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Abstract— Myocardial tissue is very complex: sarcomeres 
are linked to form myofibrils that combine into myocytes that, 
in turn, group into muscle fibers; the latter are organized in a 
complex 3D network governing cardiac mechanics and thereby 
function. As such, cardiac fiber imaging might be an important 
diagnostic tool. Hereto, Papadacci et al. enabled the assessment 
of the transmural fiber orientation during the cardiac cycle by 
3D Backscatter Tensor Imaging; however, which histologic 
structure it detects remains unclear. The aim of this work was 
therefore to propose and validate, by computer simulation, a 
theoretical framework that addresses this issue. Field II 
simulations were carried out by modeling a 32×32 array while 
numeric phantoms were developed to mimic cardiac fibers and 
their orientation. Examples of spatial coherence (SC) maps are 
presented clearly showing their dependency on fiber pitch (P) 
and size (S). Indeed, the main-to-secondary lobe distance of the 
SC function linearly correlates with P (R2=99%) while the width 
of the main lobe linearly correlates with S (R2=92%). 
Transmural fiber orientation was also assessed with an overall 
RMSE and absolute error lower than 3.3° and 1.1° respectively. 
In conclusion, as predicted by the proposed theory, the SC maps 
not only allow assessing the local fiber direction but also allow 
estimating fiber pitch and size thus providing information on the 
microstructures being investigated. 

Keywords— Fiber orientation, Cardiac imaging, Plane waves, 
Spatial coherence. 

 

I. INTRODUCTION 

Cardiovascular diseases remain the leading cause of death 
in the world and thus have a tremendous impact on our society 
[1], [2]. Major diseases are often associated with a reduced 
ability of the left ventricle to pump blood to the body, due to 
a reduced contractility of the myocardium. Its tissue is very 
complex: sarcomeres are linked to form myofibrils that 
combine into (cardio-) myocytes that, in turn, group into 
muscle fibers; the latter are organized in a complex 3D 
network [3]. Although the exact organization of cardiac fibers 
in a 3D network (myoarchitecture) has been much debated 
[4]–[6], cardiologists have been aware, for at least a century, 
of the evidence that fiber orientation varies across the 
myocardial walls [7], [8]. Such a complex organization of 
cells is linked to the mechanical and electrical properties of 
the heart, determining its function [9]–[11]; moreover, an 
abnormal fiber orientation or disarray is found in different 
pathologies [12]–[14]. Thus, the study of fiber orientation is 
of primary interest for the understanding of cardiac 

pathophysiology and for the early diagnosis of cardiac 
diseases.  

Almost all the medical imaging methodologies have 
developed a specific technique for the estimation of cardiac 
fiber orientation: magnetic resonance imaging [15], [16], 
x-ray [17], [18], optical tomography [19], [20], microscopy 
[21], [22], and ultrasound [23]–[25]. However, all of them 
present at least one major limit, such as invasiveness, limited 
size of the region of interest, low resolution, low frame rate, 
that still hamper their implementation in clinical routine.  

In ultrasound imaging, the state-of-the-art can be 
considered [25]; here Papadacci et al. showed promising 
results of the orientation of the cardiac fiber during the cardiac 
cycle. They overlaid cardiac fiber orientation values to 
standard M-mode and showed in-vivo results on an open chest 
sheep, showing how the fiber orientation changes during the 
cardiac cycle, due to an increase in the wall thickness. In 
addition, they also succeeded in mapping the myocardial fiber 
orientation in 3D of the in-vivo human heart both in systole 
and in diastole during transthoracic imaging. Their proposed 
method, called 3D ultrasound Backscatter Tensor Imaging 
(3D-BTI), is based on ultrafast volumetric acquisitions, which 
are exploited to quantify the spatial coherence of 
backscattered echoes at each point of the volume. The 
theoretical base of 3D-BTI was previously reported in [26], 
[27] and relies on the estimation of the spatial coherence of 
echo signals received from a focused transducer.  

Nevertheless, which histologic structure 3D-BTI detects 
remains unclear. Therefore, the aim of our work was to 
propose and validate, by computer simulation, a theoretical 
framework to address this issue.  

The paper is organized as follows: section II introduces the 
theoretical background, the simulation settings, and the post-
processing algorithms; section III shows simulation results; 
section IV presents discussion and conclusions. 

II. METHODS 

A. Theoretical background 

In the next paragraphs, we relate the autocorrelation of the 
backscattered signals to the spatial coherence (SC) of a tissue 
under exam when transmitting a plane wave. We will follow 
a procedure similar to that described in [27]–[29] that derived 
such relation for a focused transducer; the procedure will be 
split in three steps: 1) transmission; 2) reflection & 
backpropagation; 3) autocorrelation & spatial coherence. 
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1) Transmission 

Durnin [30] demonstrated that, in a Cartesian coordinate 
system (x,y,z),  

 𝐸(𝑥, 𝑦, 𝑧, 𝑡) = 𝐽 𝛼 ∙ 𝑥2 + 𝑦2 ∙ 𝑒 ( ) (1) 

is an exact solution of the wave equation for free space 

 𝛻 −
1

𝑐

𝜕

𝜕𝑡
𝐸(𝑥, 𝑦, 𝑧, 𝑡) = 0 (2) 

Where c is the speed of sound, 𝜔 is the angular frequency, 𝛽 
is the propagation constant, 𝐽 (∙)  is the zero-order Bessel 
function of the first kind and 𝛼  is a scaling parameter that 
determines the width of the main lobe of the Bessel function, 
subjected to 𝛽 + 𝛼 = 𝜔 𝑐⁄ . Equation (1) represents a 
class of nondiffracting beams (or limited diffraction beams 
[31]) in the sense that the intensity profile at 𝑧 = 0 is exactly 
reproduced for all 𝑧 > 0, i.e. in every plane normal to the z 
axis. Nevertheless, these solutions represent waves 
propagating to an infinite distance without diffraction, 
provided that they are produced with an infinite aperture and 
with infinite energy [31]. However, even when limited 
diffraction beams are produced with a finite aperture, they 
have a large depth of field (𝑧 ) and an approximate depth-
independent lateral profile, i.e., they have approximately 
unchanged beam shapes over a large axial distance [32]. 

In particular, when 𝛼 = 0, (1) reduces to the equation of a 
plane wave: 

 𝐸(𝑧 ≥ 0, 𝑡) = 𝑒 ( ) (3) 

Therefore, the plane wave transmitted by a square aperture 
results: 

𝐸(𝑥, 𝑦, 𝑧 ≥ 0, 𝑡) = 𝛱
𝑥

𝐴
∙ 𝛱

𝑦

𝐴
∙ 𝑒 ( ) (4) 

Where A is the side of the aperture and Π(𝑥) is the rectangular 
function defined as: 

 𝛱(𝑥) =
1,   𝑖𝑓 |𝑥| < 1 2⁄  

0,   𝑖𝑓 |𝑥| ≥ 1 2⁄  
 (5) 

From (4), neglecting the wave propagation term and 
defining 𝑧  as the depth of the plane where the fibers are 
located, the module of the incidence acoustic field for any 
𝑧 ≤ 𝑧  can be approximated as: 

 𝐸 (𝑥, 𝑦, 𝑧 ≤ 𝑧 ) = 𝛱
𝑥

𝐴
∙ 𝛱

𝑦

𝐴
 (6) 

2) Reflection & backpropagation 

In the random mirror approach [27, Sec. I], defining 
𝜂(𝑥, 𝑦)  a random variable representing the backscattering 
amplitude of the fiber plane [33], the reflected field module at 
the fiber plane depth is: 

 𝐸 (𝑥, 𝑦, 𝑧 ) = 𝐸 (𝑥, 𝑦, 𝑧 ) ∙ 𝜂(𝑥, 𝑦) (7) 

Then, within the Fresnel’s approximation [27], [34], [35, 
Ch. 4], [36, Ch. 6], the propagation of a wave field, from two 
parallel planes divided by a distance z, can be approximated 
by a spatial impulse response:  

 ℎ (𝑥, 𝑦, 𝑧) =
𝑒

𝑗𝜆𝑧
∙ 𝑒  (8) 

Hence, the backpropagated field on the plane of the receiving 
probe is: 

 𝐸 (𝑥, 𝑦, 0) = 𝐸 (𝑥, 𝑦, 𝑧 ) ⊗ ℎ (𝑥, 𝑦, 𝑧 ), (9) 

the 2D Fourier transform (ℱ {∙}) of which, according to the 
convolution (⊗) theorem, is: 

ℱ2 {𝐸 (𝑥, 𝑦, 0)} =

= ℱ2 {𝐸 (𝑥, 𝑦, 𝑧 )} ∙ ℱ2 {ℎ (𝑥, 𝑦, 𝑧 )} (10) 

3) Autocorrelation & spatial coherence 

Defining the continuous autocorrelation of a function 𝑔(𝑡)  

 𝑅{𝑔(𝑡)} = 𝑅 (𝑡) ≝ ∫ 𝑔∗(𝜏) ∙ 𝑔(𝑡 + 𝜏) 𝑑𝜏, (11) 

its Fourier transform results 

 ℱ 𝑅 (𝑡) = ℱ{𝑔(𝑡)} ∙ ℱ∗{𝑔(𝑡)}. (12) 

Extending the latter to the autocorrelation of a function 
𝑔(𝑥, 𝑦)  defined in the 2D space domain we obtain the 
following equation: 

ℱ 𝑅 (𝑥, 𝑦) = ℱ {𝑔(𝑥, 𝑦)} ∙ ℱ∗ {𝑔(𝑥, 𝑦)}, (13) 

Then, after a few intermediate steps (refer to Appendix A) 
we can demonstrate that 

ℱ 𝑅 (𝑥, 𝑦, 0) = 

ℱ 𝑅 (𝑥, 𝑦, 𝑧 ) ∙ ℱ 𝑅 (𝑥, 𝑦, 𝑧 ) . (14) 

In other words, the 2D Fourier transform of the 
autocorrelation of the backpropagated field on the probe plane 
(ℱ 𝑅 (𝑥, 𝑦, 0) ) is given by the product of the 2D Fourier 
transforms of the autocorrelation of the reflected field 
(ℱ 𝑅 (𝑥, 𝑦, 𝑧 ) ) and of the propagation spatial impulse 

(ℱ 𝑅ℎ (𝑥, 𝑦, 𝑧 ) ).  Nevertheless, the latter term can be 
neglected since 

ℱ 𝑅 (𝑥, 𝑦, 𝑧 ) = 

= ℱ {ℎ (𝑥, 𝑦, 𝑧 )} ∙ ℱ2
∗ {ℎ (𝑥, 𝑦, 𝑧 )} = 

= |ℱ {ℎ (𝑥, 𝑦, 𝑧 )}|2 = 𝑒 ∙ 𝑒
2 2 2

= 

= 1 

(15) 

where 𝑓  and 𝑓  are the spatial frequencies along x and y 
directions. Finally, from (14), it follows that  

 ℱ 𝑅 (𝑥, 𝑦, 0) = ℱ 𝑅 (𝑥, 𝑦, 𝑧 )  (16) 

and hence, from (16), (7) and (6), that 

𝑅 (𝑥, 𝑦, 0) = 𝑅 (𝑥, 𝑦, 𝑧 ) = 

= 𝑅{𝐸 (𝑥, 𝑦, 𝑧 ) ∙ 𝜂(𝑥, 𝑦)} = 

= 𝑅 𝛱
𝑥

𝐴
∙ 𝛱

𝑦

𝐴
∙ 𝜂(𝑥, 𝑦)  

(17) 

In other words, the autocorrelation of the backpropagated 
field on the probe plane (also called spatial coherence, SC) is 
equal to the autocorrelation of the backscattering amplitude of 
the fiber plane in the region illuminated by the plane wave.  



B. Simulations 

1) Numeric phantom 

In order to validate the proposed theoretical framework, 
we developed a numeric phantom to simulate cardiac fibers 
and their orientation through the myocardium. The phantom 
has a parallelepiped shape and contains two sets of scatterers, 
respectively defining the background and the fibers. The 
background consists of randomly placed scatterers with a 
Gaussian scattering amplitude distribution. The fibers, so as to 
ensure phase continuity, are modeled by scatterers that are 
placed on a regular grid, while their scattering amplitude 
𝜂(𝑥, 𝑦) is modulated according to a periodic function: 

 𝜂(𝑥, 𝑦) = 𝐼𝐼𝐼 (𝑥) ⊗ 𝛱
𝑥

𝑆
 (18) 

where 𝐼𝐼𝐼 (𝑥) is the Dirac comb function of period P (i.e. 
the fiber pitch) and S is the fiber size. It is worth highlighting 
that the above scattering map has a fixed orientation, i.e. the 
fibers are aligned along the direction y; hence, in order to 
introduce a different orientation angle in layers at different 
depths, the scattering amplitude map is rotated in the plane x-
y by the angle: 

where 𝜕𝜑 𝜕𝑧⁄  is the fiber orientation rate with respect to the 
transmural position and 𝜑  is the initial fiber orientation 
angle. Hence, the fibers are arranged in sheets of fibers as 
thick as the fiber size. 

2) Setup 

In this work, Matlab (The MathWorks, Natick, MA, USA) 
simulations with Field II [33], [37] were carried out by 
modeling a 32×32-element 2D array with 300 µm pitch; its 
impulse response was defined as 2.5-cycle Hamming-
weighted sinusoidal burst at 3 MHz, corresponding to a 
relative bandwidth of 73%. A 1-cycle Hamming-weighted 
sinusoidal burst at 3 MHz was used as the excitation signal. 
The sampling frequency was set to 30 MHz; a non-steered 
plane wave was transmitted; and the received echo signals 
saved for post-processing. 

The phantom, centered at a depth of 60 mm, had a size of 
10×10×6 mm3, respectively along x, y, and z. The step of the 
regular grid was set to 50 µm, i.e. one tenth of the wavelength, 
corresponding to a density of 8M-scatterers per cm3. The same 
density was set for the randomly placed scatterers belonging 
to the background whose intensity was set 20dB lower than 
that of the fibers.  

Different S values (200, 400, 600 µm) and P values (400, 
800, 1200, 1600, 2000 µm) were considered subject to the 
condition P>2S. The orientation of the fiber was set so that 
𝜑 = 60° and 𝜕𝜑 𝜕𝑧⁄ = 10°/mm. 

C. Post-processing 

1) Spatial coherence 

The spatial coherence of backscatter signals was computed 
according to the formulation reported in [25]: 

𝑅(∆𝑥, ∆𝑦) =
1

(𝑁 − |∆𝑥|) ∙ 𝑁 − |∆𝑦|
∙ (20) 

∙
∑ 𝑆 (𝑥 , 𝑦 , 𝑡) ∙ 𝑆 (𝑥 − ∆𝑥, 𝑦 − ∆𝑦, 𝑡)

∑ 𝑆 (𝑥 , 𝑦 , 𝑡) ∙ 𝑆 (𝑥 − ∆𝑥, 𝑦 − ∆𝑦, 𝑡)

 

Where 𝑆 (𝑥 , 𝑦 , 𝑡)  is the radiofrequency echo signal 
received on the i-th element with coordinates 𝑥 , 𝑦 , while 𝑇  
and 𝑇  are the two ends of the averaging temporal window. It 
is worth highlighting that, according to the proposed theory, 
𝑆 (𝑥 , 𝑦 , 𝑡) is the signal as it is received, without applying 
any dynamic focusing delay. 

2) Fiber orientation estimation 

As suggested in [25], the fiber orientation was estimated 
as the angle corresponding to the maximum of the Radon 
transform [38, Ch. 2] of the 2D spatial coherence function. In 
particular, the processing was completed in several steps, as 
illustrated in Fig. 1. The processing starts from the spatial 
coherence map, that is first interpolated (I) and then tapered 
with a Tukey window with circular symmetry (II). Then it is 
transformed through a Radon transform (III), computed in the 
range [-90°,90°]; finally, the estimated fiber orientation 
corresponds to the angle for which the Radon transform 
reaches its maximum value (IV). It is worth highlighting that 
the processing described in [25] was slightly modified, we 
included interpolation and circular weighting to limit the 
effect of the default maxima at -45° and 45° of the Radon 
transform of a square homogeneous matrix.  

The processing was repeated for all the depths of the 
phantom; then, the accuracy of the estimates was assessed in 
terms of root mean square error (RMSE) and absolute error 
(AE), by comparing the expected and the estimated fiber 
orientation.  

 𝜑(𝑧) = 𝜑 +
𝜕𝜑

𝜕𝑧
∙ 𝑟𝑜𝑢𝑛𝑑

𝑧

𝑆
∙ 𝑆 (19) 

 

Fig. 1 Sketch of the processing steps implemented to estimate the fiber orientation. I) Interpolated spatial coherence map; II) Interpolated spatial coherence 
map after Tukey tapering; III) Radon transform of the tapered spatial coherence map; IV) Maximum of the Radon transform along the radial positions. 



III. RESULTS 

A. Spatial coherence 

The left column in Fig. 2 shows examples of 2D spatial 
coherence maps obtained for fibers having S=600 µm and 3 
different P values: 1200, 1600 and 2000 µm from top to 
bottom respectively. In these examples, the lags (∆𝑥, ∆𝑦) 
were limited to a maximum value of 10 elements. 
Qualitatively the maps clearly present: 1) a main lobe, whose 
origin is in (0,0) and its main direction is Δy’; 2) some 
secondary lobes parallel to the main one, whose distance along 
Δx’, i.e. the direction orthogonal to Δy’, is longer for higher P 
values. Similar results were obtained for different S values 
(200, 400, 600 µm) as shown on the right panels in Fig. 2. The 
latter highlight that the position of the secondary lobes peak 
only depends on the fiber pitch P, while the width of the main 
lobe shows a dependency on the fiber size S. As shown in Fig. 
3, averaged over all models and all different fiber directions, 
the value of the SC at Δx’=1, i.e. an estimate of the main lobe 
width, linearly correlated with S (R2=91.6%) while the main-
to-secondary lobe lag distance linearly correlated with P 
(R2=99.0%). In particular, the main-to-secondary lobe 
distance, on average, is equal to P; it corresponds to Δx’ equal 
to P divided by the probe pitch (in this work set to 300 µm). 
The latter result is in agreement with the developed theory; 
indeed, considering the findings in (17), the autocorrelation of 
the scattering map in (18) should present secondary peaks at a 
distance P from the main lobe. 

Hereinbefore, the illustrated results do not consider 
simulated model with P=400 µm since it is a special case. 
Indeed, it is worth remembering that the received echo signals, 
as well as the spatial coherence maps, are spatially sampled in 
the direction of the probe plane, with periodicity equal to the 
pitch among the elements of the probe. Hence, according to 
the Nyquist-Shannon sampling theorem, the direction of the 
fibers can only be detected when the periodicity of the fibers 
P is bigger than twice the pitch among the elements of the 
probe. An example of spatial coherence map obtained for 
S=200 µm and P=400 µm is shown in Fig. 4 highlighting that 
is indeed impossible to detect the direction of the main lobe 
due to aliasing.  

B. Fiber orientation estimation 

Fig. 5 shows examples of fiber orientation estimates 
obtained for fibers having S=600 µm and 3 different P values: 
1200, 1600 and 2000 µm from left to right respectively, whose 
SC maps examples where also shown in Fig. 2. The estimated 
depth-trends (black traces) were compared to the expected 
ones showing good agreement. However, while the phantom 
was defined for the depth range [57; 63] mm, estimations were 
reliable only in the range [58; 62] mm. Outside that range the 
backscattered signals were mainly affected by the 
background, producing high intensity signals due to the 
reflections at the first and last interface of the phantom; this 
region corresponds to the black dashed lines in Fig. 5. For the 
tested modes, as shown in TABLE I, the RMSE was in the 
range [1.1°; 3.3°], while the absolute value of the average error 
was always lower than 1.1°. Worse results were in general 
obtained for S=800 µm fibers, while P does not seem to 

 
Fig. 3 Left: distribution of the correlation value computed at lag Δx’=1 for 
different fiber sizes S. Right: distribution of the main-to-secondary lobe 
distance for different fiber pitches P. The black dashed lines represent the 
linear fitting of the two distributions. 
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Fig. 2 Left panels: examples of SC maps obtained for S=600 µm and P=1200, 
1600, 2000 µm from top to bottom, respectively. Right panels: SC profiles 
along Δx’-axis obtained for different S and P values; the dotted lines highlight 
the values of SC at Δx’=1; the black dots highlight the position of the peaks 
of the secondary lobes. 

 
Fig. 4 Example of SC map obtained for S=200 µm and P=400 µm. The spatial 
undersampling generates aliasing, thus making impossible the detection of the 
direction of the fibers. 



influence the accuracy of the estimates. The exception, as 
expected, is the special case with P=400 µm for which both 
RMSE and AE are higher than 67°, confirming that the spatial 
undersampling does not allow the estimation of the direction 
of the fibers. 

IV. DISCUSSION AND CONCLUSION 

In this paper we presented and validated, by computer 
simulation, a theoretical framework to have more insight on 
3D ultrasound Backscatter Tensor Imaging. The theory 
showed that, for an unfocused transducer, the spatial 
coherence of the received echo field equals the autocorrelation 
of the spatial scattering amplitude distribution of the area 
illuminated by the transmitted beam. The theory was validated 
by simulating the echo signals received by a 32×32-element 
array transmitting a plane wave through a numeric phantom; 
the latter mimicking cardiac fibers as scatterers whose 
scattering amplitude was modulated according to a periodic 
function defining fiber size, pitch and orientation. 

Examples of simulated SC maps of the received echo field 
were shown; they presented main and secondary lobes whose 
lateral width and distance have direct linear relationships with 
S and P respectively, as expected from the theory. Indeed, the 
SC maps should relate to the autocorrelation of the periodic 
scattering amplitude function, hence a wider S should 
correspond to a wider main beam and a bigger P should 
correspond to longer main-to-secondary beam distance as 
shown in Fig. 3. Moreover, through a Radon transform based 
algorithm [25], SC maps were exploited to estimate the 
cardiac fiber orientation at different depths of interest. The 
accuracy of the estimations was then assessed in terms of 
RMSE and AE, showing good agreement with the expected 
fiber orientation values (TABLE I).  

In short, SC maps do not only carry information on fiber 
direction (i.e. the direction of highest correlation) but also 
have a one-to-one relationship with the fiber properties such 
as size and pitch; thus, SC can be exploited to determine the 
characteristics of the myocardium. However, we also showed 

that the minimum detectable P is equal to twice the pitch 
among the elements of the probe (2×300 µm in this work). 
Therefore, a lower limit applies to the minimum distance 
between fibers, that can be detected. Hence, concerning the 
initial doubt “What are we looking at?”, it is unlikely that the 
proposed technique can detect the orientation of myocytes, 
indeed they are “usually 120 µm long and 20-30 µm in 
diameter” [3], but likely this approach allows detecting the 
direction of bigger structures such as bundles or sheets of 
several myocytes. It is worth highlighting that the same 
limitation may apply to the technique proposed in [25]; indeed 
it is based on the theories reported in [26], [27], but they rely 
on an approximation on the beamwidth of a focused 
transducer ([27] eq. B12), which is acceptable up to a 
maximum depth of 1.5 cm for the probe aperture used in [25]. 

APPENDIX A 

Intermediate steps to demonstrate (14), mainly 
considering equations (10) and (13). 

ℱ 𝑅 (𝑥, 𝑦, 0) = ℱ {𝐸 (𝑥, 𝑦, 0)} ∙ ℱ∗ {𝐸 (𝑥, 𝑦, 0)} = 
 
= [ℱ {𝐸 (𝑥, 𝑦, 𝑧 )} ∙ ℱ {ℎ (𝑥, 𝑦, 𝑧 )}] ∙ 
∙ [ℱ {𝐸 (𝑥, 𝑦, 𝑧 )} ∙ ℱ {ℎ (𝑥, 𝑦, 𝑧 )}]∗ = 
 
= [ℱ {𝐸 (𝑥, 𝑦, 𝑧 )} ∙ ℱ∗ {𝐸 (𝑥, 𝑦, 𝑧 )}] ∙ 
∙ [ℱ {ℎ (𝑥, 𝑦, 𝑧 )} ∙ ℱ∗ {ℎ (𝑥, 𝑦, 𝑧 )}] = 
 
= ℱ 𝑅 (𝑥, 𝑦, 𝑧 ) ∙ ℱ 𝑅 (𝑥, 𝑦, 𝑧 )  
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