between consecutive segments,
are enclosed in the matrix P = [p0,p1,p2, . . .pN ] ∈ R2,N+1.
The time taken to cover the single section corresponds to the
time interval [tn−1, tn], with n = 1, . . . , N , which clearly
depends on the aforementioned quantities.

B. Ornstein-Uhlenbeck model

First of all, the OU model characterized by a single long-run
mean velocity parameter is introduced, and then its extension
to a piecewise-constant long-run mean velocity is provided.

To begin, let us indicate the four-dimensional target state at
time t ∈ R+

0 with

s(t) = [p(t), ṗ(t)]
T
, (1)

where p(t) and ṗ(t) denote the target position and velocity,
respectively, in a two-dimensional Cartesian reference system

p(t) = [x(t), y(t)] , ṗ(t) = [ẋ(t), ẏ(t)] . (2)

The target dynamics, in general, can be modeled with a set
of linear stochastic differential equations (SDEs) [14], and in
[10] it is shown how the movement of real non-maneuvering
vessels in the open sea can be represented by a mean-reverting
stochastic process. Specifically, the velocity of the target is
an OU process, and its position is an Integrated OU (IOU)
process. Under this assumption, the SDE for the target motion
model has the following form

ds(t) = A s(t) dt+G v dt+B dω(t), (3)

where v = [vx vy]
T is the long-run process mean, and ω(t)

is a standard bi-dimensional Wiener process. The matrices A,
B and G are defined as:

A =

[
0 I
0 −Θ

]
, B =

[
0
Σ

]
, G =

[
0
Θ

]
, (4)

where 0 is a 2×2 null matrix, Σ is a 2×2 matrix defining the
noise process and Θ is a 2× 2 matrix quantifying the mean-
reversion effect, meaning the rate at which the target will tend
back to the desired velocity after a perturbation; its diagonal
terms refer to the x and y components, while the off-diagonals
quantify the coupling effect.

Model (3) is only able to describe a non-maneuvering target,
i.e., ships whose long-run mean velocity does not change in
time. However, the model can be extended to the case of
waypoint navigation [15], that is relevant to our application.
In this respect, the long-run mean velocity of the target can be
assumed as a piecewise-constant function of the time that takes
values from a sequence v1, . . . ,vN . Along the navigational
legs, the long-run mean velocity of the process is constant
and the instantaneous velocity of the target follows, by all
means, an OU process; conversely, the maneuver is represented
by a change of the long-run mean velocity parameter. To
proceed further in describing the piecewise OU model, unless
otherwise stated, we will use hereafter sub-scripted indices to
denote discrete-time dependency, i.e. pn = p(tn), ṗn = ṗ(tn)
and sn = s(tn) by definition. In this way, the target state at
time tn, given the target state at the previous time tn−1, can
be written in matrix form as

sn = Φ(tn − tn−1,γ)sn−1 + Ψ(tn − tn−1,γ)vn +ωn, (5)

where vn is the long-run mean velocity in the time interval
∆tn = [tn−1, tn] and ωn is a zero-mean Gaussian random
variable with covariance C(∆n) defined in [8]. The state
transition matrix and the control input function, Φ(∆tn,γ)
and Ψ(∆tn,γ), respectively, are defined as

Φ(∆tn,γ) =

[
I

(
I − e−Γ∆tn

)
Γ−1

0 e−Γ∆tn

]
, (6)



Ψ(∆tn,γ) =

[
∆tnI −

(
I − e−Γ∆tn

)
Γ−1

I − e−Γ∆tn

]
. (7)

The target state at time tN can be expressed recursively as
(omitting γ for clarity)

sN = Φ(∆N )sN−1 + Ψ(∆N )vN + ωN

= Φ(∆N ) [Φ(∆N−1, )sN−2 + Ψ(∆N−1)vN−1 + ωN−1]

+ Ψ(∆N )vN + ωN

= Φ(T )s0 + Ψ(∆N )vN + ωN

+
N−1∑
n=1

[
N∏

i=n+1

Φ(∆i)

]
[Ψ(∆n)vn + ωn] , (8)

where we exploited the property of the state transition matrix
by which Φ(∆t1)Φ(∆t2)...Φ(∆tn) = Φ(∆t1 + ∆t2 + ... +
∆tn), ∀n = 1, ..., N , that can be derived by inspection from
(6).

C. Detection of stealth deviations

Previous work [8] showed that a properly designed hy-
pothesis testing procedure is able to detect a deviation from
a nominal route, even if it was not possible to observe
any AIS data during the deviation. We report hereafter the
findings obtained in [8] when a stack of M +1 heterogeneous
measurements (AIS, radar, SAR, etc.) is available during the
period between t0 and T , as [z0, . . . ,zm, . . . ,zM ]

T, where
the m-th measurement is given by zm = s(Tm) + nm.
The measurement noise terms nm are assumed to be in-
dependent and identically distributed according to a zero-
mean Gaussian with covariance Cnm , and the measurement
noise is independent of the OU process noise. Moreover
the m-th measurement is available at time Tm = pm

N T ,
where pm is, by definition, a fraction of the interval [0, N ],
representing the time location of the contact with respect to the
N piecewise OU model velocities. In [8], the measurements
processed to detect possible trajectory anomalies are given by
y = [y1, . . . ,ym, . . . ,yM ]

T, with ym = zm − Φ(Tm)z0, in
order to remove the dependence on s(t0). Hence, the anomaly
detection problem addressed in [8] was traced back to the
following Gaussian composite hypothesis testing problem:{

H0 : y ∼ N (µ0,C)

H1 : y ∼ N (µ,C)
(9)

where the null hypothesis, H0, states that the vessel navigates
according to the nominal condition, and the alternative one,
H1, that the vessel moves away from the nominal condition,
when the AIS device is not active. The mean vectors under
the two hypotheses are given by, respectively,

µ0 = H vec (V 0) , (10)
µ = H vec (V ) , (11)

where V 0 ∈ R2,N is the known matrix related to the nominal
velocity, which, differently from [8] (where the nominal veloc-
ity was considered constant) is assumed piecewise and known.

H is the model matrix of size 4M × 2N ; in this work, it is
assumed known1, and defined as

H
∆
= [F 1, . . . ,Fm, . . . ,FM ]

T
, (12)

where Fm is a 4 × 2N matrix whose definition is provided
in ( [8] eq.22), and depends on the state transition matrices
and the control input functions associated to the m-th contact.
The covariance matrix is given by

C
∆
=


C11 C12 · · · C1M

C21 C22 · · · C2M

...
...

. . .
...

CM1 CM2 · · · CMM

 (13)

where, ∀i, j = 1, . . . ,M , see ( [8], Appendix C)

Cij =

{
C(Ti) +Cni +Φ(Ti)Cn0Φ(Ti)

T if i = j

C(Ti)Φ(Tj − Ti)
T +Φ(Ti)Cn0Φ(Tj)

T if i < j

and Cji = CT
ij .

Following the approach in [8], a Generalized Likelihood
Ratio Test (G-LRT) is exploited to decide, once that the AIS
device of the ship has been turned back on, whether it had been
moving accordingly to the nominal route or not. Specifically,
assuming H a full rank matrix, the G-LRT has the following
form:

(v̂ − vec(V 0))
T
HTC−1H (v̂ − vec(V 0))

H1

≷
H0

τ, (14)

where v̂ is the ML estimate of vec(V ), given by

v̂ =
(
HTC−1H

)−1

HTC−1y, (15)

The test statistics under the two hypotheses, H0 and H1, are
characterized, respectively, by central and non-central Chi-
squared distributions, both with d = 2N degrees of freedom,
corresponding to the size of the known parameter vec(V 0).
The detector performance is then given by

PFA = Qχ2
d
(τ), PD = Qχ′2d (λ)(τ), (16)

with τ identifying the threshold, and λ the non-centrality
parameter defined as

λ(V ) = vec (V − V 0)
T
HTC−1Hvec (V − V 0) . (17)

The case where H is ill-conditioned is also addressed in [8]
by means of the Singular Value Decomposition (SVD) [16].

1This means that the number of sections N and the sequence of the time
intervals are known parameters. Instead, the case where such parameters are
unknown is fully provided in [8]. However, nothing changes for the scope of
the proposed optimization problem since it does not depend on the detection
strategy.



III. OPTIMIZATION PROBLEM FORMULATION

In this section, a route planning strategy able to optimally
determine the ship trajectory is formalized, and an efficient
technique is proposed to handle the resulting non-convex op-
timization problem. The main tasks and objectives to account
for at the design stage are the following:

• the vessel meets and fulfills its mission, i.e., reaches a
specific point p?, where a rendezvous with another ship
(for some possible illegal exchanges) will occur;

• vessel kinematics satisfies some physical constraints and
requirements;

• the anomaly trajectory is as hidden as possible, namely
the detection capabilities of the sensing system are min-
imized.

Moreover, the temporal scale parameters characterizing the
piecewise OU model are assumed to be all equal without loss
of generality, i.e., ∆t = [tn, tn−1], ∀n = 1, . . . , N , which is
set up so that the process reaches a steady state behavior in
each time interval. Thus, the degrees of freedom available at
the route planning stage are given by

• the N vessel mean velocity vectors stacked in matrix V ,
characterizing the ship ensemble behavior;

• the N + 1 vessel positions comprised in matrix P .

A. Route design problem, figure of merit, and constraints

The route planning problem aimed at optimally defining the
ship positions as well as the underlying OU random process
parameters, can be formulated as the following constrained
optimization problem.

P



min
V , P

max
i=1,...,K

λi(V )

s.t. ‖vh‖ ≤ vmax, h = 1, . . . , N
‖vh − vh−1‖ ≤ amax, h = 2, . . . , N
‖ph −

(
vh∆t+ ph−1

)
‖2
C−1 ≤ ε, h = 1, . . . , N

min
h=1,...,N−L+1

max
k=h,...,h+L

(‖pk − p?‖) ≤ ε1
V = [v1,v2, . . .vN ] ∈ R2,N

P = [p0,p1,p2, . . .pN ] ∈ R2,N+1

ph ∈ Sc, h = 1, . . . , N
p0 = 0

(18)
Specifically, the performance metric considered is

λ (V ) = max
i=1,...,K

λi (V ) , (19)

where
• λi (V ) = vec (V − V 0)

T
HT

i C
−1
i Hivec (V − V 0),

i = 1, . . . ,K, is the non-centrality parameter associated
with the i-th detector, which exploits the subset Si;

• Si =
{
tmi,1, . . . , t

m
i,Ki

}
is the subset of time instants

where measurements can be collected, with Ki = |Si| ≤
K ≤ N the cardinality of the subset Si, tmi,h ∈
{tm1 , tm2 , . . . , tmK}, h = 1, . . . ,Ki, and tmi,h 6= tmi,k, h 6= k;

• Hi and Ci depend on the available measurements (see
equations (12) and (13), respectively);

• K is the number of possible detectors that the surveil-
lance system may implement as function of the available
measurements.

• Sc ⊆ R2 is a subset of the two-dimensional space,
that is assumed convex for mathematical tractability. It
can be described by means of polyhedra, ellipsoids, as
well as their intersection to appropriately model coast
impairments.

In particular, λi(V ) is proportional to the Kullback-Leibler
(KL)-divergence between the actual distributions under the
H0 and H1 hypotheses. Specifically, denoting by f1(yi) and
f0(yi) the distribution of the observation yi collected at time
instants Si under the H0 and H1 hypotheses, respectively, it
follows that [17]

λi (V ) = 2DKL (f1(yi)|f0(yi)) , i = 1, . . . ,K.

As a consequence, since KL-divergence controls the perfor-
mance limits for any given hypothesis testing problem [17],
the non-centrality parameter (associated with a given subset
of measurements time instants Si) represents a viable means
to predict the sensing system’s surveillance capabilities. It is
also worth observing that the detection performance of the
clairvoyant receiver, obtained assuming known the ship veloc-
ity profile under the two hypotheses, is dependent on λi (V )
too. As a result, controlling λi (V ) allows to rule an upper
bound to the surveillance system performance. In conclusion,
λ (V ) provides a meaningful performance measure of the ship
detectability.

Finally, regarding the conditions in Problem P , the first
two constraints account for the physical requirements on the
mean velocity dynamic, the third constraint guarantees the
compliance of the trajectory with the underlying statistical
model, the fourth constraint ensures the existence of a time
instant allowing the rendezvous, the fifth constraint controls
sea coast impairments, and the last one defines the starting
point of the vessel trajectory.

B. Efficient optimization technique

Due to the stopping area constraint, i.e.,

min
h=1,...,N−1

max
k=h,...,h+L

(‖pk − p?‖) ≤ ε1,

Problem P turns out to be a non-convex optimization problem
(and in general hard to solve). However, it is possible to prove
its hidden convexity. Specifically a global optimal solution to
the formulated route planning problem can be obtained via an
efficient solution technique briefly summarized in Algorithm
1. Therein, Pl, l = 1, . . . , N−L+1, is the convex optimization



Algorithm 1 Route planning
1: Input. HK , CK , V 0, C, p?, L, vmax, amax, ε, ε1,Sc.
2: Output. The optimal trajectory P ? as well as the optimal

mean velocity profile V ?.
3: Initialization. Set l = 0, v = +∞, V ? = 0, and P̄ ?

= 0.
4: repeat
5: l = l + 1.
6: Solve Problem Pl. If v(Pl) < v, then v = v(Pl), V̄ ?

=

V l and P̄ ?
= P̄

l. Otherwise goes to step 5.
7: until l ≤ N − L+ 1
8: Output. If v < +∞, V ? = V̄

? and P ? =
[
0, P̄

]
,

otherwise the design problem is not feasible.

problem, defined as follows.

Pl



min
V ,

¯P
λ(V )

s.t. ‖vh‖ ≤ vmax, h = 1, . . . , N
‖vh − vh−1‖ ≤ amax, h = 2, . . . , N
‖ph − vh∆t‖C−1 ≤

√
ε, h = 1, . . . , N∥∥ph − (vh∆t+ ph−1)
∥∥
C−1 ≤

√
ε, h = 2, . . . , N

max
k=l,...,l+L

(‖pk − p?‖) ≤ ε1
V = [v1,v2, . . . ,vN ] ∈ R2,N

P̄ = [p1,p2, . . . ,pN ] ∈ R2,N

ph ∈ Sc, h = 1, . . . , N,
(20)

where

λ (V ) = vec (V − V 0)
T
HT

KC
−1
K HKvec (V − V 0) (21)

directly refers to the non-centrality parameter associated to the
maximum number of measurements. For any l = 1, . . . , N −
L + 1, Pl is a convex optimization problem and the optimal
solution to P is (V ?,P ?), with

V ? = V l?

P ? =
[
0, P̄

l
]
,

where
l? = arg min

l=1,...,N−L+1
λ(V l),

and
(
V l, P̄

l
)

is an optimal solution to Pl. Note that, if Pl is
not feasible, the corresponding optimal value is assumed equal
to +∞.

The computational complexity related to the implementation
of Algorithm 1 depends on the number of outer iterations N−
L+1, as well as on the complexity of each iteration. Precisely,
the overall complexity is linear with respect to N while, the
complexity of each cycle is that required to solve (for our
specific applications) a Second-Order Cone Program (SOCP),
which is O(N3.5 log(η)) (see [18]), where η is a prescribed
accuracy.

The route design problem, all the related route constraints,
and the proposed solution will be fully explained and detailed
in the extended version of this work.

IV. PERFORMANCE ANALYSIS OF REAL-WORLD VESSEL
TRAFFIC DATA

The optimization strategy proposed in this work has been
applied to the real-world AIS track of a vessel navigating in the
waters of the Pacific Ocean [19], which was already analyzed
in [8] and [9]. The information provided by the track reveals
a deviation from the nominal route, depicted in Fig. 1 by the
black dashed line (ground truth), in order to rendezvous with
other ships in the specified point p∗.

To test the proposed strategy, a gap in AIS data of about
T = 145.5 h was artificially introduced to simulate the AIS
device shutdown during the actual deviation. Additionally,
a fictive nominal trajectory (blue dotted curve) has been
assumed when the data gap occurs, which is characterized by
a piecewise nominal velocity V 0 ∈ R2,N , with N = 37, and
whose mean value is v0 = [3.36, −0.42]T m/s. The other OU
parameters are also estimated on this fictive nominal trajectory,
and they are given by γ =

[
1.63× 10−5, 5.95× 10−4

]
and

σ =
[
1.1× 10−2, 1.58× 10−2

]
.

As regards the optimization procedure, the parameters re-
lated to the constraints are set as: vmax = 10 m/s, amax = 1,
ε = 1, and ε1 = 1 km. Moreover, an ellipse constraint, which
can indicate the presence of land (or forbidden navigational
area), has been imposed to contain p∗ and the resulting
optimized trajectory, and it has been designed by aligning the
focal points with the positions where the AIS device is turned
off and where is then reactivated, respectively.
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Fig. 1. Real-world AIS track (black dotted line) versus optimized trajectory
(green o-marker curve).

As it can be visually noticed in Fig. 1, the optimized
trajectory is effectively devised (red o-marker curve) so that
the vessel can arrive to the meeting point, loiter there for the
desired time (L∆t ' 19.6 h), and finally restore the nominal
condition before the AIS device reactivation.

Performance of detector (14) is provided in terms of missed
detection probability, 1 − PD, versus false alarm probability,
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Fig. 2. Performance of anomaly detector (14) shows the optimized trajectory
being less detectable then the real one.

PFA, in Fig. 2, where the ROC curves related to the real
trajectory (star-marker curve) and the optimized one (o-marker
curve) are shown. Remarkably, the synthesized stealth trajec-
tory exhibits a behavior similar to the real anomalous route,
but it turns out to be stealthier, revealing the effectiveness of
the new proposed route planning tool.

V. CONCLUSIONS

The worst conditions in terms of anomaly detection capabil-
ity are investigated proposing an optimization methodology to
design a vessel trajectory as stealth as possible. Such trajectory
is formalized as a min-max problem which exploits the KL-
divergence between the two statistical hypotheses (nominal
versus anomalous) as key performance measure. Considering
the OU mean-reverting stochastic process as the vessel’s dy-
namic model, proper constraints at the design stage are forced
accounting for physical, practical, and kinematic requirements.
The resulting non-convex optimization problem is solved via a
computationally efficient strategy, and a real-world case study
is reported to assess the effectiveness of the proposed strategy.

ACKNOWLEDGMENT

This work was supported by the NATO Allied Command
Transformation (ACT) via the project Data Knowledge Op-
erational Effectiveness (DKOE) at the NATO Science and
Technology Organization (STO) Centre for Maritime Research
and Experimentation (CMRE). The authors thankfully ac-
knowledge MarineTraffic and Prof. Dimitris Zissis from the
University of the Aegean for providing the real-world AIS
data set used for the experimental analysis and for the valuable
domain expert insights.

REFERENCES

[1] “International Convention of Safety of Life at Sea (SOLAS),” Interna-
tional Maritime Organization (IMO).

[2] K. Kowalska and L. Peel, “Maritime anomaly detection using Gaussian
process active learning,” in 2012 15th International Conference on
Information Fusion, July 2012, pp. 1164–1171.

[3] M. Vespe, I. Visentini, K. Bryan, and P. Braca, “Unsupervised learning of
maritime traffic patterns for anomaly detection,” in 9th IET Data Fusion
Target Tracking Conference (DF TT 2012): Algorithms Applications,
May 2012, pp. 1–5.

[4] M. Riveiro, G. Pallotta, and M. Vespe, “Maritime anomaly detection: A
review,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, p. e1266, 05 2018.

[5] B. Ristic, B. L. Scala, M. Morelande, and N. Gordon, “Statistical
analysis of motion patterns in AIS data: Anomaly detection and motion
prediction,” in 2008 11th International Conference on Information
Fusion, June 2008, pp. 1–7.

[6] R. O. Lane, D. A. Nevell, S. D. Hayward, and T. W. Beaney, “Maritime
anomaly detection and threat assessment,” in 2010 13th International
Conference on Information Fusion, July 2010, pp. 1–8.

[7] F. Katsilieris, P. Braca, and S. Coraluppi, “Detection of malicious AIS
position spoofing by exploiting radar information,” in Proceedings of
the 16th International Conference on Information Fusion, July 2013,
pp. 1196–1203.

[8] E. d’Afflisio, P. Braca, L. M. Millefiori, and P. Willett, “Detecting
anomalous deviations from standard maritime routes using the Orn-
stein–Uhlenbeck process,” IEEE Transactions on Signal Processing,
vol. 66, no. 24, pp. 6474–6487, Dec 2018.

[9] E. d’Afflisio, P. Braca, L. M. Millefiori, and P. Willett, “Maritime
anomaly detection based on mean-reverting stochastic processes applied
to a real-world scenario,” in 2018 21st International Conference on
Information Fusion (FUSION), July 2018, pp. 1171–1177.

[10] L. M. Millefiori, P. Braca, K. Bryan, and P. Willett, “Modeling vessel
kinematics using a stochastic mean-reverting process for long-term
prediction,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 52, no. 5, pp. 2313–2330, October 2016.

[11] L. M. Millefiori, P. Braca, and P. Willett, “Consistent estimation of
randomly sampled Ornstein-Uhlenbeck process long-run mean for long-
term target state prediction.” IEEE Signal Processing Letters, vol. 23,
no. 11, pp. 1562 – 1566, November 2016.

[12] G. Vivone, L. M. Millefiori, P. Braca, and P. Willett, “Performance
assessment of vessel dynamic models for long-term prediction using
heterogeneous data,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 11, pp. 6533–6546, November 2017.

[13] M. Uney, L. M. Millefiori, and P. Braca, “Prediction of rendezvous in
maritime situational awareness,” in 2018 21st International Conference
on Information Fusion (FUSION), July 2018, pp. 622–628.

[14] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part
I. Dynamic models,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 39, no. 4, pp. 1333–1364, Oct 2003.

[15] P. Coscia, P. Braca, L. M. Millefiori, F. Palmieri, and P. Willett, “Mar-
itime traffic representation based on sea-lanes graph construction criteria
using multiple Ornstein-Uhlenbeck processes,” IEEE Transactions on
Aerospace and Electronic Systems, to be published, 2018.

[16] A. Thorpe and L. Scharf, “Data adaptive rank-shaping methods for solv-
ing least squares problems,” IEEE Transactions on Signal Processing,
vol. 43, no. 7, pp. 1591–1601, july 1995.

[17] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[18] A. Ben-Tal and A. S. Nemirovskiaei, Lectures on Modern Con-
vex Optimization: Analysis, Algorithms, and Engineering Applications.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2001.

[19] J. J. Alava, M. J. Barragán-Paladines, J. Denkinger, L. Muñoz-Abril,
P. Jiménez, F. Paladines, and et al., “Massive Chinese fleet jeopardizes
threatened shark species around the Galápagos marine reserve and
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