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Abstract

Recently, the massive diffusion of high-performance mobile devices and the
increased request of novel services has given rise to an unprecedented growth
in low-latency, multimedia and computational intensive applications demand.
To fully accomplish this, in modern networks we have to face with several
issues as spectrum scarcity, congestion, or coexistence of heterogeneous net-
works, to name the few. The new challenges here have transformed the lay-
ered concept of network into a whole complex functionally integrated system.
In addition, the term resource has deeply changed its traditional meaning,
until now typically referred to physical resource, i.e., communication chan-
nel, storage blocks, and so on, going towards a more flexible definition which
defines the resource as a set of heterogeneous physical and logical entities
correlated to each other. As a consequence, the resource allocation problem
in modern networking is interpreted in a broader sense in order to meet the
requirements of flexible and advanced solutions. This thesis aims at iden-
tifying suitable solutions in cross-layer point of view for specific classes of
problems typical of modern networks. In particular, the thesis starts by tak-
ing into account the major classes of problem that afflict the next generation
wireless networks and applying, for each problem category, techniques able
to properly meet the crucial aspects of the considered optimization problem.
Therefore, the ultimate aim of this thesis is the formulation of cross-layer
frameworks to take into account several network issues. Matching theory,
chaos theory, machine learning and queuing theory have been applied to in-
vestigate their potential in wireless network systems, starting from the study
of interference management, unlicensed spectrum allocation, computational
offloading, and virtual functions placement, even to the analysis of the ser-
vice provider perspective through the service demand prediction and price
control analysis.

The main contributions of this dissertation can be summarized as follows.
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• An overview of the fundamental concepts, definitions and insights of
the theoretical frameworks involved in the resource allocation solutions
presented.

• Design and implementation of novel matching algorithms able to co-
exist with the external influences due to the system conditions or to
interfering devices. Different algorithms have been developed for differ-
ent application scenarios, such as the interference management, carrier
aggregation, virtualization and computational offloading in various net-
work environments. In addition, system stability has been extensively
studied.

• Application of chaos theory to the nonlinear time series analysis fore-
casting, in order to predict the customers service demand in smart city
contexts, aiming at improving accuracy without the typical machine
learning drawbacks.

• Development of cross-layer frameworks to analyze the problems typical
of virtualization taking into account both the service provider perspec-
tive and the users’ point of view, adopting a cross-layer approach.

• Performance analysis in strict delay constrained computations scenar-
ios in presence of users mobility by applying the queuing theory.

• Critical discussion of performance comparison and proposed approaches
for designing resource allocation strategies in next generation wireless
networks.
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Chapter 1

Introduction and Novel
Network Paradigms

Live as if you were to die tomorrow.
Learn as if you were to live forever.

Mahatma Gandhi

1.1 Introduction
Recently, new communication paradigms have emerged, radically changing
the way in which wireless networks are designed, organized and studied. Fur-
thermore, the ever increasing traffic and service demand for intensive and
real-time applications is resulted in a consistent and continuous search for
new flexible and self organized network structures. It is in this perspective
that major efforts have been made to propose architectural solutions able to
guarantee mobility support, low transmission delay, high data rate and user
experience. Several approaches have been developed to pursuit these objec-
tives at various levels. In particular, one of the most promising approach im-
plies to move the cloud close to the users. That insight has been practically
translated into the introduction of platforms for computation and storage
between users and cloud, aiming at alleviating the significant network delay
due to the transmission from and towards the far data centers. Alongside
the emergence of ever more complex network structures, as represented in
Figure 1.1, the efficient management of system resources has played a crucial

1
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Figure 1.1: A heterogeneous wireless network.

role. For example, the proper exploitation and reuse of the wireless chan-
nels or computation nodes, necessarily impact on the network performance.
For all these reasons, efficient and fast allocation solutions have become
imperative within the new network environments. During years, countless
approaches have been proposed by research community to correctly manage
and share system resources, and many mathematical frameworks have gained
attention in resource allocation field over time. In addition to the increase in
complexity, the novel network paradigms have given rise to more and more
challenging problems, tracing the way towards distributed, self-organizing,
and context-aware optimization techniques. In parallel, during years, even
the definition and meaning of the resource term is deeply muted, assum-
ing a more flexible, wide, and interdisciplinary connotation. In fact, the
intrinsic multifaceted nature of modern network problems implies that the
meaning of the resource heavily depends on the aim of the problem afforded,
and its identification may vary from the traditional physical meanings, un-
til more abstract concepts such as service prices or accuracy on prediction
users demand. Another novel aspect introduced by the advent of the emer-
gent network, is the focus on the users’ perspective and subjective experience
in receiving a service. Therefore, the importance of accurate psycho-socio-
mathematical models to effectively describe the knowledge evolution and
opinion formation in social networks, the socio-economic dynamics in crime
modeling or energy consumption, and the more general decisions making
processes of rational and irrational players, has been emphasized. The com-
bination of all these factors has played an essential role in the process by
which the network is conceived as an organism composed of many corre-
lated parts, able to influence each other and the whole system itself. Due to
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the high number of involved factors and the massive amount of connections
among the diverse parts of a network, the main challenge is to provide a
fusion between objective criteria and human behavior to properly manage
and allocate the network resources, by ensuring an adaptive and cross-layer
dynamic allocation and decision processes framework. A crucial issue hard
to solve in dynamic resource allocation is that, in order to face the tomor-
row’s wireless services, it is essential to design resource management schemes
to combine time varying network conditions, different users service require-
ments, heterogeneous environments, and moderate prices.

Essentially, the thesis addresses some typical problems of the next genera-
tion wireless networks, and applies different advanced frameworks to provide
suitable and flexible solutions to them. For each problem taken into account,
the framework used has been presented in all its part, and its application
to the given context motivated with a critical discussion about its strengths
and weaknesses. The solutions proposed in this thesis can be categorized
in four basic mathematical tools: matching theory, chaos theory, machine
learning and the queuing theory. Finally, the solution achieved is validated
and analyzed by performance comparison with alternative strategies.

1.2 Emerging Wireless Communications and
Network Architectures

With the objective of accomplishing the new challenges posed by the diffusion
of heterogeneous service requirements, real time applications, high levels of
mobility and so on, numerous novel communication technologies and network
infrastructure models have been theorized to boost the network performance.
In the following subsections these technologies will be briefly introduced and
their potentials presented.

1.2.1 Internet of Things Network
Nowadays, Internet of Things (IoT) represents a breakthrough paradigm to
allow ubiquitous connectivity among humans and physical objects at any
time and any place. Moreover, often IoT devices are supposed to be smart,
so they can communicate, coordinate, and share information with each other
in an autonomous mode, in order to take decisions and perform their tasks.
In this context, the 5G wireless communication networks are considered the
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glue technology, that will enable the connection of billions of heterogeneous
devices with a close to zero end-to-end latency, in a high reliable and efficient
mode [171]. Furthermore, 5G networks will enable a functional integration
of computing and communication capabilities thus allowing intelligent IoT
applications able to deeply modify several aspects of our lives (e.g. health-
care, energy, waste management, smart cities, industry, mobility). Despite
the 5G potential benefits, several challenges have to be addressed before IoT
paradigm effectively becomes a wide spread reality [219]. Among these, ef-
ficient resource management is crucial due to the expected massive number
of IoT devices. In fact, inefficient resource management can lead to a sig-
nificant reduction of the IoT system performance. In particular, in the IoT
context, different kind of resources have to be be managed: communication
(i.e., spectrum, power, backhaul/fronthaul capacity), storage and comput-
ing. Toward this goal, the opportunistic use/reuse of the spectrum is a key
element. It allows the sharing of the spectrum among different communica-
tions, but requires strategies for avoiding or limiting the mutual interference
under suitable limits.

1.2.2 Edge-Fog Computing Network
For many years cloud computing (CC) has efficiently met the users demand,
by providing software and hardware resources for storage and computation,
available on demand and remotely by users. With the advent of new commu-
nication realities such as IoT, the communications have become definition
of ubiquitous and pervasive connections among smart objects, able to re-
ceive and send data from and towards the surrounding environment. The
interconnections and data exchanges among intelligent devices resulted into
networks with highly complex topologies, strict delay requirements, massive
volume of data to be processed and transmitted. Roughly speaking, novel
network paradigms have to faced with heterogeneous smart devices generat-
ing massive volume of data traffic and applications requests. Furthermore,
the mobility of the devices represents a crucial aspect of the next generation
applications, posing many concerns about the seamless service continuity,
or the real-time execution constraints accomplishment for some classes of
applications, i.e., augmented reality, health care applications or recognition
assistance [72]. All these new challenges have triggered the tendency to
migrate towards novel solutions, typically based on the deployment of com-
putational nodes, lower in processing and storage supply, to the edges of the
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network, in order to reduce the network response latency and the delay [168].
In this sense, novel network paradigms based on this approach are named
edge computing (EC) [166] and fog computing (FC), and are able to pro-
vide low latency response and service continuity to mobile users. However,
in comparison to the existing public cloud based solutions, i.e., Microsoft
Azur and Amazon AWS, the processing capacity of EC solutions is strongly
limited [69]. In order to address both the cloud and EC/FC issues, the
functional integration of these two approaches in a same computing infras-
tructure has recently gained momentum [72]. This solution enables massive
improvements in system performance and users quality of service (QoS), in-
troducing higher levels of flexibility for rapid computations and in presence
of high mobility patterns.

1.2.3 Network Function Virtualization

Network function virtualization has recently gained popularity as paradigm
to improve the flexibility of the networks, to provide effective service pro-
visioning and to maximize network infrastructure utilization. In general
terms, virtualization refers to decoupling of the software implementation of
the network functions from the underlying physical hardware, supporting re-
configurable hardware, general purpose servers, storage, processing and so
on [96,103]. Virtualization offers unprecedented perspectives of abstraction,
slicing and sharing of resources among different parties, facing with het-
erogeneous service capabilities, environments massively interconnected and
ultra dense. to support the development of distributed applications and spe-
cialized services. There exist numerous levels of virtualization and different
practical variations depending on the specific application context, some ex-
amples are constituted by virtual machines, virtual memory, etc. However,
typically, taking into account the expected exponential growth in number
of users, and consequent traffic and rich communication contents [96], the
major challenges are the large scale management of multiple and heteroge-
neous resources, i.e., processing units, memories, and bandwidth, and the
optimal regulation of the network traffic by designing efficient routing and
forwarding strategies [123].
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1.2.4 Device to Device Communication

The explosion in data traffic demand registered during last years has trig-
gered the necessity to find new communication solutions. The device-to-
device (D2D) communication technology has been proposed to tackle this
issue, establishing direct links between pairs of devices in geographical prox-
imity without the direct support of the base station [76,85, 250]. The D2D
communication has gained a great deal of attention thanks to its promising
potential in providing high levels of throughput, effective offloading strate-
gies and increasing network coverage also at the edge of the networks.

At the expense of these promising improvements in reference to the tradi-
tional cellular networks, the D2D technology poses various challenges which
need to be addressed to make the D2D communications a reality. In fact,
one of the most critical point in such technology is the severe interference
experienced by users due to the channel reuse, as well as the procedure to
discovery the neighbors devices. During years, many efforts have been made
to limit this issue and solution such as power control, coding strategies, and
more general interference avoidance techniques [96,120,190].

1.2.5 LTE-Unlicensed

Recently, the ever increasing growth of the advanced wireless services and ap-
plications demand has led to the available spectrum scarcity [139] problem.
Within this context, the LTE-Unlicensed (LTE-U) standard has emerged
based on the intuitive concept that the unlicensed spectrum can be exploited
to offload the traffic of the traditional cellular network [7]. In practical terms,
LTE-U is based on the Carrier Aggregation (CA) technology, expanding
bandwidth up to a maximum of 100 MHz through the usage of contigu-
ous or non-contiguous Component Carriers (CC) within the same frequency
band, or non-contiguous CCs belonging to different bands [6]. Currently, the
carrier aggregation assignment mode is still an open issue [139]. The benefits
of this novel approach is expressible in terms of greater bandwidth, higher
bit rate and lowering the spectrum segmentation. Furthermore, LTE-U is
designed to promise wider coverage and seamless services. Typically, LTE-U
proposes the the exploitation of the 5GHz unlicensed spectrum [81], due to
its less congested condition in comparison to the 2.4GHz spectrum. Despite
the LTE-U technology implies several advantages, its application is limited
by the severe infrastructure costs deriving from its concrete application, and



1.3 Thesis Organization 7

by the significant disadvantages experienced by the unlicensed users [10,96].
In fact, LTE-U generally results in performance degradation of Wi-Fi users,
due to the high levels of interference caused by the licensed users. Such
interferences can be minimized by some corrective strategies, such as the
limitation of the transmission power or the selection of the clearest chan-
nel [81].

1.3 Thesis Organization
During this dissertation, several theoretical frameworks are proposed and
discussed in relation to their performance and applicability to some of the
major classes of resource allocation problems in the wireless networks. This
dissertation is organized as follows. In Chapter 2 a universal characteriza-
tion of the resource allocation problem in the wireless networks is presented,
providing the basic mathematical background for the formulation of an op-
timization problem in the wireless networks research field. A great deal of
emphasis has been given to the unavoidable evolution of the meaning behind
the resource allocation problem in wireless networks, and how the change of
its nature has led to new techniques and approaches for solving the modern
networks issues. They are matching theory, chaos theory, machine learning
and the queuing theory.

In Chapter 3 and in Chapter 4 the matching theory is applied to two main
problem categories: the interference management, and the computational of-
floading problem, respectively. As regards the management interference, the
matching algorithms have been developed to meet the problem dynamics, in
order to promote the proper system resource reuse. Similarly, the application
of the matching theory framework to the computational offloading problem
has been widely addressed in different context and scenarios. Matching the-
ory has made much progresses compared to game theory by providing more
flexible practical applications, without requiring closed form solutions for the
users objective functions.

In Chapter 5 the offloading problem is still investigated, by focusing on
the application of the queueing theory to the performance analysis of an edge
computing system designed to support real time applications demands and
users mobility. Despite many theoretical assumption, numerical simulations
exhibit the validity of the proposed approach.

Chapter 6 finds application in the smart city context, in which a service
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provider needs to predict the users demand to properly administrate the sys-
tem resources. The chapter is mainly focused on the forecasting of nonlinear
time series, in which the chaos theory principles are applied to predict the
users service demand. Chaos theory offers good performance in terms of
accuracy on the predicted values in presence of chaotic behavior of the time
series. Furthermore, it avoids the major drawbacks of the more sophisticated
machine learning techniques, often characterized by long training processes.

In Chapter 7 machine learning is applied to analyze the network service
provider revenue. Cross-layer frameworks consisting of the virtual network
functions placement, the users demand prediction through the federated
learning paradigm, and the users allocation are realized in order to maximize
the service provider profit. Furthermore, a neural networks approach [293]
previously presented in literature has been applied to approximate the solu-
tion of an optimal price control problem with chaotic constraints.

Finally, conclusion are drawn in Chapter 8, which highlights that the
works presented in the previous chapters address the resource allocation
problem by applying and re-designing many different frameworks up to the
development of cross-layer frameworks, in order to consider not only a narrow
view of the problem, i.e., one optimization goal under certain constraints,
but a more global vision of the problem addressed.



Chapter 2

Theoretical Frameworks for
Resource Allocation Problems

Don’t listen to what they say. Go see.

Chinese Proverb

2.1 General Resource Allocation Formulation
Over the past decades, the field of wireless communications has been at
the forefront of an unprecedented development that has considerably influ-
enced numerous aspects of the design and control of next generation wire-
less networks, throwing new challenges and deeply changing the approach
in solving technical problems and solution strategies concept. The ever in-
creasing overcrowding of wireless network has laid the foundation for more
demanding services, in which a wise and efficient resource exploitation is
essential to guarantee a satisfactory user experience. Throughout the evo-
lution of wireless communications, even the meaning of resource is radically
changed. Typically, the basic idea behind the traditional resource allocation
is the efficient management and allocation of channels, to reduce the inter-
ference, and to properly share the spectrum, increasing network data rate.
With the new era of networks, more stringent delay constraints have been
required for delay-sensitive applications. The ever increasing demand for
heavy computation-intensive services, the necessity for re-configurable net-
works and computing systems have opened the doors towards wider meanings

9
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of the resource term. For example, in virtualization or offloading problems,
storage and processor units represent the system resources; furthermore, in
smart city perspective and intelligent transportation systems, resource as-
sumes a totally different connotation, in which the term might be declined
as transportation services, urban water or electricity infrastructures, and so
on.
Whatever the considered scenario and the meaning of resource is, its identifi-
cation strictly depends on the aim of the problem, i.e., the objective function
and, in order to optimize the latter, the available resources, i.e., the opti-
mization variables, have to be known.
Generally speaking, letℵ be the objective function of our problem. The form
of ℵ is strictly related to the type of the problem we want to solve, and can
be expressed in terms of sum, product, or other functions of the resources,
i.e. Ψ, in order to fit the real network behavior as well as possible [106].
Typical examples in network performance optimization are represented by
overall throughput, energy efficiency, or QoS [106]. Limitations over quanti-
ties, for example the maximum transmitted power, the minimal distortion,
or the maximal delay, are defined as problem constraint Φ. Both ℵ and Φ
can be linear, nonlinear, convex or non convex and their form unavoidably
impacts on the strategy resolution of the problem.
Hence, in next generation wireless networks class, one fundamental form for
the resource allocation problem is given by [106]

max
Ψ
ℵ (2.1)

s.t. Φ.

Whether ℵ and Φ are linear or convex or have some nice forms, the problem
(2.1) can be solved with the Lagrange multiplier method. In formal terms,
the Lagrange function associated to (2.1) can be written as

L = ℵ+ λΦ, (2.2)

where λ identifies the Lagrange multiplier. Then, L is differentiated over
Ψ and the solution for λ is found. By using constraint Φ, the optimal
solution for problem (2.1) can be found [38, 106]. However, λ might not be
solvable, or, again, the optimal solution may not be always easy to obtain
from Φ [38, 106].
When both ℵ and Φ are convex functions, convex optimization algorithm
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such as the barrier method, the steepest descent method, or the gradient
method can be applied. Even though this type of mathematical approaches
bring to clean and elegant solutions fast to reach, the hard point here is that
the objective function and its constrains have to be traced back to a pretty
handy form or it needs approximation. In practice, its description needs
accuracy under certain conditions, and the complexity of the reality behavior
does not always allow valuable approximations [38, 106]. In fact, generally
speaking, the success of these classes of methods is directly related to the
quality of the choices made about the approximation functions. Another
major drawback of these kind of methods, is that only simple problems, for
example small number of users and simple channel model, can be addressed
with these mathematical techniques[38,106].
With the advent of more complex, more dense, more heterogeneous and high-
demanding networks, the necessity for more flexible and scalable approaches
is born and, within this context, matching theory, chaos theory, and machine
learning have gained momentum.

2.2 Matching Theory Framework

Matching theory represents a flexible mathematical framework, arising from
the economics field, with the aim of attempting the formalization of the pro-
cess creation of mutually beneficial relations among elements, called match-
ing agents, belonging to two distinct sets over time [96]. The Matching theory
framework deals with the stable marriage problem, consisting of two sets of
elements, hereafter one set of man and one of women, that have to be paired
on the basis of their personal preference with the elements of the opposite
set, and avoiding the presence of blocking pairs (BPs). By starting consid-
ering a matching as (man, woman) pairs, a BP is defined as (man,woman)
pair, in which both the elements have incentive to leave their current sit-
uation looking for a better partner [96, 97, 104, 163, 211]. The state-of-art
algorithm reaching a stable matching, applicable to a wide class of matching
models, is represented by the Nobel-prize winner Gale and Shapley (GS)
algorithm [96, 97, 104, 211]. The GS algorithm is based on the usage of the
preference list associated to each element of both the two sets, indeed, each
matching agent makes proposal to its most preferred element belonging to
the opposite set. Then, each element, which receives one or more proposals,
accepts or rejects according to its personal preferences and w.r.t. its quota,
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Figure 2.1: Gale-Shapley algorithm flow chart.

that is the number of elements with which can be matched. The procedure
is iterative, summarized in flow chart in Figure 2.1, and many works have
formulated its distributed version [96]. During years, the intrinsic nature of
matching theory in being suitable for distributed contexts, has determined
its success and contributed to increase its wide application in many prac-
tical fields. Furthermore, another asset of matching theory, even compared
to its predecessor game theory, is its flexibility and handling in terms of its
preference list metrics, corresponding to the utility functions of game theory,
which does not require strict requirements such as closed forms. There exist
many classifications about matching game. The most well known is probably
those based on the value of the quota, for which we have [96,97,104]

• One-to-one matching. In this type of matching, the elements of each
set can be matched with at most one agent of the opposite set.

• Many-to-one matching. It means that each agent of one set can be
matched with a number of elements of the opposite set greater than
one, according to its quota, but each element of the opposite set can
accept at most one proposal.
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• Many-to-many matching. This type of matching defines matching in
which the elements of both the two sets considered, can be matched
with more than one element of the opposite set, up to their quota.

Due to the structure of the matching theory framework, during last decade
it emerged as promising tool to pursuit a proper resources allocation in
wireless scenarios. Typically, wireless oriented matching models view the
resources and users as two sets of players and belong to one of the following
categories [96]

• Canonical matching: this class represents the fundamental matching
class, in which each user (resource) involved in the game has preferences
on the resources (users) solely on the basis of the information available
on this resource (user) and at that user (resource) itself.

• Matching with externalities: this class is made up of matchings in
which there exist interdependences and correlations between the pref-
erences of the matching agents. Typical examples are represented by
the interference derived from the shared use of the same frequency by
more than one user close enough to each other, that severely changes
the preferences of users towards channels. This thesis is focused on the
application of this type of matching games, particularly common in
context-aware allocations, load balancing disciplines and interference
management.

• Matching with dynamics: this class of matching games includes match-
ings that have to be dynamically changed, over time, due to environ-
mental changes such as users mobility, fast fading, and so on. However,
for a given time period, the matching problem is traced into one of the
two matching classes previously introduced.

From the mathematical perspective, both the second and the third matching
classes are formulated as the canonical matchings, previously detailed at the
beginning of this section, but as regards the presence of the externalities, the
achievement of a stable matching is not trivial, since the stability depends
not only on the agents set, but also on the whole matching. For dynamic
matchings, time-dependent states can be introduced to study dynamic sta-
bility.
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2.3 Chaos Theory Framework

Chaos theory has emerged in the later 19th century as a branch of physics
specialized in the study of nonlinear dynamic systems, whom long-term be-
havior is typically unpredictable. A nonlinear dynamics describes the evo-
lution of a system during time, throughout nonlinear equations of motion
characterizing its behavior. In general terms, nonlinear dynamics systems
perform as chaotic when they exhibit sensitive dependence on initial condi-
tions. Such characteristic is considered the most strong signature of chaos
and, intuitively, it describes unpredictability of the system in the long term.
One direct consequence of the unpredictability, hence, of the presence of
chaos, is that it masks the determinism hidden behind the systems, and
which implies that tiny differences on the initial state can lead significant
variations on the final system states. Furthermore, each initial condition
unambiguously determines the time evolution of the system [47,144,165]. In
order to observe the hidden deterministic behavior of a chaotic systems, it is
necessarily to study underlying dynamics of its orbits, through the strange
attractor, resulting from the phase space reconstruction process [43, 125].
The phase space represents all possible states of a system, for which each
possible state corresponds to one unique point in the phase space. From
a theoretical perspective, system dynamics can be described, for example
by an explicit system of first-order differential equations but, due to the
exceptionally complexity of many nonlinear phenomena, such approach is
impracticable in the most of real cases. This unfeasibility in performing clas-
sical differential analysis has led to the necessity of a more general system
dynamics description, then resulted in the approximation of a multidimen-
sional map. Under these assumptions, recently chaos theory has found wide
application in the nonlinear time series analysis. Indeed, the reconstruction
of the phase space associated to a time series with chaotic characteristics can
be applied, in order to catch the hidden behavior and geometrical dynamics
of the system and properly predict its trend during time. Due to the Takens’
delay embedding theorem, which affirms the existence of a map between the
real phase space and its reconstructed version [32], the PSR is provided by
associating, for each element ai of the chaotic time series A, the vector in
the form

bi = [ai, ai+τ , . . . , ai+(m−1)τ ], (2.3)
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Figure 2.2: Chaos Theory Framework

where τ is the time delay and rules the temporal distance between two suc-
cessive points in the phase space vector, while m is the embedding dimension
and is responsible for the observation of the determinism underlying the sys-
tem associated to A. The choice of proper values for both τ and m is crucial
in the analysis of time series by using the chaos theory framework. In fact, a
wrong choice on the m value introduce redundancy that implies degradation
on the predictive performance of the framework [124]. Likewise,a good esti-
mation of time delay τ is very important. Indeed, whether τ is very large,
successive elements are too unrelated to each other, while a small value of τ
implies very low level of additional information among successive points in
the phase space. Details about the computation of the optimal values for τ
and m have been provided on Chapter 6. Within this context, this kind of
chaotic analysis has gained momentum into the forecasting problems field.
Roughly speaking, forecasting problems involve the prediction about the fu-
ture behavior, δ steps ahead in the future, of time series A. More in depth, a
is suitable for τ if it maximizes the knowledge about ai+τ from ai, minimiz-
ing the redundancy between ai+τ and ai, . The proper value of delay τ can
be estimated by evaluating the amount of mutual information between pairs
of points ai+τ and ai, and τ that minimizes the mutual information between
observations [82]. Therefore, the histogram of the probability distribution of
the dataset is created. In addition, the mutual information between ai and
ai+τ , by increasing time the delay τ , can be given by [159]

I(τ) =
∑
f,j

pf,j(τ) log pf,j − 2
∑
f

log pf , (2.4)



16 Theoretical Frameworks for Resource Allocation Problems

in which pf represents the probability that ai is in the f -th bin of the his-
togram, and pf,j expresses the probability that ai and ai+τ are in the f -th
and j-th bin of the histogram, respectively.

In order to select a proper value for m, the false nearest neighbors
method [126] is largely applied. The insight behind this strategy is the ex-
ploitation of the presence of chaos, which induces an exponential divergence
on the trajectories of close points. Consequently, there exist some points in
the dataset that are neighbors in the embedding space but for which their be-
havior exponentially diverges during time. The method acts, for each point
in A, in finding its closest neighbor in m dimension. After that, the ratio
between their distance in m+ 1 dimensions and m dimensions is computed.
Finally, the attention is posed on the ratio value. If it is is greater than
a fixed threshold r, the neighbor is considered false. In formal terms, the
false nearest neighbors function can be defined as in (2.5), taking fixed the
threshold T

Ffnn(T ) =

N−m−1∑
i=1

Θ
(
|b(m+1)
i

−b(m+1)
j

|

|b(m)
i
−b(m)

j
|
− T

)
Θ( σT − |b

(m)
i − b(m)

j |)

N−m−1∑
i=1

Θ( σT − |b
(m)
i − b(m)

j |)
, (2.5)

where Θ is the Heaviside step function. Once the phase space reconstruction
process is completed, to the chaotic behavior of A has to be verified, through
the analysis of the largest Lyapunov exponent. The insight of such technique
is the study of the distance of two vectors, close in the phase space during the
time transition [184]. Let g and h be two trajectories, which are neighbors
in the state space, then their mutual distance evolves according with

gn+1 − hn+1 = Jn(gn − hn) +O(||gn − hn||2), (2.6)

in which Jn represents the m × m Jacobian matrix associated to F. Fur-
thermore, considering Λi the eigenvalue of J, the Lyapunov exponents are
expressed by [124]

λi = lim
N→∞

1
2N ln|Λ(N)

i |. (2.7)

When forecasting is provided, a measure of the gap between the predicted
and the real value of the time series has to be analyzed, in order to test the
accuracy of the method. Depending on how far in the future the forecasting
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horizon is, we refer to short-, medium-, and long-term forecasting. Despite
there exist many different metrics to evaluate the forecasting error [c11], the
insight behind the formulation of forecasting problems is the minimization of
the gap between the real value of the time series A, i.e., ai, and its forecast
value âi, hence

1
x

x∑
i=1
|âi+δ − ai+δ|, (2.8)

where x represents the number of the samples in test data.

2.4 Machine Learning Framework
Machine learning is a relatively young technology, whose principal aim is
to learn parameter models on the basis of some training data. Similarly to
the way humans learn from experience, algorithms learn from data. The
crucial point here is how to re-create the brain learning process. There
is no definitive standard to solve this kind of problem but, during years,
many recurrent patterns were noted among the proposed solutions. The
whole learning approach generally follows a common structure, composed
of an initial data manipulation and features extraction. The features are
useful information exploited by the learning algorithms to chooses a learning
model and subsequently search for its parameters. There exist three main
categories of machine learning which are given by [223]

• Supervised learning: the main goal here is to assign a label to data,
following a model trained on a labeled dataset provided by the super-
visor, acting as a teacher. The labeled dataset is represented by a set
of input and output parameters.

• Unsupervised learning: this approach is based on the detection of pat-
terns and structures in existing data, without the involvement of labels
or responses.Typical applications of this class of learning paradigm are
clustering and dimensionality reduction.

• Reinforcement learning: this approach is halfway between the previ-
ous two branches. The teacher role is played by the environment and
provides hints to the learnin g system which receives feedback on the
basis of its answers.
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Therefore, machine learning aims at defining parameter models on the basis
of some training data. Typically, despite traditional machine learning models
reach remarkable effectiveness, the learning procedures are very burdensome
and the models need centralizing of the training data on a single site, for
example a datacenter. Recently, to overcome these significant drawbacks of
machine learning, federated learning is emerged. The emerging federated
learning moves the machine learning process to the devices level. Accord-
ingly to this approach, mobile phones collaborate to learn a shared model
using data trained on the device. Federated learning improves users privacy
decoupling the learning process and the data storage. Furthermore, machine
learning models are computed on mobile devices, instead of on centralized
machines. This novel computation paradigm is practicable since today’s
high performance mobile phones are powerful enough to run machine learn-
ing models.

Roughly speaking, a machine learning model can be identified by a loss
function depending on the data sample z and on a parameter vector w, i.e.,
fz(w), which captures the error introduced by the model on the basis of the
training data [256]. Let m be the number of end-devices (EDs), where each
ED i has its local data Ωi, i = 1, . . . ,m. The collective loss function can be
defined as [169,256]

Fi(w) = 1
|Ωi|

∑
z∈Ωi

fz(w), (2.9)

where |Ωi| is the number of elements belonging to Ωi. Then, from (2.9)
follows that the global loss function over all the Ωi, i = 1, . . . ,m, is given
by [169,256]

F (w) =

∑
i∈{1,...,m}

|Ωi|Fi(w)∑
i∈{1,...,m}

|Ωi|
. (2.10)

As well explained in [256], the direct consequence from (2.9) and (2.10), is
searching w? such that

w? = arg minF (w). (2.11)

Therefore, the federated learning approach consists of successive interactions
between the clients and server sides, and, during each algorithm iteration
round u, just a subset the EDs are involved in the training procedure. More
in depth, the general framework can be summarized as
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• In parallel, each ED i involved in the training procedure updates its
local parameter vector wi(u), built accordingly to [257], on the basis
of ∆i;

wi(u) = ŵi(u− 1)− α∇Fi(ŵi(u− 1)), (2.12)

where α is the learning rate and ŵi(u− 1) is the term wi(u− 1) after
global aggregation.

• The server side computes the weighted average as proposed in [169]
and defined by

w(u) =

∑
i∈{1,...,m}

|Ωi|wi∑
i∈{1,...,m}

|Ωi|
. (2.13)

Distributed data training following the federated learning dictates results in
several advantages in terms of clients privacy. In fact, the training procedure
on the clients site, allows users to keep protected their sensitive information
and to upload the parameter vector wi, which does not expose the client to
any privacy issue, since, given wi, to retrieve Ωi is not straightforward.

2.5 Queueing Theory Framework
The queueing theory deals with the analysis of queuing, i.e., the mathemat-
ical study of the waiting in lines. In practical terms, queues contain cus-
tomers which require service, wait for service if it is not instantaneous, and
they leave the system after service accomplishment. The customers can iden-
tify people, objects, information, or computer tasks [91]. Queueing theory
provides tools to analyze the systems behavior and its response in reaction
to randomly arising demands. The process describing arrivals is stochastic,
and the knowledge about the probability distribution describing the interar-
rival times is necessary. Furthermore, many situations can be modeled with
queuing theory. Customers arrivals may or may not occur in the same time,
and customers may decide to wait service without any limitation on queuing
time. Differently, if the queue grows excessively, the customers may avoid
the entrance in the system, i.e., they have balked [91,246]. When a customer
enters in the system and waits for service, after a certain amount of time, it
may lose patience and to have reneged, i.e., leave the system without service
completion. The same discussion can be easily extended to service processes.
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Also in this case, a crucial role is played by the probability distribution de-
scribing the sequence of customer service times [91, 246]. Again, the service
can be provided by a single server or by a batch, which represents a very
common situation in parallel processing scenario. Furthermore, the number
of customers in the queue can be used to rule the the service process which
may rule its computation efficiency on the number of customers waiting for
service. Another essential ingredient of the queuing analysis is the queue
discipline adopted to select the customers for service when they are waiting
for it. In this regards, one of the most frequently used discipline is the first-
in, first-out (FIFO), applied also in Chapter 5. However, literature is rich
of numerous queue service schemes. In some queueing processes there is a
physical limitation to the amount of Some queuing processes, named finite
queuing systems, imposes a physical limitation to the amount of requests in
the system, i.e., a maximum system size, and, once that limit is reached, any
customer is allowed to enter in the system until space returns available, i.e.,
a service completion occurred.

In Chapter 5 the queuing theory is exploited to conduct performance
analysis in real-time and delay constrained computational offloading scenar-
ios, by dealing with systems with and without finite capacity and reneging.



Chapter 3

Interference Management with
Matching Theory

Two benefits from one action.

Chinese Proverb

3.1 An Efficient Resource Allocation Scheme
for Applications in LR-WPANs based on
a Stable Matching with Externalities Ap-
proach

3.1.1 Motivation

The large scale diffusion of a massive number of smart devices implementing
the IoT reality have progressively led to the need for efficiently support the
LR-WPANs, avoiding severe performance degradation due to the presence of
interference, resulted by the concurrent use of a same band. Currently, the
LR-WPANs are considered a promising solution to a vast class of modern
wireless applications [16, 128, 130, 236]. The main advantages of the LR-
WPANs are the energy efficiency, crucial in the IoT field, and the additional
usage of the TV white space (TVWS) bands. This approach moderates
the spectrum scarcity problem for the next IoT networks, even if the LR-

21
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Figure 3.1: Reference scenario.

WPANs is strictly related to sensors applications such as personal medical
health care, or industrial and home automation [16,130].

Within this context, the design of proper resource allocation schemes is
essential to guarantee the LR-WPAN performance maximization.

3.1.2 Contributions
This work presents the main results obtained in paper [26], focused on the
IEEE 802.15.4m LR-WPAN, in which a resource allocation matching strat-
egy is proposed, aiming at minimizing the mean system dropping probability.
Since the designed matching algorithm belongs to the matching game with
esxternalities class, the matching stability is deeply discussed by providing
a theoretical proof about the achievement of a final stable matching config-
uration. Therefor, the main contributions of this work are given by

• Formulation of the average system dropping probability minimization
problem

• Modeling of the proposed problem as a matching game with external-
ities;

• Design of a post-matching procedure in order to reach matching sta-
bility, on the basis of the stability definition proposed in [35];

• Performance evaluation through the comparisons with the random al-
location strategy, a modified version of the Brelaz algorithm [136,222,
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294], and the potential game [282].

Finally, in comparison to the previous literature, this work proposed a
join use of the matching theory principles with the graph theory, in order to
perform the resource allocation strategy. In addition, despite the achieve-
ment of the stable matching outcome in the matching game with external-
ities is not a straightforward, the proposed approach terminates in a stable
matching.

3.1.3 Related Works
During years, game theory (GT) has been extensively applied to propose
solutions to a wide class of resource allocation problems [93], [94]. For
example, non cooperative GT is applied in [297], in which a one-to-one stable
match is reached to guarantee an energy-efficient resource allocation. Despite
the large diffusion of GT in the literature, such mathematical tool suffers of
some important limitations on its applicability, i.e., a kind of knowledge on
players’ actions is required, and so on [105]. Under these conditions, MT
gained momentum to overcome the restrictions of GT, [94], [71, 77, 87, 95,
191,195,213,277,296].

Paper [94], reaches a stable matching to maximize both LTE and WiFi
users’ throughput, in LTE-U systems. In [195] a context-aware stable match-
ing with externalities is proposed, pairing small cell base stations and user
UEs, on the basis of interference and network congestion. Differently, the
paper [95] adapts the matching theory to maximize network throughput, con-
sidering the service requirements associated to D2D users and UEs. In [191],
authors use matching theory to solve resource allocation problem in delay
tolerant networks, while in in [77] matching theory is applied to cognitive
radios. Graph theory is applied in [213], where a three steps algorithm is
designed, in which the load of each small cell , the average channel gain
and data rates are taken into account. Then, throughout a graph coloring
procedure, the interference is minimized and, after that, an advantageous
resource allocation is performed on the basis of the instantaneous channel
gain.

3.1.4 Reference Scenario
AS reference scenario we consider the three-tier network architecture de-
picted in Figure 3.1, where the SuperPAN coordinator (SPC) is arranged
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to provide connections to a set of ChildPAN Coordinators (CPCs), each
of which handles a cluster [235] (i.e., subnet) composed of a given number
of end-devices [3]. The end-devices belonging to a given cluster, in their
turn, connect to the appropriate CPC by accessing a suitable TVWS band
exploiting the CSMA/CA technique [3], implemented according to the non-
acknowledged mode as in [26, 60, 110].Then, we assumed that each cluster
has a limited extension and that the CPCs are in fixed positions. Further-
more, we supposed the same transmission power in each cluster and uniform
interference level within a cluster.

Let B = {b1, . . . , bρ} be the set of TVWS bands and the set of CPCs
C = {c1, . . . , cn}. The number of underlying end-devices is indicated as
S = {s1, . . . , sn}, while sj represents the number of end-devices belonging
to the cluster j, with j = 1, . . . , n [26]. It is important to note that each
end-device in a given set sj is only supported by its appropriate CPC j on
the assigned band bk ∈ B. Therefor, we can define the n×p allocation matrix
∆, in which the generic element δj,y is 1 if the TVWS band y is assigned to
the cluster j or zero otherwise [26].

By focusing on a single cluster, the performance in terms of data packet
dropping probability, strictly depends on the whole number of the end-
devices in the interfering clusters, forming the so called collision domain [60,
110] defined below in (3.2).

From a theoretical perspective, clusters h and j can be defined as mutual
interfering if, using a same TVWS band y, the following inequality is verified

Pβd−αh,j ≥ Th, (3.1)

in which P represents the CPC transmission power, β is the path loss co-
efficient, α is the path loss exponent, and dh,j is the geographical distance
between ch and cj). Furthermore, Th defines the power threshold, threshold
below which the mutually interference is so weak that it does not affect a
data packet transmission (i.e., it does not give rise to access collisions [4]).
Therefore, each other cluster h ∈ C, h 6= j, allocated on the same TVWS
band y ∈ B, belongs to the set of the potential interference clusters for the
cluster j, i.e., I∗j , if Pβd−αh,j ≥ Th.

AS direct consequence, if the interference between two clusters is lower
than Th, we have independent collision domains, even if they reside on the
same TVWS band. It is straightforward to note that the overall number of
end-devices involved in the collision domain, considering a given cluster cj ,
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with cj ∈ C allocated to a TVWS band y, with y ∈ B, Ωj ∈ N, is expressed
by

Ωj = sj +
∑
y∈B

δj,y

n∑
k∈I∗

j

skδk,y. (3.2)

Consequently, from (3.2), it follows that Ωj∗ depends on the entries values
{δk,y} of the allocation matrix ∆.

Finally, if we have δk,y = 0 ∀k ∈ Ij and δj,y = 1, from (3.2) Ωj = sj , i.e.,
Ωj includes the minimum number of end-devices.

3.1.5 Problem Formulation
This work focuses on the minimization of the average p̄drop, which is given
by

p̄drop = 1
n

n∑
j=1

pdrop(Ωj), (3.3)

where pdrop(Ωj) is the average data packet dropping probability experienced
by cluster cj , derived in accordance with [59,60,110].

Therefore, the formulation of the resource allocation problem is

min
∆

p̄drop (3.4)

s.t. :
∑
y∈B

δj,y = 1, j = {1, . . . , n} , (3.5)

where constraint (3.5) imposes that only one band is assigned to each clus-
ter ∈ C. From above, the problem results to be a mixed integer non-linear
problem that is typically NP-hard to solve [31]. The intrinsic complexity
of problem (3.4), makes infeasible the whole class of approaches based on
classical optimization. Similarly, the game theory based strategies lack in
providing scalable solutions and significantly slow convergence time. There-
fore, in order to reach a suboptimal solution with acceptable time complexity,
the problem of finding the configuration of ∆ which minimizes p̄drop w.r.t.
the constraint (3.5) has been modeled in terms of matching game with exter-
nalities. In addition, we have exploited the graph theory to build the mutual
interferences graph, i.e., GI = (V, E), in which the vertices V are identified
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by the clusters C, and E is the set of edges such that, given two clusters, i.e.,
cj and ch, they are connected through an edge if they are mutual interfering
CPCs. In formal terms, there exists an edge between cj and ch if cj ∈ I∗h,
and cj ∈ I∗h =⇒ ch ∈ I∗j .

3.1.6 Matching Method
The proposed algorithm is supposed to be performed at the SPC site, since
it is equipped with more computational capability and less tight energy con-
sumption constraints than all other network devices in addition to a full
awareness of the interference scenario. Hence, according to [138, 299]. In
other words, the SPC represents a central unit with full awareness of the
whole network. For this reason, the SPC is able to evaluate the CPCs and
TVWS bands preferences lists. In fact, all the devices are assumed with fixed
position, while the mutual interference between two adjacent clusters evalu-
ated at the CPCs level. The proposed centralized approach finds motivation
in the following advantages

1. Low latency in updating the preferences lists at each step of the algo-
rithm;

2. Avoid connections at each step of the algorithm between the SPC and
the CPCs, hence lowering the network congestion and the energy con-
sumption;

3. Speed up the convergence of the allocation process.

For the sake of simplicity, the notation of bj �ci bk is introduced to
express that the cluster ci prefers band bj to bk.

Generally speaking, rank(ci, bj) identifies the position of bandwidth bj in
the preference list rank of ci. Hence, bk is the preferred band for a given ci,
i.e., rank(ci, bk) = 1 iff

bk = arg miny∈B{Ω
y
i }. (3.6)

Similarly, the preference list of bands over clusters is built on p̄drop values,
resulting from the assignment to a cluster, i.e., cj , of each available band in
B. Then, the cluster cj is included in the preferences list of the band with
the smallest p̄drop value [26]. Also the preferences list of a given TVWS band
is ranked in a descending order considering the p̄drop values. The proposed
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Figure 3.2: Flowchart of the proposed MT algorithm.

strategy realizes a many-to-one matching between the C and B sets and it
recall, for each possible assignment (cj , bk), a procedure to delete the chosen
band bk from the preference lists of the potential interfering nodes of cj .
As consequence, different colors, expressing different bands, are assigned to
potential mutual interfering clusters.

The proposed method can be then summarized as

1. selects vertex cj ∈ GI with the highest degree, among the unallocated
CPC set. If cj has not an available band, goes to step 4), otherwise

2. cj is allocated on its preferred TVWS band bh derived according to the
procedure proposed;

3. bh is immediately deleted from the preference lists of each node in I∗j ,
then return to step 1);

4. each unallocated CPC proposes its most preferred TVWS band to the
SPC;

5. the TVWS bands build their preferences lists;

6. let c′ be the CPC proposal that is in the highest position among the
TVWS bands preference lists, and let b′ be the TVWS band that has
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c′ in the highest position on its preference list in comparison with
the positions of the other received proposals on all the TVWS bands
preference lists.

7. c′ is allocated on b′;

8. preference lists of all clusters are updated according to the new context
conditions, repeat from step 1).

3.1.7 Algorithm Complexity

The complexity of the proposed matching algorithm starts with the prefer-
ence lists construction. As initial step of the method, all the n CPCs build
their preferences lists on the ρ channels. Therefore, the temporal complexity
of this first step results

O(nρ log ρ) (3.7)

In order to consider the worst case, all the CPCs are supposed mutually
interfering. Hence, the first selected ρ CPCs need of different bands. In this
case we have to perform a greedy allocation and to drop out the ρ bands
from the preferences list of all the remaining n−ρ unallocated CPCs. Hence,
for the computational complexity of this step we have

O

(
(n− 1)ρ2

)
. (3.8)

Subsequently, the number of the CPCs having to update their preferences
lists at each step (from ρ+ 1 to n), is equal to the number of the remaining
unallocated CPCs at each step. In the same way, all the TVWS bands, at
each step (from ρ + 1 to n), have to compute their preferences list on the
basis of the remaining unallocated CPCs. Hence, the resulting complexity
of the allocation strategy for this phase results to be

O

(n−ρ−1∑
w=0

(n− ρ− w)ρ log ρ
)

+

+O
(n−ρ−1∑

w=0
ρ(n− ρ− w) log(n− ρ− w)

)
(3.9)
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From (3.7)-(3.9), it follows that the overall implementation complexity of
the proposed algorithm is

O(nρ log ρ) +O

(
(n− 1)ρ2

)
+

+O
(n−ρ−1∑

w=0
(n− ρ− w)ρ log ρ

)
+

+O
(n−ρ−1∑

w=0
ρ(n− ρ− w) log(n− ρ− w)

)
(3.10)

which can be approximated as [26]

O

(
(n− ρ) log(n− ρ)

)
(3.11)

3.1.8 Matching Stability Analysis
The resource allocation problem presented before belongs to the class of
matching problems with externalities, meaning that there exist correlations
and interdependencies between the preferences of the involved parties [104].
In practical terms, when a CPC is allocated on a resource, preferences of
other players are affected by this action, and the the preferences of each
player results dependent by the entire matching [104]. Therefore, after the
generic assignment (cj , bk), the preference lists of CPCs and SPC are up-
dated, allowing consistency between the algorithm results and the highly
dynamic network context.
Due to the strong relation between the preference lists, it is not possible to
guarantee matching stability through the proposed strategy. As consequence,
a post-matching procedure is proposed to obtain a final stable matching. In
order to do that, on the basis of the novel stability definition introduced
in [35], the following concepts are recalled

Definition 1. LetM be a matching and let (e,M(e)) and (f,M(f)) be two
pairs, a swap matching is given by Me,f = {M} \ {(e,M(e)), (f,M(f))} ∪
{(e,M(f)), (f,M(e))}.

Definition 2. Let M be a matching. M is stable iff @ (e,M(e)) and
(f,M(f)) s.t. both the following condition are verified

• ∀z ∈ {e, f}, Uz(Me,f ) ≥ Uz(M);
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• Usys(Me,f ) > Usys(M).

where Uz is the local utility function relative to the z-th cluster, defined as
Uz(M) = ΩM(cz)

z , ∀z ∈ C, where M(cz) is the partner B of cz, associated
by matching M. Usys is the global system utility function, expressed as
Usys = p̄drop [26]. Furthermore, M is the current matching and Me,f is
the matching obtained by swapping e and f . Furthermore, the stability
introduced in Definition 2 approves a swap if it produces improves mean
system dropping probability. More specifically, we define a blocking pair as
follows

Definition 3. A pair ci, cj ∈ C s.t. (ci,M(ci)), (cj ,M(cj)) ∈ M, with
ci 6= cj, is a blocking pair if Usys(Mci,cj ) > Usys(M) and no player ci or cj
is worse off after swap.

Let BP be the set of BPs accordingly to Definition 3. For each ci, cj ∈ BP
s.t.M(ci) = bh, let BPhi , BPhi ⊆ BP s.t.

BPhi =
{
ck ∈ BP

∣∣∣∣ M(ck) = bn ∧ rank(ci, bn) = 1
∧ rank(ck, bh) = 1

}
. (3.12)

Hence, we can introduce ∆U = Usys − U ′sys, where U ′sys is mean system
dropping probability after exchange.

Therefore, the method reaches a stable matching after the following steps

• detect the set of BPs BP;

• for each ci in BP, select BPhi ;

• if exists, find c∗j ∈ BP
h
i which maximizes ∆U ;

• divide the previously matched pairs (ci, bh) and (c∗j ,M(c∗j ));

• build new pairs (ci,M(c∗j )) and (c∗j , bh).

THe termination of the presented procedure is guaranteed since the search
space of the blocking pairs has finite dimension, having the set C a finite
number of elements. Furthermore, the swap is provided just if ∆U > 0,
ensuring that two pairs can exchange each others a finite number of times
and there are no infinite loops.

Lemma 1. The post matching procedure algorithm reaches a stable match-
ing.
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Proof. Let M be the assignment configuration resulted by the proposed
matching algorithm. Similarly, let M′ be the outcome matching of the
post matching procedure. Then, M′ is a stable matching in reference to
Definition 2. Therefore, in the following, we show that ∀ci ∈ M′ there
not exists a cj ∈ M′ s.t. the three conditions ∆Ui(M′) ≥ ∆Ui(M

′

i,j),
∆Uj(M′) ≥ ∆Uj(M

′

i,j) and ∆Usys(M′) ≥ ∆Usys(M
′

i,j) [26]. For the sake of
simplicity, we name the previously three conditions as ti, qj , rsys, respectively.
Hence, we prove that the logical expression (ti∧qj∧rsys) = false,∀ci, cj ∈M′.
Therefore, we analyze the following possibilities

• if (¬ti ∨ ¬qi ∨ ¬rsys) = true⇒ (ti ∧ qj ∧ rsys) = false;

• if (ti ∧ qi) = true in outcome matching M′, since post matching pro-
cedure acts detecting ci, cj ∈ M s.t. ti and qj are verified, necessarily
results ¬rsys = true, otherwise ci and cj would be exchanged during
runtime execution and inM′ should be verified (ti ∧ qi) = false.

Figure 3.3: Mean total system dropping probability performance.

3.1.9 Numerical Results
In order to validate the applicability of the proposed framework to the sys-
tem dropping probability minimization problem in LR-WPAN systems, per-
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Figure 3.4: Mean data packet transmission attempts performance.

Table 3.1: Simulation parameters
Parameter Value
path loss free space model

transmission power 0 dBm
power threshold -82 dBm
LR-WPAN radius 180 m
number of CPCs (0, 100]

cluster size [15, 20]

formance comparisons with the basic random allocation method (RA), the
potential game (PG) [282], and with a method based on the use of the well
known Brelaz algorithm [136,222,294] in a modified form are also presented
and critically discussed. In the RA case, the SPC randomly assigns TVWS
bands ∈ B following an uniform distribution, and without considering mu-
tual interference constraints. Furthermore, the Brelaz’s algorithm is a greedy
algorithm that solves the graph coloring problem [136,222,294]. Since in the
problem addressed in this work the number of available channels is fixed and
that the network access has to be provided to all the CPCs demanding for it,
the Brelaz’s algorithm in its traditional form cannot be applied. Therefore,
the modified Brelaz’s algorithm applied consist consists of
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Figure 3.5: Mean total system dropping probability with and without post-
matching procedure.

1. start from the most interfered CPC;

2. assign to the CPC the first available band among the bands set and
delete the selected band from the available bands pool of each neighbor
CPC;

3. if no band in B set is available, assign to the CPC the band used by
the farthest interfering CPC from itself;

4. update the available bands pool of each neighbor CPC;

5. select the next CPC with the maximum number of available bands.
In case of a tie, choose the most interfered CPC. If there is still a tie,
choose one from them randomly;

6. go to step 1) until all CPCs are allocated.

System performance with the different allocation disciplines are expressed
in terms of p̄drop, mean data packet transmission attempts, ρ̄a, given by the
mean number of access attempts performed, in accordance with the CS-
MA/CA discipline, to achieve a success in packet delivery, averaged over all
the active clusters and, finally, Jain’s index, representing the system fair-
ness. Furthermore, the robustness to estimation errors affecting input data,
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Figure 3.6: Jain’s fairness index performance.

for example due to interference between CPCs pairs, has been taken into
account.
Table 3.1 exhibits the simulation parameters, in which the power threshold
Th and the transmission powerhave been set in accordance with [4] and [50],
respectively. The CPCs have been spatially distributed within the LR-
WPAN area according to a Poisson Point Process (PPP). The network is
assumed with regular circular topology having radius of 10

√
10 m, a number

of clusters n ∈ (0, 100], a number of end-devices for each cluster indepen-
dently selected according to an uniform rule in [15, 60], and a number of TV
white space bands equal to 8 without differences in terms of channel quality.

In performing our analysis we have focused on the case of a set of 8
available TVWS bands to be allocated to a variable number of clusters as
specified in Table 3.1. In addition to this, for the considered CSMA/CA
scheme, we have assumed according to [110], the minimum and maximum
value of the backoff window length (slots), see the Appendix, equal to 23 and
28, respectively. As a consequence, the value of the number of backoff stages
m, results to be equal to 6. Under such assumptions, Figure 3.3 shows p̄drop
for the proposed matching algorithm in comparison with the modified Brelaz
algorithm, PG and RA alternative [26]. The figure highlights, as expected,
a non decreasing behavior of p̄drop with respect to the number of active
clusters for all the considered alternatives. However, the better behavior of
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Figure 3.7: Algorithms robustness performance.

the proposed solution is clearly evident. Specifically, with low CPCs density
values, the modified Brelaz method outperforms the RA scheme by 16%,
the PG approach by 10%, while the proposed approach has a gain of 28%.
Furthermore, in high density conditions, the modified Brelaz improves the
RA scheme by 5%, while the PG by 3%, and the proposed scheme has a gain
of 13% that confirms the superiority of the proposed solution where we have
to face with a huge number CPCs as in an ultra dense scenarios. .

The benefits of the proposed technique in terms of achieved ρ̄a are then
illustrated in Figure 3.4 by increasing the clusters number.

In Figure 3.3, we can note that, for a number of CPCs equal to 60, we
have a gain for the proposed approach of 12%, 19%, 22% with respect to
the modified Brelaz, PG and RA, respectively [26]. In Figure 3.3, by set-
ting a target value for the packet dropping probability equals to 10−2, the
number of supported CPCs for the comparison approaches are 56,49,36, re-
spectively, while the value of 74 CPCs is managed by the proposed strategy.
Figure 3.5 shows the p̄drop trend of the proposed algorithm with and without
the post-matching procedure. From this figure it is evident that the alloca-
tion configuration resulting from the proposed matching scheme is close to a
stable matching configuration, especially for small number of CPCs. Differ-
ently, as the number of the CPCs increases, the application of the proposed
post-matching approach improves the performance.
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In order to provide an accurate analysis, the Jain’s index, which is a
fairness measure widely adopted in resource allocation field [100, 218], has
been considered. Therefore, the Jain’s index is defined as follows [26,118]

Definition 4. Let v ∈ Rm+ be a given vector. We can define the Jain’s
fairness index as J : Rm+ → R+ s.t.

J (v) =
(
∑m
i=1 vi)2

m
∑m
i=1 v

2
i

, 0 ≤ J (v) ≤ 1. (3.13)

Figure 3.6 shows the J (v) trend for the proposed approach and the con-
sidered alternatives, as the number of CPCs grows. Since the fairness in-
creases the closer the J (v) gets to 1, Figure 3.6 shows that the proposed
scheme outperforms the proposed comparison methods, for all the consid-
ered number of CPCs.
Finally, Figure 3.7 depicts the influence of the estimation errors in evaluat-
ing (3.1) and I∗j , on the performance in terms of p̄drop for the alternatives
taken into account. In performing our analysis we have modeled the estima-
tion errors as iid Gaussian random variables with standard deviation σ. As
it is evident in Figure 3.7, as σ grows, p̄drop worsen for both the schemes,
however, the proposed scheme achieves better results.

3.1.10 Conclusions

The minimization of the system dropping probability in LR-WPANs per-
forming access with the CSMA/CA discipline has been performed through
the formulation of a two-sided matching framework. The proposed scheme
combines matching theory with a graph coloring method, aiming at reducing
the interefring CPCs and, consequently, the data packet dropping probability
averaged over all the CPCs. More in depth, the proposed algorithm consists
of two sub-procedures: the graph coloring phase, to assign bands only to
non interfering CPCs, the second one in which the graph coloring procedure
is relaxed and it assigns clusters to bands, taking into account the SPC per-
spective. In addition, the framework provides a method to divide unstable
pairs, exchange their respective partners, in case that their swap may pro-
duce a performance improvement. Finally, performance has been provided
also in terms of the Jain’s index and robustness to estimation errors of the
starting conditions.
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3.2 Efficient Matching for Almost Blank Sub-
frames Allocation in Ultra Dense Networks

3.2.1 Motivation
The challenge of the fifth generation (5G) of wireless systems is to overcome
fundamental limits of existing cellular networks. In fact, in the future mobile
networks, increments are expected in mobile data volume and heterogeneity
in technologies and paradigms, whose differences need to be integrated and
managed [18,36]. Ultra-dense networks have been identified as promising way
to massively improve communication capacity and spectral efficiency, since
network densification reduce the transmission distance and large resource
reuse.However, interference in ultra-dense networks still remains a concrete
challenge, due to unpredictable complex nature, compared to traditional
networks, due to the dense and random deployment of network infrastructure
and different association policies [27,167,279].

3.2.2 Contributions
In this subsection the work presented in [27] is discussed, and the proposed
cell-centric solution that allows to mitigate both cross and co-tier interference
analyzed. More in depth,the enhanced inter cell interference coordination
(eICIC) is adopted to limit cross-tier interference, while a new co-tier inter-
ference management strategy is proposed. In fact, eICIC is a low-complexity
technology in which, periodically, a number of subframes are partially muted
using almost blank subframes (ABS) at the macrocell base station (MBS)
to lower the impact on the most vulnerable small cell UE (SUE), [27, 28].
However, in UDNs the close proximity of small cells may provide signifi-
cant levels of interfernece, especially for the edge SUEs [27]. THerefore, a
proper allocation management between ABSs and small cells plays a crucial
role. For all these reasons, a centralized algorithm aiming at minimizing a
novel concept of cross-layer interference metric is proposed. The framework
designed uses the matching theory principles to provide a stable matching
between the set of small cells and the set of available subframes left almost
blank by the macrocell and used by the small cells to communicate with
their most vulnerable users [27]. The proposed solution aims at improving
the throughput of most critical users with an affordable computational com-
plexity [27]. The effectiveness of the proposed scheme has been verified in
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comparison with benchmark methods [27].

3.2.3 System model
A heterogeneous network where many small cells are densely deployed in
the macrocell area, operating on the same frequency band, is considered.
Furthermore, a CloudRAN approach is assumed, in which cells are handled
by a central entity. Homogeneous Poisson point processes have been used to
deploy Small cells and UEs within the network area. The UEs in each cell are
divided in two sets depending on their received power, i.e., critical UEs and
non-critical UEs [27]. The presented work focuses on the critical UEs, which
experience a signal-to-noise-ratio (SNR) lower than a given percentile [27].
Let S be the set of S small cells in the area, while Us and Us represent the
set and the number of critical UEs in the s-th cell, respectively [27]. To limit
the cross-tier interference, an eICIC based discipline is applied, for which
the macrocell does not transmit data in the periods during which small cells
communicate with the most vulnerable UEs. In practical terms, since in
dense small cells scenarios the co-tier interference occurs inevitably when
two nearby small cells access the same ABS simultaneously, the assignment
of different ABSs to interfering cells becomes of paramount importance. We
assume to have a set R of R available ABSs (or ABSs’ portions), with R < S

and each small cell can use only one ABS to communicate with its critical
UEs, hereafter referred to simply UEs. Let Sr be the set of small cells which
use the r-th ABS, the goal of the proposed approach is to detect the sets Sr
that optimize system performance through the matrix M, whose dimensions
are S × R,in which the generic element, ms,r, is one if the r-th channel
is assigned to the s-th small cell, zero otherwise. As direct consequence,
the u-th UE connected to the s-th cell has an average signal to noise plus
interference ratio (SINR) equals to

Γu,s(r) = Pu,s

N +DΥu +
∑

c∈§−{s}

mc,rPu,c
, (3.14)

in which Pu,c is the power received by the u-th user from the c-th small cell,
Υu represents the power received by the u-th user from the macrocell, D
is the macrocell power level reduction in ABSs, and N is the AWGN noise
power.

In order to take into account the quality of service (QoS) of the provided
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connection, we impose that a SUE can communicate only if its SINR value is
higher than a given threshold ΓT , otherwise it is considered to be in outage.
The system throughput is calculated as the sum of the capacities of the
no-outage UEs, normalized by the bandwidth, that is

T =
∑
r∈R

∑
s∈§

ms,r

∑
u∈Us

a(u) log2(1 + Γu,s(r)), (3.15)

with a(u) = 1 if Γu,s(r) ≥ ΓT , a(u) = 0 otherwise.

3.2.4 Problem formulation

The aim of the proposed scheme is to increase the network efficiency in terms
of throughput by reducing the interference among small cells in ABSs taking
into account QoS requirement (i.e., ΓT ) and cells fairness. The traditional
UE-centric problem formulation is the maximization of the sum-rate of all
UEs in the area, however, the solution of this problem can be computation-
ally unaffordable for a UDN, given the huge number of UEs and base stations.
Indeed, the central entity should know the actual SINR value of each UE for
each interference scenario. This would require high signaling overhead, high
computational complexity and the algorithm should be performed for every
change in UEs SINR values.

Differently, we formulate a cell-centric problem. In this case, measure-
ments are performed and sent to the central entity only during the set-up
phase: the s-th SBS measures the level of signal (interference) received from
the c-th small cell in a co-channel deployment, Is,c with c = 1, · · · , S and
c 6= s, while Is,s = 0. In particular, we introduce a new cross-layer inter-
ference metric that takes into account both the physical and the MAC layer
interference. The first one considers the effective amount of received interfer-
ence, while the second is an interference abstraction defined as the number
of neighboring users communicating on the same channel [70]. Therefore,
the cross-layer interference defined here, considers the physical interference
experienced by each SBS on a given ABS weighted by the total number of
UEs allocated on that ABS. The minimization of this metric, allow cells
with a higher number of UEs to perceive lower interference levels, and the
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problem can be formulated as

min
M

∑
r∈R

Nr(M)
∑
s∈S

∑
c∈S−{s}

ms,rmc,rIs,c (3.16)

s.t. :
∑
r∈R

ms,r = 1, s ∈ S (3.17)

with Nr(M) =
∑
s∈S ms,rUs the total number of UEs on the r-th ABS.

3.2.5 Proposed solution
In reference to the analyzed problem, the matching theory is applied to
provide a suitable match between the set of SBSs, S, and the set of available
ABSs, R. Under the considered assumptions, each SBS can use only a
single ABS, while different SBSs can use the same resource to improve the
spectrum efficiency. Hence, each ABS can be assigned to one or more SBSs,
but the number of SBSs that can use the same ABS is limited by the mutual
interference. Hence, the proposed centralized algorithm builds a preference
list for each cell over ABSs and a preference list of ABSs over cells. Cells
rank their preferences taking into account the level of received interference,
while ABSs balance the selfish behavior of the SBSs taking into account the
number of UEs communicating on it.

3.2.6 Preference lists
As stated before, matching is performed on the basis of preference lists that
are built by SBSs and ABSs to rank potential matching. In particular, we
indicate with Ps the preference lists of the s-th cell whose elements belong to
R and with Pr the preference lists of the r-th ABS, whose elements belong
to S. The s-th SBS ranks ABSs based on local metric, according to following
the preference function,

fs(r) = −
∑
c∈S−s

Is,cmc,r r ∈ R (3.18)

that is, each SBS ranks the ABSs based on the PHY-interference (i.e., level
of received interference). Hence, Ps is given by the indexes (r) of fs(r)
sorted in descending order. Similarly, the r-th ABS ranks SBSs based on the
number of UEs allocated on it

fr(s) =
∑
c∈S−s

mc,rUc + Us s ∈ S (3.19)
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hence, the ABS takes into account the MAC-interference i.e., the number of
UEs communicating on a given ABS, thus giving less utility to SBSs with
few UEs. Pr is given by the indexes of fr(s) sorted in descending order. It
is clear that SBSs preference over ABSs set depends strictly on the SBSs
already allocated, and both ABSs and SBSs preference lists change during
the matching game. Moreover, these are mutually influenced by previous
assignments, resulting in interdependencies and correlations among the pref-
erences. In order to deal with such conditions, the preference list of each
element in both involved sets have to be updated upon each assignment.
This type of matching game belongs to the matching game with externali-
ties class [105].

3.2.7 Proposed Matching Strategy
The proposed algorithm builds iteratively the outcome matching as follows

1. Each r ∈ R and each unassigned s ∈ S build their own preference list,
Pr and Ps respectively, according to (3.19) and (3.18);

2. each unassigned s ∈ S sends a match proposal to its most preferred
ABS rs, that is the element in first position in its preference list (i.e.,
rs = Ps(1));

3. let A be the ABSs set that receive one or more allocation requests from
the interested SBSs, A ⊆ R. Each z ∈ A selects its favorite matching
proposal sz among those submitted, that is the request that occupies
the highest position isz on its preference list;

4. let F be the set of the indexes of the favorite matching proposals
received by the A elements, F = {isz}z∈A. The algorithm selects
the minimum index in F , that identifies the most satisfied assignment
among the current possibilities. More in depth, supposing juv = minF ,
the new allocation is the (u, v) pair.

5. the SBS u is deleted from the set of the unallocated SBSs;

6. steps 1)− 6) are repeated until all SBSs are allocated.

In the matching problems with externalities, the stability analysis is a
very complex and challenging issue. In this respect, there exist many stability
definitions, and in this paper we consider the following one, known as the
two-sided exchange-stability (2ES) [35].
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Definition 5. LetM be a given matching, and letM(s) be the ABS partner
of the SBS s in the matchingM,M is a 2ES matching if there not exists a
pair of SBSs (s1, s2) s.t.:

1. Ps1(M(s2)) ≥ Ps1(M(s1)) and

2. Ps2(M(s1)) ≥ Ps2(M(s2)) and

3. PM(s1)(s2) ≥ PM(s1)(s1) and

4. PM(s2)(s1) ≥ PM(s2)(s2) and

5. ∃z ∈ {s1, s2,M(s1),M(s2)} s.t. at least one of the previous conditions
is strictly verified.

The above definition expresses that both SBSs and ABSs involved in the
swap have to get benefit from the swapping. In this paper we provide a
post matching procedure to provide a stable outcome matching according
to Definition 5. More in depth, the post matching procedure acts on the
allocation matrix M resulting from the application of the proposed matching
strategy, and its behavior can be summarized through the following steps:

1. each s1 ∈ S attempts the swap with each s2 ∈ S ′, where S ′ is defined
as S ′ = S \ {s1} ;

2. for each pair (s1, s2), conditions 1)− 5) of Definition 5 are evaluated;

3. if at least one of the conditions 1)−5) of Definition 5 results unverified,
the swap is denied;

4. otherwise, if all the conditions 1)− 5) of Definition 5 are satisfied, the
matching is redefined as

M =M\ {(s1,M(s1)), (s2,M(s2))}⋃
{(s1,M(s2)), (s2,M(s1))};

5. repeat previous steps until there not exists in M a pair (s1, s2) for
which the swap is allowed.
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Figure 3.8: Cross-layer interference metric vs S, when R = 4 and ΓT =
−2dB.

3.2.8 Numerical Results
In order to properly test the behavior of the proposed framework, a dense
scenario consisting of a variable number of small cells with mean value in the
range [10− 50], deployed on squared area whose side is 100 m, is considered.
Small cells transmitted power is 26 dBm and the pathloss exponent is 3.9.

According to the 4G standard, the number of ABSs per frame should be
assumed in the range [1, 3] [5]. Here, we suppose that also half-subframe
can be assigned to a cell, hence the number of considered ABS, R, is in the
range [2, 6]. Moreover, we focus on performance of the most critical UEs
that are usually allocated on ABSs. In particular, we consider the UEs in
each cell that receive a SNR lower than the 20-th percentile1. Simulation
outputs of several realizations have been averaged to make the results inde-
pendent on the particular distribution of UE devices and small cells. To
validate the efficiency of of the proposed scheme in terms of throughput in-
crease we consider three different benchmark methods: (i) the Round Robin
that successively assigns ABSs to the cells with a circular order; (ii) the
graph-coloring approach based on Brelaz algorithm [222] that tries to assign
different colors (i.e., ABSs) to interfering cells; (iii) the solution based on
potential game, specifically proposed in [282] for ABSs allocation in UDNs,

1Different percentiles have been evaluated, but the general behavior of the proposed
scheme is not affected by this value.
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Figure 3.9: Mean throughput per UE (ΓT = −2dB) vs S, when R = 4.

Figure 3.10: Mean throughput per UE (ΓT = −2dB) vs R, when S = 30.
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where for a given number of iterations, a randomly selected cell choices the
ABS that senses as less interfered.

First of all, we want to show the behavior of the cross-layer interfer-
ence metric, as defined in Sect. 3.2.4, that is the utility function we want
to minimize. This is shown in Figure 3.8 as a function of the number of
cells in the reference area, in comparison with benchmarks. We can see that
the proposed matching algorithm (PMA) performs better than the alterna-
tives, especially for a high number of SBSs. As a consequence, the proposed
scheme always achieves higher throughput, especially for a high cell den-
sity. This can be seen from Figures 3.9 and 3.10 where the actual effect of
the interference on the critical UEs is evaluated by means the average user
throughput calculated as the system throughput defined in (3.15) normal-
ized to the number of critical UEs in the area. This is shown as function
of the number of cells when R = 4 in Figure 3.9 and as a function of the
number of ABSs when S = 30 in Figure 3.10. The proposed method has a
significant gain in comparison with benchmark methods, and it is possible
to observe that the minimization of the selected utility function corresponds
to the increase of the system throughput. This is because the considered
cross-layer interference metric takes into account not only the level of inter-
ference among cells, but also how many UEs are subject to a given level of
interference, thus increasing the throughput (i.e., reducing the interference
on a cell that has few users is less useful than reducing the interference on
a cell that has a higher number of UEs). Differently, previously proposed
methods are based only on the physical level of interference received by the
cells: a binary model in Brelaz and a generalized interference model (with
different interference layers) in Potential Game. The proposed matching al-
gorithm performs well also in terms of outage as shown in Figure 3.11. In
particular, in this figure the outage of PMA and Potential Game strategies
is provided as a function of ΓT for different values of S and R. We can see
that the PMA always outperform Potential Game, even if for a reduced num-
ber of cells and channels (i.e., few degrees of freedom) the two algorithms
have almost the same performance. As expected, the outage increases as the
QoS requirement becomes more stringent. As only one ABS can be assigned
to each SBS for communicating with its critical UEs (i.e., each ABS has a
fixed number of physical resources - PR - that can be assigned to UEs), it is
important that UEs in densely populated cells experience higher SINR and
hence higher throughput per Hz. In this way, even if the number of PRs
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Figure 3.11: UEs in outage vs ΓT for different values of S and R.

for UEs is lower than in the other cells, the throughput per PR is higher.
This allows a fairer distribution of the throughput among UEs of different

cells. This is shown in Figure 3.12 where the Jain index
(

(
∑

i
xi)2

n
∑

i
x2
i

)
of the

averaged throughput of the cell normalized to the number of UEs per cell is
shown. As expected the proposed method presents the highest fairness.

3.2.9 Conclusions

Network densification is one of the key technologies to achieve improvements
of communication capacity in 5G wireless systems. Despite the promising
communications performance, the close proximity resulting from densifica-
tion makes interference a challenging issue. In order to limit this problem, a
solution to reduce both cross and co-tier interference is proposed. In partic-
ular, eICIC is adopted to limit cross-tier interference, and a novel strategy
based on matching theory principles is designed to assign almost blank sub-
frames allocation to small cells, thus managing also the co-tier interference.
A new cross-layer interference metric is proposed to catch both the level of
received interference and the number of users in the cells. The suitability
of the proposed method has been proved in terms of different metrics in
comparison with benchmark methods.
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Figure 3.12: Jain index (fairness) of the average user throughput among
cells.

3.3 A Low Complexity Matching Game
Approach for LTE-Unlicensed

3.3.1 Motivation
One of the most crucial problem in modern networks is the scarcity of avail-
able spectrum [139], caused by the ever-growing demand of intensive appli-
cations and the diffusion of the novel network paradigms such as IoT, LTE
assisted, V2V communications [61], and so on. Recently, the LTE-Unlicensed
(LTE-U) standard has gained momentum as technology to offload cellular
traffic to the unlicensed bands[7], by performing Carrier Aggregation (CA)
methodology, typical of the LTE-Advanced (LTE-A) [7]. Despite LTE-U
provides higher bit rate and bandwidth, spectral efficiency, seamless services
and coverage, its uncontrolled application causes significant disadvantages
to unlicensed users. As consequence, carrier aggregation assignment mode
in the unlicensed spectrum is still an open issue [139].

3.3.2 Contributions
This study, resulted in paper [58], investigates the resource allocation prob-
lem with the LTE-Unlicensed technology, aiming at increasing unlicensed
system performance. The aim of the work is the maximization of the un-
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licensed overall network sum rate. The problem is formulated as a many-
to-many matching game between UEs and component carriers (CCs), i.e.,
channels, according with the CA specifications. Differently from [94], this
work proposes a more realistic approach since paper [94] assumes the com-
plete knowledge about the unlicensed system conditions, which is not a
truthful hypothesis. As consequence, we only suppose that each UEs has
knowledge about the signal-to-interference-plus-noise-ratio (SINR) on each
channel. Within this context, a matching based algorithm for the resource
allocation problem in 5GHz spectrum has been proposed.

Summarizing, the contributions are given by

• Formulation of the resource allocation problem in the unlicensed spec-
trum, adopting the LTE-U technology;

• Design of a low complexity matching theory based algorithm to perform
a many-to-many relationship between UEs and channels;

• Algorithm choices selection aiming at minimizing the inter-cell inter-
ference (ICI), through an approximated interference factor detecting
the mutual interference level between the small cells.

• Extensive numerical simulations to validate the behavior of the pro-
posed solution, in comparison with the well known Hungarian algo-
rithm (HA).

3.3.3 System Model

The reference scenario, as depicted in Figure 3.13, is composed by a het-
erogeneous cellular network consisting of femtocells, picocells, a set of UEs
UE = {ue1, . . . , uen}, and a set of unlicensed small cells (uSCs) SC =
{sc1, . . . , scm}. The uSCs are arranged for transmission in the unlicensed
spectrum, and each UEi is served by its closest uSC scj . The set of unli-
censed channels is given by CH = {ch1, . . . , chl}. Let p and q be the capacity
of each uSC and channel, respectively, expressed as the maximum number
of UEs connected to a particular uSC and the maximum number of UEs
allocated on a channel, for each uSC. Furthermore, each UE can request up
to 2 CCs in the unlicensed spectrum, in addition to its standard licensed
band. The bandwidth of each CC has been assumed of 20MHz, and the UEs
distributed with the Poisson Point Process (PPP).
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Figure 3.13: Reference network composed by UEs and SCs, where each UE
is served by one and only one SC

Assuming that each UE uei is served only by uSC scj , the received signal-
to-interference-plus-noise ratio (SINR) Γyi,j from scj to UEi, given a channel
chy can be defined as [58]

Γyi,j =
Pjgj,i

N0 +
∑
k∈Φ Pkgk,j

, (3.20)

where Pj represents the uSC transmission power, gj,i is the channel gain,
and Φ is the set of interfering uSCs. Furthermore, N0 expresses the noise
term.

I t is important to highlight that the interference in (3.20) is estimated
considering that the interference generated by the eNB of the k-th uSC is
the same for all the UEs belonging to the k-th uSC. This is reasonable,
because the scenario considered is highly densified with a limited coverage
area. Therefore, considering an unlicensed channel chh and the set of uSCs
that have at least one own subscriber allocated on chh, i. e., Sh, the following
condition has to be verified [58]

dh(scd, sce) ≤ thr, ∀d ∈ Sh, d 6= e, (3.21)

in which dh(d,e) is the interference power between two uSCs, and thr is the
maximum acceptable mutual interference level between two interfering uSCs.

The inequality in (3.21) rules the ICI factor. Let scs be the small cell
such that scs ∈ Sh with t UEs allocated on chh. We have that if t = 0, chh



50 Interference Management with Matching Theory

is free, while if t < q, then chh is undersubscribed. Differently, if t = q, chh
is full, otherwise, if t > q, then chh is oversubscribed.

3.3.4 Problem Formulation

The resource allocation problem in LTE-U systems has been formulated as
the maximization of the incremental network sum rate, as

max
Nj,y

∑
y∈CH

∑
j∈Sh

∑
i∈I(j)

Wy

Nj,y
log2(1 + Γyi,j), (3.22)

s.t.:
Nj,y 6 q, ∀j = 1, . . . ,m, ∀y = 1, . . . , l, (3.23)

n∑
i=1

δi,j ≤ p, δi,j ∈ {0, 1}, j = 1, . . . ,m, (3.24)

dy(scd, sce) ≤ thr, ∀scd, sce ∈ Sy, d 6= e, y = 1, . . . , l, (3.25)

Γyi,j ≥ Γmin,∀i = 1, . . . , n, ∀j = 1, . . . ,m, ∀y = 1, . . . , l (3.26)

Pj,igj,i ≤ Θ, ∀i = 1, . . . , n, ∀j = 1, . . . ,m, (3.27)

in which I(j) is the set of UEs supported by uSC j on channel y. Then, Wy is
the channel bandwidth and Nj,y is the set of UEs allocated on channel y, and
served by uSC j. Furthermore, δi,j is a binary value where δi,j = 1 if UEi
is served by scj and δi,j = 0 otherwise. In addition, constraint (3.23) and
(3.24) represent that the number of UEs allocated on a given channel, under
a certain uSC, and the number of UEs that an uSC can serve are both upper
bounded. Similarly, the inequality in (3.25) is referred to the upper bound
on the acceptable interference power. Finally, constraints (3.26) imposes
the minimum value of SINR for each UEs, while in (3.27) we protect the
unlicensed system, by requiring that the UEs’ interference is less or equal to
the thermal noise Θ.
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3.3.5 Algorithm Characterization
The student-project-allocation algorithm (SPA) algorithm [11], belonging to
the whole class of matching algorithms, consists of a set of lecturers who
offer a range of projects to a set of students who apply for them.

In our problem the set of lecturers are identified by the uSCs, while the
projects are the unlicensed channels. Finally, students are the UEs.

The proposed algorithm, hereafter referred as asymmetric-SPA (A-SPA),
achieves a many-to-many matching between the UEs and channels, according
to the constraints of the optimization problem. For each channel, each UE
measures the SINR as in (3.20), and builds its own preferences list by sorting
the resulting values in descending order. In the initial phase of the A-SPA
algorithm, all the UEs are unallocated. Then each UE proposes its allocation
on its most preferred channel. Let chr be the channel submitted by UEi
connected to the k − th uSC. The UE UEi is temporarily allocated on the
proposed channel chr if one of the following condition is satisfied [58]

1. chr is free;

2. chr is full or undersubscribed and on channel chr there is at least one
UEj connected to uSC k;

3. chr is full or undersubscribed, on channel chr there is no UEj connected
to uSC k and the latter doesn’t interfere excessively with the other uSCs
of each UEj present on chr;

4. chr is full or oversubscribed but the SINR value associated to UEi is
greater than the worst SINR value associated to the other UEs cur-
rently allocated in chr.

Let x be the UE in UEc̄h
s̄c with the lowest SINR value; this value is com-

pared with the SINR value of UEi. The UE associated to the worst SINR
value is then scheduled for reallocation during the next round and it is re-
placed with UEi. In the channels allocation process, we take into account
the power interference threshold. The same procedure is repeated until all
the UEs are not allocated.

3.3.6 Numerical Results
The system performance evaluation is provided by comparing the proposed
A-SPA algorithm with the HA, the well-known combinatorial optimization
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Figure 3.14: Total system throughput

algorithm to solve the assignment problems [185]. The considered reference
network is a circular cellular network highly densified, consisting of N ∈
[0, 400] UEs, K = 5 uSCs, M = 16 unlicensed channels to 20MHz. The
SINR value was assumed as a uniform random distribution within [10, 35] dB.

Figure 3.14, shows the comparison between the A-SPA and the HA in
terms of overall system throughput. As it is straightforward to note, the
HA performs slightly better than the proposed A-SPA algorithm, and the
two algorithms have approximately the same achieved throughput and their
results are very close to each other. Also performance in terms of robustness
to perturbed input data is almost the same for both algorithms, as shown in
Figure 3.15. Finally, Figure 3.16 exhibits the trend of system throughput as
a function of the number of uSCs, and it shows that a low UEs-to-SCs ratio
is better than a higher ratio. The major difference between HA and A-SPA
is strongly tangible when we consider their computational complexity: the
HA presents an original complexity of O(n3), become O(n4) considering the
CA mechanism, while the proposed A-SPA has a computational complexity
equals to O(n2). Thus, despite the two algorithms have similar performances
as regards system throughput, the remarkable gap between time complexity
highlights the efficiency of the A-SPA. The expressions of complexity for
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Figure 3.15: Total system throughput with perturbed input data

both A-SPA and HA are respectively

nUE(nSC + nUE) + nUE
2 (nSC + nUE) + S(nUE2 ) ≈

≈ O(n2
UE)

(3.28)

and
nSC + nUE + nUE + nUE + nUE + nUE(n3

UE) ≈
≈ O(n4

UE)
(3.29)

where nUE and nSC are respectively the number of UEs and uSCs.

3.3.7 Conclusions
In this work a many-to-many matching algorithm has been proposed to ad-
dress the resource allocation problem in LTE-U networks. We have proposed
a modified version of the SPA algorithm which has the similar performances
in comparison to the HA, as regards the system throughput and robustness.
However, the HA exhibits a higher computational complexity, resulting in
a lower adaptability to dynamic contexts. Therefore, the proposed A-SPA
scheme represents a more efficient alternative to the HA for the resource
allocation problem in mobile networks.
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Figure 3.16: Algorithm scalability increasing the number of small cells



Chapter 4

Computational Offloading with
Matching Theory

The more I practice, the luckier I get.

Jerry Barber

4.1 A Matching Theory Framework for
Tasks Offloading in Fog Computing for IoT
Systems

4.1.1 Motivation
Fog computing is an emerging paradigm that extends cloud computing to the
network edges. In particular, fog computing refers to a distributed comput-
ing infrastructure confined on a limited geographical area within which some
IoTs applications/services run directly at the network edge on smart devices
having computing, storage, and network connectivity, named fog nodes, with
the goal of improving efficiency and reducing the amount of data that needs
to be sent to the cloud for massive data processing, analysis and storage [57].
In particular, with the aim at efficiently enabling tasks computation offload-
ing, several approaches have been proposed in the literature.

Recently, the advances in the IoT applications and services have produced
a deeply modification of this scenario. Despite the data centre approach al-

55
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lows fast tasks computations, the latency of communications between the
CC and the end devices (EDs) makes the CC solution not affordable, espe-
cially for EDs located at the network borders. Furthermore, in novel IoT
scenarios as industrial applications, smart grids, smart building, intelligent
transportation systems and video surveillance to name the few, we have to
take into account the huge amounts of data generated from a high number
of sensors and other devices [34,86,288]. The integration of FC in IoT based
systems implies many advantages for all the IoTs applications where a low
latency is essential in taking decisions and actions. In this context, the main
problem to face is the identification of a suitable policy to efficiently handling
the tasks offloading from EDs to the fog nodes (FNs) [67,153,188,232,233].

4.1.2 Contribution

The strategy presented to offload computationally intensive tasks from EDs
to FNs, has been originally proposed in [57]. The main goal here is to provide
an effective, low complexity and distributed algorithm to offload computa-
tion intensive tasks originated at the EDs level to FNs, by considering all
tasks with the same priority. Differently from previous approaches [53,220],
the tasks offloading problem is modeled as a matching game with externali-
ties reaching a stable configuration of the outcome tasks offloading solution.
In particular, a distributed matching algorithm to minimize the worst total
task completion time has been designed.The existence of a direct link be-
tween any couple of EDs and FNs has been assumed and the performance
comparisons with different tasks offloading schemes is also provided in order
to highlight the advantage of the proposed technique and its suitability to
pursuing an efficient tasks offloading in FC for IoT applications with low la-
tency requirements. Furthermore, comparisons with the GT based approach
presented in [220] is given in terms of time complexity and signaling overhead
in order to further pointed out the advantages of the proposed method.

4.1.3 System Model

For the sake of simplicity, in what follows, the boldface letters denote ma-
trix and vectors. In particular, with capital letters we denote matrix and
with lower-case letters vectors. All vectors, if not specified, are column-wise
vectors. The considered scenario, depicted in Figure 4.1, consists of a set F
of FNs, with cardinality n, i.e., |F| = n, equipped with a central processing
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Figure 4.1: Reference Scenario.

unit (CPU) with a different computational capability and storage capacity
on board. Furthermore, a pool of tasks J , with |J | = m has been consid-
ered, in which each task belongs to a certain application type, with the set
of applications types denoted by T , with |T | = ν. For readability, i is the
index on F , and j the index on J . Finally, u represents the index on T .
Supposing J originated by a set of EDs interested in offloading computa-
tional intensive tasks to FNs, a fixed position for EDs and FNs are assumed.
The overall run time of tasks offloaded to FN i is defined as

τi = aTi ti + g(aTi Θ)cmiss
i + (aTi Θ− g(aTi Θ))chiti , (4.1)

where Θ ∈ Rm×t, with entries θj,u equal to 1, if tasks j is of type u, zero oth-
erwise. In addition, ti ∈ Rn is the vector of the execution time with entries
tj,i denoting the time required to execute task j on FN node i. Moreover,
cmiss
i ∈ Rt is the caching cost vector, denoting the additional time required

to retrieve a given application on FN i having a cache miss [112]. Likewise,
chiti is the time in case of a cache hit [112]. Furthermore, ai ∈ Rm is the
allocation vector of FN i, for which the j-th entry is 1 if task j is allocated
on i or 0, otherwise. Finally, g(·) in (4.1) is defined as

g(ρ) =
{

0 ρ = 0;
1 ρ ≥ 1. (4.2)
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Therefore, in order to evaluate the overall completion time of the task j,
we have also to take into account the communication cost that, for the
purposes of our analysis, we consider only due to the network delay ξij ,
derived according to [53], related to the link between the ED requiring the
offloading of task j and the selected destination FN i. Hence, the overall
completion time for the task j results to be

ψj =
n∑
i=1

(τi + 2ξij)γj,i, (4.3)

where γj,i is a binary function that is equal to 1 if task j is assigned to FN
i, zero otherwise.

In performing the proposed analysis, the constraint that all the tasks
have to be offloaded has been imposed. As a consequence, we must have

n∑
i=1

ai = 1, (4.4)

where ai represents the allocation vector of FN i defined before and 1 a
vector with all entries equal to 1.

4.1.4 Problem Formulation
In order to enable real time applications, the worst total completion time
minimization problem has been formulated as

min max
j∈J

ψj (4.5)

s.t.
n∑
i=1

ai = 1, (4.6)

It is straightforward to note that the tasks offloading problem represented
in (4.5) and (4.6) exhibits high computational complexity that makes pro-
hibitive the use of any centralized method. This motivated the design of a
self-organized approach, in which tasks and FNs establish a suitable compu-
tation resources pooling, interacting each other without the intervention of
a central coordinator. As a consequence, we propose here a matching game
method by taking into account specific context information, as the expected
task completion and waiting time that depend on the outcomes of the com-
putation offloading process at each processing step. The proposed approach
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aims at providing a computation offloading strategy capable of minimiz-
ing the worst task total completion time and achieving, in comparison with
other alternatives, better results also in terms of mean task waiting, mean
total task completion time and fairness. Furthermore, we also demonstrate
that the proposed tasks offloading strategy gives rise to a stable matching
according to the Definition 6 given in the next Section.

4.1.5 Proposed Solution and Algorithm

Let J and F be two sets of players. A matching game is the pair (J ,F)
on which are defined two preference relations �j , �i allowing each player,
i.e., a task j ∈ J to be offloaded, to express preferences over the opposite
players, i.e., FNs ∈ F , and vice versa.

Let Oj(·) and Di(·) be the utility functions of task j and FN i, respec-
tively. We can say that if Oj(i1) > Oj(i2), task j prefers FN i1 to FN i2
and such situation is expressed by i1 �j i2. Similarly, j1 �i j2 means that
FN i prefers task j1 to j2, hence Di(j1) > Di(j2). Note that, differently
from [80,119,208,260], we have to take into account that in our case, due to
the specific requirements of the tasks offloading problem, the preferences list
of each player are dependent on the others players’ preferences, i.e., the pref-
erence of offloading a task to a given FN is influenced by the number of tasks
already offloaded to that FN [105]. Such class of matching problems is iden-
tified in the literature as matching problems with externalities, meaning that
the players’ choices mutually influence and affect the other agents’ decisions,
by creating interdependencies and correlations among players’ preferences.
As a consequence, the preferences list of each involved participant has to
be updated upon each assignment and, hence, both Oj(·) and Di(·) result
to be time dependent. However, for the sake of notational simplicity, the
dependence on the time index is not made explicit for both Oj(·) and Di(·)
in what follows.

The utility function of a generic task j, Oj(·), is evaluated by considering
the cost of the communication link ξij between the ED interested to offload
task j to a given destination FN, i.e., FN i and the waiting time ωji (ζ) that
the task j has to suffer before being processed if offloaded to FN i at time
ζ. Hence, we have

Oj(i) = 1
ωji (ζ) + ξij

,∀i ∈ F (4.7)
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Likewise, the utility function of a generic FN i, Di(·) is given as:

Di(j) = 1
ωji (ζ) + ξij + tj,i

,∀j ∈ J (4.8)

where the term tj,i denotes the time needed to compute task j at FN i.
From what stated before, the proposed tasks offloading algorithm pro-

vides a distributed procedure to realize a many-to-one matching between the
sets J and F [105]. The proposed algorithm is performed in two main match-
ing steps in order to ensure as final result that all the tasks are offloaded
to the appropriate FNs. The first step begins after the completion of the
neighbors discovery phase by each ED interested in the tasks offloading pro-
cess in order to acquire a context awareness concerning the FNs computation
capabilities and the communication cost towards each possible destination
FN ∈ F . Beside, a modified version of the Deferred Acceptance Algorithm
(DAA) [84, 211] in the many-to-one version [88], is performed to gather a
preliminary matchingM1. Briefly, the modified DAA operates as follows:

• each ED requesting the computation offloading of an intensive task,
i.e., task j, selects the most preferred FN in accordance with �j ;

• each FN i accepts any new task offloading request till the maximum
number χi of tasks computable in parallel at the FN i, is reached;

• If the FN i receives a new task offloading request more preferred than
at least one of those already accepted, when the χi value is already
reached, the FN i rejects the less preferred task offloading request
among those ones previously accepted (based on �i) and accepts the
new one.

• whenever an ED suffers a task offloading rejection from a FN, differ-
ently from the DAA implementation, it does not delete that FN from
its preference list.

After the completion of the first step the FNs send out to the EDs an
updating for the waiting time suffered by the next (if any) submitted task
offloading request.

Hence, the second step of the proposed algorithm is performed as follows:

1. each ED having a task, i.e., task j, not already offloaded, evaluates
Oj(i), ∀i ∈ F ;
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2. each FN i evaluates Di(j), for ∀ task j not already offloaded ∈ J ;

3. each ED having a task, i.e., task j, not already offloaded submits the
offloading request to its top-ranked FN in compliance with �j ;

4. each FN i receives the task offloading requests from the interested EDs
and selects its favorite one among those submitted;

5. FNs send out an updating for the waiting time suffered by any new
submitted task offloading request, hence, each interested ED repeats
1) until each task offloading request is satisfied.

4.1.6 Stability Analysis
In accordance with the standard MT [35], we have that the proposed tasks
offloading algorithm is stable if it results to be a two-sided exchange-stable
(2ES) matching, according to the following Definition 6.

Definition 6. A given outcome matching µ is a 2ES matching iff there not
exist a pair of tasks (j1, j2) s.t.:

1. Oj1(µ(j2)) ≥ Oj1(µ(j1)) and

2. Oj2(µ(j1)) ≥ Oj2(µ(j2)) and

3. Dµ(j1)(j2) ≥ Dµ(j1)(j1) and

4. Dµ(j2)(j1) ≥ Dµ(j2)(j2) and

5. ∃z ∈ {j1, j2, µ(j1), µ(j2)} s.t. one of the previous conditions is strictly
verified.

More in general, the 2ES matching definition given in Definition 6 implies
that two EDs can modify their tasks offloading decisions only if both get
advantage from the swapping. In the same way, if two FNs want to swap
two tasks offloading requests, the involved EDs have to get advantage on
this. Briefly, a swap is allowed only if both the involved players, i.e., FNs
or EDs requesting tasks offloading, strictly improves their utility. Hence,
we verify below that the proposed tasks offloading procedure reaches a 2ES
matching according to Definition 6.

Let A1 be the set of tasks offloaded at the end of the first step of the
proposed strategy. It can be easily noted that the cardinality of A1 is an
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integer with values ∈ [1,
∑n
i=1 χi]. Without loss of generality, we can say

that ∀ offloaded task j ∈ A1, the associated EDs cannot modified their tasks
offloading decision (all tasks ∈ A1 are stably offloaded to the appropriate
FNs) due to the fact that Oj(·) and Di(·), defined as in (4.7) and (4.8),
cannot change because all the terms on which they depend remain constant
with respect to any possible swap.
Now we show that also for each task j̄ that remain to be offloaded at the
end of the first step of the proposed algorithm, i.e., ∀j̄ ∈ A2 = {J \A1}, we
have a stable matching by providing a reduction ad absurdum.

We start our analysis by assuming that at the time instant ζ∗ of step 2
completion, i.e., all tasks have been offloaded to FNs, there exists a tasks
pair (j1, j2) s.t. conditions 1)− 5) of Definition 6 are verified. Therefore, by
focusing on the condition 1), we must have

Oj1(i2) ≥ Oj1(i1) (4.9)

By supposing that j1 and j2, at the allocation time ζ, with ζ < ζ∗, are
offloaded to FNs i1 and i2 respectively, we must have Oj1(i1) ≥ Oj1(i2),
hence,

1
ωj1
i1

(ζ) + ξi2j1

≥ 1
ωj1
i2

(ζ) + ξi2j1

(4.10)

As a consequence, we must have ωj1
i1

(ζ) = ωj1
i2

(ζ∗), otherwise (4.9) would
be impossible, because at its second step the proposed algorithm does not re-
move any previous accepted task offloading request and, hence, the expected
waiting time on a given FN could not decrease. Likewise, we can perform the
previous analysis by focusing on the conditions 2)− 4) of Definition 6 again
having at the end that it must be ωj1

i1
(ζ) = ωj1

i2
(ζ∗). As a consequence, we

have that the condition 5) of the Definition 6 cannot be verified. This contra-
dicts our assumption and, hence, we can conclude, according to Definition 6,
that the proposed tasks allocation algorithm is a 2ES matching.

4.1.7 Numerical Results
The good behavior of the proposed computation offloading strategy is high-
lighted here by providing numerical results derived by resorting to extensive
computer simulations. In particular, for each performance result point we
have considered 103 independent simulation rounds with randomly located
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Figure 4.2: Worst task total completion time comparisons.

Figure 4.3: Mean task waiting time comparisons.
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Figure 4.4: Mean task total time comparisons.

Figure 4.5: Jain’s index comparisons.
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Figure 4.6: Time complexity comparisons.

EDs and FNs to get the mean value [112, 135, 210]. Specifically, the sys-
tem conditions have been stressed considering as simulation parameters a
number of FNs n = 5, t = 15 application types, a total number of tasks
m ∈ {100, 1000} each consisting of a uniformly distributed number of in-
structions within the interval [10000, 50000]. The spacial distribution of FNs
and EDs within a circular area of radius 100 m has been modeled according
to a Poisson Point Process (PPP). In order to test the validity of the proposed
tasks offloading scheme in an actual environment, we have considered a x86
Intel Sandy Bridge as FNs architecture. More in depth, we have evaluated
the performance of the proposed tasks offloading scheme by assuming that
FNs may be equipped by a CPU selected with an equal probability among
five possible Intel processor cores alternatives: the Core i7, Core i5, Core i3,
Pentium and Celeron, with a CPU clock rate of 3.6GHz, 2.7GHz, 2.4GHz,
1.9GHz, 2.8GHz, respectively. Our performance analysis has been carried
out by provided numerical results related to the worst total task completion
time (T̄M ). However, for the performance analysis completeness, we have
considered also the evaluation of the mean task total completion time (T̄T ),
the mean waiting time (T̄W ) and the Jain’s index (IJ), defined as:

Definition 7. Let v ∈ Rk+ be a given vector. The Jain’s fairness index is
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defined as IJ : Rk+ → R+ s.t.

IJ(v) =
(
∑k
l=1 vl)2

k
∑k
l=1 v

2
l

, 0 ≤ IJ ≤ 1. (4.11)

Note that the fairness increases the closer the IJ gets to 1. In order to
highlight the better behavior of the proposed tasks offloading scheme, we
have considered, for comparison purposes, a Greedy algorithm based on the
nearest FN criterion (GANC), according to which each ED offloads its com-
putation on the nearest FN1, and a random approach (RAND) according to
which each ED randomly offloads its intensive computation task to one FN
∈ F . Furthermore, we consider also for comparison purposes the approach
outlined in [220], named hereafter as potential game. In this case, differently
from [220], we have considered that EDs can offload their tasks computation
only to FNs with the goal of minimizing T̄T .

The results given in Figure 4.2 highlight the better performance of the
proposed algorithm in terms of T̄M in comparison with the GANC and the
potential game methods. From this follows that our matching strategy al-
lows to match more strict real time task constraints than the considered
alternatives. Likewise, the better behavior of the proposed tasks offloading
scheme is again evident in Figure 4.3 and Figure 4.4 in terms of T̄W and
T̄T , respectively. Moreover, from these figures, it is possible to note that the
GANC scheme gives rise to a significant increase of T̄W and T̄T for medium
to high values of the parameter m, while the proposed approach ensures
better performance for all the considered m values. It is also evident in
these figures that the proposed solution overcomes all the other offloading
alternative methods.

Figure 4.5 shows the performance of the proposed tasks offloading scheme
in comparison with the alternative approaches in terms of the Jain’s index.
This figure depicts the good behavior of the proposed scheme by guaran-
teeing a Jain’s index value closer to 1 w.r.t. GANC and potential game
alternatives, for all the considered tasks offloaded values. We stress that this
result highlight that our algorithm provides a quite well-balanced total com-
pletion time for all the offloaded tasks, avoiding performance degradation
due to workload peaks (i.e., congestion) on some FNs. However, it is also
evident from our results that the potential game has performance slightly

1The spacial distribution of EDs and FNs modeled as a PPP favors the GANC criterion,
avoiding significant imbalances as regards the offloading requests.
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worst than the proposed approach. In this respect, in order to complete
our analysis, we verify below that the proposed method clearly outperforms
the potential game alternative (even in its low complexity implementation,
named suboptimal potential game in [220]) in terms of time complexity and
signaling overhead. We start our analysis by evaluating the computational
complexity and signaling overhead of the proposed algorithm. Towards this
end, we focus on the worst case occurring when each FN has a capacity equal
to 1 and the tasks to be offloaded have the same preferences order. Indeed,
under these assumptions, at the end of the first step, the number of allocated
tasks result 1 out of m. Hence, under the assumed worst case hypothesis,
the tasks allocation process is completed in exactly m steps, giving rise to
an overall signaling overhead equal to

m−1∑
s=0

m− s = m(m+ 1)
2 , (4.12)

Likewise, from [220], we have that for the suboptimal potential game the
ε−NE equilibrium is reached with a signaling complexity given by:

m2

ε
(m− 1). (4.13)

From above, it is straightforward to note that, in the worst case, our algo-
rithm requires m steps to converge. The total time complexity is O(mlogm)
while for the suboptimal potential game case it results equal to O(m/ε) [220].

Figure 4.6 compares the time complexity of the proposed method with
that one of the sub-optimum potential game, with ε = 0.01, according
to [220]. This figure highlights a significant gain for the proposed method,
hence confirming the convenience in its use to perform tasks offloading in FC
to support low latency IoT applications where it is also important to lower
the computation complexity and signaling overhead.

4.1.8 Conclusion
This work has provided a distributed DAA based strategy to perform an
effective offloading of computational intensive tasks in FC for IoT systems
enabling low latency applications and services. In the proposed framework,
a many-to-one matching game with externalities has been modeled ensuring
a stable matching outcome, and complexity and signaling overhead analysis
has been discussed. The performance of the proposed approach has been
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evaluated in terms of worst total task completion time, mean task total
completion time, main waiting time and Jain’s index. Performance compar-
isons with a greedy (GANC), random (RAND) and a more recent proposed
method, i.e., the potential game approach, based on the GT, have been
presented in order to validate the good behavior of the proposed solution.
Furthermore, we have also verified that the proposed MT based approach
positively compares with the potential game alternative in terms of compu-
tational complexity and signaling overhead.

4.2 Virtual Functions Placement with Time
Constraints in Fog Computing:
a Matching Theory Perspective

4.2.1 Motivation

The large adoption of the virtualization and infrastructure as a service mod-
els has opened the doors towards heterogeneous service capabilities and re-
sources pervasively distributed and interconnected close both to end users
and physical objects [56]. AS consequence,FC can be viewed as a highly
virtualized platform that provides processing, storage, and networking ca-
pabilities made available by edge nodes (e.g., mobile devices, routers, and
micro data centers) to support the development of distributed applications.
Devices endowed with sensing and actuation capabilities could be consid-
ered nodes that offer specialized services (e.g., acquisition of measurements
from the environment in which they are deployed and, whenever possible or
needed, perform control actions) [18,56].

FC is expected to support services and applications that demand widely
distributed deployments and real-time interactions. Especially in the area of
the IoT, the availability of processing, network and storage resources close
to sensors, actuators and end users can help in coping with low-latency
application requirements, while also partially relieving the central Cloud
from processing big amounts of data [56].

An application deployed on a Fog infrastructure can be conceived as a
set of independent services which cooperate each other to realize the appli-
cation goal, and typically interact in a sequential order, especially in IoT
scenarios demanding for sense-process-actuate workflows [42,56,227]. These



4.2 Virtual Functions Placement with Time Constraints in Fog Computing:
a Matching Theory Perspective 69

services, ultimately composed of atomic services, are expected to be provi-
sioned by software capabilities, i.e., programs, that can be executed on top
of a virtualized resource infrastructure. We refer here to such software ca-
pabilities as Virtual Functions (VFs). It is worth clarifying that a VF may
serve more than one service and, consequently, more than one application.
However, the usage of a VF may differ from service to service, according
to specific applications requirements, and, consequently, it requires different
computation times and resource usage [56]. In this context, orchestration
mechanisms should be put in place to achieve a cost-effective utilization of
infrastructural resources for Quality of Service (QoS) aware deployment and
management of application components (i.e., services) [56, 264]. A major
problem is, thus, how to effectively distribute services to support composite
applications provisioning on top of a Fog resource infrastructure.

4.2.2 Contributions
The contributions of paper [56] are here presented and discussed and, in
first instance, can be identified with the two proposed VFs placement ap-
proaches in a fog domain. The considered solutions formulate a matching
game with externalities, aiming at minimizing both the worst application
completion time and the number of applications in outage, i.e., the number
of applications with an overall completion time greater than a given dead-
line. The first proposed matching game is established between the VFs set
and the FNs set by taking into account the ordered sequence of services
(i.e., chain) requested by each application. Conversely, the second proposed
method overlooks the applications service chain structure in formulating the
VF placement problem, with the aim at lowering the computation complexity
without loosing the performance. Moreover, the strategies aim at minimizing
both the worst application overall completion time and the number of ap-
plications that suffer an overall completion time greater than their deadlines
(outage). Furthermore, in order to complete our analysis, the stability of
the reached matchings has been theoretically proved for both the proposed
solutions. Finally, performance comparisons of the proposed MT approaches
with different alternatives are provided to highlight the superior performance
of the proposed methods. In order to confirm the good behavior of the pro-
posed solutions, in comparison with different alternatives, i.e., greedy and
random algorithms, and a modified version of the potential game presented
in [220], performance results derived by extensive computer simulations are
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presented. Finally, a theoretical proof of the stability of the proposed place-
ment policies has been provided.

4.2.3 Related work
Resource management and allocation problems have been extensively inves-
tigated in the fields of Cloud Computing (CC) [164] and, more recently, of
NFV [113].

Several approaches have been proposed for addressing the problem of op-
timizing the use of physical resources in Data Centers to achieve an effective
placement of VMs onto physical hosts to account for conflicting requirements
on performance and operational costs [164]. Wang et al. [255] address the
problem of service composition in a data center network by formulating a
multi-objective constraint optimization problem that aims at maximizing an
overall QoS utility value, and minimizing network resource utilization. To
this purpose, Anchor [275] is a MT based resource management architecture
that performs VM allocation requests to servers, using both offline and on-
line algorithms, allowing clients and operators to express a variety of distinct
resource management policies.

Herrera and Botero [113] provide a state of the art of resource allocation
strategy for the deployment of network services in VNF enabled network
infrastructures. Several works proposed approaches for VNF placement and
service chaining with the goal of minimizing costs, while fulfilling Service
Level Agreements. Liberati et al. [154] propose a stochastic algorithm based
on reinforcement learning, that maximizes an expected mapping reward in
the long term. The reward function can be formulated to steer the controlled
system towards the desired performance (e.g., costs minimization, load bal-
ancing, maximization of the acceptance rate). Pham et al. [199] address the
problem of VNF placement for deploying service chains on virtual resource
infrastructures, while minimizing both traffic and operational costs. They
propose an approach combining a sampling-based Markov approximation
technique with MT.

Resource management in a FC environment differs from such previous
works on several aspects [42, 228]: i) FNs have limited resources ii) clusters
of FNs are typically distributed on a suitable area, and iii) computation
tasks are typically delay sensitive. Several works have focused on the effi-
cient utilization of resources of the network infrastructure, typically includ-
ing FC, as well as Cloud resources. Brogi and Forti [42] propose a model



4.2 Virtual Functions Placement with Time Constraints in Fog Computing:
a Matching Theory Perspective 71

for representing FC infrastructures and applications and propose a two-step
algorithmic approach for finding eligible deployments for an application into
a FC infrastructure. The proposed approach consists in a pre-processing
phase aiming at reducing the search space and a backward search procedure
that provides an eligible deployment. On the other hand, Foglets [217] is a
programming model and software infrastructure for the deployment of appli-
cations on FC environments which embodies algorithms and protocol for the
discovery and allocation of Fog resources for application deployment. Taneja
and Davy [241] propose a network-aware module, mapping algorithm aim-
ing at guaranteeing efficient resource utilization in distributed application
deployment in a Cloud-FC environment. Both resource nodes and applica-
tion modules are sorted according to the available capacity and requirements.
Moreover, associations are performed whenever QoS constraints are satisfied.
Zhang et al. [288] focus on a resource allocation problem in a FC environ-
ment consisting of a large number of FNs deployed by services providers at
different locations to provide data services to subscribers. They propose a
joint optimization approach that combines Stackelberg game and many-to-
many matching to achieve an optimal and stable performance in the resource
selection and allocation between the FNs, services providers and subscribers.

To the best of our knowledge, applications delay requirements have been
only recently considered in the literature [34, 227, 228]. Specifically, Skarlat
et al. propose in [227] a resource model for a FC architecture and also
formulate a Fog service placement problem that maximizes utilization of FC
resources, while taking into account application QoS constraints, especially
deadlines on the execution time. The problem is formulated as an Integer
Linear Program. These results have been successively extended in [228]
by proposing a genetic-based algorithm heuristics. Finally, Bittencourt et
al. compared in [34] the performance of three different resource allocation
policies (i.e., concurrent, First Come-First Served, and the delay-priority
strategies) in terms of efficient resource utilization and support to application
QoS constraints. Differently from [228], [34] and [227], where an hierarchical
three-layers Fog network2 with the Cloud at the highest level of the network
is considered, we focus here on a two-layers network, without considering the
presence of the Cloud.

Furthermore, differently from [34], in which service processing is allowed
2Due to the different network architecture adopted in [228] and [227], their genetic

and evolutionary approaches cannot be considered as proper benchmark methods for our
approach.



72 Computational Offloading with Matching Theory

just one hop away from the origin of the request, we consider the possibility
to offload the service computation on FNs that are distant more than one
hop from the origin of the request. Finally, as in [34, 227, 228], we associate
at each application a time deadline for the application completion. However,
differently from [227,228], we do not introduce any prioritization mechanism
for the applications, and we do not consider the presence of the Cloud in the
network.

4.2.4 System Model
The problem consists in VFs placement in a network of FNs to accommodate
the requirements of a batch of applications, so that the worst application time
and the number of applications in outage are minimized.

Figure 4.7: Reference Scenario. The EDs request to FNs the computation
of their applications that are constituted by one or more services, each of
which requires a VF.

The reference scenario, as depicted in Figure 4.7, is composed of a set
F of n FNs. Furthermore, the presence of only one FN, among the n in
F , referred as FNs controller (FNC), able to acquire a full knowledge about
the FNs capabilities, applications requirements and able to control all the
FNs of the network, has been assumed. Likewise, supposing a number of
applications equals to m, A = {A1, . . . , Am} denotes the set of applications,
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where each application Aj is associated to a suitable services chain, i.e.,
Aj = {aj1, . . . , ajg}, for j = 1, 2, ...,m, where g is the number of services
that compose Aj , and each service ajk, k = 1, . . . , g exploits a specific VF
belonging to the set V = {v1, . . . , vp}, where p represents the number of VF
types. Moreover, hz, for z = 1, 2, ..., p, represents the occurrence frequency
of the VF vz in the set A. Finally, a time constraint for each application,
i.e., Aj , has been introduced. Such constraint means that Aj has to be
completely executed within a given time deadline dj .
Each vz ∈ V can be loaded on a FN f ∈ F if it has sufficient computational
resource blocks (CRBs) to satisfy the service demand. To this purpose, a
VF vz is associated with the amount rz of requested CRBs. In addition,
each FN f ∈ F is equipped with a central processing unit (CPU), whose
capability is expressed in terms of number of CPU cycles per second cf and
rf available CRBs, with 0 ≤ rf ≤ rMAX, where rMAX is the maximum
number of available CRBs for each FN. As a consequence, the execution
time of the k-th service of Aj requiring vz, on the FN f results to be

tjk,f,vz =
sjk,vz
cf

, (4.14)

where sjk,z is the number of cycles required to execute the service aj using vz.
In order to evaluate the total time demanded by ajk to be accomplished on FN
f , the possibility of experiencing the waiting time ωjf , i.e., the time needed to
complete the execution of all the services, requesting a vz, previously assigned
to FN f , has to be taken into account. Furthermore,the communication
cost of ED j in reaching the desired computation site, i.e., FN f , has been
supposed given by the sum of the following two contributions

1. the communication cost due to link the ED j and its closest FN f∗,
rj,f∗ , and given by the ratio between the size in bits of ajk and the
available transmission rate of the link connecting ED j to FN f∗;

2. the communication cost associated to the intra-cluster connection (i.e.,
among FNs), qf∗,f , given by the sum of the communication cost of the
links that service ajk has to get across in order to reach FN f from FN
f∗.

Hence, the total time T jk,f,z spent by ajk at the FN f before being completed
is

T jk,f,vz =
(
tjk,f,vz + ωjf + rj,f∗ + qf∗,f

)
, (4.15)
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From (4.15), it follows that the overall completion time of application Aj
results in

Cj =
∑

k∈{1,...,g}

∑
f∈F

T jk,f,vzφk,f ; (4.16)

where φk,f is a binary variable equals to 1 if service k is executed on FN
f , or to 0 otherwise. In addition to this, we refer in our analysis to the
forthcoming 5G network with a transmission rate of 1 Gbit/s to estimate
communication costs [13].

4.2.5 Problem Formulation
The main objective of this study is the VFs placement aiming at minimizing
both the worst overall application time and the number of applications in
outage. In formal terms, the optimization problem can be defined as follows

min
Φ

max
j∈A

Cj and min |O| (4.17)

s.t. ∑
j∈A

δj = m, (4.18)

0 ≤ rf ≤ rMAX, ∀f ∈ F (4.19)

0 ≤
∑
z∈V

τf,z ≤ p, ∀f ∈ F (4.20)

if φk,f = 1⇒ τf,z = 1,∀f ∈ F , k = 1, . . . , g, z = 1, . . . , p. (4.21)

where Φ = {φk,f ,∀k ∈ Aj ,∀f ∈ F}, O is the set of the unsatisfied applica-
tions defined as

O = {Aj ∈ A|Cj > dj , j = 1, . . . ,m}, (4.22)

and |O| denotes the number of elements in O. In (4.22), δj is equal to
1 if Aj has all its services accomplished, or to 0 otherwise. Hence, (4.18)
expresses that all the applications belonging to A have to be completely
executed, hence all their services chain has to be computed. Therefore, it
implies that any service of each application has to be run on at least one
FN. Furthermore, constraint (4.19) imposes a maximum number of available
CRBs for each FN in F . Finally, τf,z is a binary variable equals to 1 if the
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FN f already contains vz, and (4.20) means that each FN can contain at
most one instance of a same vz. Finally, (4.21) means that the execution of
service k on FN f implies the presence of the VF required by k, i.e., z, on
FN f . In order to handle the case of a number of different VFs greater than
the available CRBs at each FN, while fulfilling constraint 4.18, a discipline of
VFs replacement has been adopted. In other words, this consists in allowing
loading VFs at runtime, i.e., during the application execution. More in detail,
a temporal penalty due to the additional loading time required by the VFs
runtime replacement has been introduced. The temporal penalties in which
each adopted approach occurred during its execution have been taken into
account in the performance evaluation.

4.2.6 Matching algorithm
In order to solve the problem (4.17)-(4.21) by resorting to matching theory,
a matching procedure, named Chain Based Matching Algorithm (CBMA)
based on the well known Gale-Shapley algorithm (GSA) [30, 84, 163, 211],
has been proposed. In this case, the matching game takes into account the
services order, i.e., the position (level) of the services within the chain asso-
ciated to each application. At each run, the matching procedure considers
the VFs requested by the services that occupy the same level in the respec-
tive services chains. Thus, the proposed procedure acts at each level of the
services chains and the VFs belonging to a given level cannot be allocated
until all the ones of the previous level have been matched. Let vz be the
VF requested by the service occupying the k-th level in the Aj application
services chain. The most preferred FN by Aj , i.e., f∗j , to allocate vz has to
satisfy the following condition:

f∗j = arg min
f

T jk,f,vz . (4.23)

Likewise, the FNs preferences lists are formed by favoring the allocations of
VFs associated to applications with a closer deadline. It is straightforward
to note that the preferences lists change during the matching game. Indeed,
the allocation of a VF on a FN impacts on many factors, as the waiting
time of that FN, its memory availability and so on, i.e., the presence of a
matching influences the future assignments. This type of matching games is
referred as matching games with externalities. Since the assumption that the
preferences of each element of the matching do not depend on the choices of
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other elements is not satisfied, the GSA in this class of matching games does
not reach a stable matching and, more in depth, there not exist an approach
that solves these games and achieves a stable matching. For such reason the
study of stability is not trivial and it is extremely relevant.

Summarizing, the CBMA for each level of the applications services chains
acts as

1. Each application Aj builds its own preferences list on the FNs set;

2. each application j, requiring a VF zj , proposes to allocate zj on its
most preferred FN, according to (4.23);

3. each FN that receives more than one proposal decides which one to
accept in accordance with its preference criterion;

4. each FN f that at the previous step has accepted a proposal, decre-
ments its CRBs according to the resource request by the selected VF
placement proposal;

5. repeat 1)−4) until all the services of a same level have been processed.

6. repeat 1)−5) until all the services in all the applications services chains
have been processed.

In order to define a faster and less complex services placement solution, this
paper proposes a novel matching theory based heuristic between the VFs in
V and the FNs in F , aiming at providing a sub optimal solution to the VFs
placement problem (4.17).

In order to reduce the computation complexity of the service planning
approach, without loosing performance, we propose below an alternative
matching game, named Blind Matching Game (BMG), that removes the
constraint to allocate the VFs to FNs according to the order they appear in
the applications services chains. In this case, it is only taken into account
the occurrences of any VF within the set A. Moreover, the VFs preferences
lists are formed with the aim at minimizing the allocation space waste at the
FNs.

As previously introduced, a given VF, i.e., vz, to be loaded on the FN
f , needs a CRBs amount equal to rz. Hence, we have in this case that the
utility function of vz in being loaded on FN f results in

Uz(f) = rf − rz,∀f ∈ F , z ∈ V, (4.24)
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where rf , representing the available CRBs on FN f , given by

rf = rMAX −
∑
z∈V

rzξz,f , (4.25)

with ξz,f a binary function equals to 1 if VF z is present on the FN f , or
to 0, otherwise and, as previously introduced, rMAX denoting the maximum
number of available CRBs for each FN. In order to build the VFs preference
lists, we sort the utility functions of each VF, according to (4.24), in an as-
cending order, hence favoring VFs allocation on FNs for which the remaining
available CRBs are minimum.

The utility function definition of a FN f with respect to a given vz, Uf (z),
has been based on the criterion of pursuing the allocation of vz, to a suitable
number of FNs in order to have the value of Uf (z), defined as

Uf (z) = hz

(
1−

∑
f∈F

τf,z
n

)
, (4.26)

as much as possible close to zero, i.e., all FNs have allocated the vz. In
this way, the aim is to favor the individual allocation of the VFs having the
higher values of the occurrence frequency in the set A, i.e., having the higher
number of requests of performing individual services.

Hence, the FN f preferences list is sorted, according to (4.26), in an
ascending order with respect to the values of Uf (z) for all the VFs in V,
hence favoring allocation of the VF for which the resulting updated value of
the utility function is minimized.

The proposed BMG algorithm is also based on a modified version of the
GSA and consists of the following steps

1. Each VF in V builds its preference list according to (4.24);

2. each FN in F builds its preference list according to (4.26);

3. each VF in V proposes the match to its most preferred FN;

4. each FN in F that receives one or more proposals accepts the preferred
one among the alternatives and rejects the others;

5. each FN f that at the previous step has accepted a proposal, decre-
ments its CRBs according to the resource request by the selected VF
placement proposal;
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6. repeat 1)− 5) until at least one FN has sufficient CRBs.

It is important to note that the matching strategy solves the a priori
placement problem but, due to the physical network limitations, after ap-
plication of a placement algorithm, all the VFs may not result loaded on at
least one FN. For such reason, we have introduced the VFs replacement at
run-time, allowing all the algorithm proposed and analyzed in the perfor-
mance evaluation to load a VF during its execution if it is not present on
any FN. As previously introduced, the VF replacement introduces a time
penalty that we have taken into account in the performance analysis.

More in depth, due to the presence of the externalities, the two players
sets involved in the matching game, i.e., FNs and VFs, have to necessarily
update their preference lists (PLs) in order to make decisions consistent
with the current system conditions. Furthermore, aiming at maximizing
the consistence between the decisions and the actual conditions, each FN
simultaneously accept at most one VF, that is its preferred one among the
proposals received. Hence, the final many-to-many matching is iteratively
built during the algorithm.

4.2.7 Practical Consideration
As previously introduced, it is straightforward to note that the proposed
heuristic BMG limits the need of context information. In particular, BMG
does not require the knowledge of the number of cycles required by the
application services, the FNs computation capabilities, the time deadline as-
sociated to each application, the waiting and execution time at each FN.
Moreover, we verify below that the BMG algorithm requires a lower compu-
tational complexity, compared to the CBMA and other considered alterna-
tives.

In performing our computation complexity analysis, we focus on a worst
case scenario in which all the applications require all the possible VF types.
More in depth, each of them applications has to sort the n FNs in accordance
with its preferences. This procedure exhibits a complexity equals to

O(m · n logn). (4.27)

Then, such procedure is repeated a number of times equals to the maximum
chain length among the applications in A. Supposing all the Aj with the
same length and requiring all the VFs types, we can conclude that the CBMA
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exhibits a computational complexity given by

O(p ·m · n logn). (4.28)

Likewise, in the BMG approach, each FN has to sort the VFs, hence the
complexity results to be

O(n · p · log p). (4.29)

Considering that p ≈ n andm >> p, n, the complexity of the BMG approach
is lower than the CBMA one.

4.2.8 Stability analysis
It is important to note that although in the classical matching game the
stability condition is reached by applying the GSA, in the matching game
with externalities to obtain a stable matching outcome is a very complex
and challenging issue [30,105,211].
In order to discuss the stability convergence of the proposed algorithms,
we refer in what follows to the strictly-two-sided exchange-stability (S2ES)
stability definition derived from the one proposed in [35].

Definition 8. Let M be a matching function, and let M(vz) be the FN
matched with the VF vz in the matchingM,M is a S2ES matching if there
not exists a pair of VFs (vx, vy) s.t.:

1. Uvx(M(vy)) ≤ Uvx(M(vx)) and

2. Uvy (M(vx)) ≤ Uvy (M(vy)) and

3. UM(vx)(vy) ≤ UM(vx)(vx) and

4. UM(vy)(vx) ≤ UM(vy)(vy) and

5. ∃ψ ∈ {vx, vy, } s.t. at least one of the conditions 1) − 2) is strictly
verified and

6. ∃φ ∈ {M(vx),M(vy)} s.t. at least one of the conditions 3) − 4) is
strictly verified.

The above definition means that at least one of among the VFs and at
least one among the FNs involved in the swap have to get benefit from the
swapping improving its condition.
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In what follows, we verify that both the CBMA and the BMG approaches
converge to a S2ES matching outcome.
We start the stability analysis by focusing on the CBMA. In particular, we
suppose that there exists a pair of VFs (vx, vy), belonging to applications x
and y respectively, s.t. the conditions 1) − 2) of Definition 8 are verified.
Supposing VFs vx and vy s.t. M(vx) = f andM(vy) = g respectively, from
conditions 1)− 4), we have:

T xkx,g,vx ≤ T
x
kx,f,vx , (4.30)

T yky,f,vy ≤ T
y
ky,g,vy

. (4.31)

As detailed in Section 4.2.7, the completion time may or may not vary during
time, so we cannot make any assumption about (4.30) and (4.31) and about
the satisfaction of condition 5) of Definition 8. Instead, the FNs preferences
lists are built taking into account the time deadlines of each application
that proposes a given VF on such node. Let bx and by be the time deadlines
associated to applications x and y respectively. According to our assumptions
that whether f prefers y to x, then by ≤ bx. In the same way we can show
that whether g prefers x to y, we have bx ≤ by. Consequently, we necessarily
have bx = by and none of f and g gains in switching. In conclusion the
CBMA reaches a S2ES matching outcome.
Likewise, we can conduct the stability analysis of the BMG approach. In
order to discuss the stability, in this case we start considering the situation
in which there exists a pair of VFs (vx, vy), with vx allocated on FN f and vy
assigned to FN g, s.t. vx prefers g and vy prefers f to their actual partners.
Hence, we have:

(rM(vy) − rvx) ≤ (rM(vx) − rvx), (4.32)

(rM(vx) − rvy ) ≤ (rM(vy) − rvy ). (4.33)

It is straightforward that (4.32) and (4.33) can be verified only if

rM(vx) = rM(vy). (4.34)

From (4.34) follows that vx or vy cannot improve their condition and that
there not exists any ψ s.t. condition 5) of Definition 8 results true. Hence
we can conclude that the reached matching is S2ES.
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4.2.9 Simulation results
In carrying out the performance evaluation for the proposed approaches, a
cluster formed by 8 heterogeneous FNs, distributed with a Poisson Point
Process in a circular area with a radius equals to 40m, has been considered.
Furthermore, each FN has a CPU frequency uniformly selected in the set
{2.4, 3.6, 4.0} GHz. Moreover, the following assumptions have been made:

• the FN computational capability uniformly selected, in terms of CRBs,
in the set of values {100, 200, 300};

• the number of different VFs, for each Aj service chain, uniformly dis-
tributed in the integer interval [0, p], with p = 10, and the associated
CRBs values uniformly selected in the range values [35, 80];

• heavy tailed distribution of the occurrences of the VF types;

• 64 bits instructions for each requested service uniformly distributed in
the range of integer values [300, 500] with a mean cycles per instructions
(CPI) equals to 8.

• the temporal penalty, associated to each FN, uniformly selected in
[0.5, 1.5] ms. Furthermore, each missed VF type in the FN network
results in the addition, in the overall completion time, of the temporal
penalty associated to the FN on which the VF is dynamically loaded.

• the temporal deadline, associated to each Aj , uniformly selected in
[0.2, 2.8] ms.

For the sake of simplicity, all the simulation parameters and their corre-
sponding values have been reported in Table I, while Table II reports the
system parameters details.

According to these assumptions, the system performance have been ob-
tained by resorting to computer simulations in terms of wasted CRBs, cal-
culated over all the algorithm iterations, mean overall completion time per
application (TC), calculated as the ratio between the sum of the individual
application completion times and the total number of applications, worst
overall completion time per application (TW ) and outage probability PO. In
order to highlight the advantages of the proposed solutions, the following
methods have been considered as benchmark:
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• The random placement method (RPM) that, for each VF type, selects
the FN to allocate it with uniform probability;

• The greedy placement method (GPM), based on the selection of the
FN, for each VF, with the highest amount of CRBs.

• The weighted greedy placement method (GGPM) a heuristic that, it-
eratively, places the highly requested VFs on the FN with the highest
CPU frequency.

• The near optimal potential game (POT) proposed in [220], adapted to
our scenario, for which the utility function of each VF is equal to the
execution time (4.14).

In particular, with reference to the POT scheme, due the prohibitive tem-
poral complexity (exponentially growing with n), we have considered its
sub-optimal version [220], according to which the players involved in the
game can deviate from the Nash equilibrium up to ε, with ε = 0.01. This
modification results in a strong reduction of the time complexity, that re-
sults equal to O(nε ), as detailed in [220]. All the proposed RPM, GPM and
GGPM start by allocating one instance of each VF. Then, if there are still
available CRBs, iteratively repeat the allocation until all the FNs are full.
Figure 4.8 provides comparisons in terms of wasted CRBs as a function of
the number of different VFs to be allocated. This Figure points out the bet-
ter behavior of the proposed methods with, in particular, the BMG scheme
clearly outperforming all the other considered alternatives, hence achieving
the best management of the computational resources. As direct consequence
of the performance presented in Figure 4.8, it is evident to see that the pro-
posed method guarantees a greater number of VFs types loaded on the FNs,
in comparison with the other alternatives. Then, in general terms, it can be
affirmed that the greater the number of VFs types on the FNs, the higher
is the odds of finding the required VF in the network, avoiding to occur in
the temporal penalties. Such insight has been confirmed by Figures 4.9-4.10
that show performance comparisons in terms of the mean overall completion
time and worst overall completion time per application, respectively, as a
function of the number of applications to be performed. In particular, in
terms of mean overall completion time, in Figure 4.9, the CBMA and BMG
achieve better results considering the other alternatives, with the CBMA
overcoming the BMG. The same behavior is evident in Figure 4.10, where
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Figure 4.8: Wasted CRBs, supposing n = 8 FNs, and m = 100 applications
requests.

the worst TW is given as a function of the number of applications to be con-
sidered. This is due to the intrinsic trend of both the MT based approaches
to deploy on the FNs the most requested VFs. In fact, in both approaches
the presence of more than one instances of the highly requested VFs in the
network increments the chances to properly select the FN that brings more
advantages in terms of overall completion time. As evident in Figure 4.11,
increasing the VF types, the system performance get worse. However, also in
this case, the proposed approaches reduce the worst overall completion time,
by ensuring higher responsiveness despite in presence of heavy applications
demand. By guaranteeing better performance in Figure 4.9 and Figure 4.10,
the proposed approaches provide a better compliance with the applications
deadlines, that implies lower values of outage probability, hence, of the num-
ber of applications which do not match their temporal deadlines as depicted
in Figure 4.12. From Figures 4.9-4.12, it is evident that all the considered
methods are overcome by the CBMA. However, on the basis of the resulting
temporal complexity presented in Sec. 4.2.6, the BMG alternative represents
the best tradeoff between high performance and low temporal complexity.
Furthermore, in terms of convergence time, the BMG and CBMA complete
their computation in 0.023926 and 0.051621 s respectively, as reported in
Table II.
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Figure 4.9: Average application completion time, for n = 8 FNs, and p = 10
VFs types.

Figure 4.10: Worst application completion time, for n = 8 FNs, and p = 10
VFs types.
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Figure 4.11: Worst application completion time, for n = 8 FNs, by varying
the maximum size of the service chain, i.e., the number of VFs types.

Figure 4.12: Outage probability comparison for n = 8 FNs, and p = 10 VFs
types.
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Table 4.1: Simulation Parameters
Parameter value

Network radius 40 m

CPU frequency {2.4, 3.6, 4.0} GHz

FN CRBs {100, 200, 300}

Number of VFs types 10

VF CRBs [35,80]

Bits per instruction 64

Number of instructions [300, 500]

CPI 8

Time penalty [0.5,1.5] ms

Time deadline [0.2, 2.8] ms

4.2.10 Conclusions

The proposed VFs placement schemes, namely CBMA and BMG, are based
on the application of the matching theory principles, with the aim of min-
imizing both the worst overall application time and the applications out-
age probability. Performance comparisons with different services placement
methods, i.e., a random scheme, two greedy disciplines and a game theory
based approach have been presented to highlight the advantages of the pro-
posed schemes. In particular, it can be concluded that the CBMA approach
achieves the best performance with a higher computation complexity and a
more heavy signaling overhead, in comparison with the BMG solution.

Finally, for both the CBMA and BMGmatching approaches the matching
stability according to the strictly-two-sided exchange-stability definition has
been theoretically proved.
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Table 4.2: System Parameter

Operating System Ubuntu 16.04

Programming Platform Matlab

CPU Intel i7-3770 3.40Ghz

RAM 16 GB

Convergence BMG 0.023926 s

Convergence CBMA 0.051621 s

4.3 A Matching Game with Discard Policy for
Virtual Machines Placement in Hybrid
Cloud-Edge Architecture for Industrial IoT
Systems

4.3.1 Motivation

Nowadays, the ever increasing diffusion of novel IoT applications has trig-
gered efforts, from both academia and industry, in searching for new solu-
tions and strategies to enable novel applications in different scenarios, such
as smart cities, intelligent transportation, pollution monitoring etc. Within
this context, also due to the progresses in the Industrial Wireless Networks
(IWNs) [152], a novel IoT subset, named Industrial IoT (IIoT), has risen
in reference to the machine-to-machine domain and industrial communi-
cation technologies with automation applications [127, 226, 268, 278]. The
large attention that the IIoT research branch has recently gained is due
to the improvement on sustainability and safety deriving from the usage
of wireless technologies in industrial environments, in which self-organizing
systems and context-aware devices interact to provide flexible, reliable and
adaptive industrial environments, with high quality services [252]. Never-
theless, there exist several major challenges that have to be addressed to
make IIoT a reality. Among all the difficulties that have to be dealt with
in order to properly realize IIoT systems, a crucial point is that the IIoT
devices are typically computationally constrained, i.e., equipped with scarce
processors, and possess low battery capacity which implies finite lifetime
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and energy [44, 252, 287]. Furthermore, the IIoT devices generally support
mission and safety-critical applications with strict timing or end-to-end con-
straints on task executions [78, 226]. Generally speaking, it is important to
note that network model architecture severely impacts the accomplishments
of IIoT-devices temporal deadlines [12, 49, 51, 143, 150, 226, 237, 242]. In or-
der to meet the constraints and specifications imposed by the novel IIoT
applications, many papers in literature suggest to adopt networks structures
that move computation close to the IIoT-devices, and capable of adapting
to different flows requirements, such as different time delay or quality of
service constraints. In particular, it is stated in [49] that a completely flat
approach is not suitable for IIoT environments, while a hierarchical network
structure with decentralized computation, i.e., a fog computing structure,
leads to significant improvements on both the delay and computation as-
pects [49,51,143].

Recently, the Edge Computing (EC) has emerged as a promising solu-
tion to face the strict latency constraints of IIoT applications [162, 240],
moving computation and storage to the edges of the network, nearby the
IIoT-devices [162], bypassing the drawbacks of the traditional cloud com-
puting architecture [162, 240], mainly in terms of severs network congestion
and high response delay. Furthermore, in order to facilitate the fulfillment
of the delay-sensitive applications, the deployment of virtual machine replica
copies (VRCs) of applications on the network edges gained momentum [292].

4.3.2 Contributions

This work focuses on a hybrid cloud-EC IIoT-devices architecture, and pro-
poses a matching theory based VRCs allocation on the EC servers (ECSs),
aiming at jointly minimizing both the mean IIoT-devices system response
time, referred in the following as overall response time (ORT), and the num-
ber of IIoT-devices that suffer a response time greater than their time dead-
line.

In practical terms, the main contributions of this study can be summa-
rized as follows:

• The paper addresses the problem of the VRCs placement in a hybrid
cloud-edge computing architecture, in which each EC server can host
more than one VRC. The presence of more than one VRC is a crucial
point in order to increase the system responsiveness and provide low
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service latency. In this respect, a joint optimization problem formu-
lation has been proposed, aiming at minimizing both the ORT and
the number of IIoT-devices that miss their deadline, which is a very
important metrics in intensive and time critical applications;

• A matching game with externalities between the set of the ECSs and
the applications requested by IIoT-devices has been formulated to find
a sub-optimal solution to our problem. Different from the matching
based approaches available from the existing literature, the proposed
matching placement strategy resorts to a discard policy consisting in
canceling the requests which missed their deadline, in favor of requests
with the associated deadline not yet expired. The proposed algorithm
is able to manage IIoT-devices requests formed by an arbitrary number
of applications, differently from previous papers presented in literature
such as [292];

• Despite in the matching games with externalities stability is not a
trivial issue, stability of the outcome matching has been discussed and
proved;

• Performance comparisons with the SEHPA and another heuristic pro-
posed in [292], the matching strategy presented in [17], as well as a
greedy algorithm are provided to validate the e good performance of
the proposed framework.

4.3.3 Releted Literature
As regards the EC and FC research topic, and specifically the one about
offloading, there exist many papers which deal with this problem. In par-
ticular, authors in [17] proposes a matching game with externalities among
IoT devices and the fog nodes (FNs) to jointly solve the problem of the
fog selection and the network latency minimization. The matching theory
then has been exploited also in papers [291], [108], and [92]. Paper [291]
addresses the problem of the resource allocation for the device-to-device com-
munications in the cellular networks, by modeling the problem as a many-
to-many matching game with externalities, aiming at maximizing the sum
rate subjected to the user equipment quality of service (QoS) constraints.
Differently, paper [108] applies the matching game with externalities prin-
ciples to the average delay packets minimization in pairing mobile stations
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with access points, within an offloading scenario, by also taking into account
the monetary aspect in performing offloading and the energy consumption
perspective. The offloading has been addressed also in paper [92], in which
a mobile EC (MEC) scenario has been considered, and a task assignment
procedure based on MEC servers computation capabilities, channel condi-
tions, and time delay constraints have been taken into account. In fact,
in paper [92], aims at minimizing the overall system energy consumption,
by considering the heterogeneous QoS deadlines associated to each device
requiring task computation.

The virtual machines (VMs) placement and the workload assignment
problems are studied in paper [259], considering a mobile EC scenario, in
order to minimize the hardware resources consumption for deploying VMs,
taking into account heterogeneous applications latency requirements. The
problem addressed in [208] concerns the minimization of the service delay, by
considering both the processing delay and the transmission delay. The pa-
per proposes a method that provides the processing time reduction through
the virtual machine migration, while it applies a power control mechanism
to improve the transmission delay. Furthermore, paper [292] addresses the
problem of the optimal VM replica placement in a hybrid Cloud-EC scenario,
aiming at minimizing the average system response time and service provision
cost, given different applications types and ECSs with limited capacity.

Differently, the introduction of novel network architecture paradigms,
such as FC or EC, on the IIoT scenario is still at the beginning [143].

A fog architecture in the IIoT-devices network is considered in paper [51]
that aims at minimizing the network delay over time w.r.t. energy consump-
tion constraints. In order to address this problem, authors in [51] propose a
distributed approach in which they apply both the Lyapunov optimization
and the Gibbs sampling. Paper [49] shows the higher performance of a hi-
erarchical fog approach compared to the classical flat design and proposes
a queue model system analysis, introducing two priority classes to schedule
the IIoT data. Finally, a network architecture combining the centralized
software defined network approach and the EC paradigm is proposed in pa-
per [150]. The authors in [150] consider IIoT flows belonging to two different
delay constraints, and an adaptive optimal transmission routing is proposed,
by exploiting the path difference degree.

This paper considers a combined edge-cloud architecture and it aims at
jointly minimizing both the ORT and the number of IIoT-devices which do
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not terminate computation before their time deadline. Different from au-
thors in [292], this paper considers as performance metric the number of
computations that do not terminate before their associated deadline. It is
important to note that the latter represents a significant performance in-
dex, especially when time critical application are handled. Furthermore,
papers [292] and [143] consider applications requesting only one function,
while this paper models the IIoT-devices workflows as an ordered sequence
of functions that, to meet the assigned deadline, have to be completed before
the expiration of the corresponding time constraint. More in detail, the pro-
posed VRCs deployment strategy realizes a matching game with externalities
between the ECSs and the IIoT-devices application requests, represented by
chains of functions. In particular, the paper provides a discussion and proof
about the stability on the outcome matching, that is not a trivial issue in
this class of matching games. It is also important to highlight that, although
authors in [17] design a matching algorithm that reaches a stable matching
outcome by pairing and decoupling together IoT devices and FNs, until the
stability is reached, our algorithm has been developed by pursuing the com-
plementary approach, in which the pairs, once formed, cannot be broken.
In addition, another main improvement introduced by our paper in com-
parison with paper [17, 92, 108, 291], is the discard policy characterizing our
matching algorithm, for which the applications with the corresponding time
deadline not yet expired are promoted to avoid their timeout missing, by
sacrificing the tide of the applications which have already suffered the expi-
ration of their deadline. Finally, performance comparisons with two VRCs
deployment algorithms proposed in [292], and a greedy approach has been
provided, in order to highlight the better behavior of the proposed solution.

4.3.4 System Model
As an IIoT practical scenario, this paper focuses on the automation/con-
trol applications domain, considering the IIoT-devices workflows formed by
both delay sensitive applications (i.e., closed-loop or interlocking processes)
and delay insensitive applications as those related to monitoring/supervi-
sion activities [226], characterized by a less stringent time deadline on their
execution.

In order to formalize the considered Cloud-Edge architecture scenario,
we consider a set of IIoT-devices E = {j, j = 1, ..., |E|}, with fixed position
according to [226], each of which requires an application flow (AF) wj , j =
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Figure 4.13: Reference Scenario: the IIoT-devices request to their nearby
ECS the computation of their AFs. The ECS compute on itself, or on a
nearby ECS, or on the remote Cloud.

1, ..., |wj |. Each AF wj , for its whole execution, requires an ordered sequence
of services requiring functions, without repetition, generally located on the
remote Cloud. Hence, each AF wj is given by wj = {sjk, k = 1, . . . , |wj |},
where each service sjk requests a function belonging to the set of the whole
functions S. Equivalently, we can say that the maximum length of wj is the
number of function in S. Let F be the set of Edge Computing Servers (ECSs)
F = {i, i = 1, ..., |F |}, heterogeneous in processing capability and storage, on
which the Cloud, situated in the remote area of the network, can create VRCs
of the applications in S. Supposing the referred network ideally divided into
different non-overlapped areas, each ECS represents the local applications
server for the surrounding network area, referred hereafter as its service
area. In other words the service area can be viewed as the geographical
area within which any ED can be reliably linked to the appropriate ECS.
As previously stated, each ECS i in F has a limitation, in terms of storage
resource blocks (SRBs) and referred hereafter as di, 0 < di ≤ dMAX , where
dMAX is the maximum number of available SRBs for each ECS, that limits
the number of VRCs that it can contain. In this regards, each VRC requires
a given amount of SRBs, depending on the type of corresponding function
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in S and, furthermore, each ECS can hold more than one VRC of of more
than one function of S. Denoting with ni the number of IIoT-devices that
belong to the i-th network area, we have

∑
i∈F

ni = |E|. As introduced at

the beginning of this section, the E set is formed by computational intensive
applications, with different requirements on their timeout execution. In this
regards, a time deadline aj , j = {1, ..., |E|}, associated to the execution of
each AF has been introduced, where A represents the set containing the AF
deadlines associated to each IIoT-device in E.

Furthermore, the ECSs network has been modeled as a graph F = (F,H),
where the set of vertices F is the set of the ECSs, and H represents the set of
links among the ECSs. In this respect, we suppose that there exists always
a path between two ECSs in the network. Finally, we assume that each ECS
contains a routing table in which, for each pair of ECSs, the shortest path
between those ECSs is stored.

Computation Time Model

In general, being the ECSs heterogeneous in terms of computation capabili-
ties, the execution time of the service sjk mainly depends on which ECS hosts
the computation, as well as the size of sjk. In particular, considering the com-
putation of sjk on ECS i, as discussed later, its execution time depends on a
range of factors among which the central processing unit (CPU) frequency of
the host ECS i, the number of parallel computation φi that ECS supports,
and the length of sjk itself. Furthermore, given the IIoT device j demanding
for the computation of its AF wj = {sjk, k = 1, ..., |wj |}, denoting with cjk the
number of cycles required to execute the k-th service, and with vi the CPU
cycles per time unit of ECS i, we have that the execution time of service k
on the ECS i is equal to

ηjk,i =
cjk
vi
. (4.35)

An additional term that has to be taken into account is the waiting time qi
on the ECS i, due to the time needed to complete the execution of all the
services previously assigned to ECS i. Therefore, the total time spent by a
function request k on the ECS i results to be:

τ jk,i = ηjk,i + qji , (4.36)
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defining qji as the queuing time3 experienced by IIoT-device j by computing
sjk on ECS i. Likewise, we obtain the execution time of sjk on the Cloud,
i.e., ηjk,C , by considering in (4.35) the CPU cycles per time unit of the Cloud
given by vC . Furthermore, let qkC be the waiting time on the Cloud, then it
follows that the time spent by sjk on the Cloud is

τ jk,C = ηjk,C + qkC . (4.37)

Transmission Delay Model

In order to fully characterize the response time for a generic function request
sjk,j = 1, . . . , |E|, k = 1, . . . , |wj |, we need to consider the network delay. In
this respect, we suppose that each ECS i, in first instance, receives all the
computation requests from the IIoT-devices within its service area and then,
each sjk, will be eventually rerouted (if needed) on another ECS of the EC
network, or towards the Cloud.

To simplify our analysis we have assumed :

• network delay is represented by the time required to information trans-
mission, considering negligible the access and the set up delay;

• a fixed data rate for the wireless transmission delay between IIoT-
devices and their local ECS;

• a negligible high velocity data rate for the links connecting two ECSs.

• a negligible high velocity data rate for the links connecting the ECSs
to the Cloud4.

As direct consequence, we have the total time required to execute all the AF
wj , originated within the service area of ECS i, is given by

ψwj =
|wj |∑
k=1

∑
δ∈F

(τ jk,i + χk)xk,δ + (1− xk,δ)(τ jk,C + χk), (4.38)

where χk is the transmission time of sjk, given by the ratio between the size
in bits of sjk and the fixed data rate of the link between the IIoT-device

3The queuing time on the ECS is also strictly related to the ECS CPU frequency and
to the number of parallel computation φi that ECS is able to perform.

4It is important to note here that the IIoT-devices, in order to reach the Cloud, have
to perform the connection towards their local ECS.
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requiring the computation of wj and its local ECS, Finally, xk,δ is a binary
variable equals to 1 when the k-th service is executed on ECS δ, 0 otherwise.
Hence, the mean overall response time (DORT) for each ECS domain i is
given by

Ti = 1
ni

ni∑
j=1

ψwj ; (4.39)

Finally, considering only the k-th level of wj , we have that its completion
time is equal to

ψkwj =
∑
δ∈F

(τ jk,i + χk)xjk,i + (1− xjk,i)(τ
j
k,C + χk). (4.40)

4.3.5 Problem Formulation

Differently from [292] where the main goal was the minimization of the ORT,
this paper considers a joint optimization of both the ORT and the number
of AFs that suffer a response time larger than their own time deadline. This
is due to the fact that we consider intensive and time-critical applications
and, in this respect, the mean time value considered in [292] as performance
metrics, cannot provide a good estimation of the behavior of an algorithm
in a context in which there are stringent deadlines. For this purpose, we
introduce the set U representing the unsatisfied AFs,defined as

U = {wj ∈ W|ψwj > aj , j = 1, . . . , |E|} (4.41)

In formal terms the optimization problem can be formulated as follows

min 1
|F |

∑
i∈F

Ti and min |U| (4.42)

s.t.
0 ≤ di ≤ dMAX ,∀i ∈ F, (4.43)

where constraint (4.43) expresses that each ECS i has limitation about
the SRBs. Problem (4.42)-(4.43), as that proposed in [292], is generally
NP-hard, making it necessary to resort to sub-optimal approaches. In this
respect, we apply here the MT in order to find a sub-optimal fast solution.
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4.3.6 Matching Game Formulation

The formulation of a matching game between the F and the S sets has been
proposed to define relations reciprocally advantageous for all the agents in
F and S [30], based on their own individual preferences. Below, first of all,
we introduce the formal definition of matching [212], contextualized to our
problem:

Definition 9. Let F and S be two sets of players. A matching game is the
pair (F, S) on which are defined two preference relations �i, �z allowing each
player, i.e., a ECS i ∈ F , to express preferences over the opposite players,
i.e., applications z ∈ S, and vice versa.

Let Pz(·) and Qi(·) be the utility functions of application z and ECS i,
respectively. We can say that z1 �i z2 means that ECS i prefers to host
application z1 to z2, hence Qi(z1) > Qi(z2).

It is important to note that, in the proposed problem, the preferences
list of each player is dependent on the others players’ preferences, i.e., an
existing matching influences the preferences of the unmatched elements, and
a partner suitable at the start of the game cannot be the best choice during
the evolution of the same game [30]. As a consequence, the preferences
list of each involved participant, has to be updated after each algorithm
assignment.

Applications preference list

Given an AF wj , let k be the level of the AF, the application z required by
sjk prefers the ECS that minimizes its response time, hence the ECS i such
that

Pz(i) = 1
ψkwj

(4.44)

is maximum. Hence, each application z sorts the ECSs in descending order,
according to (4.44).

ECSs preference list

Each ECS preference list is built considering the time deadline associated to
each wj , whose sjk, requiring z, belongs. The preference list consists of the
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applications sorted in descending order in accordance with

Qi(z) = 1
aj

(4.45)

aiming at maximizing Qi(z).
The proposed Individual Time Aware Matching Algorithm (ITAMA) is a
modified version of the Gale-Shapley one (GSA) [30, 84, 211]. The ITAMA
is iteratively run on each level of the AFs chain. More in detail, during
the k-th run, the matching procedure considers the functions requested by
the k-th service request of each AF. All the ECSs are subjected to storage
limitation, since to host an application implies storage resources utilization.
Hence, when a ECS cannot host anything else, the ECS is not considered
to be a possible host for the computations. Furthermore, a discard policy
(DP) has been introduced in order to limit the number of unsatisfied AFs,
i.e., the number of AFs belonging to U . The DP consists of dismissing the
services of the AFs that missed their deadline from the ECSs where they
are allocated. The idea behind the DP is to offload these services towards
the Cloud, avoiding to cause additional unsatisfied AFs. Furthermore, ser-
vices requiring computation are actually rerouted toward the Cloud if their
response time does not worsen more than 200 ms computing on Cloud, in
order to avoid worst response times too high.
Summarizing, the ITAMA for each level k of the AFs chains acts as follows:

1. each function z, belonging to S and required by sjk, builds its own
preferences list on the ECSs set;

2. each function z, proposes to allocate an own VRC on its most preferred
ECS, according to (4.44);

3. each ECS that receives more than one proposal decides which one to
accept in accordance with its preference criterion 4.45;

4. each ECS checks the deadlines of the associated to the AF to which sjk
belongs to, i.e., wj . If there are some AFs that miss their deadlines,
the DP starts.

5. repeat 1)−5) until all the services in all the applications services chains
have been processed.



98 Computational Offloading with Matching Theory

4.3.7 Complexity Analysis
In order to perform the computational complexity analysis of the proposed
strategy, we focus on a worst case scenario, in which the following assump-
tions have been taken into account:

1. each AF requests all the functions in |S|;

2. at each level of the AFs, all the functions have the same favorite ECS,
hence, all the applications send their proposal to the same ECS.

As it is evident, the assumptions introduced above imply a considerable
worst case scenario.

The first steps of the proposed placement strategy consists of building
the preference lists of both the parts involved in the matching game, i.e.,
the ECSs and the functions, respectively. In order to construct its own
preference list, each function needs to sort the elements belonging to the F
set, according to (4.45). The computational complexity of this procedure,
for each function, is clearly

O(|F | log |F |), (4.46)

that extended to all the S set is

O(|S| · |F | log |F |). (4.47)

Similarly, the computation complexity required by the creation of the ECSs
preference lists can be obtained in the same way. Hence, the associated
computational complexity results given by

O(|F | · |S| log |S|). (4.48)

From (4.47) and (4.48) follows that the preference lists building processes
are the heaviest parts, in terms of temporal complexity, of the proposed
placement algorithm. Hence, the overall computational complexity requested
for the creation of the preference lists is

O(|S| · |F | log |F |) +O(|F | · |S| log |S|). (4.49)

Generally speaking, the preference lists building procedure is repeated a
number of times equals to the length of the longest AF among the elements
ofW . As a consequence of assumption 2), previously introduced, all the AFs
request all the functions, hence, the length of each AF is the same for all the
AFs, and it is equal to |S|. Indeed, the total computational complexity is

O(|S| · |F | · |S| log |S|). (4.50)



4.3 A Matching Game with Discard Policy for Virtual Machines Placement
in Hybrid
Cloud-Edge Architecture for Industrial IoT Systems 99

4.3.8 Stability Analysis
Although in the classical matching problem the GSA reaches a stable match-
ing, for matching game with externalities, as that one proposed here, there
not exists any matching algorithm that definitely achieves outcome matching
which is definitely stable. Since in the matching games with externalities the
preferences change during the evolution of the game, to obtain a final stable
matching is a very complex and challenging issue [30,211]
In order to discuss the stability of the ITAMA, we introduce the strictly-
two-sided exchange-stability (S2ES) stability definition, as a modification of
the one proposed in [35].

Definition 10. Let M be a matching function, and let M(z) be the ECS
matched with the function z in the matchingM,M is a S2ES matching if
there not exists a pair of functions (z1, z2) s.t.:

1. Pz1(M(z2)) ≥ Pz1(M(z1)) and

2. Pz2(M(z1)) ≥ Pz2(M(z2)) and

3. QM(z1)(z2) ≥ QM(z1)(z1) and

4. QM(z2)(z1) ≥ QM(z2)(z2) and

5. ∃ψ ∈ {z1, z2} s.t. at least one of the conditions 1)−2) is strictly verified
and

6. ∃φ ∈ {M(z1),M(z2, } s.t. at least one of the conditions 3) − 4) is
strictly verified.

In other words, Definition 10 means that a swap is allowed if it implies an
improvement to almost one between the players involved, and the remaining
elements do not get worse. In order to prove the ITAMA stability, we suppose
that there exists a pair of functions (z1, z2), belonging to AFs wj1 and wj2

respectively, s.t. the conditions 1) − 2) of Definition 10 are verified. Let z1
and z2 be s.t. M(z1) = i1 and M(z2) = i2 respectively, from conditions
1)− 4), we have:

Pz1(i1) ≤ Pz1(i2), (4.51)

Pz2(i2) ≤ Pz2(i2). (4.52)
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Since the ECSs are heterogeneous in terms of CPU frequency, number of
parallel computations, and the algorithm allows to discard services, the com-
pletion time may or may not vary during time, and we cannot make any as-
sumption about (4.51) and (4.52), hence about the satisfaction of condition
5) of Definition 10. Instead, the ECSs preferences lists are built considering
the time deadlines of each corresponding AF. Supposing a1 and a2 the time
deadlines associated to wj1 and wj2 , if z1 prefers i2 to i1, then a2 ≤ a1.
Likewise, if z2 prefers i1 to i2, we have a1 ≤ a1. Then, we necessarily have
a1 = a2 and neither i1 nor i2 gains in switching. Therefore, the ITAMA is
S2ES stable.

4.3.9 Numerical Results
In order to highlight the good behavior of the proposed matching scheme,
we have resorted to extensive computer simulations. For each plot point, we
considered 3 × 104 independent simulation rounds with all the parameters
selected as detailed below. Both the IIoT-devices and ECSs have been as-
sumed distributed according to a Poisson Point Process in a circular area
with a radius equals to 800 m. Each ECS has a CPU on board with a fre-
quency uniformly selected in the set {2.4, 3.6, 4.0} GHz. Furthermore, we
have assumed that each ECS has a storage capability, expressed in terms
of SRBs, uniformly selected in [500, 1000], and that each VRC of a given
function requires an available storage space on the ECS selected with a uni-
form distribution in [100, 200] SRBs. The number of different functions has
been assumed equals to 20. Consequently, the AFs length is an integer uni-
formly distributed between 1 and 10, and each AF cannot require more than
once the same function. In addition to this, the AFs deadlines have been
set considering a uniform distribution in the system of both the sensitive
and insensitive applications. As regards the former, the associated deadlines
have been uniformly selected in [10, 100]ms, as specified in [226], while to
the latter we have uniformly assigned deadlines in [150, 500]ms. Further-
more, a heavy tailed distribution has been used to model the occurrences
of the function types in the AF chains. The connection link between the
IIoT-devices and the local ECS has been set equal to 100 Mbit/s, while the
data rate between two ECSs and between ECS and Cloud equals to 1 Gbit/s.
Finally, each service consists of a number of 64 bits instructions uniformly
distributed in the range of integer values [100, 3500] with a mean cycles per
instructions (CPI) equals to 8, and the system performance has been mea-
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sured considering a number of AFs variable within the range [100, 500], with
a number of ECS equals to 8.

Hereinafter, the system performance is provided in terms of

• ORT, expressed as the sum, for all the ECS, of its DORT as defined
in (4.39), and divided for the number of ECSs in the system;

• worst response time per AF (WRT), that is the response time of the
AF in the system that suffers the larger response time;

• outage probability (OP), calculated as the percentage of AFs in the
system that are afflicted by a response time greater than their own
deadline.

The system performance analysis has been provided by resorting to compar-
ison to the following methods already proposed in [292]

• The Clustered Enhanced Heuristic Placement Algorithm (CEHPA)
that is a cluster based solution which identifies a subset of suitable
ECSs, selecting them considering the distance from the nearest ECS,
to support a given application. Then, the best ECS is found, consid-
ering the minimization of the ORT;

• The Substitution Enhanced Heuristic Placement Algorithm(SEHPA),
that is an almost-optimal solution, as highlighted in [292], to the VRCs
placement problem aiming at minimizing the ORT, by considering all
the possible ECSs for each application that has to be replicated.

Furthermore, performance comparisons have been provided also with the
matching approach proposed in [17], here referred as Matching Theory Al-
gorithm (MTA), of which we have adapted the behavior to our scenario, by
using the same metrics considered in the ITAMA, but without the DP and
by following the algorithm procedure explained in [17]. Finally, comparison
with the closer deadline greedy algorithm (CDGA) has been proposed, and
that, for each level k of the AFs, the method acts as follows

• let z be the application requested by the function request sjk, whose
associated deadline aj is the closest one among the deadlines of the
other unallocated ARs belonging to the k-th level of the AFs. If does
not exist any VRCs on the ECSs, and there is not any available ECS
on which a VRC of z can be loaded, then sjk is offloaded to the Cloud;
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Table 4.3: Computational Complexity
ITAMA O(|S| · |F | · |S| log |S|)
SEHPA O(|S|2 · |F |3)
CEHPA O(|F | · |S|2 · (|F |+ |S|))

• if any application requested at level k, and already allocated, has lead
to the placement of a VRC of z on an ECS, a VRC of z is allocated on
the nearest available ECS, if at least one ECS is available;

• if there exists one function request, at level k, that has lead to the
allocation of z on an ECS, sjk is offloaded on the nearest ECS containing
a VRC of z;

• each queue in the system, i.e., the queue on the communication links
and on the ECSs, is managed by serving first the ARs with high pri-
ority.

We start our analysis by comparing the system performance of the proposed
hybrid EC-Cloud architecture in comparison with a Cloud based solution
in Figure 4.14 in terms of achieved ORT values as a function of the num-
ber of IIoT-devices. As it is evident in the Figure, the hybrid EC-Cloud
approach using the ITAMA strategy results in significant performance gain
in comparison with the Cloud based alternative. The good behavior of the
proposed allocation framework is also highlighted in Figure 4.15 where the
ORT behavior is shown as a function of the maximum length of the AFs in
the system in comparisons with the different allocation approaches. Like-
wise, from the results provided in Figure 4.16 it is straightforward to note
the good improvement on the AF mean response time when the ITAMA
is applied. Furthermore, thanks to the ECSs that prefers AFs with close
deadlines, the good behavior of the proposed approach is also confirmed in
Figure 4.17 in terms of WRT.The same considerations can be applied to
the results given in Figure 4.18 in terms of achieved OP as a function of
the number of IIoT-devices in the case of 18 ECSs. Finally, the computa-
tional complexity of the proposed strategy and of the alternatives presented
in [292] has been reported in Table 4.3.9. The notable advantage of the the
proposed approach is clearly evident in this table in comparison with the
other considered alternatives.
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Figure 4.14: ORT Cloud comparisons as a function of the number of IIoT-
devices

Figure 4.15: ORT as a function of the AFs length
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Figure 4.16: ORT as a function of the number of IIoT-devices.

Figure 4.17: Worst response time per AF for 8 ECSs, as a function of the
number of IIoT-devices.
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Figure 4.18: Outage probability for 8 ECSs, as a function of the number of
IIoT-devices.

4.4 Conclusion

The study addresses the VRCs placement problem in a hybrid EC-Cloud
network structure for a IIoT scenario. The proposed framework resorts to
the formulation of a matching game with externalities between the applica-
tions requested by the IIoT-devices and the ECSs. The proposed placement
strategy, i.e., ITAMA, realizes the matching game in order to minimize both
the ORT and the number IIoT-devices that suffer a response time greater
than their own time deadline. A theoretical discussion and proof about the
stability of the reached matching have been also provided, according to the
strictly-two-sided exchange-stability definition. Finally, the validation of the
better behavior ITAMA solution in comparisons with different alternatives,
namely SEHPA and CEHPA, recently presented in literature has been pro-
vided by presenting extensive computer simulation results.
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4.5 A Matching Game for Tasks Offloading in
Integrated Edge-Fog Computing Systems

4.5.1 Motivation

During last decade, the ever increasing expansion of IoT to numerous dif-
ferent application areas, such as smart buildings, smart city, augmented
reality, e-health, and video analytics, and so on, has given rise to an increas-
ing demand of both the intensive computation capabilities and high network
bandwidth to support the massive volume of heterogeneous data traffic with
strict real time constraints [62, 98, 253, 288, 290]. Edge and Fog computing
paradigms have been widely studied to overcome latency and network conges-
tion drawbacks of the traditional cloud architecture, typically characterized
by data centers located in remote network areas, far away from end users,
i.e., significant transmission latency, network congestion and scarce adapt-
ability to real-time context [62,288]. In practical words, to move computation
towards network edges, close to the end users may extend the cloud architec-
ture benefits to network edges, by deploying computation nodes, named fog
nodes (FNs), arranged to perform intensive computation tasks with low la-
tency. Similarly, edge computing aims at process directly at the devices level
at the edge of the network, promoting the collaborative sharing of storage
and processing capabilities [62,269]. The integration of these two paradigms
into a whole system considers that the edge devices (EDs) may take advan-
tage in computing their tasks on a close ED higher in available processing
capability or on a FN. Furthermore, since EDs are usually limited in battery
supply and computation resources, sometimes they may be unable to exe-
cute a given task, or due to existing process acting in background on itself,
an ED may prefer to compute on a close ED with wider available processing
capability. Tasks offloading allows to overcome these drawbacks by allocat-
ing the computation of tasks to nearby devices. In particular, we focus here
on an integrated EC-FC system where an ED can offload its task to a FN in
alternative to nearby EDs, depending on advantages on a reduced processing
time or overall energy consumption. Among the possible D2D alternatives,
we have considered the network-assisted D2D communication mode, where
the cellular base station (BS) reserves a suitable number of resources to
support D2D communications between pairs of EDs.
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4.5.2 Contributions
This work presents the analysis and the results discussed in [62] main con-
tributions of this paper are the following

• The computational offloading problem formulated in terms of a match-
ing game with externalities and incomplete preference lists. In fact,
each ED requiring computation selects the computation site based on
the minimization of its completion time, and is able to compute on
itself, on a neighbors ED or on a specific FN belonging to a subset of
the FNs forming the Integrated Edge-Fog Computing System under
consideration;

• Proposal of a matching theory based allocation strategy to reach a
suboptimal solution to minimize both the system energy consumption
and the longest task overall completion time. Furthermore, since sta-
bility is not a trivial issue in the matching game with externalities,
a post matching procedure has been provided to guarantee the two-
sided-exchange stability [35];

• Numerical results derived by extensive computer simulations to vali-
date the good behavior of the proposed method by providing perfor-
mance comparisons with the potential game approach, other matching
based strategies recently proposed in literature, and, finally, with an
alternative solution based on the exclusive use of the far cloud.

The contribution of this paper consists of proposing a method to achieve
a suboptimal solution for the joint optimization of the normalized en-
ergy consumption and the worst task completion time, i.e., the highest
delay experienced by an ED to complete its task computation. In this
regard, a novel post matching procedure to ensure the system stabil-
ity is proposed. It is important to note that in this work a matching
game with externalities has been proposed, which differs from those
presented in [175] and in [200], in which the interactions and rela-
tions among the preferences of the elements involved in the matching
are neglected. Finally, the good behavior of the proposed approach is
validated by presenting performance comparisons with the algorithms
proposed in [53,200], the GS algorithm, the well known potential game
approach [90], and the offloading considering exclusively the far cloud
as computation site.



108 Computational Offloading with Matching Theory

4.5.3 Related Works

The tasks offloading problem plays a crucial role in the FC/EC research area
and it has been widely considered in the recent literature with reference to
different application scenarios [52, 53, 101, 175, 204, 243, 289]. In particular,
in [204], the Lyapunov optimization method is used to minimize the average
energy consumption for the execution of all tasks. In [243] the problem of
the computation offloading in a hierarchical fog-cloud architecture with un-
manned aerial vehicles has been addressed. In this case the authors propose a
two-phase algorithm in which in the first phase the association between users
and cloud is pursuit, while the second phase consists of the optimization of
the remaining variables. Authors in [101] propose a fiber based cloud-mobile
edge computing architecture to relieve the high congestion and high latency
due to the computation on the cloud. The problem of the computational
offloading of the intensive tasks to the cloud is studied in [289] with the
aim at minimizing the energy cost clock frequency of the mobile devices, by
resorting to the alternative optimization and the difference convex function
programming. In [52] the authors consider a ultra-dense network and ad-
dress the delay minimization of the task offloading problem in a mobile edge
computing context.

Recently, matching theory has been widely used in the computational
offloading problem. One example is represented by [175], in which the Gale-
Shapley (GS) algorithm is applied to reach a stable matching between EDs,
in order to offload a task originated on a device on a more powerful neigh-
bor. Paper [53] gives a different point of view of the problem, by proposing
a collaborative task execution in an EC network, aiming at minimizing the
system energy consumption. The energy-efficient task assignment has been
achieved by using a graph-matching-based approach. Finally, paper [200]
proposes a joint optimization of the system overhead in multi-server mobile
EC. In particular, the offloading decisions are provided by applying matching
theory. Furthermore, authors in [273] propose the allocation of blockchains
on edge nodes, considering a cloud/fog architecture, by modeling the offload-
ing price control as a two stage Stackelberg game. In practical terms, in [273]
the cloud/fog providers set the resource price and the followers are consti-
tuted by the edge devices, which purchase resource and perform the mining
tasks. The blockchain networks are analyzed also in [122], in which the social
welfare is maximized, as regards the entry into the network. Furthermore,
paper [151] addresses the heterogeneous resource allocation problem in a fog-
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Figure 4.19: Reference scenario.

IoT network, by involving an improved version of a genetic algorithm to find
a suboptimal solution for the minimization of the system energy consumption
problem.

4.5.4 Reference Scenario

In performing our analysis we refer to the application scenario depicted in
Figure 4.5.4. In particular, we suppose the presence of a cellular system in
which the base station (BS), reserving a set K of channels, each of band-
width B, to support D2D links for a set E of n EDs needing task computa-
tion. Furthermore, we suppose the presence of a task manager unit (TMU),
responsible for controlling our framework by implementing the proposed al-
gorithm. The EDs have been assumed with limited mobility according to a
pedestrian scenario, so that we can assume with a good approximation that
their position does not change during the execution of the proposed planning
algorithm and corresponding EDs tasks execution.

The EDs set is assumed heterogeneous in terms of computation capability
and power consumption. Hence, each ED j belonging to E is characterized
by a given computational capability expressed in terms of number of central
processing unit (CPU) cycles per second qj , and power consumption.

Moreover, we consider FNs equipped with a more powerful computa-
tion capability and able to communicate with a given ED ∈ E by means of
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a shared (according to the Time Division Multiplexing (TDM) approach)
channel of bandwidth B reserved to this purpose by the cellular BS. It is im-
portant to note that, in this case, the used channel has the same bandwidth
of those reserved to D2D communications, but they are not the same. We
assume also that each task computation request is originated at a given ED
and that no more than one task can be executed on a same ED. In particular,
each ED j, as in [53], makes available a part ηj of its computation capacity
qj , to accept an offloaded task, since any ED may run tasks in background.
Consequently, the available processing capacity for a task on ED j results in

cj = qjηj . (4.53)
Likewise, for each FN y ∈ F , we have

cy = qyηy. (4.54)

In particular, in this case we have assumed that the FN is able to run till χy
tasks in parallel. Moreover, in order to preserve its lifetime due to the limited
battery supply, each ED j ∈ E devotes a limited amount of energy, referred
hereafter as πMAX,j , to the computation of an offloaded task. Differently,
the FNs have not any constraint on the amount of energy to be devoted to
the computation of the offloaded tasks.

Task Completion Time

According to the energy constraint individually introduced by each ED in-
terested in a task computation in order to preserve its life time we may
have:

• the task can be computed locally or on an ED close to the ED j, if the
hosting ED has alloocated an enough energy amount to perform the
task j computation;

• if the computation of task j requires an energy consumption greater
than the energy allocated by the available EDs computation capabili-
ties, the task is offloaded on one FN among those in line of sight (LoS)
of the ED j, i.e., Fj .

If a task runs on the ED j where it is originated, the overall task completion
time is exactly its makespan, that is

τj = sj
cj
, (4.55)
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where sj is the size of the task expressed in terms of the number of required
CPU cycles.

Alternatively, if the ED j offloads its task to the FN by means of the
shared cellular link, in addition to the task makespan, we have to consider
the task access delay aj , i.e., the time needed to access the direct link between
the ED j and a FN according to the TDM scheduling, the task response delay
dj , i.e., the time occurring to access the reverse link from a FN to the ED j

to notify the task computation response, the waiting time ωyj experienced by
ED j at the FN y site waiting for task computation 5, and the task request
/response transmission time. Hence, we have

τj,y = sj
cy

+ ωyj + ij,y + oj,y + aj + dj , (4.56)

where ij,y and oj,y are the transmission time needed to send out task j to
the FN y and the task response latency from FN to ED j, respectively. More
in depth, assuming the same data rate for transmissions on the direct and
reverse link, Ry, we have ij,y = ιj/Ry and oj,y = υj/Ry,

where ιj , υj denote the the task request and response size (both in bits),
respectively. Finally, ωyj is the waiting time experienced by the task j before
the start of its computation on the FN y, due to the computation time of
all the tasks previously offloaded on the FN according to a FIFO policy.
Conversely, in the case of offloading to a nearby ED, by taking into account
that only one task can be accepted at a time, we have to consider the mutual
interference due to a possible concurrent use of the same D2D link by other
interfering EDs pairs. For such reason, the overall task completion time τkj,z
for the ED j, when its task is offloaded to the ED z, with z ∈ Dj , through
the channel k, can be defined as

τkj,z = sj
cz

+ (ιj + υj)
Rjk

, (4.57)

where Rjk is the achievable data rate for the ED j, related to the use of the
channel k and defined as follows

Rjk = B log2

(
1 +

Pdβφ
−α
j,z

σ +
∑

a∈E\{j}
Pdβφ

−α
z,aδz,a

)
, (4.58)

5The waiting time at the FN y site for a given task depends on χy and on the number of
tasks previously offloaded to the FN according to the procedure outlined in Section 4.5.6.
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where the terms denote: φz,a the distance between the ED z and the ED a;
β the path loss coefficient; α the path loss exponent; σ the Additive White
Gaussian Noise; δz,a a binary value equal to 1 if the ED a offloads its task
to a nearby ED by using the same channel for the D2D communication, 0
otherwise; and, finally, Pd the ED transmission/receiving power used at any
involved ED.

The resulting overall completion time for task originated at the ED j,
results in

Tj = τjλj + (1− λj)
[∑
k∈K

∑
z∈Dj

∑
y∈Fj

(τkj,zδj,zζj,k + (1− δj,z)τj,y)
]
, (4.59)

where λj is a binary value equal to 1 if ED j has a task to compute and it
does not offload it, 0 otherwise. Furthermore, δj,z is a binary value equal to
1 if ED j offloads its task to ED z, with z ∈ Dj , or 0 otherwise, while ζj,k is
equal to 1 if task j selects channel k to offload its task on a nearby ED.

Energy Consumption

In order to provide a complete analysis, the overall energy consumption
needed to complete a task computation process at a given site is evaluated.
Considering a tagged ED ∈ E , having a task to be computed, i.e., the ED
j. If the ED j locally executes it, the corresponding energy consumption
results in

πj = τjρj ≤ πMAX,j , (4.60)

where ρj is the power consumption of the ED j CPU, that can be derived
as in [134]. Likewise, if the ED j offloads its task to the FN y, the energy
consumption of its computation is

πj,y = ρy(sj
cy

) + Pf (ij,y + oj,y), (4.61)

where Pf is the transmission/receiving power assumed the same at the ED
and FN y site and ρy is the FN CPU power consumption. Finally, if ED
j offloads its task to a nearby ED z, with z ∈ Dj , whose CPU power con-
sumption is ρz, the resulting energy consumption for the task computation
on ED z can be defied as

πj,z = ρz(
sj
cz

) + Pd(ij,z + oj,z) ≤ πMAX,z, (4.62)
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where Pd represents the ED transmission/receiving power when the offload-
ing between EDs is achieved by resorting to a D2D link. Hence, the normal-
ized system energy consumption, i.e., the overall energy needed to complete
the computation of all the tasks normalized to the number n of EDs having
a task to be computed, can be defined as

Esys = 1
n

∑
j∈E

πjλj + (1− λj)[
∑
z∈Dj

∑
y∈Fj

(πj,zδj,z + πj,yγj,y)], (4.63)

with γj,y equals to 1 if ED j offloads its task to the FN y, or 0 otherwise.

4.5.5 Problem Formulation
The aim of this study is the minimization of both the normalized system
energy consumption and the worst overall completion time. As consequence,
in formal terms, the tasks offloading problem can be expressed by

min Esys(λ, δ, γ) and min
λ,δ,ζ

max
j∈E

Tj(λ, δ, ζ) (4.64)

s.t.
λj +

∑
z∈Dj

δj,z +
∑
y∈Fj

γj,y = 1, ∀j ∈ E ; (4.65)

∀j ∈ E
∑
z∈Dj

δj,z > 0⇒
∑
k∈K

ζj,k = 1; (4.66)

∀j ∈ E
∑
z∈E

δj,z ≤ 1, (4.67)

πj ≤ πMAX,j ,∀j ∈ E , (4.68)

where λ, δ, γ and ζ are vectors whose elements are λi,j , δj,z, γj,y, ζj,k∀j, z ∈
E ,∀y ∈ F , and k ∈ K, respectively. Constraint (4.65) imposes that each ED
has to necessary choose only one computation site among itself, a nearby
device or on one FN, constraint (4.66) expresses that, in case of offloading
on a nearby device, only one channel has to be selected. Constraint (4.67)
means that each ED can compute no more than one task. Finally, constraint
(4.68) means that the energy consumption of each ED cannot exceed the
allocated energy amount to perform computation of the offloaded task. The
problem formulated in (4.64)-(4.67) is a mixed integer linear programming
(MILP), generally NP-hard to solve [2], hence, this motivates us to search
for a suboptimal matching based solution to solve it.
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Figure 4.20: Proposed matching theory strategy

4.5.6 Proposed Solution and Algorithm

The tasks offloading problem can be easily formulated in terms of matching
game, in order to establish mutually beneficial relations between the the
EDs requiring task computation, and the set of all the possible computation
sites. In particular, for a task originated at a given ED, i.e., ED j, due
to its position, the length of its task and the energy capabilities of its EDs
neighbors, the set of the whole possible computation set changes for different
EDs. By assuming Aj the set of all the possible computation sites for ED j,
Aj may include the ED j, in dependence of its energy capability in relation
to the length of the task needing computation. Similarly, Aj may contain
one or more neighbors EDs, while the FNs in the LoS of the ED j represent
possible computation sites for task j Generally speaking, since each ED j

has not the access to each other ED element and to each FN of F , the EDs
preferences lists are not complete, i.e., the number of elements constituting
the preferences lists change on the basis of the considered ED. Furthermore,
it is straightforward to note that Aj changes during the matching game,
since, whenever a given ED ∈ Aj is selected for the offloading of a task, it is
inhibited to accept computation of any other task. In the proposed matching
approach the EDs requiring a task computation and the FNs individually
express their task computation preferences defined later.
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4.5.7 EDs and FNs preference list
Each ED j needing task computation is a selfish and rational player with
the aim of minimizing its task overall completion time, according to (4.55),
(4.56) and (4.57). In particular, each ED j forms its preference list over Aj
by sorting the computation sites in order to find

min
λ,δ,ζ

Tj(λ, δ, ζ). (4.69)

The FNs preferences lists are built in order to pursue the minimization
of the total system energy consumption. Therefore, each FN sorts the EDs
which request task offloading on itself, by finding

min
λ,δ,γ
Esys(λ, δ, γ). (4.70)

It is important to note that the allocation of a task on a computation
site can impact the preferences of other tasks, i.e., may reduce the number
of EDs able to accept a task offloading or may increase the access delay due
to the use of the shared D2D channels.

4.5.8 Allocation Strategy
The proposed algorithm provides different matching types according to the
computation site type. In particular, it is allowed a many-to-one matching
between the EDs set and the FNs, and a one-to-one matching among the EDs.
The algorithm runs at the cellular TMU site which has a full awareness of the
application scenario in terms of EDs/FNs location, computation capabilities
and communication channels conditions. The TMU collects the preferences
list of each ED requiring task computation and takes decisions according
to an iterative procedure that, for each task, selects the most appropriate
computation site that guarantees the best trade off between the overall task
completion time and the system energy consumption. At each step of the
task allocation strategy, a modified version of the Gale-Shapley algorithm
(GSA) [84,88,211,212] is applied by following the steps

1. Each ED, i.e., ED j, having a task to compute creates its preference
list on the available computation sites in Aj , aiming at minimizing its
overall task completion time.

2. Each ED having a task to compute proposes its preferred computation
site to the TMU.
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3. The TMU acts as follows

(a) Each ED requiring locally computation is enabled to execute its
task;

(b) Each ED that receives more than one computation request, ac-
cepts the ED that minimizes Esys;

(c) Each FN that receives more than one computation request, ac-
cepts the ED with the highest position in its preference list among
the proposals received;

4. The allocated tasks are removed by the unallocated tasks set T as well
as each ED with an assigned task computation is no longer considered
available for a further task allocation. Finally, the TMU updates the
waiting time of all the FNs that have accepted one task;

5. Each unallocated ED updates its reference list;

6. Each FN updates its preference list;

7. Repeat steps 1)− 7) until T is empty.

In Figure 4.20 the proposed matching based offloading framework is sum-
marised. As regards the study of the complexity of the proposed algorithm,
we consider the worst case scenario in order to perform the time complexity
analysis. Under such assumption, we suppose that any couple of EDs can
be connected together by D2D links. In this respect, it is easy to note that,
at the first step, when the whole E set is unallocated, the number of all the
possible computation sites for each ED is exactly equal to n. Hence, the
complexity of the proposed solution is in the order of O(n · (n · log(n)). How-
ever, it is important to note that the worst case scenario previously analyzed
is strongly pejorative and very unlikely in actual application scenarios.

4.5.9 Stability Analysis

Within the matching games with externalities context, there not exists a
unique definition of stability. In this respect, we consider the stability def-
inition proposed in [35] and we adapt it to our model by introducing the
following definitions:
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Definition 11. A blocking pair (BP) is defined as a pair of tasks (t1, t2) if
both t1 and t2 improved their overall completion time after exchanging their
partners and eventually the assigned channel.

Definition 12. Let (u, v) be a BP. The exchange between the components
of the BP (u, v) is allowed if all the following conditions are satisfied:

1. T (u,v)
t1 < Tt1 and T (u,v)

t2 < Tt2 ;

2. P (u,v)
sys ≤ Psys.

where T (u,v)
t1 , T (u,v)

t2 expresses the overall completion time of task t1 and
t2 respectively after the exchange, and similarly E(u,v)

sys is the system power
consumption after the exchange. Definition 12 means that the exchange is
provided when both task t1 and t2 improve their overall completion time and
also the system power consumption does not get worse. Since a matching
M is stable if there is no BPs for which the exchange is allowed, as defined
in Definition 12, we propose a strategy to reach a final outcome matching
that acts as follows

1. given an outcome matching M, all the BPs belonging to M are de-
tected;

2. for each BP (u, v) ∈ BP, the requested exchange is attempted;

3. conditions 1) and 2) of Definition 12 are evaluated;

4. if conditions 1) and 2) of Definition 12 are verified, the (u, v) swap is
allowed.

5. repeat steps 1)-4) until at the previous iteration a swap has occurred.

The method terminates in a stable matching and has a temporal complexity
of O(n · φ), where φ is the total number of switched occurred in the post
matching procedure. Since the conditions to allow the swap are very strict,
we can say that φ << n.

4.5.10 Numerical Results
Furthermore, performance comparisons with alternative methods are given
in order to highlight the better behavior of the proposed solution. The pre-
sented numerical results have been derived by considering a reference sce-
nario with a different number of heterogeneous EDs. Moreover, for each ED



118 Computational Offloading with Matching Theory

Figure 4.21: System performance by assuming a cloud architecture and fog
architecture.

we have assumed a CPU working frequency uniformly distributed within the
set {0.2, 0.4, 0.6} GHz with the associated computation energy consumption
evaluated as in [134]. Likewise, we have assumed a set of 4 FNs with CPU
working frequency uniformly distributed within the set {0.8, 1.2, 1.4} GHz,
4 channels with a bandwidth of 20 MHz reserved by the BS for support D2D
communications and two channels at a fixed data rate equal to 20Mbit/s

reserved by the BS to allow communications on the direct and reverse link
from and towards FNs and cloud, respectively. The parameter πMAX,j for
any EDj ∈ E has been assumed as uniformly distributed within the in-
terval [0.18, 0.27] kJ. Furthermore, cloud6 is supposed equipped with a CPU
with working frequency uniformly selected within the set {3.2, 4.8, 5.6} GHz.
Each ED has to compute a task formed by number of instructions N selected
with an equal probability in [1500, 2300], with each instruction requiring
a number of mean clocks per instruction (CPI) uniformly selected within
{12, 8, 4, 2}. Furthermore, we have assumed a 64 bits instructions format,
and the length (bits) of the associated task computation output uniformly
selected in [N/2, N ]. The specific time deadline Th constraints for real time

6Once linked to the BS by means of the shared wireless channel, the EDs are connected
to the cloud through an high speed (i.e., optical) link for which we have assumed negligible
the transmission delay.
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Figure 4.22: Worst overall task completion time comparisons

applications have been considered for each task uniformly distributed in the
interval [0.8, 2.4] ms. Finally, the EDs have been spatially distributed within
a circular area of radius 100 m according to a Poisson Point Process (PPP).
Transmission/receiving power for D2D communications is 0.1 W, while for
communications between EDs and the FNs, it is 0.8 W. Differently, as re-
gards the cloud specifications, we supposed, according to [1], a CPU cycles
frequency equals to 5.6 GHz and able to run 32 tasks in parallel, against the
8 of each FN.

The performance of the proposed task offloading scheme are compared
with the following alternative approaches

• The bipartite matching graph algorithm (MA) proposed in [53];

• The classical Gale-Shapley (GS) matching algorithm (i.e., without con-
sidering the preference list updating);

• A matching game derived by that proposed in [200] (MAT) without
considering the power control procedure being not of interest in our
case;

• The well known potential game [90] (POT) in which each ED and FN
aims at minimizing its computation time;
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Figure 4.23: Mean overall completion time per task as a function of Pa for
100 EDs.

• An offloading approach that considers only a far cloud as possible al-
ternative.

In particular, the results analysis has been conducted considering as per-
formance metrics:

• The mean overall task completion time (T̄C), defined as the sum of all
the task completion times Tj given by (4.59) divided by the number of
the EDs that require computation;

• The worst overall task completion time (TW );

• The normalized system energy consumption (Ssys);

• The outage probability (Pout) defined as the probability that a given
task does not complete its computation within the associate time dead-
line.

As a consequence, Figure 4.21 shows the mean task overall completion time
as a function of the EDs number. The Figure depicts performance com-
parison when the computation offloading is provided on the hybrid edge-fog
computing scenario analyzed in the paper, or supposing a cloud architecture,
in which all the task computation requests are all offloaded to a far cloud. As
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Figure 4.24: Normalized system energy consumption comparisons.

it is easily to note, the integrated edge-fog computing system based on the
proposed offloading algorithm (PA) reaches significant improvement on the
mean overall task completion time. The validity of the PA is confirmed in
Figure 4.22, where TW is again given as a function of the number of EDs re-
quiring a task computation. Furthermore, we show in Figure 4.23 the mean
overall task completion time considering a fixed number of EDs equals to
100, for different values of the probability that one ED has not to compute
a task. The superiority of our approach is again evident in this figure, also
in comparison with different approaches such as GS, MA, MAT and POT.
In order to complete our analysis, we compare in Figure 4.24 the Esys pa-
rameter related to the proposed method with the considered alternatives,
without taking into account any constraint for the Th value, in order to be
compliant with the original definitions of the comparison methods. This fig-
ure shows that the proposed method clearly outperforms all the considered
alternatives. Finally, Figure 4.25 shows the achieved Pout for the application
scenario under consideration as a function of the EDs number. The better
behavior of the PA is again evident in the figure in comparison with the
other methods by allowing a significant reduction of the energy wasted due
to unfinished tasks computations.

It is straightforward to note that in Figure 4.23, Figure 4.22 and Fig-
ure 4.25, the PA and POT reach better results than other disciplines. It is
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Figure 4.25: Outage probability comparisons.

due to the fact that they, after each allocation, update the system condi-
tions on which they perform offloading allocation. Furthermore, both the
approaches take into account the minimization of the longest task comple-
tion time. Differently, the other approaches do not update, or update less
frequently than PA and POT, the system conditions and perform choices
without considering the most recent changes into the system state. Finally,
in Figure 4.24, MA approach exhibits a better behavior compared to its
trends in other figures, since its main objective is the energy consumption
minimization.

4.5.11 Conclusion

This study has presented an efficient tasks offloading framework, contex-
tualized to an integrated Edge-Fog computing system, in order to provide
solution to the task offloading problem. Moreover, a matching game with
externalities and incomplete preferences lists between the tasks set and the
computation sites set has been formulated, aiming at minimizing both the
system energy consumption and the worst overall task completion time. The
proposed algorithm achieves a different type of matching according to the
nature of the computation sites. In particular, the task offloading strat-
egy realizes a many-to-one matching between the tasks and the FNs, and a
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one-to-one matching between the tasks and the EDs sets. Furthermore, a
post matching procedure has been proposed, in order to provide matching
adjustments, allowing the computation sites exchanges whether system per-
formance improves and no one is worse off. The performance of the proposed
tasks offloading strategy have been evaluated in terms of mean/worst overall
task completion time, mean task communication time, total system energy
consumption and outage probability, i.e., the probability that a given task
does not complete its computation within the associate time deadline. Fi-
nally, performance comparisons with different approaches have been provided
in order to validate the effectiveness of the integrated Edge-FoG computing
solution based on the proposed tasks offloading technique.
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Chapter 5

Queuing Theory for Delay
Sensitive Computational
Offloading

Things may come to those who wait, but only the things
left by those who hustle.

Abraham Lincoln

5.1 Performance Analysis of an Edge Com-
puting System for Real Time
Computations and Mobile Users

5.1.1 Motivation
The exponential diffusion of mobile devices and applications demanding for
real-time computation and processing services, resulted during last decades,
has unambiguously implied a massive emergence of searching strategies able
to handle data-intensive and delay sensitive applications. The rise of this
class of services demand, typically tactile internet, augmented reality, on-
line games, mission critical applications, autonomous driving processes, or
intelligent transportation system (ITS) services, has brought new challenges
in terms of ensuring continuity of service, low latency, energy efficiency and

125
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Figure 5.1: Handoff mechanism

high access speeds. Among all these aspects, ensuring continuity of service
to mobile users is a very critical issue to be addressed, in order to guarantee
high level of users experience [203].

Moreover, in addition to these real time applications, the well-known
ITS currently constitutes a wide scenario in which users mobility and real
time/delay sensitive applications strictly coexist [40,55,74,194,214,298].

Recently, the new paradigm of the edge computing (EC) [166] has emerged
as a promising methodology to support such real time applications for mobile
users, in which the edge node are arranged provide computation capabilities
to all the mobile users within a specific area. In such a context, the EC so-
lution provides high speed computation services, low transmission delay and
communication congestion, hence favoring applications requiring real time
low latency computations and communications.

5.1.2 Contributions

In reference to the results and the analysis presented in [75], this study
presents an analytical method based on the queuing theory analysis to derive
the performance of an EC system devoted to provide computation facilities
to mobile users demanding computation of real time applications. It is im-
portant to note that the proposed analysis is quite general and it is pretty
applicable to the whole class of real time data traffic implying mobility. Ac-
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cording to our approach, each EN has been modeled as a M/M/C system
with reneging, i.e, with premature departure of requests from the system
before they achieve service completion or access to the service facilities. In
particular, the main objective here is the minimization of the number of
processors C to be allocated at each EN to ensure specific quality of ser-
vice target values as regards the probability that a new arrived computation
request is dropped and the probability that a computation request handoff
attempt towards an adjacent EN fails. Finally, comparisons between ana-
lytical predictions and numerical results obtained by resorting to computer
simulations, assuming actual application scenarios, are provided in order to
validate the proposed analytical method.

5.1.3 System model
An EC system composed by a set F of edge nodes (ENs) to provide real
time computation capabilities to mobile users (MUs), has been considered.
Each EN is assumed equipped with k homogeneous central processor units
(CPUs). Any MU within the service area of a given EN, i.e., the geographical
area within which any MU can be reliably linked with the EN, can offload
the real time applications computation to the EN throughout wireless links
with a negligible latency. A computation request is dropped by an EN if
at its arrival all the C CPUs are busy. It is important to note that all the
applications of interest here are supposed composed by atomic processes, for
which the task relocation on the destination EN is a safety procedure as
regards the state of the involved programs [182]. Whenever a MU with a
computation request in service at a given EN, (source EN), approaches the
border of the overlapping area with an adjacent EN, i.e., enters in the service
area of the adjacent EN (destination EN), a handoff procedure is started,
i.e., a request for allocation of a CPU at the destination EN is submitted,
according to the received signal strength (RSS) principle [68]. We assume
here that the service areas of adjacent ENs overlap on a limited geographical
region and that any MU entering an overlapping area (see Figure 5.1) starts
to constantly monitoring the RSSs from the adjacent EN. As soon as the RSS
from the adjacent EN overcomes a given threshold value, the MU submits
to that EN a handoff request, i.e., the allocation request for a new CPU at
the destination EN to continue the service of its application. The handoff
request has to be accomplished before the involved MU definitively leaves
the service area of its source EN (i.e., until the wireless communications
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between the MU and the source EN are no longer possible). During the
handoff request waiting time, i.e., the time elapsed from the start instant
of the handoff procedure to when communications between the MU and the
source EN are cleared, the computation request of the MU involved in the
handoff procedure remains in service at the allocated CPU at the source EN.
Therefore, we may have:

• the computation request is successfully completed before the waiting
time expiration;

• the computation request is successfully passed for completing service
(successful handoff) to the adjacent EN;

• the computation request is forced to termination (handoff failure) due
to the waiting time expiration.

In order to derive the performance of the EC system under considera-
tion in terms of the probability that a new computation request is dropped
because at its arrival, at a given EN, all the available CPUs are busy, and
the probability that a handoff attempt fails, we resort here to the use of
Markovian queuing system model, i.e., an M/M/C system with reneging,
with the system state assumed as the sum of the busy CPUs and the num-
ber of handoff requests waiting in the handoff queue. The goodness of the
proposed approach based on the Markovian assumption will be validated
later by providing comparisons between the obtained analytical predictions
and the numerical results derived by performing extensive computer simula-
tion in relation to actual application cases. A more detailed description of
the proposed M/M/C queuing system is provided in what follows.

Traffic Model

In accordance with the adopted queuing system model, we assumed the rise
of new real time computation requests flow within each EN serving area
modeled as independent Poisson processes with the same mean generation
rate per minute equal to λrt. Likewise, we assumed that the handoff re-
quests flow towards an EN follows an independent Poisson distribution with
mean attempts rate per minute λh. Furthermore, we consider the service
time Te requested by any real time application to a given EN exponentially
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distributed with mean value given by

1
µe
. (5.1)

Likewise, we denote as connection time for a MU the time interval during
which the MU may be linked to a particular EN. Under the assumption
that any MU within the service area of a given EN can be linked to the
EN itself, the connection time of any MU corresponds to its sojourn time
Tf of a MU in the service area of the EN of interest. Hence, according
to [73, 99], the connection time Tf of a MU can be considered here as a
negative exponentially distributed random variable with mean value given
by

µf = 0.7182V
R
, (5.2)

where V and R are the devices speed and the EN service area radius, re-
spectively. Moreover, we assumed that a real time computation may stay
in service at a given EN until the associated MU is within its service area.
Hence, let TH be the CPU holding time, i.e., the time during which a real
time computation request stays in service on a particular CPU of a given
EN, we have that

TH = min{Te, Tf}. (5.3)

Hence,
P{TH ≤ t} = 1− P{(Te > t) and (Tf > t)}, (5.4)

where P (x) denotes the probability of event x. In our case, under the as-
sumption of mutually independent events, we have

P{TH ≤ t} = 1− e−(µe+µf )t. (5.5)

Therefore, the pdf of TH results to be

fTH (t) = (µe + µf )e−(µe+µf )t, t ≥ 0, (5.6)

with mean value equals to

1
(µe + µf ) = 1

µH
. (5.7)

We recall here that any new real time request that does not find an idle server
(i.e., a CPU) at its arrival at a given EN is blocked and, hence, cleared from
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the EN. Hence, by denoting with PB the probability of this event and with
Pfh the probability of a handoff failure, i.e., the probability that a handoff
request is not successfully accomplished within its deadline, we have that
the mean handoff attempts rate due to MUs in service at a given EN, λho,
results to be

λho = [λrt(1− PB) + λha(1− Pfh)]Ph, (5.8)

where λha is the mean handoff attempts rate towards the given EN and
Ph, according to [114], is the probability that a MU having a real time
computation in service gives rise to a handoff request towards an adjacent
EN, defined as:

Ph = µf
µf + µe

. (5.9)

Finally, under the assumption of an equilibrium condition, i.e., when the
mean rate of MUs entering into the service area of a given EN with a com-
putation in progres,s from all the adjacent ENs, is equal to the mean rate
of MUs with a computation in progress leaving the service area of that EN
towards the adjacent ENs, we have λh = λha = λho. Hence, from (5.8)

λh = (1− PB)Ph
1− Ph(1− Pfh)λrt. (5.10)

Handoff Queuing Management

According to the RSS handoff approach outlined in Section 5.1.3, any handoff
request arrived at a given EN when all the C CPUs are busy is queued
according to the FIFO policy, waiting for acquiring the service. Moreover,
any queued handoff request is dropped from the queue without acquiring
service if the connection time of the associated MU with the source EN
expires.

By recalling that the state of the EN has been assumed given by the sum
of the number of busy CPUs and the number of handoff requests waiting
into the FIFO queue, through application of results concerning the M/M/C
systems with reneging in standard queuing theory, we obtain that the prob-
ability of having the EN in the state x , Px, when x ≤ C (in this case a new
handoff arrival immediately accesses service) is given by

Px = P0
(λrt + λh)x

x!(µH)x . (5.11)
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P0 = 1
C∑
b=0

(λrt + λh)b

b!(µH)b + (λrt + λh)C

C!(µH)C
∞∑

b=C+1

λb−Ch
b−C∏
g=1

[(C + g)µH + gµq]

. (5.13)

PB =
∞∑
b=C

Pb = P0(λrt + λh)C

C!(µH)C

[
1 +

∞∑
b=C+1

λb−Ch
b−C∏
g=1

[(C + g)µH + gµq]

]
. (5.14)

Different, for x > C, we have

Px = P0
(λrt + λh)C

C!(µH)C
λx−Ch∏x−C

g=1 [(C + g)µH + gµq]
, (5.12)

with P0 given by (5.13).
From (5.11)-(5.13), it follows that the probability PB that a new real time

computation request is blocked results as in (5.14). Generally speaking, we
assumed that a queued handoff request fails if it does not reach the head of
the queue and it does not obtain access to the service at the destination EN
before the expiration of its connection time with the source EN.

Let Pfh(j) be the probability that a handoff attempt fails entering in
the queue in position j. Then, the probability that a MU suffers a handoff
attempt failure is

Pfh =
∞∑
l=0

Pl+CPfh(l). (5.15)

Considering the handoff request queued in the (j + 1)-th position, for which
we suppose that the service of the associate real time application at the
source EN cannot be completed before the expiration of its connection time.
We will denote as Phd in what follows the probability of this event which
results defined as

Phd = µe
µe + µf

= µe
µH

, (5.16)
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Hence, by indicating with P (j|j+ 1) the probability that a handoff com-
putation request in position j + 1 moves in position j before the connection
time expiration, the probability that the considered handoff request reaches
the head of the queue, obtaining the allocation of one of the C CPUs before
the expiration of the associated connection time is given by

Ps =
[

j∏
g=1

P (g|g + 1)
]
Ppr, (5.17)

where Ppr, defined later, is the probability that a CPU is assigned to the
handoff request at the head of the queue before expiration of the related
connection time.
Let Te,i, TH,i, Ts,i be random variables exponentially distributed, denoting
respectively

• Te,i: the residual processing time of the handoff attempt request lo-
cated at the i-th queue position when a change for the queue size
occurs, i.e., a handoff request leaves or joins the queue;

• TH,i: the residual time that a computation request remains allocated
at a given CPU at the destination EN when the queue size changes
and all the C CPUs are busy;

• Ts,i: the residual time that a MU with its handoff request at the i− th
queue position remains in the source EN service area.

Hence, supposing for the sake of simplicity α = (TH,1∨· · ·TH,C), γ = (Te,1∨
· · ·Te,i), and δ = (Ts,1∨· · ·Ts,i), it is straightforward to obtain the following
relation

P (i|i + 1) = Prob{(α ∨ β ∨ γ ∨ δ) < Ts,i+1}

=
∫ ∞

0
Prob{(α ∨ γ ∨ δ) < Ts,i+1 = t}fTs,i+1(t)dt

=
∫ ∞

0
{1− e−[(C+i)µH+iµs]t}µse−µstdt

= (C + i)µH + iµs
(C + i)µH + (i+ 1)µs

. (5.18)

Since a handoff attempt request, located at the head of the queue, obtains
the allocation of a CPU if the connection time of the MU, associated to



5.1 Performance Analysis of an Edge Computing System for Real Time
Computations and Mobile Users 133

that request, exceeds the CPU holding time for at least one of the busy C
processors, we have

Ppr = CµH
CµH + µs

. (5.19)

From (5.17), (5.18) and (5.19) follows

Ps(j) =
[

j∏
g=0

(C + g)µH + gµs
(C + g)µH + (g + 1)µs

]
. (5.20)

Then, we have (5.21) and (5.22).

Pfh(j) = Phd[1− Ps(j)] = µq
µH + µq

(
1−

j∏
g=0

(C + g)µH + gµq
(C + g)µH + (g + 1)µq

)
.

(5.21)

5.1.4 Problem Formulation
As stated before, the scope here is to provide an analytical approach based
on the use of the M/M/C system model with reneging in order to derive
the performance of an EC system devoted to perform real time computation
to MUs. The focus here is on deriving the minimum number of CPUs to be
allocated to any EN in order to meet specific service constraints in terms of
probability that a new computation request is blocked and probability that
a computation handoff attempt fails. Hence, our problem can be formulated
as

minC, (5.23)

s.t.
Pfh ≤ Pfh,target, (5.24)

Pfh = P0
(λrt + λh)C

C!(µH)C
µq

µH + µq

{
[1− Ps(0)] +

∞∑
j=1

λjh
j∏
g=0

[(C + 1)µH + gµq]

}
.

(5.22)
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Figure 5.2: PB as function of λrt.

PB ≤ PB,target, (5.25)

where Pfh,target and PB,target are the maximum acceptable values referred
to the Pfh and the PB , respectively, in relation to specific QoS constraints.
It is straightforward to note that the dominant constraint between (5.24)
and (5.25) is represented by the minimum value between Pfh,target and PB,target.
Generally speaking, since from a MU perspective having cleared a compu-
tation in progress is usually more annoying than having a new computation
request blocked, we consider here a more stringent constraint for Pfh,target
than PB,target.

5.1.5 Numerical Results
In order to validate the the proposed theoretical model (TM), based on the
following assumptions

• Handoff arrivals at an EN assumed as a Poisson process with a given
mean rate and independent from the Poisson arrival process of the new
computation requests at the same EN;

• Independent Exponential distributions with appropriate mean values
for all the other random variables of interest for our analysis,
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Figure 5.3: Pfh as function of λrt.

we present here comparisons between the obtained analytical predictions
and numerical results derived by performing extensive computer simulations
(SM) in the case of actual arrival and service time distributions under the
assumption of an equal computation requests arrival rate and mean service
time [246]. The system performance has been measured in terms of PB and
Pfh. We supposed ENs equipped on board of a maximum number of proces-
sors C equals to 14, and each computational request with a mean duration
of 3 minutes. Furthermore, considering as reference mobility model that
proposed in [99], it results V/R = 1 min−1, and Te,i, TH,i, Ts,i modeled as
in [137]. With the aim at comparing the analytical predictions derived on
the basis of the proposed M/M/C queuing system model with reneging with
those related to an actual EC system, according to [179], the computation
requests arrivals have been modeled according to a Normal distribution, with
service time following a hyperexponential distribution as in [246]. Finally, it
has been assumed that all the real time applications having an equal mean
computation time of 0.3 minutes and target values for Pfh and PB equal to
4 × 10−4 and 5 × 10−4, respectively. All the numerical results presented
here are referred to the mean values obtained from 1000 independent runs
of simulations. It is important to stress that a very good agreement be-
tween the analytical predictions and simulation results is evident in all the
Figures 5.2, 5.3, and 5.4. Finally, Figure 5.5 shows the minimum (i.e., op-
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Figure 5.4: PB as function of the number of CPUs

timum) number of CPUs as a function of the λrt required to meet different
Pfh,target and PB,target service constraints derived by solving the optimiza-
tion problem formulated in (5.23)-(5.25). In the same figure the optimum C
values derived by resorting to computer simulations by assuming the actual
conditions previously introduced are also reported for comparison purposes.
The good agreement is evident in Figure 5.5 and validates the effectiveness
of the proposed analytical approach based on the definition of an equivalent
M/M/C queuing system with reneging.

5.1.6 Conclusion

The performance analysis of an EC system in the case of real time com-
putation requests and user mobility has been provided. A suitable handoff
management scheme has been proposed and analyzed by resorting to the
definition of a M/M/C queuing system model with reneging. Being the
proposed analytical approach based on some simplified (i.e., Markovian) as-
sumptions, its accuracy has been validated by providing comparisons with
the simulation results derived by performing extensive runs in the case of
actual service conditions. In particular, it has been demonstrated here that
the proposed method represents an efficient tool to perform the design of an
EC system for what concerns the minimum number of CPUs to be allocated



5.2 Performance Analysis of a Delay Constrained Data Offloading Scheme
in an Integrated Cloud-Fog-Edge Computing System 137

Figure 5.5: Minimum number of CPUs as a function of λrt for different
(Pfh,target, PB,target) service constraints

at each EN in order to meet specific service constraints.

5.2 Performance Analysis of a Delay Constrained
Data Offloading Scheme in an Integrated
Cloud-Fog-Edge Computing System

5.2.1 Motivation
During last decades, the cloud computing [24] architecture has held an undis-
puted dominant role in the network computing paradigms scenario, provid-
ing massive processing and storage capacity to the users. However, over
the years, the large scale diffusion of devices always getting smarter, able
to exchange data information to each other and with the surrounding en-
vironment, has led to a deep need to redesign the networks architectures.
More in depth, the ever increasing presence of smart devices in our daily life
has opened the doors to novel ubiquitous communication paradigms, such as
the Internet of Things (IoT). The IoT expresses a wide reality consisting of
heterogeneous smart devices generating big volume of data traffic and appli-
cations demand. Other typical aspects of the IoT may be represented by the
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Figure 5.6: Edge-fog-cloud Architecture

mobility of the devices, which poses new challenges as concerns the seam-
less service continuity, or real-time execution constraints required for some
classes of applications, such as augmented reality, health care applications or
recognition assistance [72]. All these new challenges have triggered the ten-
dency to migrate towards novel solutions, typically based on the deployment
of computational nodes, lower in processing and storage supply, to the edges
of the network, in order to reduce the network response latency [168]. The
novel network paradigms based on this approach are named edge computing
(EC) [166] and fog computing (FC), and are able to provide low latency
response and service continuity to mobile users.

However, in comparison to the existing public cloud based solutions, i.e.,
Microsoft Azur and Amazon AWS, the processing capacity of EC solutions
is strongly limited [69]. In order to address both the cloud and EC/FC
issues, the functional integration of these two approaches in a same comput-
ing infrastructure has recently gained momentum [72]. This solution enables
massive improvements in system performance and users quality of service
(QoS), introducing higher levels of flexibility for rapid computations and
high mobility patterns. In such a context, however, an additional issue has
to be carefully considered, mainly in the service providers point of view, that
is the pursuit of a proper system resources exploitation.
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5.2.2 Contributions
Towards this direction, this study analyzes the performance of an integrated
cloud-fog-edge computing infrastructure depicted in Figure 5.6. At the Edge
layer we have sets of EC nodes (ECNs) able to offer computation to the
underlying devices. Each set of ECNs is linked to a fog computing node
(FCN) belonging to the Fog layer. Finally, all the FCNs are linked to the
cloud [91, 246]. ECNs and FCNs are modeled as Markov queueing system
with finite capacity with the entering of a computation request into the ECN
or FCN ruled by the number of requests waiting for computation completion
at its arrival instant, in relation to specific deadline constraints. Conversely,
the cloud does not reject any computation request. As a consequence, we
have resorted here to a Markov queueing system model with reneging, to
take into account the premature departure of a request due to the expiration
of the associated deadline.

Summarizing, the main contributions here are

• Queueing theory analysis of the considered integrated cloud-fog-edge
computing infrastructure;

• Performance optimization on the basis of the social welfare metric [83,
261,272], constrained on a target referred to the dropping probability,
i.e., the probability of the occurrence of the deadline expiration;

• Validation of the proposed analytical model and obtained analytical
predictions throughout comparisons with numerical results derived by
performing extensive computer simulation runs under realistic world
conditions.

5.2.3 Related Works
During years, queueing theory analysis has received many attentions within
the field of the computational networks. As a consequence, several papers
dealing with different aspects of these systems are available from the liter-
ature. In particular, in [115] the authors focus on the optimization of the
number of processors in a real time computing system, where arrivals are
bursty and divided into two priority job classes. The two priority service
requests are managed by setting a fixed number of processors to serve the
high priority queue, while the remaining servers are allocated on the ba-
sis of the waiting time on both the queues. The presence of two classes
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of customers has been analyzed also in [15], in which a system M/M/1/K
with weighted fair queueing discipline is studied. The conditions and perfor-
mance of a computing system with finite input source is analyzed in [173],
while the optimal number of servers in a computing system is a problem
addressed in [173]. Furthermore, in [173] a M/M/C/m/m queueing system
model is consider to derive the optimal number of processors through the
fuzzy logic approach, aiming at minimizing the system maintenance cost. A
novel method to assess the suitable number of servers in a queueing system
with finite capacity is proposed in [23], on the basis of the level of customers
satisfaction. In particular, the server optimization is performed here by con-
sidering three different metrics consisting of the system cost, its acceptability
and the servers utilization rates.

Differently, the authors in [66] optimize the number of processors on
the basis of a M/G/∞ system, focusing on the maximum exploitation of
the production line, by considering a provider perspective. The study of
the economic aspects of different versions of the computational systems have
recently emerged in many papers. An example is represented by [272] where
a dynamic control problem in an open Jackson network with limited capacity
is formulated, in which the aim is to determine the suitable admission price to
maximize the long therm social welfare system metric. Paper [193] formalizes
the cloud provider maximization profit, in which both service charges and
business costs are considered in the system optimization.

With the emergence of the new network paradigms, queueing theory has
been extensively applied to provide stochastic traffic analysis of next gen-
eration networks. Paper [270] aims at ruling offloading considering an het-
erogeneous networks scenario. The paper models both the partial and the
full offloading policies, via Wi-Fi and cellular networks, considering reneging
and service interruptions. The main aim of the paper is the optimal tradeoff
between energy efficiency and system performance, and the heterogeneous
offloading interfaces are represented through on/off Markov chain models.
The offloading problem is investigated also in paper [14] authors use anon/off
alternating renewals process which is analyzed to derive transmission delay
and offloading efficiency. Then, a model with balking is proposed taking into
account the WLAN status, the number of packets waiting for transmission
and the associated deadline. An alternating renewal process is also used
in paper [170], in order to model the availability of the WiFi network for
the offloading strategy. The paper proposes a complete theoretical queueing
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analysis, and authors especially focus on a novel user patience metric. The
customers impatience is analyzed also in paper [271], where a multi-server
retrial queueing system is modeled, where customers may leave the system
for balking or impatience. Furthermore, a more realistic customer behav-
ior is formulated by using three parameters to weight probabilities. The
offloading scheme in a hybrid cloud-fog computing system, for time critical
application, is proposed in [230]. Paper [230] aims at minimizing the mobile
devices power consumption, considering strict restrictions on the system re-
sponse time. The paper [72] still considers a hybrid fog-cloud network as
computational support in an IoT scenario. The paper addresses the health-
care services deployment, modeling each edge node as a M/M/C system, the
public cloud with a M/M/∞ queue, and the private cloud with a M/M/c/K
system. In [266] the mobile device resource sharing framework in a cloudlets
network is proposed, to model offloading. The proposed framework con-
sists of a M/M/c/K queue system, and the optimal average service time for
cloudlet is provided.

5.2.4 System Model

We refer here to the three layers computing infrastructure depicted in Fig-
ure 5.6. The EC layer consists of a suitable number of ECNs, each of them
located at a given Base Station (BS) of a high speed, high reliable, low
latency fifth generation (5G) wireless network. Each ECN provides com-
putation services to all mobile users within its service area, i.e., within the
coverage area of the related BS of the 5G network. FCNs belonging to the
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Fog layer, can be connected to a given number of ECNs by means of switched
high speed links. FCNs provide tasks computation service to mobile users
within the service area of the connected ECNs on the basis of the suitable
procedure described later. Finally, we have the cloud layer where a cloud
infrastructure connected by switched high speed links with all the FCNs of
the Fog layer can provide computing service to all mobile users within all
the ECN service areas on the basis of a suitable offloading procedure.

More in detail, we focus on a reference scenario where we have a set of
tasks from mobile users requiring computation, and an integrated computing
infrastructure composed of a set E of ECNs, several FCNs F belonging to
the set FC , and a cloud. Each FCN offers computation support to a subset
of ECNs EF and, similarly, the remote cloud is devoted to provide support
to FC . Hereafter we refer to the service area of an ECN as the geograph-
ical area within which a task originated in that area can be offloaded on
the corresponding ECN throughout wireless links with a negligible latency.
As stated before, we assume ECNs located at the BS sites of the 5G cellu-
lar network which supports, in conjunction with a high speed low latency
core network, mobile users communication connections with the integrated
computing infrastructure under consideration. As mobile users move across
different cells during the time needed to complete a task computation, a han-
dover procedure can be performed between neighboring cells to guarantee a
seamless connection with the integrated computing infrastructure.

In this work, due to the complexity and time consume of a task compu-
tation migration from one computation site to a neighboring one, we have
considered here the communication plane (i.e., handover) separated by the
computing plane (i.e., tasks computation). This means that, whenever a
mobile user is no longer in the coverage of a given BS, it starts a handover
procedure but its offloaded task continues to receive computation service
from the original ECN, even if the mobile user is not directly linked to the
original ECN anymore. This is so, because a mobile user can be linked with
the remote ECN by means of any BS to which the mobile user is connected
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that acts as a relay node.
The arrival processes of the task computation requests at the ECNs are

assumed as independent and identically distributed Poisson processes with
same mean arrival rate Λ.

At a first instance, a mobile user within a given EC service area submits
a task computation request to the related ECN. This new arrived request
is accepted if, on the basis of the task computation requests already in the
ECN, it results, with suitable probability, that it can complete computation
before expiration of its time deadline. Otherwise, the BS associated to the
ECN redirects the task computation request to the linked FCN. Here again,
the task computation request is accepted if, on the basis of the number of task
computation requests already in the FCN, it is possible to guarantee with
a suitable statistical uncertainty that its computation is completed within
its time deadline. Differently, it is redirect through the core network to the
cloud. Each new arrived task computation request at the cloud is accepted,
hence, in this case, we can have task computations reneging due to the
expiration of the tasks deadlines.

In performing our analysis we assume the task computation time at the
ECNs, FCNs and cloud of the integrated computing infrastructure expo-
nentially distributed with appropriate mean value (related to the different
computation capabilities of each site). We will validate the goodness of
this assumption by comparing the obtained analytical predictions with sim-
ulation results derived by assuming realistic world task computation time
distributions. In addition to this, we consider that each task computation
request has associated a deadline which expires after a time exponentially
distributed [?, 140, 174], with mean value dependent on the specific compu-
tation site (EN, FN or cloud), in order to take into account the impact of
the resulting different communication delays.

As a consequence, on the basis of our assumption, we have resorted to a
M/M/K/H queueing system to model each ECN behavior, where K denotes
the maximum number of task computations accepted by each ECN and H
the number of available CPUs at each ECN. Similarly, the FCNs have been
modeled as independent M/M/F/A queueing system. Finally, the cloud,
being in this case the rejection of task computation request not allowed,
has been modeled as a M/M/S queueing system. It is important to note
that parameters K,H,F,A, S have to be derived on the basis of a suitable
optimization approach in relation to specific QoS requirements in terms of
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task reneging probability at the cloud site less than a target value. It is
important to note that at both the ECNs and FCNs, the task computation
completion is assumed guaranteed, since any new arrived task computation
request is admitted if this is assured with a suitable probability, as detailed
later.

Edge Subsystem Analysis

On the basis of our previous assumptions we have that each ECN belonging
to E can be modeled as an independent M/M/K/H queue system where task
computation requests are served in their order of arrival (FCFS scheduling)
and with each of them requesting an exponential service time with mean
value TE . Moreover, in this case we have that the at most H task computa-
tion requests can be in the ECN at a time. This term is dependent on K in
relation to a specific QoS requirement, i.e., H is the highest value for which
the resulting probability PEOUT (K,H) that the task computation request
entering the system while there are H − 1 requests waiting for service com-
pletion does not complete its service before expiration of its deadline is less
than a target value, PEOUT,tg .

Hence, given K and PEOUT , the maximum number H of task computa-
tion requests accepted by each ECN is derived under the assumption (worst
case) that each task computation request accepted by ECN completes service
within its deadline. It follows that the time needed to a task computation
request arrived while in the ECN there are H − 1 requests to complete its
service, i.e., T , can be defined as the sum of k =

⌊
H
K

⌋
+ 1 independent

exponentially distributed random variables with mean values α = TE
K , and

an independent exponentially distributed random variable with mean values
β = TE .

Therefore, the pdf of T can be obtained throughout the convolution of an
Erlang distribution generating the random variable corresponding to the sum
of the k independent exponential random variables previously introduced,
and the exponential distribution with mean values β. After some algebraic
manipulations the corresponding pdf results to be

fT (t) = αkβe−αt

(k − 1)!

∫ t

0
(t− τ)(k−1)e(α−β)τdτ. (5.26)

Hence, let E be the random variable exponentially distributed with mean
value 1

µD
referred to the time deadline of the task computation request en-
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tering the ECN system in the H-th position, we have that PEOUT (K,H)
is

PEOUT = P{T > E} = 1− P{T ≤ E}

= 1−
∫ ∞

0

(∫ ∞
τ

µDe
−µDσdσ

)
fT (τ)dτ

= 1−
∫ ∞

0
e−µDτfT (τ)dτ. (5.27)

Consequently, parameters K,H have to be defined in order to have

PEOUT (K,H) ≤ PEOUT,tg (5.28)

Once K,H have been defined to satisfy (5.28), any new task computation
request arrived while the ECN is in state H is redirect to the linked FN for a
successive consideration. By referring to the state diagram of the M/M/K/H
queue system under consideration shown in Figure 5.7 for which we have

λn =
{

Λ, 0 ≤ n < H

0, otherwise
(5.29)

and

µn =
{
nµs, 1 ≤ n < K

Kµs, K ≤ n ≤ H.
(5.30)

where µs = 1/Ts and the system state represented by the number n of task
computation requests in the system.

Therefore, pn,i.e., the probability of having n task computation requests
in the ECN, for 1 ≤ n < K, results to be

pn = p0,E
Λn

n!µns
, (5.31)

while for K < n ≤ H is

pn = p0,E
Λn

Kn−KK!(µs)n
. (5.32)

The term p0,E , i.e., the probability of having no task computation requests in
the ECN system, in (5.31), (5.32) can be derived by imposing the validating
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of the state probability normalization condition p0,E+
∑∞
n=1 pn = 1 as [246]:

p0,E =
[K−1∑
n=0

Λn

n!µns
+

H∑
n=K

Λn

Kn−KK!µns

]−1
, (5.33)

Moreover, its is easy to note that the task computation request blocking
probability PB equals to the probability to have the ECN system in state
H, i.e., PB = pH .

Then, the mean time spent in the system by any task computation request
results, through application of the Little’s formula [247], results to be

Tp,E =
∑H
x=0 xpx

Λ(1− pH) . (5.34)

where Λ(1− pH) is the mean task computation requests arrival rate at each
ECN system.

Fog Subsystem Analysis

According to our assumptions, we have here again that the FCNs can be
modeled as independent M/M/F/A queue systems where task computation
requests are served in their order of arrival (FCFS scheduling) and each task
computation request requires an exponential service time with mean value
TF . As for the ECNs, we have that at most A task computation requests
can be in each FCN at a time with this term dependent on F in relation
to the specific QoS requirement previously introduced, i.e., PFOUT (F,A) ≤
PFOUT,tg. Also in this case, for given F and PFOUT values, the number
A of task computation requests accepted by each FCN, according to the
considered worst case analysis, is the maximum value for which the following
constraint is satisfied

PFOUT (F,A) ≤ PFOUT,tg (5.35)

where now PFOUT (F,A) is

PFOUT = P{U > E} = 1− P{U ≤ E}

= 1−
∫ ∞

0
e−µDτfU (τ)dτ, (5.36)
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where
fU (t) = πθξe−πt

(θ − 1)!

∫ t

0
(t− τ)(θ−1)e(π−ξ)τdτ, (5.37)

in which, as in the edge subsystem case, we have π = TF
F , ξ = TF , and

θ =
⌊
A
F

⌋
+ 1. In this case we have that any new task computation request

arrived while the FCN is in state A is routed to the cloud. It is important
to highlight that being each FCN linked with a number Y of ECNs, the task
computation requests arrival process is Poisson with mean rate Γ, equals to
YΛPB , resulting from the superposition of Y independent Poisson processes
with equal mean rate ΛPB [246]. The state diagram of the M/M/F/A queue
system under consideration is shown in Figure 5.9. The system state is again
represented by the number n of task computation requests in the FN and d
queue system parameters given by

λf =
{

Γ, if ∃ε ∈ EF s.t. n = H

0, otherwise
(5.38)

µf =
{
f(µF + µD), 1 ≤ f < F

FµF + fµD, l ≥ A.
(5.39)

Hence, the state probability pf of having f requests in the system, 1 ≤ f <
F , is

pf = p0,FN
Γf

f !(µF + µD)f , (5.40)

and, for F ≤ f < A

pf = p0,FN
Γf

(F − 1)!(µF + µD)(F−1)∏f
y=F (yµD + FµF )

. (5.41)

As before, the term p0,FN , i.e., the probability of having no task computa-
tion requests in the considered FCN, in (5.40) and (5.41) can be derived by
application of the state probabilities normalization condition as in (5.42),
with the task computation requests blocking probability PB , in this case,
equals to the probability to have the considered FCN in state A, i.e., pA.

p0,FN =
[F−1∑
f=0

Γf

f !(µD + µF )f +
A∑

f=F

Γf

(F − 1)!(µD + µF )F−1∏f
y=F (yµD + FµF )

]−1
.

(5.42)
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As before, the mean time spent by each task computation request in a
FCN through the Little’s formula is

Tp,FN =
∑∞
x=0 xpx

Γ(1− pA) . (5.43)

where Γ(1− pA) is the mean task computation requests arrival rate.

Cloud Subsystem Analysis

In the cloud case, we have no limitations on the accepted tasks computation
requests. Hence, it follows that the cloud can be modeled as a M/M/S queue
system, with FCFS selection policy and S available CPUs. In this case, we
have that the cloud may be linked to a number of F FNs. So that, according
to our assumptions, we have that the task requests arrival process is Poisson
with mean rate Φ equal to FΛPA. The associated system state diagram is
provided in Figure 5.9 where the system state is considered as the number
of task computation requests m in the cloud. In particular, we have

λm =
{

Φ, if ∃η ∈ FC s.t. f = A

0, otherwise
(5.44)

µm =
{
m(µC + µD), 1 ≤ m < S

SµC +mµD, m ≥ S.
(5.45)

Consequently, the state probability pm, that is the probability of having m
tasks in the cloud subsystem, for 1 ≤ m < S, is

pm = p0,C
Φm

m!(µC + µD)m , (5.46)

while for m ≥ S, we have (5.47).

pm = p0,C
Φm

(S − 1)!(µD + µC)S−1∏m
g=S [gµD + SµC ]

. (5.47)

In(5.46) and (5.47) the term p0,C , i.e., the probability of having no task
computation requests in the cloud system, is given as in (5.48) by imposing
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again the validating of the state probability normalization condition for this
case.

p0,C =
[S−1∑
m=0

Φm

m!(µD + µC)m+
∞∑
m=S

Φm

(S − 1)!(µD + µC)S−1∏m
g=S [gµD + SµC ]

]−1
.

(5.48)
Similarly to the previous analysis, the mean time spent by each task com-
putation request in the cloud system is

Tp,C =
∑∞
x=0 xpx

Φ . (5.49)

Finally, in this case the reneging probability, i.e., the probability that a
task computation request in the cloud does not complete its service due to
its deadline expiration, PD, can be obtained according to [102], as

PD = Tp,CµD. (5.50)

5.2.5 Problem Formulation
The main aim of the study is to pursuit an optimization procedure in order
derive the proper number of active processors allocated to each ECN, FCN
and cloud, as well as the maximum number of computation requests accepted
by each ECN and FCN, respectively. The optimization procedure is intended
here as the maximization of the social welfare [83,261,272] function, through
which both the users and provider points of view can be simultaneously taken
into account, reaching a good trade-off between the parts involved in the
proposed network infrastructure.

Furthermore, assuming ∆Eff as the whole infrastructure rate of satisfied
requests, the social welfare metric is defined as

F(∆Eff,b, c,d,K ′, H ′, F ′, A′,S′)
=U(∆Eff,E + ∆Eff,F + ∆Eff,C)
−V (Tp,E + Tp,FN + Tp,C)

−
K∑
z=1

rbz −
F∑
w=1

ucw −
S∑
j=1

sdj ,

(5.51)
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where ∆Eff,E = Λ(1 − pH), ∆Eff,FN = Γ(1 − pa), represents the mean val-
ues of the computation requests arrival rates accepted by each ECN and
FCN for which we have assumed guaranteed the service completion. Like-
wise, ∆Eff,C = Φ(1 − PD) is the mean rate of computation requests com-
pleting service without deadline expiration at the cloud site. Furthermore,
K ′, H ′, F ′, A′, S′ represents the system parameters values for the integrated
cloud-fog-edge computation infrastructure, that have to satisfy the following
architectural constraint:

K ′ ≤ K, H ′ ≤ H, F ′ ≤ F, A′ ≤ A, S′ ≤ S. (5.52)

In addition to this, in (5.51) we have that :

• U is the gain associated to the client service accomplishment while V
is a penalty associated to each unit of time spent by a computation
request in an ECN, FCN or cloud;

• Assuming the service provider operating cost associated to a CPU de-
pendent on its location, i.e., ECN, FCN or cloud, r represents the
service provider cost for CPU available at a ECN, u is the cost related
to a CPU located at a FCN, while s is the cost associated to an active
CPU at the cloud site;

• b, c and d are binary vectors whose elements bi, with 1 ≤ i ≤ K, ci
with 1 ≤ i ≤ F , and di 1 ≤ i ≤ S equal to 1 if at the ECN, FCN or
cloud site, respectively, the i-th CPU is active, or 0 otherwise.

Hence, being our goal that of maximizing the social welfare metric defined
in (5.51), we can formulate our problem as

max
b,c,d,K′,H′,F ′,A′,S′

F(∆Eff,b, c,d,K ′, H ′, F ′, A′, S′), (5.53)

s.t.
PDeadline ≤ PD, traget, (5.54)

K ′ ≤ K, (5.55)

H ′ ≤ H, (5.56)
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F ′ ≤ F, (5.57)

A′ ≤ A, (5.58)

Φ < SµC , (5.59)

where

• Constraint (5.54) represents a QoS target constraint referred to each
ECN, FCN and cloud site on the probability that a computation re-
quest does not complete its service due to its deadline expiration;

• Constraints (5.54)–(5.58) represent the architectural restricts of the
integrated cloud-fog-edge computation infrastructure;

• Constraint (5.59) refers to the stability condition for the cloud subsys-
tem, interpreted in its most strict form.

5.2.6 Proposed Heuristic
Due to the intrinsic difficulty of problem (5.53)-(5.54), an approximated
heuristic is proposed to determine the suitable number of CPUs to be allo-
cated at each computation site, i.e., ECNs, FCNs, and cloud, in addition to
the maximum number of computation requests accepted at each ECN and
FCN in order to guarantee a specific QoS in relation to the probability that
a computation request does not complete its service at a given site due to its
deadline expiration. The proposed social welfare maximization procedure is
iterative and, for each computation site, acts as follow

1. Let S, F , K, H, and A = 1 be the maximum architectural capacity
of the whole system. Start with S′ = 1, F ′ = 1, K ′ = 1, H ′ = 1, and
A′ = 1, φ = 0, ξ = 0, θ = 0, π = 0, ψ = 0;

2. Compute PD. If PD ≤ PD,target then terminate, otherwise evaluate

(a) If K ′ = K, i.e., it cannot be incremented, set φ = 1 and jump
to b), otherwise evaluate A1 = F(∆Eff,b, c,d,K ′, H ′, F ′, A′, S′)
with S′, K ′ = K ′ + 1, H ′, F ′, A′;
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(b) If H ′ = H, i.e., it cannot be incremented, set ξ = 1 and jump
to c), otherwise evaluate A2 = F(∆Eff,b, c,d,K ′, H ′, F ′, A′, S′)
with S′, K ′, H ′ = H ′ + 1, F ′, A′;

(c) If F ′ = F , i.e., it cannot be incremented, set θ = 1 and jump
to d), otherwise evaluate A3 = F(∆Eff,b, c,d,K ′, H ′, F ′, A′, S′)
with S′, K ′, H ′, F ′ = F ′ + 1, A′;

(d) If A′ = A, i.e., it cannot be incremented, set π = 1 and jump
to e), otherwise evaluate A4 = F(∆Eff,b, c,d,K ′, H ′, F ′, A′, S′)
with S′, K ′, H ′, F ′, and A′ = A′ + 1;

(e) If S′ = S, i.e., it cannot be incremented, set ψ = 1 and jump
to 3), otherwise evaluate A5 = F(∆Eff,b, c,d,K ′, H ′, F ′, A′, S′)
with S′ = S′ + 1, K ′, H ′, F ′, and A′;

3. If (ψ ∧ ξ ∧ θ ∧ π ∧ φ) is equal to 1 terminate, otherwise select the
resource allocation among A1, A2, A3, A4, and A5 which minimizes
F(∆Eff,b, c,d,K ′, H ′, F ′, A′, S′);

4. Perform allocation in accordance with the previous step;

5. Repeat from step 2).

5.2.7 Numerical Results
In order to validate the effectiveness of the proposed analytical approach,
this section provides comparisons between the obtained analytical predic-
tions (AR) based on the assumed Markov queueing system models with nu-
merical results (SR), derived by resorting to extensive computer simulation
runs by considering actual arrival and service time distributions under the
assumption of same mean values [246]. In performing our analysis we assume
the cloud system equipped with a maximum number of S = 16 CPUs, each
FCN with a maximum number F of CPUs equal to 13 maximum, and each
ECN with a maximum of K = 10 CPUs. Furthermore, we refer to an edge
layer composed of 6 ECNs and a fog layer with 3 FCNs.

According to [179], in order to test the validity of the proposed theo-
retical model, we have analyzed here, under the assumption of equal mean
values, the case of computation requests arrivals modeled as a Normal dis-
tribution, with service time following a hyperexponential distribution as in
[246]. Furthermore, we have assumed that applications require an equal
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Figure 5.10: Computation requests blocking probability at each ECN as
function of Λ

mean computation time at ecah computation site. in particular, in the cloud
case, it results equal to 0.4 s, with a µC = 2.5 s−1. Likewise, the mean
requests computation time on each FCN is 0.2 s, with µF = 5 s−1, while the
mean requests computation time on each ECN has been assumed equals to
0.1 s, with µE = 10 s−1. The system performance is measured in terms of
computation requests completion failure probability at each ECN, FCN and
cloud site, PB limited to ECNs and FCNs, social welfare metric referred to
the integrated cloud-fog-edge computing infrastructure under consideration.

All the numerical results presented here are referred to the mean values
obtained from 2000 independent runs of simulations. Figure 5.10 depicts
the behavior of PB at an ECN as a function of Λ for H and K values
derived in order to satisfy the constraint of a resulting PEOUT (K,H) less
than 3.00× 10−3.

Likewise, Figure ?? shows the behavior of PB at each FCN as a function
of Λ with the system parameters A and F derived in order to satisfied the
constraint PFOUT (F,A) ≤ 3.00 × 10−3. It is important to stress that in
all previous figures a very good agreement between analytical predictions
based on the considered Markov queueing system models with the simulation
results derived under real world arrival and service time distributions [246].

The results related to the proposed heuristic based on the maximization
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Figure 5.11: Computation requests blocking probability at each FCN as
function of Λ.

of the social welfare metric, defined in (5.51) with V = 4, U = 15 per time
unit, r = 20, u = 16, and s = 12, are provided in Figure 5.12 as a function
of the parameter Λ. The values of the systems parameters, i.e., number of
CPUs allocated at each ECN, FCN and cloud, maximum number of com-
puting requests accepted by each ECN and FCN, that maximize (5.51), are
shown in Figure 5.13 and Figure 5.14, respectively, as a function of Λ. Fi-
nally, in Figures 5.15-5.17 is shown the resulting computation requests com-
pletion failure probability at each ECN, FCN and cloud site, respectively,
as a function of Λ. The assumed computation requests completion failure
probability target value (i.e., 3.00 × 10−3) for all the computation sites is
given in Figure 5.15. In all these figures comparisons with the simulation
results derived under proper assumptions for the computing requests arrival
process and service time are also given in order to highlight the goodness of
our Markov approach. Furthermore, it is important to note that the trends
of H and A in Figure 5.13, in relation to Figure 5.14 and Figure 5.12, reveal
that the size of H and A increases when the cost of the activation of new
processors is higher in comparison to the increment of the size of H or A. Fi-
nally, we stress that, the ever-increasing trend of the social welfare function
shown in Figure 5.12, demonstrates that the system parameters provided in
Figure 5.13 and Figure 5.14 allow a good exploitation of system resources
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Figure 5.12: Social Welfare metric as function of Λ.

in reference to the set QoS target, on the basis of the service provision cost
which characterized each subsystem.

5.2.8 Conclusions
This work has investigated the behavior of an integrated cloud-fog-edge com-
puting infrastructure by resorting to the use of suitable Markov queueing
models. A system design procedure based on an heuristic method for the
maximization of a social welfare metric, conveniently defined, has been also
proposed in order to derive the most appropriate values for the considered
system parameters, i.e., number of CPUs to be allocated at each ECN, FCN
and cloud, and maximum number of computation requests accepted by each
ECN and FCN, in order to satisfy specific QoS requirements in terms of
probability that a computation request does not complete its service at a
given site, i.e., ECN, FCN or cloud, due to its deadline expiration less than
specific target values. Finally, extensive simulations results have been pro-
vided in order to confirm the validity of the proposed theoretical approach,
by exhibiting a strong closeness with the obtained analytical predictions de-
rived under the assumption of more realistic computing requests arrivals and
service time distributions.
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Figure 5.13: Maximum number of computation requests accepted by each
ECN and FCN resulting by our heuristic as function of Λ.

Figure 5.14: Number CPUs to be allocated at each ECN, FCN and cloud
resulting by our heuristic as function of Λ.
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Figure 5.15: Computation requests completion failure probability at each
ECN as function of Λ.

Figure 5.16: Computation requests completion failure probability at each
FCN as function of Λ.
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Figure 5.17: Computation requests completion failure probability at the
cloud site as function of Λ.



Chapter 6

Chaos Theory as Predictive
Tool

It is difficult to make predictions,
especially about the future.

Niels Bohr

6.1 Nonlinear Dynamic Chaos Theory
Framework for Passenger
Demand Forecasting in Smart City

6.1.1 Motivation
Recently, the ever increasing diffusion of vehicles has resulted in cities with
remarkable levels of urban traffic, fatalities, injuries, and congestion [202,
283]. Within this context, the smart city concept has emerged, opening
the doors towards several promising applications. In particular, an un-
precedented chance to create a wide variety of new services has been pro-
vided [177, 202, 207, 283], involving the efficient data-collection and data-
processing, and providing support to smart infrastructure, smart healthcare,
smart governance, smart mobility, smart technology, etc. [177,202]. Further-
more, many research efforts have been made to design modern solutions to
control mobility and traffic, especially in order to lower road congestion and

159



160 Chaos Theory as Predictive Tool

Figure 6.1: Ride-sharing service in a smart city

improve the transportation efficiency [116, 198, 202]. Therefore, the Intelli-
gent Transportation Systems (ITS) has gained much attention, favoring the
development of proper strategic solutions to reduce the drawbacks due to
the growing spread of vehicles [202].

In particular, in order to limit the traffic congestion, one of the main
objective is the reduction of the utilization of cars, by promoting the usage
of public transportation during the rush hours [202]. Transportation net-
work companies (TNC) such as Uber or Lyft offer peer-to-peer ride-sharing
services to move people from and to homes and offices, or to the public trans-
portation stations [202]. These types of services constitute a promising way
to ensure to people a fast and comfortable solution to reduce the utiliza-
tion of their own cars [202]. Within this context, by considering the TNC
perspective, the accurate prediction of traffic demands plays a crucial role
to properly allocate resources and, consequently, to avoid resource waste or
delays on services provision [202]. For all these reasons, traffic forecasting
and mobility forecasting have gained significant momentum in the area of
ITS [202]. The application of forecasting procedures to the ITS [183,196,267]
area focuses on the prediction of traffic conditions, a given number of hours
ahead in the future [202].

In general terms, we refer to short-, medium-, and long-term forecast-
ing. The first one involves predictions with horizons from few minutes up
to few days ahead, and the second one deals with time horizons from few
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days to few months ahead. Instead, the long-term forecasting is referred to
predictions from quarters to years ahead [265]. Although medium and long-
term forecasting generally involve the prediction about risk management
and profitability planning, the short-term forecasting is frequently applied
to traffic demands and mobility prediction because of its satisfactory accu-
racy [157, 265]. The short-term forecasting has been extensively studied in
literature, and many different methods have been proposed [157,180].

Roughly speaking, the whole family of the predictive methods can be di-
vided into two different main branches: the approaches based on the classic
time series analysis (TSA), and the techniques based on the deep learning.
The former branch includes methods such as the Auto-Regressive (AR), the
Auto-Regressive and Moving Average (ARMA), or the Auto-Regressive In-
tegrated Moving Average (ARIMA) [37, 141, 181, 202], while the methods
based on the latter approach are the strategies based on Artificial Neural
Network (ANN), Support Vector Machine (SVM), Support Vector Regres-
sion (SVR) and so on [111,155,202,205,215]. TSA has been widely used for
a very long time to solve a vast number of forecasting problems, by guar-
anteeing limited complexity and good performance on prediction accuracy.
However, recently, the ever increasing complexity on the time series, due to
the intrinsic complexity of the current problems, has lead to a performance
reduction on accuracy applying the TSA. Therefore, despite TSA has pro-
vided good solution to many problems during past years, recently the high
level complexity of the current problems scenarios have limited the applica-
bility of the TSA due to its inability in performing valuable predictions on
time series with complex behaviors. From the other side, the deep learn-
ing approaches reach very accurate results, but require a large amount of
data to be trained, procedure that is extremely computationally expensive.
Therefore, novel approaches to perform forecasting able to obtain accurate
results with an acceptable complexity are essential. Within this situation,
Chaos Theory (CT) has emerged as a powerful tool to perform nonlinear
TSA [124,157,202].

6.1.2 Contributions
This application of the CT framework to the forecasting TSA has been pro-
posed in [202] and here the corresponding results and analysis are presented.
The prediction has been conducted on real data in Chengdu from Didi, a
Chinese TNC, and two sets from Google dataset search, concerning the Uber
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pickup requests in New York City and in Bangalore, respectively. More in
depth, the main contributions of this work are:

• Validation of the chaotic behavior of the considered datasets, provided
by the largest Lyapunov exponent analysis. The analysis consist of
estimating the divergence rate of close trajectories associated to the
scalar time series, during its evolution;

• Applications of the CT principles to design three different predictive
algorithms for different datasets. In particular, the reconstruction of
the phase space for each dataset has been pursuit, and proper fore-
casting algorithms proposed. Furthermore, the forecasting algorithms
are based on local predictive mechanisms, and for the third dataset a
hybrid approach is presented, combining both local and global approx-
imations;

• Comparison of the proposed approaches with the well-known moving
average (MA) model [41], that presented in [64], based on the CT
as well, and the deep learning approach proposed in [46]. System
performance has been provided in terms of mean squared error, mean
absolute deviation and mean absolute percentage error.

6.1.3 Related Literature
The classical TSA methodologies are applied in paper [37,117,183,196,267].
Paper [183] proposes a short-term spatio-temporal forecasting approach to
estimate the future taxi-passengers demand. The method aims at predicting
the number of service requests that emerge at taxi ranks, by exploiting the
real-time information exchanged among taxis. The paper combines both the
predictive ARIMA and the time-varying Poisson models to realize the pas-
sengers demand prediction [37, 117]. Authors in [267] model the univariate
vehicular traffic flow with the seasonal ARIMA, providing theoretical evi-
dences about the suitability of this model in solving the short-term traffic
conditions forecasting problems. Similarly, in [196], the study of traffic fore-
casting problem on large IEEE802.11 infrastructures is addressed. More in
depth, authors in [196] evaluate the performance of many modified versions
of the moving average and ARIMA algorithms, at different time scale, to
forecast the access points load in wireless networks. Paper [196] highlights
the importance of fine-grained prediction horizons and recent past data, to
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obtain high levels of accuracy on the forecast values. Furthermore, many
works based on machine learning approaches have been proposed. Exam-
ples are represented by paper [45, 89, 157]. Within the short-term traffic
prediction, [157] combines the CT principles with the SVM, to improve the
accuracy on the forecast values. In particular, authors in [157] adopt as
measure of similarity the dynamic time warping to mitigate the negative ef-
fects of possible bursty points outside the neighborhood area of the processed
point.

In [45] is provided a short-term passenger demand forecasting of light
rail services. In particular, authors in [45] propose a novel neural networks
model to fit non-stationary time series, aiming at minimizing the prediction
error. Furthermore, the model formulated in [45] is based on the multi-layer
perceptron one and the back-propagation algorithm is applied during the
training process. Work [89] compares the forecasting performance applying
both ANNs and Box Jenkins methods to airline passenger demand, calcu-
lated over the past five year daily data. An ANN strategy is also adopted
in paper [9], in which a multilayer perceptron neural network is adopted to
forecast the lightning occurrences. The recurrent neural networks are se-
quentially applied in paper [276], where the main objective is the real-time
prediction of the taxi demand in the city of New York. Paper [46] pro-
poses a forecasting framework based on the combination of the feed forward
neural network and the long short term memory approach, to evaluate the
electricity consumption. Differently, paper [145] predicts the urban traffic
passengers flows by proposing a predictive structure based on convolutional
neural networks and a graph representation of the traffic data, in order to
extract the spatio-temporal information of the analyzed samples series. A
spatio-temporal analysis has been provided also in [65], in which the demand
for shared bicycles in three typical subway stations in the city of Beijing
is predicted. The forecasting framework proposed in [65] is based on an
improved version of the Xgboost method and the idea of sliding window.
Within the CT approaches, in papers [64,158], CT is applied to forecast the
electricity price. Specifically, in [158] the electricity price is modeled as a
multivariate time series, since it depends on many different factors. Then,
authors in [158] provide the phase space reconstruction of the corresponding
chaotic time series and find the forecasting function by fitting all points in
the phase space, by applying the Elman model, which is one of the most
common recurrent neural network. Paper [64] addresses the same problem
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presented in [158] but, after phase space reconstruction, in order to improve
the accuracy on the predicted results, authors use the add-weighted one-rank
multi-steps prediction method [43]. Authors in [251] apply CT principles as
well, to forecast the grids load data. Subsequently to the phase space recon-
struction, paper [251] proposes the introduction of a weight on the largest
Lyapunov exponent with the aim at mitigating the effect of significantly di-
vergent trajectories, in order to reduce the forecasting error. This implies
that during the prediction process, points close to the processed one with
divergent trajectory will give a lower contribution on the prediction. Dif-
ferently, paper [47] exploits CT to predict the urban daily water demand.
In [47], the prediction of each point is made by considering the behavior,
in the phase space, of only its nearest point. Another situation in which
chaotic and nonlinear behaviors are widely present, is that of wind power
generation. Within this context, the wind power exhibits fluctuations very
difficult to predict.

Paper [165] deals with the system power forecasting, through the use of
CT combined with the wavelet packet one. In [165] the wavelet packet theory
is used to decompose the history of wind power data between high and low
frequency components. Then, the frequency components are reconstructed
with the single branch and the phase space is built for each single branch.
Whether, during the process, the time series shows a non-chaotic behavior,
prediction is performed by using back propagation neural network, other-
wise through CT. The usage of both wavelet and CT has been also adopted
in [144] to predict traffic in wireless sensor networks. This paper proposes
the application of CT principles to both the high and low frequency parts of
the original signal, and builds the predictive function considering the near
points most influential than the far ones. Paper [125] addresses the forecast-
ing of the load of power. In particular, it provided a short term prediction by
combining CT with the fuzzy approach. In the method proposed by [125],
closer the points in the phase space are to the value to be forecast, the
greater is their impact on the predicted result. Finally, paper [29] aims at
predicting a nonlinear time series for human actions and dynamic textures
synthesis through a CT approach. Specifically, the phase space is recon-
structed considering the corresponding multivariate time series and future
predictions are made using a nonparametric data driven model, based on a
kernel which is a decreasing function of the distance from the point that has
to be predicted [186]. Then, the future multivariate time series values are
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Figure 6.2: The optimal value of τ for Dataset 1, Dataset 2 and Dataset 3.

built by extracting the univariate time series from the reconstructed phase
space.

6.1.4 Problem Statement

Given a scalar time series X = {xi}Ni=1, xi represents the value observed at
time i and N is the whole number of samples of the time series X . More
in depth, X comes out from a previous sampling procedure in the city of
interest. As regards the Didi dataset, the city of Chengdu has been modeled
as a rectangle R of dimension P ×Q, where ρp,q, p ∈ [0, P ) and q ∈ [0, Q),
represents the region with coordinates p and q. A service request demand
ru is represented as a quintuple in the form (ru,id, ru,pc, ru,pt, ru,dc, rh,dt), in
which ru,id is the request ID, ru,pc the pick-up coordinates, ru,pt is the pick-
up time, rh,dc identifies the coordinates of the destination, and ru,dt the time
of arrival at destination. Our analysis has been conducted by grouping all
the requests based on the pick-up time. Therefore, time has been partitioned
into equal slots starting from 0. Hence, the k-th time slot is identified by
the interval [k × S, (k + 1) × S), where S is the time span of the interval.
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Figure 6.3: The optimal value of m for Dataset 1, Dataset 2 and Dataset 3.

Consequently, the passenger demand at the interval k, i.e., xk, is given by

xk = |{u ∈ [0,N ) : ru,pc ∈ R ∧ rh,pt ∈ [k × S, (k + 1)× S)}|, (6.1)

where N is the total number of received requests and | · | means the number
of elements belonging to the set. The other two sets have been taken on
Google dataset search, and each request of the first of them is identified by
the triplets (πd, πt, πa), where πd is the pick-up date, πt the pick-up time
and πa the pick-up address. Differently, each request of the last dataset is
composed of six fields, i.e, (µr, µp, µd, µs, µu, µo), where µr is the request
identifier number, µp represents the pick-up point, µd the driver number,
µs the status of the ride (completed or ongoing), and µu and µo are the
pick-up time and the drop off time, respectively. Given the time series X ,
forecasting problem involves the prediction about the future behavior, δ
steps ahead in the future. This study deals with the short-term forecasting,
aiming at minimizing the forecasting error that, generally speaking, is a
measure of the gap between the predicted and the real value of the time
series analyzed. Despite there exist many different metrics to evaluate the
forecasting error [180], here the minimization of the mean squared error
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(MSE) defined as

MSE = 1
M

M∑
i=1

(x̂i+δ − xi+δ)2, (6.2)

has been considered, where M represents the number of the samples in test
data, and x̂i+δ and xi+δ are the actual and the predicted values at time
i + δ. In addition, in order to provide an exhaustive analysis, we have also
considered the mean percent error (MAPE) defined as

MAPE = 1
M

M∑
i=1

∣∣∣∣ x̂i+δ − xi+δxi+δ

∣∣∣∣ · 100, (6.3)

and the mean absolute deviation (MAD) given by

MAD = 1
M

M∑
i=1
|x̂i+δ − xi+δ|. (6.4)

It is important to note that metrics (6.2) and (6.4) highlight the vari-
ability of the forecasting error, while (6.3) expresses the error in terms of
percentage on the actual data.

In the following section, in order to clarify the motivation behind the in-
sight of the proposed forecasting algorithms, the technical background about
CT principles is provided and the phase space reconstruction procedure ex-
plained.

Ffnn(T ) =
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i=1
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; (6.5)

6.1.5 Chaos Theory Approach
The class of the chaotic nonlinear dynamical systems includes the nonlinear
dynamical systems whose behavior is unpredictable on the long term, and
exhibit strong sensitivity to the initial conditions, that implies small changes
in the initial state result in significant differences on the final states [19,192].
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Generally speaking, the nonlinear dynamical systems with chaotic behavior
present apparent irregular trend which hides the deterministic features of
these systems. A system state is specified by a m dimensional vector z,
while the system dynamics can be expressed by [124]

zn+1 = F(zn), (6.6)

in which F is a m dimensional map. It is important to highlight the relation
between equation (6.6) and the set X . Indeed, the elements of X are a se-
quence of scalar measurements, therefore, the conversion of the observations
into state vectors has to be performed. In order to execute such conversion,
the phase space reconstruction procedure [29,239] has been conducted. After
the phase space reconstruction procedure, the important features of chaotic
time series can be caught by analyzing the underlying dynamics and the
geometrical structure of its corresponding attractor, i.e., the set of values to
which the system tends to evolve.

For the sake of simplicity, hereafter we refer to the dataset derived from
Didi as Dataset 1, Dataset 2 for the dataset of the Uber pickups in New York
City, and finally Dataset 3 for the Uber service requests in Bangalore.

6.1.6 Phase Space Reconstruction
Given the chaotic scalar time series X , the first step towards the comprehen-
sion of its behavior is the reconstruction of the phase space (PSR) associated
with it, in order to pursuit the analysis of its strange attractor. Due to the
Takens’ delay embedding theorem, which affirms the existence of a map be-
tween the real phase space and its reconstructed version [29], the PSR is
provided by associating, to each element xi in X , a vector in the form

zi = [xi, xi+τ , . . . , xi+(m−1)τ ], (6.7)

where τ is the time delay and m is the embedding dimension. As detailed in
Section 6.1.6 and Section 6.1.6, a proper choice of the values of τ and m is
crucial to pursuit a suitable PSR.

Time Delay Estimation

As it is evident from (6.7), m and τ strongly impact the transformation
of the scalar time series to the phase space vectors represented by zi. Ac-
cording to this, time delay τ rules the temporal distance between two suc-
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cessive points in the phase space vector, i.e., zi and zi+1, and its optimal
value minimizes the redundancy between points xi+τ and xi, maximizing the
knowledge about xi+τ from xi. This analysis is conducted by computation
of the exact value of delay τ with the approach based on the evaluation of
the amount of mutual information between pairs of points xi+τ and xi, with
τ that minimizes the mutual information between observations [82].

In practical terms, for each measured data, the histogram of the proba-
bility distribution of the data is created. Then, by varying time the delay τ ,
the mutual information xi and xi+τ results expressed by [159]

I(τ) =
∑
f,j

pf,j(τ) log pf,j − 2
∑
f

log pf , (6.8)

where pf is the probability that xi is in the f -th bin of the histogram, while
pf,j is the probability that xi and xi+τ fall in the f -th and j-th bin of the
histogram, respectively.

As depicted in Figure 6.2, the values of τ for Dataset 1, Dataset 2 and
Dataset 3 are τ = 5, 6 and 7, respectively. Indeed, Figure 6.2, shows the plot
of the mutual information I when τ changes. In order to select the proper
value for time delay τ , i.e., the minimum time delay, the optimal value of τ
is in correspondence of the first local minimum of the I function.

Embedding Dimension Estimation

As in the case of τ , to choose a proper value ofm is very important to observe
the determinism underlying the system associated to time series X , with the
least computational effort. In this case, the false nearest neighbors method
is adopted [126]. The idea behind this method is that, since the presence
of chaos can induce an exponential divergence on the trajectories of two
nearby points, there exist some points in the data set that are neighbors in
the embedding space but for which their temporal evolution exponentially
diverges. Hence, this method consists, for each point in X , in finding its
nearest neighbor in m dimension. Then, the ratio between their distance
in m + 1 dimensions and m dimensions is calculated. Finally, whether the
resulted ratio is greater than a fixed threshold r, the neighbor is considered
false.

Hence, given a fixed threshold T , the false nearest neighbors function
can be defined as in (6.5) on the top of the previous page. in which σ is the
standard deviation of the data, j is index of the nearest point, and Θ is the
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Figure 6.4: The predicted values by varying the number of considered neigh-
bors for Dataset 1.

Figure 6.5: The predicted values by varying the number of considered neigh-
bors for Dataset 2.
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Figure 6.6: The predicted values by varying the number of considered neigh-
bors for Dataset 3.

Heaviside step function given by

Θ(ν) =
{

0 ν < 0;
1 ν ≥ 0. (6.9)

Figure 6.3 shows the Ffnn function by varying the embedding dimension
m, and the proper value of m is m = 3, 6 and 4, respectively. Indeed, for
each set of data, the right value of m is the value for which is minimum the
number of false nearest neighbors, hence, graphically, it is in correspondence
of the last m value before the plot of Ffnn drops to zero.

Largest Lyapunov Exponent

Once the PSR has been pursued, in order to verify the chaotic behavior of X ,
we analyze the largest Lyapunov exponent. There exist many approaches to
check the presence of chaos in a time series [64], and the study of the largest
Lyapunov exponent is one of the most used. The main idea behind such
technique is the study of the distance of two close vectors in the phase space
over the time transition [184]. Hence, considering two trajectories y and x,
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i.e., solutions of (6.6), close in the state space, the evolution of their mutual
distance is given by

yn+1 − xn+1 = Jn(yn − xn) +O(||yn − xn||2), (6.10)

where Jn is the m × m Jacobian matrix of F. Then, supposing Λi the
eigenvalue of J, the Lyapunov exponents are given by [124]

λi = lim
N→∞

1
2N ln|Λ(N)

i |. (6.11)

Hence, the study of the largest Lyapunov exponent aims at evaluating
the sign of the value of the largest Lyapunov exponent, that represents the
rate of separation of close trajectories in the phase space. Since the pos-
itive value of such divergence rate is a strong signature of the presence of
chaos, it represents a suitable criterion for establishing the chaotic nature of
a time series. In this respect, here the largest Lyapunov exponent has been
computed by applying the Rosenstein method [238], which is based on the
estimation of the local divergence rates of trajectories over the whole data
set in the phase space. Specifically, the local divergence is estimated on the
neighborhood of each point of X in the phase space. The general idea of
the method is the measurement, for each xi in X , of the expansion rate in a
particular time span δ of the trajectories. In particular, the expansion rate
for time span δ is given by

E(δ) = 1
t

N∑
i=1

ln
(

1
|N (zi)|

∑
zz∈Nε(zi)

|zi+δ − zz+δ|
)

; (6.12)

where N (zi) is the neighborhood of point zi in the phase space. More
in depth, Nε(zi) derived from the selection of vectors zz in m dimension,
closer than a given value ε in the max norm. Hence, in order to define the
neighborhood of zi, it is necessary to determine the indices z for which

||zz − zi|| ≤ ε. (6.13)

The details of algorithm are reported in [238] and in our case, the resulted
largest Lyapunov for all the three dataset analyzed has been reported in
Table 6.1. Since the largest Lyapunov exponents are a real number greater
than zero, the considered time series indeed exhibit a chaotic behavior [124,
158], which justify the validation of our proposed chaotic framework.



6.1 Nonlinear Dynamic Chaos Theory
Framework for Passenger
Demand Forecasting in Smart City 173

Table 6.1: Largest Lyapunov Exponent
Dataset Lyapunov Exponent
Dataset 1 0.7
Dataset 2 1.6
Dataset 3 0.3

6.1.7 Time Series Forecasting

The general idea behind the prediction of the behavior of X , is the approxi-
mation of the map F in (6.6).

In order to predict the future behaviors of Dataset 1, Dataset 2, Dataset
3, we apply the PSR and the suitable values for time delay τ and embed-
ding dimension m have been calculated in accordance with Sections 6.1.5
and 6.1.6. In general term, there exist two main approaches to address the
approximation problem of F function in (6.6): the local and the global ap-
proximation approach. One of the most used local prediction method is the
neighbors based prediction, that evaluates the future behavior of the points
belonging to a neighborhood around the point which has to be predicted.
Then, the resulted forecast value is given by the average of the values of the
neighbors points. Both the algorithms proposed for Dataset 1 and Dataset
2 constitute two general improved versions of the classical neighbors based
prediction approach, in which each term is properly weighted. Despite differ-
ent dataset may require different weight definitions, typically, the attribution
of high weights to points close to that needing prediction, or to those that
exhibit a high degree of similarity with the point to be forecast, could result
in accuracy of prediction, compared with the standard version of the modi-
fied method. One strength point of local methods is that it does not involve
any model for F , while, as better explained later, the determination of the
suitable number of neighbors to consider for the prediction is not a trivial is-
sue. Furthermore, when determinism is weak on the dataset or for long term
predictions, local methods result ineffective, since they tend to reproduce
past trends. Differently, the algorithm proposed for Dataset 3 also considers
the global approach. Roughly speaking, the global approaches constitute
a more advanced technique compared to the local methods, but they often
lead to more difficult problem management since modeling F implies the
determination of many parameters.

Summarizing, as concerns the first two datasets, we propose two pre-
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diction algorithms based on a local approximation of F . Differently, the
prediction procedure for Dataset 3 constitutes a hybrid approach between
the local and global approximation. In order to predict the value δ steps
ahead of xi, i.e. xi+δ, with a local approximation of F , we consider the
neighborhood around zi in the phase space, of radius ε, i.e., Nε(zi).

6.1.8 Forcasting Algorithm for Dataset 1

The algorithm that we propose to predict the future behavior of Dataset
1, i.e., the number of Didi requests collected in a given hour in the city of
Chengdu, is based on the evaluation, for each zj ∈ Nε(zi), of its trajectory
and its value at time j+ δ, hence xj+δ. Then, the weighted mean value over
all the future behaviors of the points belonging to Nε(zi) is computed, and
the weight βj is defined as

βj = 1
|xj+δ − xi|

. (6.14)

As it is straightforward to note, the higher is the similarity between xj and
xj+δ, the higher is the value of βj . Consequently, the predicted value of
xi+δ, i.e., x̂i+δ, being η the number of points in Nε(zi), is given by

x̂i+δ = 1
η

∑
zj∈Nε(zi)

βixi+δ. (6.15)

Hence, the whole prediction procedure for Dataset 1 can be summarized
as follows

• compute the optimal value for time delay τ according to Section 6.1.6;

• compute the optimal value for embedding dimension m according to
Section 6.1.6;

• build Nε(zi);

• for each zj ∈ Nε(zi), measure xj+δ;

• for each zj ∈ Nε(zi), calculate βj ;

• determine x̂i+δ in accordance with (6.15).
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6.1.9 Forcasting Algorithm for Dataset 2
In order to predict the trend of Dataset 2, hence the number of total Uber
pickups requests for a given hour in the city of New York, we define the fol-
lowing weight based on the similarity between the point object of prediction
xi and the neighbor point xj . Hence, γj is defined as

γj = 1
|xi − xj |

. (6.16)

Consequently, the prediction formula is expressed by

x̂i+δ = 1
η

∑
zj∈Nε(zi)

γixi+δ. (6.17)

The whole prediction procedure can be summarized in the following

• compute the optimal values for time delay τ and embedding dimension
m according to Section 6.1.6 and Section 6.1.6, respectively;

• build Nε(zi);

• for each zj ∈ Nε(zi), measure xj+δ;

• for each zj ∈ Nε(zi), calculate γj as reported in (6.16) ;

• determine x̂i+δ in accordance with (6.17).

6.1.10 Forcasting Algorithm for Dataset 3
This algorithm aims at predicting the behavior of Dataset 3, hence the num-
ber of total uber service requests in Banglore in a given hour. The algorithm
prediction for Dataset 3 is a hybrid approach between the local approxima-
tion and the global one. Specifically, in order to improve the accuracy about
the very short term forecasting, we provide a global nonlinear approximation
of F given by the radial basis function [124] defined as follows

zi+1 = F(zi) = θ0 +
g∑

w=1
θwφ(|zi − ζw|), (6.18)

where ζw are the g centers of the attractor, ζ0 and ζw are coefficients, and φ
is the Lorentzian function expressed by

φ(ψ) = 1
[1 + ( ra )2] , (6.19)
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Figure 6.7: Forecasting error expressed in terms of mean squared error for
Dataset 1.

with a constant. The joint utilization of both the approximation models
presented in (6.17) and (6.18) has been pursued and, while the first approach
ensures a lower long-term forecasting error, the second one improves the
performance of the short-term forecasting. The prediction procedure acts as
follows

• compute the most suitable value for time delay τ according to Sec-
tion 6.1.6;

• compute the most suitable value for embedding dimensionm according
to Section 6.1.6;

• build the approximation of F according to (6.18);

• build Nε(zi);

• for each zj ∈ Nε(zi), measure xj+1;

• for each zj ∈ Nε(zi), calculate γj ;
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Figure 6.8: Forecasting error expressed in terms of mean squared error for
Dataset 2.

• assign to x̂i+1 the most accurate value between the values obtained
from the application of the local and the global approximation.

6.1.11 Practical Considerations
Since the value of ε directly impacts on the number of considered neighbors,
the choice of such value crucially affects the prediction performance. Due
to the fact that there not exists an exact method to determine the optimal
value for ε [64], in Figure 6.4, Figure 6.5 and Figure 6.6 is reported the
predictive performance of the algorithms designed for the three datasets.
The better behavior is evident considering a number of neighbors η = 13
and η = 12 for Dataset 1 and Dataset 2, respectively, while for Dataset 3
the suitable value is η = 16. The time complexity is approximately the same
for all the three algorithms previously presented. Let X be the time series
composed ofN scalar values, the estimation of the optimal value of τ requires
a computational complexity in the order of O(N · logN), while by applying
the procedure to find the suitable embedding dimension m the maximum
amount of time taken is O(N2 + 4 · ξ · t+ ξ2 ·N), where ξ is the number of
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Figure 6.9: Forecasting error expressed in terms of mean squared error for
Dataset 3.

Table 6.2: Order of Magnitude of Complexity

Time delay estimation O(N · logN)

Embedding Dimension O(N2 + 4 · ξ · t+ ξ2 ·
N)

Phase Space Recon-
struction

O(λ ·m)

Nearest neighbors pro-
cedure

O(N)

considered m values. Furthermore, the phase space reconstruction exhibits a
computational complexity of O(λ ·m), where λ = N − (m−1)τ . Finally, the
nearest neighbors procedure has a complexity in the order of O(N). Hence,
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we can conclude that the overall time complexity is

O(N · logN) +O(N2 + 4 · ξ ·N + ξ2 ·N) +O(λ ·m) +O(N). (6.20)

The order of magnitude of the forecasting based on CT strategy steps are
reported in Table 6.2.

6.1.12 Numerical Simulations

This work takes into account three sets of data related to the nonlinear
time series represented by Datatset 1 derives from sampled data collected in
the city of Chengdu, from Didi Chuxing, the biggest TNC in China. The
dataset contains the passengers requests of one month, from 11/01/2016
to 11/30/2016, and the whole dataset contains more than 6.11 million of
passengers requests. The whole area has been divided into 20 × 20 same-size
grids. Every grid is a square with sides equal to 700 meters, and the longitude
of the focus area is from 30.60E to 30.73E, the latitude is from 104.00N to
104.15N, while the considered surface is about 207.35 km2. Furthermore,
Dataset 2 and Dataset 3 have been retrieved from Google Dataset Search
where they are named as Uber pickups in New York City and Uber request
data respectively. Dataset 2 derives from a sampling period from April to
September 2014, while Dataset 3 is referred to Uber service requests data in
Bangalore from 11/07/2016 to 15/07/2016.

In order to provide an exhaustive analysis, we compare our methods with
the well known moving average (MA) model [41], with a complexity linear in
the number of the samples considered to provide forecasting, and with the CT
based approach proposed in [64] (CTA) whose complexity is in the order of
magnitude of O(N2). Furthermore, we also propose performance comparison
with the deep neural network method (DL) designed in [46]. Furthermore,
all the approaches have been applied by using 3 days of samples to forecast
5 and 9 hours ahead.

Figures 6.13, 6.14 and 6.15 show the performance comparison among the
proposed algorithm, the CTA, the MA, and the DL models in terms of MSE.
Despite all the four predictive approaches get worse as the prediction hori-
zon increases, it is clearly evident as the proposed forecasting methods reach
better results in all the three application dataset, by considering the same
number of training days for all the methodologies applied. In fact, each al-
gorithm guarantees a higher accuracy respect to the CTA, the MA, and the
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Figure 6.10: Mean absolute deviation for Dataset 1.

Figure 6.11: Mean absolute deviation for Dataset 2.
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Figure 6.12: Mean absolute deviation for Dataset 3.

Figure 6.13: Mean absolute percentage error for Dataset 1.
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Figure 6.14: Mean absolute percentage error for Dataset 2.

Figure 6.15: Mean absolute percentage error for Dataset 3.
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deep neural network strategies. In order to analyze the strategies perfor-
mance in terms of measure of the variability of the forecast errors, MSE and
MAD have been represented in Figures 6.7-6.12. As is evident to note, in
Figures 6.7-6.12 the forecasting accuracy is better when the proposed algo-
rithms is adopted. Then, it is clearly evident that both the MSE and MAD
increase for high values of δ. It is due to the general difficulty in predicting
behavior for long interval times. In order to better quantify the meaning of
the MSE and MAD, Figures 6.13 and 6.15 show the performance of the pro-
posed algorithms in comparison with the considered alternatives, expressed
in terms of MAPE metric. The results confirm the good performance of the
proposed approach in comparison with the alternatives taken into account,
for all the three different strategies proposed for each dataset. In conclusion,
the proposed CT approaches provide a suitable solution to forecast values in
complex and nonlinear dynamical systems, by investigating and capturing
their underlying dynamics and geometrical structure, in the corresponding
reconstructed phase space, and chasing the time series behavior, guarantee-
ing more accuracy than the MA, CTA, and the DL models.

6.1.13 Conclusions

This work investigates the potentialities of the CT framework contextualized
to the problem of the prediction of the service requests for the TNCs. In par-
ticular, different algorithms for different real datasets have been presented.
The predictive methods designed for the three analyzed dataset are based on
the CT principles and the corresponding phase space has been reconstructed,
the chaotic behavior studied, through the analysis of the largest Lyapunov
exponent. Furthermore, a different CT based algorithm has been proposed
for the different datasets studied. The validity of the proposed strategies
have been confirmed by simulations and comparison with the MA, the CT
based approach presented in [64], and the one discussed in [46]. Finally,
system performance has been expressed in terms of mean squared, mean
absolute error and mean percent forecasting error.
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6.2 Passengers Demand Forecasting Based on
Chaos Theory

6.2.1 Introduction
The recent increase in spread of vehicles into the metropolitan areas has
resulted in massive levels of urban traffic, fatalities, injuries, and congested
cities [201,283]. Within smart cities context, many research efforts have been
made to significantly improve the conditions of our lives, involving the opti-
mize use of resources of the critical infrastructures of cities, such as power,
water, roads, etc [177, 201, 207, 283]. In this respect, the use of Intelligent
Transportation Systems (ITS) is crucial to enable modern solutions to con-
trol mobility and traffic, especially in order to lower roads congestion and
improve the transportation efficiency [198, 201]. The reduction of the num-
ber of commuters that use their own cars, in favor of public transportation,
can significantly reduce the traffic flows during the rush hours. Transporta-
tion network companies (TNC) such as Uber or Lyft provide peer-to-peer
ride-sharing services to move people from and to homes and offices, until the
public transportation stations. These types of services constitute a promis-
ing way to ensure to people a fast and comfortable solution to use the public
transportation system [201]. By the way, the accurate prediction of traffic
demands has a key role to guarantee high levels of customers satisfaction and
to improve companies’ profits, to properly allocate resources, avoiding delays
or waste of resources. For all these reasons, traffic and mobility forecasting
based on big data analysis have gained momentum in the area of ITS. The
general idea behind the forecasting problem in the ITS, is the prediction
of traffic conditions, a certain number of steps ahead, on the basis of past
observations [198,201].

6.2.2 Contributions
Hereafter the passenger demand forecasting framework proposed in [201] is
presented. The prediction has been conducted on big data collected by Didi,
a Chinese TNC. More in depth, the main contributions of this work are:

• the reconstruction of the phase space, in order to study the geometrical
and dynamical characteristics of the corresponding strange attractor;

• the application of a modified version of the nearest neighbors method
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combined with a global predictive model to improve the accuracy on
the forecast values;

• the comparison of the proposed approach with the most popular state-
of-art methods, aiming at corroborating the CT based forecasting va-
lidity.

6.2.3 Problem Statement
Let S = {si}ti=1 be a given scalar time series, in which si is the value ob-
served at time i. S derives from a previous sampling procedure in the city of
Chengdu in China. In particular, the such city has been modeled as a rect-
angle R of dimension A×B. Furthermore, each service request demand rh in
the dataset consists of a quintuple in the form (rh,id, rh,pc, rh,pt, rh,dc, rh,dt),
in which rh,id is the request ID, rh,pc the pick-up coordinates, rh,pt is the
pick-up time, rh,dc the coordinates of the destination, and rh,dt the time of
arrival at destination. Since in this study the main objective is to provide a
prediction about the demand, only the pick-up coordinates have been con-
sidered. In addition, requests can be clustered based on the pick-up time.
In this respect, time has been partitioned into equal slots. Starting from 0,
the k-th time slot is identified by the interval [k×F, (k+ 1)×F ), where F is
the time span of the interval. Hence, since the pick-up requests outside the
city are discarded, the passenger demand at the interval k, i.e. sk, is given
by

sk = |{h ∈ [0, N) : rh,pc ∈ R ∧ rh,pt ∈ [k × F, (k + 1)× F )}|, (6.21)

where N is the total number of received requests.
The forecasting problem consists in predicting some next points, less or

more far in the future, typically based on historical data. In short-term
forecasting problems the main objective is the maximization of accuracy
of predicted values, i.e. the minimization of the forecast error. The idea
behind the forecast error is to measured the gap between the predicted and
the actual value of the time series. There not exists only one single standard
metrics to measure the forecast error, and possible metrics include the mean
error, the mean absolute error, and the percent forecast error [180].

In this study the mean squared error (MSE) defined as

MSE = 1
n

n∑
k=1

(ŝk+1 − sk+1)2; (6.22)
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has been minimized, where n is the number of the samples in test data,
and ŝk+1 and sk+1 are the actual and the predicted values at time k + 1,
respectively.

6.2.4 Phase Space Reconstruction
In order to study the chaotic properties of S, the first step is the recon-
struction of the phase space (PSR) associated to S. Based on the Takens’
delay embedding theorem [29,239], The PSR has been obtained through the
association of each element si in S with a vector in the form

vi = [si, si+τ , . . . , si+(m−1)τ ]; (6.23)

where τ is the time delay and m is the embedding dimension.

Time Delay Reconstruction

The time delay τ rules the temporal distance between two successive points in
the phase space vector and its optimal value is the one for which redundancy
is minimal and the knowledge about si+τ from si is maximal. Let the mutual
information of time delay τ be defined as

I(si, si+τ ) =

=
∫
p(si, si+τ ) log( p(si, si+τ )

p(si)p(si+τ ) )dsidsi+τ (6.24)

where p(si, si+τ ) is the joint probability distribution between a smeasured at
a time i and at a time i+ τ respectively, and the p(si) and p(si+τ ) represent
the marginal distributions. Generally speaking, the aim is to find the value
of τ for which the average mutual information between two successive points
is least [82]. Graphically, as depicted in Figure 6.16, the optimal value of
τ is in correspondence of the first minimum of the I function, in our case
τ = 4.

Embedding Dimension

There are many approaches to estimate the suitable value of m. Hereafter,
the method proposed by Kennel [126], named the false nearest neighbors,
has been applied. The idea behind this method is that, since the presence
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Figure 6.16: The optimal value of τ is in correspondence of the first minimum
of the average mutual information plot.

of chaos can induce an exponential divergence on the trajectories of two
nearby points, there exist some points in the data set that are neighbors in
the embedding space but for which their temporal evolution exponentially
diverges. Hence, for each point in S, its nearest neighbor in m dimensions is
considered. Then the ratio between their distance inm+1 dimensions andm
dimensions is calculated. Finally, whether the resulted ratio is greater than
a fixed threshold r, the neighbor is considered false. In formal terms, given
a fixed threshold r, the false nearest neighbors function is defined in (6.26),
where σ is the standard deviation of the data, j is index of the nearest point,
and Θ is the Heaviside step function.

Ffnn(r) =

t−m−1∑
i=1

Θ
(
|v(m+1)
i

−v(m+1)
j

|

|v(m)
i
−v(m)

j
|
− r
)

Θ(σr − |v
(m)
i − v(m)

j |)

t−m−1∑
i=1

Θ(σr − |v
(m)
i − v(m)

j |)
; (6.25)

Figure 6.17 shows the behavior of Ffnn function, and the suitable value
of m is in correspondence of the last m value before the plot drops to zero,
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Figure 6.17: The optimal value of m is the one before the false neighbors
plot drops to zero.

in our case m = 3.

Largest Lyapunov Exponent

In order to apply CT principles to our time series, the chaotic behavior of S
needs to be verified. The positive value of the largest Lyapunov exponent is a
strong signature of the presence of chaos, therefore it is a suitable criterion for
establishing the chaotic nature of a time series. In this respect, the largest
Lyapunov exponent has been analyzed by using the method proposed by
Rosenstein [238], based on the estimation of the local divergence rates of
trajectories over the whole data set in the phase space. Specifically, the local
divergence is estimated on the neighborhood of each point of S in the phase
space. The general idea of the method is the measurement, for each si in
S, of the expansion rate in a particular time span ∆n of the trajectories. In
particular, that quantity is given by

E(∆n) = 1
t

t∑
i=1

ln
(

1
|N (vi)|

∑
vz∈N (vi)

|vi+∆n − vz+∆n|
)

; (6.26)



6.2 Passengers Demand Forecasting Based on Chaos Theory 189

where N (vi) is the neighborhood of point vi in the phase space.
The details of algorithm are reported in [238] and in our case, the resulted
largest Lyapunov is λmax = 0.7. Since 0 < λmax < ∞, the time series
exhibits a chaotic behavior [124,158].

6.2.5 Time Series Forecasting
In order to predict the exact future behavior of S, the knowledge about them
first-order ordinary differential equations is essential, but it is impracticable
when real data are involved. However, by means of PSR, the underlying
dynamics of the map F, defined as

vi+1 = F(vi), (6.27)

can be captured. In this regard, the phase space reconstruction has to be
performed. In accordance with PSR, the suitable values for time delay τ and
embedding dimension m have been calculated.
Given S, in order to predict the value ∆n steps ahead of st, i.e. st+∆n, a local
approximation of F is defined, by considering the neighborhood around vt,
in the phase space, of radius ε, hereafter referred to Nε(vt). Furthermore, for
each vy ∈ Nε(vt), its trajectory at time y + ∆n is observed, hence its value
sy+∆n, and then the mean value over all the future behavior of the points
belonging to Nε(vt) is considered. With the aim to improve the prediction
accuracy, a weight αy is assigned to each sy+∆n value, obtained starting
from the points in Nε(vt). Specifically, the higher is the similarity between
st and st+∆n, the higher is the value of αi. The weight αt has been defined
as follows

αt = 1
|st+∆n − st|

. (6.28)

Let η be the number of points in Nε(vt). In formal terms, the forecast value
of st+∆n, that is ŝt+∆n, is given by

ŝt+∆n = 1
η

∑
vy∈Nε(vt)

αysy+∆n. (6.29)

Hence, considering the chaotic scalar time series S, the whole prediction
procedure can be summarized as follows

• select the time delay τ optimal for S according to subsection 6.2.4;
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• select the embedding dimension m optimal for S according to subsec-
tion 6.2.4;

• reconstruct the phase space associated to S using τ and m;

• select radius ε and build Nε(vt);

• for each vy ∈ Nε(vt), measure sy+∆n;

• for each vy ∈ Nε(vt), calculate αy;

• forecast ŝt+∆n in accordance with (6.29).

It is straightforward to note that a crucial issue in this prediction algo-
rithm is the selection of a proper value for the radius ε of the neighborhood
of vt. Obviously, the choice of ε is strictly related to the number of points in-
volved in the forecasting process. Indeed, a too small radius implies a poor
number of points involved in the forecasting process which may result in
an inaccurate prediction, instead, a very large number of neighbors, hence a
high value of ε, considers not useful information that degrades the prediction
outcome. Unfortunately, there not exist specific procedures to determine the
optimal value for ε or about the number of points that have to be involved
in the forecast process [64]. Given the time series S composed of t scalar
values, the estimation of the optimal value of τ requires a computational
complexity in the order of O(t · log t), while by applying the procedure to
find the suitable embedding dimension m, the maximum amount of time
taken is O(t2 +4 ·ξ · t+ξ2 · t) , where ξ is the number of considered m values.
Furthermore, the phase space reconstruction exhibits a computational com-
plexity of O(λ ·m), where λ = t− (m− 1)τ . Finally, the nearest neighbors
procedure has a complexity in the order of O(t). AS consequence, the overall
time complexity is

O(t · log t) +O(t2 + 4 · ξ · t+ ξ2 · t) +O(λ ·m) +O(t). (6.30)

In order to improve the very short-term forecasting, the map F can be
modeled with a global nonlinear approximation given by the radial basis
function [124] defined as follows.

F(v) = θ0 +
g∑

w=1
θwφ(||v− ζw||), (6.31)
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where ζw are the g centers of the attractor, ζ0 and ζw are coefficients, and φ
is the Lorentzian function expressed by

φ(ψ) = 1
[1 + (πa )2] , (6.32)

with a constant and π > 0. The joint utilization of both the approximation
models presented in (6.29) and (6.31) has been pursued and, while the local
approach ensures a lower long-term forecasting error by considering the re-
cent evolution of the phase points, the global one improves the performance
of the very short-term forecasting taking into accounts all the phase points.

6.2.6 Numerical Results
In the case study here discussed, the nonlinear time series S derives form
sampled data collected in the city of Chengdu, from Didi Chuxing, the
biggest TNC in China. The dataset contains the passengers requests of
one month, from 11/01/2016 to 11/30/2016, and the whole dataset contains
more than 6.11 million of passengers requests. The whole area has been di-
vided into 20 × 20 same-size grids. Every grid is a square with sides equal to
700 meters, and the longitude of the focus area is from 30.60E to 30.73E, the
latitude is from 104.00N to 104.15N, while the considered surface is about
207.35 km2. The proposed CT approach has been evaluated by comparing it
with two of the most common state-of-art predictive models, the well known
AR and the Auto Regressive Moving Average with Exogeneous Input (AR-
MAX) [132]. More in depth, AR model is based on the historical behavior
of the time series and the predicted value linearly depends on the previous
values, while ARMAX combines both moving average and autoregressive
terms. Performance is measured in terms of MSA, and mean percent error
(MAPE) defined as

MAPE = 1
n

n∑
k=1

∣∣∣∣ ŝk+1 − sk+1

sk+1

∣∣∣∣ · 100. (6.33)

In order to provide a complete overview about the performance of the
approach adopted, the forecasting results when the prediction horizon is a
variable number from 1 to 9 steps ahead has been considered. More in
depth, the results shown hereafter are referred to prediction based on the
previous 96 hours to forecast the passengers demand 9 hours ahead. As it
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Figure 6.18: Variability of forecasting error.

is evident in Figure 6.18 and Figure 6.19, the forecasting accuracy applying
the local CT prediction is better for close prediction horizons. Furthermore,
Figure 6.18 depicts the the amount of variation of the forecasting error,
expressed in terms of mean forecasting error plus or minus the corresponding
standard deviation. It is evident that both the mean error and its variability
increase for high values of ∆n. It is due to the general difficulty in predicting
behavior for long interval times. This trend is confirmed by Figure 6.19, that
shows the performance of proposed CT approach in comparison with AR and
ARMAX. As Figure 6.19 exhibits, despite the forecasting error increases with
∆n, the CT approach achieves better results than the other two predictive
models. Figure 6.20 depicts the MAPE metrics for a prediction horizon
from 1 to 5 hours ahead. Also in this case, the better behavior of the CT
approach is highlighted. The advantages of combining both the local and
global prediction approaches are evident in Figure 6.21 and Figure 6.22,
where the MAPE and the MSE metrics are respectively represented. In
conclusion, the CT approach provides a suitable solution to forecast values
in complex and nonlinear dynamical systems, by investigating their dynamics
and geometrical structure in the corresponding reconstructed phase space,
and chasing the time series behavior with more accuracy than the AR and
ARMAX models.



6.2 Passengers Demand Forecasting Based on Chaos Theory 193

Figure 6.19: Forecasting error expressed in terms of mean squared error.

6.2.7 Conclusions
The problem of the passengers demand forecasting has been addressed, on
the basis of on real data from Didi Chuxing, the most famous TNC in China.
In order to forecast the future behavior of passenger demands, a CT ap-
proach to deal with the corresponding nonlinear scalar time series has been
proposed. With the aim at applying the CT principles, the corresponding
phase space has been reconstructed and the chaotic behavior studied.The
prediction algorithm has been performed observing the trajectories of the
points, in the phase space, close to the one that has to be predicted, and by
applying a global predictive model to improve the accuracy over the forecast
results for very close time horizons. The validity of the CT approach has
been confirmed by simulations and comparison with other two state-of-art
predictive models, expressed in terms of mean squared and mean percent
forecasting error.
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Figure 6.20: Mean absolute percentage error.

Figure 6.21: Mean squared error adopting the combination of local and global
prediction model.
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Figure 6.22: Mean absolute percentage error adopting the the combination
of local and global prediction model.
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Chapter 7

Machine Learning: Towards the
Cross-Layer Frameworks

If you have everything under control, you’re not moving
fast enough

Mario Andretti

7.1 A Federated Learning Framework for
Mobile Edge Computing Networks

7.1.1 Motivation

Recently, the ever increasing dissemination in our daily life of intelligent
devices such as wearable devices, smartphones, smart cards, sensors and
so on, has triggered the proliferation of numerous distributed networks de-
vices generating massive quantity of heterogeneous data to be processed and
interpreted [229, 257]. Due to such unprecedented amount of data with ex-
ponential growth trend [54] and the typical private nature of these data,
sending all the data to a remote cloud is become impracticable, unneces-
sary and full of privacy concerns [257]. Therefore, all of these factors have
contributed to the emergence of the new mobile edge computing (MEC)
paradigm [156, 162, 221], which exploits the advancement on storage and
computation capacity of modern devices for pushing processing and storing

197
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Figure 7.1: Cloud-MEC Network Architecture

procedures locally on the devices themselves. The MEC approach involves
the cooperation of edge-nodes with the remote cloud in order to give rise
to a computing system able to support a large scale tasks processing and
managing environment [229]. Within this context, the efficient and effective
handling of big data brings out several information and statistical features
hidden in the datasets, useful for many application areas such as resource
planning, system conditions forecasting, classification and so on. In this re-
gards, machine learning (ML) [286] techniques have gained momentum to
properly catch and interpret data behavior, by providing a wide range of
solutions to analyze datasets trend on the cloud site. Despite the dataset
characteristics represent an invaluable source of information to be properly
exploited, from the other side the manipulation of users sensitive data im-
plies significant responsibilities and risks in keeping them in a centralized
site such as the cloud [169]. In order to manipulate big data with respect of
users privacy, the federated learning (FL) [169, 229, 257, 281] approach has
emerged as a set of ML techniques to perform statistical and mathemati-
cal training models directly on devices. FL framework involves ML models
locally trained at devices level, hereafter named as clients, and then the
aggregation of these results in a central server, for example a base station.
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7.1.2 Contributions
The main contributions of this study are

• The contextualization of the FL framework to the VRCs deployment
problem, by exploiting the decentralized training data is a powerful
tool to pursuit effective results in the VRCs allocation problem;

• The detection and application of basic methods to perform decentral-
ized data training without draining the hardware resources of the EDs;

• The extensive numerical simulations and comparison with the chaos
theory approach, performed to validate the remarkable behavior re-
sulting by applying the proposed approach to the VRCs deployment
problem.

Furthermore, similarly to paper [129, 169, 206, 256, 280, 285], this work pro-
poses the application of the FL by using straightforward methods belonging
to the gradient descent algorithms family. This conservative choice is due to
the fact that more complex methods may result in prohibitive consumption of
the EDs resources, which represents a crucial point in the decentralized data
training research field. Differently than previous literature, this work focuses
on the application of the FL framework to the VRCs deployment problem,
by exploiting FL to predict the individual edge device (ED) demand in or-
der to perform a proper VRCs planning. Furthermore, for the best of our
knowledge, this is the first study to contextualize FL to the VRCs allocation
problem. Finally, the goodness of the proposed approach has been tested by
resorting to extensive numerical simulation and by comparison with other
predictive disciplines.

7.1.3 Related Works
ML techniques constitute a wide branch of big data manipulation litera-
ture in MEC networks. Paper [234] investigates the application of various
machine learning techniques in order to report the impact of different ML
methods on the MEC network. Furthermore, paper [234] analyzes the ef-
fectiveness of the ML algorithms to detect the presence of malicious attacks
in a MEC network. Authors in [284] proposes a deep supervised learning
method aiming at minimizing the overall network cost in performing compu-
tational offloading. Differently, a MEC blockchain network has been studied
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in paper [161], in which an auction solution based on deep learning is for-
mulated to perform edge resource allocation in order to maximize the edge
computing service provider profit. More in depth, paper [161] builds a multi-
layer neural network based on the optimal auction solution. In paper [295]
a multi hidden multi layer convolutional neural network is adopted to per-
form data authentication in robust mobile crowd sensing problem, aiming
at improving sensing reliability and reducing the overall latency. By taking
into account a real-time industrial application environment, authors in [216]
address the position based confidentiality problem in MEC systems by ex-
ploiting the k-nearest neighbor and the decision tree approaches. Paper [48]
examines the main classes of ML solutions to measure the benefits deriving
from edge caching mechanisms, especially in terms of user satisfaction and
energy efficiency evaluation.

Contrary, distributed ML is adopted in paper [133, 146, 248, 249]. Pa-
per [248] uses a distributed version of the support vector machine method
within an internet of things (IoT) context to evaluate system performance
implementing the distributed ML. The distributed stochastic variance re-
duced gradient is applied in paper [249], in which the authors aim at opti-
mizing the number of collection points to perform data analysis, considering
a fixed target accuracy, in order to minimized the amount of network traffic
spent to send all the data towards the collection points. In [146] the crowd
sensing problem in an edge computing scenario is treated by proposing a
distributed deep learning approach, in order to lower the traffic congestion
in the cloud site and balance the traffic. In particular, authors in [146] in-
volve the human in the loop methodology to give a hierarchical structure to
the crowd sensing problem, aiming at controlling the whole crowd sensing
process. Furthermore, the distributed Q-learning algorithm is applied in pa-
per [133], where the minimization of the users outage is performed by users
themselves, selecting the most critical cell on which run the minimization
and considering a heterogeneous networks context.

Finally, recently FL has gained momentum and paper [129,169,206,256,
280, 285] constitute the main examples of such branch of literature. Pa-
per [280] proposes a novel aggregation data framework for the over the
air computation, by exploiting the signal superposition property of wireless
channels. The aim of papers [257, 280] is the maximization of the number
of devices involved in the aggregation process, by minimizing the aggrega-
tion error. Authors in [256] and in [257] adopt FL in a MEC system, in
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which the distributed gradient descent method is applied to determine the
best trade off between local updates and global aggregations, taking into
account the minimization of the loss function subjected to some resource
constraints. In the same way, paper [285] considers as case study the MEC
environment, by proposing the application of the hybrid filtering on stacked
encoders to predict the fluctuation of files popularity in the contents caching
problem. Then, paper [169] combines the federated averaging algorithm
proposed in [169] with the stochastic gradient descent algorithm, in order
to train data in a distributed fashion avoiding high level of communication
costs. Paper [229] addresses the multi task learning problem by resorting
to the FL framework based on the novel Mocha context aware optimiza-
tion algorithm. A blockchained FL architecture is designed in [129], on the
basis of which a distributed consensus strategy is provided, by analyzing
the blockchain end-to-end delay. Finally, FL is proposed in [206] to face
the optimization of the transmission and computation costs in a mixed IoT-
MEC network, throughout the application of the multiple deep reinforcement
learning agents.

7.1.4 Reference Scenario
The reference system scenario consists of the cloud network architecture
mixed with that MEC as depicted in Figure 7.1, where the cloud is lo-
cated in the remote area of the network, and there is a set of NEs N =
{1, . . . , i, . . . , n} situated close to the EDs, hereafter represented by the set
D = {1, . . . , j, . . . ,m}. Each ED requires computation of one and only one
task belonging to the set T , for which both D and T have the same number
of elements. Each NE is equipped with a central processing unit (CPU),
homogeneous in frequency for all the NEs. Differently, cloud is equipped
with a higher CPU frequency. Then, each task, in order to be computed,
requires a specific application which has to be installed in advanced on the
computation site. In this regards, loading the applications on NEs requires
the presence of available storage resource blocks (SRBs), since each appli-
cation needs a fixed number of SRBs. Accordingly, each NE disposes of a
number si of SRBs.

Each ED requiring task computation primarily looks for one VRC of the
required application on a close NEs1. In the event that no one NE owns the

1Here is assumed that each ED sends the task to the nearest NE which, if it does
not contain the application requested by the ED, forwards the task to the nearest NE
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VRC of the required application, the task is sent to the cloud on which all
the application types are present. Furthermore, the transmission cost among
the NEs has been assumed negligible, while a fixed data rate for the wireless
link between the EDs and their nearest NE has been set. Hence, the overall
computation cost (OCC) experienced by ED j in performing computation is
given by

Tj =
∑
i∈N

(τj,i + cj,i∗)xj,i + (1− xj,i)(τj,C + cj,i∗), (7.1)

where τj,i and τj,C represent the time spent by task j on NE i and on cloud,
respectively. It is important to note that both τj,i and τj,C are expressed as
the sum of the task execution time spent in the CPU of the NE and the cloud,
and the queuing time experienced by the task waiting for its execution on
these sites2. Moreover, cj,i∗ represents the transmission cost in sending the
task from ED j to its nearest NE i∗. Since the transmission time among NEs
and between NEs and cloud have been supposed negligible, only the cj,i∗ cost
has been we have taken into account. Finally, xj,i is a binary value equals
to 1 if the task j is computed on the NE i, 0 otherwise. It is important
to highlight that the OCC in (7.1) strongly depends on the queuing time
experienced by task on the designated computation site. In fact, a proper
deployment of VRCs on the ENs network may drastically reduce the OCC
task time.

7.1.5 Problem Formulation
The main objective of this paper is the maximization of the hit rate in finding
the VCRs of the requested applications on the NEs. This metric evaluation
is due to the fact that the deployment of VRCs, provided on the basis of
the forecast EDs applications demand, lowers the tasks OCC. Therefore, in
formal terms, the AHP can be expressed as

P(X) = H(X)
m

100, (7.2)

where H(X) is the function which, given the VRCs allocation matrix X,
whose generic element is xj,i, associates the corresponding number of hits

containing that application. Finally, it has been assumed that each NE has knowledge
about the VCRs contained by other NEs, and that each NE has stored a routing table in
which, for each pair of NEs, the shortest path between those NEs is saved.

2The CPU queue has been assumed with the first-in-first-out service policy.
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Figure 7.2: FL framework in Cloud-MEC Network Architecture

occurred in finding the VRCs loaded on the NEs.
Furthermore, the main goal of this paper is given by

max
X
P(X). (7.3)

s.t.
0 ≤ si ≤ S, ∀i ∈ N , (7.4)

where S expresses the maximum number of SRBs available on a NE. Hence,
constraint (7.4) expresses that each NE i has a maximum limitation about
the number of SRBs. It is important to note that P(X) depends on the
allocation matrix X, hence on the deployment of the VRCs on the NEs.

7.1.6 Federated Learning Framework

The Learning Problem

Generally speaking, ML aims at learning parameter models on the basis of
some training data. In this regards, a ML model is typically characterized
by a loss function depending on the data sample z and a parameter vector
w, i.e., fz(w), which catches the error introduced by the model in relation
with the training data [256]. By assuming the presence of m EDs, each of
which having local data ∆j , j = 1, . . . ,m, the collective loss function can be
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expressed as [169,256]

Fj(w) = 1
|∆j |

∑
z∈∆j

fz(w), (7.5)

in which |∆j | indicates the cardinality of ∆j , i.e., the number of elements in
∆j . Similarly, from (7.5) follows that the global loss function computed on
all the distributed local dataset ∆j is given by [169,256]

F (w) =

∑
j∈{1,...,m}

|∆j |Fj(w)∑
j∈{1,...,m}

|∆j |
. (7.6)

As well explained in [256], the direct consequence from (7.5) and (7.6), is
searching w? such that

w? = arg minF (w). (7.7)

Therefore, as several previous state of art works [169, 256, 257], in order
to optimize (7.7) with low computational complexity, the gradient descent
method is applied.

Federated Learning Scheme

As depicted in Figure 7.2, the proposed FL framework is composed by the
clients side, responsible for the local data training, and the server side, typi-
cally a Base Station, represented by a central server intended for improving
the global learning model, through the merging and aggregation of EDs
updated local models. This approach is based on the interaction process
between the clients and server sides, and, during each algorithm iteration
round u, the EDs involved in the training procedure are a subset of the
whole EDs set, whose number of elements is equal to y.

The algorithm acts as follows

• In parallel, each ED j among the y EDs involved in the training proce-
dure, updates its local parameter vector wj(u), implicitly built on the
basis of its local dataset ∆j , in accordance with the following rule [257]

wj(u) = ŵj(u− 1)− α∇Fj(ŵj(u− 1)), (7.8)

where α is the learning rate and ŵj(u−1) represents the term wj(u−1)
after global aggregation.
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• The server side provides the weighted average as proposed in [169] and
expressed by

w(u) =

∑
j∈{1,...,m}

|∆j |wj∑
j∈{1,...,m}

|∆j |
. (7.9)

Distributed data training performing the algorithm previously presented im-
plies several advantages in terms of clients privacy, preservation of the com-
putational resources of EDs, and messages exchange. In fact, the data train-
ing provided locally on the clients site, allows users to keep protected their
sensitive information. In addition, roughly speaking, the uploading of the
ED j parameter vector wj does not expose the client to any sort of privacy
issue, since, given wj , to retrieve ∆j is not trivial.
Furthermore, for each algorithm iteration round, the involvement of only a
part of the EDs set ensures to reduce the message passing between clients
and server sides. Finally, last but not least, it is important to highlight that
the usage of the gradient descent algorithm performs optimization without
implying an excessive resource consumption, by taking into account the EDs
perspective.

VRCs Allocation

As previously detailed, in this study the FL has been used to provide accurate
distributed prediction on the future EDs applications demand by considering
the historical EDs applications requests mitigated by the correlation with the
other EDs involved in the training procedure. Once the prediction has been
achieved, the main goal here is the exploitation of these information in order
to provide a proper VRCs allocation, in terms of AHP metric.

Given the predicted application demand, practically expressed in terms
of predicted application popularity, the VRCs allocation strategy, given the
applications popularity vector p sorted in descending order, consists of the
following steps:

1. Start with the NEs empty, hence, with all the SRBs available;

2. Deploy one VRC of each application, starting by that most requested
in p, on all the NEs in the network with a number of available SRBs
able to host the considered application;
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3. If any NE can host the considered application, the VRCs allocation
algorithm terminates, otherwise;

4. Consider the next application in p and repeat steps 2)− 4) until there
exists at least one NE able to host the processed application.

A very relevant point is that the proposed VRCs allocation algorithm pro-
vides an unbalanced VRCs deployment, according with the different popu-
larity level of each application. In particular, step 3) guarantees that the
outcome VRCs allocation is not a uniform distribution of the applications.
In fact, such point ensures that no VRCs allocation is provided if the most
requested application cannot be stored.

Furthermore, as regards the EDs computation strategy, as previously
anticipated, each ED j requesting task computation with application r, sends
task to its nearest NE, i.e, i∗, which acts in the following three ways:

• The NE i∗ computes the task if it contains at least one VRCs of the
application r;

• The NE i∗ does not contain any application r VRC, but at least one
NE, i.e.,v, has loaded at least one application r VRC. Therefore, i∗
forwards the task to the NE v;

• Any NE contains one application r VRC and i∗ forwards the task to
the far cloud.

7.1.7 Numerical Results

In order to extensively test the proposed FL based framework, numerical
simulations have been performed in TensorFlow. A simulation scenario con-
stituted by N = 6 NEs, equipped with a CPU frequency equals to 2.4 GHz,
and considering a number of uniformly distributed SRBs si ∈ [50, 300], has
been considered. Each application occupies a number of SRBs uniformly
distributed within the interval [15, 40], while the cloud has been modeled by
supposing a CPU frequency equals to 4.6GHz. The application requests have
been simulated as in [149, 176, 285], by using MovieLens 1M dataset [107],
hereafter referred as Dataset 1, and MovieLens 100K dataset [107], named
as Dataset 2. Each task has been supposed composed by a number of 64
bits format instructions uniformly distributed within the integer interval
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[250, 800], requiring 8 CPU cycles per instruction. Furthermore, the connec-
tion link between the EDs and the nearest set has been considered equal to
100 Mbit/s.

As regards the loss function, the mean squared error (MSE) which, for
each data ql in ∆j , is defined as

MSE = 1
M

M∑
i=1

(q̂l − ql)2, (7.10)

has been considered. In (7.10) M represents the number of the samples in
test data. Then, in order to test the effectiveness of the proposed approach,
we compared the accuracy on the predicted values obtained with the chaos
theory (CT) approach, through the phase space reconstruction method [159,
239].

The higher accuracy levels in prediction procedure are clearly evident
in Figure 7.3 and Figure 7.4, which depict the MSE behavior, by increas-
ing the time prediction horizon. In both Figures 7.3 and 7.4, the accuracy
metric trend is showed by varying the prediction horizons in order to test
the different approaches. In fact, the accuracy analysis has been performed
by taking into account prediction horizons greater than that on which the
VRCs placement is actually pursuit, i.e. one hour. As it is straightforward
to note, the MSE values grow by increasing the prediction horizon. This is
due to the intrinsic difficulty in predicting the series long term behavior.
Figure 7.5 and Figure 7.6 highlight system performance by considering the
AHP by varying the algorithm communication rounds, for different num-
ber of EDs involved in the learning process. Both the figures confirm that
greater is the number of EDs participating to the learning process, higher
is the number of EDs involved in the process means more significant and
accurate information on which the VRCs allocation strategy can act. Fur-
thermore, by increasing the number of algorithm rounds, by which models
are updated, the AHP reaches higher values, by improving system perfor-
mance.

Finally, Figure 7.7 and Figure 7.8 make evident the system improvement
on mean task OCC reached by involving a high number of clients in the
learning process. These results confirm those previous exposed in Figure 7.5
and Figure 7.6 and, similarly, better performance, i.e., low values of mean
OCC are obtained by increasing communication rounds to the considered two
sided framework. All these results validate the goodness of the proposed ap-
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proach for the VRCs allocation problem, and highlight the strict correlation
between a valuable prediction model and remarkable system performance.
Finally, the resulting system performance makes clear the suitability of FL
to our problem.

Figure 7.3: MSE by varying the time prediction horizon for Dataset 1

Figure 7.4: MSE by varying the time prediction horizon for Dataset 2
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Figure 7.5: AHP by varying communication rounds for Dataset 1

Figure 7.6: AHP by varying communication rounds for Dataset 2

7.1.8 Conclusions

This work addressed the VRCs allocation problem in a hybrid cloud-MEC
network, aiming at maximizing the AHP probability, i.e., the odds of finding
a VRC of the application requested by the EDs on a NE in the edge of the
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Figure 7.7: Mean OCC by varying communications rounds for Dataset 1

Figure 7.8: Mean OCC by varying communications rounds for Dataset 2

network, instead of in the cloud, typically located in the remote area of the
network. The problem has been addressed by applying the FL framework
with the gradient descent algorithms family to avoid the excessive exploita-
tion of the EDs hardware resource such as battery lifetime or computational
components. Finally, the validity of the proposed framework has been shown
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throughout extensive empirical evaluation of system performance in compar-
ison to the chaos theory based predictive approach.

7.2 Federated learning for Cloud-Edge
Computing: A Service Provider Revenue
Maximization Framework

7.2.1 Motivation
The diffusion of smart devices demanding for real-time data processing is ex-
ponentially growing. Therefore, service providers are dealing with the func-
tional integration of the classical cloud computing architecture with edge
computing network. However, the intrinsic limited capacity of edge comput-
ing nodes implies a proper allocation to improve user satisfaction and service
fulfillment. Hence, demand prediction is crucial in the services management
and exploitation. The main challenge here consists of the high variability on
applications requests that results in inaccurate forecasts. Furthermore, the
most popular prediction approaches typically involve sensitive users infor-
mation gathering at a central unit, leading to privacy concerns. Federated
learning is recently emerged as a solution to train mathematical learning
models on the users site.

7.2.2 Contributions
The emergence of new network paradigms such as edge computing (EC) [156,
162,221,244], for which the limitations typical of the cloud architecture have
been bypassed moving computation nodes to the network edges close to the
end users, have given rise to a wide range of challenges in many research ar-
eas [63,225]. Consequently, several new issues, such as user mobility, hetero-
geneity in quality of service (QoS) or service requirements, massive volume of
data, users privacy, diversity on data types and so on, have led to numerous
efforts from both academia and industry in providing highly effective and
efficient solutions [54,257]. In particular, there exists a significant branch of
literature regarding possible solutions to improve the EC networks (ECN)
performance in order to guarantee high level of users satisfaction and to pro-
vide dynamic and flexible network resource allocation and decision making
strategies.
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Generally speaking, heterogeneity in data flows types implies different
QoS or service requirements. Furthermore, in a service provider (SP) per-
spective, such diversity triggers new data flows management policies, service
provision costs and selling prices. In this respect, the SP revenue maxi-
mization is strictly related to the adopted management and administration
policy. Indeed, a proper resource exploitation planning is essential to guar-
antee elevated levels of network efficiency, users satisfaction and consequent
high SP revenues. In particular, having an a priori knowledge about the
data flows service demand can be properly exploited to perform a suitable
resource infrastructure planning with maximum income. In order to pur-
suit this objective, machine learning (ML) [20, 22, 131, 178, 286] is emerged
by providing many techniques to perform data behavior interpretation and
analysis. The ability of ML techniques in catching data trend, patterns
and hidden features, has ensured its applicability to many problems. How-
ever, although the knowledge and extrapolation of users data characteris-
tics positively impacts many application areas, it may result not compliant
with some specific user privacy constraints [169]. In this respect, Federated
Learning (FL) [169, 229, 245, 257, 262, 281] is recently emerged as promising
tool to perform, locally on the users’ devices, statistical and mathematical
training models based on ML methodologies without loosing users privacy
constraints. The FL framework consists of the devices level, generally indi-
cated in literature as clients, and a central server unit which aggregates and
merges the data preliminary processed by the clients.

7.2.3 Contributions
This work proposes the application of the FL framework, in order to forecast
the service demands, without loosing the users privacy constraints. More-
over, on the basis of the service demands forecasting, this study proposes
a suitable virtual functions (VFs) placement both on the ECN and cloud.
Summarizing, the contributions are

• Application of the FL strategy to forecast the network VFs demand,
in order to take into account the users privacy;

• Formulation of the SP maximum revenue problem, by considering ser-
vice requests (SRs) with different priority and hence, different cost and
price. In particular, the SP can accept the data SRs with low priority
if all the high priority flows have been satisfied;
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• Proposal of a VFs placement strategy and a suitable matching based
SRs allocation algorithm based on the considered FL and the previ-
ously provided VFs forecasting scheme;

• Performance evaluation of the proposed approach and the comparisons
with a centralized chaos theory (CT) based prediction scheme, by re-
sorting to extensive computer simulation runs.

Moreover, in contrast to papers [121, 147, 148], which provide profit maxi-
mization solutions without taking into account the users privacy issues, we
propose a revenue maximization framework based on data information elab-
orated locally on the users devices, avoiding the typical privacy concerns
of the other approaches. Hence, as in papers [129, 169, 206, 256, 280, 285],
we propose a FL based framework by using the gradient descent algorithm
as optimizer. The motivation for this conservative choice resides in the fact
that more complex methods may result in prohibitive consumption of the end
users (EU) hardware resources, which is a crucial point in the distributed
data training problems. Furthermore, in contrast to the previous state of
art works, this work contextualizes the application of the FL to the VFs de-
ployment problem, by exploiting the FL framework to properly predict the
application network demand, in order to maximize the SP revenue. Further-
more, a VFs placement and a SRs service allocation is provided to evaluate
the actual validity of the proposed solution. In fact, the SRs service allo-
cation algorithm, based on the matching theory, does not take into account
the SP perspective, but only the users, i.e., the SRs, interests. Finally, for
the best of our knowledge, this is the first study which applies the FL to the
SP revenue maximization problem, by considering even the users perspec-
tive. The proposed approach performance has been evaluated by resorting
to extensive numerical simulation and by providing comparison with the
centralized CT based predictive method.

7.2.4 Problem Statement
As reference scenario, we consider a single SP featuring an ECN constituted
by N computation nodes (CNs) located at the network edges, and a more
powerful cloud located far from the ECN. We suppose that all the CNs are
equipped with a central processing unit (CPU) with the same computational
capability and number of available storage resource blocks (SRBs) S. Dif-
ferently, the cloud is assumed having a storage capacity of U SRBs, with
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Figure 7.9: Hybrid Cloud-MEC Network Architecture

S < U . In addition, we assume the availability of high speed wired links
between CNs and from any CN to the cloud3 Furthermore, we guess that
the ECN is able to support T different high priority service types, which
are characterized by different provision costs and selling prices. Each service
type i ∈ T has associated a QoS level expressed as a time deadline τi before
which the type i service accomplishment has to be completed. In addition,
we consider the presence ofM service types requests with lower priority and
without any time deadline constraint. The number of requests belonging to
this class is indicated hereafter with yj , with j ∈M.

Periodically, the SP updates the service demand and we assume that does
not arrive any new request between two SP updates.

Let xi be the number of SRs demanding for service i. We suppose that
each SR is originated by an end user (EU), and that an EU requires only one
SR. Therefore, as direct consequence, hereafter we assume interchangeable
the SR and EU terms. Then, as regards the SP, the provision of a service
has a cost mainly depending on xi and following the model given by [258]

c(xi) =
{

0, xi = 0,
βc,i + βl,iµ

xi
i , xi ≥ 0,

(7.11)

3We have assumed that the connection towards the cloud is performed throughout the
CN nearest to the SRs needing computation. Consequently, the communication latency
cost between SRs and their nearest CN has no impact on the overall SR completion time
and hence it has been neglected in defining (7.17).
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in which βc,i, βl,i, µi are real valued parameters whose value changes on the
basis of the request type.

Similarly, the provision cost for providing yj SRs of type j follows the
rule [258]

b(yj) =
{

0, yj = 0,
αc,j + αl,jν

yj
j , yi ≥ 0,

(7.12)

where αc,j , αl,j , νj are, also in this case, real valued parameters.
Moreover, for each service type with high priority, the SP revenue results

ruled by the following relation

U(xi, qi) = log(1 + xi)
qi

, (7.13)

with qi = |xi − ki|, where ki is the number of SRs for which τi has been
respected. Then, the SP revenue for the low priority SRs is given by

U(yj , zj) = log(1 + yj)
zi

, (7.14)

where zj is the number of SRs among yj accepted by network for their service.
Hence, the SP revenue, corresponding to the provision of the i-th and the
j-th service type, can be expressed as

X (xi, qi) = U(xi, qi)− c(xi), (7.15)

and
Y(yj , zj) = U(yj , zj)− b(yj), (7.16)

respectively.
Both the SRs with high and low priority, in order to be accomplished,

require the presence of a VF in set V which has to be preliminary loaded on at
least one CN of the network or on the far cloud. The loading process requires
the CN or cloud availability in terms of SRBs, since each VF v ∈ V requires
a number av of SRBs, different for each VF. Consequently, the time required
for the service accomplishment (TSA) of a generic SR r, independently by
its priority, is given by

Tr =
∑
v∈V

∑
h∈N

(γz + ωz,h)ρr,hθv,h + (1− ρr,h)ζv,C(γC + ωz,C), (7.17)
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Figure 7.10: FL framework for the VFs placement

where γz and γC are the execution time spent by the SR z on the CPU
of a CN and of the cloud, respectively. It is important to note that both
the execution times γz and γC mainly depend on the size of the SR z, the
CPU frequency of the node hosting its elaboration, and the time spent by
the SR on that node waiting for the actual computation. Therefore, ωz,h
and ωz,C represent the queuing time experienced by the the SR z waiting
for its execution on the CN h and cloud, respectively4. Furthermore, ρr,h is
a binary value equals to 1 if the SR j is executed on the CN h, 0 otherwise.
Similarly, θv,h is equal to 1 when the VF v is present on CN h, 0 otherwise.
Finally, ζv,C is equal to 1 if the VF v is loaded on cloud, 0 otherwise. It is
important to make evident that the TSA in (7.17) strongly depends on the
queuing time experienced by the SR on the service provision site. In fact,
a proper deployment of VFs on the ECN may drastically reduce the TSA
time.

In formal terms, the aim of this work is the maximization of the SP
revenue by providing decision making on the VFs placement, in order to
satisfy the SRs. Therefore, the main goal here is given by

min
q,z

∑
i=1,...,T

X (xi, qi) +
∑

j=1,...,M
Y(yj , zj), (7.18)

s.t.
Ti ≤ τi,∀i = 1, . . . , T , (7.19)

4The CPU queue has been modeled with the first-in-first-out service policy.
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∑
v∈V

θv,hav ≤ S, ∀h ∈ N , (7.20)

∑
v∈V

ζv,Cav ≤ U. (7.21)

In problem (7.18)-(7.20), constraint (7.19) expresses the fact that each SR
with high priority has to be served, while constraint (7.20) and (7.21) rep-
resent that the VFs allocation has to respect the storage limit of CNs and
cloud, respectively.

7.2.5 Federated Learning Framework

7.2.6 The Learning Problem
The aim of ML is the exploitation of some data used for training, to learn
models. In order to do that, typically, ML involves the definition of a loss
function representing the error implicitly resulting from the model train-
ing [256]. The loss function depends on the data sample z and a parameter
vector w, and it is named hereafter as fz(w). As previously introduced,
this work supposes the presence of L SRs, with L = T +M, deriving from
an underlying level of EUs, each of which disposes of a local dataset Θl,
l = 1, . . . , L. Therefore, as assumed in [169, 256], we suppose the collective
loss function equals to

Fl(w) = 1
|Θl|

∑
z∈Γl

fz(w), (7.22)

where |Γl| is the number of elements belonging to Γl, referred as the cardi-
nality of the Γl set. Respectively, the global function evaluated at the central
server site, the global loss function, based on the distributed local dataset
Θl and defined as [169,256], is expressed by the following relation

F (w) =

∑
l=1,...,L

|Θl|Fl(w)∑
l=1,...,L

|Θl|
. (7.23)

Therefore, the objective here is to find w? such that [256]

w? = arg minF (w). (7.24)
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Accordingly with numerous state of art papers [169, 256, 257] recently pro-
posed in literature, the optimization of (7.24) limiting the computational
complexity, is pursuit by applying the gradient descent method.

Federated Learning Framework

As represented in Figure 7.22, the proposed FL framework consists of the
clients level, responsible for the distributed local data training, and of a
server side. The server side is typically represented by a base station or a
more general central unit, set up for improving the global learning model, and
to merge the locally trained EUs models. The clients and server sides interact
to each other, throughout a series of iteration rounds u. It is important to
highlight that the number of EUs involved in the training procedure are a
subset of the totality of the EUs.

The FL procedure consists of the following steps

• Let K be the set of the EUs involved in the training process. In parallel,
each EU belonging to K, i.e. EU χ, updates its local parameter vector
wχ(u), which depends on its local dataset Θχ, accordingly with the
following rule [257]

wχ(u) = ŵχ(u− 1)− ξ∇Fχ(ŵχ(u− 1)), (7.25)

where ξ is the learning rate and ŵχ(u−1) represents the term wχ(u−1)
after global aggregation.

• As detailed in [169], the server side computes the weighted average
expressed by

w(u) =
∑
χ∈K |Θχ|wχ∑
χ∈K |Θχ|

. (7.26)

It is important to make evidence that EUs, in performing distributed data
training accordingly with the FL framework, achieve numerous advantages
in terms of clients privacy, and limited exploitation of their computational
resources. This is directly connected to the fact that training data locally on
the clients site, help users to keep their sensitive and personal information
reserved, since the uploading of the EU χ parameter vector wχ does not
expose the client to any sort of privacy matter. More specifically, from wχ,
is not elementary to retrieve Θχ.
Finally, each algorithm iteration round involves just a part of the whole EUs
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set, reducing the message passing between clients and central server entities.
Strongly connected with this aspect, the usage of the gradient descent algo-
rithm is able to afford the learning problem without implying an excessive
resource consumption, meeting the limited computation capabilities intrinsic
of each mobile device.

VFs Placement Planning

Once the FL framework is applied to obtain SRs prediction on the basis
of the historical EUs information, properly aggregated by the central server,
the VFs placement planning strategy starts. The placement acts on the basis
of the VFs popularity, expressed with the popularity vector p.

In order to validate the benefits of the proposed framework to the VFs
placement problem, we propose a straightforward placement strategy strictly
dependent on p. Supposing that the predicted network SRs are given in
terms of VFs popularity and expressed with the popularity vector p, the
VFs placement is realized throughout the following steps

1. Process the popularity vector p starting from the most popular VF in
p, i.e., r?, hence from the most requested VF;

2. Deploy r? on the first CN with enough available SRBs to host r?;

3. Deploy r? on the cloud if it has enough available SRBs to host r?;

4. If r? cannot be loaded neither on the CNs nor on the cloud

(a) if there not exists in p the VF r̂ which can be hosted by a CN or
cloud, then terminates placement;

(b) Otherwise repeat steps 1)− 4).

SRs Allocation Planning

The designed SRs allocation policy is based on the matching theory princi-
ples [30, 212], and consider the EUs perspective. In order to better explain
this point, it is important to highlight that the SRs allocation strategy is
based on metrics which do not consider the SP revenue, but only the EUs
interests. In this regards, the two parts involved in the matching are the SRs
and the computational sites, referred hereafter, for each SR r, as Cr. The
set of the computational sites may be different for diverse SRs since, given
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the SR r, Cr consists of the CNs which contain the VF requested by r and
of the cloud, if this contains the desired VF. Each SR r expresses the prefer-
ence in being matched, i.e., in being computed, with each element of Cr and
vice versa. The SRs aim at minimizing their own TSA defined as in (7.17),
hence they prefer to be executed on computation sites which lower (7.17).
Differently, the computation sites prefer SRs requiring VFs with stringent
deadline requirements.

Therefore, the matching algorithm consisting of a modified version of the
Gale-Shapley [30] algorithm can be summarized throughout the following
steps

1. Each SR builds its preference on the elements belonging to Cr;

2. Each SR r, proposes to be computed on its most preferred computation
site;

3. Each computation site, among the received computation proposals,
accept the SR requiring the VF type with the closest deadline, and
discard the other proposals;

4. Update queuing time on each CN;

5. Update preferences of the unallocated SRs;

6. repeat steps 2)− 6) until all the SRs are allocated.

7.2.7 Numerical Results
The proposed FL based framework has been tested by resorting to numer-
ical simulations in the Tensorflow environment. We supposed the network
scenario consisting of N = 3 CNs, equipped with a CPU frequency equals to
2.4 GHz, while the cloud has been equipped with a CPU frequency equals
to 4.6GHz. Furthermore, we set S = 70 and U = 120.

The VFs required by SRs have been modeled similarly as in [149,176,285],
and we considered the presence of two priority, corresponding to the set
MovieLens 1M dataset [107] and MovieLens 100K dataset [107], respectively.
We modeled 10 VFs, each of which needs a number of SRBs uniformly dis-
tributed in [50, 80].

Each SRs has been modeled as a number of 64 bits format instructions
uniformly distributed in [250, 800], needing of 8 CPU cycles per instruction.
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Figure 7.11: SP revenue by varying communication rounds, considering 100
SRs and 20 VFs

Furthermore, as loss function, we adopted the mean squared error (MSE)
which, for each data ιφ in Θχ, is defined as

MSE = 1
Φ

Φ∑
φ=1

(ι̂φ − ιφ)2, (7.27)

where Φ is the number of the samples in test data, and ι̂φ is the predicted
value. Then, to test the effectiveness of the proposed approach, we made
comparison in terms of accuracy of our strategy, with the prediction scheme
based on the application of the CT principles by performing the phase space
reconstruction method as explained in [159,239], and by using the predictive
model of the k-neighbors discussed in [124]. It is important to note that the
CT approach is performed on the central server site, on which all the users
data are gathered without considering the preservation of their privacy.

Figure 7.12 and Figure 7.13, which exhibit the MSE behavior by varying
the prediction horizon, confirm the greater accuracy of the proposed model
in comparison to CT. As it is evident in Figure 7.12 and Figure 7.13, the
MSE grows as the prediction horizon increases. This is the direct conse-
quence to the natural difficulty in predicting the long term behavior of the
series.
Then, Figure 7.11 makes clear the significant improvement obtained by in-
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Figure 7.12: MSE by varying the time prediction horizon for type 1 SRs

creasing the number of communication rounds, i.e., information updates,
between the server and the clients, for different numbers of EUs involved
in the FL process. The direct implication is that higher is the number of
the EUs taking part in the learning process, greater is the levels of accuracy
on the acquired information on which the VFs placement strategy is based.
Moreover, SP revenue improves its trend. Figure 7.14 shows the SP revenue
behavior by increasing the number of SRs. As it is straightforward to note,
the SP revenue tends to grow by increasing the number of SRs, until the
network infrastructure is not saturated and consequently it cannot accept
new SRs. Finally, Figure 7.15 depicts the behavior of the percentage of the
SRs discarded, i.e., the percentage of the SRs which have not been served by
the network infrastructure since their computation is not finished before the
expiration of their deadline. In conclusion, the resulting system performance
makes clear the validity of the FL application for our problem.

7.2.8 Conclusion

This work has proposed a framework based on the federated learning paradigm
to maximize the SP revenue, in a hybrid cloud-MEC network. The frame-
work consists of the FL application to predict the SRs demand, in compliance
with the users’ privacy. Furthermore, a VFs placement on the basis of the
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Figure 7.13: MSE by varying the time prediction horizon for type 2 SRs

obtained prediction has been performed, then, a SRs allocation based on
matching theory proposed. The VFs placement planning and the SRs allo-
cation strategy have been created to test the actual behavior of the proposed
FL framework, in terms of accuracy on the predicted VFs compared to the
VFs requested by the SRs. Finally, the framework performance evaluation
has been provided, confirming the validity of our proposal, in comparison to
an alternative predictive approach based on the CT.

7.3 Price Control for Offloading Services with
Chaotic Data

7.3.1 Motivation

Recently, the emergence of next generation network architectures such as
mobile edge computing (MEC) [166] and fog computing (FC) [8], in paral-
lel with the exponential growth of users demanding for different classes of
services and applications [109,189], has launched many challenges in a large
number of research fields. Heterogeneity on services types can imply not only
different quality of service requirements or different service (QoS) strategies,
but also, from a service provider perspective, different prices policies. Under
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Figure 7.14: SP revenue by varying the number of SRs, considering 10 VFs

this perspective, price control has gained attention as method to influence
costumers behaviors through the services price regulation.

7.3.2 Contributions
This study addresses the prices control problem considering the provider
perspective and more than one class of service for the computational of-
floading. Provider has a monopoly on offloading services provision and its
price regulation directly impacts the customers demand. For each offload-
ing service type, we consider an associated provision cost, and real sampled
data are used to model the service demand. Such time series exhibits a
chaotic behavior and an approximation of the state equations is provided by
following [293]. Therefore, the main contributions are

• The formulation of dynamic price control problem, with a provider
perspective, in terms of finite-horizon optimal control, considering real
sampled data to model the equations state;

• The analysis and discussion of a possible analytical approximation of
the equations state, by using polynomials with fixed degree;

• The application of the actor-critic NNs based framework proposed
in [293], capable of overcoming the unknown system dynamics behind
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Figure 7.15: Percentage of SRs discarded, by increasing the SRs number

the computational offloading requests samples;

• Numerical simulations to confirm strategy validity. In addition, the
price analysis results has been provided for both the analytical and
the NNs based approximation of the unknown system dynamics.

7.3.3 Related Works
Maximization of profit by controlling prices is a technique widely used in
many business activities [272]. Examples are constituted by power industry,
in which higher prices are imposed on customers during hours characterized
by massive peaks of electricity consumption, Internet service provider strat-
egy, where the current number of users directly impacts prices. Furthermore,
pricing control largely regulates flight tickets and tolls prices [32, 172, 197,
272].

The maximization of the revenue of a system with a M/M/1 queue
through the static pricing scheme is pursued in [187], while dynamic pro-
gramming is applied in [160] and [21], where the long-run average welfare
is maximized, considering a M/M/s system in [160], and a M/M/1 system
in [21]. In reference to the price control within the queuing networks con-
text, [272] addresses both the dynamic pricing and the service rate control
problem, considering an open Jackson network with limited capacity, aim-
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ing at maximizing the long-run average welfare. Despite in the literature
optimal control is extensively applied to many types of problems, the ma-
jority of its application concerns the dynamical system for which the system
dynamics is known, and the optimal regulation is reached either by using
the Riccati equation [33] or Hamilton-Jacobi-Bellman (HJB) equation [25],
or through a backward-in-time and offline strategy. Since the applicability
of optimal control strategies is strictly related to the algebraic formulation
of the problem, many efforts have been made by control researchers com-
munity to provide more flexible resolution tools. Due to the incomplete
information about many dynamical systems, the approximate dynamic pro-
gramming (ADP) has recently gained momentum. Therefore, [79] proposed
a constrained ADP framework consisting of an adaptive neural network (NN)
controller aiming at guaranteeing a fixed performance level in the formulated
linear system. Similarly, ADP is discussed in [224], in which two practical
applications to the nonlinear tracking control and the power grid coordi-
nation of the heuristic dynamic programming, are presented. In order to
propose as much as possible model-free solutions, the Q-learning iteration
method is applied for discrete-time linear quadratic optimal control problems
in [39] and [263]. Online finite-horizon optimal control problems is discussed
in [293], which deals with the NN based optimal control problem in presence
of full uncertainty over the system dynamic, and the equations state are
approximated with a nonlinear affine function.

7.3.4 Problem Formulation
Let D = {di}Ni=1 be a given scalar time series, in which di ∈ Rc and each
element di,j is the number of offloading requests of class j sampled at time
i. D derives from a previous sampling procedure into an urban area mod-
eled as a rectangle R of dimension A × B. Furthermore, each class ser-
vice request demand rh in the dataset consists of a quadruple in the form
(rh,id, rh,pc, rh,pt, rclass), in which rh,id is the request ID, rh,pc the origin co-
ordinates, rh,pt is the request time, and rh,class the service request type. In
order to evaluate the number of service requests for each service class, re-
quests have been clustered based on the request time. In this respect, time
has been partitioned into equal slots. Starting from 0, the k-th time slot is
identified by the interval [k × F , (k + 1) × F), where F is the time span of
the interval. Hence, since the computational offloading requests outside the
city are discarded, the demand at interval k for class type C, i.e., dk,C , is
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Figure 7.16: Reference scenario

given by

dk,C = |{h ∈ [0, N) : rh,pc ∈ R ∧ rh,pt ∈ T ∧ rh,class = C}|, (7.28)

where N is the total number of received requests and T = [k×F , (k+1)×F ].
Therefore, di represents the requests for computational offloading for each
service class.

The work proposes the study of the maximization of the provider profit in
supplying offloading services, by controlling service prices. In this respect, we
consider a monopoly condition, in which the effects of market competition
on pricing are not taken into account. Consequently, the service provider
can influence demand by varying the prices. In a formal term, the study and
analysis of the provider profit maximization by controlling the the offloading
service prices within a given interval time, can be formulated as a finite-
horizon optimal control problem as follows

ẋ = F (k,xk,uk) (7.29)

min
u∈U

J(xk, k) (7.30)
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s.t.
xk = dk, k = 1, . . . , N, (7.31)

where

J(xk, k) = Ψ(J(xT , T )) +
T−1∑
k=i
E(xk,uk, k)

= Ψ(J(xT , T )) +
T−1∑
k=i

[(uk − sk)xk]2dk, (7.32)

U = {u : [0, T ]→ RJ}, ẋ = [dk,1, · · · , dk,J ]T , and J is the number of service
classes. Furthermore, uk represents the prices control variable, where the
generic element uk,i expresses the unit price of each service type i at time k,
and uk ∈ RJ . Finally, sk ∈ RJ is the provisioning cost per service, and sk,i
expresses the unit cost of providing service type i. As regards the provision
cost sk, we considered different constant-plus-exponential cost functions [254]
for different service types, defined as follows

sk,i = ρi,u + ρi,vν
xk,i

xk,i
, i = 1, . . . , J, (7.33)

where ρi,u, ρi,v and ν are positive parameters, different based on the con-
sidered service type. The Ψ(J(xT , T )) is the terminal term, which basically
describes the system behavior while E(xk,uk, k) is time-varying and state
and control dependent function at the k-th step. Furthermore, since the
problem is formulated with a finite horizon, also the control inputs result to
be time varying.

Approximation of State Equation

Time series D exhibits a chaotic behavior, previously verified through the
well known phase space reconstruction procedure [124]. In fact, the resulting
maximal Lyapunov exponent λmax is equals to 0.5, hence greater than zero,
confirming its chaotic behavior which implies nonlinear trend. In Table 7.1
are reported the valued deriving from the analysis of the nonlinear time
series D. In particular, the Rosentain’s method [209] has been applied to
evaluate the largest Lyapunov exponent, while the embedding dimension
and the time delay have been found through the application of the false
nearest neighbors method and the one based on the study of the mutual
information, respectively. It is straightforward to note, from (7.29)-(7.31),
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Table 7.1: Time Series Analysis

Maximal Lyapunov
exponent

0.5 Rosentain’s method

Embedding Dimen-
sion

4 False nearest neigh-
bors method

Time Delay 5 Mutual information
method

that the lack of knowledge about F dynamics limits the problem resolution.
As detailed in [231], we suppose that the ordinary differential equations
corresponding to F are approximately expressible in terms of polynomials
with a fixed degree. Supposing two polynomial degree, as in [231], and
considering x = [x1, x2, . . . , xN ], a useful representation of F is constituted
by

fi(t,x) =
N∑
j=1

N∑
l=j

ei,j,l(t)xjxl +
N∑
j=1

gi,j(t)xj + hi(t). (7.34)

The main idea behind the framework proposed in [231] for the approximation
of F dynamics, is the chaos synchronization, realized by considering the
following system

x̂i = f̂i(t,x) =
N∑
j=1

N∑
l=j

êi,j,l(t)xjxl +
N∑
j=1

ĝi,j(t)xj + ĥi(t), (7.35)

and by performing an adaptive approximation to reach a good estimation
êi,j,l, ĝi,j , ĥi of real coefficients ei,j,l, gi,j , hi. In order to reach this goal,
authors in [231] define the coupling procedure for which

x̂i = F̂ (x̂) + Γ(Θ(x)−Θ(x̂)), (7.36)

where Θ represent a vector of m values of system state, in our case assumed
known. Then, Γ = γIn, with γ ∈ R and In is the identity matrix. The
next step is the synchronization solution procedure, to obtain x(t) = x′, by
defining the potential

ξi = 〈M(t)〉θ, i = 1, . . . , N, (7.37)
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where 〈M(t)〉θ = θ
∫ t
e−θ(t−t

′))M(t′), M(t) = [ẋi − fi(x̂1, . . . , x̂N )2], and θ
represents the bandwidth of the first order filter. It is important to note
that system synchronization condition is verified if ξi = 0, and hence the
following relations have to be verified

∂êijl(t)
∂t

= −δe
∂ξi
∂ĝij

,

∂ĝij(t)
∂t

= −δg
∂ξi
∂ĝij

, (7.38)

∂ĥi(t)
∂t

= −δh
∂ξi

∂ĥi
,

with δe, δg, δh > 0. After some algebraic manipulations and, the problem
is traced to the resolution of the following [(N2/2) + (3N/2) + 1]N linear
equations

N∑
r=1

N∑
u=r

êi,r,u〈x̂rx̂ux̂j x̂l〉θ +
N∑
r=1

ĝi,r〈x̂rx̂j x̂l〉θ + ĥi〈x̂j x̂l〉θ

= 〈ẋix̂j x̂l〉θ (7.39)

N∑
r=1

N∑
u=r

êi,r,u〈x̂rx̂ux̂j〉θ +
N∑
r=1

ĝi,r〈x̂rx̂j〉θ + ĥi〈x̂j〉θ

= 〈ẋix̂j〉θ (7.40)

N∑
r=1

N∑
u=r

êi,r,u〈x̂rx̂u〉θ +
N∑
r=1

ĝi,r〈x̂r〉θ + ĥi

= 〈ẋi〉θ. (7.41)

Due to the application of the adaptive approximation framework discussed
in [231], the reconstruction of an approximated system dynamics is possible,
in dependence of state x and time k. As regards the optimal control formula-
tion problem, the state dynamics requires dependence from also the control
u. Unfortunately, a framework capable to retrieve an analytical approxima-
tion of F under these conditions, as the best of our knowledge, there not
exists. In this respect, we apply the approximated solution proposed in [293]
and [274], by supposing F nonlinear with affine dynamics, approximated by

xk+1 = f(xk) + g(xk)uk, (7.42)
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Figure 7.17: NNs scheme flow

in which f(xk) ∈ Rn, g(xk) ∈ Rn×m are unknown nonlinear dynamics, and
uk ∈ Rm is the control vector. As direct consequence of the Bellman’s
optimality principle of [142], the optimal control u∗k is theoretically obtained
from the stationarity condition

∂J∗(xk, k)
∂uk

= 0, (7.43)

where J∗(xk, k) in turn is given by

J∗(xk, k) = min
uk∈C
{[(uk − sk)xk]2 + J∗(xk+1, k + 1)}. (7.44)

Therefore, from (7.43) and (7.44) we obtain that

u∗k = sk −
1
2 + g(uk)T ∂J

∗(xk+1, k + 1)
∂xk+1

. (7.45)

As it is straightforward to note from (7.45), u∗k depends on the future state
xk+1, that makes (7.45) difficult to tackle. In order to avoid this problem,
we apply the online NN based scheme proposed in [293] and [274], based
on an actor-critic strategy, consisting of two NNs with the constant weight
structure and time-varying activation function. Moreover, the dynamics of
the value function is approximated with a critic network. Differently, the
actor network generates the control inputs.
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7.3.5 Neural Network Solution
NN Identifier

As widely discussed in [293], as consequence of NNs theory [274], the F
function can be approximated by

xk+1 = f(xk) + g(xk)uk
= WTσ(xk)ūk + ε̄k, (7.46)

where W ∈ RL×n, σ(xk) =
[
σf (xk) 0

0 σg(xk)

]
, ūk =

[
1
uk

]
∈ Rm+1, and

ε̄k =
[
εf
εg

]
∈ Rn. The number of hidden layers is L, Generally speaking, the

k-th state, using the NN identifier and indicating with ŴT
k the most recent

matrix weights, can be expressed as

x̂k = ŴT
k σ(xk−1)ūk−1. (7.47)

The weights matrix updating rule is given by

ŴT
k+1 = ΦkUk(UT

kΦT
kΦkUk)−1(XT

k+1 − aΦT
k ), (7.48)

in which 0 < a < 1 and,

Φk = Xk − ŴT
kΨk−1Uk−1, (7.49)

where Xk = [xk,xk−1, . . . ,xk−l] ∈ Rn×(l+1),Ψk−1 = [σ(xk−1), σ(xk−2), . . . , σ(xk−l−1)],
and

Uk−1 =


ūk−1 0 . . . 0

0 ūk−2 0 0
...

...
. . .

...
0 · · · 0 ūk−l−1

 ∈ R(m+1)(l+1)×(l+1)

.

NN Optimal Controller

As proposed and detailed in [293], the time-varying, finite-horizon optimal
control can be realized by approximating the value function and the control
inputs with critic NN and an actor one, respectively [274].

Let WT
J and WT

u represent the target NN weights, σJ(xk, T − k) and
σu(xk, T − k) are the activation functions, εJ(xk, k) and εu(xk, k) the NN
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Figure 7.18: The total revenue of service class 1.

corresponding to the reconstruction errors of the critic and actor part, re-
spectively.

Let Ŵ and Ĵ be the estimated value function and the target matrix,
respectively. Therefore, the value function can be approximated by

Ĵ(xk, k) = ŴT
J,kσJ(xk, T − k) (7.50)

From [293] results that the critic NN weights are updated by following the
relation

ŴJ,k − αJ
σ1(xk, T − k)σT1 (xk, T − k)ŴJ,k

1 + σ1(xk, T − k)σ1(xk, T − k) + ζ, (7.51)

with

ζ = αJ
σ1(xk, T − k)(σ̂TJ (xT , 0)ŴJ + σ1(xk, k))

1 + σT1 (xk, T − k)σ1(xk, T − k)
, (7.52)

and αJ defined as in [293].

Optimal Control Feedback

According to [293], the optimal control strategy is designed to minimized
(29) and results defined by

û(xk, k) = Ŵu,k + σu(xk, T − k), (7.53)
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Figure 7.19: The total revenue of service class 2.

in which Ŵu,k represents the estimation of the matrix weight corresponding
to the target actor. Then, the updating rule for Ŵu,k is given by

Ŵu,k+1 = Ŵu,k − αu
σu(xk, T − k)ŭT (xk, k)

1 + σTu (xk, T − k)σu(xk, T − k) , (7.54)

αu > 0.

7.3.6 Numerical Results
In order to prove the validity of the approach, we show results considering
J = 3 classes of services, deriving by real data set composed by the samples
collected during a period of 130 hours. Furthermore, we have avoided nega-
tive provider revenue by imposing that the provider cannot select a service
price lower than the production cost necessary for the provision of that ser-
vice. The service cost has been generated into interval (0, 1). As regards the
NN set up, parameters have been set as in [293] for the nonlinear case, while
for the g(xk) and f(xk), we referred to [137]. Figures 7.18, 7.19 and 7.20
depict the revenue trend of each service class, expressed in function of time.
As it is evident, its behavior changes based on the service class and time,
and it is highly influenced by the number of requests for each type of ser-
vice. Likewise, Figure 7.21, 7.22 and 7.23 represents the prices behavior.
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Figure 7.20: The total revenue of service class 3.

Also in this case, prices exhibit a very dynamical nature, that is strictly
related to the services demand. In order to provide a complete profit analy-
sis, Figure 7.24 highlights the always increasing cumulative service provider
revenue. The figure shows performance comparison among the NNs strat-
egy, the price selection based on the randomized choice of the value price
for each service class, and the NNs strategy by considering F analytically
approximated as in (7.34). The accuracy in analytically approximating F by
following model proposed in (7.34) System performance by using approxima-
tion (7.34) is strictly related to the degree of the polynomials chose for (7.34).
In this respect, Figure 7.25 expresses, in percentage, the error gap between
the approximation of F and its real value, by changing the hypothesis for
the reconstruction of its analytical expression. This is expressed in terms of
mean absolute percentage error, defined by

MAPE = 1
S

S∑
i=1

∣∣∣∣di − d̂i
di

∣∣∣∣ · 100, (7.55)

where S is the number of simulation trials. As the number of samples in-
creases,the gap grows. Form the other side, higher is the degree of the ap-
proximation polynomial, better is the approximation. By employing the F
approximation presented in (7.34), overcomes random alternative, the NNs
approach based on uncertainty better fits system behavior. This is confirmed
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Figure 7.21: Service class 1 price per unit.

by comparing Figures 7.18-7.23 with Figure 7.24. In fact, despite each ser-
vice revenue curve exhibits a wide value dynamics, the total profit increases.
This means that the strategy rules services price in order to improve the
provider profit and from Figure 7.24 it is clear the profit improvement by
applying the analyzed framework in comparison with the alternatives taken
into account.

7.3.7 Conclusion
This work considers the dynamic control prices problem, by supposing a ser-
vice provider perspective. A market monopoly condition has been assumed,
and the provider prices selection directly impacts the customers demand.
The prices selection involves different classes of services, and the price regu-
lation is required for each of these classes. The analysis has been conducted
on a set of real sampled data with chaotic behavior, and a NN framework
has been applied to perform provider revenue maximization. The chaotic
dynamics of the sampled data has been approximated through a nonlinear
affine state equation. Numerical results exhibit the performance of the ap-
proximated strategy and show the prices behavior and an increasing provider
revenue trend.
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Figure 7.22: Service class 2 price per unit.

Figure 7.23: Service class 3 price per unit.
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Figure 7.24: Cumulative provider revenue by varying time

Figure 7.25: MAPE value by increasing the number of considered samples.



Chapter 8

Conclusion and Future Works

Wheresoever you go, go with all your heart.

Chinese Proverb

This dissertation has investigated the limits and potentialities of modern
networks, by analyzing some of the major challenges which afflict the today’s
networks. Such complexity, intrinsic in the nature of novel networks archi-
tectures and communication paradigms, has opened the doors towards the
re-definition of the term resource. Therefore, if in the past the resource was
generally identified by the physical resource as communication channels, cen-
tral processor units, storage blocks, in the modern wireless networks era the
resource assumes a more flexible and heterogeneous meaning, indicating for
example the virtual functions, service provider revenue and so on. The wide
range of meanings which the term resource may adopt directly impacts on
the objectives of the contemporary resource allocation problems. Different
goals, even contrasting each other, high system conditions variability, and
densification, to name a few, lead towards the substantial necessity for novel
or renewed solutions, able to provide good approximations of the emerging
multifaceted challenges, powerful strategies, and cross-layer effectiveness to
embrace the complexity of modern problems.

During this thesis, several frameworks have been presented and the the-
oretical insight beyond their formulations provided. Their application to di-
verse contexts has been suggested, by introducing some adjustments respect
to the traditional versions, in order to better meet the ever higher standard
performance demand in service provisioning. System performance results
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are given and extensively discussed, providing the validity of the proposed
frameworks to the problems considered. In addition, a crucial role has been
also given to the infrastructure service provider perspective, by taking into
account the revenue obtainable from the services supply, in reference to the
network infrastructure maintenance costs. In order to perform such a type of
analysis, the users perception about received services becomes also a crucial
point, since a satisfied user is willing to pay higher prices. In this respect,
in the future works, challenge is the integration of the proposed cross-layer
frameworks with the users personal perception about service experience. In
fact, together with the meaning of the term resource, also the whole network
conception is changing, by leaving the too strict approach based on the eval-
uation of firm QoS constraints, in favor of a more user-centric vision, typical
in emerging network paradigms.
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Publications

This research activity has led to several publications in international journals
and conferences. These are summarized below.1

International Journals
1. B. Picano, R. Fantacci, and H. Zhu, “Nonlinear dynamic chaos theory

framework for passenger demand forecasting in city”, IEEE TRANSAC-
TIONS ON VEHICULAR TECHNOLOGY, 2019, [DOI:
10.1109/TVT.2019.2930363].

2. F. Chiti, R. Fantacci, and B. Picano, “A matching game for tasks offloading
in integrated edge-fog computing systems”, EUROPEAN TRANSACTIONS
ON TELECOMMUNICATIONS, 2019,[DOI:10.1002/ett.3718].

3. F. Chiti, R. Fantacci, F. Paganelli, and B. Picano, “Virtual functions place-
ment with time constraints in fog computing: a matching theory perspec-
tive”, IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGE-
MENT, 2019, [DOI: 10.1109/TNSM.2019.2918637]

4. G. Bartoli, F. Chiti, R. Fantacci, and B. Picano, “An efficient resource
allocation scheme for applications in lr-wpans based on a stable match-
ing with externalities approach”, IEEE TRANSACTIONS ON VEHICU-
LAR TECHNOLOGY, vol. 68, no. 6, pp. 5893-5903, June 2019, [DOI:
10.1109/TVT.2019.2909136]

5. F. Chiti, R. Fantacci, and B. Picano, “A matching theory framework for
tasks offloading in fog computing for iot systems”, IEEE INTERNET OF

1The author’s bibliometric indices are the following: H -index = 1, total number of
citations = 4 (source: Google Scholar on Month 09, 2019).
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10.1109/JIOT.2018.2871251]

Submitted

1. R. Fantacci, and B. Picano, “Performance Analysis of a Delay Constrained
Data Offloading Scheme in an Integrated Cloud-Fog-Edge Computing Sys-
tem”, to IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.
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3. R. Fantacci, and B. Picano, “Federated learning for Cloud-Edge Comput-
ing: A Service Provider Revenue Maximization Framework”, to IEEE Con-
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International Conferences
1. B. Picano, R. Fantacci, and Z. Han, “Price Control for Computational

Offloading Services with Chaotic Data”, in IEEE International Conference
on Computing, Networking and Communications (ICNC), Hawaii (USA),
2020.

2. R. Fantacci, and B. Picano, “Performance Analysis of an Edge Computing
System for Real Time Computations and Mobile Users”, in IEEE Global
Communications Conference (GLOBECOM), Waikoloa, (USA), 2019.

3. B. Picano, F. Chiti, R. Fantacci, and Z. Han, “Passengers demand fore-
casting based on chaos theory”, in IEEE International Conference on Com-
munications (ICC), Shanghai (CN), 2019.

4. G. Bartoli, R. Fantacci, D. Marabissi, and B. Picano, “Efficient matching
for almost blank subframes allocation in ultra dense networks”, in IEEE
Wireless Communications and Networking Conference (WCNC), 2019, Mar-
rakesh.

5. F. Chiti, R. Fantacci, B. Picano, Y. Gu, X. Du and Z. Han, “A Low
Complexity Matching Game Approach for LTE-Unlicensed”, IEEE 86th Ve-
hicular Technology Conference (VTC-Fall), Toronto, ON, 2017.
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