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Coordinatore Prof. Graziano Gentili

Special Solutions

for Shell Models

of Energy Cascade in Turbulence

Settore Scientifico Disciplinare MAT/05

Dottorando

Dott. Carlo Metta

Tutore

Prof. Francesco Morandin

Coordinatore

Prof. Graziano Gentili

Anni 2016/2019



2



Contents

Introduction 5
Overview and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . 9
Katz and Pavlovic linear model . . . . . . . . . . . . . . . . . . . . . . . 10
Mixed linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Katz and Pavlovic tree model . . . . . . . . . . . . . . . . . . . . . . . . 15
Inverse cascade tree model . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Mixed tree model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1 From Navier-Stokes to Shell Models 23
1.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 The Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Kolmogorov Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.1 The four-fifth law . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Fourier Transform of NSE . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Kolmogorov energy scaling . . . . . . . . . . . . . . . . . . . 29
1.5 Shell Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.1 The Obukhov - Novikov shell models . . . . . . . . . . . . . 31
1.5.2 The Gledzer - Okhitani - Yamada shell model . . . . . . . . 33
1.5.3 The SABRA shell model . . . . . . . . . . . . . . . . . . . . 34

2 Dyadic Linear Models 37
2.1 Katz-Pavlovic linear model . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.2 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . 42
2.1.3 Energy dissipation . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.4 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.1.5 Stationary and Self-Similar solutions . . . . . . . . . . . . . 46
2.1.6 Proof of Theorem 2.1.17 and 2.1.18 . . . . . . . . . . . . . . 50

2.2 Mixed linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.1 Stationary and Self-Similar solutions . . . . . . . . . . . . . 63
2.2.2 Proof of Theorems 2.2.2 and 2.2.3 . . . . . . . . . . . . . . . 67

3



4 CONTENTS

3 Dyadic Models on a Tree 81
3.1 Direct energy cascade . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.1.1 Stationary Leray-Hopf solution . . . . . . . . . . . . . . . . 86
3.1.2 Self-Similar solutions . . . . . . . . . . . . . . . . . . . . . . 88
3.1.3 Viscous stationary solutions . . . . . . . . . . . . . . . . . . 97

3.2 Inverse energy cascade . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.1 Stationary Solutions . . . . . . . . . . . . . . . . . . . . . . 100
3.2.2 Self-Similar Solutions . . . . . . . . . . . . . . . . . . . . . . 108
3.2.3 Equivalence between constant and self-similar solutions . . . 111

3.3 Mixed dyadic model on a Tree . . . . . . . . . . . . . . . . . . . . . 113
3.3.1 Stationary Solutions . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 124



Introduction

The theory of turbulence deals with the non homogeneous behavior of intense
fluid flow. We know that the evolution of all these phenomena can be described
through the Navier-Stokes equations. NSE regards the nature of fully devel-
oped turbulence and is one of the most important models of mathematical physics.
There are still cardinal open questions due to the nature of non-linearity present
in the equation

∂tvi + vj∂jvi = −∂ip+ ν∂jjvi + fi

∂ivi = 0

Navier-Stokes Equations

The first equation states that the acceleration of a fluid fragment equals the
sum of the forces acting on it while the continuity equation represents the conser-
vation of mass for incompressible fluids. From these four equations is theoretically
possible to determine the three components of the fluid velocity and the pressure
field. However, no general solutions to the NSE are known yet apart for very sim-
ple laminar flows.

The first contribute to the theory of turbulence can be found in [60] by Richard-
son. He describes a fluid as formed of large eddies splitting up into smaller eddies,
which again split up into yet smaller eddies until they vanish by viscosity. Energy
is inserted at large scales and then it cascades into smaller scales until it disappears
at the viscous scale. Richardson studies led Kolmogorov [47] to develop a more
structured theory of turbulence.

In 1941 Kolmogorov [47] proposed the picture of a flow sustained by a force active
on a large scales such that the flow is in a state of statistical equilibrium. The state
of the flow is characterized by the mean energy dissipation ε due to viscosity. The
velocity at a given length scale ` is the velocity difference δv(`) = |v(r+ l)− v(r)|,
it is characteristic of the velocity related to an eddy of size l. The effect of flow
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velocity on a larger scale is to move the eddy through the flow as a rigid body.
Similarly, if we consider a much smaller eddy within the larger eddy, the effect of
the larger eddy on the smaller is the same as the effect of the larger scale flow
on the large eddy. It is common to assume that the velocity difference δv(`) is
a function of the scale ` and the mean energy dissipation ε. From a dimensional
study the only possible relationship is the famous Kolmogorov scaling law

δv(`) ∼ (ε `)1/3.

Kolmogorov K41 Law

K41 contains all the essence of Kolmogorov turbulence theory.

One natural approach to study small scale turbulence is to introduce the struc-
ture functions of the velocity field of different orders:

Sp(`) = 〈δv(`)p〉

where the brackets stand for the statistical average among the range scale `.
In 1945, Kolmogorov [48] exhibits an exact relation for the third order structure

function:

S3(`) =
4

5
ε `.

Kolmogorov four-fifth law

This is probably the most important and exact result in fully developed turbu-
lence. A theory to be acceptable must either satisfy the four-fifth law, or violate
the assumptions made in deriving it.

The K41 scaling theory predicts the scaling

Sp(`) ∼ `p/3.

Although, many real experiments have observed flows that behave intermit-
tently: calm periods are interrupted by sudden blasts of energy at small scales
which are then effectively damped. There is enough experimental evidence to
state that deviations to the scaling law are present in the inertial range of fully
developed turbulence. The structure function still scales with length, but this time
the scaling exponent ζ(p)

Sp(`) ∼ `ζ(p)
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are different from p/3. The function ζ(p) is called the anomalous scaling
exponent, it represents the nonuniform essence of intermittent flow. Calculating
the anomalous scaling exponents from NSE is a major challenge in which there has
been little success. Such intermittent behaviour is much easier to understand in
the case of Shell models. This has been a major motivation for studying them.

Shell Models

It is reasonable to develop alternative models that are consistent with but
simpler than the original Navier-Stokes equation. In the last decades many mod-
els have been introduced to study all different characteristics of turbulent fluids.
Among these models we are interested in the family of the Dyadic models.

In the Fourier representation of NSE, the transfer of energy from large to small
scales is described as a flux of energy from small wave numbers to large wave num-
bers. The idea behind shell models is to divide the space into concentric spheres
with exponentially growing radius kn = λn. We then call n-th shell the set of wave
numbers contained in the n-th sphere and not contained in the (n-1)-th sphere.

Shell models investigate the energy cascade flow with a system of coupled
nonlinear ordinary differential equation of the form:

d

dt
un = knGn[u, u]− νnun + fn,

where the variable un represents the evolution over time of the velocity over a
wavelength of scale kn. The nonlinear function Gn[·, ·] is chosen to preserve some
suitable properties inherited from the original nonlinear terms of NSE. Moreover,
it is common for Gn[·, ·] to couple only scales that are close to each other (for
instance nearest and next-to-nearest shells).

The constraints to have local interaction, quadratic non-linearity, preserving
total energy (or total helicity), and phase-space evolution do not fix in a unique
way the form Gn[·, ·]. Consequently, many models have been developed in recent
years in order to study different aspects of turbulent fluids.

Dyadic Models

This thesis deepens the study of some dyadic models all related to the original
dyadic model introduced by Obukhov [58] in 1971 and by Desnianskii and Novikov
[32], [33] in 1974.

Following Katz and Pavlovic [44], we can think of a tree-like structure J , where
the nodes are eddies: for every eddy j ∈ J we denote its father by  and the set
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of its offspring by Oj, that corresponds to the smaller eddies produced from j by
instability. Eddies belongs to generations: level 0 is made of the largest eddy,
level n of eddies produced from eddies of level n-1. We relate every eddy j to
its intensity Xj(t), at time t, such that the total energy of eddy j is X2

j (t). We
then couple eddies intensities by a system of ordinary differential equation which
specifies that the intensity of eddy j increases thanks to a flux of energy from 
and decreases thanks to a flux of energy to the set Oj.

d

dt
Xj = cjX

2
 −

∑
k∈Oj

ckXjXk,

Katz and Pavlovic model

for some specific positive coefficients cj.

We stress that in 2-dimensional fluids it has been observed a phenomenon called
vortex cannibalization that corresponds to an inverse cascade dynamics from
small to large eddies. This is not taken into account by Katz and Pavlovic model.
On the other hand, in 3-dimensional fluids the main flux of energy is attributed
only to the direct cascade, thus we will think Katz and Pavlovic model always as
prototype of 3D fluids dynamics.

Later, Waleffe [63] proposed a simplified model where instead of the branching
tree structure comprises a linear tree of the functions Xj(t) satisfying an infinite
system of ordinary differential equations

d

dt
Xn = λnX

2
n−1 − λn+1XnXn+1,

Katz and Pavlovic linear model

where λn = λn, and λ > 0 is a positive parameter. Also this model shows
a intrinsic mechanism of transferring the energy to higher nodes. Waleffe then
suggested the following different model

d

dt
Xn = λnXn−1Xn − λn+1X

2
n+1,

Obukhov linear model

This model is reminiscent of Obukhov work [57]. Unlike Katz-Pavlovic model,
Obukhov model lacks of the transferring energy mechanism and presents a more
subtle and thus perhaps a more realistic behaviour.
These two models constitute the two basic building blocks of all linear tree mod-
els satisfying four natural conditions: (i) quadratic non-linearity, (ii) scaling
properties, (iii) energy conservation, (iv) and nearest neighbor coupling.
All of these except the last one are the features derived from the NSE.
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Overview and Main Results

Existence and uniqueness of solutions are the first questions to ask when deal-
ing with shell models. Many works that address these questions can be found in
literature, we mention in particular [22], [26], [25], [36], [44], [46]. In Chapter 1 we
start with an overview of the main results about Katz and Pavlovic dyadic linear
model, focusing our attention to the existence and uniqueness of special class of
solutions, namely stationary and self-similar solutions.
These two classes of functions possess many important properties often used to
explain the overall dynamics of the related model. Existence of stationary solu-
tions for Katz and Pavlovic linear model is a classical result, on the other hand
self-similar solutions are a more complex matter. In [6] it was proven, by using
complex analysis argument and with the help of numerical computation, existence
and uniqueness of self-similar solution. In Section 2.1.6 we present a different
proof based on a pullback technique that will be useful frequently throughout all
the thesis.
With similar technique we give an explicit presentation of stationary solutions for
the viscous forced model. Such solutions obey to K41 scaling law as long as the
exponent of the viscous friction is less than a critical value. Beyond such critical
value the solution is damped out with super exponential velocity.

In Section 2.2 we focus our attention on the more general Mixed dyadic lin-
ear model. This model carries both Katz-Pavlovic and Obukhov dynamics, thus
it gives birth to a more complex structure: even the simple uniqueness properties
do not hold anymore. Because of its complex dynamics, no results were found in
literature until 2019 [41], where the author shows the existence of self-similar solu-
tion for particular value of the model parameters, in addition to a local uniqueness
theorem. We extend such results and give a complete spectrum of existence and
uniqueness results for both stationary and self-similar solutions, for every possible
choice of the model parameters.

Chapter 3 is entirely devoted to studying dyadic models with tree structure. In
Section 3.1 we start by recalling essential result about Katz and Pavlovic tree
model, in particular its general version recently developed in [17], where the au-
thors show that such model possess a unique stationary solution. This solutions
shows a multifractal nature as well as the spatial intermittency phenomenon. We
extend this study looking for special solutions that are not time independent. In
particular we prove existence and uniqueness of a self-similar solution. Further-
more, we investigate what happens to the only stationary solution in the presence
of viscous friction.
In Section 3.2 we present a dyadic tree model with a non-linearity of Obukhov type.



10 CONTENTS

Such model manifests an inverse cascade energy dynamics, thus we will think of
it as toy model for studying 2D fluids dynamics. Unlike the previous model, this
one admits infinitely many stationary and self-similar solutions. Among stationary
solutions, just one of them shows no intermittent behaviour while, for infinite of
them, one can explicitly exhibit spatial intermittency. Moreover, self-similar solu-
tions, when they exist, have the same regularity of particular stationary solutions.
We conclude this thesis with Section 3.3, where we extend previous settings to a
mixed tree model. This model carries with it both Katz-Pavlovic and Obukhov
non-linearity in a tree-like branching structure. Its complex dynamics it is far
from being understood, however a recent existence result has been proposed in
[55]. We contribute by proving existence of stationary solutions and, depending
on the model parameters, their uniqueness.

We give here a brief overview of the entire thesis as a guide through the main
results.

Katz and Pavlovic linear model

The Tree dyadic model is a more structured version of the so called Katz-
Pavlovic Dyadic linear model of turbulence. The linear model is based on
variables Yn which represent a cumulative intensity of the n-th shell, n ∈ N. We
consider the equations for Yn in the following general form

dYn(t)

dt
= kn−1Y

2
n−1(t)− knYn(t)Yn+1(t)− νkγnYn,

Yn(0) = yn,

Y0(t) = F, ∀n ≥ 0,∀t ≥ 0

(1)

where the coefficients satisfy kn = 2βn for β > 0, ν > 0 and γ > 0 are
respectively the viscosity coefficient and exponent, yn are the initial conditions
and F ≥ 0 is a non negative force added to the first component.
When F = 0 we will address model (1) as unforced while when ν = 0 we will refer
to it as inviscid. Without lost of generality, from now on we will fix ν = 1.
We will consider the following definitions of a solution for a system of equation
like (1), extending them naturally to more complex models.

Definition. Let I ⊂ R+ be an interval.
A local weak solution on I is a sequence of differentiable functions Y = (Yn)n≥1

satisfying (1).
A weak solution is a sequence Y = (Yn)n≥1 of differentiable function on all the
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positive line [0,∞), satisfying (1).
A finite energy solution is a weak solution such that Y (t) ∈ `2 for all t ≥ 0.
A Leray-Hopf solution is a finite energy solution such that ||Y (t)||`2 is a non in-
creasing function of t.

Many classical results about existence and uniqueness of solutions can be found
in literature. To allow the reader to easily go through this overview, we mention in
particular that, given any initial condition y ∈ `2, there exists at least one Leray-
Hopf solution. Uniqueness is a more complex matter. In general, uniqueness does
not hold for all initial finite energy conditions. However, if the initial condition
y = (yn)n is also non negative for all n ≥ 0, then there exists a unique weak
solution.

We now introduce two special classes of solutions, namely stationary and
self-similar solutions.

Definition. A stationary solution Y is a sequence of real number (yn)n≥1 such
that Y = (yn)n≥1 ∈ `2 is solution of the unviscid system (1).

Such definition can be extended also to the viscous case.

Definition. A viscous stationary solution Y v is a sequence of real number (yvn)n≥1

such that Y v = (yvn)n≥1 ∈ `2 is solution of the viscous system (1).

Proposition. If F = 0, the only stationary solution of (1) is Y ≡ 0. If F > 0
then exists only one stationary solution

yn =
√
F · k−1/3

n , n ≥ 1. (2)

Despite their simplicity, stationary solutions are one of the most important
class of solution. They retain many properties that are extremely useful in order
to described the overall model dynamics. First of all we can observe from (2) the
anticipated Kolmogorov K41 law; moreover, in [25], the authors showed that, given
a forcing term F , the only stationary solution is an exponential global attractor
for every finite energy solution.

The other special class of solution is represented by the self-similar solutions.

Definition. A self-similar solution is a finite energy solution Y such that there
exists a differentiable function φ(t) and a sequence of real numbers a = (an)n≥1

such that Yn(t) = an · φ(t) for all n ≥ 1 and all t ≥ 0.

Next theorems establish the existence of positive self-similar and viscous sta-
tionary solution. Furthermore, they reveal the existence of an upper limit for the
viscous term γ and a threshold for the forcing term F so that the corresponding
viscous stationary solutions are not regular enough and still show K41 behavior.
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Theorem. Given t0 < 0, there exists a unique positive self-similar solution with
a1 6= 0 of the form

Yn(t) =
an

t− t0
, t ≥ t0.

Moreover, given t0 < 0 and n0 ≥ 0, there exists a unique positive self-similar
solution with

a1 = a2 = · · · an0 = 0, an0+1 > 0.

In addition, the coefficients an have the property

lim
n→∞

an

k
−1/3
n

= Cn0 ,

for some constant Cn0.

This theorem shows that the Kolmogorov scaling law appears in these special
solution, phenomenologically associated to decaying turbulence. But it is for us
a very difficult open problem to understand whether all other solutions approach
the self-similar ones and in which sense. The Theorem was originally proved in [6]
by using complex analysis argument and with the help of numerical computation.
We present a different proof based on a useful pullback technique.
The existence of finite energy self-similar solutions is of theoretical interest in
itself, moreover the existence of such solutions has a number of implications. For
instance, we will see that they realize perfectly the energy bound decay rate of a
general solution. It has been conjectured that the set of all self-similar solutions
attracts all other finite energy solutions. If this is the case, their the decay rate
would be the true one for all solutions. Moreover, in many model self-similar
solutions offer an easy example of lack of uniqueness.
We extend previous classical results by looking also for viscous stationary solution
of system (1).

Theorem. Consider the forced viscous dyadic model (1). Then

1. if γ < 2/3, the model admits a unique viscous stationary solution Y v
n (t) = yvn.

Moreover, it exists a threshold F0 > 0 such that:

(a) if F > F0, then the coefficients yvn have the property

lim
n→∞

yvn

k
−1/3
n

= CF,γ,

for some constant CF,γ.
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(b) if F ≤ F0, then exists z = zF ∈ R+ such that the coefficients yvn have
the property

lim
n→∞

yvn
2−kn·z−(n+2)(γ−1)

= Cγ,z,

for some constant Cγ,z.

2. if γ ≥ 2/3, the model admits a unique viscous stationary solution Y v
n (t) = yvn.

Moreover, for every F > 0 exists z = zF,γ ∈ R+ such that the coefficients an
have the property

lim
n→∞

yvn
2−kn·z−(n+2)(γ−1)

= Cγ,z,

for some constant Cγ,z.

If we read the original Katz-Pavlovic viscous model [44], it is not difficult to
see that every solution is regularized after the critical viscosity value γc = 4

5
.

However, nothing forbids special classes of solution to be regularized with lower
dissipation values. We show that constant solutions starting with enough energy
can withstand a lower critical dissipation value, precisely γ = 2

3
. After that,

every stationary solution becomes more regular and decay with super exponential
velocity.

Mixed linear model

Katz Pavlovic and Obukhov models constitute the two basic blocks of all linear
models satisfying four characteristic features derived from NSE. It is then natural
to consider the following more general (unviscid) model

dYn(t)

dt
= δ1[knY

2
n−1(t)− kn+1Yn(t)Yn+1(t)]− δ2[knY

2
n+1(t)− kn−1Yn(t)Yn−1(t)]

Yn(0) = yn

Y0(t) = F, ∀n ≥ 0,∀t ≥ 0

(3)

where kn = 2βn for some β > 0, δ1, δ2 ≥ 0 non negative parameters, F ≥ 0 is the
usual force to the first component and yn some initial condition.

The mixed linear model reduces to (inviscid) Katz-Pavlovic and Obukhov models
by setting respectively δ2 = 0 and δ1 = 0, hence we expect it to carry both Katz-
Pavlovic and Obukhov dynamics giving birth to a more complex structure.
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Because of its complex dynamics, no results were found in literature until 2019
[41], where the author shows the existence of self-similar solution for particular
value of parameters (δ1, δ2), in addition to a local uniqueness theorem. Moreover,
in [55], the author proved existence of weak solution of the mixed dyadic model
for every initial condition y ∈ `2.
We extend such results with the following theorems, giving a complete spectrum
of existence and uniqueness results for both (positive) stationary and self-similar
solutions, for every positive couple of parameter (δ1, δ2).

Theorem. The forced mixed model (3) admits positive stationary solutions for
every choice of coefficient δ1, δ2 > 0. In particular:

• if δ1
δ2
< k

−4/3
1 , then for every a0 = F > 0 and every a1 > 0 there is just one

positive stationary solution {an}n≥0 of (2.30);

• if δ1
δ2
> k

−4/3
1 , then for every a0 = F > 0 there is just one positive stationary

solution {an}n≥0 of (2.30).

Moreover, any such stationary solution satisfies Kolmogorov’s scaling law

lim
n→∞

an

k
−1/3
n

= C

for some positive constant C > 0.

We divide the positive plane in two sub-regions: above the line δ1/δ2 = k
−4/3
1

there are infinitely many finite energy stationary solution; below the same line
uniqueness holds for every forcing term F > 0.

It easy to prove that self-similar solutions for model (3) in the unforced case
(F = 0), have the form

Yn(t) =
an

t− t0
, a0 = 0,

with t > t0 and t0 < 0.

Theorem. Given t0 < 0, and k−4
1 ≤ δ1/δ2 ≤ 1, there exist self-similar solutions

of the unforced (F = 0) model (3). In particular

• if k−4
1 ≤ δ1/δ2 ≤ k

−4/3
1 then for every a1 > 0 there is just one self-similar

solution {an}n≥0;

• if k
−4/3
1 < δ1/δ2 ≤ 1 then there is just one self-similar solution {an}n≥0.
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In addition, any such self-similar solution satisfies Kolmogorov’s scaling law

lim
n→∞

an

k
−1/3
n

= C

for some positive constant C > 0.

This time we divide the positive plane in four sub-regions: above the line
δ1/δ2 = k−4

1 and below δ1/δ2 = 1 previous theorem does not give any information
about existence of self-similar solution; between the lines δ1/δ2 = k−4

1 and δ1/δ2 =

k
−4/3
1 we have existence but not uniqueness; between the lines δ1/δ2 = k

−4/3
1 and

δ1/δ2 = 1 we have existence and uniqueness of self-similar solution. However,
numerical simulation confirmed the existence of true bounds Ltrue < k−4

1 and
1 < Utrue such that existence holds in the wider domain δ2 ·Ltrue ≤ δ1 ≤ δ2 ·Utrue.
Outside of such domain no self-similar solution exists.

Katz and Pavlovic tree model

In Chapter 3 we are interested in studying a generalization of Katz and Pavlovic
tree model first developed in [17], extending it to an inverse cascade model with a
non-linearity of Obukhov-type as well as to a mixed model similar to (3).

The model we are interested in is described by the following system of equa-
tions:

X
′

j(t) = cjX
2
 (t)−

∑
k∈Oj

ckXj(t)Xk(t), j ∈ J, t ≥ 0 (4)

where cj = dj · 2β|j|, for some β > 0, dj > 0 for every j ∈ J , d∅ = 1 and
X∅(t) = f ≥ 0 is the forcing term on the first component.

We observe that in the case of the linear dyadic model (1), the Kolmogorov
inertial range spectrum reads

Yn ∼ k−1/3
n .

For the tree dyadic model (4) the Kolmogorov inertial range spectrum corre-
sponds to

Xj ∼ 2−
β+d

3
|j|.

The generalization to coefficients dj is the key point of model (4). It completely
changes the behaviour of anomalous energy dissipation and makes the structure
function ζp strictly concave, as it should be according to the most recent numerical
simulations of realistic turbulence phenomena. Allowing dj to be different from 1,
forces spatial intermittency on the solutions.
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In all tree models we always consider the quantity | log dj| bounded, and explicit
the latter limitedness by assuming the existence of M > 0 so that

1

M
≤ dj ≤M, ∀j ∈ J.

However, many explicit computations are possible only in the special case where
the same fixed 2d coefficients appear in every set {dk | k ∈ Oj}. We call this model
Repeated Coefficient Model (RCM).

In the RCM case we set {dk | k ∈ Oj} = {δw |w ∈ Ω}, for some Ω of cardinal-
ity 2d. Hence, we can introduce the log-s-norm of the coefficients. For s ∈ R \ 0
let

`s =
1

s
log2(

1

2d

∑
w∈Ω

δsw).

This can be extended to obtain a bounded, non-decreasing and continuous function
` on [−∞,∞].
It is useful to mention here the natural spaces to study regularity of solutions:

Hs = {u : J → R | ||u||Hs =

√∑
j∈J

22s|j|u2
j <∞}.

In particular we write H = H0 = `2(J).

Compared to the linear dyadic model, this time existence and uniqueness of solu-
tions are more subtle matters.
In [2] it has been proved that if dj = 1 for every j ∈ J , then for any initial condition
with non negative components there exists at least one Leray-Hopf solution. The
generalization to the general model is straightforward. Uniqueness of solutions is
an open problem even for the model with dj = 1.
In [17] it has been proved the existence, and uniqueness in some sense, of a sta-
tionary solution by introducing a forcing term on the first component. We extend
this framework in order to prove existence of solutions that are not constant in
time as well as investigate the evolution of the unique stationary solution when
we add a viscous friction in equation (4), discovering an interesting regularizing
phenomenon due to the presence of coefficients dj.

Theorem. (from [17]) Suppose

sup
j∈J

log2 dj − inf
j∈J

log2 dj = L <∞.
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Then, there exists a stationary weak solution X of model (4). Moreover, X ∈ Hr

for all

r <
1

3
(β − d

2
)− L.

If we restrict ourselves to the RCM model, computation of many quantities
simplifies enormously while still showing peculiar features that clarifies the mul-
tifractal nature of the stationary solution as well as the spatial intermittency
phenomenon.

Theorem. (from [17]) The RCM admits a stationary weak solution X ∈ Hs for
all s < s0(p), where p ≥ 1 and

s0(p) =
1

3
(β − d

2
) +

1

2
(`3/2 − `p/2).

Such solution is unique inside any Hs and it admits an explicit form

uj = f · 2q|j|+q
∏
k≤j

√
dk, j ∈ J,

where

q =
1

3
(β + d)− 1

2
`3/2.

If β > d/2 the solution is of Leray-Hopf.

One step forward in the study of model (4) is to search for solutions that are
not constant in time. One natural way is then to look for self-similar solutions. In
Section 3.1 we prove the following

Theorem. Suppose there exist constant d < C < 2β − 2 logM and 1 ≤M < 2β/2

so that
1/M ≤ dk ≤M, ∀k ∈ J \ ∅

Then there exists one and only one positive self-similar solution X = (Xj(t))j∈J
of model (4).

We then extend our techniques to RCM model like (4) in the presence of a
viscous friction, i.e.

X
′

j(t) = cjX
2
j
(t)−

∑
k∈Oj

ckXj(t)Xk(t)− cγjXj(t), j ∈ J, t ≥ 0, γ ∈ R, (5)

as well as investigate for which values of the friction exponent γ, the only stationary
solution found in [17] still show the same dynamics as in the inviscid model.
Next theorem addresses such questions.
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Theorem. It exists a critical friction value γc

γc =
1

3β
(2β − 2 logM − C)

for some constant C ≥ d, such that for every γ < γc, the viscous forced model
(3.26) admits a unique positive stationary finite energy solution Y = {Yj(t) =
aj}j∈J . Moreover, such stationary solution satisfies

C1

2(β(2−3γ)−2 logM)|j|/3 ≤ aj ≤
C1

2(β(2−3γ)−2 logM−C)|j|/3 ,

for some positive constants C1, C2 > 0.

Furthermore, γc ≤ 4
15

when β = d/2 + 1 and d = 3.

Inequality

γ < γc =
1

3β
(2β − 2 logM − C)

suggests that dj play a key role in regularization of the stationary solution under a
friction force: as the upper bound M decreases to 1, the stationary viscous solution
can withstand a critical friction coefficient of

γc =
2

3
− C

3β
≤ 2

3
− d

3β
.

In the meaningful case where d = 3 and β = 1 + d/2 = 5/2 this assumes the
value 4

15
. On the other hand, as the upper bound M increases, the stationary

viscous solution can withstand a progressively lower friction value, i.e. it will be
regularized to a super exponential velocity with a friction force with lower intensity.

Inverse cascade tree model

In Section 3.2 we introduce a dyadic tree model with Obukhov non-linearity
in order to simulate the inverse cascade phenomenon of two-dimensional fluid vor-
texes. The model we are interested in is conceptually similar to models developed
in previous sections.

X
′

j = −2β|j|djXjXj +
∑
k∈Oj

2β|k|dkX
2
k , j ∈ J, (6)

where Xj = Xj(t) are differentiable real functions and X∅ ≡ f ≥ 0 is a forcing on
the first component, which acts as a dissipative term:

X
′

∅ = −d∅fX∅ +
∑
k∈O∅

2β|k|dkX
2
k .
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We observe that the non-linearity is similar to the one proposed by Obukhov
in his classic linear model, which is formally conservative, thus for solutions with
positive components it provokes energy flow from lower to larger scales, i.e. from
higher to lower nodes. Thus, we let the energy enter from high generation nodes,
let say at N -th generation, and then let N →∞.
We then look for stationary solution of model (6) possibly different from the trivial
null solution. In particular there exists a special stationary solution Xf , we address
as flat, that exhibits no intermittent behavior, as well as infinitely many other
stationary solution with spatial intermittency, as explained by the following results.

Theorem. Let X = {Xj}j∈J be a constant solution of (6). Then X ∈ Hs for
every s < s0, where the exponent s0 satisfies:

1

3
· (β − d/2) ≤ s0 ≤

1

3
· β.

Moreover s0 = 1
3
· (β − d/2) for the flat solution Xf .

We are interested in investigating whether stationary solutions show intermit-
tency behaviour. Next Proposition states that the flat stationary solution shows
no intermittency and satisfies Kolmogorov K41 law.

Proposition. The exponent ζp of the structure function of the stationary flat so-
lution satisfies

ζp =
p

3
(β − d

2
),

which becomes ζp = p
3

when we consider β = d/2 + 1.

Next theorem tells that there are infinitely many special stationary solutions
with non-linear scaling exponent ζp that show spatial intermittency.

Theorem. For every s ∈ R, there exists a stationary solution whose exponents of
the structure function are given by

ζp =
p

3
(β − d

2
) +

p

3
(s`S − s` sp

3
) (7)

The anomalous exponents (7) are reminiscent of the related exponents for the
stationary solution of Katz and Pavlovic tree model. They retain all the infor-
mation regarding the non homogeneous and multifractal essence of such special
solutions.

One step forward consists to look for self-similar solutions also for this inverse
cascade model. However, this time we consider a slight modification of model
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(6), where we allow ourselves to choose a not stationary forcing term on the first
component. In particular we consider

f(t) =
a∅

t− t0
≥ 0, a∅ ∈ R+

with t > t0 for some t0 < 0.
In section 3.2 we prove the following theorems that state, under particular assump-
tions, existence of self-similar solutions, and, when they exist, they show the same
asymptotic behaviour of particular stationary solutions.

Theorem. Suppose that exist constants d > 2 logM − 2β and 1 ≤M < 2 so that

1/M ≤ dk ≤M, ∀k ∈ J \ ∅

Then there exists a positive self-similar solution Y = (Yj(t))j∈J .

Theorem. Let’s consider a self-similar solution Y = {Yj(t)}j∈J of the RCM model
(6). Then exists a positive stationary solution X = {Xj}j∈J of the same model
such that X ∈ Hr if and only if Y ∈ Hr for some r ∈ R.

In particular we can infer the existence of intermittent self-similar solutions for
the inverse cascade model.

Mixed tree model

In Section 3.3 we conclude this thesis by presenting a Mixed tree dyadic
model that combines both Novikov and Obukhov non-linearity.

dXj(t)

dt
=δ1(2β|j|djX

2
j
(t)−

∑
k∈Oj

2β|k|dkXj(t)Xk(t))

− δ2(−2β|j|djXj(t)Xj(t) +
∑
k∈Oj

2β|k|dkX
2
k(t))

(8)

where β > 0, δ1, δ2 ≥ 0 are constants and the coefficient {dk}k∈J are bounded
from above and away from zero. Model (8) generalizes the linear mixed model (3)
presented in Chapter 2. It is a special case of the more general model introduced
in [15], where it was proven that for every initial condition x ∈ H it admits at
least one weak solution.
We investigate existence and uniqueness of stationary solution, at first in the basic
case when dk = 1 for every j ∈ J , then in more general cases. We set δ = δ2/δ1,
and we restrict ourselves to δ1, δ2 > 0.



CONTENTS 21

Theorem. Consider model (8) in the case dk = 1 for every k ∈ J . For every
forcing term f > 0, every δ > 0 and every β > 0 it admits a positive stationary
finite energy solution {aj}j∈J .
Moreover,

• if δ > 2
β+d

3 such solution satisfies

lim
|j|→∞

aj

2−
(β+d)|j|

3

= C

for some C > 0,

• if 0 < δ < 2
β+d

3 such solution satisfies

C̃1

2
(β+C)|j|

3

≤ aj ≤
C̃2

2
(β)|j|

3

for some constants C̃1 > 0, C̃2 > 0 and C > d,

• if δ = 2
β+d

3 such solution satisfies

lim
|j|→∞

aj

2−2
(β+d)|j|

9

= C

for some C > 0.

Theorem. For every 0 < M < 2β/2 so that 1/M ≤ dj ≤M , j ∈ J , and for every
forcing term f > 0

• if δ > 2
β+d

3 , model (3.53) admits infinitely many positive stationary solution,

• if δ < 2
β+d

3 , model (3.53) admits exactly one positive stationary solution.

Moreover, any such solution satisfies

C̃1

2
(β+C+2 logM)|j|

3

≤ aj ≤
C̃2

2
(β−2 logM)|j|

3

(9)

for some constants C̃1 > 0, C̃2 > 0 and C ≥ d.

These latter results are consistent with those proved in previous simpler models.
However, the more complex structure of the dynamics still forbids to fully express
its expected intermittent structure and deepen its multifractal nature.
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Chapter 1

From Navier-Stokes to Shell

Models

1.1 Turbulence

The concept of fully developed turbulence springs from the universal behavior
of any physical situation of an intense fluid flow, be it the swirls and eddies in
a fast flowing river or the wake of a ship or submarine, atmosphere and ocean
currents or the blood flow in arteries. It is an accepted concept that the evolution
of all these phenomena can be described through the Navier-Stokes equation with
appropriate initial and boundary conditions. This governing equation is one of
the most important models of mathematical physics: despite they have been a
subject of passionate research for almost two centuries, there are still cardinal
open questions due to the nature of non-linearity present in the equation, they
mostly regard the nature of fully developed turbulence. In particular, the question
of solution regularity for three-dimensional problem was appointed as one of the
Millennium Problems. It is perhaps the most challenging problem in classical
physics.

A first attempt to describe turbulence was conducted by Richardson [60] and
later assessed by Kolmogorov in his scaling theory [47]. This last description is
still valid today and has proved to be largely correct by a multitude of experiments
and observations. However, there are corrections that cannot be explainable by
Kolmogorov theory, such deviations emerge in the scale exponents for the scaling of
correlation functions. Possible cause for these dissimilarities is the fact that, except
for few results, Kolmogorov theory is not based on the Navier-Stokes equation. A
definitive theory explaining such deviations should hinge on the Navier-Stokes
equation.

Shell models of turbulence were first introduced by Obukhov [57] and Gledzer

23
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[39]. They consist of a system of ordinary differential equations structurally sim-
ilar to the spectral Navier-Stokes equation. These models are more accessible
and numerically more manageable than the original Navier-Stokes equation. For
these models a scaling theory identical to the Kolmogorov theory has been devel-
oped. Exploring the behavior of shell models might be the key for understanding
the systems described by the Navier-Stokes equation. They are intrinsically con-
structed to obey the same conservation laws and symmetries as the Navier-Stokes
equation, moreover they exhibit energy conservation as well as conservation of a
second quantity which can be identified with helicity or enstrophy. This second
quantity suggests whether the models are three-dimensional-like turbulence where
helicity is preserved, or two-dimensional-like where enstrohpy is preserved.

In this chapter, following [34] we present a review of some of the main features
of turbulence, from the inference of the Navier-Stokes equation for incompressible
fluids, passing through the Kolmogorov K41 theory, up to the spectral equation
that was the starting point for raising the realm of the shell model. Turbulence is
the chaotic flow of a muddled fluid. Fluid can vary a lot depending on boundaries
of its vessel, stirring and heating. However, as long as the length scales in the flow
are small compared to the larger scales, determined by the boundaries, and large
compared to the scales of the average molecular free path, all flows seem to have
common features. Turbulence is this common characteristic of the flows.

1.2 The Navier-Stokes equation

Fluid mechanics investigates fluids that are on scales large compared to the
mean free path length of the molecules constituting them. With this regard the
fluid is considered as a continuum stream identified completely by a velocity field
vi(x, t), a temperature field t(x), a pressure field p(x) and finally by a density
field ρ(x). At each point xi the fluid is then described by six field variables:
three components of velocity, pressure, temperature, and density. Thus, we need a
total of six equations in order to discover the behavior of these components. They
derived from mass conservation, momentum conservation, energy conservation and
the equation of state. However, when studying fully developed turbulence the fluid
is regarded as incompressible, hence this allows to get rid of the equation defining
density. Furthermore, when buoyancy is neglected the temperature variations
dissociate from the momentum and continuity equations and we are finally left
with a fluid pictured by the velocity and the pressure field. The dynamics of such
a fluid is described by the following Navier-Stokes equation (NSE)

∂tvi + vj∂jvi = −∂ip+ ν∂jjvi + fi (1.1)
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within the continuity equation
∂ivi = 0. (1.2)

for every 3-dimensional coordinate.
The equation states that the acceleration of a fluid fragment equals the sum of
the forces acting on the fluid fragment (per unit mass). The left hand side is the
derivative of the velocity field, where the second term is the advection. The first
term on the right hand side is the pressure gradient force, the second is the viscous
friction and the last term gathers all other forces (per unit mass). The continuity
equation represents the conservation of mass, where the density does not appear
since we consider incompressible fluids. From these four equations, together with
appropriate boundary and initial conditions, is theoretically possible to determine
the three components of the fluid velocity vi and the pressure p. However, no
general solutions to the NSE are known yet and a solution can be found only for
very simple laminar flows (fluid particles following smooth paths in layers).

The NSE can be transformed into a dimensionless form by defining

x = Lx′, v = V v′, t =
L

V
t′, (1.3)

where L (the outer scale) is interpreted as the length scale of the largest vari-
ations in the flow, it would usually be the size of the vessel for a bounded flow,
while V is the velocity difference at this length scale. From L and V it is possible
to build a timescale T = L

V
, that is the time it takes the fluid at uniform velocity

V to travel the distance L. We remark that NSE derives from Newton’s second
law, thus it is Galilean invariant, i.e. adding a uniform velocity does not change
the equation, and therefore the global center of mass velocity is unchanged and
only velocity differences really matter. By putting transformations (1.3) into (1.1)
and dropping the superscript gives the NSE in a dimensionless form:

∂tvi + vj∂vi = −∂ip+ Re−1∂jjvi + fi, (1.4)

where we have introduced the dimensionless Reynolds number

Re =
V L

ν
,

and absorbed a factor V 2

L
into the last forcing term. All terms are now of order

unit expect for the viscosity that is of the order of the inverse of the Reynolds
number. Hence, the Reynolds number quantifies the relative importance of the
viscosity compared to the nonlinear term at the length scale L and velocity scale
V . Small Reynolds number will cause the attenuation of the flow by viscosity or the
viscous term will balance the external forces. The viscosity acts as a smoother of
irregularities and has the form of a diffusion term. For larger Reynolds number the
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flow will be more and more dominated by the nonlinear term and the fluid motion
becomes more and more irregular. For very high Reynolds numbers the flow is
completely chaotic and seemingly random: this is what is called fully developed
turbulence. It is believed that all the richness of bizarre behavior of fluids resides
within the NSE. Despite many numerical simulations of NSE show some aspect
of this richness, no general theory has been developed that links the NSE and the
phenomenology observed in real life and experiments.

The first attempt to establish a formal theory of turbulence was taken by
Richardson [60]. Richardson describes the flow as formed of large eddies splitting
up into smaller eddies, which again split up into yet smaller eddies until finally the
eddies are so small that they are loosen up or dissipated by viscosity. Energy is
inserted into the flow at large scales and then it cascades into smaller scales until
it disappears at the viscous scale. Richardson seminal work led Kolmogorov [47]
to develop a more structured theory of turbulence.

1.3 Kolmogorov Theory

In 1941 Kolmogorov [47] proposed the picture of a flow powered by an vigorous
force and then left alone to slowly consume from viscosity. The flow is assumed to
be homogeneous (translationally invariant) and isotropic (rotationally invariant).
The picture we are trying to describe is a flow sustained by a force active on a large
scales of the flow, such that the flow is in a state of statistical equilibrium, i.e. the
energy released by the force is evened out by the energy dissipated by viscosity.
The state of the flow is then characterized by the mean energy dissipation (per
unit of mass) ε due to viscosity. The velocity at a given length scale ` << L is
the velocity difference δv(`) = |v(r + l) − v(r)|, it is characteristic of the velocity
related to an eddy of size l. The effect of flow velocity on a larger scale is to
move the eddy through the flow as a rigid body. Similarly, if we consider a much
smaller eddy within the larger eddy, the effect of the larger eddy on the smaller
is the same as the effect of the larger scale flow on the large eddy. Without loss
of generality we assume that the flow is self-similar, i.e. when `1 < `2 << L
then δv(l2) = f( `1

`2
)δv(`1), where f is some suitable universal function. Thus, the

velocity difference δv(`) can only be a function of the scale ` and the mean energy
dissipation ε. From a dimensional study the only possible relationship is

δv(`) ∼ (ε `)1/3. (1.5)

Indeed, if we want to establish the relationship

δv(`) = f(`, ε),
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the dimension of the right and left hand side must be identical, thus f can only
depend on the combination of l and ε which has the same dimension as the left
hand side. Namely, the dimensions are [δv] = m/s, [`] = m, [ε] = m2/s3, hence
from [δv] = [`]s[ε]t we get s = t = 1/3, and δv(`) = f [(ε `)1/3]. By changing the
velocity by a scaling factor λ, we get

λδv(`) = λf [(ε `)1/3] = f [λ(ε `)1/3].

Finally, we see that f must be a linear function and (1.5) follows immediately.
The relation (1.5) contains all the essence of Kolmogorov K41 theory.

1.3.1 The four-fifth law

One natural approach to study small scale turbulence is to introduce the so
called structure functions of the velocity field of different orders. A structure
function of order p is the quantity

Sp(`) = 〈δv(`)p〉

where the brackets stand for the statistical average among the range scale `.
In his third turbulence paper, Kolmogorov [48] exhibits an exact relation for

the third order structure function, deriving this result directly from NSE:

S3(`) =
4

5
ε `. (1.6)

This is probably the most important result in fully developed turbulence, it is
both exact and not trivial. It sets up a pivotal condition on theory of turbulence:
a theory to be acceptable must either satisfy the four-fifth law, or explicitly violate
the assumptions made in deriving it.

The K41 scaling theory predicts the scaling

Sp(`) ∼ `p/3 (1.7)

which can be determined by dimensional counting. Although, if the field is not
Gaussian, we should not expect (1.7) to hold in general. High Reynolds number
flow is observed to behave intermittently: calm periods are interrupted by sud-
den blasts of energy at small scales which are then effectively damped. There is
now convincing experimental evidence that deviations to the scaling law (1.7) are
present in the inertial range of fully developed turbulence. The structure function
still scales with length, but this time the scaling exponent ζ(p) such that

Sp(`) ∼ `ζ(p)
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are different from p/3. The function ζ(p) is called the anomalous scaling ex-
ponent, it refers to the nonuniform essence of intermittent flow. Calculating the
anomalous scaling exponents from NSE is a major challenge in which there has
been little success despite a rather large effort in recent years. Since for shell
models it is easy to understand how the intermittency emerges, the intermittent
behavior of these models has been a major motivation for studying them.

1.4 Fourier Transform of NSE

In order to take a step closer to shell models we consider the Fourier transform
of the velocity field and its inverse

F : v̂i(y) =
1

(2π)3

∫
e−iyxvi(x)dx

F−1 : vi(x) =

∫
eiyxvi(y)dy

(1.8)

Transforming the NSE (1.1) with F by using Fourier transform well known
properties, it gives

∂tvi(y) =− i
∫
vj(y− y

′
)y
′

jvi(y
′
)dy

′

− iyip(y)− νyjyjvi(y) + fi(y).

(1.9)

Furthermore, pressure can be eliminated from the NSE using the continuity
equation (1.2), and assuming the force to be rotational (∂ifi = 0), we obtain a
Poisson equation for the pressure by applying the divergence operator to the NSE

∂iip = −∂ivj∂jvi. (1.10)

Transforming also the last Poisson equation with F it gives

−yjyjp(y) =−
∫

(yi − y
′

i)vj(y− y
′
)y
′

lvm(y
′
)dy

′
δljδmi

−
∫

(yj − y
′

j)vl(y− y
′
)y
′

lvj(y
′
)dy

′

−
∫
yjy

′

lvl(y− y
′
)vj(y

′
)dy

′
,

(1.11)
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where we used the fact that incompressibility implies y
′
jvj(y) = 0. Finally, by

substituting p(y) from (1.11) to (1.9) gives the so called spectral NSE

∂tvi(y) =− iyj
∫

(δil −
yiy

′

l

y2
j

)vj(y
′
)vl(y− y

′
)dy

′

− νy2
j vi(y) + fi(y).

(1.12)

If now we suppose the flow confined in a box of size L3 with periodic boundary
conditions, the Fourier transform is replaced by a Fourier series and the integral
in (1.12) by the following sum

∂tvi(n) =− inj(
2π

L
)
∑
n′

(δil −
nin

′

l

n2
j

)vj(n
′
)vl(n− n

′
)

− νn2
jvi(n) + fi(n),

(1.13)

where the wave vectors are y(n) = 2πn
L

. This last form of the NSE is the
starting point for the introduction of shell models of turbulence. The partial
differential equation in (1.1) has been replaced by a system of coupled ordinary
differential equations. The nonlinear terms are quadratic in the velocities. The
interactions are such that only waves with wave vectors adding up to zero are
meaningful. Such set of three waves is called a triad and it is possible to show
that energy is exchanged within each triad since the inviscid energy conservation
satisfied by the NSE is a perfect energy balance. The mathematics involved in
proving this and many other relations concerning NSE is much simpler in the case
of shell models. Hence, from now on we will perform many of the calculations in
the simplified case of shell models.

1.4.1 Kolmogorov energy scaling

We use the Fourier transform once more in order to obtain the famous Kol-
mogorov energy scaling law.
The second order structure function is related to the energy density through a
Fourier transform:

E =
1

2

∫
v(x)2dx =

1

2
(2π)3

∫ ∞
0

vi(y)vi(y)dy

=
1

2
(2π)34π

∫ ∞
0

y2|v(y)|2dy ≡
∫
E(y)dy,

(1.14)
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where we have defined the spectral energy density as

E(y) = (2π)4y2|v(y)|2. (1.15)

The Fourier transform of the velocity is expressed in terms of the second order
structure function

S2(`) = 〈δv(`)2〉 = 2

∫
[v(x)2 − v(`+ x)v(x)]dx, (1.16)

and putting together (1.14), (1.15) and (1.16) we obtain the so called Wiener-
Khinchin formula

E(y) =
1

2π
y−1

∫ ∞
0

x sinxS2(x/y)dx. (1.17)

Finally, putting the scaling relation (1.7) for the second order structure function
into (1.17) we obtain

E(y) ∼ ε2/3y−5/3. (1.18)

This relation could be obtained by the same dimensional counting as we used
for deriving the scaling formula for the velocity increments. The scaling (1.18)
has been verified in many experiments and real observations for developed 3D
turbulence.

1.5 Shell Models

In the Fourier representation of the Navier-Stokes equation (1.9) the transfer
of energy from large to small scales is described as a flux of energy from small
wave numbers to large wave numbers. The idea behind shell models is to divide
the space into concentric spheres with exponentially growing radius kn = λn, for
some constant λ > 1 (it is common to set λ = 2). We then call n-th shell the set
of wave numbers contained in the n-th sphere and not contained in the (n − 1)-
th sphere. In a typical shell model only few wave numbers are maintained in
each shell: the velocities corresponding to these wave numbers represent a kind of
velocity averaged over the whole shell.

Shell models investigate the energy cascade flow with a set of coupled nonlinear
ordinary differential equation:

d

dt
un = knGn[u, u]− νnun + fn, (1.19)
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where the dynamical variable un represents the evolution over time of the veloc-
ity over a wavelength of scale kn. Depending on the model, the nonlinear function
Gn[·, ·] is chosen to preserve total energy, helicity or volume in phase space as for
the original nonlinear terms of NSE. Boundary conditions are imposed by requiring
that fluctuations do not occur on scales larger than the typical scale L, i.e. un = 0
for n < 0. Moreover, it is common to impose locality of interactions in Fourier
(shell) space by demanding that the nonlinear function Gn[·, ·] couples only scales
that are close to each other (for instance nearest and next-to-nearest shells).

The principle behind this construction is clear. We need a simple model, con-
sistent with but simpler than NSE, able to describe a dynamical evolution of a
set of variables on a vast range of scales. In other words, one wants to define a
model able to describe the phenomenological Richardson cascade but possessing a
deterministic time evolution.

The constraints to have a short range, quadratic non-linearity preserving total
energy, total helicity, and phase-space evolution do not fix in a unique way the
form of Gn[·, ·] in equation (1.19). We concentrate our brief introduction to three
main models: the models introduced by Obukhov [57] and Novikov [32], the GOY
model [39], [67] and finally the SABRA model [51].

1.5.1 The Obukhov - Novikov shell models

A shell model was first proposed by A.M. Obukhov [57]. The model has been
introduced as a simplified model of 3D Navier-Stokes evolution. It is not derived
directly from an approximation of NSE, although is structurally similar, with an
energy cascade in accordance with the Kolmogorov picture of turbulent cascade of
energy. The model consists of a linear sequence of first order ordinary differential
equation. Equations are non-linear and quadratic in the velocities un. Such veloc-
ities could be thought of as representative of spectral velocity components vi(y)
within a shell of wave numbers kn−1 < |y| < kn. The governing equations are

d

dt
un = kn−1un−1un − knu2

n+1 − νnun + fδn,1. (1.20)

The first two terms on right hand side represent respectively the non-linear ad-
vection and pressure term, the third describes dissipation, and the fourth term is a
force only active on the first wave number component. Despite the model does not
derive directly from NSE, the advection and pressure terms are quadratic in the
velocities and the dissipation term is linear and dominant for large wave numbers
like in NSE. Energy must be injected at large scales (i.e. small wave numbers) in
order to exhibit an energy cascade from large to small scales, then it flows through
an inertial range and finally is dissipated at small scales (i.e. large wave numbers).
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In 2D turbulent fluids, one way in which eddies interact with each other is through
a process known as vortex cannibalization, i.e. when two adjacent eddies merge
to form a single larger eddy. When cannibalization occurs energy flows out of
the length scales of the initial small eddies and into the length scale of the final
larger eddy. Hence, cannibalization results in the flow of energy from small to
large length scales.
Many eddies are generally created at a small length scale (called the energy injec-
tion scale). The belief is that through interaction by cannibalization these small
eddies gather and merge into larger eddies. These larger eddies are also expected to
gather and merge to form even larger eddies and so on. Thus, the energy initially
injected into the turbulence at the injection scale should gradually be moved by
consecutive cannibalization processes to larger length scales. This type of energy
flow constitutes an example of inverse energy cascade.

In the attempt to simulate a more realistic behavior of both 2D and 3D tur-
bulence, in 1974 E.A. Novikov [32] proposed a shell model similar to (1.20),

d

dt
un = knu

2
n−1 − kn+1un+1un − νnun + fδn,1. (1.21)

By neglecting external forces and viscosity, we show how both Obukhov and
Novikov models and their generalizations are derived from the following general
requirements: (i) quadratic nature of non-linear terms; (ii) scale invariance of
dimensionless coefficients in the equation; (iii) only direct interaction between
closest neighbors in the spectrum; (iv) conservation of energy (in the unviscid and
unforced case). It follows from requirements (i) and (iii) that

d

dt
un = a1u

2
n−1 + a2un−1un + a3un−1un+1 + a4u

2
n + a5unun+1 + a6u

2
n+1. (1.22)

for some coefficients a1, . . . , a6 depending on k0. Conditions (ii) and (iv) yield

a1 = δ1kn, a2 = δ2kn−1, a3 = a4 = 0, a5 = −a1k1, a6 = −a2k1,

for some δ1, δ2 ∈ R. Finally we obtain

d

dt
un = δ1[knu

2
n−1 − kn+1un+1un] + δ2[kn−1un−1un − knu2

n+1]. (1.23)

For δ1 = 0, δ2 > 0 we obtain model (1.20) and for δ1 > 0, δ2 = 0 model (1.21).
The first model converts to the second for the reflection of scale change and of time.

The class of models (1.23) and their generalizations will be the main subject of
this work and we shall describe their properties in details in following chapters.
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To conclude our brief introduction to shell models we observe that by neglect-
ing condition (iii) it becomes possible to obtain a more general class of models.
To this class belong, in particular, the GOY and SABRA models described in the
following sections.

1.5.2 The Gledzer - Okhitani - Yamada shell model

In the attempt to construct a shell model that also satisfied Liouville’s theorem
in Hamiltonian mechanics, E.B. Gledzer [39] in 1973 proposed the following set of
equations:

d

dt
un = Anun+1un+2 +Bnun−1un+1 + Cnun−2un−1 − νnun + fn (1.24)

within lower boundary conditions u−1 = u0 = 0 and possibly some upper
boundary conditions uN+1 = uN+2 = 0.

With this choice of nonlinear interaction terms, coefficients An, Bn, Cn can be
chosen such that energy E and enstrophy Z

E =
∑
n

u2
n

2
, Z =

∑
n

k2
nu

2
n

2

are inviscid invariants corresponding to 2D turbulence. Such model was later
investigated by Okhitani and Yamada (1988). Their experiments showed that
the model exhibits chaotic dynamics and enstrohpy cascade. After their seminal
work, this model has become one of the most well-studied model and today it is
known in its complex version called Gledzer-Okhitani-Yamada or GOY model [67].

The model was originally constructed such that only the energy E is an inviscid
invariant. This can be seen noting that the invariant must be time independent,
and from (1.24) with ν = f = 0 it is possible to obtain

An = knã, Bn = knb̃, Cn = knc̃, knã+ kn+1b̃+ kn+2c̃ = 0.

Then, with the usual choice of wave numbers kn = k0λ
n, where the shell radius

satisfies λ > 1 so that the spectral space covered by the shells grows exponentially
with the shell number n, we get

kn(ã+ λb̃+ λ2c̃) = 0,

and with the further changes a = ã, b = λb̃, c = λ2c̃ we have
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a+ b+ c = 0.

This was the first version of the GOY model. However, later it was observed
that from a computational point of view it is desirable to define the velocities to
be complex numbers. The final form of the GOY model then becomes

d

dt
un = i[knun+1un+2−bkn−1un−1un+1 +(b−1)kn−2un−2un−1]∗−νnun+fn, (1.25)

where ∗ stands for complex conjugate and b is left as free parameter together with
the dimensional quantities k0, νn, fn and initial conditions un(0).

Later studies [34] showed that for b < 1 the model is of the 3D type, for b > 1
the model is of 2D turbulence type. The case b = 1 divides the two turbulence
types. This diversified behavior and many other noteworthy features have led the
model to be one of the most studied and investigated in turbulence theory.

1.5.3 The SABRA shell model

We conclude our tour over shell models by mentioning the SABRA shell model.
It is defined as before by a set of exponentially space wave numbers kn = k0λ

n. The
form of the governing equation is motivated by the demand that the momentum
involved in the triad interactions must add up to zero as in NSE. Together with the
usual construction of local interactions, inviscid conservation of energy, fulfillment
of Liouville’s theorem, gives the following equation for the (complex) shell velocities

d

dt
un = i[knu

∗
n+1un+2− bkn−1u

∗
n−1un+1 + (1− b)kn−2un−2un−1]− νnun + fn. (1.26)

As in previous models, the force would be taken to be active only for small wave
numbers, and boundary conditions can be specified with usual assignment u−1 =
u0 = 0.

This time the requirement on the triads is fulfilled if the wave numbers kn are
defined as a Fibonacci sequence kn = kn−1 + kn−2. The choice of a Fibonacci

sequence leads to a model with shell spacing equal to the golden ratio ϕ =
√

5+1
2

.
Hence, in this formulation the shell spacing is not a free parameter of the model.
However, using the definition of L’vov [51] of kn = ϕn being a quasi momentum, we
can keep the shell spacing as a free parameter kn = λn. If we interpret the momen-
tum kn as representative of the modulus of the wave vector, the triangle inequality
implies kn + kn+1 ≥ kn+2, so the Fibonacci sequence corresponds to the moduli
of three parallel wave vectors. However, for the shell spacing λ > ϕ (as the usual
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choice λ = 2) the triangle inequality is violated. Thus, we cannot interpret the
usual shell model interactions as representative interactions between waves within
three consecutive shells, since no such triplets of wave numbers constitute triangles.

Like the GOY model, SABRA can be studied by varying continuously a single
free parameter b. In [61] the authors showed how the solutions of the SABRA
model show a phase diagram with the inverse and direct cascade regimes. It is
this rich phase diagram which makes the two-dimensional SABRA model an ideal
candidate to study the dynamics in the interplay between turbulence cascade and
fluxless solutions.
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Chapter 2

Dyadic Linear Models

This chapter is entirely devoted to describe the Dyadic shell model and its
variants recently proposed and studied by several authors in order to better un-
derstand the behaviour of solutions to Euler and Navier-Stokes equations.
Even though these models are extreme simplifications of the original problem, they
retain the most important characteristic features of NSE. Moreover, we will show
that these models are in a sense natural as they constitute the simplest class sat-
isfying certain scaling and dimensional conditions.

In [44] Katz and Pavlovic proposed a model based on a wavelet expansion of a
scalar function v(x, t), (x, t) ∈ R3 × R+, over a set of three dimensional dyadic
cube with sides lengths 2j, j ∈ Z and vertices at the points 2jZ3.
Let Q be a cube of size 2j, then its parent Q is a cube with size 2j+1 that contains
Q; similarly let define C1(Q) the offspring of Q, i.e. the set of 8 children of Q with
side length 2j−1.
The Katz-Pavlovic model equations describing the evolution of wavelet coefficient
of v(x, t) corresponding to the cube Q are

dvQ
dt

= 2
5
2
jv2
Q − 2

5
2

(j+1)vQ
∑

Q′∈C1(Q)

vQ′ . (2.1)

We stress that Equation (2.1) shows a quadratic non-linearity and formally
conserves the energy

∑
Q vQ(t)2. This model has been motivated at first by [43],

where the authors studied partial regularity of the weak solutions to the NSE with
hyperdissipation.
In [44] Katz and Pavlovic showed that there exist some initial data vj(0) which
lead a solution to blowup in a finite time. In [36] Frielander and Pavlovic con-
sidered a related vector model for which they also prove blowup in a finite time.
Later, Waleffe [63] proposed a simplified model where instead of the branching

37
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structure comprises a linear tree of the functions vj(t) satisfying an infinite system
of ordinary differential equations

v
′

j = λjv2
j−1 − λj+1vjvj+1, j > j0

v
′

j0
= −λj0+1vj0vj0+1,

(2.2)

where λ > 1 is a free parameter and j0 is an index corresponding to the largest
space scale. Without loss of generality we set j0 = 0 from now on.

The original Katz-Pavlovic models reduces to the system (2.2) with λ = 2 and
if we assume the coefficients of all cubes of same length to be the same. Waleffe
proved that there exist initial data for which the blowup occurs in any Hs, s > 0,
where we refer to the Sobolev spaces associated to model (2.2) as

Hs = {vj | ||{vj}||2Hs =
∑
j≥j0

λ2sj|vj|2 <∞}.

In [63] it has been shown that model (2.2) is related to the inviscid Burger’s
equation in fluid dynamics, making blowup not surprising. This model shows
a intrinsic mechanism of transferring the energy to higher nodes. Waleffe then
suggested the following different model

v
′

j = λjvj−1vj − λj+1v2
j+1, j > 0

v
′

0 = −λv2
1.

(2.3)

This model is reminiscent of Obukhov work [57]. Unlike Katz-Pavlovic model,
Obukhov model lacks of the transferring energy mechanism and presents a more
subtle and thus perhaps a more realistic behaviour.
These two models constitute two basic building blocks of all linear tree models sat-
isfying four natural conditions: (i) quadratic non-linearity, (ii) appropriate scaling
property, (iii) energy conservation, (iv) and nearest neighbor coupling. All of these
except the last one are the features derived from the NSE; the last condition is a
simplification to make the problem more tractable. For the rest of the work we
call, following Waleffe, model (2.1) the Katz-Pavlovic model and model (2.3) the
Obukhov model.

2.1 Katz-Pavlovic linear model

The tree dyadic model (2.1) is a more structured version of the so called Katz-
Pavlovic dyadic model of turbulence, that we address as linear or classic from
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now on. The linear model is based on variables Yn which represent a cumulative
intensity of the n-th shell, n ∈ N (shells in Fourier or wavelet space). We consider
the equations for Yn in the following general form

dYn(t)

dt
= kn−1Y

2
n−1(t)− knYn(t)Yn+1(t)− νkγnYn,

Yn(0) = yn,

Y0(t) = F, ∀n ≥ 0,∀t ≥ 0

(2.4)

where the coefficients satisfy kn = 2βn for β > 0, ν ≥ 0 and γ > 0 are
respectively the viscosity coefficient and exponent, yn are the initial conditions
and F ≥ 0 is a non negative force added to the first component.
When F = 0 we will address model (2.4) as unforced while when ν = 0 we will
refer to it as inviscid.
This model has been introduced as a simplified model of 3D Euler evolution in
order to investigate a number of properties which are currently out of reach for
more realistic models of fluid dynamics. We mention in particular the works [22],
[26], [25], [36], [44], [46], devoted to this model and variants of it. In the following
sections we present the main results regarding Katz-Pavlovic linear dyadic model
that will be useful to prove later results.

2.1.1 Basic properties

Let us start introducing the natural space for the dynamics of dyadic model
(2.4), H = `2(R), the Hilbert space of square summable sequences with the usual
norm that we will denote by || · ||.

Although the case F > 0 is very interesting, it is also of interest to analyze the un-
forced inviscid dynamic, namely system (2.4) without any forcing or viscous term.
Physically, if we accept that a dyadic model like (2.4) may describe something
of turbulence, the unforced case would correspond to free decaying turbulence, a
widely observed phenomenon, see for example [37]. Therefore, we start by focusing
our attention to the main properties of the inviscid and unforced model, namely

dYn(t)

dt
= kn−1Y

2
n−1(t)− knYn(t)Yn+1(t),

Yn(0) = yn,

Y0(t) = 0, ∀n ≥ 0,∀t ≥ 0

(2.5)
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About the choice of coefficients

If we take a closer look to the model (2.4) compared to the original Katz
Pavlovic model (2.1), aside from the tree or linear structure, we notice that the

coefficients 2
5
2
n take the more general form kn = 2βn. As explained in Chapter

1, the coefficients kn represent the speed of the energy flow from an eddy to its
children. Most of the basic properties proven in latter sections hold for almost
any choice of positive coefficients kn, however the phenomenon called anomalous
dissipation holds only in the smaller class of coefficients kn = 2βn for some β >
0. There are physical reasons behind the choice. The parameter β > 0 is an
approximation of the rate of this speed. In the three dimensional setting the right
magnitude of kn is the one chosen by Katz and Pavlovic

kn ∼ 2
5
2
n.

This particular choice can be at least heuristically justified as follows.
Let us consider v =

∑
Ynwn the usual wavelet expansion, and the quantity v · ∇v

in three dimensional setting. We have

||v · ∇v|| ≤ |v|∞ · ||∇v||.

If we consider a single wavelet wn of unitary l2 norm we know that its support lies
in the cube Qn, and its l∞ norm is therefore 2

3
2
n. Moreover, ||∇wn|| ∼ 2n, thus

||wn · ∇wn|| . 2
3
2
n · 2n = 2

5
2
n.

This choice for kn is the one corresponding to Kolmogorov K41 scaling law. While
the physical meaningful case is β = 5

2
, in this chapter we always refer to β > 0 as

general positive parameter.

We propose at first few definitions to introduce the concept of solution for a system
of equation like (2.5).

Definition 2.1.1. Let I ⊂ R+ be an interval.
A local weak solution on I is a sequence of differentiable functions Y = (Yn)n≥1

satisfying (2.5).
A weak solution is a sequence Y = (Yn)n≥1 of differentiable function on all the
positive line [0,∞), satisfying (2.5).
A finite energy solution is a weak solution such that Y (t) ∈ H for all t ≥ 0.
A Leray-Hopf solution is a finite energy solution such that ||Y (t)||H is a non in-
creasing function of t.

Weak solutions show interesting spatial and temporal properties.
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Proposition 2.1.1. Time Change. Let Y be a weak solution of (2.5) with
initial condition y ∈ RN. Let a > 0 and define X(t) = a ·Y (at). Then X is a weak
solution with initial condition a · y.

Proposition 2.1.2. Time Inversion. Let Y be a weak solution of (2.5) with
initial condition y ∈ RN. Let t

′
> 0 and define X(t) = −Y (t

′ − t). Then X is a
local weak solution on [0, t′] with initial condition −X(t

′
).

Proposition 2.1.3. Positiveness. Suppose Y is a weak solution of (2.5), and
n ≥ 1, t0 ≥ 0. Then

1. If Yn(t0) > 0 then Yn(t) > 0 for all t ≥ t0.

2. If Yn(t0) ≥ 0 then Yn(t) ≥ 0 for all t ≥ t0.

3. If Y1(t0) = Y2(t0) = · · · = Yn(t0) = 0 then Y1(t) = Y2(t) = · · · = Yn(t) = 0
for all t ≥ t0.

Proof. By applying the variation of constants formula to system (2.5), we get that
for all n ≥ 1 and 0 ≤ t0 < t,

Yn(t) = Yn(t0) · e−
∫ t
t0
knYn+1(s)ds

+

∫ t

t0

kn−1Y
2
n−1(s) · e−

∫ t
s knYn+1(z)dzds. (2.6)

Since Y 2
n−1 ≥ 0, equation (2.6) proves the first two statements. Then notice that

if Yn(t0) = 0 and Yn−1 = 0 on the interval [t0, t], then from (2.6) we deduce that
Yn = 0 on [to, t], so the third statement follows by induction and the hypothesis
Y0 = 0.

Proposition 2.1.4. Forward Shift. Let Y be a weak solution of (2.5) with
initial condition y ∈ RN. Let m be a positive integer and, for all n ≥ 1, let us
define

Xn(t) = Yn−m(km · t), if n > m, and Xn(t) = 0 if n ≤ m

and
Zn(t) = k−1

m Yn−m(t), if n > m, and Zn(t) = 0 if n ≤ m.

Then X = (Xn)n≥1 and Z = (Zn)n≥1 are weak solutions with shifted and scaled
initial conditions

xn = yn−m, if n > m, and xn = 0 if n ≤ m

and
zn = k−1

m yn−m, if n > m, and zn = 0 if n ≤ m.
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Proposition 2.1.5. Backward Shift. Suppose m ≥ 1 and Y is a weak solution
of (2.5) with initial condition y ∈ RN such that y1 = y2 = · · · ym = 0 and ym+1 6= 0.
Define for all n ≥ 1

Xn(t) = Yn+m(k−1
m t), Zn(t) = kmYn+m(t).

Then X = (Xn)n≥1 and Z = (Zn)n≥1 are weak solutions with shifted and scaled
initial conditions xn = yn+m and zn = kmyn+m.

2.1.2 Existence of solutions

One of the key tools for studying shell models is the energy of a solution. We
first introduce the notation for finite size blocks energy. For all n ≥ 1 and t ≥ 0,
let

En(t) =
∑
i≤n

Y 2
i (t)

the total amount of energy that flows through the first block of n components. An
easy computation shows that

E
′

n = −2knY
2
n Yn+1, (2.7)

thus, one can study variation of energy by looking at the sign of the components.

Proposition 2.1.6. If the initial condition y ∈ H has infinitely many non negative
components, then every weak solution is a Leray-Hopf solution.

Proof. Let (ni)i≥1 be an increasing sequence such that yni ≥ 0. By the positiveness
property, Yni(t) ≥ 0 for all t ≥ 0, hence, by equation (2.7), for every i ≥ 1, Eni is
a non increasing function. Moreover, since Eni −→ ||Y ||2 pointwise as i −→ ∞,
then also ||Y ||2 is non increasing.

Theorem 2.1.7. Given any initial condition y ∈ H, there exists at least one
Leray-Hopf solution. Given y ∈ RN with infinitely many non negative components,
there exists at least one weak solution.

Proof. For every N ≥ 1, let’s consider the following Galerkin approximation of
system (2.5):

Y
′

n(t) = kn−1Y
2
n−1(t)− knYn(t)Yn+1(t),

Yn(0) = yn, n = 1, 2, . . . N

Y0(t) ≡ YN+1(t) ≡ 0, t ≥ 0.

(2.8)
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Thanks to positiveness property and equation (2.7), we have E
′
N ≡ 0 and

xm+1 ≥ 0 for every m < N implies Em(t) ≥ Em(0) for all t ≥ 0.
System (2.8) is a finite dimensional initial value problem with locally Lipschitz
vector field, so there is uniqueness and local existence of solutions. Moreover,
since EN is constant, the solution is bounded, this ensures global existence. Let
Y N = (Y N

1 , Y N
2 , . . . , Y N

N ) be this solution.
Fix n ≥ 1 and T > 0. In order to apply Ascoli-Arzelá theorem to the sequence
(Y N

n )N≥n on the interval [0, T ], we need a uniform bound.
By hypothesis y ∈ H and EN

N is constant, thus for every N ≥ n and t ≥ 0

(Y N
n (t))2 ≤ EN

N (t) = EN
N (0) ≤ EN(0) ≤ ||y||2 = B2

n.

Likewise, if y has infinitely many non-negative components, let m = inf{k ≥
n |xk+1 ≥ 0}, then for N ≥ n and t ≥ 0

(Y N
n (t))2 ≤ EN

m∧N(t) ≤ EN
m∧N(0) = Em∧N(0) ≤ Em(0) = B2

n.

This uniform bound for the solution becomes an unniform bound on its derivative
thanks to relation (2.8):

|(Y N
n )

′| ≤ kn−1B
2
n−1 + knBnBn+1, N ≥ n

finally yielding the equicontinuity.
Hence, from Ascoli-Arzelá theorem, for every n there is a sequence (N

(n)
k )k≥1 such

that Y
N

(n)
k

n converges uniformly to a continuous function Yn as k →∞. By a diag-
onal procedure, one can modify the previous extraction and get a single sequence
(Nk)k≥1 such that for all n ≥ 1, Y Nk

n → Yn uniformly as k → ∞. Thus, in the
equation

Y Nk(t)
n = yn +

∫ t

0

[kn−1(Y Nk
n−1(s))2 − knY Nk

n (s)Y Nk
n+1(s)]ds, n ≥ 1, t ∈ [0, T ]

we can pass to the limit and prove that

Yn(t) = yn +

∫ t

0

[kn−1(Yn−1(s))2 − knYn(s)Yn+1(s)]ds, n ≥ 1, t ∈ [0, T ]

Thus, Xn are continuously differentiable and satisfy system (2.5) on [0, T ]. The
extension from an arbitrary bounded time interval to all t ≥ 0 is a classical proce-
dure.
We finally prove that, if y ∈ H, then the solution is Leray-Hopf, i.e. ||Y (t)|| is a
non increasing function of t.
For all n ≥ 1, for all k such that Nk ≥ n and all t ≥ 0

ENk
n (t) ≤ ENk

Nk
(t) = ENk

Nk
(0) = ENk(0) ≤ ||y||2.
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When k →∞ we get En(t) ≤ ||y||2, while when n→∞ we get ||Y (t)|| ≤ ||y||.
Let’s pick s ∈ [o, t], n ≥ 1 and k such that Nk ≥ n. If ENk(0) ≤ ENk(s), then

ENk
n (t) ≤ ENk(0) ≤ ENk(s) ≤ ||Y (s)||2

so that ENk ≤ ENk(s) for infinitely many k, and by taking again the limit on this
subsequence km and then in n, we get ||Y (t)|| ≤ ||Y (s)||.
On the other hand, let’s suppose ENk(0) > ENk(s) for k ≥ k0. If ENk(0) > Enk(s),
then the derivative of Enk must have been negative for some t0 ∈ [0, s], yielding
YNk+1(t0) > 0 and hence, by positiveness property, YNk+1(u) > 0 for all u ∈ [s, t],
and in particular ENk(t) ≤ ENk(s). Since the latter is true for all k ≥ k0, by taking
the limit we find again ||Y (t)|| ≤ ||Y (s)||.

Theorem 2.1.8. Given y ∈ RN
+, any weak solution of system 2.5 with initial con-

dition y is positive. Moreover, any such solution satisfies the following properties:

1. for every n ≥ 1, t ≥ 0 we have

d

dt

n∑
j=1

Y 2
j (t) = −knY 2

n (t)Yn+1(t)

and hence
n∑
j=1

Y 2
j (t) ≤

n∑
j=1

y2
j

2. if yn > 0 for some n ≥ 1, then Ym(t) > 0 for all m ≥ n and t > 0.

2.1.3 Energy dissipation

One can extend the computation (2.7) to the total energy of the system. For-
mally we have

d

dt

∑
i≥1

Y 2
i (t) = 2

∑
i≥1

Yi(t)Y
′

i (t) = 2
∑
i≥1

(ki−1Yi(t)Y
2
i−1(t)− k1Y

2
i (t)Yi+1(t)) = 0,

(2.9)
since the last summation is telescoping. However, the above implications can be
performed rigorously if the solution is very regular.
Indeed, by Hölder inequality

∑
i≥1

|ki−1Yi(t)Y
2
i−1(t)| ≤

[∑
i≥1

ki−1|Yi(t)|3
] 1

3
[∑
i≥1

ki−1|Yi−1(t)|3
] 2

3

= 2−
β
3

∑
i≥1

ki|Yi(t)|3,
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hence, if
∑

i≥1 ki|Yi(t)|3 < ∞, for every t ∈ [0, T ], then the sum of derivatives
in (2.9) is uniformly absolutely convergent and the above passages are rigorous.
This would prove that the solution conserves energy on [0, T ].
It is possible to show that if the initial condition is sufficiently regular, the reg-
ularity is maintained locally and so also energy conservation [36]. Although, the
natural regularity of the solutions is much lower than this and after a finite time
a blow up occurs. Afterwards, the solution dissipates energy and eventually con-
verges to zero. The intuitive mechanism is a very fast transfer of energy from small
to large components.

We recall from [6] the main results of energy dissipation for positive solutions:
infinite initial energy becomes finite immediately; the energy of a finite energy
solution tends to zero as t→∞.

Proposition 2.1.9. Assume y ∈ `∞ ∩RN
+ and let Y be a positive weak solution of

system (2.5) with initial condition y. Then Y has finite energy for positive times.

Proposition 2.1.10. If Y is a positive finite energy solution, then

lim
t→∞
|Y (t)|2H = 0.

Furthermore, given L > 0 and α > 0, there exists t
′
> 0 depending only on L and

α such that for all positive finite energy solutions Y with |Y (0)|H ≤ L, we have
|Y (t

′
)|2H ≤ α.

The following two propositions establish the rate of decay of energy as t→∞,
which essentially say that solutions decay as t−1. The results are restricted to
positive weak solutions. The first result is due to a scaling argument based on the
fact that the non-linearity is homogeneous of degree two.

Proposition 2.1.11. Let Y be a positive weak solution, with initial condition
y ∈ `∞ ∩ RN

+. Then there exists C > 0 such that

|Y (t)|2H ≤
C

t2

for t ≤ 1.

Proposition 2.1.12. Let Y be a positive weak solution, with initial condition
y ∈ `∞ ∩RN

+. Let n0 + 1 be the minimum integer with the property yn0+1 > 0. We
know that Yn(t) > 0 for all n > n0 and t > 0. Then, for some constant C > 0,
and for every n > n0, t ≥ 1 we have∫ t

1

Yn+1(s)ds ≥ k−1
n log t+ k−1

n log(
Yn(1)

C
).
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Hence, for every n > n0, ∫ t

1

Yn+1(s)ds =∞

and
lim sup
t→∞

t · Yn+1(t) ≥ k−1
n

2.1.4 Uniqueness

Uniqueness of solutions for the dyadic model is a complex matter. In general,
uniqueness does not hold for all initial conditions in H. In order to prove unique-
ness for special class of initial conditions one needs regularity requirements. In
this section we recall essential results about uniqueness for linear inviscid dyadic
model found in literature ([6], [3], [22], [44], [46]).

We start with a first result of uniqueness for weak solutions with non negative
initial condition.

Theorem 2.1.13. Let y ∈ RN be an initial condition with all non negative compo-
nents. Suppose that for any weak solution Y with initial condition y the following
equality holds

lim
n→∞

2−nkn

∫ t

0

Y 3
n (s)ds = 0, t ≥ 0. (2.10)

then there exists a unique weak solution with initial condition y.

Corollary 2.1.14. Let y ∈ H be an initial condition so that yn ≥ 0 for all n ≥ 0.
For all β < 1 there exists a unique weak solution with initial condition y.

Proof. If Y is a weak solution with initial condition y, by Proposition 2.1.6 Y is
Leray-Hopf, hence we can uniformly bound Y 3

n (s) by ||y||3. Since β < 1, we also
have 2−nkn → 0, so condition (2.1.22) holds.

Since we usually choose β = 5
2
> 1, we state below a more general version of

Corollary (2.1.14) for every β > 0.

Theorem 2.1.15. Let y ∈ H with yn ≥ 0 for all n ≥ 0. There exists a unique
weak solution with initial condition y.

2.1.5 Stationary and Self-Similar solutions

We now introduce two special classes of solutions, namely stationary and self-
similar solutions.
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Definition 2.1.2. A stationary solution is a sequence of real numbers (yn)n≥1 such
that Y = (yn)n≥1 ∈ H is solution of system (2.5).

Proposition 2.1.16. If F = 0 then the only stationary solution is Y ≡ 0. If
F > 0 then exists only one stationary solution

yn =
√
F · k−1/3

n , n ≥ 1.

Proof. Let y be a stationary solution of system (2.5). We set rn = k
1/3
n yn, so that

F = k1y1y2 = r1r2 and for all n ≥ 2

0 = kn−1y
2
n−1 − knynyn+1 = kn−1r

2
n−1 − k2/3

n k
−1/3
n+1 rnrn+1.

By definition kakb = ka+b, thus recursion (2.5) is equivalent to

r1r2 = F, rnrn+1 = r2
n−1, n ≥ 2.

It is immediate to see that if F = 0 then rn = 0 for all n, and ifF > 0 then rn > 0
for all n. Suppose then F > 0, then by taking logarithms on both sides we find

log rn+1 = − log rn + 2 log rn−1, n ≥ 2.

The latter is a linear recurrence with general solution log rn = a(−2)n+b, for some
a, b ∈ R. Since we require y ∈ H, the only way is to impose a = 0. Thus, the only
solution is the constant rn =

√
F , concluding the proof.

Despite their simplicity, stationary solutions are one of the most important
class of solutions. First of all we observe from Proposition 2.1.16 the anticipated
Kolmogorov K41 law as well as the first example of anomalous dissipation. More-
over, in [25], the authors showed that, given a forcing term F , the only stationary
solution is an exponential global attractor for every finite energy solution.
The existence of a global attractor for an inviscid system is, perhaps, surprising.
However it is exactly consistent with the concept of anomalous or turbulent dissi-
pation conjectured by Onsager [59].

The other special class of solution is represented by the self-similar solutions.

Definition 2.1.3. A self-similar solution is a finite energy solution Y such that
there exists a differentiable function φ(t) and a sequence of real numbers a =
(an)n≥1 such that Yn(t) = an · φ(t) for all n ≥ 1 and all t ≥ 0.

Definition 2.1.4. A viscous stationary solution is a sequence of real number
(yvn)n≥1 such that Y v = (yvn)n≥1 ∈ H is solution of system (2.4).
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Next theorems establish the existence of positive self-similar and viscous sta-
tionary solution. Furthermore, Theorem 2.1.18 reveals the existence of an upper
limit for the viscous term γ and a threshold for the forcing term F so that the corre-
sponding viscous stationary solutions are not regular enough and show anomalous
dissipation.
Theorem 2.1.17 was originally proved in [6] by using complex analysis argument
and with the help of numerical computation. In the next section we present a
different proof based on a pullback technique that will be useful frequently in next
chapters.
In order to lessen the notation, we state and prove Theorem 2.1.17 and 2.1.18 in
the case β = ν = 1. The general case will be a straightforward consequence.

Observation. It easy to observe that positive self-similar solutions satisfying equa-
tions (2.5) have the form

Yn(t) =
an

t− t0
, (2.11)

for some t > t0 and t0 < 0.
Indeed, if a positive solution is of the form (2.11), then

− an
(t− t0)2

=
dYn(t)

dt
=kn−1Y

2
n−1(t)− knYn(t)Yn+1(t)

=kn−1

a2
n−1

(t− t0)2
− kn

anan+1

(t− t0)2
,

that leads us to the sequence {an}n satisfying

anan+1 =
a2
n−1

2β
+ 2−βnan.

Although it is possible for the first terms a1, a2, . . . , an0 to be zero, if an0+1 > 0
then all the subsequent coefficients must be positive too:

an+1 = 2−βn +
a2
n−1

2βan
> 0, ∀n ≥ n0 + 1. (2.12)

Theorem 2.1.17. Given t0 < 0, there exists a unique positive self-similar solution
with a1 6= 0. Moreover, given t0 < 0 and n0 ≥ 0, there exists a unique positive
self-similar solution with

a1 = a2 = · · · an0 = 0, an0+1 > 0.

In addition, the coefficients an have the property

lim
n→∞

an

k
−1/3
n

= Cn0 ,

for some constant Cn0.



2.1. KATZ-PAVLOVIC LINEAR MODEL 49

Theorem 2.1.17 shows that the Kolmogorov scaling law (1.5) appears in these
special solution, phenomenologically associated to decaying turbulence. But it
is for us a very difficult open problem to understand whether all other solutions
approach the self-similar ones and in which sense.
The existence of finite energy self-similar solutions is of theoretical interest in
itself, in comparison with analogous investigations for Euler and Navier-Stokes
equations, moreover the existence of such solutions has a number of implications.
For instance, they realize perfectly the decay rate t−1, coherently with Theorem
2.1.11 and 2.1.12. It has been conjectured that the set of all self-similar solutions
(set depending on t0 ∈ R and n0 ≥ 0) attracts all other finite energy solutions. If
this is the case, the decay rate t−1 would be the true one for all solutions. Moreover,
self-similar solutions offer an easy example of lack of uniqueness as shown by next
observation.

Observation. It is possible to prove that for some initial conditions in H with all
negative components there exist infinitely many energy solutions.
Indeed, by Theorem 2.1.17, there exists a self-similar solution Y whose total energy
is strictly decreasing. Let T > 0, then X(t) = −Y (T − t) is a local weak solution
on [0, T ] by the time inversion property. For any time s ∈ [0, T ], let’s consider the
solution Xs obtained by attaching X on [0, s] to a Leray-Hopf solution on [s,∞)
given by Theorem 2.1.7 with initial condition X(s) = −Y (T −s) ∈ H. The energy
of this solution strictly increases on [0, s] and then is non-increasing on [s,∞).
Thus, to different values of s correspond finite energy solutions which are really
different, but all with the same negative initial condition −Y (T ).

Theorem 2.1.18. Consider the forced viscous dyadic model (2.4). Then

1. if γ < 2/3, system (2.4) admits a unique viscous stationary solution Y v
n (t) =

yvn. Moreover, it exists a threshold F0 > 0 such that:

(a) if F > F0, then the coefficients yvn have the property

lim
n→∞

yvn

k
−1/3
n

= CF,γ,

for some constant CF,γ depending on the initial force F and viscosity γ.
Such solution is not regular enough and shows anomalous dissipation.

(b) if F ≤ F0, then exists z = zF ∈ R+ (depending only on F ) such that
the coefficients yvn have the property

lim
n→∞

yvn
2−kn·z−(n+2)(γ−1)

= Cγ,z,

for some constant Cγ,z depending on γ and z, thus the solution is con-
servative and regular.
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2. if γ ≥ 2/3, system (2.4) admits a unique viscous stationary solution Y v
n (t) =

yvn. Moreover, for every F > 0 exists z = zF,γ ∈ R+ (depending only on F
and γ) such that the coefficients an have the property

lim
n→∞

yvn
2−kn·z−(n+2)(γ−1)

= Cγ,z,

for some constant Cγ,z depending on γ and z, thus the solution is conservative
and regular.

Observation. If we read the Katz-Pavlovic viscous model with the right choice of
coefficient β = 5

2
, it is immediate to see that every solution is regularized after the

critical viscosity value γc = 4
5
. However, nothing forbids special classes of solution

to be regularized with lower dissipation values. Theorem 2.1.18 tells that constant
solutions starting with enough energy can withstand a lower critical dissipation
value, precisely γ = 2

3
, showing anomalous dissipation. After that, every constant

solution becomes regular and conservative.

Observation. If Y is a positive viscous stationary solution then

0 =
dYn(t)

dt
=kn−1Y

2
n−1(t)− knYn(t)Yn+1(t)

=kn−1 · a2
n−1 − kn · anan+1 − νkγn · an,

and since we consider the forced case F > 0, this leads us to the sequence {an}n
satisfying

anan+1 =
a2
n−1

2β
− ν2βn(γ−1)an, a0 = F > 0.

We observe that this time it is not possible for the first terms a1, a2, . . . , an0 to be
zero, otherwise if an0+1 > 0 then the subsequent coefficient must be negative

an0+2 =
a2
n0

2βan0+1

− ν2β(n0+1)(γ−1) = −ν2β(n0+1)(γ−1) < 0. (2.13)

2.1.6 Proof of Theorem 2.1.17 and 2.1.18

First of all we start by proving the following theorem.

Theorem 2.1.19. Consider the following recursion

an+1 =
a2
n−1

2an
+ εn, (2.14)
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where {εn}n∈N is a sequence of real (not necessarily positive) numbers such
that {|εn|}n∈N is a decreasing sequence and

∞∑
n=0

|εn| · 2n/3 <∞.

Then there is one and only one u = {un}n∈N positive real sequence satisfying
(2.14). Moreover, such {un} lies in Hs for any s < 1/3.

Proof. We structure our proof in three different steps. At first we prove the ex-
istence of solution for recursion (2.14), then we show regularity of such solution,
finally we prove uniqueness among positive solutions with finite energy.

Step (1): Existence.

We start by considering the following two definition.

Definition 2.1.5. We call strong self-similar any positive sequence {an}n∈N
satisfying the recurrence:

an+1 =
a2
n−1

2an
+ εn. (2.15)

Definition 2.1.6. We call weak self-similar any positive sequence {ãn}n∈N sat-
isfying the recurrence:

ãn+1 =
ã2
n−1

ãn
+ ζn, ζn = εn · 2

n−2
3 . (2.16)

Remark. It is easy to verify that if {ũn}n∈N is a weak self-similar sequence then
{un = ũn

2n/3
}n∈N is a strong self-similar sequence. Conversely, for any strong self-

similar sequence it is possible to recover the corresponding weak sequence from
the equality above.

In order to prove existence of strong self-similar sequence we use a pull back
technique: we first consider recursion (2.16) backwards fixing N > 2 and two
appropriate starting values bN+1 and bN , then compute bn for lower coefficients
n < N ; finally we let N →∞ proving convergence by compactness and recovering
a strong self-similar sequence from the remark above.

For any fixed N > 2 we are interested in the following truncated reversed re-
cursion:

(b
(N)
n−1)2 = b(N)

n (b
(N)
n+1 − ζn), n ≤ N, ζn = εn · 2

n−2
3

b
(N)
N+1 = b

(N)
N = L > 0,

b(N)
n = 0, n > N + 1.

(2.17)
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where the initial value L will be chosen later accordingly to our requirements.

The following proposition poses sufficient conditions for existence of weak self-
similar solution.

Proposition 2.1.20. Consider the system of equations (2.17) and suppose that
coefficients ζn satisfy

M =
∞∑
i=1

|ζi| <∞.

Then any initial value L > M gives rise to a well defined weak sequence {ũ(N)
n }

for every N > 2.

Proof. Consider the two following truncated reversed recursions

(b
(N)1

n−1 )2 = b(N)1
n (b

(N)1

n+1 − |ζn|), n ≤ N, ζn = εn · 2
n−2

3 ,

b
(N)1

N+1 = b
(N)1

N = L > 0,

b(N)1
n = 0, n > N + 1,

(2.18)

(b
(N)2

n−1 )2 = b(N)2
n (b

(N)2

n+1 + |ζn|), n ≤ N, ζn = εn · 2
n−2

3 ,

b
(N)2

N+1 = b
(N)2

N = L > 0,

b(N)2
n = 0, n > N + 1.

(2.19)

For every fixed N , let {ũ(N)1
n } and {ũ(N)2

n } satisfy respectively recursion (2.18)

and (2.19). It is immediate to verify that if {ũ(N)
n } is a truncated weak self-similar

sequence, then
ũ(N)1
n ≤ ũ(N)

n ≤ ũ(N)2
n , ∀n ≤ N + 1.

First we prove that every {ũ(N)1
n } that satisfies (2.18), when well defined, is

weakly increasing. With the same argument it will follow that every {ũ(N)2
n } that

satisfies (2.19) is weakly decreasing.

We proceed by induction on n.
First two base cases are easy to verify:

ũ
(N)1

N+1 = L = ũ
(N)1

N ,

ũ
(N)1

N−1 =

√
u

(N)1

N (u
(N)1

N+1 − |ζn−1|) =
√
L(L− |ζn−1|) < L = ũ

(N)1

N .
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For the inductive step, we consider by hypothesis

ũ
(N)1

n+2 ≥ ũ
(N)1

n+1 (i), ũ
(N)1

n+3 ≥ ũ
(N)1

n+2 =⇒ ũ
(N)1

n+3 − |ζn+1| ≥ ũ
(N)1

n+2 − |ζn| (ii)

and multiplying together inequalities (i) and (ii) we get:

(ũ
(N)1

n+1 )2 = ũ
(N)1

n+2 (ũ
(N)1

n+3 − |ζn+1|) ≥ ũ
(N)1

n+1 (ũ
(N)1

n+2 − |ζn|) = (ũ(N)1
n )2,

proving the claim ũ
(N)1

n+1 ≥ ũ
(N)1
n .

Let us consider again the decreasing property in the following form:

(ũ
(N)1

n+1 )2 ≥ (ũ(N)1
n )2 = ũ

(N)1

n+1 (ũ
(N)1

n+2 − |ζn|),

and dividing both sides for the positive term ũ
(N)1

n+1 we finally get

ũ
(N)1

n+2 − ũ
(N)1

n+1 ≤ |ζn|.

Applying a recursive argument to the inequality above it is possible to show

ũ
(N)1

N − ũ(N)1

1 ≤
N−1∑
i=1

|ζi| ≤
∞∑
i=1

|ζi| = M.

With a similar argument it follows also

ũ
(N)2

1 − ũ(N)2

N ≤
N−1∑
i=1

|ζi| ≤
∞∑
i=1

|ζi| = M.

We finally deduce that any initial value L satisfying

0 < L−M ≤ ũ(N)1
n ≤ ũ(N)1

n ≤ ũ(N)2
n ≤ L+M

gives rise to a well defined truncated weak self-similar sequence. In particular it is
sufficient that L > M , concluding the proof.

Proposition 2.1.20 tells that for every N > 2, {ũ(N)
n }n lies in the compact set

[L−M,L+M ], thus by compactness and a diagonal extraction argument we can

choose a subsequence (Ni)i ∈ N such that ũ
(Ni)
n converges for all n ∈ N to some

number ũn. The sequence ũ = {ũn}n satisfies recursion (2.16) by construction,
thus it is a weak self-similar sequence, and u = {un = ũn

2n/3
}n is the corresponding

strong self-similar sequence.
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Furthermore, we observe that the condition

M =
∞∑
i=1

|ζi| <∞

it is equivalent to
∞∑
i=1

|εi| · 2n/3 <∞,

as required by theorem 2.1.19.

Step (2): Regularity.

We are now ready to prove that any u = {un}n∈N strong self-similar sequence
has finite energy, i.e.

∞∑
n=1

u2
n <∞.

Moreover, such {un} lies in Hs for any s < 1/3.

The following proposition gives condition on L so that the corresponding strong
self-similar sequence lies in Hs.

Proposition 2.1.21. For every s < 1/3, if L > M then any strong self-similar
sequence built from L is well defined, it has finite energy and lies in Hs.

Proof. During Step (1) we have already shown that if L > M then any weak
self-similar sequence built from L is well defined and satisfies

0 < L−M ≤ ũn ≤ L+M.

By recovering the correct expression for the related strong self-similar sequence,
we derive

∞∑
n=1

22sn · u2
n =

∞∑
n=1

22sn · ũn
22n/3

≤ (L+M)
∞∑
n=1

2n(2s−2/3).

Finally, from the latter equation it follows that any strong self-similar sequence
built from L lies in Hs for every s < 1/3.

Step (3): Uniqueness.

We now prove uniqueness among strong self-similar sequence with finite energy,
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i.e. any strong self-similar sequence built as in the previous steps starting from
an initial value L. This time we require a slight stronger condition for the initial
value: L ≥M + 2−

10
3 .

Proposition 2.1.22. Let {vn}n be a solution of recursion (2.13) different from
{un}n. Then exists α > 0 such that for every n ≥ 3:

vn ≥ un · 2αn, n odd

vn ≤ un · 2−αn, n even

or

vn ≥ un · 2αn, n even

vn ≤ un · 2−αn, n odd

Proof. We prove only the first case of the proposition, the second being similar.
We start by considering odd values of n and finally even values.

Case (1): n odd. By induction over n. By hypothesis {vn}n is different from
{un}n, so without loss of generality we can suppose v3 > u3 and the existence of a
real number α1 > 0 so that

v3 ≥ u3 · 23α1 ,

moreover by definition 2.1.19

v4 =
v2

2

2v3

+ ε3 <
u2

2

2u3
+ ε3 = u4,

thus exist also a real number α2 > 0 so that

v4 ≤ u4 · 2−4α2 ,

finally by setting α = min{α1, α2} we have proved base cases of induction.
If n is an odd number, then by hypothesis we have

vn+1 =
v2
n−1

2vn
+ εn ≥

22α(n−1)u2
n−1

2−αn(2un)
+ εn.

In what follows we will show that

22α(n−1)u2
n−1

2−αn(2un)
+ εn ≥ 2α(n+1)(

u2
n−1

2un
+ εn) = 2α(n+1)vn+1,

concluding the proof.
Let us first rewrite the latter inequality in the more compact form

(un+1 − εn) · (23αn−2α − 2αn+α) ≥ εn · (2αn+α − 1). (2.20)
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Then we observe that the above inequality is trivially true in the case εn ≤ 0, so we
restrict ourself to positive value of εn. We structure the proof in two different steps.

Step (1): un+1 ≥ εn−1.

Let’s rewrite the claim in terms of the corresponding ũn weak sequence:

un+1 ≥ εn−1 ⇐⇒
ũn+1

2(n+1)/3
≥ εn−1 ⇐⇒ ũn+1 ≥ 2

−(2n−4)
3 .

By monotonic property of both sides it is enough to prove that

ũn+1 ≥ ũ3 ≥ L−M ≥ 2−
10
3 ≥ 2

−(2n−4)
3 .

Finally, the initial requirement of

L > M + 2−
10
3 ,

concludes the proof.

Step (2): (23αn−2α − 2αn+α) ≥ (2αn+α − 1).

First we rewrite above inequality in the form

23αn−2α + 1 ≥ 2αn+α+1,

then observing that both sides are increasing function of n and left sides grows
faster than right sides, it is enough to prove the claim for the least meaningful
value of odd n, i.e. n = 5.
By letting n = 5 we obtain:

213α − 26α+1 + 1 = (2α − 1) · [(212α − 25α) + (211α − 24α) + (210α − 23α)+

(29α − 22α) + (28α − 2α) + (27α − 1) + 26α] > 0

because product of positive numbers. By multiplying together inequalities in Step
(1) and Step (2) one can derive (2.20).

Case (2): n even. By induction over n. In the previous case we have already
shown that exists a real number α > 0 so that

v3 ≥ u3 · 23α, v4 ≤ u4 · 2−4α.

If n is an even number, then by hypothesis we have

vn+1 =
v2
n−1

2vn
+ εn ≤

2−2α(n+1) · u2
n−1

2αnun
+ εn.
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We will now show that

2−2α(n+1) · u2
n−1

2αn · un
+ εn ≤ 2−α(n+1)(

u2
n−1

2un
+ εn) = 2−α(n+1)un+1.

concluding the proof.
First, we rewrite inequality above as follows:

(un+1 − εn)(2−3αn−2α − 2−αn−α) ≤ εn(2−αn−α − 1). (2.21)

As in the previous case, we observe that the inequality above is trivially true if
εn ≤ 0, so we again restrict ourself to positive value of εn.
In the previous case we have already shown that un+1 ≥ εn−1, thus as a fortiori
argument we have the following:

2nun+1 ≥ εn−1.

Moreover, observing that for every α > 0

(2−3αn−2α − 2−αn−α) < 0, (2−αn−α − 1) < 0,

in order to prove (2.21) it is enough to show that

2−n(2−3αn−2α − 2−αn−α) ≥ (2−αn−α − 1),

or equivalently

23αn+2α+n + 1 ≥ 22αn+α(2n + 1).

Both sides are increasing function of n and left sides increases faster than right
side, so it is enough to prove the claim for the least admissible even n, i.e. n = 6.
Namely, we need to prove

220α+6 + 1 ≥ 213α+6 + 213α.

Let’s consider the function

f(α) = 220α+6 + 1− 213α+6 − 213α.

It is easy to prove that f(0) = 0 and f(x) has positive derivative on the positive
x-asis, namely

df

dx
= 5 · 213 · log2(27x+8 − 169) > 0, x ≥ 0,

this proves the claim.
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Proposition 2.1.22 tells that every other solution vn different from un, cannot
have finite energy. Moreover, any other solution except un cannot lie in any space
Hs even for negative values of s.

We now observe that Theorem 2.1.17 is an immediate consequence of Theorem
2.1.19 (by letting εn = 2−n). In order to prove part 1.(a) of Theorem 2.1.18 one
can set εn = −2n(γ−1), but it is left to prove the existence of a threshold F0 for the
initial force.

Let us consider once more recursion (2.19), with εn = −2n(γ−1) and γ < 2/3.

It is immediate to verify that ũ
(N)2
n > ũ

(N)3
n for every fixed N and every n ≤ N+1,

where u
(N)3
n is a solution of the following recursion

(b
(N)3

n−1 )2 = b(N)3
n · ζn, n ≤ N, ζn = εn · 2

n−2
3 , εn = 2n(γ−1)

b
(N)3

N+1 = b
(N)3

N = L > 0,

b(N)3
n = 0, n > N + 1.

(2.22)

By a direct calculation it is possible to express a solution of (2.22) explicitly
as:

u(N)3
n = L

1

2N−n · 2(γ− 2
3

)
∑N−n
i=1 ( i

2i
)− 2

3

∑N−n
i=1 (2i).

Finally, by letting N →∞ we get

ũn > 22γ−2.

Thus, we have shown that exists a threshold F0 for the initial force F , as required
by Theorem 2.1.18. Furthermore, by observing once more that in our case L ≤
ũn ≤ L + M , this shows that any F > F0 gives rise to a stationary solution as in
Theorem 2.1.18, and the coefficients an have the property

lim
n→∞

an

k
−1/3
n

= CF,γ,

for some constant CF,γ depending on the initial force F and the viscosity γ.

From now on we will focus our attention to prove part 1.(b) and part 2 of Theorem
2.1.18.

When γ < 2/3 and the initial force is under threshold F0, or when γ ≥ 2/3,
Theorem 2.1.18 suggests to look for solutions with different behaviour.
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Theorem 2.1.23. Consider the following recursion

an+1 =
a2
n−1

2an
− εn, (2.23)

where εn = 2n(γ−1), γ ≥ 0. Then for every a0 = F > 0, there is one and only one
u = {u}n∈N positive real sequence satisfying (3.58).

We adapt proof of Theorem 2.1.19 looking for solutions with different be-
haviour.

We start by considering the following two definition.

Definition 2.1.7. We call strong stationary any positive sequence {un}n∈N
satisfying the recurrence:

an+1 =
a2
n−1

2an
− 2n(γ−1). (2.24)

Definition 2.1.8. We call weak stationary any positive sequence {ũn}n∈N sat-
isfying the recurrence:

bn+1 = (
b2
n−1

bn
− 2) · 22n+1·z+3γ−4, (2.25)

for some real scalar z ∈ R+.

Remark. It is easy to verify that if {ũn}n∈N is a weak stationary sequence then

{un =
ũn

22n+1·z+(n+2)(γ−1)
}n∈N

is a strong stationary sequence.
Conversely, for any strong stationary sequence it is possible to recover the corre-
sponding weak sequence from the equality above.

We use again the pull back technique to prove existence of strong stationary
sequence. We first consider recursion (2.25) backwards fixing N > 2 and two
appropriate starting values bN+1 and bN , then compute bn for lower indices n < N ;
finally we let N →∞ proving convergence by compactness and recovering a strong
stationary sequence from remark above.
Hence, for any fixed N > 2 we are interested in the following truncated reversed
recursion:

(b
(N)
n−1)2 = b(N)

n (
b

(N)
n+1

22n+1·z+3γ−4
+ 2), n ≤ N, z ∈ R+

b
(N)
N+1 = b

(N)
N = L > 0,

b(N)
n = 0, n > N + 1.

(2.26)
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for some starting value L > 0.

Next Lemma tells how to choose the starting value L.

Lemma 2.1.24. Let {ũ(N)
n } a truncated weak stationary sequence, with starting

value L. If L < 2, then {ũ(N)
n } is a weak decreasing sequence and satisfies

L ≤ ũ(N)
n ≤ 2 + δ, ∀n ≤ N + 1, (2.27)

for some δ > 0 (depending only on γ and z). In particular {ũ(N)
n } is a bounded

sequence and both lower and upper bounds do not depend on N .

Proof. We start proving by induction that {ũ(N)
n } is a weak decreasing sequence.

Then left inequality of (2.27) will follow immediately.
The first base case of induction holds by definition. Furthermore

ũ
(N)
N ≤ ũ

(N)
N−1 ⇐⇒ L ≤

√
L(

L

22N+1·k+3γ−4
+ 2),

and this holds if and only if

L ≤ 2 · 22N+1·k+3γ−4

22N+1·k+3γ−4 − 1
.

Our choice L < 2 ensures that the latter inequality holds for every sufficiently
large N . For the inductive step it is enough to observe that for every n < N

(ũ(N)
n )2 = ũ

(N)
n+1(

ũ
(N)
n+2

22n+2·k+3γ−4
+ 2) ≤ ũ(N)

n (
ũ

(N)
n+1

22n+1·k+3γ−4
+ 2) = (ũ

(N)
n−1)2,

indeed by induction ũ
(N)
n+1 ≤ ũ

(N)
n , ũ

(N)
n+2 ≤ ũ

(N)
n+1 and a fortiori

ũ
(N)
n+2

22n+2·k+3γ−4
≤

ũ
(N)
n+1

22n+1·k+3γ−4
.

It is left to prove the right side of inequality (2.27).
By monotonic property we have the following relation

ũ(N)
n ≥ ũ

(N)
n+1 ⇐⇒

ũ
(N)
n+2

22n+2·z+3γ−4
+ 2 ≥ ũ

(N)
n+1,

and by a recursive argument we obtain

ũ
(N)
1 ≤ 2 + 2 · (

N−1∑
i=1

1

22i·z+3γ−4
) +

L

22N ·z+3γ−4
+

L

22N+1·z+3γ−4

≤ 2 + 2 · (
N+1∑
i=1

1

22i·z+3γ−4
) ≤ 2 +

∞∑
i=1

2

22i·z+3γ−4
.

(2.28)
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The right summation in (2.28) converges to some number δ = δγ,z independent of
N , this concludes the proof.

Lemma 2.1.24 tells that if L < 2, for every N > 2, z ∈ R+ and γ ≥ 0, {ũ(N)
n }

lies in the compact set [L, 2 + δ], thus by compactness and a diagonal extraction

argument we can choose a subsequence (Ni)i ∈ N such that ũ
(Ni)
n converges for all

n ∈ N to some number ũn. The sequence ũ = {ũn}n satisfies recursion (2.25) by
construction, thus it is a weak stationary sequence, and u = {un = ũn

22n·z+(n+2)(γ−1)}n
is the corresponding strong stationary sequence.

Moreover, it is possible to show that the limit sequence ũn is independent of L.
Indeed, one can consider the following truncated reversed recursion:

(c
(N)
n−1)2 = c(N)

n · 2, n ≤ N,

c
(N)
N+1 = c

(N)
N = L > 0,

c(N)
n = 0, n > N + 1.

(2.29)

and for any L and N recover the following explicit solution

ṽ(N)
n = L

1

2N−n · 2
∑N−n
i=1

1

2i , ∀n ≤ N,

and observe by construction that for every N > 2 and for every n ≤ N + 1

ũ(N)
n ≥ ṽ(N)

n .

Finally letting N →∞, this will lead us to ũn ≥ 2. Thus, combining together the
latter result with Lemma 2.1.24 we conclude that 2 ≤ ũn ≤ 2+ δ is independent of
the starting point L. Hence, for every initial force F0 ≥ F > 0, it exists only one
stationary viscous solution Yn(t)v = yvn satisfying part 1.(b) of Theorem 2.1.18,
and for every initial force F > 0, it exists only one stationary viscous solution
Y v
n (t) = yvn satisfying part 2 of Theorem 2.1.18.

Furthermore, the following proposition shows that any u = {un}n∈N strong sta-
tionary sequence has finite energy. Moreover, such {un} lies in Hs for any s ∈ R.

Proposition 2.1.25. For every s ∈ R, if the starting value L satisfies L < 2 then
any strong stationary sequence built from L has finite energy and lies in Hs.

Proof. We have already shown that if L < 2 then any weak stationary sequence
built from L is well defined and satisfies

ũn ≤ 2 + δγ,z.
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By recovering the correct expression for the related strong stationary sequence, we
derive

∞∑
n=1

22sn · u2
n =

∞∑
n=1

22sn · ũn
22n·z+(n+2)(γ−1)

≤ (2 + δ)
∞∑
n=1

2n(2s−γ+1)−2n·z+2−2γ.

Finally, from the latter equation it follows that any strong stationary sequence
built from L < 2 lies in Hs for every s ∈ R+.

2.2 Mixed linear model

In section 1.5.1 we have already observed that Katz Pavlovic and Obukhov
models constitute the two basic blocks of all linear models satisfying four charac-
teristic features derived from NSE. It is then natural, as already observed in [32],
to consider the following more general (unviscid) model

dYn(t)

dt
= δ1[knY

2
n−1(t)− kn+1Yn(t)Yn+1(t)]− δ2[knY

2
n+1(t)− kn−1Yn(t)Yn−1(t)]

Yn(0) = yn

Y0(t) = F, ∀n ≥ 0,∀t ≥ 0

(2.30)

where kn = 2βn for some β > 0, δ1, δ2 ≥ 0 non negative parameters, F ≥ 0 is the
usual force to the first component and yn some initial condition.

Considering that model (2.30) reduces to (inviscid) models (2.5) and (2.3) by
setting respectively δ2 = 0 and δ1 = 0, we expect it to carry both Katz-Pavlovic
and Obukhov dynamics giving birth to a more complex structure: even the simple
uniqueness properties in section 2.1.4 do not hold anymore, as we show later. From
now on we refer model (2.30) as mixed (linear) dyadic model.

Observation. In previous sections we stated the positiveness property for weak so-
lutions of the Katz-Pavlovic linear model. This property plays a crucial role in
many cardinal results, like the exponential global attraction of finite energy solu-
tions to the unique constant solution.
Unfortunately, the positiveness property does not hold anymore in the mixed
dyadic model. Indeed, by the variation of constants formula

Yn(t) = Yn(t0) · e−
∫ t
t0

[δ1kn+1Yn+1(s)−δ2kn−1Yn−1(s)]ds
+

+

∫ t

t0

kn[δ1Y
2
n−1(s)− δ2Y

2
n+1(s)] · e−

∫ t
s [δ1kn+1Yn+1(z)−δ2kn−1Yn−1(z)]dzds.

(2.31)



2.2. MIXED LINEAR MODEL 63

This time the positiveness condition

δ1Y
2
n−1(t)− δ2Y

2
n+1(t) ≥ 0 (2.32)

does not hold in general.

Because of its complex dynamics, no results were found in literature until 2019
[41], where the author shows the existence of self-similar solution for particular
value of parameters (δ1, δ2), in addition to a local uniqueness theorem. Moreover, in
[55], the author proved the following theorem about the existence of weak solution
of the mixed dyadic model for every initial condition y ∈ `2, in the case δ1 = δ2 = 1.

Theorem 2.2.1 (From [55]). Consider the infinite dimensional shell model

d

dt
Yn(t) = knY

2
n−1(t)− kn+1Yn(t)Yn+1(t)− knY 2

n+1(t) + kn−1Yn(t)Yn−1(t),

y(0) = y.

Then, for any initial condition y ∈ `2 there exists at least a solution Y (t) on
[0, T ].

Extending Theorem 2.2.1 to general parameters δ1, δ2 is straightforward.
In the next sections we extend such results and give a complete spectrum of

existence and uniqueness results for both stationary and self-similar solutions, for
every positive couple of parameter (δ1, δ2).

2.2.1 Stationary and Self-Similar solutions

We are interested on the existence of stationary and self-similar solutions of
the mixed dyadic shell model (2.30).

Stationary solutions for the forced mixed model

We recall that a stationary solution Y of (2.30) is a solution that is time
independent, i.e. Yn(t) = an for all t ≥ 0 and some an ∈ R≥0. In particular, we
restrict ourselves to study stationary positive finite energy solutions.

Observation. If Y = (an)n∈N is a stationary solution, we observe that if we allow
some terms to be zero, there are two family of particular solution, namely

a0 = F > 0, a2n+1 = 0, a2n = (
δ1

δ2

)n/2 · F ∀n ≥ 0. (2.33)

and

a1 ∈ R+, a2n+1 = (
δ1

δ2

)n/2 · a1, a2n = 0 ∀n ≥ 0. (2.34)
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Such solutions are finite energy every time δ1 < δ2. However, for any stationary
solution different from (2.33) and (2.34) it is not allowed to have any zero term.
Indeed, if Y is a stationary solution then

dYn(t)

dt
=δ1(knY

2
n−1(t)− kn+1Yn(t)Yn+1(t))− δ2(knY

2
n+1(t)− kn−1Yn(t)Yn−1(t))

=δ1(kna
2
n−1 − kn+1anan+1)− δ2(kna

2
n+1 − kn−1anan−1) = 0,

(2.35)

and since we consider the forced case (F > 0), this leads us to the sequence {an}n
satisfying

δ1(a2
n−1 − k1anan+1)− δ2(a2

n+1 − k−1
1 anan−1) = 0, a0 = F > 0.

If ak is the first zero term of a stationary solution, then

δ1a
2
k−2 + δ2k

−1
1 ak−1ak−2 = 0 =⇒ δ1ak−2 + δ2k

−1
1 ak−1 = 0,

and the latter equation would imply ak−1 < 0 or ak−2 < 0, despite the positive
assumption.

In the next section we will prove the following result:

Theorem 2.2.2. The forced mixed model (2.30) admits positive stationary solu-
tions for every choice of coefficient δ1, δ2 > 0.

In particular:

• if δ1
δ2
< k

−4/3
1 , then for every a0 = F > 0 and every a1 > 0 there is just one

positive stationary solution {an}n≥0 of (2.30);

• if δ1
δ2
> k

−4/3
1 , then for every a0 = F > 0 there is just one positive stationary

solution {an}n≥0 of (2.30).

Moreover, any such stationary solution satisfies Kolmogorov’s scaling law

lim
n→∞

an

k
−1/3
n

= C

for some positive constant C > 0.

Observation. Theorem 2.2.2 divides the positive plane in two sub-regions: above
the line δ1/δ2 = k

−4/3
1 there are infinitely many finite energy solution; below the

same line uniqueness holds for every forcing term F > 0.
Figure (2.1) explains graphically the complete spectrum of existence and unique-
ness of stationary solutions.
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Figure 2.1: The line δ1/δ2 = k
−4/3
1 separates the uniqueness from not uniqueness

domain for stationary solutions.

Self-similar solutions for the unforced mixed model

We recall that a self-similar is solution Y of the form Yn(t) = an · φ(t). As
observed previously, it easy to prove that self-similar solutions satisfying equations
(2.30) in the unforced case (F = 0), have the form

Yn(t) =
an

t− t0
, a0 = 0, (2.36)

with t > t0 and t0 < 0.
If a positive solution is of the form (2.36), then

− an
(t− t0)2

=
dYn(t)

dt
=

δ1

(t− t0)2
(kna

2
n−1 − kn+1anan+1)

− δ2

(t− t0)2
(kna

2
n+1 − kn−1anan−1),

(2.37)
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that leads to the sequence {an}n≥1 satisfying

−an
kn

= δ1(a2
n−1 − k1anan+1)− δ2(a2

n+1 − k−1
1 anan−1).

Although it is possible for the first terms a1, a2, . . . , an0 to be zero, if an0+1 > 0 then
all the subsequent coefficients must be not zero: indeed, from the latter relation if
an0 = 0 then

−an0+1

kn0+1

= δ1(−k1an0+1an0+2)− δ2(a2
n0+2) ⇐⇒

an0+1

kn0+1

= δ2a
2
n0+2 + δ1k1an0+1an0+2

and an0+1 > 0 implies an0+2 6= 0.
Since we are interested in positive solutions, without loss of generality one can set
a0 = 0 and an > 0 for every n ≥ 1.
Moreover, we are interested in positive finite energy self-similar solutions, thus we
require also that

∞∑
n=1

a2
n <∞.

In the next section we will prove the following result:

Theorem 2.2.3. Given t0 < 0, and k−4
1 ≤ δ1/δ2 ≤ 1, there exist self-similar

solutions of the unforced (F = 0) model (2.30). In particular

• if k−4
1 ≤ δ1/δ2 < k

−4/3
1 then for every a1 > 0 there is just one self-similar

solution {an}n≥0 of (2.30);

• if k
−4/3
1 < δ1/δ2 ≤ 1 then there is just one self-similar solution {an}n≥0 of

(2.30).

In addition, any such self-similar solution satisfies Kolmogorov’s scaling law

lim
n→∞

an

k
−1/3
n

= C

for some positive constant C > 0.

Theorem 2.2.3 divides the positive plane in four sub-regions: above the line
δ1/δ2 = k−4

1 and below δ1/δ2 = 1 Theorem 2.2.3 does not give any information
about existence of self-similar solution; between the lines δ1/δ2 = k−4

1 and δ1/δ2 =

k
−4/3
1 we have existence but not uniqueness; between the lines δ1/δ2 = k

−4/3
1 and

δ1/δ2 = 1 we have existence and uniqueness of self-similar solution.
Figure (2.2) shows graphically existence and uniqueness of self-similar solutions.
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Figure 2.2: Self-similar solutions exist within the domain k−4
1 ≤ δ1/δ2 ≤ 1

However, as we will see later, upper and lower bounds for the ratio δ1/δ2 can
be further refined. Numerical simulation confirmed the existence of true bounds
Ltrue < k−4

1 and 1 < Utrue such that theorem 2.2.3 holds in the wider domain
δ2 · Ltrue ≤ δ1 ≤ δ2 · Utrue.

2.2.2 Proof of Theorems 2.2.2 and 2.2.3

This section is entirely devoted to prove theorems 2.2.2 and 2.2.3.

Let us start by considering the following recursive sequence {bn}n:

b0 = C > 0,

bn+1 =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b−2

n + 4δ2
2b
−1
n

2δ2

(2.38)

for some positive starting value C > 0 and some positive coefficient δ1, δ2 such
that δ1/δ2 < k

−4/3
1 .
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Lemma 2.2.4 tells useful information about the sequence {bn}n and its asymptotic
behaviour.

Lemma 2.2.4. For every starting value C > 0, and positive coefficient δ1, δ2 such
that δ1/δ2 < k

−4/3
1 , the recursive sequence (2.38) satisfies

lim
n→∞

bn = 1.

Proof. Since recursion (2.38) admits 1 as unique fixed point, we first observe that
if C = 1 then bn ≡ 1 for every n ≥ 0.

Without loss of generality let us suppose C < 1 (the case C > 1 being specu-
lar). We will prove the following properties

1. b2n+1 > 1, b2n < 1, ∀n ≥ 0;

2. 1 < b2n+1 < b2n−1 and 0 < b2n < b2n+2 < 1, ∀n ≥ 0;

3. limn→∞ b2n+1 = limn→∞ b2n = 1,

the statement will follow trivially.

We start observing that b1 > 1:

b1 =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 C−2 + 4δ2

2C
−1

2δ2

>
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 + 4δ2

2

2δ2

= 1.

Let’s now suppose b2n−1 > 1 for some n > 0. Then we have

b2n+1 =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b−2

2n + 4δ2
2b
−1
2n

2δ2

,

moreover, by inductive hypothesis and definition

b2n =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b−2

2n−1 + 4δ2
2b
−1
2n−1

2δ2

<
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 + 4δ2

2

2δ2

= 1,
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hence b−1
2n > 1, and finally

b2n+1 =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b−2

2n + 4δ2
2b
−1
2n

2δ2

>
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 + 4δ2

2

2δ2

= 1,

proving property (1).
We now focus on the first part of property (2) (the second being identical). By
definition we can write

b2n+1 < b2n−1 ⇐⇒
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b−2

2n + 4δ2
2b
−1
2n

2δ2

< b2n−1

⇐⇒ 4δ1δ2k
4/3
1 b−2

2n + 4δ2
2b
−1
2n < 4b2

2n−1δ
2
2 + 4δ1δ2b2n−1k

4/3
1

⇐⇒ δ1k
4/3
1 b−2

2n + δ2b
−1
2n < b2

2n−1δ1 + δ2b2n−1k
4/3
1

⇐⇒ δ1k
4/3
1 (b−2

2n − b2n−1) < δ2(b2
2n−1 − b−1

2n ).

By hypothesis we set δ1k
4/3
1 < δ2, thus it is enough to require

b−2
2n − b2n−1 < b2

2n−1 − b−1
2n

within the positive condition on the right side 0 < b2
2n−1 − b−1

2n . We observe that
the above two inequalities are both satisfied if b−1

2n < b2n−1, indeed:

b−1
2n < b2n−1 =⇒ b−1

2n + b−2
2n < b2n−1 + b2

2n−1

and
b−1

2n < b2n−1 =⇒ b−2
2n < b2

2n−1 =⇒ 0 < b−1
2n < b−2

2n < b2
2n−1,

the latter being true due to b2n < 1.

We are now left to prove the sufficient condition b−1
2n < b2n−1 or equivalently

b−1
2n =

2δ2

−δ1k
4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b−2

2n−1 + 4δ2
2b
−1
2n−1

< b2n−1

⇐⇒ 2δ2

b2n−1

+ δ1k
4/3
1 <

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b−2

2n−1 + 4δ2
2b
−1
2n−1

⇐⇒ 4δ2
1b
−2
2n−1 + 4δ1δ2k

4/3
1 b−1

2n−1 < 4δ1δ2k
4/3
1 b−2

2n−1 + 4δ2
2b
−1
2n−1

⇐⇒ δ2b
−2
2n−1 + δ1k

4/3
1 b−1

2n−1 < δ1k
4/3
1 b−2

2n−1 + δ2b
−1
2n−1

⇐⇒ δ2 + δ1k
4/3
1 b2n−1 < δ1k

4/3
1 + δ2b2n−1

⇐⇒ (δ2 − δ1k
4/3
1 ) < (δ2 − δ1k

4/3
1 ) · b2n−1,
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finally the latter inequality holds because δ2 − δ1k
4/3
1 > 0 and b2n−1 > 1.

We can now say that b2n+1 admits limit limn→∞ b2n+1 = L ≥ 1. Suppose L > 1,
then

L =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 g(L)−2 + 4δ2

2g(L)−1

2δ2

(2.39)

where

g(L) =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 L−2 + 4δ2

2L
−1

2δ2

By a direct calculation equation (2.39) holds if and only if

4δ2
2L

2 + 4δ1δ2k
4/3
1 L = 4δ1δ2k

4/3
1 g(L)−2 + 4δ2

2g(L)−1

⇐⇒ δ2L
2 + δ1k

4/3
1 L = δ1k

4/3
1 g(L)−2 + δ2g(L)−1

⇐⇒ δ2(L2 − g(L)−1) = δ1k
4/3
1 (g(L)−2 − L).

Let’s take a closer look to the last equation. By hypothesis δ2 > δ1k
4/3
1 , so just

one of the following case holds:

• L2 − g(L)−1 > 0 and (L2 − g(L)−1) < (g(L)−2 − L):

from the second inequality we recover (L2 +L) < (g(L)−2 +g(L)−1). Thanks
to the properties we have already proved, it is not hard from the latter to
deduce L < g(L)−1. It is now time to expand the right hand side to obtain:

L < g(L)−1 =
2δ2

−δ1k
4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 L−2 + 4δ2

2L
−1

⇐⇒ 4δ1δ2k
4/3
1 + 4δ2

2L < 4δ2
2 + 4δ1k

4/2
1 L

⇐⇒ L(δ2 − δ1k
4/3
1 ) < (δ2 − δ1k

4/3
1 ) ⇐⇒ L < 1

that is absurd.

• L2 − g(L)−1 < 0 and (L2 − g(L)−1) > (g(L)−2 − L):

again, from our assumptions:

L2 < g(L)−1 ⇐⇒ L2 <
2δ2

−δ1k
4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 L−2 + 4δ2

2L
−1

⇐⇒ δ2
1k

8/3
1 + 4δ1δ2k

4/3
1 L−2 + 4δ2

2L
−1 < (2δ2/L

2 + δ1k
4/3
1 )2

⇐⇒ 4δ1δ2k
4/3
1 L−2 + 4δ2

2L
−1 < 4δ2

2L
−4 + 4δ1δ2k

4/3
1 L−2

⇐⇒ L3 < 1 ⇐⇒ L < 1
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again against our assumption.

• L2 = g(L)−1 and L = g(L)−2:

if 0 < x, y ∈ R are two positive real numbers such that

x2 = y, x = y2,

the only solution is x = y = 1.

We conclude that L = lim b2n+1 = 1. With same argument one can show limn→∞ b2n =
1, concluding the proof.

We now state and prove an equivalent for Lemma 2.2.4 when δ1/δ2 > k
−4/3
1 .

First, for everyN > 1 consider the following recursive backward sequence {(b∗n)(N)}n:

(b∗N)(N) = C∗ > 0,

(b∗n)(N) =
−δ2k

−4/3
1 +

√
δ2

2k
−8/3
1 + 4δ1δ2k

−4/3
1 ((b∗n+1)(N))−2 + 4δ2

1((b∗n+1)(N))−1

2δ1

(2.40)

for any 0 ≤ n < N , some positive starting value C∗ > 0 and some positive
coefficient δ1, δ2 such that δ1/δ2 > k

−4/3
1 .

Lemma 2.2.5 and Lemma 2.2.6 tell useful information about sequence {(b∗n)(N)}n
and its asymptotic behaviour.

Lemma 2.2.5. For every starting value C∗ > 0, any N > 1 and any positive
coefficients δ1, δ2 such that δ1/δ2 > k

−4/3
1 , the recursive sequence {(b∗n)(N)}n defined

above satisfies

1. 0 < (b∗N)(N) < (b∗n)(N) < (b∗N−1)(N) < 1
C∗

, if C∗ < 1, ∀n ≥ 1.

2. 0 < (b∗N−1)(N) < (b∗n)(N) < (b∗N)(N) = C∗, if C∗ > 1, ∀n ≥ 1.

3. (b∗n)(N) ≡ 1, if C∗ = 1, ∀n ≥ 1.

Proof. Proof of Lemma 2.2.5 is entirely equivalent to the one we proposed for
Lemma 2.2.4 by swapping δ1 and δ2 coefficients. The only statement left to prove
is

(b∗N−1)(N) <
1

C∗
, if C∗ < 1.
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By a direct calculation we have

(b∗N−1)(N) <
1

C∗
⇐⇒

−δ2k
−4/3
1 +

√
δ2

2k
−8/3
1 + 4δ1δ2k

−4/3
1 /C∗2 + 4δ2

1/C
∗

2δ1

<
1

C∗

⇐⇒ δ2
2k
−8/3
1 +

4δ1δ2k
−4/3
1

C∗2
+

4δ2
1

C∗
< δ2

2k
−8/3
1 +

4δ1δ2k
−4/3
1

C∗
+

4δ2
1

C∗2

⇐⇒ δ2k
−4/3
1

C∗2
+
δ1

C∗
<
δ2k
−4/3
1

C∗
+

δ1

C∗2

⇐⇒ C∗(δ1 − δ2k
−4/3
1 ) < (δ1 − δ2k

−4/3
1 ) ⇐⇒ C∗ < 1,

due to the assumption δ1/δ2 > k
−4/3
1 .

Lemma 2.2.5 tells that for every N > 1, {(b∗n)(N)} lies in the compact set [0, C∗]
if C∗ ≥ 1 or [0, 1/C∗] if C∗ < 1, thus by compactness and a diagonal extraction
argument we can choose a subsequence (Ni)i ∈ N such that (b∗n)(Ni) converges for
all n ∈ N to some number b̃∗n. The sequence b̃ = {b̃∗n}n satisfies the following
equation by construction

b̃∗n =
−δ2k

−4/3
1 +

√
δ2

2k
−8/3
1 + 4δ1δ2k

−4/3
1 (b̃∗n+1)−2 + 4δ2

1(b̃∗n+1)−1

2δ1

. (2.41)

Lemma 2.2.6. For every starting value C∗ > 0, and positive coefficient δ1, δ2 such
that δ1/δ2 > k

−4/3
1 , the recursive sequence (2.41) satisfies

lim
n→∞

b̃∗n = 1.

Proof. It is equivalent to the proof of Lemma 2.2.4 by swapping δ1 and δ2 coeffi-
cients.

We are now ready to prove Theorem 2.2.2.

Let us start by considering equation (2.35) written in the following form

0 = δ1(a2
n−1 − k1anan+1)− δ2(a2

n+1 − k−1
1 anan−1).

We already focus our interest into positive solution with any zero term, so dividing
by an both sides and changing variable with bn = an

an−1
we obtain

0 = δ1(b−2
n − k1bn+1)− δ2(b2

n+1 − k−1
1 b−1

n ).

We now apply a further change of variable an = ãn/k
1/3
n and consequently bn =

b̃n/k
1/3
1 to finally get

0 = δ1(k
2/3
1 b̃−2

n − k
2/3
1 b̃n+1)− δ2(k

−2/3
1 b̃2

n+1 − k
−2/3
1 b̃−1

n ).



2.2. MIXED LINEAR MODEL 73

We can solve the above equation of degree two restricting ourselves only to positive
solution

b̃0 = a1/F > 0,

b̃n+1 =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

n + 4δ2
2 b̃
−1
n

2δ2

.

(2.42)

Lemma 2.2.4 shows that limn→∞ b̃n = 1 every time δ1/δ2 < k
−4/3
1 . Thus limn→∞ bn =

k
−1/3
1 and limn→∞ an/an−1 = k

−1/3
1 < 1, proving Theorem 2.2.2 statements in the

case δ1/δ2 < k
−4/3
1 .

With the same fashion, one can consider a backward change of variable bn = an−1

an
and obtain

0 = δ1(b2
n − k1b

−1
n+1)− δ2(b−2

n+1 − k−1
1 bn).

We now apply a further change of variable an = ãn/k
1/3
n and consequently bn =

b̃n/k
1/3
1 and finally get

0 = δ1(k
2/3
1 b̃2

n − k
2/3
1 b̃−1

n+1)− δ2(k
−2/3
1 b̃−2

n+1 − k
−2/3
1 b̃n).

As before we can solve the above equation of degree two restricting ourselves only
to positive solution

b̃0 = a0/a1 > 0

b̃n =
−δ2k

−4/3
1 +

√
δ2

2k
−8/3
1 + 4δ1δ2k

−4/3
1 b̃−2

n+1 + 4δ2
1 b̃
−1
n+1

2δ1

.

(2.43)

Lemma 2.2.5 tells limn→∞ b̃n = 1 every time δ1/δ2 > k
−4/3
1 . Thus limn→∞ bn =

k
−1/3
1 and limn→∞ an−1/an = k

1/3
1 > 1, proving Theorem 2.2.2 statements also in

the case δ1/δ2 > k
−4/3
1 .

Now that we have successfully proved Theorem 2.2.2, we observe that equation
(2.37) for self-similar sequences differs from equation (2.35) for stationary solution
only for a perturbation term an

kn
. Thus, we will adapt our proof taking care of this

extra term.

Indeed, without loss of generality, we can set a0 = 0 and an > 0 for every n > 0
in equation (2.37), then dividing by an both sides and changing variable with
bn = an

an−1
we obtain

δ1(b−2
n − k1bn+1)− δ2(b2

n+1 − k−1
1 b−1

n )− 1

ankn
= 0.
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We now apply a further change of variable an = ãn/k
1/3
n and consequently bn =

b̃n/k
1/3
1 and finally get

δ1(k
2/3
1 b̃−2

n − k
2/3
1 b̃n+1)− δ2(k

−2/3
1 b̃2

n+1 − k
−2/3
1 b̃−1

n )− ãn

k
2/3
n

= 0.

We can solve the above equation of degree two restricting ourselves only to positive
solution

b̃1 = a2/a1 > 0,

b̃n+1 =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

n + 4δ2
2 b̃
−1
n + 4δ2k

2/3
1 εn

2δ2

.

(2.44)

where εn = (ãnk
2/3
n )−1 = (ankn)−1.

In the next Lemma we prove that limn→∞ εn = 0.

Lemma 2.2.7. If {an}n is a positive self-similar sequence satisfying equation
(2.36) with k−4

1 ≤ δ1/δ2 ≤ 1, then

lim
n→∞

ankn =∞.

Proof. Let’s consider a change of variable an = cn/kn in equation (2.36) to obtain

−cn = δ1(k2
1c

2
n−1 − cncn+1)− δ2(k−2

1 c2
n+1 − cncn−1).

It is helpful to express cn+1 as function of previous terms

cn+1 =
−δ1cn +

√
δ2

1c
2
n + 4δ2k

−2
1 cn + 4δ1δ2c2

n−1 + 4δ2
2k
−2
1 cncn−1

2δ2k
−2
1

.

We first prove that cn+1 > cn−1 for every n ≥ 1.

Indeed, we have

cn+1 =
−δ1cn +

√
δ2

1c
2
n + 4δ2k

−2
1 cn + 4δ1δ2c2

n−1 + 4δ2
2k
−2
1 cncn−1

2δ2k
−2
1

> cn−1

⇐⇒ 4δ2k
−2
1 cn + 4δ1δ2c

2
n−1 + 4δ2

2k
−2
1 cncn−1 > 4δ2

2k
−4
1 c2

n−1 + 4δ1δ2k
−2
1 cncn−1

⇐⇒ k−2
1 cn + δ1c

2
n−1 + δ2k

−2
1 cncn−1 > δ2k

−4
1 c2

n−1 + δ1k
−2
1 cncn−1

⇐⇒ k−2
1 cn + c2

n−1(δ1 − δ2k
−4
1 ) + k−2

1 cncn−1(δ2 − δ1) > 0,

(2.45)
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and last inequality holds thanks to the assumption δ2k
−4
1 ≤ δ1 ≤ δ2.

Thus, there is a positive value D > 0 so that cn ≥ D for every n ≥ 1.

With similar argument it is possible to prove the existence of M > 1 so that
cn+1 > cn−1 ·M , this will conclude the proof.
Indeed,

cn+1 =
−δ1cn +

√
δ2

1c
2
n + 4δ2k

−2
1 cn + 4δ1δ2c2

n−1 + 4δ2
2k
−2
1 cncn−1

2δ2k
−2
1

> cn−1 ·M

⇐⇒ k−2
1 cn + δ1c

2
n−1 + δ2k

−2
1 cncn−1 > δ2k

−4
1 M2c2

n−1 + δ1k
−2
1 Mcncn−1.

Last inequality further simplifies as follows

k−2
1 cn + c2

n−1(δ1 − δ2k
−4
1 M2) + k−2

1 cncn−1(δ2 − δ1M) > 0

⇐⇒ k−2
1 D +D2(δ1 + k−2

1 δ2)(1− k−2
1 M) > 0.

Finally, by hypothesis λ > 1 and β > 0, hence it is possible to choose 1 <
M ≤ k2

1 in the latter relation, so that left hand sides becomes a sum of positive
term.

Remark. We notice that upper and lower bounds on theorem 2.2.3 arise from
inequality (2.45). Condition δ2k

−4
1 ≤ δ1 ≤ δ2 is sufficient in order to satisfy

inequality (2.45), although the first term k−2
1 cn gives a small but significant pos-

itive contribute. Consequently, upper and lower bounds for the ratio δ1/δ2 can
be further refined. Numerical simulation confirmed the existence of true bounds
Ltrue < k−4

1 and 1 < Utrue such that theorem 2.2.3 holds in the wider domain
δ2 · Ltrue ≤ δ1 ≤ δ2 · Utrue.

Figure (2.3) shows graphically the complete behavior of self-similar solutions.
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Figure 2.3: Shaded regions represent areas where no self-similar solution exists.

The following Lemma is an equivalent of Lemma 2.2.4 for the sequence (2.44).

Lemma 2.2.8. Let’s suppose b̃1 = a2/a1 = C > 0, and k−4
1 ≤ δ1/δ2 ≤ k

−4/3
1 . If

b̃1 ≥ b̃3 then

• C ≥ b̃3 ≥ b̃5 ≥ . . . ≥ b̃2n+1 ≥ . . . > 1 for all n ≥ 0;

• 0 < b̃2 ≤ b̃4 ≤ b̃6 ≤ . . . b̃2n ≤ . . . ≤ 1 +

√
ε1
k

2/3
1

δ2
for all n ≥ 1.

Otherwise, if b̃1 < b̃3 then

• C ≤ b̃3 ≤ b̃5 ≤ . . . ≤ b̃2n+1 ≤ . . . ≤ 1 +

√
ε2
k

2/3
1

δ2
for all n ≥ 0;

• b̃2 ≥ b̃4 ≥ b̃6 ≥ . . . b̃2n ≥ . . . > 1 for all n ≥ 1.

Moreover, limn→∞ b̃2n+1 = limn→∞ b̃2n = 1.
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Proof. We consider only the case b̃1 ≥ b̃3 (the other being specular).
Let’s first observe that

b̃4 =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

3 + 4δ2
2 b̃
−1
3 + 4δ2k

2/3
1 ε3

2δ2

≤
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

3 + 4δ2
2 b̃
−1
3 + 4δ2k

2/3
1 ε1

2δ2

thus b̃2 ≤ b̃4 if and only if√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

1 + 4δ2
2 b̃
−1
1 + 4δ2k

2/3
1 ε1

≤
√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

3 + 4δ2
2 b̃
−1
3 + 4δ2k

2/3
1 ε1

⇐⇒ 4δ1δ2k
4/3
1 b̃−2

1 + 4δ2
2 b̃
−1
1 ≤ 4δ1δ2k

4/3
1 b̃−2

3 + 4δ2
2 b̃
−1
3

⇐⇒ δ1k
4/3
1 b̃−2

1 + δ2b̃
−1
1 ≤ δ1k

4/3
1 b̃−2

3 + δ2b̃
−1
3

and, remembering δ1/δ2 ≤ k
−4/3
1 , the latter is implied by b̃1 ≥ b̃3.

The following cascade of implications is then an immediate consequence

b̃1 ≥ b̃3 =⇒ b̃2 ≤ b̃4 =⇒ b̃3 ≥ b̃5 =⇒ b̃4 ≤ b̃6 =⇒ . . .

=⇒ b̃2n−1 ≥ b̃2n+1 =⇒ b̃2n ≤ b̃2n+2, ∀n ≥ 1.

We now say that {b̃2n+1}n admit finite limit, say L1: with the same argument used
in Lemma 2.2.4, thanks to Lemma 2.2.7 one can easily prove L1 = 1.
We will now prove the upper bound

b̃2n ≤ 1 +

√
ε1
k

2/3
1

δ2

, ∀n ≥ 1.

We first stress that b̃1 ≥ b̃3 only if C = b̃1 > 1, thus we can write

b̃2n =
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

2n−1 + 4δ2
2 b̃
−1
2n−1 + 4δ2k

2/3
1 ε2n−1

2δ2

≤
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

2n−1 + 4δ2
2 b̃
−1
2n−1 +

√
4δ2k

2/3
1 ε2n−1

2δ2

≤
−δ1k

4/3
1 +

√
δ2

1k
8/3
1 + 4δ1δ2k

4/3
1 b̃−2

2n−1 + 4δ2
2 b̃
−1
2n−1 +

√
4δ2k

2/3
1 ε1

2δ2

≤ 1 +

√
ε1
k

2/3
1

δ2
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where the latter inequality is a direct consequence of C > 1 and b2n−1 > L1 = 1.
We know also that {b̃2n}n admit finite limit, say L2: again, with similar argument
used in Lemma 2.2.4 and thanks to Lemma 2.2.7 we conclude L2 = 1.

Lemma 2.2.4 and Lemma 2.2.8 show that limn→∞ b̃n = 1 every time k−4
1 ≤

δ1/δ2 ≤ k
−4/3
1 . Thus limn→∞ bn = k

−1/3
1 and limn→∞ an/an−1 = k

−1/3
1 < 1, proving

Theorem 2.2.3 statements in the case k−4
1 ≤ δ1/δ2 ≤ k

−4/3
1 .

We now mimic again proof of Theorem 2.2.2 also in the case k
−4/3
1 < δ1/δ2 ≤ 1,

by considering a backward change of variable bn = an−1
an

to obtain

− 1

ankn
= δ1(b2

n − k1b
−1
n+1)− δ2(b−2

n+1 − k−1
1 bn).

We now apply a further change of variable an = ãn/k
1/3
n and consequently bn =

b̃n/k
1/3
1 and finally get

− 1

ãnk
2/3
n

= δ1(k
2/3
1 b̃2

n − k
2/3
1 b̃−1

n+1)− δ2(k
−2/3
1 b̃−2

n+1 − k
−2/3
1 b̃n).

As before we can solve the above backward equation of degree two restricting
ourselves only to positive solution. For every N > 1 let be

b̃
(N)
N = C∗ > 0,

b̃(N)
n =

−δ2k
−4/3
1 +

√
δ2

2k
−8/3
1 + 4δ1δ2k

−4/3
1 (b̃

(N)
n+1)−2 + 4δ2

1(b̃
(N)
n+1)−1 − 4δ1ε∗n

2δ1

.

for any 0 ≤ n < N , with ε∗n = 1

ã
(N)
n k

2/3
n

= 1

a
(N)
n kn

.

Lemma 2.2.9 shows that there is C∗ > 0 so that the sequence {b̃(N)
n }n is well

defined and lies uniformly in a compact set for every N > 0.

Lemma 2.2.9. For every k
−4/3
1 < δ1/δ2 ≤ 1, there is C∗ > 0 so that b̃

(N)
n is well

defined for every 0 < n ≤ N .
Moreover, there is M∗ > 1 and N∗ > 0 so that the sequence {b̃(N)

n }n satisfies

0 <
1

M∗ ≤ b̃(N)
n ≤M∗

for every N > N∗ and every N∗ < n ≤ N .
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Proof. By definition
˜

a
(N)
N−1

˜
a

(N)
N

= C∗ > 0, and by Lemma 2.2.7 we can choose the free

parameter C∗ small enough so that

4δ1ε
∗
n ≤ 4δ1 max{ε∗1, ε∗2} ≤ δ2k

−8/3
1

for every n > 0, this implies that the square root in the expression of sequence
{b̃(N)
n }n is well defined.

We now prove the statement by induction over n ≤ N . Indeed, for every C∗

there is M∗ > 1 so that
1

M∗ ≤ C∗ = b̃
(N)
N ≤M∗

Let’s suppose now 1
M∗
≤ b̃

(N)
n ≤M∗ for some n ≤ N . By definition

b̃
(N)
n−1 ≤M∗ ⇐⇒ 4δ1δ2k

−4/3
1

(b̃
(N)
n )2

+
4δ2

1

b̃
(N)
n

≤ 4δ2
1M

∗2 + 4δ1δ2k
−4/3
1 M∗ + 4δ1ε

∗
n

⇐⇒ δ2k
−4/3
1

(b̃
(N)
n )2

+
δ1

b̃
(N)
n

≤ δ1M
∗2 + δ2k

−4/3
1 M∗ + ε∗n.

By hypothesis 1
M∗
≤ 1

b̃
(N)
n

≤M∗, so it is enough to prove

δ2k
−4/3
1 M∗2 + δ1M

∗2 ≤ δ1M
∗2 + δ2k

−4/3
1 M∗

⇐⇒ δ2k
−4/3
1 (M∗ − 1) ≤ δ1(M∗ − 1),

the latter being true thanks to M∗ > 1 and δ1 > δ2k
−4/3
1 . This proves right side of

our claim.
Again, by definition

b̃
(N)
n−1 ≥

1

M∗ ⇐⇒
4δ1δ2k

−4/3
1

(b̃
(N)
n )2

+
4δ2

1

b̃
(N)
n

≥ 4δ2
1

M∗2 +
4δ1δ2k

−4/3
1

M∗ + 4δ1ε
∗
n

⇐⇒ δ2k
−4/3
1

(b̃
(N)
n )2

+
δ1

b̃
(N)
n

≥ δ1

M∗2 +
δ2k
−4/3
1

M∗ + ε∗n.

We observe that it is enough to prove

δ2k
−4/3
1

M∗2 +
δ1

M∗ ≥
δ1

M∗2 +
δ2k
−4/3
1

M∗ + ε∗n

⇐⇒ δ2k
−4/3
1 + δ1M

∗ ≥ δ1 + δ2k
−4/3
1 M∗ + ε∗nM

∗2

⇐⇒ (δ1 − δ2k
−4/3
1 )

M∗ − 1

M∗2 ≥ ε∗n.



80 CHAPTER 2. DYADIC LINEAR MODELS

By Lemma 2.2.7, limn→∞ ε
∗
n = 0, so there is N∗ > 0 so that

(δ1 − δ2k
−4/3
1 )

M∗ − 1

M∗2 ≥ ε∗n

for every N∗ < n ≤ N .

Lemma 2.2.9 shows that exists N∗ such that for every N > 0, {b̃(N)
n } lies

in a compact set, thus by compactness and a diagonal extraction argument we
can choose a subsequence (Ni)i ∈ N such that b̃

(Ni)
n converges for all n ∈ N to

some number b̃∗n. The sequence b̃∗ = {b̃∗n}n satisfies the following equation by
construction

b̃∗n =
−δ2k

−4/3
1 +

√
δ2

2k
−8/3
1 + 4δ1δ2k

−4/3
1 (b̃∗n+1)−2 + 4δ2

1(b̃∗n+1)−1 − 4δ1ε∗n

2δ1

.

Finally, by the same argument used in Lemmas 2.2.5 and 2.2.7 we deduce limn→∞ b̃
∗
n =

1 every time δ1/δ2 ≥ k
−4/3
1 . Thus limn→∞ bn = k

−1/3
1 and limn→∞ an−1/an = k

1/3
1 >

1, proving Theorem 2.2.3 statements also in the case k
−4/3
1 < δ1/δ2 ≤ 1.



Chapter 3

Dyadic Models on a Tree

In this chapter we start by presenting the main results about the dyadic tree
model introduced by Katz and Pavlovic in [44] and studied later by Barbato et
al. [2]. In Chapter 2 we have already presented Katz-Pavlovic model (2.1) in its
original form. Here, we are interested in studying its generalization first developed
in [17], extending it to an inverse cascade model with a non-linearity of Obukhov-
type as well as to a mixed model similar to (2.30).

3.1 Direct energy cascade

Following [17], we recall the abstract tree model that simulates the direct energy
cascade (non-linearity of Katz-Pavlovic type).

Let d be the dimension of the space and N = 2d. We consider the following
set with its inherited tree structure:

J =
∞⋃
n=0

{1, 2, . . . ,N}n = {∅, 1, 2, . . . ,N , (1, 1), (1, 2), . . .}.

For every pair of nodes j = (j1, j2, . . . , jm), k = (k1, k2, . . . , kn) ∈ J , we define
the append operator j ◦ k = (j1, j2, . . . , jm, k1, k2, . . . , kn) ∈ J , the generation op-
erator |j| = m ∈ N, the partial ordering j ≤ k if and only if k = j ◦ h for some
h ∈ J , the father operator  ∈ J such that  < j and || = |j|− 1 and the offspring
set Oj = {k ∈ J |k = j} for every j ∈ J \ {∅}.

The model we are interested in is described by the following system of equations:

v
′

j(t) = cjv
2
 (t)−

∑
k∈Oj

ckvj(t)vk(t), j ∈ J, t ≥ 0 (3.1)

81
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where cj = dj · 2β|j|, for some β > 0, dj > 0 for every j ∈ J , d∅ = 1 and
v∅(t) = f ≥ 0 is the forcing term on the first component.

Kolmogorov Spectrum

In the case of the linear dyadic model (2.4), we proved that Kolmogorov inertial
range spectrum reads

Yn ∼ k−1/3
n .

For the tree dyadic model (3.1), when d = 3 and β = d/2 + 1, the Kolmogorov
inertial range spectrum corresponds to

Xj ∼ 2−
11
6
|j|. (3.2)

This time the correct exponent is not so immediate. We will observe such
behavior later for special class of solutions. In what follows we provide a simple
heuristic derivation.
Kolmogorov K41 theory states that, if v(x) is the velocity of the turbulent fluid
at position x we have

E[|v(x)− v(y)|2] ∼ |x− y|2/3,

where x and y are two points very close to each other. This approximately means

|v(x)− v(y)| ∼ |x− y|1/3.

If we think v(x) written in the wavelet orthonormal basis (wj) as

v(x) =
∑
j

Xjwj(x),

the vector field wj(x) is correlated to the velocity field of the j-th eddy. Such
eddy has a support Qj of the order of a cube of size 2−|j|. Given j ∈ J , let’s take
x, y ∈ Qj. Then we use the approximation v(x) = Xjwj(x) and v(y) = Xjwj(y).
Hence,

|v(x)− v(y)| = |Xj||wj(x)− wj(y)| ∼ |x− y|1/3, x, y ∈ Qj.

We can consider this approximation reasonably correct when x, y ∈ Qj have a
distance of the order of 2−|j|, otherwise we should use smaller eddies.
Thus we have

|Xj||wj(x)− wj(y)| ∼ 2−
1
3
|j|, x, y,∈ Qj, |x− y| ∼ 2−|j|. (3.3)
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Moreover, for some points η between x and y, we have

|wj(x)− wj(y)| = |∇wj(η)||x− y|. (3.4)

We now recall that the size sj of wj insideQj can be derived from s2
j2
−3|j| ∼ 1, since∫

wj(x)2dx = 1, hence sj ∼ 23|j|/2. Supposing wj are all linear transformations of
the same wavelet, we deduce that the typical values of ∇wj in Qj have the order
23|j|/2/2−|j| = 25|j|/2. Thus, from relation (3.4),

|wj(x)− wj(y)| ∼ 2
5
2
|j|2−|j|,

along with (3.3), gives us

|Xj|2
5
2
|j|2−|j| ∼ 2−

1
3
|j| =⇒ Xj ∼ 2−

11
6
|j|,

proving (3.2) on a heuristic ground. One can find a more rigorous derivation in
the Appendix of [17].

About the choice of coefficients

The main novelty from the literature is that we allow the coefficients of the
non-linear term to depend on the nodes of the tree and not only through their
generation. Every node of the tree has 2d = 8 children and interacts with each one
of them in the same way but for a coefficient cj = 2β|j|dj.
The generalization to coefficients dj is the key point of model (3.1). It completely
changes the behaviour of anomalous dissipation and makes the structure function
ζp strictly concave, as it should be according to the most recent numerical simula-
tions of realistic turbulence phenomena. Allowing dj to be different from 1, forces
spatial intermittency on the solutions.
In our model we always consider the quantity | log dj| bounded, and the more gen-
eral result are proved in this setting. We explicit the latter limitedness by assuming
the existence of M > 0 so that

1

M
≤ dj ≤M, ∀j ∈ J.

Although, many explicit computations are possible only in the special case that
the same fixed coefficients 2d appear in every set {dk | k ∈ Oj}. We call this model
Repeated Coefficient Model (RCM).

In the RCM case we set {dk | k ∈ Oj} = {δw |w ∈ Ω}, for some Ω of cardinal-
ity 2d.
In this case we introduce also the log-s-norm of the coefficients. For s ∈ R \ 0 let
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`s =
1

s
log2(

1

2d

∑
w∈Ω

δsw).

This can be extended with

`0 =
1

2d

∑
w∈Ω

log2 δw,

`−∞ = lim
s→−∞

`s = min
w
δw, `∞ = lim

s→∞
`s = max

w
δw,

to obtained a bounded, non-decreasing and continuous function ` on [−∞,∞].

Similarly to the linear case, the parameter β is again left free in all statements,
but from a physical point of view it is meaningful to fix β = d

2
+ 1

In [54], the author correlates Besov spaces with particular sequence from J to
R, thus it is possible to study the regularity of the velocity field by introducing
the following norms on the set of functions from J to R.

Definition 3.1.1. For every s ∈ R we define the space Hs of the maps u : J → R
such that:

||u||Hs =

√∑
j∈J

22s|j|u2
j <∞.

In particular we write H = H0 = `2(J).

Definition 3.1.2. For every s ∈ R and p ≥ 1 we introduce the space W s,p of the
maps u : J → R such that:

||u||W s,p = (
∑
j∈J

2[ps+d( p
2
−1)]|j||uj|p)

1
p <∞.

In particular W s,2 = Hs.

Definition 3.1.3. For all s ∈ (0, 1) we define the space Cs of the maps u : J → R
such that

sup
n≥1

(ns+
1

2
dn+ max

|j|=n
log2 |uj|) <∞.

Such spaces correspond to the usual ones for the recomposed velocity field
function.
Finally, in [17] it was proven that the exponents ζp of the structure function of a
solution u(x) are given by

ζp = min{p , d− p

2
d− lim sup

n→∞

1

n
log2

∑
|j|=n

|uj|p}. (3.5)
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Observation. It is immediate to verify that, in the case β = d/2 + 1 and d = 3, the

inertial solution X = {Xj ∼ 2−
11
6
|j|}j∈J satisfies

X ∈ Hs, s <
1

3
, and X ∈ W s,p, p ≥ 1, s <

1

3
.

Indeed,

||X||Hs =

√∑
n

∑
|j|=n

22sn · 2− 11
6
n =

√∑
n

2nd22sn · 2− 11
6
n <∞ ⇐⇒

d+ 2s− 11

6
< 0 ⇐⇒ s <

11

6
− d

2
=

1

3
.

Similarly,

||X||W s,p =

√∑
n

∑
|j|=n

2[ps+d( p
2
−1)]n · 2− 11

6
pn =

√∑
n

2nd2[ps+d( p
2
−1)]n · 2− 11

6
pn <∞ ⇐⇒

d+ ps+ d(
p

2
− 1)− 11

6
p < 0 ⇐⇒ s <

11

6
− d

2
=

1

3
.

Similarly to the linear dyadic model in the previous chapter, one can extend
the following definitions to model (3.1).

Definition 3.1.4. A weak solution is a family v = (vj)j∈J of non negative differ-
entiable functions satisfying (3.1).
A Leray-Hopf solution is a weak solution v ∈ L∞(R+, H).

Compared to the linear dyadic model, this time existence and uniqueness of
solutions are more subtle matters.
In [2] it has been proved with classical Galerkin approximation that if dj = 1 for
every j ∈ J , then for any initial condition with non negative components there
exists at least one Leray-Hopf solution. The generalization to the general model
is straightforward. Uniqueness of solutions is an open problem even for the model
with dj = 1. In general, uniqueness does not hold if one drops the non negativity
condition. One way to exploit this hypothesis is presented in [3], although it
required estimates of terms of the kind∫ t

0

v3
n(s)ds.

However, for large n they are difficult to generalize to our general setting.
In [17] it has been proved the existence, and uniqueness in some sense, of a station-
ary solution by introducing a forcing term on the first component. We will recall
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such construction in the next section. Then we extend this framework in order to
prove existence of solutions that are not constant in time. These two results are
an interesting proof of anomalous dissipation.
Finally, we investigate the evolution of the unique stationary solution found in [17]
in the case we add a viscous friction in equation (3.1), discovering an interesting
regularizing phenomenon due to the presence of coefficients dj.

3.1.1 Stationary Leray-Hopf solution

We consider now Leray-Hopf solutions u = (uj)j∈J not depending on time,
what we call stationary solutions in previous chapter.
From equation (3.1) we have

0 = cju
2
 −

∑
k∈Oj

ckujuk, j ∈ J,

that leads us to the fundamental recursion for stationary solution

dju
2
 = 2β

∑
k∈Oj

dkujuk, j ∈ J. (3.6)

One could be tempted to solve (3.6) recursively, although there are some major
difficulties. First of all, given uj and u, there are 2d − 1 degrees of freedom for
choosing variables uk for k ∈ Oj. Moreover, it is not trivial to prove that any such
solution belongs to H. Indeed, a posteriori it turns out that there exists a unique
Leray-Hopf solution, hence all choices but one produce a sequences uj satisfying
recursion (3.6) but not belonging to H.
Alternatively, it is possible to replicate the pull-back technique already introduced
in Section 2.1.6: let’s fix arbitrarily uj for all j ∈ J with given large generation
|j| = n, then compute uk for the lower generations |k| < n and then let n → ∞,
and finally proving convergence by compactness. In [17], the only Leray-Hopf
solution of (3.1) has been shown explicitly

ũj = f · 2
∑
h≤j q̃h

∏
k≤j

√
dk, j ∈ J,

where

q̃j = lim
n→∞

q
(n)
j
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and

q
(n)
j = 0, |j| > n,

q
(n)
j = x ∈ R, |j| = n,

q
(n)
j = −1

2
β − 1

2
log2(

∑
k∈Oj

d
3
2
k 2q

(n)
k ) |j| < n.

We now recall some results about the only stationary solution ũ.

Theorem 3.1.1. Suppose

sup
j∈J

log2 dj − inf
j∈J

log2 dj = L <∞.

Then, there exists a stationary weak solution ũ of (3.1) such that its coefficients
q̃j are bounded.
Moreover, ũ ∈ Hr for all

r <
1

3
(β − d

2
)− L.

In particular, if β > d
2

and

supj∈J dj

infj∈J dj
≤ 2

1
3

(β− d
2

),

then there exists a constant Leray-Hopf solution.

Next theorem shows that uniqueness of stationary solutions holds in the union
of Hr for all r ∈ R.

Theorem 3.1.2. Under the same hypothesis of Theorem 3.1.1, for all s ∈ R there
exists at most one stationary weak solution in Hs.

Model with repeated coefficients

If we restrict ourselves to the model with repeated coefficients, computation of
many quantities simplifies enormously while still showing peculiar features.

Theorem 3.1.3. The RCM admits a stationary weak solution u ∈ W s,p for all
p ≥ 1 and s < s0(p), where

s0(p) =
1

3
(β − d

2
) +

1

2
(`3/2 − `p/2).
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Such solution is unique inside any Hs and it admits an explicit form

uj = f · 2q|j|+q
∏
k≤j

√
dk, j ∈ J,

where

q =
1

3
(β + d)− 1

2
`3/2.

If β > d/2 the solution is of Leray-Hopf.

The proof of Theorem 3.1.3 is base upon the following useful Lemma we recall
from [17].

Lemma 3.1.4. If the model is RCM, then for any real function φ and any positive
integer n, ∑

|j|=n

∏
k≤j

φ(dk) = (
∑
ω∈Ω

φ(δω))n

We conclude this section recalling from [17] Theorem 3.1.5 that clarifies the
multifractal nature of the stationary solution as well as the spatial intermittency
phenomenon. In Section 3.2 we state an equivalent of Theorem 3.1.5 for an
Obukhov-type model that shows an inverse cascade of energy.

Theorem 3.1.5. Let’s consider the quantity

h =
1

3
(β − d

2
)− 1

2
(`∞ − `3/2),

And suppose h ∈ (0, 1). Then there exists a unique constant Leray-Hopf solution
which lies in Cs if and only if s ≤ h. Furthermore, the exponents ζp of the structure
function are given by

ζp = min{p ;
p

3
(β − d

2
) +

p

2
(`3/2 − `p/2)}, p ≥ 0.

3.1.2 Self-Similar solutions

One step forward in the study of model (3.1) is to search for solutions that are
not constant in time. One natural way is then to look for self-similar solutions like
we did in section (2.1.6) for the linear dyadic model.
In this setting we call self-similar any solution Y of the form Yj(t) = aj · φ(t),
j ∈ J . Furthermore, we will restrict ourselves to positive finite energy self-similar
solutions.
It is easy to prove that self-similar solutions of model (3.1) have again the form

Yj(t) =
aj

t− t0
, j ∈ J (3.7)
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with t > t0 for some t0 < 0.
Indeed, by equation (3.1) we obtain

ajφ
′
(t) = 2β|j|dja

2
φ(t)2 −

∑
k∈Oj

2β|k|dkajakφ(t)2

= φ(t)2 · (2β|j|dja2
 −

∑
k∈Oj

2β|k|dkajak)

and relation (3.7) follows immediately.
Aim of this section is to prove, for small value of M > 1, existence and uniqueness
of finite energy self-similar solutions.

Let X = (
aj
t−t0 )j∈J be a self-similar solution, where aj > 0 for every j ∈ J . By

substituting expression (3.7) into equation (3.1) one obtain

X
′

j(t) = − aj
(t− t0)2

= 2β|j|dj
a2
j

(t− t0)2
−

∑
k∈Oj

2β|k|dk
aj

t− t0
ak

t− t0

= cjX
2
j
(t)−

∑
k∈Oj

ckXj(t)Xk(t),

⇐⇒ −aj = 2β|j|dja
2
j
−

∑
k∈Oj

2β|k|dkajak j ∈ J

the latter leads to the following fundamental recursion for self-similar solution:

2βaj
∑
k∈Oj

dkak = dja
2
j

+
aj

2β|j|
, j ∈ J. (3.8)

In order to solve recursion (3.8) we introduce the weights (πj)j∈J such that

2βajdkak = πk(dja
2
j

+
aj

2β|j|
), k ∈ Oj, |K| ≥ 2

2βakdk = πk, |k| = 1∑
k∈Oj

πk = 1, πk > 0, j ∈ J
(3.9)

For all choices of a∅ and πk satisfying the condition, this recursion builds a
solution to which there corresponds one weak self-similar solution of the original
system.

To find a regular solution, one should control the growth of the coefficients ak.
Unfortunately, because the non linearity is the one from Katz-Pavlovic, we expect
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the same behaviour found in [17] for stationary solutions. Hence, we expect that
only one regular solution exists, and its existence can be proved by pull-back tech-
niques.

Hence, we fix a generation N , i.e., fix the values of ak in a suitable way at |k| = N
and perhaps |k| = N − 1, and then look for a solution in the first N generations.
The backward recursion that we need to solve is given by

a2
 =

aj
dj

(2β
∑
k∈Oj

dkak − 2−β|j|), |j| ≥ 1. (3.10)

In the case of stationary solutions, there is an algebraic rewriting of the system
that makes the recursion of the first order, i.e., one can write aj as a function of
ak for k ∈ Oj. Since our recursion is of second order, we get different definitions
of aj: one for each k ∈ Oj. This rises the problem to find compatibility conditions
for these different equations.

More problems arise because by fixing the values of ak at k = N and also at
k = N − 1 we are given too many constraints. As seen in the forward recursion,
the space of solutions for the finite system with j ≤ N , is given by 1+2d+ . . .+2Nd

variables with 1 + 2d+ . . .+ 2(N−1)d linear constraints, yielding 2Nd degrees of free-
dom. This is exactly the number of variable ak with |k| = N , so it is impossible
to fix both the last and the second-last generations and expect to find compatible
equations in the recursion.

Our strategy is then the following:

1. We prove that for any choice of ak at |k| = N there exist a solution of the
finite system.

2. We find a way to control the ak at |K| = N −1 so that we can apply Lemma
3.1.7, which controls the coefficients of the whole finite tree based on the last
two generations.

There are several different ways to rewrite the system in such a way that we
can expect the coefficients to be controllable for the regular solution. Inspired by
the construction of stationary solution, we propose the following:

aj = 2−
β
3
|j|
∏
i≤j

√
diαj (3.11)
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yielding

αj = βjα
2
 , |j| ≥ 1

βj = (
∑
k∈Oj

d
3/2
k αk − sj)−1, |j| ≥ 1

sj = 2−
2
3
β(|j|+1)d

−1/2
j , |j| ≥ 1

s∅ =
∑
|j|=1

d3/2αj = 2−
2β
3 .

(3.12)

The case N = 2
Suppose we are given αk > 0 for all |k| = 2. Then we immediately compute βj for
all |j| = 1 and by (3.12) we compute α∅ and hence αj for all |j| = 1.

In view of the second point, we write explicitly the functions involved, α : R2d

+ →
R2d

+ and β : R22d

+ → R2d

+ , that is

αj(β) =
βjs∅∑

|j|=1 d
3/2
j βj

βj(α) = (
∑
k∈Oj

d
3/2
k αk − sj)−1

(3.13)

We notice that β is defined on a subset of R22d

+ , as it is required to be positive,

and that α(β) ≤ s∅d
−3/2
min . Moreover, if we take α with all equal components and

large, α ◦ β(α) tends to a given point in R2d

+ which depends on the coefficients dk.

The case N = 3
Suppose we are given αk > 0 for all |k| = 3. Then we easily compute βj for
all |j| = 2. We would like to obtain the corresponding αj and then apply the
case N = 2. Let’s consider the inverse map that gives βj as functions of αj.
From αj with |j| = 2 we can get the αj with |j| = 1 and then βj = αjα

−2
 . If

we can invert this map, we are done (we are automatically inside the domain of β).

Let ϕ : R22d

+ → R22d

+ be defined by

ϕj(α) = aj · [α ◦ β(α)]−2.

We prove that ϕ is surjective. Let’s first perform a logarithmic transformation as
follow

ψj(x) = xj − 2 log ◦α ◦ β ◦ expx∗,
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where the ∗ denotes the componentwise versions of common functions. Then we
can write

ψ = id− 2V log∗ ◦α ◦ β ◦ exp∗,

where V is the 22d × 2d matrix given by Vi,j = 1i,j. Next, we rotate the ambient
space in such a way to make the column vectors of V the first canonical vectors
(they are orthogonal, with norm 2d/2) to obtain

ψ = id− 21+d/2
∑
|j|=1

ej log∗ ◦αj ◦ β ◦ exp∗R.

To study the surjectivity of ψ, let’s consider the equation ψ(x) = z ∈ R22d

+ . We
can fix the components out of |j| = 1, as they are not changed by the map, and
just study the restriction of ψ to Uz = U + z, where U = Span(ej, |j| = 1). Such
restriction can be read on U as a map of the form id + f with

f(x) = f z(x) = −21+d/2
∑
|j|=1

ej log∗ ◦αj ◦ β ◦ exp∗(2
−d/2V x+ v),

for suitable v ∈ R22d

+ depending on z. By applying a further homothety, we get rid
of the two factors 2d/2. Finally we are able to study this function by components:

βj ◦ exp∗(V x+ v) = (
∑
k∈Oj

d
3/2
k exj+vk − sj)−1 = s−1

j (exj−cj − 1)−1, |j| = 1. (3.14)

This is monotone decreasing in all components separately. After applying αj we get
that when xj is increased keeping all other components constant, the corresponding
component of f increases while the other components decrease.
The domain of f is

∏
|j|=1(cj,∞). It is possible to choose x̃ near c = (cj)|j|=1 such

that the weights βj are all equal. The corresponding point P = f(x̃) characterizes

the image of ψ as the point x̃ + P = ψ(x̃) arbitrarily near to c + P . It is in the
image and represents a sort of lower bound vertex of the image of ψ.
Similarly, it is possible to choose x̂ with large components of similar value such
that the weights βj are all equal. Then the points x̂ + P = ψ(x̂) is also in the
image.
We now have two opposed vertices of a large box, thus given the monotonicity of
components, all the points in the rectangular box with those vertices are in the
image, hence proving that all the open quadrant with vertex c + P is inside the
image. Then ϕ is invertible for large enough components. Finally, by writing the
functions involved, it is obvious that log ◦α ◦ β ◦ exp∗(x) is not much larger than
x for ψj(x) large given,

α(β) = ϕ−1(β)

βj(α) = (
∑
k∈Oj

d
3/2
k αk − sj)−1 = βj(α). (3.15)
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The general case
The general case can be done in a similar way to the previous case N = 3, but
using α and its properties instead of α.

We now continue to study recursion (3.10). In what follows we are interested
in proving the following theorem.

Theorem 3.1.6. Suppose there exist constant 0 < C < 2β − 2 logM and 1 ≤
M < 2β/2 so that

2−C ≤ πk, 1/M ≤ dk ≤M, ∀k ∈ J \ ∅

Then there exists one and only one positive self-similar solution X = (Xj(t))j∈J
satisfying recursion (3.8).

To prove Theorem 3.1.6 we will need the following Lemma.

Lemma 3.1.7. Let {εn}n∈N be a summable sequence of positive real number. Let’s
consider the following recursive sequence

bn+1 =
√
bn · (bn−1 − εn), n ≥ 1

b1, b0 ∈ R+.
(3.16)

If b1 > L−ε1 > 0 and b0 > L−ε0 > 0 for some positive real number L >
∑∞

i=0 εi,
then the sequence {bn}n∈N is well defined and satisfies

L−
n∑
i=1

εi < bn ≤ max{b0, b1}, ∀n ≥ 0.

Proof. First of all let’s call Σ =
∑∞

n=0 εn < ∞. We observe that the sequence
{bn}n is well defined if and only if bn − εn+1 > 0 for every n ≥ 0.
We prove by induction that

L− Σ < L−
n∑
i=1

εi ≤ bn ≤ max{b0, b1}, ∀n ≥ 0.
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By hypothesis b1 > L − ε1 and b0 > L − ε0, moreover if bn > L −
∑n

i=0 εi,
bn−1 > L−

∑n−1
i=0 εi, then

bn+1 =
√
bn(bn−1 − εn) >

√√√√(L−
n∑
i=0

εi)2 = L−
n∑
i=0

εi > L−
n+1∑
i=0

εi.

Likewise, b0, b1 ≤ max{b0, b1}, and if bn, bn+1 ≤ max{b0, b1} then

bn+1 =
√
bn(bn−1 − εn) ≤

√
max{b0, b1}(max{b0, b1} − εn) < max{b0, b1},

concluding the proof.

Proof. We can now prove Theorem 3.1.6 by starting rewriting recursion (3.10) in
the following form

b
(N)
J = 0, |j| > N

b
(N)
J = L > 0, |j| = N,N − 1

b
(N)

j
=

√
dk
djπk

b
(N)
j (b

(N)
k − εj),

(3.17)

where εj = πk
dk22β|k|/3 . By hypothesis the following two inequalities holds for every

j ∈ K and k ∈ Oj
1

M2
≤ dk
dj
≤M2, 1 ≤ π−1

k ≤ 2C

for some positive constants M ≥ 1 and C > 0, thus it is easy to observe that

b
(N)
j ≥ b̃j

(N)
, where {b̃j

(N)}j∈J satisfies

b̃
(1)

=

√
1

M2
b̃j

(1)
(b̃k

(1) − εj), k ∈ Oj, j ∈ J (3.18)

In order to use Lemma 3.1.7 we need to reach a recursion of the form (3.16).

To do so we consider the proper change of variable b̃j
(N) → c̃j

(N) · 2(2 logM)|j|/3 to
get the following recursion

c̃
(N) =

√
c̃j

(N)(c̃k
(N) − ε∗j), k ∈ Oj, j ∈ J

where ε∗j = εj · 2−(2 logM)|j|/3+2 logM/3.
The sequence {ε∗j}j∈J is summable, thus it satisfies Lemma 3.1.7. and the recur-

sive sequence {c̃j(N)}j∈J is well defined and lies in a compact set for initial values
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c̃j
(N) = L, |J | = N,N − 1, larger than some positive threshold. Thus, also the

sequence {a(N)
j =

c̃j
(N)

2(β−2 logM)|j|/3}j∈J is well defined for starting values larger than
some positive threshold.

We can now prove compactness and finite energy property. With an argument
similar to the previous one b

(N)
j ≤ b̂

(N)
j , where {b̂(N)

j }j∈J satisfies

b̂
(N)
 =

√
22 logM+C b̂

(N)
j (b̂

(N)
k − εj), k ∈ Oj, j ∈ J (3.19)

We consider now the following change of variable b̂
(N)
j → ĉ

(N)
j

2(2 logM+C)|j|/3 , to lead
ourselves to the following recursion

ĉ
(N)
 =

√
ĉ

(N)
j (ĉ

(N)
k − ε̂j), k ∈ Oj, j ∈ J

where ε̂j = εj · 2(2 logM+C)|j|/3−(2 logM+C)/3.
Thanks to our assumptions {ε̂j}j∈J is a summable sequence.

By Lemma 3.1.7, the recursive sequence {ĉ(N)
j }j∈J is well defined and lies in a com-

pact set for starting values c̃
(N)
j , |j| = N,N−1 larger than some positive threshold.

By compactness and a diagonal extraction argument we can choose subsequences

(Ñi)i, (N̂i)i ∈ N such that b̃
(Ñi)
j converges for all j ∈ J to some number b̃j, and

b̂
(N̂i)
j converges for all j ∈ J to some number b̂j. The sequence b̃ = {b̃j} satis-

fies recursion (3.18) by construction, as well as b̂ = {b̂j} satisfies recursion (3.19).

Hence, we can choose another subsequence (Ni)i ∈ N such that a
(Ni)
j converges

for all j ∈ J to some number aj. By the uniqueness of the limit {aj}j∈J is the
only sequence that satisfies recursion (3.17) by construction and consequently also
recursion (3.9), and the following relation holds

C1

2(2 logM+C+β)|j|/3 ≤ aj ≤
C2

2(β−2 logM)|j|/3 , j ∈ J

for some constants C1, C2 > 0. From the hypothesis M < 2β/2 we deduce that
{aJ}j∈J has finite energy.

Remark. From Theorem 3.1.6 we derive the following condition in the meaningful
case where β = d

2
+ 1

M < 2d/2+1−C/2.

In the general settings where the coefficients dk are not all equal to 1, in order
to actually prove existence of some self-similar solution it is necessary to require
M > 1, thus

d ≤ C < d+ 2.
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this is equivalent to

πj ≥
1

2d+2
, j ∈ J. (3.20)

Let’s first observe that condition (3.20) is required to hold at least definitely
for |j| > n∗ for some n∗ > 0.

We claim that condition (3.20) is indeed satisfied for some choice of coefficients
dj, j ∈ J .
First, if dk = 1 by an heuristic argument one can prove

lim
|j|→∞

πj = 2−d. (3.21)

Indeed, from (3.9)

b =

√
2βbj
πk

(bk −
πk

22β|k| ), (3.22)

moreover the Kolmogorov spectrum reads

bj ∼ 2−
β+d

3
|j|. (3.23)

Let’s say |j| = n, thus putting (3.23) into (3.22) we get

2−
β+d

3
(n−1) ∼

√
2β2−

β+d
3
n

πk
(2−

β+d
3

(n+1) − πk
22β(n+1)

).

Latter relation can be progressively simplified as follows

2−
2
3

(β+d)(n−1) ∼ 2β−
β+d

3
(2n+1)

πk
− 2−(β+β+d

3
)n

⇐⇒ πk ∼
2β−

β+d
3

(2n+1)

2−
2
3

(β+d)(n−1) + 2−(β+β+d
3

)n

⇐⇒ πk ∼
2

2β−d
3

2
2
3

(β+d) + νn
,

(3.24)

where νn = 2
d−2β

3
n. In the meaningful case β = d/2 +1, νn becomes infinitesimally

small for n→∞, hence

lim
|j|→∞

πj =
2

2β−d
3

2
2
3

(β+d)
= 2−d. (3.25)

Thus πj are definitely close to 2−d. Thanks to a continuity argument, for every
small ε > 0 such that

1− ε < dj < 1 + ε, j ∈ J
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exists 0 < η < 2 and n∗ so that

1

2d+η
≤ πj, ∀ |j| > n∗.

Thus, we can always choose coefficient dj that are not so distant to 1 in order to
satisfy condition (3.20).

Remark. We conclude by observing that the positive requirement bj > 0, j ∈ J\{∅}
is actually necessary, otherwise it would be possible to find infinitely many self-
similar solutions (see for example [14] to find self-similar solutions that would be
counter examples to Theorem 3.1.6).

3.1.3 Viscous stationary solutions

In this section we are going to study RCM model like (3.1) in the presence of
a viscous friction, i.e.

v
′

j(t) = cjv
2
j
(t)−

∑
k∈Oj

ckvj(t)vk(t)− cγj vj(t), j ∈ J, t ≥ 0, γ ∈ R,

v∅ = f > 0.

(3.26)

as well as to investigate for which values of the friction exponent γ, the only
stationary solution found in [17] still show the same dynamics as in the inviscid
model.
Next theorem addresses such questions.

Theorem 3.1.8. It exists a critical friction value γc

γc =
1

3β
(2β − 2 logM − C)

for some constant C ≥ d, such that for every γ < γc, the viscous forced model
(3.26) admits a unique positive stationary finite energy solution Y = {Yj(t) =
aj}j∈J . Moreover, such stationary solution satisfies

C1

2(β(2−3γ)−2 logM)|j|/3 ≤ aj ≤
C1

2(β(2−3γ)−2 logM−C)|j|/3 ,

for some positive constants C1, C2 > 0.

Furthermore, γc ≤ 4
15

when β = d/2 + 1 and d = 3.
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Proof. Let Y = {Yj(t) = aj}j∈J be a positive stationary viscous solution of (3.26).
Then, by introducing the set of weights {πk}k∈J as in (3.9), we get the following
expression

πkdja
2
j

= 2βdkajak + πk2
β|j|(γ−1)dγj aj,

and by restricting ourselves to positive solutions we obtain

aj =

√
dk
dj

2β

πk
aj(ak +

πkd
γ
j

dk2α|j|(1−γ)+β
). (3.27)

Remark. Equation (3.27) resembles recursions (3.10) obtained for self-similar solu-
tions, with the difference that this time the perturbation term comes with positive
sign, thus the recursion is well defined for every possible starting value. Moreover,
similarly to the case of self-similar solutions, it is possible to show that exists just
one possible set of weights {πj}j∈J such that (3.27) is a well defined recursion.

From now on we refer to πk as the only set of weights that satisfies compatibility
conditions for recursion (3.27). Moreover, by limitedness there exists C ≥ d so
that

1

2C
≤ πj ≤ 1, j ∈ J.

As before, we start by considering the change of variables aj =
bj

2β|j|/3
to obtain

bj =

√
dk
dj

1

πk
bj(bk +

πkd
γ
j

dk2β|j|(2/3−γ)+2β/3
). (3.28)

It is immediate to verify that bj ≤ cj, where we define

cj =

√
M22Ccj(ck +

Mγ+1

2β|j|(2/3−γ)+2β/3
) (3.29)

and remember that coefficients dk are bounded from above and away from zero,
i.e. exists M ≥ 1 so that 1/M ≤ dk ≤ M for every k ∈ J . Then, by changing
variable cj =

c̃j
2(C+2 logM)|j|/3 , we obtain

c̃j =

√
cj(ck +

Mγ+1

2[β(2/3−γ)−C/3−2 logM/3]|j|+2(β−C/2−logM)/3
). (3.30)

If coefficients dk are not all identical (i.e. dk = 1 ∀k ∈ J), as the tree J grows
deeper and deeper the energy flow will increasingly concentrate in paths of the tree
whose nodes have larger coefficients dk. Accordingly, solutions over paths whose
nodes share smaller coefficients will be regularized by smaller friction coefficient
(eventually negative exponent) and will decay with super exponential velocities.
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Therefore, it is sufficient to prove existence and investigate the behavior of the
solution along paths whose nodes have maximum possible coefficients.

Thanks to Lemma 3.1.7 and the same diagonal extraction argument used in previ-
ous sections, a necessary and sufficient condition for the convergence of the back-
ward sequence {c̃j}j∈J (hence also of the sequence {bj}j∈J) is

β(2/3− γ)− C/3− 2 logM > 0 (3.31)

that proves the claim

aj ≤
C1

2(β(2−3γ)−2 logM−C)|j|/3 ,

for some positive constant C1 > 0.
With similar argument one can prove the existence of C2 > 0 such that

C2

2(β(2−3γ)−2 logM−C)|j|/3 ≤ aj. (3.32)

Inequality (3.31) is equivalent to

γ <
1

3
(2− log(M22C)

β
). (3.33)

If dj = 1 for every j ∈ J (hence M = 1) we deduce

γ <
1

3
(2− C

β
) ≤ 1

3
(2− d

β
).

When β = d/2 + 1 and d = 3, latter inequality becomes

γ <
1

3
(2− 6

5
) =

4

15
.

Observation. Similarly to Theorem 2.1.18, we notice that 4
15

is consistently less
than the global critical friction value 4

5
after which every solution will be certainly

regularized.
Furthermore, inequality (3.33) reveals that coefficients dj possess a interesting
regularizing property: as the upper bound M increases, the solution withstands a
progressively lower friction coefficient.
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3.2 Inverse energy cascade

The aim of this section is to introduce a dyadic tree model with Obukhov non-
linearity in order to simulate the inverse cascade phenomenon of two-dimensional
fluid vortexes. The model we are interested in is conceptually similar to models
developed in previous sections.

Let’s consider the following infinite dimensional system

X
′

j = −2β|j|djXjXj +
∑
k∈Oj

2β|k|dkX
2
k , j ∈ J, (3.34)

where Xj = Xj(t) are differentiable real functions and X∅ ≡ f ≥ 0 is a forcing on
the first component, which acts as a dissipative term:

X
′

∅ = −d∅fX∅ +
∑
k∈O∅

2β|k|dkX
2
k . (3.35)

We impose conditions over the parameter dj, j ∈ J and β identical to direct
cascade model, and for the sake of simplicity we fix f = 1. We will look for
stationary solution of model (3.34) possibly different from the trivial null solution.
We observe that the non-linearity is similar to the one proposed by Obukhov in
his classic linear model, which is formally conservative, thus for solutions with
positive components it provokes energy flow from lower to larger scales, i.e. from
higher to lower nodes. Thus, we let the energy enter from high generation nodes,
let say at N -th generation, and then let N → ∞. To this end we introduce the
finite dimensional models with a dummy force. From N ≤ 1 the N -model satisfies
(3.34) for |j| < N , where Xj is given for |j| = N and Xj = 0 for |j| > N .

3.2.1 Stationary Solutions

If Xj is a stationary solution of model (3.34), we have

djXjXj =
∑
k∈Oj

2βdkX
2
k , j ∈ J. (3.36)

We introduce once more the weights (πk)k∈J

πkdjXjXj = 2βdkX
2
k , k ∈ Oj. (3.37)

Remark. We recall that, by definition, every set of weights (πk)k∈J satisfies
∑

k∈Oj πk =

1. We call flat points of RJ algebraic solutions of system (3.37) such that πk = 2−d

for every k ∈ J .
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Let (ji)i be the enumeration of the nodes on a path starting from ∅, so that
j0 = ∅ and ji−1 = i for i ≥ 1.

For every path ∅ = j0, j1, . . . , jn, equation (3.36) leads to

logXjn =− β

3
n+

∑
0<h≤n

(−1

2
)n−h+1 log djh +

1

3

n∑
h=1

(1− (−1

2
)n−h+1) log πjh

− β

9
(1− (−1

2
)n) + (

2 + (−1
2
)n

3
) logX∅.

(3.38)

It is useful to express equation (3.38) also in its exponential form

Xjn =2−
β
3
n ·

∏
0<h≤n

d
(− 1

2
)n−h+1

jh
·

n∏
h=1

π
(1−(− 1

2 )n−h+1)

3
jh

· 2−
β
9

(1−(− 1
2

)n) ·X(
2+(− 1

2 )n

3
)

∅ .

(3.39)

Equation (3.39) suggests that the regularity of constant solution Xj depends
heavily on the set of weights {πk}k∈Oj ,j∈J . Next Proposition shows that regularity
is minimum, for example, in the flat case (πk = 2−d for every k ∈ Oj) and can
possibly increase till an upper limit depending on weights distribution over the
model tree.

Proposition 3.2.1. Let X = {Xj}j∈J be a constant solution of (3.34). Then
X ∈ Hs for every s < s0, where the exponent s0 satisfies:

1

3
· (β − d/2) ≤ s0 ≤

1

3
· β.

Moreover s0 = 1
3
· (β − d/2) in the flat case πk = 2−d for every k ∈ J \ {∅}, and

s0 = 1
3
β in the limit case where in every offspring exactly one weight πk = 1 and

all the other weights are null.

Proof. We recall that X ∈ Hs if and only if

∞∑
n=0

22ns
∑
|j|=n

|Xj|2 <∞.

From equation (3.39) we claim that it is possible to write

∑
|j|=n

|Xj|2 = Cn
∑
|j|=n

2−
2
3
βn ·

n∏
i=1

π
2+(− 1

2 )n−i

3
ji

(3.40)
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where the summation takes into account all the 2dn possible paths from the
n−generation nodes and the tree root, and Cn is uniformly bounded by a con-
stant in n.

Indeed, by the expression (3.39) of a stationary solution we obtain

∑
|j|=n

|Xj|2 =
∑
|j|=n

[2−
2β
3
n ·

∏
0<h≤n

d
−(− 1

2
)n−h

jh
·

n∏
h=1

π
(2+(− 1

2 )n−h)

3
jh

· 2−
β
9

(2+(− 1
2

)n−1) ·X(
4−(− 1

2 )n−1

3
)

∅ ]

=
∑
|j|=n

{[2−
2
3
βn ·

n∏
i=1

π
2+(− 1

2 )n−i

3
ji

][
n∏
h=1

d
−(− 1

2
)n−h

jh

· 2−
β
9

(2+(− 1
2

)n−1) ·X(
4−(− 1

2 )n−1

3
)

∅ ]}

Finally, thanks to assumptions on coefficients dk, we observe that the term

n∏
h=1

d
−(− 1

2
)n−h

jh
· 2−

β
9

(2+(− 1
2

)n−1) ·X(
4−(− 1

2 )n−1

3
)

∅

is uniformly bounded by a constant in n, leading to equation (3.40).

From expression (3.40) it is possible to derive the following inequality

∑
|j|=n

2−
2
3
β|j|

n∏
i=1

π
2+(− 1

2 )n−i

3
ji

≤ 2
d−2β

3
n+ d

9
((− 1

2
)n−4).

Indeed, we have

∑
|j|=n

2−
2
3
β|j|

n∏
i=1

π
2+(− 1

2 )n−i

3
ji

=
∑
|j|=n

2−
2
3
β|j|π

2+1
3

jn
π

2− 1
2

3
jn−1
· · · π

2+(− 1
2 )n−1

3
j1

= 2−
2
3
βn

∑
|j|=n−1

π
1
2
jn−1

π
3
4
jn−2
· · · π

2+(− 1
2 )n−1

3
j1

·
∑

k∈Ojn−1

πk

= 2−
2
3
βn

∑
|j|=n−1

π
1
2
jn−1

π
3
4
jn−2
· · · π

2+(− 1
2 )n−1

3
j1

= 2−
2
3
βn

∑
|j|=n−2

π
3
4
jn−2

π
5
8
jn−3
· · · π

2+(− 1
2 )n−1

3
j1

·
∑

k∈Ojn−2

π
1
2
k

(3.41)
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we now we use that, for every i = 1, 2, . . . n, the arithmetic mean of π
2+(− 1

2 )i

3
k is

less or equal their [ 3
2+(− 1

2
)i

]-mean and the hypothesis
∑

k∈Ojn−1
πk = 1, and finally

iterate previous steps n times to get

2−
2
3
βn

∑
|j|=n−2

π
3
4
jn−2

π
5
8
jn−3
· · · π

2+(− 1
2 )n−1

3
j1

·
∑

k∈Ojn−2

π
1
2
k

≤ 2−
2
3
βn

∑
|j|=n−2

(π
3
4
jn−2

π
5
8
jn−3
· · · π

2+(− 1
2 )n−1

3
j1

) · 2d( 1

2d

∑
k∈Ojn−2

πk)
1/2

=2−
2
3
βn

∑
|j|=n−2

2d/2(π
3
4
jn−2

π
5
8
jn−3
· · · π

2+(− 1
2 )n−1

3
j1

)

≤ . . . ≤ 2−
2
3
βn · 2

d
3

(
∑n−1
i=1 (

2+(− 1
2 )i

3
)) = 2

d−2β
3

n+ d
9

((− 1
2

)n−4).

(3.42)

By the property of means, equality holds if πk = 2−d for every k. By letting
n→∞ in relation (3.42) we have shown left inequality of the claim.
In order to prove right part we recall that πk ≤ 1 for every k ∈ J , thus∑

k∈Oj

π
2+(− 1

2 )n

3
k ≥

∑
k∈Oj

πk = 1, j ∈ J,

since 0 <
2+(− 1

2
)n

3
≤ 1.

Again, from (3.40) we obtain∑
|j|=n

2−
2
3
β|j|

n∏
i=1

π
2+(− 1

2 )n−i

3
ji

=
∑
|j|=n

2−
2
3
β|j|π

2+1
3

jn
π

2− 1
2

3
jn−1
· · · π

2+(− 1
2 )n−1

3
j1

= 2−
2
3
βn

∑
|j|=n−1

π
1
2
jn−1

π
3
4
jn−2
· · · π

2+(− 1
2 )n−1

3
j1

·
∑

k∈Ojn−1

πk

= 2−
2
3
βn

∑
|j|=n−1

π
1
2
jn−1

π
3
4
jn−2
· · · π

2+(− 1
2 )n−1

3
j1

= 2−
2
3
βn

∑
|j|=n−2

π
3
4
jn−2

π
5
8
jn−3
· · · π

2+(− 1
2 )n−1

3
j1

·
∑

k∈Ojn−2

π
1
2
k

≥ 2−
2
3
βn

∑
|j|=n−2

π
3
4
jn−2

π
5
8
jn−3
· · · π

2+(− 1
2 )n−1

3
j1

≥ . . . ≥ 2−
2
3
βn,
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where the equality is achieved in the limit case where in every offspring exactly
one weight πk = 1 and all the other weights are null.

Structure Function

We are interested in investigating whether stationary solutions show intermit-
tency behaviour. Next Proposition states that the flat stationary solution shows
no intermittency and satisfies Kolmogorov K41 law.

Proposition 3.2.2. Assume that all coefficients dj are uniformly bounded away
from 0 and uniformly bounded from above, i.e. there exists M > 0 such that

1

M
≤ dj ≤M, j ∈ J.

Then, for the flat set of weights πk = 2−d, then the exponent ζp of the structure
function of the stationary solution associated to the set of flat weights satisfies

ζp =
p

3
(β − d

2
),

which becomes ζp = p
3

when we consider β = d/2 + 1.

Proof. From [17], we recover the exact form of the exponent ζp of the structure
function Sp

ζp = d− p

2
d− lim sup

n→∞
(
1

n
log2(

∑
|j|=n

|uj|p)).

Let’s consider a path starting from ∅ to the n-th generation: j0 = ∅, j1, . . . , jn = j,
|j| = n. From relation (3.38) we set xjn and observe that the argument of the
lim sup is 1

n
log2

∑
|j|=n 2pxj . By expanding the summation

∑
|j|=n 2pxj we obtain:

∑
|j|=n

2pxj = 2p[−
βn
3
−β

9
(1−(− 1

2
)n)+

x∅
3

(2+(− 1
2

)n)− d
3

∑n
h=1(1−(− 1

2
)n−h+1)]·

∑
|j|=n

2p
∑n
h=1(− 1

2
)n−h+1 log2 djh .

(3.43)
We then consider

1

n
log2

∑
|j|=n

2pxj =
p

n
[−βn

3
− β

9
(1− (−1

2
)n) +

x∅
3

(2 + (−1

2
)n)− d

3

n∑
h=1

(1− (−1

2
)n−h+1)]

+
1

n
log2

∑
|j|=n

2p
∑n
h=1(− 1

2
)n−h+1 log2 djh .
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We deal with the two terms separately. The first one reduces to

−β + d

3
p+

p

n
[
β

9
(1− (−1

2
)n) +

x∅
3

(2 + (−1

2
)n)− d

3
(1− (−1

2
)n)],

where the parenthesis converges to a constant, and hence disappears in the limit
n→∞.
We can now bound the second term from above (and below by replacing M with
M−1) as follows

1

n
log2

∑
|j|=n

n∏
h=1

d
p(− 1

2
)n−h+1

jh
≤ 1

n
log2

∑
|j|=n

n∏
h=1

Mp(− 1
2

)n−h+1

=
1

n
log2(2nd

n∏
h=1

Mp(− 1
2

)n−h+1

) = d+
1

n
p(1− 2−n) log2M.

Finally, taking the limit for n→∞, the latter term tends to d. Putting together
all the pieces we obtain:

ζp = d− p

2
d+

p

3
(β + d)− d =

p

3
(β − d

2
),

proving the claim.

Proposition 3.2.2 suggests to restrict our study to set of weights that are
bounded away from zero, i.e.

1

2C
≤ πj, j ∈ J, (3.44)

for some positive constant C ≥ d, as clarified by the following Corollary.

Corollary 3.2.3. If the set of weight {πj}j∈J satisfies (3.44), then ζp is always
finite and bounded by

ζp ≤
p

3
(β + C − 3

2
d).

Proof. It is enough to bound each πjh from below by 2−C in equation (3.43) and
repeat the proof of Proposition 3.2.2 to prove the claim.

We stress the fact that condition (3.44) is also necessary in order to get a locally
bounded exponent for the structure function. Indeed, without loss of generality
let’s suppose that exists a path in J such that

πjh =
1

2f(|jh|)
,
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where f : N → R+ is a non decreasing function such that limn→∞ f(n) = ∞.
Then, in expression (3.43) we focus our attention to the single contribution

1

n
log2 2p[

1
3

∑n
h=1(1−(− 1

2
)n−h+1) log2 πjh ],

all the other being finite by Proposition 3.2.2. Thanks to our assumption we can
write

− lim
n→∞

1

n
log2 2p[

1
3

∑n
h=1(1−(− 1

2
)n−h+1) log2 πjh ] = lim

|jh|→∞

p

3n
[f(|jh|)(n− (1− 1

2
)|jh|)]

= lim
|jh|→∞

p

3
f(|jh|)(1 +

1

n
(1− (−1

2
)|jh|)) = lim

|jh|→∞

p

3
f(|jh|)(1 +

1

n
)

= lim
|jh|→∞

p

3
f(|jh|) =∞,

the latter relation would cause the exponent of the structure function to be ∞ for
every p > 0.

Special Stationary solutions

Let’s now consider the RCM, i.e. {dj}j∈J = {dω}ω∈Ω for some set |Ω| = 2d.
We call special any stationary solution associated to the set of weight

πj =
dsj

2d+s`s
=

dsj
2log2

∑
ω d

s
ω

=
dsj∑
ω d

s
ω

, j ∈ J

for some s ∈ R.
Next Proposition tells that there are Special stationary solutions with non-linear
scaling exponent ζp that show spatial intermittency.

Proposition 3.2.4. For every s ∈ R. Let’s consider the only stationary solution
associated to the set of weights

πj =
dsj

2d+s`s
, j ∈ J. (3.45)

The exponents of the structure function associated to this solutions are given by

ζp =
p

3
(β − d

2
) +

p

3
(s`S − s` sp

3
)
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Proof. From Proposition 3.2.2, we are left to calculate the contribute given to the
exponent ζp from

− lim sup
n→∞

1

n
log2

∑
|j|=n

2p(
1
3

∑n
h=1(1−(− 1

2
)n−h+1) log2 πjh ).

The latter contribute can be further simplified as follows:

lim sup
n→∞

1

n
log2

∑
|j|=n

n∏
h=1

π
− p

3
(1−(− 1

2
)n−h+1)

jh
= lim sup

n→∞

1

n
log2

∑
|j|=n

n∏
h=1

d
− sp

3
(1−(− 1

2
)n−h+1)

jh

2−(d+s`s)
p
3

=

= lim sup
n→∞

1

n
log2(

2nd

2−
np
3

(d+s`s)

∑
|j|=n

n∏
h=1

d
− sp

3
(1−(− 1

2
)n−h+1)

jh
) = lim sup

n→∞

1

n
log2(

2nd

2−
np
3

(d+s`s)

∑
|j|=n

n∏
h=1

d
− sp

3
jh

)

We now use the RCM property and Lemma 3.1.4 to obtain the more simple form

lim sup
n→∞

1

n
log2(

2nd

2−
np
3

(d+s`s)

∑
|j|=n

n∏
h=1

d
− sp

3
jh

) = lim sup
n→∞

1

n
log2(

2nd

2−
np
3

(d+s`s)
(
∑
ω∈Ω

d
− sp

3
ω )n)

= d+
p

3
(d+ s`s)− log2(

∑
ω∈Ω

d
sp
3
ω ) =

p

3
(d+ s`s)−

p

3
s` sp

3
.

Finally, by summing together all contributes from Proposition 3.2.2 we prove the
claim.

Observation. We now study more closely the exponent

ζp =
p

3
(β − d

2
) +

p

3
(s`S − s` sp

3
).

It is worth noting that, when β = d
2

+ 1

ζ0 = 0, ζ3 = 1,

since these are physical requirements of turbulence theory and β = d
2

+ 1 is the
physically meaningful value.
Secondly, from the properties of log-s-norm one can easily observe that

ζp =
p

3
(β − d

2
) ⇐⇒ dj = 1 ∀j ∈ J or s = 0,

so we have actually shown that if dk are not all equal, then the flat stationary
solution related to the flat set of weights πj = 2−d satisfies Kolmogorov inertial
spectrum, while all the other stationary solutions that stem from sets of weights
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like (3.45) with s 6= 0, show spatial intermittency.
For example, for s = 3/2 we get

ζp =
p

3
(β − d

2
) +

p

2
(`3/2 − `p/2),

the same exponents for the intermittent stationary solution of the Katz-Pavlovic
tree model (3.1).

3.2.2 Self-Similar Solutions

We consider now a slight modification of model (3.34), where we allow ourselves
to choose a not stationary forcing term on the first component. In particular we
consider

f(t) =
a∅

t− t0
≥ 0, a∅ ∈ R+ (3.46)

with t > t0 for some t0 < 0.
We then call self-similar any solution Y of model (3.46) of the form Yj(t) = ajφ(t),
j ∈ J . It is easy to prove that such self-similar solutions of (3.34) have the form

Yj(t) =
aj

t− t0
, j ∈ J. (3.47)

Indeed, by definition of model (3.34) we obtain

ajφ
′
(t) = −2β|j|djaajφ(t)2 +

∑
k∈Oj

2β|k|dkakφ(t)2

= φ(t)2 · (−2β|j|djaaj +
∑
k∈Oj

2β|k|dkak)

and relation (3.47) follows immediately.

We will prove that, under particular assumptions, self-similar solutions show the
same asymptotic behaviour of stationary solutions.

Let now Yj(t) =
aj
t−t0 , j ∈ J be a self-similar solution. We restrict ourselves

to consider only positive solutions aj > 0 for every j ∈ J .

By introducing a collection of positive weights πk, this time equation (3.37) be-
comes

−aj = −2β|j|djaaj +
∑
k∈Oj

2β|k|dkak
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and finally
πkdjaj(aj − εj) = 2βdka

2
k, k ∈ Oj, (3.48)

with εj = 1
dj2β|j|

.

The following proposition poses sufficient condition for existence of self-similar
positive solutions for small value of the upper bound M .

Proposition 3.2.5. Suppose that exist constants C > 2 logM−2β and 1 ≤M < 2
so that

2−C ≤ πk, 1/M ≤ dk ≤M, ∀k ∈ J \ ∅

Then there exists a positive self-similar solution Y = (Yj(t))j∈J associated with the
set of weights {πk}k∈Oj .

Proof. Since we restrict ourselves to consider positive self-similar solution, let us
rewrite equation (3.48) as follows

ak =

√
πkdj
2βdk

aj(aj − εj), k ∈ Oj, j ∈ J, (3.49)

where εj = 1
dj2β|j|

.

We start by proving existence of solutions for recursion (3.49). By hypothesis the
following two inequalities holds for every j ∈ K and k ∈ Oj

1

M2
≤ dj
dk
≤M2, 2−C ≤ πk ≤ 1

for some positive constant M ≥ 1, thus it is easy to observe that aj ≥ a
(1)
j , where

{a(1)
j }j∈J satisfies

a
(1)
k =

√
1

2β+C+2 logM
a

(1)
j (a

(1)

j
− εj), k ∈ Oj, j ∈ J

a
(1)
j0

= aj0 , a
(1)
j1

= aj1 , j1 ∈ Oj0 .
(3.50)

Our goal is to use Lemma 3.1.7 by reaching a recursion of the form (3.16). To

do so we consider the proper change of variable a
(1)
j →

a
(2)
j

2(β+C+2 logM)|j|/3 to get the
following recursion

a
(2)
k =

√
a

(2)
j (a

(2)

j
− ε∗j), k ∈ Oj, j ∈ J

a
(2)
j0

= a
(1)
j0
, a

(2)
j1

= a
(1)
j1
· 2(β+C+2 logM)/3, j1 ∈ Oj0 .
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where ε∗j = 1
dj2|J|(2β−2 logM+C)/3+(β+2 logM−C)/3 .

Thank to the hypothesis C > 2 logM − 2β we deduce that {ε∗j}j∈J is summable,

Lemma 3.1.7 tells that the recursive sequence {a(2)
j }j∈J is well defined and lies in a

compact set for values a
(2)
j0
, a

(2)
j1

larger than some positive threshold. Thus, also the

sequence {a(1)
j =

a
(2)
j

2(β+C+2 logM)|j|/3}j∈J is well defined and summable for some proper
starting values. Thus, the square root in recursion (3.50) is always well defined,

i.e. a
(1)
 − εj > 0, and finally

a − εj ≥ a
(1)
 − εj > 0,

hence also {aj}j∈J is well defined for some proper starting values.

We can now prove finite energy property. With an argument similar to the previous
one aj ≤ ã

(1)
j , where {ã(1)

j }j∈J satisfies

ã
(1)
k =

√
M2

2β
ã

(1)
j (ã

(1)

j
− εj), k ∈ Oj, j ∈ J

ã
(1)
j0

= aj0 , ã
(1)
j1

= aj1 , j1 ∈ Oj0 .

We consider now the following change of variable ã
(1)
j →

ã
(2)
j

2(β+2 log(1/M)|j|/3 , to led
ourselves to the following recursion

ã
(2)
k =

√
ã

(2)
j (ã

(2)

j
− ε̃∗j), k ∈ Oj, j ∈ J

ã
(2)
j0

= ã
(1)
j0
, ã

(2)
j1

= ã
(1)
j1
· 2β/3+(log(1/M2))/3, j1 ∈ Oj0 .

where ε̃∗j = 1

dj2
|j| 2β+2 logM

3 +
β−2 log(M)

3

.

Thanks to our assumptions 2β + 2 logM ≥ 0, hence {ε̃∗j}j∈J is a summable se-
quence.
By Lemma 3.1.7, the recursive sequence {ã(2)

j }j∈J is well defined and lies in a com-

pact set for values ã
(2)
j0
, ã

(2)
j1

larger than some positive threshold. By hypothesis

M < 2β/2, thus β + 2 log(1/M2) > 0 and the sequence {ã(1)
j =

ã
(2)
j

2(β+2 log(1/M)|j|/3}j∈J
is summable for some proper starting values.

Finally, also {aj}j∈J is summable for choices of starting values aj0 , aj1 larger than
some positive threshold.
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3.2.3 Equivalence between constant and self-similar solu-

tions

Proposition 3.2.5 it is useful to build special self-similar solutions. In particular
any set of weights {πk}k∈J greater than some positive constant generates a positive
self-similar solution with finite energy.

Example 3.2.1. Flat self-similar solutions.

We call flat any self-similar solution Y (t)flat built from the flat set of weights
πk = 2−d for every k ∈ J .

Example 3.2.2. Special self-similar solutions.

We now restrict ourselves to the model with repeated coefficients.

For every s ∈ R let’s consider the set πs = {π(s)
k =

dsk
2d+s·`s

}k∈J .

It is easy to observe that πs is a set of weight in the sense of (3.37): indeed
for every s ∈ R:

π
(s)
k =

dsk
2d+s·`s

=
dsk∑
k∈Oj d

s
k

< 1

∑
k∈Oj

π
(s)
k =

∑
k∈Oj

dsk
2d+s·`s

=
∑
k∈Oj

dsk∑
k∈Oj d

s
k

= 1,

where in the latter equality we use the property of RCM.

We then call special any self-similar solution Y (t)s built from the set of weights

π
(s)
k =

dsk
2d+s·`s

for every k ∈ J and some s ∈ R.

We are now ready to prove that, under certain assumptions, self-similar solu-
tions share the same asymptotic behaviour with appropriate constant solutions.

Proposition 3.2.6. Let’s consider a self-similar solution Y = {Yj(t) =
aj
t−t0}j∈J

of model (3.34) related to the set of weights {πk}k∈Oj ,j∈J , and to the set of coeffi-
cients (dj)j∈J globally bounded from above and away from zero. Let X = {Xj}j∈J
a positive stationary solution related to the same collection of weights and coeffi-
cients.
Suppose that the set of weights {πk}k∈J satisfies

πk ≥ 2−C , (3.51)

for some 0 < C < 2β. Then X ∈ Hr if and only if Y ∈ Hr for some r ∈ R.
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Remark. We first take a closer look to condition (3.51) in the case of Example
3.2.1 and 3.2.2. In the flat case we have

2−d ≥ 2−C ⇐⇒ C > d,

and by assumptions d < 2β − 2 < 2β, so condition (3.51) holds for every d < C <

2β. Thus, by Proposition 3.2.1 Y (t)flat ∈ Hr for every r < β−d/2
3

.

In the RCM example we have instead

πsk =
dsk

2d+s·`s
≥ 2−C ⇐⇒ d+ s · `s < C + log2(dsk),

thus time condition (3.51) holds if and only if

log2(

∑
k∈Oj d

s
k

dsk
) < C < 2β.

In the meaningful case where β = 1 + d/2, last inequality is satisfied for example
if s < log2( 1

M
) < 0, indeed:

dsk < M s =⇒ log2(

∑
k∈Oj d

s
k

dsk
) < log2(2dM2s)

= d+ 2s log2(M) < (2β − 2) + 2 log2(
1

M
) log2(M) = 2β.

Proof. By hypothesis

cjn+1 =
ajn+1

Xjn+1

=

√
πjn+1

djn
2βdjn+1

ajn(ajn−1 − εjn)√
πjn+1

djn
2βdjn+1

XjnXjn−1

=
√
cjn(cjn−1 − δjn), (3.52)

where δjn = εjn/Xjn−1 .
Recursion (3.52) recalls immediately Lemma 3.1.7, hence we are left to prove that
{δjn}n∈N is summable and its sum is uniformly bounded from above and below in
the set of all possible paths P = {∅ = j0, j1, . . . , jn, . . .} in J .
Indeed this will let us deduce that, along every path P , the ratio between self-
similar solution Y and stationary solution X is a uniformly bounded constant,
thus X ∈ Hr if and only if Y ∈ Hr for some r ∈ R.

We start by recalling the correct expression of a general component Xjn of a
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constant solution (3.39) within the limitedness of weights πk and coefficients dk,
to conclude that exists an uniformly bounded constant Dn such that

Dn = [
n∏
h=1

(
d3
jh

πjh
)

(− 1
2 )n−h+1

3 · 2−
β
9

(1−(− 1
2

)n) ·X(
2+(− 1

2 )n

3
)

∅ ]

and

δjn = εjn/Xjn−1 =
1

djn2βn
· 2βn/3

Dn

∏n
i=1 π

1/3
ji

=
1

Dndjn

1

2
2βn

3

∏n
i=1 π

1
3
ji

≤ 1

Dndjn

2
Cn
3

2
2βn

3

.

and similarly

δjn = εjn/Xjn−1 =
1

djn2βn
· 2βn/3

Dn

∏n
i=1 π

1/3
ji

=
1

Dndjn

1

2
2βn

3

∏n
i=1 π

1
3
ji

≥ 1

Dndjn

1

2
2βn

3

.

The claim follows immediately from the hypothesis C < 2β and β > 0.

3.3 Mixed dyadic model on a Tree

Following the same scheme presented in Chapter 2, in this section we present a
mixed tree dyadic model that combines both Novikov and Obukhov non-linearity.

dXj(t)

dt
=δ1(2β|j|djX

2
j
(t)−

∑
k∈Oj

2β|k|dkXj(t)Xk(t))

− δ2(−2β|j|djXj(t)Xj(t) +
∑
k∈Oj

2β|k|dkX
2
k(t))

(3.53)

for every j ∈ J \ 0, and a boundary condition X0 = f > 0, a forcing term on
the first component, where β > 0, δ1, δ2 ≥ 0 are constants and the coefficient
{dk}k∈J are bounded from above and away from zero, i.e. it exists M ≥ 1 so that
1/M ≤ dk ≤M for every k ∈ J .
Model (3.53) generalizes the linear mixed model (2.30) presented in Chapter 2. It
is a special case of the more general model introduced in [15], where it was proven
the following theorem.
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Theorem 3.3.1 (From [15]). Consider the following dynamic system on the tree
J .

d

dt
Xj = α(cjX

2
̄ −Xj

∑
k∈Oj

ckXk) + β(c̃jX̄Xj −
∑
k∈Oj

c̃kX
2
k)+

+γ(X̄

∑
l 6=j,l∈O̄

ĉj,lXl −
∑

k1 6=k2,ki∈Oj

ĉk1,k2Xk1Xk2),

d

dt
X∅ = f(t,X∅)− αX∅

∑
k∈O∅

ckXk − β
∑
k∈O∅

c̃kX
2
k − γ

∑
k1 6=k2,ki∈O∅

ĉk1,k2Xk1Xk2 ,

X(0) = x,

where f(t, x) ≤ c(t) + g(t)|x|, with c(t) and g(t) positive continuous functions,
and α, β, γ ≥ 0 non negative parameters.
Then, if x ∈ `2, there exists at least a solution X(t) on [0, T ].

By setting γ = 0 in Theorem 3.3.1 we reduce to model (3.53).
In the following section we investigate existence and uniqueness of stationary

solution.

3.3.1 Stationary Solutions

Let Xj(t) be a stationary solution over the whole tree J , i.e. Xj(t) = aj, j ∈ J .
We restrict our interest to positive stationary solutions that have also finite energy.
From now on we set δ = δ2/δ1, therefore we restrict ourselves to δ1, δ2 > 0. From
(3.53) it follows immediately

0 =(2β|j|dja
2
j
(t)−

∑
k∈Oj

2β|k|dkaj(t)Xa(t))

− δ(−2β|j|djaj(t)aj(t) +
∑
k∈Oj

2β|k|dka
2
k(t)) ⇐⇒

dja
2
j

+ δdjajaj = 2β
∑
k∈Oj

(dkajak + δdka
2
k)

Let’s introduce the set of weights {πk}k∈J :

0 ≤ πk ≤ 1,∑
k∈Oj

πk = 1, j ∈ J \ 0 (3.54)



3.3. MIXED DYADIC MODEL ON A TREE 115

in order to obtain

πk(dja
2
j

+ δdjajaj) = 2β(dkajak + δdka
2
k) (3.55)

In what follows we are going to solve recursion (3.55), hence to prove existence
of positive stationary finite energy solutions of model (3.53), at first in the basic
case when dk = 1 for every k ∈ J , then in more general cases.

Theorem 3.3.2. Consider model (3.53) in the case dk = 1 for every k ∈ J .
For every forcing term f > 0, every δ > 0 and every β > 0 it admits a positive
stationary finite energy solution {aj}j∈J .
Moreover,

• if δ > 2
β+d

3 such solution satisfies

lim
|j|→∞

aj

2−
(β+d)|j|

3

= C

for some C > 0,

• if 0 < δ < 2
β+d

3 such solution satisfies

C̃1

2
(β+C)|j|

3

≤ aj ≤
C̃2

2
(β)|j|

3

for some constants C̃1 > 0, C̃2 > 0 and C > d,

• if δ = 2
β+d

3 such solution satisfies

lim
|j|→∞

aj

2−2
(β+d)|j|

9

= C

for some C > 0.

In order to prove Theorem 3.3.2 we use the following technical lemma.

Lemma 3.3.3. Let δ > 0, ∆ > 0 be positive constants, then

1. the recursion

bn+1 = − 1

2δ
+

√
1

4δ2
+

1

∆
(

1

δb2
n

+
1

bn
) (3.56)

• converges to ∆−1/3 if δ > ∆1/3, for every starting value b0 > 0;

• consists of two stationary subsequences b2n ≡ b0, b2n+1 ≡ b1 for every
n ∈ N, if δ = ∆1/3.
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2. the recursion

bn+1 = −δ
2

+

√
δ2

4
+ ∆(

δ

b2
n

+
1

bn
), (3.57)

• converges to ∆1/3 if δ < ∆1/3, for every starting value b0 > 0;

• consists of two stationary subsequences b2n ≡ b0, b2n+1 ≡ b1 for every
n ∈ N, if δ = ∆1/3.

Proof. We are going to prove just the claims on recursion (3.57) in the case
b0 ≥ ∆1/3, all the others being similar.

Let’s suppose b0 ≥ ∆1/3 in recursion (3.57). Then

b0 ≥ b2 ⇐⇒ b0 ≥ −
δ

2
+

√
δ2

4
+ ∆(

δ

b2
1

+
1

b1

)

⇐⇒ (b0 +
δ

2
)2 ≥ δ2

4
+ ∆(

δ

b2
1

+
1

b1

)

⇐⇒ b2
0 + b0δ ≥

∆

b1

(
δ

b1

+ 1)

⇐⇒ b2
1b0(b0 + δ) ≥ ∆(δ + b1).

We can now expand the term b1, as in recursion (3.56), to obtain that the inequality
b2

1b0(b0 + δ) ≥ ∆(δ + b1) is equivalent to

δ2

2
+ ∆(

δ

b2
0

+
1

b0

− δ

√
δ2

4
+ ∆(

δ

b2
0

+
1

b0

)) · b0(b0 + δ) ≥ ∆(
δ

2
+

√
δ2

4
+ ∆(

δ

b2
0

+
1

b0

))

⇐⇒ (
δ2

2
+

∆δ

b2
0

+
∆

b0

)(b2
0 + b0δ)−

∆δ

2
≥

√
δ2

4
+ ∆(

δ

b2
0

+
1

b0

)(∆ + δb2
0 + δ2b0)

⇐⇒ δ2

2
b2

0 +
δ3

2
b0 + ∆δ +

∆δ2

b0

+ ∆b0 + ∆δ − ∆

2
δ ≥

√
δ2

4
+ ∆(

δ

b2
0

+
1

b0

)(∆ + δb2
0 + δ2b0)

⇐⇒ (δ3b0 + δ2b3
0 + 3b0δ∆ + 2δ2∆ + 2b2

0∆)2 ≥ (
δ2

4
+ ∆(

δ

b2
0

+
1

b0

))(∆ + δb2
0 + δ2b0)24b2

0

by expanding last inequality we obtain
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δ6b4
0 + δ4b6

0 + 9∆2δ2b2
0 + 4∆2δ4 + 4∆2b4

0 + 2δ5b5
0 + 6∆δ4b3

0 + 4∆δ5b2
0 + 4∆δ3b4

0 + 6∆δ3b4
0+

4δδ4b3
0 + 4∆δ2b5

0 + 12∆2δ3b0 + 12∆2δb3
0 + 8∆2δ2b2

0 ≥ ∆2δ2b2
0 + 4∆3δ + 4∆3b0 + δ4b6

0+

4∆δ3b4
0 + 4∆δ2b5

0 + δ6b4
0 + 4∆δ5b2

0 + 4∆δ4b3
0 + 2∆δ3b4

0 + 8∆2δ2b2
0 + 8∆2δb3

0 + 2∆δ4b3
0+

8∆2δ3b0 + 8∆2δ2b2
0 + 2δ5b5

0 + 8∆δ4b3
0 + 8∆δ3b4

0

that further simplifies into

4∆2δ3b0 + 4∆2 + δb3
0 + 4∆2δ4 + 4∆2δ4 + 4∆2b4

0 ≥ 4∆3δ + 4∆3b0 + 4∆δ3b4
0 + 4∆δ4b3

0

⇐⇒ ∆(δ + b0)(δ3 + b3
0) ≥ (∆2 + δ3b3

0)(δ + b0) ⇐⇒ ∆(δ3 + b3
0) ≥ ∆2 + δ3b3

0

⇐⇒ ∆(b3
0 −∆) ≥ δ3(b3

0 −∆).

Thanks to the last implication, we conclude that

• if δ = ∆1/3 then b0 = b2, and with similar argument b2n = b0 for every n ∈ N

• if b0 ≥ ∆1/3 and ∆1/3 > δ, then b0 > b2, and with similar argument b2n >
b2n+2 for every n ∈ N

Last sentence tells that {b2n}n∈N is monotone and decreasing, thus it admits limit
L = limn→∞ b2n. It is left to prove that L = ∆1/3.

Let’s start by proving that b2n ≥ ∆1/3 and b2n+1 ≤ ∆1/3, by induction over n.
By hypothesis b0 ≥ ∆1/3, thus

b1 = −δ
2

+

√
δ2

4
+ ∆(

δ

b2
0

+
1

b0

) ≤ −δ
2

+

√
δ2

4
+ ∆(

δ

∆2/3
+

1

∆1/3
)

and finally

− δ

2
+

√
δ2

4
+ ∆(

δ

∆2/3
+

1

∆1/3
) ≤ ∆1/3 ⇐⇒

√
(∆1/3 +

δ

2
)2 ≤ (∆1/3 +

δ

2
)

proving that b1 ≤ ∆1/3. We notice that recursion (3.57) does not depend on n
except for the previous term, thus with similar argument it is possible to prove
the following cascade of implications

b0 ≥ ∆1/3 =⇒ b1 ≤ ∆1/3 =⇒ b2 ≥ ∆1/3 . . . =⇒ b2n−1 ≤ ∆1/3 =⇒ b2n ≥ ∆1/3.
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We immediately deduce L = limn→∞ b2n ≥ ∆1/3. Moreover, by the very defini-
tion of terms b2n

b2n+2 = −δ
2

+

√√√√δ2

4
+ ∆(

δ

(− δ
2

+
√

δ2

4
+ ∆( δ

b22n
+ 1

b2n
))2

+
1

− δ
2

+
√

δ2

4
+ ∆( δ

b22n
+ 1

b2n
)
)

and by taking limit on both sides we obtain

L = −δ
2

+

√√√√δ2

4
+ ∆(

δ

(− δ
2

+
√

δ2

4
+ ∆( δ

L2 + 1
L

))2

+
1

− δ
2

+
√

δ2

4
+ ∆( δ

L2 + 1
L

)
).

We can progressively simplify the latter equation. At first by expanding the
outer square root on the right hand side

L2 + Lδ = ∆(
δ

δ2

2
+ ∆ δ2

L2 + ∆
L
− δ

√
δ2

4
+ ∆( δ

L2 + 1
L

+

√
δ2

4
+ ∆( δ

L2 + 1
L

+ δ
2

∆( δ
L2 + 1

L
)

),

that it simplifies as

∆δL4(

δ2

2
+ ∆ δ2

L2 + ∆
L

+ δ
√

δ2

4
+ ∆( δ

L2 + 1
L

∆2δ2 + ∆2L2 + 2∆2δL
) + ∆L2(

√
δ2

4
+ ∆( δ

L2 + 1
L

+ δ
2

∆δ + ∆δL
) =

∆δ

2
(
δ2L4 + 2∆δ2L2 + 2∆L3 + 2δL4

√
δ2

4
+ ∆( δ

L2 + 1
L

∆2(δ + L)2
) +

L2

2
(2

√
δ2

4
+ ∆( δ

L2 + 1
L

+ δ

∆(δ + L)
).

The latter equivalence can be further simplified in the more compact form

2∆(L+ δ)3 − δ(δ2L3 + 2∆δL+ 2∆L2)−∆δL(L+ δ) =

2L

√
δ2

4
+ ∆(

δ

L2
+

1

L
)(δ2L2 + ∆(L+ δ)))

and by expanding the square root on the right hand side we get

(3∆Lδ2 + 3∆L2δ + 2∆L3 + 2∆δ3 − L3δ3)2 =

(
δ2

4
+ ∆(

δ

L2
+

1

L
))(4L6δ4 + 4∆2L2(L2 + δ2 + 2Lδ) + 8∆L4δ4(L+ δ)).

The last equation can be fully expanded as follows
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9∆2L2δ4 + 9∆2L4δ2 + 4∆2L6 + 4∆2δ6 + δ6L6 + 18∆2L3δ3 + 12∆2L4δ2 + 12∆2Lδ5−
6∆L4δ5 + 12∆2L5δ + 12∆2L2δ4 − 6∆L5δ4 + 8∆2L3δ3 − 4∆L6δ3 − 4∆L3δ6 =

L6δ6 + ∆2L4δ2 + ∆2L2δ4 + 2∆2L3δ3 + 2∆L5δ4 + 2∆L4δ5 + 4∆L4δ5 + 4∆3L2δ+

4∆3δ3 + 8∆3Lδ2 + 8∆2L3δ3 + 8∆2L2δ4 + 4∆L5δ4 + 4∆3L3 + 4∆3Lδ2 + 8∆3L2δ+

8∆2L4δ2 + 8∆2L3δ3,

and it finally results in the following

3(L3 −∆)δL(L+ δ)(∆− δ3) = (L3 −∆)(δ3 −∆)(L3 + δ3). (3.58)

Let’s now take a look at equality (3.58). If L > ∆1/3 then we can simplify on both
sides to obtain

3δL(L+ δ)(∆− δ3) = (δ3 −∆)(L3 + δ3) (3.59)

By hypothesis δ < ∆1/3 so left and right hand sides would have opposite signs,
that would lead to an absurd. We conclude that L = ∆1/3.

With specular argument it is possible to show that also limn→∞ b2n+1 = L = ∆1/3

and conclude the proof.

We now prove Theorem 3.3.2.

Proof. From recursion (3.55) in the basic case dk = 1 we recover

πk(a
2
j

+ δajaj) = 2β(ajak + δa2
k)

Since we are interested in positive stationary solution, let’s divide both sides for
a2
j :

πk((
aj
aj

)2 + δ
aj
aj

) = 2β(
ak
aj

+ δ(
ak
aj

)2)

and finally we consider two different change of variable
aj
aj
→ bj and

aj
aj
→ cj to

obtain the following forward and backward recursion

1. Backward recursion. πk(b
2
j + δbj)− 2β(b−1

k + δb−2
k ) = 0

and since we focus on positive solutions: bj = − δ
2

+
√

δ2

4
+ 2β

πk
( δ
b2k

+ 1
bk

)

2. Forward recursion. πk(c
−2
j + δc−1

j )− 2β(ck + δc2
k) = 0

for the same reason we deduce: ck = − 1
2δ

+
√

1
4δ2 + πk

2β
( 1
δc2j

+ 1
cj

)
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If we consider, for example, the flat set of weights dk = 2−d for every k ∈ J ,
thanks to Lemma 3.3.3 the forward recursion converges to ∆−

1
3 = 1

2
β+d

3

< 1 if

δ > ∆1/3, thus also the sequence {aj}j∈J converges and satisfies

lim
|j|→∞

aj

2−
(β+d)|j|

3

= C

for some C > 0, proving the first part of the claim. We stress that different sets of
weights could lead to different solutions, thus, no uniqueness result is guaranteed.

On the other hand, for the backward recursion we need some extra technique.
For every N > 0 we define a truncated version of the recursion

b
(N)
j = −δ

2
+

√
δ2

4
+

2β

πk
(

δ

(b
(N)
k )2

+
1

b
(N)
k

) ∀|j| < N

b
(N)
j = T ∀|j| = N

b
(N)
j = 0, ∀|j| > N

for some positive starting value T > 0 set at higher generations.

Compatibility condition

Similarly to what we did in Section 3.1, we have to check compatibility condi-
tions of the solution over the tree J . Such conditions read as follows:

− δ

2
+

√
δ2

4
+

2β

πk1

(
δ

(b
(N)
k1

)2
+

1

b
(N)
k1

) = −δ
2

+

√
δ2

4
+

2β

πk2

(
δ

(b
(N)
k2

)2
+

1

b
(N)
k2

), (3.60)

for every pair k1, k2 ∈ Oj. The latter relation it further simplifies to

1

πk1

(
δ

(b
(N)
k1

)2
+

1

b
(N)
k1

) =
1

πk2

(
δ

(b
(N)
k2

)2
+

1

b
(N)
k2

)

⇐⇒ πk2

πk1

=
δ + b

(N)
k2

δ + b
(N)
k1

·
b

(N)
k1

b
(N)
k2

.

(3.61)

We have recursively defined each component b
(N)
k1
, b

(N)
k2

, so when we look for

existence of weights πk1 , πk2 we can treat both b
(N)
k1
, b

(N)
k2

as positive limited scalars.
In particular, since we have already fixed to 1 the sum of weights in each offspring
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Oj, from (3.61) we deduce the existence of a unique set of weights {πki}ki∈Oj that
satisfies compatibility conditions. Since each set of weights depends on the N -th
truncation, in order to lessen the notation we still denote such unique N -th set of
weights with the same symbols without any superscript.

By limitedness property, it exists a positive constant C > 0 such that

1

2C
≤ πk < 1.

Thus, by a similar procedure already used in previous results, there exist {b(N)1

j }j∈J
and {b(N)2

j }j∈J so that

b
(N)1

j ≤ b
(N)
j ≤ b

(N)2

j , ∀N > 0, j ∈ J,

where we have defined

b
(N)1

j = −δ
2

+

√
δ2

4
+ 2β(

δ

(b
(N)1

k )2
+

1

b
(N)1

k

) ∀|j| < N

b
(N1)
j = T ∀|j| = N

b
(N1)
j = 0, ∀|j| > N

and

b
(N)2

j = −δ
2

+

√
δ2

4
+ 2β+C(

δ

(b
(N)2

k )2
+

1

b
(N)2

k

) ∀|j| < N

b
(N2)
j = T ∀|j| = N

b
(N2)
j = 0, ∀|j| > N

If δ < ∆1/3, by Lemma 3.3.3, for every starting value T > 0, the sequence

{b(N1)
j }j∈J accumulates around 2

β
3 > 1, while {b(N2)

j }j∈J accumulates around 2
β+C

3 >
1. Thus, by compactness and a diagonal extraction argument we can choose a sub-
sequence (Ni)i ⊂ N such that b

(Ni)
j converges to some number b̃j for every j ∈ J ,

and the Ni-th set of weight converges to the unique limit set of weight {π̃k}k∈Oj . Fi-

nally the limit sequence {b̃j}j∈J satisfies recursion (1) by definition, hence {aj}j∈J
converges and satisfies

C̃1

2
(β+C)|j|

3

≤ aj ≤
C̃2

2
(β)|j|

3
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for some constants C̃1, C̃2.

We are left to prove what happens in the case δ = ∆1/3. Since in this case
both recursions fluctuate between their first two starting value we consider two
cases:

• If 1 ≤ b0 < ∆2/3, then in the backward recursion we have 1 < b1 ≤ ∆2/3,
thus the sequence of ratio {bj}j∈J is definitely strictly greater than 1, so
the original sequence {aj}j∈J converges, although this time its behaviour is
different: namely the sequence takes the form {a2n = a0

∆2n/3 , a2n+1 = a0

b0∆2n/3 =
a1

∆2n/3}.

• If ∆−2/3 < b0 ≤ 1, then in the forward recursion we have ∆−2/3 ≤ b0 < 1, thus
the sequence of ratio {bj}j∈J is definitely strictly less than 1, so the original
sequence {aj}j∈J converges, also this time its behaviour is the following:
{a2n = a0

∆2n/3 , a2n+1 = a0b0
∆2n/3 = a1

∆2n/3}.

Corollary 3.3.4. Consider model (3.53) in the case dk = 1 for every k ∈ J . For

every forcing term f > 0, every β > 0, if δ > 2
β+d

3 the model admits infinitely
many positive stationary finite energy solution.
Moreover, any such solution satisfies

C̃1

2
(β+C)|j|

3

≤ aj ≤
C̃2

2
(β)|j|

3

for some constants C̃1 > 0, C̃2 > 0 and C > d.

Proof. We stress the fact that we actually proved a stronger version of Theorem

3.3.2: if δ > 2
β+d

3 , we showed the existence of a stationary solution associated
to the flat set of weight πk = 2−d for every k ∈ J . This choice gives an exact
asymptotic behaviour, however nothing forbids to choose a different set of weights
as long as the following condition holds

1

2C
≤ πj < 1, j ∈ J,

for some C > 0, showing the existence of infinitely many solutions with the same
initial condition. Of course any such solution shows a different asymptotic be-
haviour depending on its associated set of weights. From what we have already
proved, such behaviour reads as

C̃1

2
(β+C)|j|

3

≤ aj ≤
C̃2

2
(β)|j|

3

for some constants C̃1 > 0, C̃2 > 0 and C ≥ d.
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We are now ready to prove an equivalent form Theorem 3.3.2 with more general
coefficients dk.

Theorem 3.3.5. For every 0 < M < 2β/2 so that 1/M ≤ dj ≤M , j ∈ J , and for
every forcing term f > 0

• if δ > 2
β+d

3 , model (3.53) admits infinitely many positive stationary solution,

• if δ < 2
β+d

3 , model (3.53) admits exactly one positive stationary solution.

Moreover, any such solution satisfies

C̃1

2
(β+C+2 logM)|j|

3

≤ aj ≤
C̃2

2
(β−2 logM)|j|

3

(3.62)

for some constants C̃1 > 0, C̃2 > 0 and C ≥ d.

Proof. It is enough to slightly modify the proof of Theorem 3.3.2 and Corollary
3.3.4.

By hypothesis dj are globally bounded and away from zero, so we can restrict
ourselves to the minimal (resp. maximal) path over the tree J , namely the path
along which the coefficients are constantly equal to the minimum (resp. maximum)
value.
In the minimal path, backward and forward recursions read as follows

bj = −δ
2

+

√
δ2

4
+

2βdk
πkdj

(
δ

b2
k

+
1

bk
)

ck = − 1

2δ
+

√
1

4δ2
+
πkdj
2βdk

(
1

δc2
j

+
1

cj
)

By hypothesis
1

M2
≤ dk
dJ
≤M2, j ∈ J, k ∈ Oj (3.63)

and, thanks to previous results, we can find C ≥ d so that there is a unique set
of weight that satisfies compatibility condition over the backward recursion and

1

2C
≤ πj ≤ 1, j ∈ J. (3.64)

By combining together (3.63) and (3.64) we obtain

2β−2 logM ≤ 2βdk
πkdj

≤ 2β+C+2 logM . (3.65)
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Thanks to Theorem 3.3.2 we can now find infinitely many set of weights that satisfy

(3.64) such that if δ > 2
β+d

3 , model (3.53) admits a positive stationary solution.

Conversely if δ < 2
β+d

3 , there is a unique set of weights so that model (3.53) admits
a positive stationary solution. In consequence of (3.65), any such solution satisfies
(3.62). Concluding the proof.

Observe that, in model (3.53), one could have taken different sets of coefficients
dj for the Novikov-type and Obukhov-type of non-linearity. It is immediate to
deduce that, as long as each set of coefficients is bounded and away from zero, one
can extend Theorem 3.3.5 to different sets of {dj}j∈J and {d̃j}j∈J , like in Theorem
3.3.1.
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