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Abstract—A novel anomaly detection procedure is presented,
based on the Ornstein-Uhlenbeck (OU) mean-reverting stochastic
process. The considered anomaly is a vessel that deviates from
a planned route, changing its nominal velocity. In order to hide
this behavior, the vessel switches off its Automatic Identification
System (AIS) device for a certain time, and then tries to revert to
the previous nominal velocity. The decision that has to be taken
is either declaring that a deviation happened or not, relying
only upon two consecutive AIS contacts. A proper statistical
hypothesis testing procedure that builds on the changes in the
OU process long-term velocity parameter of the vessel is the
core of the proposed approach and enables for the solution of
the anomaly detection problem.

Index Terms—Ornstein-Uhlenbeck process, maritime anomaly
detection, statistical hypothesis test, target tracking, automatic
identification system, maritime security, real-world data.

I. INTRODUCTION

Ships involved in stealth activities [1], in which the per-

petrators aim to remain hidden and undetected by law-

enforcement bodies throughout the whole duration of the

activity, tend to follow set patterns depending on the illicit

activity in which they are engaged: deviation from standard

routes, unexpected AIS activity, unexpected port arrival, close

approach, and zone entry [2]. Such set patterns are associated

to an anomalous behavior since the analysis of real-world AIS

data shows that a significant portion of the vessels in open seas

maneuver very seldom, tending to maintain a nearly constant

speed.

Therefore, considering coverage gaps (e.g., counterfeit AIS

reports, AIS device shutdown, limited radar coverage, etc.) an

anomaly detection strategy turns out to be essential.

A real world example of anomalous behavior is provided in

Fig. 1, where the about five-month track of a cargo vessel

is shown. The vessel navigates with a nominal speed of

about 5 m/s in the waters of the Pacific Ocean [3]. Nearby

the Galápagos Exclusive Economic Zone (EEZ), the vessel

shuts the engines down and starts drifting, with an apparent

deviation from its route. The reason of this deviation of the

vessel is to rendezvous with four tuna longliners at about 1700
miles away from the Galápagos. Each fishing vessel spends

about 12 hours moving along the cargo vessel at a distance

of about 30 m, which indicates the boats were likely tied

Fig. 1. The track of the cargo vessel (red) suspected of several rendezvous
with four fishing vessels (dotted tracks).

up. This behavior suggests a substantial transfer of cargo was

possible [3].

In this work, we consider the anomaly detection problem

where a certain vessel switches off its AIS transponder for a

certain amount of time, in order to hide its deviation from a

planned route, which is characterized by a nominal velocity.

The vessel would then try to revert back to the planned route

and to the original nominal velocity. The decision to take

is whether a deviation happened or not, relying only upon
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Fig. 2. Sequence of long-run mean velocities and time intervals characterizing
the N -section path under hypothesis H1.

two consecutive AIS contacts, i.e. the last contact before

the AIS device shutdown and the first one after the AIS

device reactivation. The extension to the case of other contacts

available from sensors other than AIS is studied in [4]. The

proposed anomaly detection strategy will be tested against a

trajectory of a real transshipment [3] incident, based on a

hypothesis testing procedure that builds on the changes of

the Ornstein-Uhlenbeck (OU) process long-run mean velocity

parameter.

The OU process has been shown to be better suited to

model the behavior of a significant portion of real-world

vessel trajectories than respect to conventional models [5]–

[11]. In this framework, the use of the OU model turns out

to be a valuable tool when vessel information is not available,

providing a good estimation of a ship’s position and velocity,

even after several hours.

The rest of the paper is organized as follows. The problem

is formulated in Section II, while Section III is devoted to

the development of the detection strategy, and the analysis of

the real scenario is reported in Section IV. Finally, conclusive

remarks are provided in Section V.

II. PROBLEM FORMULATION

Let us consider a vessel of interest, represented by a point

in a two-dimensional space, which is following its planned

route. The position and velocity of the vessel are expressed

in Cartesian coordinates, resulting from the projection of

the geographic coordinates reported by the on-board AIS

transponder. The OU stochastic process is used to represent

the velocity of the vessel, with a long-run mean velocity v0

that represents the nominal velocity of the ship [5]. In other

words, the velocity of the vessel is a modified Wiener process

so that there is a tendency of the process to move back towards

the long-run mean value, with a greater attraction when the

process is further away from it. The velocity v0 is therefore a

deterministic parameter of the OU stochastic process [5].

Let us now suppose that AIS data is unavailable for a time

T after a given instant, due to a lack of communications from

the ship (because of limited sensor coverage, interference,

etc.) or an intentional shutdown of the AIS transponder. In

this context, two hypotheses can be envisioned: the first one,

denoted by H0, that the vessel navigates according to the

nominal condition (along the planned trajectory with a long-

run mean velocity v0); and the alternative one, denoted by H1,

that the vessel moves away from the nominal route once the

AIS transponder has been shut down. At the end of the time

interval T , the AIS device is switched back on and the vessel

keeps on moving under the nominal condition, as shown in

Fig. 2.

We assume that, during the time period when a lack of data

occurs, the vessel had been moving according to a sequence

of OU processes with unknown long-run mean velocities or,

equivalently, a single OU process with long-run mean velocity

that is a piecewise-constant function of time. In Fig. 2 it

is shown the sequence of long-run mean velocities, which

identify a N -section path, that we represent with the vector

v1:N =
[
vT
1 . . .vT

N

]T
∈ R

2N . Considering the set of time

instants t1 < ... < tn < ... < tN , the period taken to cover

the n-th section corresponds to the difference Δn = tn−tn−1.

In other words, under H1, the vessel velocity is modeled

as a piecewise OU model, i.e. an OU process with a long-run

mean velocity parameter that is a piecewise-constant function

of time. The time period T , during which the AIS is disabled,

can be expressed as the sum of all the different time intervals

Δn, so that T =
∑N

n=1 Δn.

The considered problem amounts determining, in absence of

AIS data and without any other information during the time

interval T , whether the vessel has been following the planned

trajectory at the nominal velocity v0 or not, by means of a

composite hypothesis testing formulation designed to identify

changes in the velocity parameter.

III. DETECTION STRATEGY

A. Ornstein-Uhlenbeck (OU) model

Validated against a real-world commercial maritime traffic

dataset, the OU model enables a more accurate representation

of the target state in the long term, when ships are not

maneuvering [5]. The OU process is distinguished from the

conventional nearly-constant velocity (NCV) model mainly by

a feedback loop, which ensures that the velocity of the target

does not diverge with time, but is instead bounded around

a desired value, i.e. the velocity of the process tends to drift

over time towards its long-term mean. Let us indicate the four-

dimensional target state at time t ∈ R
+
0 with

s(t) = [x(t) ẋ(t)]
T
, (1)

where x(t) and ẋ(t) denote the target position and velocity,

respectively, in a two-dimensional Cartesian reference system

x(t)
Δ
= [x(t) y(t)] , ẋ(t)

Δ
= [ẋ(t) ẏ(t)] . (2)

The target dynamics, in general, are modeled by a set of

linear stochastic differential equations (SDEs) [12], and in

[5] it is shown how the movement of real non-maneuvering

vessels in the open sea can be represented by a mean-reverting

stochastic process. Specifically, the velocity of the target is
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an OU process, and its position is an Integrated OU (IOU)

process. Under this assumption, the SDE for the target motion

model has the following form

ds(t) = A s(t) dt+G v dt+B dω(t), (3)

where v = [vx vy]
T

is the long-run process mean, and ω(t)
is a standard bi-dimensional Wiener process. The matrices A,

B and G are defined as:

A =

[
0 I

0 −Θ

]
, B =

[
0

Σ

]
, G =

[
0

Θ

]
, (4)

where 0 is a 2×2 null matrix, Σ is a 2×2 matrix defining the

noise process and Θ is a 2× 2 matrix quantifying the mean-

reversion effect, meaning the rate at which the target will tend

back to the desired velocity after a perturbation; its diagonal

terms refer to the x and y components, while the off-diagonals

quantify the coupling effect.

Unless otherwise stated, we will use hereafter subscripted

indices to denote time dependency, i.e. xn = x(tn), ẋn =
ẋ(tn) and sn = s(tn) by definition. We also assume that

Θ is diagonalizable and has positive eigenvalues, so that an

affine transformation can be found that projects the matrix

Θ onto another space, i.e. Θ = RΓR−1, where R is the

matrix whose columns contain the eigenvectors of Θ and Γ

is a diagonal matrix whose elements are the corresponding

eigenvalues. This idea is expanded further in [5], where the

general solution to the coupled problem is provided. For the

sake of simplicity and without loss of generality we assume

that R = I, so that Θ = Γ = diag(γ), with γ = [γx, γy]
T. In

other words, as described in [5], there are three parameters for

each coordinate: the long-run mean velocity v, the reversion

rate γ and the process noise σ.

The model can be easily extended to the case of waypoint

navigation [7], that is relevant to our application, being the

navigation mode of substantially all the commercial maritime

traffic. Under this case, we can assume that the long-run

mean velocity of the target is a piecewise-constant function

of the time that takes values from a sequence v1, . . . ,vN .

Along the navigational legs, the long-run mean velocity of the

target follows, by all means, an OU process; conversely, the

maneuver is represented by a change of the long-run mean

velocity parameter. Under these assumptions, the target state

at time ti, given the target state at the previous i − 1 times

can be written, in matrix form as

si = Φ(ti − ti−1,γ)si−1 +Ψ(ti − ti−1,γ)vi + ωi, (5)

where vi is the long-run mean velocity in the time interval

Δi = [ti−1, ti] and ωi = ω(Δi) is a zero-mean Gaussian

random variable with covariance C(Δi) defined in [5]. The

state transition matrix and the control input function, Φ(Δ,γ)
and Ψ(Δ,γ), respectively, are defined as

Φ(Δi,γ) =

[
I

(
I− e−ΓΔi

)
Γ−1

0 e−ΓΔi

]
, (6)

Ψ(Δi,γ) =

[
ΔiI−

(
I− e−ΓΔi

)
Γ−1

I− e−ΓΔi

]
, (7)

whose derivations are provided in [5].

The target state at time tN , given the target states at the

previous N−1 times can be expressed recursively as (omitting

γ for clarity)

sN = Φ(ΔN )sN−1 +Ψ(ΔN )vN + ωN

= Φ(ΔN ) [Φ(ΔN−1)sN−2 +Ψ(ΔN−1)vN−1 + ωN−1]

+Ψ(ΔN )vN + ωN = ...

= Φ(T )s0 +Ψ(ΔN )vN + ωN+

+
N−1∑
n=1

[
N∏

i=n+1

Φ(Δi)

]
[Ψ(Δn)vn + ωn] , (8)

where we exploited the property of the state transition matrix

by which Φ(Δ1)Φ(Δ2)...Φ(Δn) = Φ(Δ1 +Δ2 + ...+Δn),
∀n = 1, ..., N , that can be derived by inspection from (6).

B. Statistical representation of data based on OU model

The two measurements, denoted with z and z0, are availa-

ble, respectively at time T and time t0

z = s(T ) + n, z0 = s(t0) + n0, (9)

where n and n0 are independent zero-mean Gaussian noises

with covariance matrices Cn and Cn0
, respectively. Clearly,

the measurement noise is independent from the OU process

noise. Given the linearity of (9) and the fact that z is

Gaussian, we can use the following vector of data to avoid

the dependence on s(t0) in z

y = z−Φ(T )z0

= Ψ(ΔN )vN + ωN

+
N−1∑
n=1

[
N∏

i=n+1

Φ(Δi)

]
[Ψ(Δn)vn + ωn]

+ n−Φ(T )n0.

The terms ωn = ω(Δn) are independent zero-mean Gaussian

random variables with covariance C(Δn) [5]. As shown in [4],

it amounts to compute

ω(T )
Δ
=

N−1∑
n=1

[
N∏

i=n+1

Φ(Δi)

]
ω(Δn)+ω(ΔN ) ∼ N (0,C(T ))

(10)

so that y can be recast as follows

y = θ + ω(T ) + n−Φ(T )n0 ∼ N (θ,Cy) , (11)

where the expression of the mean term θ is given by

θ
Δ
=

N−1∑
n=1

[
N∏

i=n+1

Φ(Δi)

]
Ψ(Δn)vn +Ψ(ΔN )vN (12)

while, the covariance matrix is given by

Cy
Δ
= C(T ) +Cn +Φ(T )Cn0

Φ(T )T, (13)

assuming the independence of the terms in (11).
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Fig. 3. Complete AIS track (1st region).
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Fig. 4. Simulated gap in the AIS track (1st region).
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Fig. 5. Test statistic (16) related to the complete AIS track (1st region).
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Fig. 6. Test statistic (16) related to the incomplete AIS track (1st region).
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ẋ

ẏ
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Fig. 7. Velocity components related to the complete AIS track (1st region).
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Fig. 8. Velocity components related to the incomplete AIS track (1st region).
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Fig. 10. Simulated gaps in the AIS track (2nd region).
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Fig. 11. Test statistic (16) related to the complete AIS track (2nd region).
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Fig. 12. Test statistic (16) related to the incomplete AIS track (2nd region).
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Fig. 13. Velocity components related to the complete AIS track (2nd region).

0 50 100 150 200 250

Time [h]

-4

-2

0

2

4

6

Sp
ee

d 
[m

/s
]

ẋ
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Fig. 14. Velocity components related to the incomplete AIS track (2nd region).
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C. Detection strategy performance

The anomaly detection problem can be traced back to the

following Gaussian composite hypothesis testing problem:{
H0 : y ∼ N (θ0,Cy)

H1 : y ∼ N (θ,Cy)
(14)

where the mean term θ under H1 is given in (12), while,

under the null hypothesis H0, it is possible to show that θ0
Δ
=

Ψ(T )v0 by exploiting the following equality

N−1∑
n=1

[
N∏

i=n+1

Φ(Δi)

]
Ψ(Δn) +Ψ(ΔN ) = Ψ(T ). (15)

The anomaly detection strategy investigated is the Genera-

lized Likelihood Ratio Test (G-LRT) [13]–[15] and, assuming

the matrix Cy is invertible, it is derived as follows,(
θ̂ − θ0

)T

C−1
y

(
θ̂ − θ0

) H1

≷
H0

τ, (16)

where θ̂ = y represents the ML estimate for the parameter θ.

The test statistics under the two hypotheses H0 and H1 are

characterized, respectively, by a central and a non-central Chi-

squared distributions, both with d = 4 degrees of freedom,

corresponding to the size of the known parameter θ0. The

detection performance is therefore given by

PFA = Qχ2

d
(τ), (17)

PD = Q
χ
′2

d
(λ)(τ), (18)

where Qχ2

d
and Q

χ
′2

d
(λ) are the right tail probabilities of the

central and non-central Chi-squared distributions, respectively,

with the following non-centrality parameter

λ = (θ − θ0)
T
C−1
y (θ − θ0) . (19)

IV. REAL SCENARIO ANALYSIS

The strategy proposed in this work has been applied to real

AIS data corresponding to the track shown in Fig. 1, where

two regions of anomalous behavior can be identified by simple

visual inspection.

For the application of the detection strategy, the OU para-

meters have been estimated in the path section immediately

preceding the one where the deviation from the nominal

conditions actually happens. Specifically, the estimated values

of the process noise σ, the long-run mean velocity v0, and

the reversion rate γ are reported in Table I.

A. First region

The anomalous behavior in the first region is not very

apparent and short. According to the AIS track, the vessel

seems to shut down the engines and drift for about 14 hours,

then it goes back to the planned route as it can be seen

in the close-up of Fig. 3. Such an anomaly is reflected on

the velocity components shown in Fig. 7, but it is more

visible in Fig. 5 where, during the deviation time, the decision

statistic (16) grows by several orders of magnitude with respect

TABLE I
OU PARAMETERS ESTIMATES

First region Second region

γ
γx 5.89× 10−3 2.30× 10−4

γy 8.49× 10−4 4.19× 10−3

σ
σx 2.83× 10−2 1.13× 10−2

σy 1.84× 10−2 2.23× 10−2

v0

v0x 5.8743 5.2931

v0y -0.6320 0.0331

to nominal values, exceeding all the values of the threshold

(i.e. for different values of the false alarm probability: PFA ∈{
10−4, 10−6, 10−8

}
).

A gap has been simulated in the AIS track, corresponding to

the anomaly time frame, as depicted in Fig. 4, in order to test

the proposed detection strategy. The detector (16) correctly

reveals the deviation from the nominal condition, using a

threshold selected with PFA = 10−6, as shown in Fig. 6.

B. Second region

The AIS track of the ship in the second observation window

is shown in Fig. 9 and it does indeed reveal a deviation from

the normal route during a time frame of about 5 days; Fig. 11

displays the test statistic (16), which exceeds the threshold

(plotted for different values of the false alarm probability

in the same range considered for the first region analysis)

corresponding to the deviation from the nominal condition. In

particular, the deviation from the nominal velocity is visible

in Fig. 13 where the velocity components show an apparent

change in that specific time frame.

As done for the first region, the detection strategy is tested

with simulated gaps in AIS data, as shown in Fig. 10, with

the corresponding velocity gaps shown in Fig 14. The first gap

occurs in a section of the trajectory where there is no deviation

from the nominal conditions, while the second one occurs

where the deviation actually happens. From the application

of the detector (16) with PFA = 10−6, the deviation can be

properly detected while no detection is correctly declared in

the first gap, as shown in Fig. 12.

V. CONCLUSION

A maritime anomaly detection problem has been studied

assuming an Ornstein-Uhlenbeck (OU) mean-reverting sto-

chastic motion model for the vessel dynamics. The aim was to

reveal a possible deviation of the vessel under consideration

from its nominal conditions, during an AIS device disable-

ment, relying on a hypothesis testing procedure based on the

generalized likelihood ratio test that builds on the changes in

the OU process long-term velocity parameter.

A closed-form expression has been provided for the de-

tector, the false alarm probability, and the anomaly detection
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probability, expressed in terms of a central and a non-central

chi-squared distributions, respectively.

Finally, the proposed detection strategy has been applied

to two different sections of a real trajectory of a ship that

performs deviations from her nominal route; within the tra-

jectory, data gaps have been simulated in correspondence of

and outside the deviation. The two hypothesized anomalies

appear to be fairly difficult to be identified by the simple

visual inspection of a human operator, who might not be able

to reveal such small-scale deviations within a big picture.

Therefore, the anomaly detection algorithm appears to be

useful also in practical situations, as it could be applied

automatically and simultaneously to several trajectories in

order to reveal possible deviations.
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