
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

Corso di Dottorato in Ingegneria dell’Informazione

Curriculum: Automatica, Ottimizzazione e Sistemi Complessi

saving local searches in

global optimization

Candidate

Luca Tigli

Supervisors

Prof. Fabio Schoen

Prof. Marco Sciandrone

PhD Coordinator

Prof. Fabio Schoen

ciclo XXXII, 2016-2019

Università degli Studi di Firenze, Dipartimento di Ingegneria

dell’Informazione (DINFO).

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Engineering. Copyright © 2020 by

Luca Tigli.

Ai miei genitori.

Acknowledgments

I would like to thank my supervisor Prof. Fabio Schoen for his patience and

precious input, Prof. Marco Sciandrone and all of my colleagues at GOL

who were of great help during my research.

Abstract

This thesis concerns the use of local searches within global optimization al-

gorithms. In particular, we focus our attention on the strategies to decide

whether to start or not a local search from a starting point. More specifically,

our aim is to avoid the waste of computational effort due to local searches

which lead to already detected local minima or to local minimizers with a

poor function value. This is done by a re-discovery of clustering methods

as good candidates to use within GO algorithms to locate the regions of

attraction of local minimizers. In the first contribution, we show how to

improve a GO algorithm with information from its past runs and making

a smart use of the latter. Moreover, the idea of extracting compact geo-

metrical descriptors from GO solutions is used for both stopping redundant

lines of search of a perturbation-based GO method and to adapt clustering

algorithms to work in a reduced feature space, in which configurations are

compared and grouped by means of their overall characteristics rather than

the value of their variables. In the second part of this thesis, we show how

the cost of ”CPU heavy” local searches in memetic complex GO schemes

may be reduced with clustering methods by avoiding multiple rediscoveries

of the local optima. Though we restrict our attention on a quite efficient

memetic differential evolution, our strategy can be easily used to enhance

the performance of any evolutionary method in general. Finally, we show

how to successfully apply our clustering-based memetic approach in large

dimensions.

vi

Contents

Contents vii

1 Introduction 1

1.1 Global Optimization . 1

1.2 Clustering methods for GO 2

1.2.1 Multilevel Single Linkage 6

1.3 Contributions . 9

2 Clustering Methods for Geometrical GO 11

2.1 Introduction . 12

2.2 MSL in a feature space . 12

2.3 Geometrical GO problems . 15

2.3.1 Atomic cluster structure prediction 15

2.3.2 Sphere packing . 17

2.4 Some geometrical descriptors 19

2.5 Exploring the funnels . 23

2.5.1 Cluster Surface Smoothing 23

2.5.2 Monotonic Basin Hopping 24

2.6 Experiments . 25

2.6.1 Experimental setup . 25

2.6.2 Numerical results . 27

2.7 Conclusions . 37

3 Enhancing the Performace of Memetic Algorithms 39

3.1 Introduction . 39

3.2 Memetic Algorithms . 41

3.2.1 Differential Evolution 42

3.2.2 Hybridization of DE 44

vii

viii CONTENTS

3.2.3 Memetic Differential Evolution 46

3.2.4 Some variants of MDE 47

3.3 Clustering-based MDE . 50

3.4 Standard GO test functions 53

3.5 Experiments . 56

3.5.1 Experimental setup . 56

3.5.2 Performance criteria 58

3.5.3 Numerical results and comparison 59

3.6 Conclusion . 66

4 Scalability Study for C-MDE 69

4.1 Introduction . 69

4.2 Dimensionality reduction . 70

4.2.1 Random Projection 71

4.3 C-MDE with RP . 73

4.4 Experiments . 75

4.4.1 Test functions and settings 75

4.4.2 Performance, comparison and discussion 76

4.5 Conclusion . 77

5 Conclusion 81

A Publications 83

Bibliography 85

Chapter 1

Introduction

1.1 Global Optimization

Given a compact set Ω ⊂ Rn and a continuous function f : Ω→ R, consider

the Global Optimization (GO) problem

min
x∈Ω

f(x) (1.1)

that consists in the minimization of f over Ω.

Extending the class of objective functions to include multimodal func-

tions, i.e., functions may have several local minima in the region of interest,

makes the optimization problem hard to solve in general. In particular, such

problems may differ considerably with respect to the computational effort

needed to perform a function (or gradient) evaluation. Here we restrict our

attention on methods which are suitable for problems where function evalu-

ation and local optimization are relatively cheap tasks. Of course, such local

optimization has a computational cost which is higher rather than a simple

function evaluation, but such additional cost is often rewarded by the pos-

sibility of defining much more efficient algorithms. Particularly, some parts

of the feasible space may be deemed more interesting than others and more

accurate solutions in these regions may be available. Because both global

reliability and local refinement are important features of a GO method, most

good heuristic methods consist of a clever mixture of both a global and a

local phase, and no serious method can lack the global strategy. Concerning

the global phase, its aim is usually that of exploring the search domain, as

1

2 Introduction

opposed to that of the local phase which is more concerned with refinement

of the current solution. Examples of local phases are standard local searches

performed by means of local optimization methods such as gradient descent

method or the quasi-Newton method. Unfortunately, severe nonlinearities

commonly impose the problem of the amount of CPU time needed to com-

pute f , which means that the affordable number of function (and gradient)

evaluations should be as small as possible. To overcome these difficulties,

good starting points for local searches are commonly required, however an

appropriate sample of points is not always available in the formulations of

many practical problems.

Thus, some approaches have been developed to overcome this difficulty.

As an example, in [26] the author investigated the impact of the local search

frequency for the optimization of common test functions; local searches are

started according to a specific probability and Multistart is obtained by set-

ting this probability equal to 1. More recently, in [8], the authors proposed to

use machine learning, and, in particular, Support Vector Machines (SVM),

in order to decide whether to start or not a local search from a candidate

point. In particular, between the early seventies and nineties, a global opti-

mization paradigm based on the so-called clustering method was studied by

some researchers. According to Törn and Zilinskas [67], the motivation for

exploring clustering methods was based on principles of efficient local search

as well as elimination of redundant cost function evaluations within a single

cluster. Here we focus on the latter class of methods.

1.2 Clustering methods for GO

When the first papers on GO appeared (see, e.g., [13, 14]), the most rele-

vant and practical computational tool for solving generic GO problems was

Multistart. This is the most basic GO algorithm, consisting in the following:

1. (Randomly Uniformly) sample a set of points in the feasible region

2. Start a local descent from each sampled point

3. Decide whether to stop or to go back to (1)

This basic computational scheme has, evidently, several limitations: it is

not always easy to sample in a feasible region defined by constraints; local

optimization is computationally demanding; stopping is not an easy decision

1.2 Clustering methods for GO 3

as early stopping might cause the global optimum to be missed, while late

stopping implies a CPU time waste. At the time when clustering methods

were proposed, one of the main concerns in Multistart was the fact that, when

running Multistart, the same local optimum might have been observed sev-

eral times during a run, thus wasting computational time. Some researchers

started to experiment with methods whose ideal aim was to be able to run

a local search at most once from the region of attraction of each local op-

timum. The idea of clustering was that of using some statistical technique

based on similarity in order to recognize the points grouped around different

local minima (the clusters). It shall not require that the procedure yield an

optimal division according to some criterion function because this require-

ment normally implies extensive calculations; one of the earliest successful

ideas was proposed in [5, 66,68] and further developed in [52,53].

To illustrate clustering methods, let us consider the GO problem (1.1)

where we also assume that the feasible set Ω ⊂ Rn is the unit hypercube

[0, 1]n. In what follows the symbol S will be used to denote the set of all

points randomly generated by the algorithm, while with C we will denote

the set of points obtained by means of a “concentration step”, i.e., points ob-

tained from the original sample but concentrated in the regions of attraction

of local minima, as we will see later. Finally, O ⊆ C denotes those points

in the concentrated sample C starting from which the algorithm chooses to

perform a complete local optimization run.

The basic scheme of clustering methods is the following:

Let S = ∅, k = 0

Generation: a batch of nb ≥ 1 sample points are drawn in Ω = [0, 1]n,

usually by random uniform sampling; these nb points are added to S .

Let k := k + 1;

Concentration: newly generated points are concentrated either by means

of a few steps of a local descent algorithm or by temporarily discarding

a fraction γ ∈ (0, 1) of points in S with the highest function value.

The whole transformed sample is denoted by C ;

Clustering and Selection: a point x ∈ C is selected if it had never been

selected in the previous phases of the algorithm and if there is no other

4 Introduction

point y ∈ C such that

‖x− y‖ ≤ τ(knb) (1.2)

f(y) ≤ f(x) (1.3)

where τ(·) is a suitably defined threshold. Points whose relative dis-

tance is no more than τ(knb) are assigned to the same cluster. For

each cluster a single point with the smallest function value is selected

and added to the set O ⊆ C ;

Full optimization: from each point in O a complete local optimization is

performed by running a specific local optimization (descent) algorithm

L which, when initialized at a feasible point x, is capable of delivering

a point x̄ such that f(x̄) ≤ f(x). If this local optimization ends with

a new local optimum x̄, then this point is added to the set C ;

Stopping: if a stopping rule is not satisfied the whole procedure is restarted.

In Figure 1.1 a pictorial representation of a phase of this algorithm is

depicted.

This is not the most general scheme of GO clustering methods, but it is by

far the one which received much attention. Some comments are in order. The

concentration step is meant to transform the sample from a purely uniform

random one to another in which the density of points is no more uniform

everywhere, but tends to be higher in the regions of attraction of different

local optima. Two main tools are usually devoted to sample concentration:

one is the selection of a fraction of points with the lowest function value. This

procedure is very easy to apply and it lends itself to some theoretical analysis.

Another tool, which, although slightly more costly from a computational

point of view, seems to be the most efficient one, is that of starting from each

newly sampled point a few descent steps with a suitable local optimization

algorithm. Whichever the tool used to concentrate the original uniform

sample, the resulting set of concentrated points is no more uniform. Thus it is

reasonable to look for statistical clustering techniques capable of identifying

those regions characterized by the highest point density. The main idea

of clustering for GO methods is that this statistical procedure should try to

associate different clusters to regions of attraction of different minima. Thus,

the following step prescribes to start a full local optimization from a single

point from each cluster, provided that such a full optimization had not been

already performed in previous phases of the algorithm.

1.2 Clustering methods for GO 5

4 2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

(a) Generation

4 2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

(b) Concentration

4 2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

(c) Clustering

4 2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

(d) Selection

Figure 1.1: A graphical illustration of MSL. A uniform sample (triangles in

(1.1a)) is first drawn; then the sample is concentrated by running a few steps of

a local descent algorithm (disks in (1.1b)); the resulting transformed sample is no

longer uniform and sub-samples with higher density, or clusters, can be identified

through a clustering technique (in (1.1c), clustered points are connected by arcs).

From each cluster, a single point with minimum function value is selected (larger

disks in (1.1d)); a full local optimization will then be run from these selected points

only.

6 Introduction

1.2.1 Multilevel Single Linkage

Of course, the success of clustering methods is strongly dependent on the

assumption that clusters are associated to regions of attraction. Many at-

tempts have been made towards this aim, trying to minimize the likelihood

of two possible errors: clustering points belonging to more than one region

of attraction, or missing the region of attraction of a local optimum. Differ-

ently from classical statistical clustering, in our setting there is additional

information which should be exploited: first, to each point a function value

is associated, so clusters will not only take into account the distance between

points, but also this information; moreover, regions of attraction are associ-

ated to a local descent path, so that when building clusters this information

might also be taken into account.

Among several clustering approaches proposed in the literature, we cite

here the most popular ones (for more details see [52,53]):

Density clustering. Clusters are built starting from seed points which,

usually, consist of already observed local optima. Level sets of the

objective function are assumed to be ellipsoids characterized by the

hessian matrix at each local optimum. Based on this assumption, clus-

ters are defined as

{x ∈ Ω : (x− x̄)T∇2f(x̄)(x− x̄) ≤ r2}

where x̄ is a seed (local optimum) and r is a threshold. Let K = knb
and

ri = π−1/2

{
iΓ
(

1 +
n

2

)√
det(∇2f(x̄))

σ logK

K

}1/n

where Γ is the gamma special function and σ > 0 is a parameter. In

order to chose r, a cluster is grown around x̄ by letting first i = 1

and increasing its value until the enlargement of the ellipsoid does not

include any new point.

Single Linkage. A defect of Density clustering is that an ellipsoidal shape

is assumed for the region of attraction of a minimum; this is very

often a false assumption. Thus, in Single Linkage, starting from seed

points, new points in the reduced sample are added to a cluster if their

distance from a point in the already grown cluster is below a threshold

r, defined in a similar way as above, without any assumption on the

shape of the resulting cluster.

1.2 Clustering methods for GO 7

Multilevel Single Linkage (MSL). These methods are built on top of

single linkage ones, but they restrict the association of a reduced sam-

ple point to a cluster to the event that from this point there should

be a descent path leading to a close enough point in the cluster. The

main difference with Single Linkage is the fact that the additional in-

formation given by function values is taken into account, so that it is

possible to link points by means of directed arcs pointing towards low

level sets. Although the first methods within this class assumed that

clusters were started from seed points, MSL does not assume any seed

point at all. The main idea of MSL is to apply a full local search to a

point x in the reduced sample C , i.e., to add x to O, if and only if:

1. x is at least ε far from already observed local optima

2. x is at least ε far from the boundary of the feasible region

3. there exist no point y ∈ C :

‖x− y‖ ≤ τ(K)

f(y) ≤ f(x)

where ε > 0 is a constant, K = knb is the total current sample

size and

τ(K) = π−1/2

(
Γ
(

1 +
n

2

)
µ(Ω)

σ logK

K

)1/n

(1.4)

where µ(Ω) is the Lebesgue measure of the feasible set (µ(Ω) = 1

with our assumptions) and σ > 0 is a parameter.

The choice of the threshold (1.4) is justified in [53]. Here we outline a

very brief explanation. It is well known that the volume of an n–dimensional

hypersphere of radius r is

πn/2rn
/

Γ (1 + n/2)

so that the volume of an hyphersphere whose radius is given by (1.4) turns

out to be

σ logK

K

8 Introduction

The probability that, in a random uniform sample of cardinality K, no sam-

pled point is found in a sphere of radius τ(K) around a specific point is thus(
1− σ logK

K

)K
(1.5)

and this quantity, which is O(k−σ), is decreasing to zero at a speed which

guarantees that for the overall MSL procedure the following holds:

Theorem 1.2.1 ([53]). For a clustering method based on MSL equipped

with the threshold (1.4) it is guaranteed that:

1. the probability that a point in the reduced sample C is selected as a

starting point for a full local optimization tends to 0 as k →∞

2. if σ > 2 the probability that a new full local search is started during

phase k of the algorithm tends to 0 as k →∞

3. if the algorithm never stops, the total number of full local optimization

started remains finite with probability 1

4. every local optimum will be found with probability 1 within a finite

number of iterations

The above properties look very attractive from the GO point of view

and, in fact, MSL has been the most common choice for solving GO prob-

lems (at least box–constrained ones) for a long period of time. Nowadays,

however, this method is no more used for many reasons, some of which we

will explain here. First, at the time when MSL appeared, local optimization

was a computationally demanding task, given the available algorithms and

computational power. Saving even a few full local optimization runs was

considered as a top priority. Secondly, and, in our opinion, more impor-

tantly: the status of GO in those years was such that no attempt was ever

made to solve problems whose dimension was larger than, say, ten. Later,

in the optimization history, great advances were made in developing very

efficient local optimization tools, and meanwhile the computational power

of available computers grew very fast. These two facts have led applied re-

searchers to develop methods capable of approximately solving very large

dimensional GO problems. Many methods exist, some of which are based

on the exploitation of local optimization – see, e.g., [43] for a recent survey.

1.3 Contributions 9

1.3 Contributions

When considering large dimensional GO problems, MSL fails as clustering

is no more possible in high dimensional spaces, unless the sample size grows

exponentially fast. In this research, our aim is to propose a re-discovery of

clustering methods as good candidates to use within GO algorithms. We

investigated such approaches in order to avoid the waste of computational

effort due to local searches which lead to already detected local optima.

In other words, we will examine the relevant issue related to the decision

whether to start or not a local search from a starting point. We aimed at

showing that with proper modifications, clustering methods are capable to

obtain the same quality in terms of returned solutions, but at a fraction of

the computational cost, with respect to more recent GO approaches.

In Chapter 2 we show how to improve a GO algorithm with information

from its past runs and making a smart use of the latter. Moreover, the idea

of extracting compact geometrical descriptors from GO solutions is used for

both stopping redundant lines of search of a perturbation-based GO method

and to adapt clustering algorithms to work in a reduced feature space, in

which configurations are compared and grouped by means of their overall

characteristics rather than the value of their variables. This way clustering

methods are rediscovered and employed in a modern and innovative fashion.

Though we applied it to the scenario of atomic structure prediction (an active

field in computational chemistry), our technique is straightforward and high-

level, and can be easily used to enhance complex GO schemes and solve

problems from different areas. In Chapter 3 we show how the cost of “CPU

heavy” local searches in memetic complex GO schemes may be reduced with

clustering methods by avoiding multiple rediscoveries of the local optima.

Though we restrict our attention on a quite efficient memetic DE schema, our

strategy can be easily used to enhance the performance of any evolutionary

method such as PSO, GAs, etc. Finally, since the results obtained in previous

chapters were encouraging enough to motivate the use of the same ideas, in

Chapter 4 we show how to successfully apply our clustering-based memetic

DE to standard large scale GO problems.

10 Introduction

Chapter 2

Clustering Methods for

Geometrical GO

In this chapter we show that for some specific problem classes, it

is possible to design Global Optimization algorithms which mimic

the behavior of existing procedures and obtain the same quality but

at a fraction of their computational cost. The way we achieved

this is through the application of clustering methods designed to

identify the regions of attraction of good local minima. Ideally, if

we were able to identify the shape of these regions of attraction,

a single local search starting from each of them would lead to the

global minimum. This idea had been a winning one in the 80’s,

and later abandoned when large dimensional global optimization

problems were used to test global optimization algorithms. In this

chapter we show that by using the idea of clustering in a feature

space of much smaller dimension than one of the original vari-

ables, very significant speedups can be obtained. We present the

general idea and apply it to two of the most widely studied families

of hard, large scale, global optimization problems: the optimiza-

tion of the potential energy of atomic clusters, and the problem

of packing a set of identical spheres of largest radius in the unit

hypercube. In this latter problem we could even improve some ex-

isting putative optima, thus proving that the proposed method is

not only very efficient but also effective in exploring the feasible

space.

11

12 Clustering Methods for Geometrical GO

2.1 Introduction

As mentioned in the introduction, the main drawback of MSL, and, in our

opinion, the most relevant reason for the early abandonment of MSL in the

recent GO literature, is the curse of dimensionality. In particular, given a

critical distance r, the probability that a uniformly sampled point in [0, 1]
n

will be at distance not greater than r from at least one out of K other uni-

formly sampled ones, exponentially decreases with the dimension n, so that,

in order not to start too many local searches, nor to risk missing the relevant

ones, an exponentially increasing number of points needs to be sampled. As

a simple observation, in order to place one point in each box obtained by di-

viding each edge of the unit hypercube into two halves, 2n points are needed.

So MSL, in high dimension, is hopeless and, in fact, most of its historical

applications had been for problems with no more than 10 variables.

However, the idea of MSL was a bright one and, in this chapter, we aim

at showing that with a slight modification it is possible to successfully apply

MSL in large dimension, provided that the problem at hand lends itself to

a compact representation. In what follows, we call a problem geometrical

when its variables, constraints and objective have a clear physical meaning.

2.2 MSL in a feature space

Drawing from ideas in Machine Learning, we assume that to each feasible

solution of the GO problem a small set of problem-specific descriptors can

be defined. The number of descriptors characterizes the dimensionality of

a feature space that, in general, is smaller than that of the original prob-

lem. This way clustering may be performed in a low-dimensionality space,

where the decision whether to start a complete local search is also taken. Let

φ : Ω ⊂ Rn → Rd be a mapping from the solution space to a d-dimensional

feature space, where we assume that d is chosen such that d � n. In this

section, in order to successfully apply MSL in large dimension, a slight mod-

ification of the original scheme is proposed; we will call this new method

FS-MSL (MSL in a Feature Space). The pseudocode of the overall proce-

dure is described in Algorithm 1, where the threshold distance τd(·) is defined

as follows

τd(K) = π−1/2

(
Γ
(

1 +
d

2

)σ logK

K

)1/d

(2.1)

2.2 MSL in a feature space 13

Notice that this is the same threshold as in (1.4), the only difference

being that the dimension of the original space is replaced by the dimension

of the feature space. Also, we assume without loss of generality, that the

Lebesgue measure of the d–dimensional feasible space for features is equal

to one. The algorithm requires a few input parameters. In particular, it

is required that the user chooses a real value σ > 0 for the parameter in

(2.1) as well as the specification of a batch size (the number of new sample

points to be generated at each iteration). Moreover, a suitable stopping

rule should be defined, which, in general, is either a maximum number of

iterations performed without an improvement of the best observed feasible

solution or a maximum number of performed iterations. Another parameter,

nc, is also necessary, which represents the number of descent iterations to be

performed starting from each newly sampled point, in order to concentrate

the sample.

Algorithm 1 MSL in a Feature Space (FS-MSL)
Require: σ, nb, nc

1: C ← ∅
2: K ← 0

3: while a stopping condition is not satisfied do

4: Xb ← (randomly uniformly) generate nb feasible solutions

5: K = K + nb

6: Xc ← perform nc local optimization steps from each element in Xb

7: C ← C ∪Xc

8: O ← ∅
9: for x ∈ C do

10: if 6 ∃ y ∈ C : f(y) ≤ f(x) and ‖φ(y)− φ(x)‖ ≤ τd(K) then

11: O ← O ∪ {x}
12: end if

13: end for

14: X∗ ← perform a full optimization starting from each selected point in O

15: C ← C ∪X∗
16: end while

17: return the best solution

In the above algorithm, it is assumed that a “local” optimization pro-

cedure is available and that this procedure consists of a finite number of

“steps”. In the concentration phase, only a few of these, nc, are per-

formed, while in the full optimization phase the procedure is allowed to

run until convergence. In the original MSL algorithm, local optimization

was indeed a gradient descent method like, e.g., L-BFGS. In our modern

14 Clustering Methods for Geometrical GO

version of the method, this procedure might be, and indeed usually is, a

complex global optimization procedure like, e.g., Monotonic Basin Hopping

(see, e.g., [42,43,72]). By this we mean that our “local” procedure is indeed

a finite sequence of repeated calls to a local descent algorithm. In Mono-

tonic Basin Hopping (MBH), each descent is started from a point which is

randomly generated in a neighborhood of the current one; the local opti-

mum obtained from such a point replaces the current one if the objective

function improves. In this framework, the concentration phase corresponds

to performing a few, namely nc, runs of the descent algorithm, while the full

optimization phase corresponds to performing the optimization run until its

natural stopping.

In order to be able to define an effective computational procedure it

is necessary to design the algorithm taking into account specific problem-

dependent characteristics. We summarize them here:

Feature space. This is of fundamental importance and it is the basis for

the correct behaviour of this method. The selected features should be

as few as possible, taking into account the difficulties of clustering in

high dimension, but sufficiently discriminant so that it is unlikely that

two sufficiently different solutions have very similar features. Moreover

the features should characterize not just an optimal solution, but the

whole “funnel” associated to the region of attraction of the optimal

solution. It is in fact important to be able to predict the features of

the local optimum already from those associated to the concentrated

solution.

”Funnel” optimizer. By this we mean a procedure which, when started

from a randomly generated solution, is capable of generating a sequence

of improving local optima. Intuitively, a ”funnel” is a global trend on a

search space that consists of a basin of clustered local minima. A search

method with a reasonable probability of moving between adjacent local

optima should be able to locate the bottom of a single-funnel function

(see [38] for a complete discussion on the multilevel structure of global

optimization problems). So, the procedure should be good enough to

produce solutions with low function value. However, it should not be

“too global”: by this we mean that during the optimization procedure,

it is expected that the generated solutions do improve, but that the

“structure” of these solutions does not change too much, in the sense

that there should be no large modification of the set of features during

2.3 Geometrical GO problems 15

the descent. As an example, a Monotonic Basin Hopping method might

be a good local optimization, provided that the perturbation radius

chosen at each step is large enough to guarantee the possibility of

descent, but small enough so that the solution does not “jump” outside

the current funnel.

These tools are problem-dependent. In the following we will exemplify their

practical implementation for two classes of optimization problems: atomic

cluster structure prediction, and optimal packing of equal, non overlapping

spheres in the unit cube; these are two radically different problems, the first

one being unconstrained, while the second one has a large number of non

convex constraints, with some common structure.

2.3 Geometrical GO problems

Global optimization is an active field with rapid growth for many chemical

and physical problems, such as structural optimization, chemical engineering

design, and molecular biology. In general, the GO of an arbitrary function

requires a search through the whole conformational space. The problem is

generally NP-hard due to the fact that the conformational space grows ex-

ponentially with the problem size. Moreover, when dealing with geometrical

problems, GO algorithms’ job is made harder by the existence of symmetries

and multiple (often infinite) equivalent solutions. In this regard, the idea of

extracting geometrical descriptors may help algorithms both in reducing the

dimension of the search space to be explored, and to adapt clustering algo-

rithms to work in a reduced space, where configurations are compared by

means of their characteristics rather than the value of their variables. Driven

by our personal experience, in this work we restrict our attention to a cou-

ple of well known GO problems, namely molecular conformation and sphere

packing problems; however, we point out that many other geometrical GO

problems arising from applications can be found in the literature.

2.3.1 Atomic cluster structure prediction

In recent years there have been growing interest and significant research de-

velopments in the experimental and theoretical studies of the atomic clusters,

owing to their peculiar physical and chemical properties compared with bulk

matters. Atomic clusters can generally be described as aggregates of atoms

16 Clustering Methods for Geometrical GO

or molecules containing few to several thousands of elements. To understand

the unique electronic, optical, and magnetic properties of an atomic cluster,

the fundamental research problem is to locate their stable structures in the

three-dimensional space. These conformations are associated to the mini-

mum possible energy for the system. Experiments alone often provide an

incomplete picture of the atomic cluster structure and only by combining

them with independent theoretical investigations, a complete description of

the geometric arrangement and the corresponding properties can be estab-

lished. Empirical potential played an important role in computer simulation

and are largely used to fit the interactions among particles – the results are

generally acceptable within a certain precision.

Here we describe the simplest possible model for atomic clusters, where

groups of atoms interacting via empirical pairwise potential, with no chemi-

cal bond. A conformation problem for atomic clusters can be defined as the

following unconstrained GO problem

min
x1,x2,...,xN

N−1∑
i=1

N∑
j=i+1

V (‖xi − xj‖2) (2.2)

where N is the number of atoms in the cluster, xi ∈ R3, i = 1, . . . , N , repre-

sent the coordinates of the center of the i-th atom, and V is a pair potential

whose analytic expression might depend on each atom’s type. Hence, the

task is to perform a global optimization of the potential energy as a function

of all atom coordinates.

The Lennard-Jones and Morse potentials are the two most famous pair

potentials, which often act as the benchmark systems to evaluate the newly

developed atomic cluster geometry optimization methods. The Lennard-

Jones (LJ) potential is defined as

V (r) = ε
(r0

r

)6
((r0

r

)6

− 2

)
(2.3)

where r is the inter-atomic distance, r0 is the equilibrium pair distance, and

ε is the pair well depth. Here, we set ε = r0 = 1 for simplification and then

the LJ function is written as

V (r) = r−12 − 2r−6 (2.4)

Alternatively, the Morse potential can be used to estimate both long- and

2.3 Geometrical GO problems 17

short-range interactions. The Morse function is defined as

V (r) = eρ(1−r)
(
eρ(1−r) − 2

)
(2.5)

where ρ is the parameter of the potential. Generally speaking, low values of

ρ give a long-ranged potential and high values a short-ranged potential. At

ρ = 6, the Morse function is very similar to the LJ one and the two potential

functions can be unified by a modified Morse function.

The potential range is the most important factor for a pair potential

determining the favorite cluster structure: at ρ = 14, Morse clusters are

notoriously difficult to be optimized by an unbiased GO method, where the

favorite conformations (motifs) are decahedral, tetrahedral, and close packed.

Both pair potentials are nonconvex functions of the relative distance be-

tween two atoms; when these pairwise contributions are summed up over all

pairs of atoms in a cluster, the resulting Potential Energy Surface (PES) is

a highly multimodal, nonconvex function of the coordinates of the N atoms.

Because of the enormous number of local minimum structures of atomic and

molecular clusters, it is difficult to locate the lowest energy conformation.

2.3.2 Sphere packing

Sphere packings is one of the most fascinating and challenging subjects in dis-

crete and computational geometry. Almost four centuries ago, Kepler studied

the densities of sphere packings and made his Kepler’s conjecture. Several

decades later, Gregory and Newton discussed the kissing numbers of spheres,

i.e., how many spheres can be arranged so that they all just touch another

sphere of the same size, and proposed the thirteen spheres problem. Since

then, these problems and related ones have attracted the attention of many

prominent mathematicians such as Dirichlet, Gauss, Lagrange, Minkowski,

and Voronoi. Beyond the theoretically challenging character of the problem,

there are several ways in which the solution methods can be applied to prac-

tical situations. Of course there are connections with chemistry and physics,

since crystallographers have studied three-dimensional lattices since the be-

ginning of the subject. Furthermore the sphere packings turn out to have

connections, sometimes totally unexpected, with other branches of mathe-

matics. There are direct applications of lattice packings to number theory,

for example in solving Diophantine equations, or in digital communications

from the design of signals for data transmission and storage. For example, it

18 Clustering Methods for Geometrical GO

is known that the optimal way of sending digital signals over noisy channels

corresponds to the densest sphere packing in a high dimensional space [12].

In what follows, we restrict our attention to a rather classical packing

problem, namely that of placing identical non-overlapping spheres into a

cube, but we point out that other packing problems involving different ob-

jects and/or containers have been discussed in the literature. As we have

already mentioned, the sphere packing problem is a geometrical problem

that can also be viewed as a continuous GO problem. A general formulation

of the latter in Rn can be defined as

max
x1,...,xN∈Rn, r∈R

r

subject to ‖xi − xj‖2 ≥ 2r ∀(i, j) ∈ I
xki ≥ r k = 1, . . . , n i = 1, . . . , N

xki ≤ 1− r k = 1, . . . , n i = 1, . . . , N

(2.6)

which corresponds to packing N hyperspheres in Rn in the unit hypercube

so that they do not overlap and their common radius r is maximized; the set

I is defined as {(i, j) | 1 ≤ i < j ≤ N} and xki represents the k-coordinate

of the center of the sphere i. Notice that this formulation has 2nN linear

constraints and N(N − 1)/2 nonconvex constraints.

Let us point out that there are two main categories of studies dealing

with packing problems. One of these approaches is to prove the optimality

of suggested packings, either (purely) theoretically, or with the help of com-

puters: consult [62] for detailed discussions and further references. On the

opposite side, instead, heuristic techniques have been proposed to approxi-

mately solve many instances, even at quite large sizes. Approximate packings

(i.e., packings determined by various methods without proof of optimality)

are reported in the literature for up to 200 circles (n = 2). These numerical

results have been obtained via several different strategies; for instance, using

nonlinear programming solvers (e.g., MINOS, SNOPT), the minimization of

an energy function [48], or billiard simulation [25] just to mention a few.

Results for many such problems are reported at www.packomania.com that

is regularly maintained and updated.

The packing problem can be formulated in different ways, and some of

them usually have a slight advantage for local optimization methods. Here,

we consider the formulation as a maximal dispersion one (see [2]) where, in

particular, we refer to the following bound-constrained, max-min optimiza-

2.4 Some geometrical descriptors 19

tion model of the point arrangement problem in the unit cube

max
xi ∈ [0,1]n,

1 ≤ i ≤ N

min
(i,j) ∈ I

{ dij | dij = ‖xi − xj‖2 }

This problem is equivalent to the following non-linear programming problem

max
x1,...,xN∈Rn, d∈R

d

subject to ‖xi − xj‖22 ≥ d2 ∀(i, j) ∈ I
xi ∈ [0, 1]n i = 1, . . . , N

(2.7)

where d is the minimum over all the squared Euclidean distances dij .

The second formulation involves a linear objective function subject to

quadratic reverse-convex inequality constraints plus box constraints for the

xi variables. It is easy to show that a strong relation between this problem

and the problem formulated in (2.6) exists. In fact, the optimal values of

the objectives (2.6) and (2.7) are linked by the following relation

r∗ =
d∗

2(d∗ + 1)

With a large number of spheres to be packed, the solution is very difficult

to find. This difficulty is due to many reasons: on the one hand, it is clear

that an optimal solution can be rotated, reflected, or the spheres can be

reordered, and hence the number of equivalent optimal solutions blows up as

the number of spheres increases. On the other hand, in several cases there

even exists spheres in an optimal packing that can be moved slightly while

retaining the optimality. Formally, we say that a sphere is free (rattler) if

its centre can be moved towards a positive distance point without causing

an overlapping with the others.

As mentioned above, approaches that use not only optimization models,

but also the geometrical aspects of the problem are often more effective.

Hence, in the next section, some of these useful geometrical characteristics

will be investigated in detail.

2.4 Some geometrical descriptors

Several examples of geometrical descriptors are available in the literature.

In particular, we restrict our attention to accurately describing a generic

20 Clustering Methods for Geometrical GO

configuration of N hard-spheres (atoms or particles) in the three-dimensional

Euclidean space.

Steinhardt-Nelson order parameters

Bond orientation analysis have been extensively used in conjunction with

molecular simulations in applications involving solid and liquid-crystalline

phases [61]. In what follows, we assume that given a sphere i, a set of

nearest neighbors N (i) is defined; any two spheres i and j are said to be

connected by a bond if they are neighbors, i.e., if i ∈ N (j). The set of all

bonds is called the bond network. The idea behind the bond orientation

analysis is to derive scalar metrics from the information of the bond network

(i.e., the set of bond vectors). The precise definition of the bond network is

therefore crucial. There are other structure metrics derived from the bond

network but the Bond-orientational Order Parameters (BOPs), introduced

by Steinhardt et al. in [59], are the most commonly used. In this regard,

Steinhardt expressed the angular dependencies of bonds (vectors connecting

the central sphere with its neighboring spheres) in terms of the spherical

harmonics, that is,

qlm(i) =
1

|N (i)|
∑
j∈N (i)

Ylm (θij , ϕij) (2.8)

where θij and ϕij are the azimuthal and polar angles, specifying the orien-

tation of a vector (bond) pointing from spheres i to j; Ylm are the spherical

harmonics, and |N (i)| is the number of neighbours of sphere i.

As θij and ϕij depend on the particular choice of the coordinate system,

the order parameters qlm(i) also depend on the reference frame. Hence, rota-

tional invariants of spherical harmonics, (i.e., independent of the coordinate

system in which θij and ϕij are measured) can be constructed as

ql(i) =

(
4π

2l + 1

l∑
m=−l

|qlm(i)|2
)1/2

. (2.9)

The order parameter ql(i) is a measure of the local order around particle i.

The authors proposed to use some “suitable” set of bonds for the compu-

tation of ql; specifically, they used a definition based on a cutoff radius of

1.2 times the diameter of a sphere. This way, each sphere that is closer to

a given sphere i than a cutoff distance is assigned as the nearest neighbour

2.4 Some geometrical descriptors 21

of such sphere. Notice that neighborhood definitions based on threshold are

widely used but there are many different ways (see, e.g., [34]).

Unfortunately, as liquid has a short-range order, these order parameters

cannot distinguish between liquid and solid phases. For this reason, the

authors also proposed a rotationally invariant global order parameter, Qlm,

obtained by averaging qlm(i) over all N spheres as follows

Qlm =
1

N

N∑
i=1

qlm(i) (2.10)

with the rotationally invariant combinations

Ql =

(
4π

2l + 1

l∑
m=−l

|Qlm|2
)1/2

(2.11)

Now, the global order parameter Ql is close to zero for the liquid phase and

deviates from zero for the crystalline phases. In conclusion, in the authors’

opinion [59], it is also important to consider the third-order rotationally

invariant combinations

Wl =

∑
m1,m2,m3

m1+m2+m3=0

∣∣∣∣ l l l

m1 m2 m3

∣∣∣∣×Qlm1
Qlm2

Qlm3

(
l∑

m=−l
|Qlm|2

)3/2
(2.12)

where the integers m1 , m2 and m3 run from −l to +l, but only combinations

with m1 + m2 + m3 = 0 are allowed. The coefficients are the Wigner 3j

symbols [31].

In each case, the order parameters quantify the degree of crystalline or-

der in the system; therefore, the order parameters assume nonzero (distinct)

values in the crystalline phase, which reduce (mostly to zero) in the disor-

dered phase. Usually a few, typically Q4, Q6, W4 and W6, of these averaged

coefficients are considered in order to characterize a configuration. Table

2.1 reports BOPs for some typical structures. In our numerical experiments,

BOPs descriptors proved to be the most effective way to represent solutions

in a compact way.

22 Clustering Methods for Geometrical GO

Atomic clusters

Further examples of geometrical characteristics for atomic clusters are avail-

able from the literature. In [22] the authors defines the coordination number

of a particle, ci, as the number of particles located within a sphere of radius r

centered around atom i, that is, ci = |N (i)|. From these coordination num-

bers four descriptors are derived, namely, the mean, the root-mean-square

scatter, the minimum, and the maximum of atomic coordinations. The lat-

ter, as justified in [22], may be good candidates for describing the physical

structure of a cluster. Two descriptors are also derived from the moments

of inertia; these descriptors quantify the departure from spherical shape to-

wards a more oblate or more prolate structure (see [10]).

Another geometrical invariant is reported in [17]; the shape of a cluster

can be approximately described by shape factors representing the ratios of

the lengths of the three axes of a ellipsoid with the same principle moments

of inertia. Let X ∈ R3×N be the coordinates matrix, then the eigenvalues of

XXT correspond to the squared lengths of the equivalent ellipsoid axes, with

the eigenvectors representing the directions of the axes. The shape factors

are defined as ratios of eigenvalues

s1 =
λ2

λ1
, s2 =

λ3

λ1
(2.13)

where 0 ≤ λ1 ≤ λ2 ≤ λ3.

Finally, in [49] it is shown how the energy can be decomposed into con-

tributions due to the m nearest neighbor interactions, the strain due to

deviations from the optimal separation in such pairs, and the non-nearest

neighbor contribution

V = −mε+
∑
i<j

rij<r0

[V (rij) + ε] +
∑
i<j

rij≥r0

V (rij) (2.14)

where r0 is the cutoff that define neighbours and rij = ‖xi − xj‖2 is the

separation between i and j. According to the authors, the first two terms in

equations are the most sensitive to the structure and the balance between

maximizing m and minimizing the strain is a key factor in determining the

relative stability of different geometries [50]. Altering the range of the po-

tential affects the strain term for any given geometry, and thereby shifts the

balance between different motifs.

2.5 Exploring the funnels 23

Geometry Q4 Q6 W4 W6

fcc 0.19094 0.57452 -0.159317 -0.013161

hcp 0.09722 0.48476 0.134097 -0.012442

icosahedral 0 0.66332 0 -0.169754

liquid 0 0 0 0

Table 2.1: 3D bond-orientational order parameters for four typical structures;

(fcc) denotes the face-centred cubic geometry; (hcp) denotes the hexagonal close

packed geometry

Packing problems

There are many possibilities to define short geometrical descriptors for pack-

ing problems, some of which have already been proposed in the literature.

Among these descriptors, we might cite the number (average, minimum,

maximum) of contacts (spheres tangent to a single sphere), the number of

contacts with the border of the container, the number of rattlers, symmetry

indices, etc. As we noticed that they were very successful in discriminating

configurations in atomic clusters, we have chosen to try the BOPs descriptors

even for sphere packing – indeed these descriptors capture in a very precise

way the relative position of spheres and can summarize regular patterns, or

the absence of any regularity in quite an effective way.

2.5 Exploring the funnels

As mentioned earlier, the choice of a suitable local optimizer is of highest

importance in our approach. In particular, we are interested in problem-

specific methods that can fast locate the minimum of a funnel, in order to

preserve as much as possible the set of features during the descent.

2.5.1 Cluster Surface Smoothing

The PES can be viewed as a collection of various funnels; each funnel rep-

resents an atomic cluster configuration (e.g., icosahedral, decahedral, close

packed) and contains a huge amount of basins of attraction with the same

motif. Nowadays, it is fully recognized that exploration of the energetic land-

scape of a molecular is more efficiently performed if this landscape is trans-

24 Clustering Methods for Geometrical GO

formed by means of local searches. Several approaches have been proposed,

e.g., the methods described in [18] and [41] are based on the introduction

of a two-phase refinement search to be employed in place of a standard one

in a Basin Hopping scheme. Recent approaches, instead, tend to improve

the refinement phase by designing algorithms that go very deep in energy by

means of a clever use of local optimization and special purpose modifications

to the cluster geometry.

For instance, Funnel Hopping (FH) algorithm proposed in [11] is a GO

method used to locate the lowest-energy structures of LJ clusters. The basic

idea of this algorithm is to insert a second refinement optimization phase be-

tween the first gradient-based local optimization and the global optimization

phase. The goal of this second phase is to locate the minimum of the funnel

that contains the current configuration with the least cost. Generally speak-

ing, after a first numerical optimization performed with the limited memory

quasi-Newton method, the internal part of the cluster is assumed to be well

optimized, (due to the “pressure” of the atoms in the outer shell) while the

atoms belonging to the surface are still not well organized and contribute to

the growth of the value of potential energy.

Hence, the second refinement optimization phase of FH, called Cluster

Surface Smoothing optimizer (CSS), aims at locating the motif’s minimum

energy by rearranging the surface atoms through a sequence of surface per-

turbations, surface atom relocation and local optimizations. We refer to [11]

and to [42] for a deeper look into CSS, particularly about how the surface of

a cluster is rearranged at each step. Similar approaches can be found, e.g.,

in [63] and [9].

2.5.2 Monotonic Basin Hopping

In spite of its simplicity, MBH is known to be a quite efficient algorithm for

rapidly exploring funnel bottoms. Note that when multiple funnel bottoms

exist, it is usually necessary to run MBH many times from different initial

solutions in order to detect the funnel bottom corresponding to the global

minimum. Choosing the correct neighborhood size is crucial in MBH and

strongly determines its efficiency; if it is too narrow, every local minimum

becomes a funnel bottom, and MBH tends to a basic Multistart method. On

the opposite side, if the neighborhood is too large, only the global optimum

is a funnel bottom, but finding a path which ends at the global minimum is

very hard and, again, MBH behaves like a pure Multistart method.

2.6 Experiments 25

In order to apply the MBH method to our packing problem, we need to

reformulate it as a mathematical programming problem for which an efficient

local search procedures exist. It is easy to see that problem (2.7) has a linear

objective function, but reverse convex [27] quadratic constraints. Thus this

problem is non convex and highly multimodal. However, with respect to

general problems (2.6) with nonconvex constraints, for which even finding

feasible solutions may be an extremely hard task, here feasible solutions are

easy to find. As a local optimizer for MBH we adopted SNOPT. Finally,

we observe that the GO method used for sphere packing in order to explore

the funnels of the problem is radically different from that used in atomic

clusters.

2.6 Experiments

In this section, we experimentally evaluate how FS-MSL performs for the

two optimization problem types introduced above. The aim of this section

is to show that thanks to carefully designed feature extraction procedures

and local descent methods, two quite different and challenging GO prob-

lems could be solved with a significant computational saving thanks to the

implementation of a clustering-based decision.

2.6.1 Experimental setup

In order to assess the effectiveness and efficiency of our method, we have

employed an experimental setting which is shared between the scenarios of

atomic cluster optimization and sphere packing, described respectively in

Sections 2.3.1 and 2.3.2. The idea behind our experiments is first to start

an efficient Multistart–like method for both problems based on the repeated

execution of a very effective, problem-specific, descent procedure. Our aim in

this phase was to determine if the proposed method is capable of obtaining

the same quality, that is, reaching the same optima, while saving a large

percentage of local searches. Metrics that involve counting the number of

calls to an underlying local gradient-based optimizer are widely used in the

literature, as they provide a convenient way of evaluating the efficiency of a

GO algorithm, being independent from the testing hardware. In this Section,

we call a “local search” a single execution of a standard local descent method

which, in our experiments, was either L-BFGS [36] or SNOPT [24]. Indeed,

26 Clustering Methods for Geometrical GO

the first is used as underlying numerical optimizer by CSS for atomic clusters

(see Section 2.5.1), while the second is the local solver used by MBH for

the local optimization of sphere packing instances. Both can be seen as a

bottleneck of the overall computational effort.

Our experimental strategy works as follows. First, we ran a number of

independent trials (CSS and MBH, respectively, for what concerns cluster

structure prediction and sphere packing). For each of these trials, we gath-

ered the optimum reached and the number of local search calls performed

before stopping. Then, in order to perform a fair comparison, we reused

the same starting points to feed our proposed method, FS-MSL. Note that

FS-MSL has a non deterministic behavior, since its evolution does not just

depend on the sampled points but also on the order in which batches of sam-

pled points are processed throughout the iterations. To take this fact into

account, we randomly permuted the set of generated points – the same used

to start Multistart (MS) from – before running our algorithm, and repeated

the process 10 times in order to investigate its average behavior.

In order to measure the efficiency and effectiveness of our method, both

the quantity of local searches performed as well as the quality of the returned

optimum should be taken into account. As it is usual in GO literature, the

relevant measure to consider is the average number of local searches per

success: if a method, run in an independent way for a certain number of

times, calls the local search routine L times in total and, out of the total

runs performed, “hits” the putative global optimum H times, we can use the

ratio L/H as the average local search calls per success index. This measures

the average effort expected in order to “see” the global minimum for the

first time; this index should be suitably re-defined when the number of hits

is null. We define the hit rate H, the local search savings S and the average

gain G as

S = 1− LF
LM

, H =
HF

HM
, G = 1− LF

HF
· HM

LM
(2.15)

where HM and HF denote the percentage of hits achieved respectively by MS

and FS-MSL, while LF and LM represent the total number of calls to a local

optimizer by the two methods. In our experiments, HM is equal to 100%,

as a single MS run was performed and we defined as hit the best optimum

returned by this method (which, in almost all experiments, coincides with

the putative optimum in the literature). A negative average gain indicates

that our FS-MSL has been indeed beaten by the MS approach, and quantifies

2.6 Experiments 27

the advantage of using MS against FS-MSL; in particular, G is set to −1.0

whenever our method fails to hit the best record obtained by MS on all of

the 10 executions.

2.6.2 Numerical results

Our experimental analysis carefully considers the problem of tuning the pa-

rameters of FS-MSL and interpreting them; we refer to Section 2.2 for the

corresponding notation. The aim of this phase is that of finding experimen-

tal settings which guarantee a good trade-off between the quantity of local

searches performed and the quality of the returned optima. Indeed, a proper

choice of parameters can significantly enhance the behavior of the method

achieving a good balance between exploration and exploitation of the feature

space. In practice, we would like to design a tuning procedure such that a

high hit rate is observed (within the 10 independent runs) and a large gain is

achieved. In this scenario, it is a common practice to treat these differences

by aggregating all objectives into a scalar function (like the gain G previ-

ously defined); however, doing so usually results in incomplete exploration

of the parameter space. In particular, as it often happens when balancing

multiple criteria, it is important to be able to correctly identify potentially

conflicting objectives in order to cover a large choice of parameter settings.

The Pareto approach not only enables the user to identify existing trade-offs

among competing criteria but it also identifies a set of potential solutions

associated with several measures. We analyzed the two objectives S and H

in order to separate the computational effort, given by the number of local

searches performed, from the accuracy, given by the hit rate. The overall

gain measure G is already a compromise between savings and accuracy.

In the investigations proposed we used a grid search in order to approx-

imate the Pareto front in the bi–objective space. To accomplish this, we

applied an extensive enumeration of combinations by selecting them in a

manually specified subset of the multidimensional parameter space (the de-

cision space). The main parameters in our method are:

• the batch size nb (i.e., the number of new samples at each iteration)

• the value of σ, which governs the likelihood that a full optimization

will be started from a point

• the number of “concentration steps” nc, i.e., the number local descent

steps performed in order to concentrate the sample.

28 Clustering Methods for Geometrical GO

Another parameter was also considered: the decision whether the BOPs

features should be computed only over the innermost elements (the core)

or over the whole solution. So, in summary, before collecting statistics on

a wide range of instances for both problems, we ran a set of preliminary

experiments only on a tiny number of configurations (we chose to set this

number equal to 50), in order to define a small set of parameters which are

not dominated, in a Pareto sense, by other choices.

Parameter calibration for atomic clusters and sphere packing

We remind that Lennard-Jones (LJ) cluster conformation has been investi-

gated intensively and several putative minimum energy structures are avail-

able. According to the literature, see e.g. [57], while small sized LJ clusters

are usually quite similar and mostly based on icosahedral structures, neigh-

boring LJ clusters with sizes greater than 150 atoms may have different

geometrical structures. Furthermore, even for clusters with similar or equiv-

alent motifs, atoms on the outermost shell can be found to have different

packing style; as an example, both LJ clusters with N = 176 and N = 177

atoms have icosahedral cores, but the outside atoms are packed in two dif-

ferent multilayer lattice structures. As a consequence, in order to test the

optimization ability of a particular setting for this problem, we considered

a set of LJ instances starting from 150 up to 200 atoms including icosahe-

dron, decahedron and Marks decahedron structural conformations. In these

preliminary experiments for atomic clusters, the batch size nb was set to 50

while the value of σ and the number of concentration steps were varied in

a grid. In order to carefully investigate the effectiveness of our method for

avoiding expensive searches, we used a fine grid for σ starting at σ = 0.01

up to 0.5 in steps of 0.02. The number of concentration steps was varied

between 0 and 2. In this scenario, we also considered some specific atomic

cluster problem parameters like the decision C whether the BOP features

should be computed only over the core or over the whole molecular and the

decision A to consider only absolute values for BOP features or not, both

binary parameters.

For the sphere packing problem, indeed, the literature reports that the fcc

(face-centered cubic) and hcp (hexagonal close-packed) are the most dense

known packings of equal spheres. However, computational results show that

non-rigid pieces (rattlers) lead to irregular solutions even for small instances.

In fact, provably optimal configurations are known for packings of up to 10

2.6 Experiments 29

spheres only - see [54] and [55]. For this reason, we considered as enough

representative for parameter calibration a set of instances starting from 20

up to 70 spheres. For sphere packing we tested three different batch sizes nb:

10, 20 and 50. For atomic clusters nb was to 50 as some early experiments

showed that in this case changing this parameter was not very significant.

The set of values for σ was chosen in the same way as in the Lennard-Jones

case; the maximum number of concentration steps was raised to 4. For this

problem, we also included the decision whether to consider only absolute

values for BOP features or not; as the outer shell for sphere packing is forced

by the packing constraint, we choose not to evaluate the effect of computing

the BOP only for the internal spheres. Moreover the number of spheres in

the experiments was relatively small, so that distinguishing between core

and surface spheres is no more significant.

Figure 2.1 shows two possible selection procedures that can be used to

support the decision process based on the Pareto principles making the right

choice. We remark that the subset of optimal setting relating to the Pareto

front are not dominated by any other choices of the parameters, so that the

latter should allow FS-MSL to achieve the best performance for solving the

optimization problems. In practice, by looking at graphical representations

like this one, we obtained a smaller set of parameter choices on which further

experiments and analysis were performed. As already mentioned above,

to take into account the non-deterministic behavior of FS-MSL, a total of

10 runs for each experimental setting and instance are conducted. Each

symbol (dots) in figures represents the hit rate and the savings S associated

to a specific choice of FS-MSL parameters. In particular, in the left sub-

figures, (a) and (c), the two represented objectives are the average savings

and the average success rate over all instances, i.e., they were obtained by

averaging the corresponding success rates and savings in runs performed

with different instances of the problem; the right sub-figures, (b) and (d),

instead, considers the pairs composed by the minimum achieved values for

the savings and the success rate – in other words, in this figure the position

of a dot corresponds to the worst behavior observed in running 10 times the

algorithm for different instances of the problem. In all figures we emphasized

(red dots) non-dominated points corresponding to Pareto points. In all the

experiments, in order to define the hit rate, a tolerance equal to 10−6 was

used for both problems.

The figure is just a pictorial proof of the fact that a relatively small set

30 Clustering Methods for Geometrical GO

0.88 0.90 0.92 0.94 0.96 0.98 1.00

Hit Rate

0

20

40

60

80

100

%
 L

oc
al

 S
ea

rc
h

Sa
vi

ng
s

(a) Sphere Packing - Avg

0.0 0.2 0.4 0.6 0.8

Hit Rate

0

20

40

60

80

100

%
 L

oc
al

 S
ea

rc
h

Sa
vi

ng
s

(b) Sphere Packing - Min

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Hit Rate

0

20

40

60

80

100

%
 L

oc
al

 S
ea

rc
h

Sa
vi

ng
s

(c) Lennard Jones - Avg

0.0 0.2 0.4 0.6 0.8 1.0

Hit Rate

0

20

40

60

80

100

%
 L

oc
al

 S
ea

rc
h

Sa
vi

ng
s

(d) Lennard Jones - Min

Figure 2.1: Pictorial representation of the compromise between savings and hit

rate for several parameter settings. Each point is associated to a specific param-

eter setting. In (a) and (c) the averages computed over 50 problem instances are

reported, while in (b) and (d) we show the minimum (worst) values. Solutions on

the approximation of the Pareto front (red line) are not dominated by any other

solution (gray disks).

of parameter settings is sufficient to obtain a uniformly good behavior of our

method for different problem instances.

Even restricting ourselves to Pareto non dominated solutions, however,

we are eventually left with quite a large set of candidates. In order to reduce

the set of parameter setting to experiment with, we chose to analyze only

the non-dominated solutions on the Pareto front with hit rate greater than

0.9. The results are summarized in Table 2.2.

2.6 Experiments 31

The best experimental settings might be chosen within those that appear

on both the Pareto selection procedures, representing a good compromise

between conflicting criteria. Notice that σ = 0.07 appears as a common

choice for both problems with an impressive success rate (> 0.98) and good

savings. We thought also that it might be interesting to see how those

settings associated with higher savings perform in practice.

In accordance with these preliminary experiments, Table 2.2 reports (the

rows in bold) the values for the batch size nb, the threshold σ, the number of

concentration steps nc and, in addition, further specific problem-dependent

parameters, that we then used in the numerical experiments.

Lennard Jones and Morse clusters

We first consider the experiments for Lennard Jones clusters of size N = 150

up to 200 atoms. In this section we would like to show the performance of

the proposed algorithm for each size. Due to the excellent quality of the

CSS optimizer, a MS method equipped with CSS, which we denote by MS-

CSS was always able to provide, within the 1000 trials, the putative global

optimum known in the literature. We would like to point out here that we

are not referring to MS as an ideal GO procedure; however, using a global

scheme equipped with CSS – a pure local optimizer with a powerful depth

search capability, which does not attempt to jump outside the current funnel

during the surface smoothing – yields a very effective GO method, capable

of finding all known putative optima.

Figure 2.2 reports the average gain G (blue line) and number of hits

(red dashed line) on ten different permutations of the FS-MSL trials, on the

instances that were chosen in the tuning phase. When the observed gain is

above the G = 50% horizontal line, this means that our method allows to

save more than half of the L-BFGS calls needed by the multi-start scheme.

In Figure 2.2 (a), one CSS step is carried out as MSL’s concentration step

and the threshold parameter σ is set to 0.03. These results clearly show

how our scheme is able to successfully predict the putative global optimum

while saving roughly 54% of the computational effort. This happens also for

extremely hard instances, even if the corresponding funnel is very narrow,

getting rid of a large amount of redundant configurations.

In the experiment depicted in Figure 2.2 (b), the starting randomly gen-

erated points of MSL are concentrated only by running a single L-BFGS

optimization: therefore, the concentration step (which precedes the cluster-

32 Clustering Methods for Geometrical GO

Lennard Jones Clusters

Avg Min

S H nc σ A C S H nc σ A C

0.699 0.935 0 0.03 * * 0.912 0.0 0 0.5

0.658 0.943 1 0.1 * * 0.734 0.1 0 0.03 *

0.650 0.966 1 0.09 * * 0.669 0.3 1 0.15 * *

0.627 0.984 1 0.07 * * 0.665 0.4 0 0.03 * *

0.595 0.986 1 0.05 * * 0.596 0.6 1 0.07 * *

0.537 0.994 1 0.03 * * 0.494 0.9 1 0.03 * *

0.405 1.0 1 0.01 * 0.358 1.0 1 0.01 *

Sphere Packing

Avg Min

S H nc σ A nb S H nc σ A nb

0.858 0.960 2 0.4 * 10 0.850 0.0 1 0.5 20

0.849 0.965 2 0.35 * 20 0.773 0.1 2 0.25 20

0.835 0.967 2 0.3 * 20 0.766 0.2 2 0.35 * 20

0.795 0.969 2 0.15 20 0.697 0.3 2 0.15 20

0.787 0.971 2 0.2 * 10 0.652 0.4 2 0.11 50

0.765 0.980 2 0.11 50 0.580 0.6 2 0.07 50

0.737 0.987 2 0.09 50 0.227 0.7 2 0.01 50

0.700 0.991 2 0.07 50

0.371 0.993 4 0.01 50

Table 2.2: This table reports a selection of the non dominated points on the

Pareto frontiers obtained in the tuning phase for both problems. We chose to

select only the ones whose average hit rate was greater than 0.9. (*) True.

2.6 Experiments 33

150 155 160 165 170 175 180 185 190 195 200

N atoms

0

20

40

60

80

100

%
 A

ve
ra

ge
 G

ai
n,

 %
 H

it
Ra

te

G
H

(a) σ = 0.03, nc = 1

150 155 160 165 170 175 180 185 190 195 200

N atoms

0

20

40

60

80

100

%
 A

ve
ra

ge
 G

ai
n,

 %
 H

it
Ra

te

G
H

(b) σ = 0.03, nc = 0

Figure 2.2: Gain profiles for the selected testing ground. In (a), the concentration

phase consists of running a single CSS step, while in (b), randomly generated

configurations are simply optimized once through L-BFGS.

ing and selection phase) does not employ CSS’s surface smoothing technique

to group the liquid-like configurations around their basins of attraction, and

it boils down to a pure numerical optimization. As expected many hits are

lost due to a shallower concentration, even if the average gain on all of the

cluster sizes is the highest seen so far, namely G = 0.69. Notice that an

important design choice we made was to extract the fingerprint only from

the atomic cluster’s core as suggested by non-dominated solutions reported

in Table 2.2. This should be motivated by the instability of the atoms lying

on the outer shell and numerical evidence proves this intuition to be exact.

With these experiments, we showed how MSL is able to preserve the

quality of an excellent GO scheme, while saving a large percentage of local

searches. An analysis of these results from a chemical-physics point of view

appeared in [4]. These results confirm how our method is able to predict

the putative global optimum even at quite large size, and even for “magic

number” instances well known in the literature for being hard to globally

optimize, like, e.g., the N = 98 instance for Lennard Jones clusters [40]. In

particular, Table 2.3 reports numerical results for “magic number” instances

with sizes up to 150 atoms. Confirming our previous findings, our approach

was able to locate all putative global minima in 100% runs saving roughly

50% of the computational effort. In order to better appreciate the quality

of the method, in the table we also report the average number LS of local

34 Clustering Methods for Geometrical GO

searches needed to see the global optimum for the first time in 10 runs. It is

worth noticing that these numbers can be significantly improved by reducing

the batch size: in fact the stopping criterion used to compute LS was to stop

after the putative optimum was found in the current batch. Thus, at least

nb = 50 local optimization runs are always executed, and from a selection of

the resulting optima a complete CSS run is executed.

200 205 210 215 220 225 230 235 240 245 250

N atoms

-60

-20

20

60

100

%
 A

ve
ra

ge
 G

ai
n,

 %
 H

it
Ra

te

G
H

(a) σ = 0.03, nc = 1, A = True

200 205 210 215 220 225 230 235 240 245 250

N atoms

-40

-20

0

20

40

60

80

100

%
 A

ve
ra

ge
 G

ai
n,

 %
 H

it
Ra

te

G
H

(b) σ = 0.01, nc = 1, A = False

Figure 2.3: Gain profiles for Lennard-Jones clusters with 200-250 atoms. In (a),

our method was able to save roughly 48% of the computational effort using values

for σ and nc equal to 0.03 and 1, respectively. In (b), the experimental setting

with the highest hit rate on the Pareto front is considered; as we expected, the

average gain G is decreased to 41.19% but a higher hit rate was achieved.

Finally, in order to test the quality of our method and of the approach we

followed to choose a small set of parameters for the algorithm, we extended

our experiments to an out of sample set of larger instances; an overview of

results for Lennard-Jones instances with N ∈ [200, 250] is reported in Figure

2.3.

In [4], we also considered Morse clusters; we carried out experiments on

Morse cluster instances from N = 40 up to 129 atoms, running 50 “pure”

trials of FS-MSL for each configuration. By pure we mean that we were

not simulating our scheme based on existent MS-CSS runs (as we did in

the experiments for parameter calibration), and that each trial is totally

independent from the others. Our method proved to be able to detect the

putative optimum of a set of instances which are among the hardest to be

solved. We refer to [4] for detailed numerical results.

2.6 Experiments 35

Table 2.3: Gain observed for FS-MSL and average number of local searches before

seeing the putative global optimum for the first time for “magic number” instances.

The main parameters used in these experiments are σ = 0.03, nc= 1, nb = 50 and

A = True.

N Geometry Ref. % G LS

38 Oh [20] 49.08 3326.1

75 D5h [20] 46.65 4158.7

76 Cs [20] 47.90 1101.1

77 C2v [20] 48.46 718.4

78 Cs [32] 48.41 310.8

98 Td [33] 54.25 376.5

102 C2v [19] 55.19 1420.0

103 Cs [19] 55.27 3773.6

104 C2v [19] 56.64 1432.8

107 Cs [32] 55.97 588.8

Sphere packing

The results obtained in atomic clusters were encouraging enough to moti-

vate the use of the same algorithmic idea and even the same geometrical

feature descriptor, the BOP four-valued array, for the sphere packing class

of problems. As a local descent procedure, we employed the MBH method,

equipped with SNOPT as a local search method. MBH is known to be a

quite efficient algorithm to explore funnel bottoms with respect to a rea-

sonably chosen neighborhood. After a few experiments, and drawing from

previous experience, we choose as a neighborhood the hypercube centered at

current configuration with edge length equal

∆ =
1

3
√
N

This choice is motivated by the desire to explore a funnel bottom with-

out jumping outside the current region of attraction. MBH was run with

a stopping criterion consisting on 1000 consecutive iterations without any

improvement. In this setting, MBH was always able to provide, within the

1000 trials, the putative global optimum, with the only exception of instance

N = 57.

36 Clustering Methods for Geometrical GO

20 25 30 35 40 45 50 55 60 65 70

N spheres

0

20

40

60

80

100

%
 A

ve
ra

ge
 G

ai
n,

 %
 H

it
Ra

te

G
H

(a) σ = 0.07, nc = 2, nb = 50

20 25 30 35 40 45 50 55 60 65 70

N spheres

-100

-50

0

50

100

%
 A

ve
ra

ge
 G

ai
n,

 %
 H

it
Ra

te

G
H

(b) σ = 0.4, nc = 2, nb = 10

Figure 2.4: Average gain G (blue) and hit rate (red) for the sphere packing

problem with N = 20 up to 70. In all experiments a single SNOPT step has been

performed as MSL concentration step and two different σ values.

As we did with atomic clusters, we first ran a pure MBH method on

the whole set of instances. After this run, we simulated 10 runs of FS-MSL

generated by first randomly shuffling the sample of 1000 starting point used

by MBH. After this shuffling procedure, our FS-MSL was used to simulate

the decisions whether to start a full MBH descent or not from each concen-

trated sample point. A run of FS-MSL was considered as successful if the

putative globally optimal value was reached for all instances except N = 57:

in this case a run was considered as a successful one if the best configuration

found by MBH was reached. Results for the sphere packing problem are

reported in Figure 2.4. In Figure 2.4 (a), two SNOPT steps are carried out

as concentration steps and the threshold parameter σ is set to 0.07.

These results clearly show how our scheme, with a relatively small com-

putational effort, compared to the original MBH, is capable of finding all

of the putative optima while saving roughly 70% of the computational ef-

fort. This happens also for extremely hard instances, where the putative

optimum is seen only few times or, in the case of 57, when we use the best

configuration as target (distance from the putative −4.06669 ∗ 10−6).

In the second setting, Figure 2.4 (b), the threshold σ is risen from 0.07

to 0.4 keeping the same number of concentration steps. The results are

impressive: FS-MSL fails to hit the putative optimum only on instance N =

21, but the average gain on the remaining instances is the highest seen so

2.7 Conclusions 37

far with a value equal to 85.88 %.

(a) N = 83 (b) N = 96 (c) N = 109

Figure 2.5: New putative optimal configurations for sphere packing found by our

algorithm.

After these initial numerical experiments devoted mostly to find reason-

ably good parameter settings, we extended our experiments and ran our

FS-MSL method on larger instances, with the parameter settings obtained

from Table 2.2.

Extending numerical experiments up to N = 120 spheres, we could find

all putative globally optimal configuration. Moreover, we discovered new, im-

proved, putative optima for the sphere packing problem with N = 83, 96, 109

spheres (see Figure 2.5); these new putative optima have been certified and

inserted in the www.packomania.com repository. It is worth observing that

in the sphere packing context, it was considered very unlikely that improved

packings at these dimensions could be found. Our approach, thus, confirmed

to be not only a way to save expensive local searches, but thanks to the ca-

pability of deciding to start a complete search only from selected promising

points, it could deliver improved solutions even for widely studied instances.

2.7 Conclusions

What we have shown in this chapter is a general idea for computationally

efficient algorithms which “learn” from their experience and avoid repeating

expensive searches which might eventually lead to already discovered optimal

configurations. The gain in efficiency (measured in local searches saved)

obtained in the two different problem types presented is very significant,

reaching even more than 85% in the sphere packing problem. Our aim was

www.packomania.com

38 Clustering Methods for Geometrical GO

to show that the decision whether to stop early or to go deep in search of

a low level local optimum can be made through the idea of clustering based

on a small set of selected features. Of course both the choice of the features

as well as the choice of the deep exploration descent method are problem-

dependent. But we have shown that even with two quite different problems,

a common set of features can be identified which transforms a moderately

efficient GO method into a very fast and reliable one.

The experiments we have done with two very different GO problems are

in our opinion very promising for several reasons:

• we have shown that a very small number of features can be successfully

used in order to efficiently distinguish high-dimensional solutions

• quite surprisingly, we found that we could use the same feature set for

atomic clusters and for sphere packing

• we performed a set of experiments in order to select a very restricted

set of parameters with excellent performance for both problems and

for both criteria: local search savings and hit rate

• we introduced the idea of non dominated selection in the parameter

space

• further experiments made with the parameters chosen this way en-

abled us to confirm many putative optima and to confirm the high

computational savings

• for sphere packing, our method let us discover three new putative op-

tima.

A possible extension of the method proposed here might be that of de-

vising a way to be able to invert in some way the map from coordinates

to features in order to design a method which might be able to generate

new solutions based on sufficiently new features suggested by a clustering

method.

Chapter 3

Enhancing the Performace of

Memetic Algorithms

Evolutionary Algorithms (EAs) sample the objective function land-

scape at many different points, but unlike the Multistart approach

where each base point evolves in isolation, points in an evolution-

ary strategy population influence one another by means of recom-

bination. Memetic Algorithms (MAs) are commonly implemented

as EAs endowed with a local search component. In this chapter

we show that the cost of local searches in memetic approaches

may be reduced with a clustering method by avoiding multiple re-

discoveries of the same local optima. In addition, this clustering

method can supply informations that can be used to maintain the

diversity in the population. A detailed computational comparison

between different variants of memetic Differential Evolution (DE)

approaches is presented. The computational comparison reveals

that our clustering-based approach usually outperforms the other

approaches on a set of test functions with different characteristics

chosen from the GO literature.

3.1 Introduction

Memetic Algorithms (MAs) represent one of the recent growing areas of

research in evolutionary computation. The term MA is used to denote the

synergy between evolutionary (or any population-based) approach and local

39

40 Enhancing the Performace of Memetic Algorithms

improvement procedures. This paradigm has emerged in the last quarter of

previous century to become, nowadays, one of the most widely used solving

approaches; this is supported by disparate applications ranging from machine

learning to bioinformatics, from economics to physics just to mention a few.

In particular, we refer to [46] for an excellent review of memetic algorithms.

As for what concerns the exploitation and exploration balance of these

approaches, it is typically the case where a population-based component is

used to guide the exploration of the search space, providing interesting solu-

tion to be refined via local improvement operators (e.g., heuristics, approx-

imation algorithms, local search methods). However, in some applications,

local searches may be computationally expensive and this holds, for exam-

ple, when the number of variables increase. In this regard, the local search

frequency, i.e., the proportion of members of the population from which a

local search is started, may have a huge impact on the performance of the

method. It is therefore clear that, in order to come up with efficient memetic

solvers, one of the most relevant features to take into account is the balance

between the global and the local phases.

In general, a population-based algorithm is supposed to work in high

diversity conditions during the early iterations of the optimization, then

progressively lose diversity in the proximity of the basins of attractions, and

eventually lose all diversity when the global optimum is detected. The latter

condition means that large part of the population may be represented by

a unique basin of attraction. Clearly, a more intense and repeated local

optimization provides greater chance of convergence to the minimum but

limits the amount of evolution needed to locate unexplored basins. Hence,

care should be taken to balance the computational budget allocated to the

local optimization if the population is converging around previously found

optima.

According to the literature, regarding the selection of individuals on

which local improvement operator is applied, in [26] the authors propose

to decrease the local search frequency for each individual by the number of

duplicates contained in the population. This works around the problem of

having redundant local searches on the same solutions. In [64] the authors

proposed a method which uses EA to perform the exploration of expensive

objective functions; then, every several generations, the algorithm would

cluster the population using the k-means algorithm to identify the basins of

attraction.

3.2 Memetic Algorithms 41

In this chapter, instead, we would like to generalize this approach towards

using statistical techniques like Multilevel Single Linkage; if the population

consists of several clusters, we can hope to easily detect solutions likely within

the same basin of attraction upon which it may not be fruitful to apply local

search. In our experimental analysis, we investigated the use of clustering on

a quite simple but very effective memetic differential evolution schema. Our

aim was to determine if the proposed strategy is capable of obtaining the

same quality of the original method but at a fraction of the computational

cost. We point out that this approach is completely independent with respect

to the choice of the Evolutionary Algorithm (EA) and that many other

combinations are possible.

3.2 Memetic Algorithms

The rationale behind MAs is to provide a more effective and efficient global

optimization method by compensating EA in local exploitation. This hy-

bridisation can achieve a good trade-off between the exploration of the do-

main search and the exploitation of found solutions, so, first, it is important

to obtain good results in EA to offer interesting properties when applying

them to multimodal optimization problems.

Recently, various MAs have been proposed based on different population-

based global search mechanisms such as Particle Swarm Optimization [29],

Ant Colony Optimization [16], or Differential Evolution [60]; in this work we

restricted our attention to the latter. Like other EAs, DE is a population-

based, stochastic global optimizer capable of working reliably in nonlinear

and multimodal environments. Using a few parameters, DE exhibits an

overall excellent performance for a wide range of benchmark functions. The

advantages of DE, such as ease of use and high convergence characteristics

make it, nowadays, a high-class technique for real-valued parameter opti-

mization. Although DE was designed using the common concepts of EAs,

such as multipoint searching, use of recombination and selection operators,

it has some unique characteristics that make it different from many others in

the family. In the next section, we discuss DE in details and, in order to test

our strategy with effective memetic solvers, some examples of hybridization

of DE with local search are presented. Without loss of generality, we as-

sume here that we deal with minimization problems. Obviously, everything

discussed here can easily be adapted to the maximization case.

42 Enhancing the Performace of Memetic Algorithms

3.2.1 Differential Evolution

Differential Evolution (DE) is a simple population-based stochastic method

for GO, which performs extremely well on a wide variety of test and engi-

neering problems. In 1995, Price and Storn developed DE to be a reliable

and versatile continuous function optimizer that was also easy to use. Origi-

nally inspired by Genetic Algorithms (GAs) and geometrical arguments, DE

manipulates candidate solutions with simple arithmetic operations such as

addition, subtraction, and multiplication. Like nearly all EAs, DE comprises

a population of p search variable vectors

P = {x1, . . . , xp} ⊂ Rn

where x
(j)
i denotes the j-th component of the n-dimensional vector xi ∈ Rn.

The method maintains and evolves the whole population through successive

iterations of mutation, crossover and selection. The idea distinguishing DE

from GAs is a very simple schema for recombining variable vectors consisting

of differential mutation and arithmetic crossover. In particular, DE produces

a population of trial vectors by adding a scaled, randomly sampled, vector

difference to a third vector. If the resulting vector yields a objective func-

tion value lower than a predetermined member, the newly generated vector

replaces the vector with which it was compared. Extracting distance and

direction information from the population to generate random deviations

results in an adaptive scheme with interesting convergence properties. The

procedure of classic DE is discussed in detail to serve as a basis for theoretical

analysis and algorithm development in later sections.

Let f : Rn → R be the objective function of the problem with given

boundary constraints on search variable vectors collected in two n-dimensional

vectors xL and xU . We consider the following problem

min
xL≤x≤xU

f(x) (3.1)

Initialization. In order to establish a starting point for seeking, the popula-

tion S must be initialized. Often there is no more knowledge available

about the function to be optimized than the boundaries of the prob-

lem variables. In this case, the initial population may be randomly

generated according to a uniform distribution, that is,

x
(j)
i = x

(j)
L + U(0, 1) · (x(j)

U − x
(j)
L) ∀j ≤ n, ∀i ≤ p

3.2 Memetic Algorithms 43

where x
(j)
L and x

(j)
U are the lower and upper bounds for the j-th com-

ponent of the variable vector, respectively. As a rule, we will assume

a uniform probability distribution for all random decisions unless oth-

erwise stated.

Mutation. The aim of the differential mutation is to obtain an intermediate

vector based on the current population P . Equation (3.2) shows how

to combine three different, randomly chosen vectors to create a trial

vector

vi = xr1 + F · (xr2 − xr3) (3.2)

where r1, r2 and r3 are distinct indices chosen at random in the set

{1, . . . , p} \ {i}. None of these points should coincide with the current

target vector xi. The scale factor, F ∈ (0, 2) is a positive real number

that controls the rate at which the population evolves. In classic DE,

the scale factor is a single parameter used for the generation of all

trial vectors, while in many adaptive schemes each individual xi is

associated with its own mutation parameter Fi.

Crossover. To complement the differential mutation search strategy, the

trial vector ui is found using the target xi, the intermediate vector vi
and a crossover rule. The most common form of crossover is uniform

and is defined as

u
(j)
i =

{
v

(j)
i if U(0, 1) ≤ CR

x
(j)
i otherwise

(3.3)

where the superscript (j) represents the j-th component of respective

vectors. The crossover probability, CR ∈ [0, 1], roughly corresponds to

the average fraction of vector components that are inherited from the

mutation vector vi.

Selection. DE uses simple one-to-one survivor selection where the trial vec-

tor ui competes against the target vector xi. The vector with the lowest

fitness value survives into the next generation. The selection process

may be outlined as

xi =

{
ui if f(ui) < f(xi)

xi otherwise
(3.4)

where f is the function to be minimized.

44 Enhancing the Performace of Memetic Algorithms

The method reported above is one of the possible variants of DE, but

different implementations of the basic scheme can be identified thanks to a

simple taxonomy which takes the form of DE/x/y/z. Here x, which takes the

values rand or best, denotes the base vector to be perturbed, y denotes the

number of difference vectors considered for perturbation, i.e., the difference

between two distinct randomly selected elements in the population, and z

representing the crossover method. The latter value can be bin, indicating

that the choice is made following a binomial probability distribution func-

tion, or exp when the choice on which components to keep from the current

population is based on an exponential distribution The following are different

mutation schemes frequently used in the literature:

1. Let r1, r2, r3 be distinct and randomly generated in {1, . . . , p} \ {i};
DE/rand/1 scheme denotes

vi = xr1 + F · (xr2 − xr3);

2. Let r1, r2 be distinct and randomly generated in {1, . . . , p} \ {i};
DE/target-to-best/1 scheme denotes

vi = xi + F · (xbest − xi) + F · (xr1 − xr2)

where xbest is the best member of the current population;

3. Let r1, . . . , r4 be distinct and randomly generated in {1, . . . , p} \ {i};
DE/best/2 scheme denotes

vi = xbest + F · (xr1 − xr2) + F · (xr3 − xr4);

where xbest is the best member of the current population;

3.2.2 Hybridization of DE

Although DE belongs to the elite EA class in consideration of its convergence

properties, its overall performance does not meet the requirements for all

classes of problems. In accordance with the earlier discussion, hybridization

with a local search procedure can accelerate DE by improving its exploitation

capability. In this regard, to propose a novel hybrid DE algorithm, a number

of important aspects should be taken into account:

3.2 Memetic Algorithms 45

Local procedure employed. The choice of the local procedure (LS) may

have a relevant impact on the performance of the approach. Most of the

strategies refine the solutions of each generation by applying efficient

LSs, like gradient descent or hill-climbers, but crossover operators for

local refinement are also employed. A crossover operator is a recombi-

nation operator that produces new points around the population; for

this reason, it may be considered as a move operator in a local search

strategy.

Frequency of refinements. LSs can be applied to every member of the

population or with some specific probability and with various replace-

ment strategies. In particular, the frequency of refinements denotes the

proportion of members of the population from which a LS is started.

A careful selection should take into account two conflicting objectives:

on the one hand to avoid the waste of computational effort caused by

the multiple detection of the same local minimizer, on the other hand,

to avoid not to start local searches from promising points. For exam-

ple, the algorithm proposed in [47] uses simple a local hill-climbing

techniques with simplex crossover operator (see [69]) to speed up con-

vergence of only the best individual in the population, the rest of the

search is done by classical DE. In [35], instead, a local search operator,

i.e., random walk with direction exploitation, is applied to each DE

individual with predefined fixed probability; the number of function

calls used by each local search is also fixed.

Incorporation of domain-knowledge. As a consequence of the no free

lunch theorem no efficient general purpose solver exists. It is clear that

excessive reliance on purely stochastic evolutionary processes, with no

expert guidance or external knowledge incorporation, will often lead to

performance that is simply too slow for practical applications. These

simple observations provided the insight for conceptualizing algorithms

wherein the basic mechanisms of evolution should be augmented with

problem-specific knowledge.

In what follows, we will restrict our attention to a memetic approach

for the solution of continuous global optimization problems called Memetic

Differential Evolution (MDE) [39]. Some interesting results are presented

which concern the application of this method to standard GO test functions.

In order to make the introduction of our approach clear, MDE and some

46 Enhancing the Performace of Memetic Algorithms

improved variants, namely G-MDE, D-MDE and H-MDE, will be described

in more detail in the next sections. We point out that the latter was used

as a base for investigating the effects of the use of clustering on memetic

algorithms.

3.2.3 Memetic Differential Evolution

In [39] the authors explore the behavior of a quite standard DE algorithm

applied to continuous objective functions transformed by means of a local

procedure. As we already explained, the only difference with respect to the

classical DE approaches is that a local search is performed form each newly

generated point. In spite of the fact that MDE is a rather simple approach,

it proved to be very efficient both over standard GO test functions and over

some packing problems [39].

Algorithm 2 Memetic Differential Evolution (MDE)

Require: The population matrix P and the population size p = |P |;
the parameters F ∈ (0, 2) and CR ∈ [0, 1] for DE

1: for all i ∈ {1, . . . , p} do

2: Randomly choose r1, r2, r3 ∈ {1, . . . , p} \ {i}, all distinct;

3: if U(0, 1) ≤ CR then

4: u
(j)
i ← x

(j)
r1 + F · (x(j)r2 − x

(j)
r3)

5: else

6: u
(j)
i ← x

(j)
i

7: end if

8: qi ← L(f,Ω, ui)

9: if f(qi) < f(xi) then

10: xi ← qi
11: end if

12: end for

13: return The new population matrix P

The MDE method is summarized in Algorithm 2; in the pseudocode, L
is a local solver which, given an objective function f over Ω and a starting

point x̄, returns x∗ = L(f,Ω, x̄), a local minimizer for f where f(x∗) ≤ f(x)

for all x in a neighborhood of x∗. Note that the selection mode is the same

as in DE, where the procedure simply compares the current i-th member of

the population xi with the minimizer qi, and replaces the former with the

latter if f(qi) < f(xi). This choice helps to drive the population towards

3.2 Memetic Algorithms 47

local minimizers improving the convergence characteristics of the original

DE algorithm.

With respect to the aspects discussed in Section 3.2.2, the probability

of starting a local search is equal to one for each newly generated point; no

problem-specific knowledge is incorporated; the strategy can be classified as

DE/rand/1/bin. As mentioned earlier, however, the strategy to call local

search with a fixed frequency may have a strong impact on the performance

of the method. In fact, a large amount of redundant computation may be

incurred on evaluating the same solutions.

3.2.4 Some variants of MDE

In this section, we discuss three variants of MDE, namely the greedy variant

(G-MDE), the distance variant (D-MDE), and the hybrid variant (H-MDE)

introduced in [7]. Due to their different structures and exploration capability,

a comparison with the latter may be a good indicator of the quality of our

approach. According to the authors, indeed, G-MDE turns out to be a robust

and efficient approach for single-funnel test functions while D-MDE, where

the generation function is coupled with a diversification mechanism, appears

to be the best choice for multi-funnel functions.

Generally speaking, all these methods can be viewed as a variant of the

DE generation and/or selection mechanism. However, we emphasize that,

in our numerical analysis, we choose not to investigate any sophisticated

memetic algorithms, because even simple and easy to implement approaches

are able to return very good results as reported in [6].

Greedy MDE (G-MDE)

In order to generate a trial point for the population member xi , the proce-

dure randomly selects another element of the population xj and tries to pre-

dict the function value of the perturbed point by computing the difference be-

tween the objective function values at xi and xj , that is, ∆f = f(xi)−f(xj).

According to the observed function values, G-MDE perturbs the current

point along a direction which is, presumably, a descent one. This slight

modification of the generation function of MDE is called greedy because it

favors the directions (xj − xi) which could lead to better function values if

∆f > 0; otherwise, the method reverses the direction as follow

vi = xi + ϕF · (xr1 − xi) (3.5)

48 Enhancing the Performace of Memetic Algorithms

where ϕ = sign (∆f) and r1 is uniform randomly selected in {1, . . . , p} \ {i}.
In the G-MDE generation function, see Algorithm 3, the perturbations

are applied to each population member xi and the result of the perturbation

is compared with xi itself. The authors explain that such greedy function

can be very effective for single-funnel functions, but, at the same time, claim

that a too fast convergence to funnel bottoms may be a negative feature in

terms of diversity maintenance.

Algorithm 3 The generation procedure for G-MDE

Require: The population matrix P and the population size p = |P |; the index of

the evaluated point i; the parameters F ∈ (0, 2) and CR ∈ [0, 1] for DE

1: Randomly choose r1 ∈ {1, . . . , p} \ {i};
2: if f(xi) > f(xr1) then ϕ = 1

3: else ϕ = −1

4: end if

5: if U(0, 1) ≤ CR then

6: vi = xi + ϕF · (xr1 − xi)
7: else

8: u
(j)
i ← x

(j)
i

9: end if

10: qi ← L(f,Ω, ui)

11: return The candidate vector qi

Distance MDE (D-MDE)

In the D-MDE, in order to counterbalance the greediness of G-MDE, some

diversity within the population is maintained. In particular, the generation

function is still the greedy one, but now the selection function is described

as follows

x∗k =

{
qi if f(qi) < f(x∗k)

x∗k otherwise
(3.6)

where
x∗k = arg min

xk∈P

k 6=i

d(qi, xk)
(3.7)

with d(·, ·) as a distance (dissimilarity) measure between local minimizers.

The distance measure employed by the authors is based on function values,

3.2 Memetic Algorithms 49

i.e., d(qi, xk) = |f(qi) − f(xk)|. However, other distance measures can be

defined, e.g., the Euclidean distance, including some problem-specific ones.

Different from G-MDE, the selection function is not applied any more

between the current population element xi and the corresponding local min-

imizer, but between the member of the population x∗k, nearest to the newly

generated candidate qi, and the candidate itself. The authors claim that the

new selection function may guarantee a population more spread around the

feasible region, since, e.g., there cannot be different copies of the same point

within the population, thus causing a slower convergence of the algorithm

but on the also an increase of the search area explored by the algorithm.

Algorithm 4 The selection procedure for D-MDE

Require: The population matrix P and the population size p = |P |; the index of

the evaluated point i; the candidate vector qi
1: x∗k ← arg minxk∈P, k 6=i d(qi, xk)

2: if f(qi) < f(x∗k) then

3: x∗k ← qi
4: end if

5: return The new population matrix P

Hybrid MDE (H-MDE)

In the two previous subsections we have presented two different approaches

which appear to be effective in different situations. Numerical results re-

ported in [6,7] show that G-MDE converges fast and appears to be suitable

for single-funnel functions, while D-MDE converges more slowly but appears

to be more effective for multi-funnel functions. The difference between the

two approaches only lies in the selection mechanism. In [7] an hybrid ap-

proach which is able to self adapt to the properties of the function to be

optimized is introduced; the latter uses both the greedy and the distance

selection mechanisms previously discussed. In particular, the generation of

the candidate points is always the greedy one. If f(xi) − f(xj) > 0, that

is, ϕ = 1, the method also use the G-MDE selection function, thus forcing

the greedy behavior. Otherwise, the D-MDE selection function is employed.

This way, the H-MDE can avoid too fast convergence of the population to-

wards regions which do not contain the global minimizer.

50 Enhancing the Performace of Memetic Algorithms

3.3 Clustering-based MDE

The main idea, in order to enhance the performance of a memetic approach,

is based on the fact that it is unnecessary to start twice a local search on the

same basin of attraction since the same local optimum will be rediscovered

again and again. In this regard, newly generated points belonging to the

Algorithm 5 Clustering-based MDE (C-MDE)

Require: The population matrix P and the population size p = |P |;
the parameters F ∈ (0, 2) and CR ∈ [0, 1] for DE

1: Sk ← Sk−1 (S0 = P)

2: O ← ∅
3: for all i ∈ {1, . . . , p} do

4: Randomly choose r1, r2, r3 ∈ {1, . . . , p} \ {i}, all distinct;

5: if U(0, 1) ≤ CR then

6: u
(j)
i ← x

(j)
r1 + F · (x(j)r2 − x

(j)
r3)

7: else

8: u
(j)
i ← x

(j)
i

9: end if

10: end for

11: for all i ∈ {1, . . . , p} do

12: if 6∃ s ∈ Sk : f(s) ≤ f(ui) and ‖s− ui‖ ≤ τ (|Sk|+ p) then

13: qi ← L(f,Ω, ui)

14: O ← O ∪ {qi, ui}
15: else

16: qi ← ui
17: end if

18: if f(qi) < f(xi) then

19: xi ← qi
20: end if

21: end for

22: Sk ← Sk ∪ O
23: return The new population matrix P

same basin of attraction are detected by means of clustering techniques, and

only one local search is started for each basin. This way, the search process

can reduce the cost of the local phase while providing precise local optima.

Moreover, the strategy can avoid the collapsing of part of the population to a

single point, which prevents further progress, thus improving the probability

of convergence to a global minimizer. In fact, when the population only

contains very similar solutions, the generation function will likely discover

the same solutions, thus leading to diversity loss and potential premature

convergence.

3.3 Clustering-based MDE 51

Different from MSL, DE replaces the sampling procedure of Multistart

but the population remains independent from the past generated samples.

We thus have two distinct sets of points; one of fixed size for DE, the popu-

lation P to be evolved, and another one for the clustering procedure which

contains all the past explored points, that is, the transformed sample S. Al-

gorithm 5 sketches the overall procedure; we will refer to this new clustering-

based MDE method as C-MDE. Compared with the pseudocode reported in

Algorithm 2, three crucial issues have to be discussed:

Clustering method. We recall that in MSL the decision to start a local

search at the k-th iteration depends only on the threshold

τ(K) = π−1/2

(
Γ
(

1 +
n

2

)
µ(Ω)

σ logK

K

)1/n

(3.8)

where σ > 0 is a parameter, µ(Ω) is the Lebesgue measure of Ω, K

is the total number of sample points and Γ(·) is the gamma function.

A point is taken as the starting point for a local optimization if there

is no other sample point, within the critical distance τ(k), with lower

function value. We point out that the theoretical properties of MSL

relied on a uniform sampling of the search space; our method results,

instead, in a MSL with a sampling distribution generated by the DE

and thus different from a uniform one. Intuitively, the non-uniformity

of the sample does not prevent the global minimum to be discovered

provided that the probability of generation of a point in its basin is

different from zero. As long as at least a point is generated in the

basin of a local minimizer, it will be discovered once K gets large

enough and τk tends toward 0. Hence, we can replace the uniform

distribution by another one biased toward regions of the search space

where we hope the global optima is more likely to be. On the other

hand, the non-uniformity also has implication on the probability with

which the local search is applied to a given sample point. With uniform

distribution, τ(·) is computed in such a way that the probability of not

having a point within distance τ(K), decrease to zero to guarantee

some attractive properties as reported in Section 1.2.1. With non-

uniform distribution, the threshold may be too large in high-density

regions, e.g., around the basins of attractions, and too small in low-

density regions. Though regions sampled with a low-density can be

seen as less promising in the DE view, we have the effect of performing

52 Enhancing the Performace of Memetic Algorithms

local search with a higher probability on points sampled far away from

the funnels already detected where, however, unexplored basins might

exist. In this regard, C-MDE has the natural capability of promoting

the exploration phase of the method avoiding a premature population

collapsing.

Transformed sample. Since a population-based method replaces the sam-

pling procedure, a set of transformed sample S, which contains knowl-

edge on the past minima discovered, is maintained to cluster the newly

generated points. After wide experimentation, we decided to use the

set S composed of :

1. All of the current members of the population P ;

2. All of the local optima qi discovered in previous iterations;

3. All of the previous generated points ui from which the decision of

starting a local search was taken.

Every descent path in the basins of attractions is conveniently approx-

imated by the pair (ui, qi). We point out that the cardinality of S
is non-decreasing although some garbage collection is made to avoid

duplicates. As commented above, we used the classical threshold to

decide the meaning of “close enough” and choose whether to start a

local search from points in the current population. The size of the

transformed sample for clustering grows less than linearly. Thus, in

practice, keeping in memory all the minima detected up to the current

iteration may be an appropriate choice. Conversely, if a huge number

of points need to be stored, a mechanism to reduce the size of the set

S is required. As an example, a fraction of points with the highest

function value may be discarded at each iteration.

Selection mode. Note that DE algorithms can use both synchronous and

asynchronous modes of survivor selection. In synchronous strategy the

population is updated with all the new solutions at the same time, in-

stead of updating the individuals just after being generated. Canonical

DE and C-MDE implement a synchronous selection by maintaining a

primary array for holding the current individuals and a secondary array

to store the selected solutions for the next generation. Once the cal-

culations with the current population members finish at a generation,

the secondary array and the primary array are exchanged for resuming

3.4 Standard GO test functions 53

calculations in the next generation. On the other hand, the variants of

MDE use the asynchronous strategy. In this case, each newly gener-

ated point can replace its competitor (if better or equal) and become

a member of the current population, subsequently taking part in the

mutation of the other population members. Asynchronous update al-

lows the improved solutions to contribute to the evolution immediately

and can speed up the convergence faster than the synchronous batch

mode update.

Note that our clustering-based schema, as reported in Algorithm 5, does

not differ with respect to the generation and selection mechanisms of DE.

Hence, all the clustering-based variants as described in Section 3.2.4 can

be easily obtained; as an example the pseudocode of the greedy variant of

C-MDE is sketched in Algorithm 6. In what follows, we will call all these

variants CG-MDE, CD-MDE and CH-MDE, respectively.

3.4 Standard GO test functions

In this section we propose a few test problems commonly cited in the GO

literature for which we performed an extensive set of tests in order to give

a comparison of performance of the methods previously introduced. The

test suite that we used consists of three highly multimodal benchmark func-

tions, namely the Rastrigin, the Ackley and the Schwefel function, and some

variants that will be discussed later; all test problems reported are box-

constrained. Finding the minimum of the above mentioned functions, despite

the use of gradient-based optimization, is a fairly difficult problem.

Test Problem 1. The Rastrigin function [67] is defined as

f1(x) = 10n+

n∑
i=1

(
x2
i − 10cos(2πxi)

)
(3.9)

subject to −5.12 ≤ xi ≤ 5.12.

The Rastrigin function has a huge number (10n) of local minimizers,

but the function is a single-funnel one and the local minimizers are

uniformly distributed within the search space. The global minimum is

located at the origin x∗ = (0, . . . , 0) with f1(x∗) = 0.

54 Enhancing the Performace of Memetic Algorithms

Algorithm 6 The greedy variant of C-MDE (CG-MDE)

Require: The population matrix P and the population size p = |P |;
the parameters F ∈ (0, 2) and CR ∈ [0, 1] for DE

1: Sk ← Sk−1 (S0 = P)

2: O ← ∅
3: for all i ∈ {1, . . . , p} do

4: Randomly choose r1 ∈ {1, . . . , p} \ {i};
5: if f(xi) > f(xr1) then ϕ = 1

6: else ϕ = −1

7: end if

8: if U(0, 1) ≤ CR then

9: vi = xi + ϕF · (xr1 − xi)
10: else

11: u
(j)
i ← x

(j)
i

12: end if

13: end for

14: for all i ∈ {1, . . . , p} do

15: if 6∃ s ∈ Sk : f(s) ≤ f(ui) and ‖s− ui‖ ≤ τ (|Sk|+ p) then

16: qi ← L(f,Ω, ui)

17: O ← O ∪ {qi, ui}
18: else

19: qi ← ui
20: end if

21: if f(qi) < f(xi) then

22: xi ← qi
23: end if

24: end for

25: Sk ← Sk ∪ O
26: return The new population matrix P

Test Problem 2. The Ackley function [3] is defined as

f2(x) = −20e−0.2
√

1
n

∑n
i=1 x

2
i − e 1

n

∑n
i=1 cos(2πxi) + 20 + e (3.10)

subject to −32.768 ≤ xi ≤ 32.768.

The Ackley function is also highly multimodal and a single-funnel one.

While the barriers between local minimizers are lower with respect to

the Rastrigin function, the nearest distance between local minimizers

is not constant and it becomes smaller as we approach the global min-

imum. Moreover, the function has a global minimum located in a very

tight basin. The global minimum is located at origin x∗ = (0, . . . , 0)

with f2(x∗) = 0.

3.4 Standard GO test functions 55

Test Problem 3. The Schwefel function [56] is defined as

f3(x) = −
n∑
i=1

xisin
(√
|xi|
)

+ αn (3.11)

subject to −500 ≤ xi ≤ 500 and α = 418.982887.

In comparison to Rastrigin function, Schwefel function adds the diffi-

culty of being less symmetric and having the global minimum at the

edge of the search space. Additionally, the Schwefel function is usually

much more challenging with respect to the other two functions in view

of its highly multi-funnel landscape. The global minimum is located at

x∗ = (420.9687, . . . , 420.9687) where f3(x∗) = 0.

While widely used in the GO literature, these functions have some prop-

erties which may simplify the detection of the global minimizers. The first

simplifying property is the separability. Both the Rastrigin and the Schwe-

fel functions are separable. In this case, each variable is independent of the

other variables; this fact can be sometimes exploited by global optimization

approaches in order to reduce an n-dimensional problem into the solution

of n one-dimensional ones. Another simplifying feature is the fact that the

global minimizer lies at the center of the feasible set, which is the case both

for the Rastrigin and for the Ackley function. Indeed, sometimes, GO meth-

ods use the center of the feasible box as a default starting point. Finally, the

Rastrigin and Ackley functions are symmetric with respect to the origin.

In the literature, variants of the basic functions are proposed where high

multimodality and the funnel properties are also maintained, but the sim-

plifying features are removed. The variants we considered are:

fi (DW (x− x̄)) i = 1, 2, 3 (3.12)

where D ∈ Rn×n is a diagonal matrix of order n with positive diagonal

elements; W ∈ Rn×n is an orthonormal matrix of order n; x̄ ∈ Rn is a

n-dimensional shift vector. Let I be the identity matrix of order n, the

following combinations have been considered:

Separable. D = W = I, x̄ = 0; this is the basic version of the GO test

function;

56 Enhancing the Performace of Memetic Algorithms

Rotated (R). D = I, W random orthonormal matrix, x̄ = 0; the or-

thonormal transformation eliminates separability. The rotation matrix

W is generated from standard normally distributed entries by Gram-

Schmidt ortho-normalization;

Rotated and Shifted (RS). D = I, W random orthonormal matrix, x̄

randomly generated within the feasible region; the shift vector moves

the global minimizer far away from the center of the feasible set;

Rotated, Shifted and Scaled (RSS). D with random diagonal elements

in the interval [1, 4], W random orthonormal matrix, x̄ randomly gen-

erated within the feasible region; the diagonal transformation removes

the symmetry of the problem with respect to permutation of the vari-

ables.

All the combinations have been applied to the basic functions and mod-

erately small dimensions n = 2, . . . , 5 were considered. Note that when we

apply the orthonormal transformation, the search space is not rotated, i.e.,

the feasible region remains the same for all test problems. We point out

that by applying such transformation on Schwefel function more and better

minima may occur further away from x∗ = (420.9687, . . . , 420.9687) with

unknown function values. In this case, a run was considered as a successful

if the best configuration found among all the methods employed was reached.

In conclusion, the set of benchmark problems we employed in our ex-

perimentation is made up by 48 test functions. According to [7], some GO

test functions as the Levy, the Sinusoidal and the Schaffers ones, have been

discarded since they turned out to be quite simple ones with respect to the

proposed approaches.

3.5 Experiments

In this chapter, we present the experimental results in a compact form and

only performance profiles are used to evaluate and compare the methods

investigated. The detailed numerical results can be found in the report [65].

3.5.1 Experimental setup

We have carried out different experiments to assess the performance of our

approach based on clustering using the test suite described in Section 3.4.

3.5 Experiments 57

The focus of this study was to compare the performance of the our method

with the original one, in a variety of settings and involving different explo-

ration features as described in Section 3.2.4. Our aim is to determine if the

proposed approach is capable of obtaining the same quality, while saving a

large percentage of local searches. Here, we used CG-MDE, CD-MDE and

CH-MDE to denote the original methods powered by clustering techniques.

Though classic DE uses only three control parameters, namely, population

size p, scale factor F , and crossover probability CR, the choice of these pa-

rameters might be critical for the performance (e.g., see [37]). Moreover, we

point out that C-MDE also requires an additional parameter σ which will

be discussed later.

We summarize some choices common to all methods in what follows:

Feasibility. The problem of checking and possibly restoring feasibility is

common in DE methods, even for problems defined on a box. In fact,

the mutation operator may generate trial vectors whose components

violate the predefined boundary constraints. A possible solution is

to set the violating component to be the middle between the violated

bound and the corresponding components of the parent individual, i.e.,

v(j) = (x
(j)
L + x(j)) / 2 if v(j) < x

(j)
L

v(j) = (x
(j)
U + x(j)) / 2 if v(j) > x

(j)
U

where v(j) and x(j) are the j-th components of the mutation vector and

the basic vector, respectively. However, in [58] a new approach to deal

with box constraints has been recently introduced; the authors have

showed that this technique performs well especially when the optimal

solution is located near or on the boundary. The basic idea of this

approach requires the calculation of an appropriate value for F given

the direction d = vi − xi. If xi is a feasible base point then the points

xi + F · d belong to the feasible region for all the values F ∈ [0, F ∗],

where

F ∗ = min

{
min

{
x

(j)
L − x(j)

d(j)

∣∣∣ d(j) < 0

}
, min

{
x

(j)
U − x(j)

d(j)

∣∣∣ d(j) > 0

}}

and the point x+F ∗ ·d belongs to the boundary of the box. Feasibility

with respect to all constraints is thus obtained by simply choosing F ∗

58 Enhancing the Performace of Memetic Algorithms

as value for the scale factor in the current mutation function. The

second strategy is the one used in all our experiments.

Scale factor. The scale factor is generally related to the convergence speed.

In order to avoid premature convergence, it is crucial for the latter to

be large enough and a reasonable choice, F = 0.5, is taken following

the numerical experiments reported in [6, 7]

Crossover probability. No crossover is performed, CR = 1, unless other-

wise stated. The reason for this choice is due to the fact that the

crossover operation, at least the standard one discussed in Section

3.2.1, could improve the performance when applied to separable func-

tions, but deteriorates the performance over non-separable functions.

Stopping criteria. The algorithm was stopped as soon as one of the follow-

ing conditions was satisfied: 1) the sum of the differences in function

value between the members of the population falls below a threshold

(10−4 in the experiments). This condition is only necessary in order

to prove that the population has shrunk into a single point, indeed,

as only function values are taken into account, more than one point

cluster might exist. This rule, by far, was the most common reason

for stopping in all the performed experiments. 2) no change has been

observed in the population (more precisely, in the objective values as-

sociated to the population elements) during the last 100 iterations of

the algorithm. 3) the best observed value did not change during the

last 20 000 local searches performed. These stopping criteria are the

same used in [7].

3.5.2 Performance criteria

The algorithms presented in this work are based on multiple gradient-based

local searches. Starting points for such local searches are generated with the

aim of reaching the global minimizer with a limited computational effort.

The basic operation through which the computational effort is measured is

the local search call. In this regard, four performance criteria are selected

from [7] to evaluate the performance of the algorithms. These criteria are

described as follows:

%S denotes the percentage of successes over the set of the random runs;

3.5 Experiments 59

LS/S denotes the average number of local searches per success over the set

of random runs;

D denotes the average distance over the instances where a failure occurs,

computed as

|f(x∗)− f(x̂)|

where f(x∗) is the global minimum value attained at the global mini-

mizer x∗ and f(x̂) is the best function value reached by the algorithm

attained at some point x̂;

SP denotes the success performance

LS× 1

S

where LS is the number of local searches over only the successful runs.

Of course, such criterion is meaningless for real GO problems where

the global minimum value is not known, but, in this way, we are able to

measure the computational effort of the algorithms to reach a global

minimizer without taking into account the additional computational

effort for stopping the algorithm themselves.

3.5.3 Numerical results and comparison

In this chapter, even if there are many variants of memetic DE schemes,

we only compare our approach with the three versions proposed in Section

3.2.4. We would like to emphasize that these variants outperforms the origi-

nal MDE and they are quite competitive even when compared with different

DE schemes powered with local searches. In order to study the performance

of our clustering-based scheme, we experimented using the test suite intro-

duced in Section 3.4. We point out that the diversity of the test problems

is adequate enough to make a general conclusion about the performance of

the algorithms.

In our experimentation, we ran a set of 100 independent runs of each

test problem to investigate the average behavior. Note that to evaluate the

algorithms in a fair way, we used the same stopping criteria and the same

set of initial random populations for each benchmark instance.

Here, we decided to present only the results obtained by using L-BFGS

[36] as local search method. We point out that the use of different local

solvers might also lead to (usually slightly) different results. As mentioned

60 Enhancing the Performace of Memetic Algorithms

earlier, we fixed F = 0.5 and CR = 1 as the parameter setting for all

algorithms following the numerical experiments performed in [7]; we have

not performed a thorough computational investigation with other values.

All implementations in this work was written in Python - making use of

the Numba [30] library for performance - using as local solver the L-BFGS-

B 3.0 solver with default parameters (and the maximum number of variable

metric corrections used to define the limited memory matrix fixed to 3) [45].

Sensitivities to the threshold parameter σ

The use of clustering techniques in memetic approaches may balance the

exploration and the exploitation of the evolutionary process. Moreover, our

method is also simple to use, by adding only one parameter to the original

ones. In order to investigate the effect of the parameter σ on the performance

of the proposed algorithm, see equation (3.8), a first set of experiments has

been carried out fixing the value for the population size p and keeping all the

remaining parameters unchanged. The value of the parameter σ has been

varied in the following range

σ ∈
[

5 · 10−6, 0.5
]

In what follows, we propose performance profiles to compare the numeri-

cal results obtained; we refer to [15] for more details about this performance

metric construction and to [65] for details about the numerical results. Gen-

erally speaking, the performance profiles provide a very useful and convenient

means of assessing the performance of an algorithm relative to the best one

on each test problems. As already mentioned above, our primary aim is to

show that our clustering-based variants are able to outperform the original

ones in terms of average number of local searches needed to reach the global

minimizer, but, on the other side, we would like to show that this approach

is also competitive in terms of the quality of the solution returned.

We analyzed the performance of each variant of the MDE method intro-

duced in Section 3.2.4, namely the greedy, the distance and the hybrid one,

comparing the latter with the same variants powered with clustering tech-

niques, separately. Each curve gives the profile obtained for each method by

solving the benchmark functions 100 times; moreover, we compared the per-

formance of the methods using both LS/S and %S values (horizontal axis)

as described in Section 3.5.2.

3.5 Experiments 61

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: The performance profiles of the variants of MDE for the benchmark

problems with a value of the population size equal to 10 and three different choices

of the parameter σ: 5 ·10−3 (C03), 5 ·10−4 (C04) and 5 ·10−6 (C06), respectively.

62 Enhancing the Performace of Memetic Algorithms

Here, we decided to depict the curves related to the original variant of

MDE and the clustering-based alternatives for three different choices of the

parameter σ:

σ ∈
{

5 · 10−3, 5 · 10−4, 5 · 10−6
}

The comparison of the methods for the first experimentation is summa-

rized in Figure 3.1, where the value of the population size p is fixed to 10.

As we can see from the performance profiles on the left side, the C-MDE

methods outperform the variants of the original MDE, the black curve, in

terms of the average number of local searches per success for all the variants

and the values of the parameter σ considered. So it is clear that a large

percentage of local searches can be saved by raising the value of σ, however,

an extreme choice for this parameter might lead the method to becoming

trapped in a local minimizer. In fact, the results on the right side of the

figure show that, e.g., for values of σ that vary between 5 · 10−3 to 5 · 10−4,

the red and blue curves, the C-MDE method is not able to preserve the same

quality for any of the original variants investigated.

More interesting results, instead, are obtained for σ = 5 ·10−6, where our

approach, the green curve, is able to balance exploration and exploitation in

the majority of the cases, obtaining the same quality (or even better, e.g., see

Figure 3.1 b and f) but at a fraction of the computational cost. In particular,

as we can see from some of the experiments performed on the Schwefel’s func-

tion - see Table 3.1, our clustering-based method appears to be more robust

then G-MDE in terms of percentage of successes. A tentative explanation

for these unexpected results on a very complicated function might be the fol-

lowing: the clustering methods are able to counterbalance the greediness of

the G-MDE, thus exploiting information efficiently mantaining diversity in

the population and promoting exploration. This ”irregular” behavior of the

CG-MDE method is a good feature with respect to multi-funnel functions

where we need to avoid too fast convergence.

To investigate the sensitivity of the parameter σ to the variations of the

population size, we decided to repeat all the experiments on the test suite

raising the value of p up to 20. Note that due to the moderately small

dimensions of the test problems - needed to successfully apply clustering

techniques - the following choice of the population size

p ≈ [5n, 10n]

can be considered quite large, thus proposing a new scenario with respect

3.5 Experiments 63

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: The performance profiles of the variants of MDE for the benchmark

problems with a value of the population size equal to 20 and three different choices

of the parameter σ: 5 ·10−3 (C03), 5 ·10−4 (C04) and 5 ·10−6 (C06), respectively.

64 Enhancing the Performace of Memetic Algorithms

to the previous one. Again, as reported in Figure 3.2, the results show that

the clustering-based methods are still significantly better than the original

ones. Moreover, we point out that the quality of our approach is increased

for all the values of σ investigated. Finally, some preliminary experiments

have been performed with population size equal to 30, but we do not present

detailed results as they show a similar behavior.

So it can be stated that the use of clustering techniques have enhanced

the performance of the classical variants saving a large percentage of their

computational cost; the numerical investigations also confirm that σ is a

key parameter and the choice of a small value for the latter could be more

reliable for unknown optimization problems. We point out that the effect

should be studied in more detail also by varying the parameters of the DE

schema which is beyond the scope of this work. Here, we have restricted our

attention on the effect of the population size.

Sensitivities to the population size p

The performance of the DE is sensitive to the choice of the population size.

On the one hand, increasing the population size will increase the diversity

of possible movements, promoting the exploration of the search space; on

the other hand, the probability to find the correct search direction decreases

considerably. Furthermore, when we deal with memetic variants of DE, an

even smaller population size is suggested as large population diminish the

importance of local search method; especially if it is applied to the best

individual only [47]. Most of the recommended limits found in the literature

for the population size are within 5n or, more rarely, 10n. Therefore, in

order to investigate the sensitivity of our approach to the variations of the

population size, we experimented our method fixing the parameter σ to the

very attractive value of 5 ·10−6 and varying the population following the rule

p = 5n, where n is the dimension of the test function. Again, the detailed

numerical results are reported in [65].

As reported in Figure 3.3, the results show that the clustering-based

methods are still significantly better than the original ones. Hence, according

to the the performance profiles depicted, we can summarize that (i) for the

majority of GO test functions our approach is better than MDE if a proper

value for σ is determined; (ii) the C-MDE provides the same (or better)

quality but at a fraction of the computational cost; (iii) the C-MDE seems

to be robust with respect to different population sizes; (iv) the C-MDE may

3.5 Experiments 65

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The performance profiles of the variants of MDE for the benchmark

problems where the parameter σ is fixed to 5 · 10−6 (C06) and the population size

p is equal to 5n with n size of the problem.

66 Enhancing the Performace of Memetic Algorithms

avoid some negative phenomena like the population collapsing to a single

point.

Comparison in term of success performance

As mentioned earlier, SP is useful for measuring the computational effort of

the algorithms to reach the global minimizer without taking into account the

additional computational effort for stopping the algorithm themselves. This

performance measure is defined in Section 3.5.2 as a slight modification of

the metric used in the CEC 2005 competition [23]. In [7] the authors used the

success performance to compare their proposed variants of MDE with some

recent results reported in the literature obtaining quite interesting results;

thus, for the sake of completeness, we also propose a comparison with the

latter criterion.

We report in Figure 3.4 the performance profile on the benchmark suite

for values of the population size equal to 10 and 20. The experimental re-

sults show that our approach outperforms the variants of MDE again, and

this time in terms of convergence velocity for almost all the test functions

investigated. As reported in the experiments described, the greedy and hy-

brid clustering-based variants appear to be the best ones, and, as expected

form the numerical results in [7], the performance of the hybrid C-MDE lies

between the one of CG-MDE (very close) and the one of CD-MDE.

Therefore, we can claim that the use of clustering methods did not alter

the natural behavior of the original variants of MDE investigated, while

improving their performance in general.

3.6 Conclusion

In this chapter we showed that the cost of “CPU heavy” local searches in

memetic approaches could be reduced with a clustering method by avoid-

ing multiple rediscoveries of the local optima. In addition, this clustering

method supplies information that can be used to maintain the diversity in

the population. Driven by our personal experience, a detailed comparison

between a new clustering-based memetic DE approach and different variants

of memetic DE approaches is investigated. We point out that other ways

to hybridize DE exists, however the variants proposed here, in spite of their

simplicity, are proved to be very effective especially over well-known global

optimization test functions.

3.6 Conclusion 67

(a) (b)

Figure 3.4: The performance profiles for the benchmark problems for each variant

of MDE and clustering-based MDE with σ equal to 5 · 10−6 (C06).

To evaluate the performance of our method, 48 single-objective functions

with different characteristics are selected from the literature. A comprehen-

sive set of experiments are conducted involving problems with moderately

small dimension in order to assist the use of clustering techniques. The com-

putational investigations confirm that our method, called C-MDE, is quite

competitive even when compared with efficient variants of MDE, namely,

the greedy variant (G-MDE), the distance variant (D-MDE), and the hybrid

variant (H-MDE). In particular, according to our experiments, it appears

that a proper choice of the parameter σ for C-MDE is of primary impor-

tance and can significantly enhance the behavior of the method achieving a

good balance between exploration and exploitation of the search space.

In our future work, the effect of the clustering will be studied in more

detail by varying the parameters of DE and the problem dimensionality. In

addition, we believe that some other strategies to adaptively associate to

each individual a different probability of starting a local search can be used

in combination with the basic C-MDE schema. Another possible direction

may be the one of applying clustering techniques to other memetic scheme

such as PSO, ACO, GAs, etc.

Finally, the idea we proposed here is only a study of feasibility and some

strategies to successfully apply C-MDE in large dimension are needed to aim

of taking real-world problems. A first step toward this is presented in the

next chapter.

68 Enhancing the Performace of Memetic Algorithms

Algorithm G-MDE CG-MDE

Function p %S SP LS/S %S SP LS/S

sch(2)- 10 73 105.09 1567.26 72 41.84 121.17

sch(2)-R 10 81 119.34 1453.09 56 59.80 184.25

sch(2)-RS 10 87 131.33 1264.14 89 33.08 93.57

sch(2)-RSS 10 96 117.40 829.90 100 34.12 95.71

sch(3)- 10 55 129.92 2285.45 49 113.70 259.55

sch(3)-R 10 56 276.79 2205.00 24 261.98 538.50

sch(3)-RS 10 62 110.56 1983.23 75 69.60 167.56

sch(3)-RSS 10 66 115.01 1886.52 63 92.34 236.79

sch(4)- 10 41 271.86 3169.27 38 262.88 438.08

sch(4)-R 10 13 769.23 9865.38 27 337.45 644.00

sch(4)-RS 10 19 495.84 6565.79 36 220.83 424.92

sch(4)-RSS 10 49 244.48 2574.08 66 123.03 312.67

sch(5)- 10 33 392.10 4069.70 36 322.45 521.33

sch(5)-R 10 13 863.91 10197.69 28 395.79 682.18

sch(5)-RS 10 16 566.41 7936.88 19 450.69 877.05

sch(5)-RSS 10 30 473.33 4163.00 39 277.58 664.08

Table 3.1: This table reports the numerical results for the multi-funnel Schwefel

function of G-MDE and CG-MDE with the parameter σ = 5 · 10−6 (CG06). The

dimension of the problems vary between 2 to 5 and the capitol letters denotes the

transformations: (R) rotated, (RS) rotated and shifted and (RSS) rotated shifted

and scaled.

Chapter 4

Scalability Study for C-MDE

In this chapter we propose a modification of the clustering-based

MDE scheme introduced in Chapter 3, in order to successfully

apply C-MDE in large dimension. In particular, a general pur-

pose dimensionality reduction technique is used to reduce the di-

mension of the search space in which the clustering method is

performed. A scalability study highlighted the robustness of the

newly proposed algorithm. Different numerical results show that

the performance of C-MDE are superior to, or at least comparable

to, the state-of-the-art of MDE methods, the G-MDE, particularly

over a set of well-known test problems carefully chosen from the

GO literature.

4.1 Introduction

Among the stochastic approaches, evolutionary algorithms offer a number of

advantages such as robust and reliable performance, global search capabil-

ity as well as other supplementary benefits that make it often an attractive

choice. In particular, the hybridization of EAs with local searches has proven

to be very promising. Like other EAs, DE is a population-based, stochastic

global optimizer capable of working reliably in nonlinear and multimodal en-

vironments. In the previous chapter we introduced a clustering-based MDE

schema (C-MDE) with quite interesting properties but with experimental

results over GO test functions with only moderately small dimension. Un-

fortunately, the difficulty of a problem generally increases with its dimen-

69

70 Scalability Study for C-MDE

sionality; as the number of parameters or dimension increases, the search

space also increases exponentially and, for highly nonlinear problems, this

dimensionality may be a significant barrier for almost all optimization algo-

rithms. Many real problems have high dimensionality, therefore, there is a

need to discuss the methods to use for obtaining acceptable solutions. As

mentioned in the introduction of this thesis, when the dimension becomes

large, clustering is no more an option, as the feasible set is usually too large

that no reasonable finite set of sampling points will ever be ”uniform enough”

to cover the region.

In this chapter, we propose a modification of the C-MDE scheme, in

order to successfully apply it even in large dimension. In particular, the

results obtained in Chapter 2 are encouraging enough to motivate the use

of the same algorithmic idea but without requiring that the solutions of the

corresponding optimization problem have any geometrical property. In this

setting, a general-purpose dimensionality reduction technique is required to

reduce the dimensionality of the search space.

4.2 Dimensionality reduction

When comparing different methods for dimensionality reduction, the most

important criteria are the amount of distortion caused by the method and its

computational complexity. A statistically optimal way of reducing dimen-

sionality is to project the observations onto a lower-dimensional subspace

while keeping relative distances as much unchanged as possible. One of

the most widely used way to do this is the Principal Component Analysis

(PCA); unfortunately it is quite expensive to compute for high-dimensional

data sets. Moreover, traditional methods like PCA suffer from being based

on linear models.

Nonlinear methods are often more powerful than linear ones, because the

connection between the observations may be richer than a simple matrix

multiplication. An effective technique that does capture nonlinear structure

is t-SNE, which stands for t-distributed Stochastic Neighbor Embedding [70].

This technique can capture the nonlinear structure in high dimensional data,

at least at a local level, meaning that if two points are close to each other

in the high dimensional space, they have a high probability of being close

together in the low dimensional embedding space. More recently, a new

technique, very similar to t-SNE, called Uniform Manifold Approximation

4.2 Dimensionality reduction 71

and Projection (UMAP) has been proposed in [44]. UMAP appears to have

some significant advantages over t-SNE; it is faster than t-SNE and captures

global structure better than t-SNE. However, all these nonlinear models often

comprise many parameters, whose identification requires large amounts of

observations and computational time.

In this work, instead, a computationally simple method of dimension-

ality reduction that does not introduce a significant distortion in the ob-

servation set would be more desirable. In random projection, the original

high-dimensional data is projected onto a lower-dimensional subspace using

a random matrix whose columns have unit norm. This method has been

found to be a computationally efficient, yet sufficiently accurate, method for

dimensionality reduction of high-dimensional point sets [21].

4.2.1 Random Projection

Due to its computational efficiency, Random Projection (RP) techniques are

useful in many settings. Roughly speaking, algorithmic applications of the

random projection method involve projecting the input to a low-dimensional

space at an appropriate stage of the algorithm. A natural setting is when

the input data is in a high-dimensional space, and it is possible to preserve

essential properties of the data (for the particular problem at hand) while

reducing dimensionality.

In particular, in random projection the original n-dimensional vectors

are projected to a d-dimensional subspace using a random (d × n) matrix

R. Introducing matrix notation, let X ∈ Rn×K be a coordinate matrix of K

n-dimensional vectors, then

φ(X) = αRX ∈ Rd×K , with (d� n) (4.1)

is the projection of the points onto a lower d-dimensional subspace, where

α ∈ R is a scaling factor that depends on the characteristics of the matrix R.

Generally, the value of α is chosen to make the expected squared length of

the projected vector equal to the expected squared length of the original one.

Note that a linear mapping such as (4.1) can cause significant distortions in

the reduced space if R does not have specific properties.

The key idea of random mapping arises from the Johnson-Lindenstrauss

Lemma; if points in a vector space are projected onto a randomly selected

subspace of suitably high dimension, then the distances between the points

are approximately preserved. In this regard, Johnson and Lindenstrauss

72 Scalability Study for C-MDE

[28] proved that any (K) points in Euclidean space could be embedded in

O(ε−2 logK) dimensions without distorting the distances between any pair of

points by more than a factor of (1±ε), for any ε ∈ (0, 1). This dimensionality

reduction lemma is stated as follows:

Theorem 4.2.1 (Johnson-Lindenstrauss Lemma). For any 0 < ε < 1

and any integer K, let d be a positive integer such that

d ≥ 4
(
ε2/2− ε3/3

)−1
lnK (4.2)

Then for any set X of K points in Rn, there is a map φ : Rn → Rd such

that for all u, v ∈ X,

(1− ε)‖u− v‖2 ≤ ‖φ(u)− φ(v)‖2 ≤ (1 + ε)‖u− v‖2 (4.3)

Further this map can be found in randomized polynomial time.

In general, from this Lemma it follows that the projection preserves all

pairwise distances of X in expectations, provided that R consists of i.i.d.

entries (denoted by {rij} di=1
n
j=1) with zero mean and constant variance; this

is the only necessary condition for preserving pairwise distances. Hence,

the choice of the random matrix R is one of the key points of interest and,

in what follows, we will investigate two possible choices selected from the

literature.

Gaussian random projection There are a variety of choices for the ran-

dom matrix R that have similar properties. It is often convenient to

let rij follow a symmetric distribution about zero with unit variance.

A simple distribution is the standard normal, i.e.,

rij ∼ N(0, 1) (4.4)

Practically all zero mean, unit variance distributions of rij would give

a mapping that still satisfies the Johnson-Lindenstrauss Lemma, see,

e.g., [1]. The special case when R consists of normal entries is called

the Gaussian Random Projections (GRP). Many theoretical results are

known for GRPs, e.g., see [71] for further references.

Sparse random projection As mentioned earlier, the elements rij of R

are often Gaussian distributed. In his recent work, Achlioptas [1] pro-

4.3 C-MDE with RP 73

posed using the projection matrix R with i.i.d entries as

rij =
√
s


1 with probability 1/2s

0 with probability 1− 1/s

−1 with probability 1/2s

(4.5)

where s = 1 or s = 3. With s = 3, one can achieve a threefold

speedup because only 1/3 of the data need to be processed, hence

the name Sparse Random Projections (SRP). Since the multiplications

with
√
s can be delayed, no floating point arithmetic is needed meaning

further computational savings. Sparse random projections have gained

their popularity because are an alternative to dense Gaussian random

projection matrix, but they guarantee similar embedding quality while

being much more memory efficient and allowing faster computation of

the projected data.

In practice, random projections are computationally very simple: forming

the random matrix R and projecting the (n×K) coordinates matrix X into

d-dimensions is of order O(ndK), and if the data matrix X is sparse with

about m nonzero entries per column, the complexity is of order O(mdK) [51].

4.3 C-MDE with RP

In order to design an effective and efficient memetic algorithms for real-

world GO problems, we need to take advantage of both the exploration

abilities of EA and the exploitation abilities of local search by combining

them in a well-balanced manner. In principle, the local search should be

applied only to individuals that will productively take the search towards

the global optimum. This is particularly important because application of

local procedure on an ordinary individual may unnecessarily waste function

(and gradient) evaluations and turn out to be expensive. In some schemes,

the solutions with better objective function values are generally preferred

for reproduction, as they are more likely to be in the proximity of a basin

of attraction. In this regard, we have already shown (see Chapter 3) that

the cost of the local search in a memetic approach may be reduced with

a clustering method by avoiding multiple rediscoveries of the local optima.

Unfortunately, for successful incorporation of clustering techniques in EAs,

74 Scalability Study for C-MDE

Algorithm 7 C-MDE with Random Projection

Require: The population matrix P and the population size p = |P |;
the parameters F ∈ (0, 2) and CR ∈ [0, 1] for DE

1: Sk ← Sk−1 (S0 = P)

2: O ← ∅
3: for all i ∈ {1, . . . , p} do

4: Randomly choose r1, r2, r3 ∈ {1, . . . , p} \ {i}, all distinct;

5: if U(0, 1) ≤ CR then

6: u
(j)
i ← x

(j)
r1 + F · (x(j)r2 − x

(j)
r3)

7: else

8: u
(j)
i ← x

(j)
i

9: end if

10: end for

11: for all i ∈ {1, . . . , p} do

12: if 6∃ s ∈ Sk : f(s) ≤ f(ui) and ‖Rks−Rkui‖ ≤ τd (|Sk|+ p) then

13: qi ← L(f,Ω, ui)

14: O ← O ∪ {qi, ui}
15: else

16: qi ← ui
17: end if

18: if f(qi) < f(xi) then

19: xi ← qi
20: end if

21: end for

22: Sk ← Sk ∪ O
23: return The new population matrix P

several issues must be resolved in order to deal with real-world GO problems

and the most important one is the curse of dimensionality.

Drawing from ideas of Chapter 2, we assume that a dimensionality re-

duction map φ : Rn → Rd from the n-dimensional solution space to a d-

dimensional subspace is defined. This way the latter may be used to adapt

the clustering method to work in a reduced space characterized by an arbi-

trary dimension (d � n). The primary difference between the newly pro-

posed approach and the previously one presented in Chapter 2 is that we

are no more required to look for geometrical GO problems. We also point

out that the new C-MDE does not add any additional complexity or any

additional parameter to the original scheme provided that a proper value of

d (< 10) is chosen. So the pseudocode of this general purpose method is

described in Algorithm 7 where, for a number of reasons explained earlier,

the map φ(·) is substituted by an appropriate random projection where a

new matrix Rk is defined at each iteration.

4.4 Experiments 75

4.4 Experiments

In order to show the feasibility of the newly proposed C-MDE, we compared

it with the original greedy variant of memtic DE. Note that, due to the large

computing times of D-MDE, we restrict our attention only to the G-MDE

and the CG-MDE methods in view of their faster convergence as described

in Section 3.2.4. Our aim is to show that C-MDE can be quite competitive

with existing memetic evolutionary approaches in terms of the quality of the

solution returned within a limited budget of local searches by using RP to

reduce the dimensionality of the search space.

4.4.1 Test functions and settings

Among the previously discussed test functions, we selected three benchmark

problems with different characteristics. For the Rastrigin and the Ackley

function we tested the rotated, shifted and scaled version (RSS); for the

Schwefel function, instead, we tested the separable one. In fact, the latter

is usually much more challenging with respect to the other two functions in

view of its highly multi-funnel landscape.

The test functions were studied at dimensions equal to 10, 30, 50, 70,

100, 300 and 500. As previously commented, we used different population

sizes, namely 50 and 100, the latter more suitable for multi-funnel functions,

where a higher degree of diversity is preferable. Both the population sizes

were fixed according to the values proposed in [7] for G-MDE over similar

test functions.

In each table we report four columns associated to each algorithm. In

particular, i) %S denotes the percentage of successes over the set of random

runs; ii) D denotes the average distance over the instances where a failure

occurs, as described in detail in Section 3.5.2; iii) SD is the corresponding

standard deviation where D = SD = 0 if no failure occurs; iv) LS/S denotes

the average number of local searches per success over the set of random

runs. In our experimentation, we ran a set 20 independent runs of each test

problem using the same set of initial random populations to evaluate the

different algorithms - in a similar way as done in Section 3.5.3. We decided

to present the results obtained by using L-BFGS as local search method; the

parameter σ is chosen equal to 5 · 10−6 and all the remaining parameters

are kept unchanged with respect to the previous experimentation with C-

MDE. The dimension d is chosen equal to 3, in order to assist the use of

76 Scalability Study for C-MDE

the clustering method while avoiding an excessive distortion; we have not

performed a thorough computational investigation with other values. In our

experiments, we used both Gaussian distributed random matrices for the

population size equal to 50, and the much more memory efficient SRP for

p = 100. Finally, the numerical investigation were performed with the same

implementations used in Chapter 3.

4.4.2 Performance, comparison and discussion

The results reported in Table 4.1 summarize the experiments performed

with p = 50 and GRP as random projection technique. For the Ackley and

the Rastrigin function the results are quite consistent through the different

dimensions. As expected, in view of the single-funnel nature of the functions,

G-MDE performs quite well with a very high percentage of successes. The

CG-MDE performs very similar to G-MDE, thus showing that in this case

the clustering method is able to preserve the good performance of the greedy

approach in terms of quality and velocity of convergence.

Moreover, the experimentation with the Rastrigin function shown that

CG-MDE is even able to outperform the original greedy approach in terms

of number of local searches needed to reach the global minimizer. With

n = 500 both G-MDE and CG-MDE have not the best performance (no

success occurs) but the D value reveals that, when not reaching the global

minimizer, CG-MDE almost always stops at the best local minimizer, with

an average distance value equal to 3.134.

The Ackley function is single-funnel. Thus, we expected a behavior simi-

lar to the Rastrigin function. In particular, we expected a good performance

of CG-MDE with respect to G-MDE, the usual robustness (i.e., ability to

reach the global minimizer) but at a fraction of the computational cost; it

is remarkable that, in this case, G-MDE converges very fast to the global

minimizer and its performance is always very close to (but no better than)

our approach.

The results with the Schwefel function display some variability with re-

spect to the two presented approaches. What we expected was a not very

good performance of the G-MDE approach, which converges too fast and is

not able to explore a larger portion of the feasible region. The majority of

the results confirm this expectations: CG-MDE is quite robust, with a higher

percentage of successes; in fact, as mentioned in Section 3.3, the clustering

method supplies information that can be used to maintain the diversity in

4.5 Conclusion 77

the population.

Similar conclusions can be drawn about the performance of the algo-

rithms when the population size is equal to 100 and SRP is used as random

projection, i.e., CG-MDE outperforms G-MDE at every dimension for the

Rastrigin and the Schwefel functions, and it gets quite good performance for

the Ackley function (see Table 4.2). Moreover, the results show that the per-

formance improvement is stable with respect to the variation of the problem

dimension. From the experimental results of this section, we can conclude

that the C-MDE with RP is superior to, or at least comparable to, G-MDE;

furthermore, it exhibits a particularly significant property: the reliability at

very large dimensions.

4.5 Conclusion

In this chapter we proposed a modification of the basic clustering-based

MDE scheme in order to successfully apply C-MDE in large dimension. In

particular we deal with the curse of dimensionality by using random pro-

jections to reduce the dimensionality of the search space thus adapting the

clustering method to work in a smaller subspace of arbitrary dimension. We

investigated the performance of the modified version of C-MDE algorithm

using a benchmark suite consisting of functions carefully chosen from the

GO literature. The experimental results showed that the proposed algo-

rithm outperforms the classic greedy version of memetic DE (G-MDE) in

terms of quality and number of local searches needed to reach the global

minimizer in all experimental settings.

In our future study, we would like to verify the potential of some other

dimensionality reduction technique. In this regard, some preliminary ex-

periments with nonlinear methods were started; as an example, the results

obtained by using the UMAP method are very precise but too slow for al-

gorithmic applications.

78 Scalability Study for C-MDE

Algorithm G-MDE CG-MDE + RP

Function %S D SD LS/S %S D SD LS/S

rgn(10)-RSS 100 0.000 0.000 9922.50 100 0.000 0.000 657.45

rgn(30)-RSS 100 0.000 0.000 10455.00 100 0.000 0.000 1058.95

rgn(50)-RSS 100 0.000 0.000 10442.50 100 0.000 0.000 1007.55

rgn(70)-RSS 100 0.000 0.000 10215.00 100 0.000 0.000 967.30

rgn(100)-RSS 100 0.000 0.000 10072.50 100 0.000 0.000 1089.80

rgn(300)-RSS 100 0.000 0.000 11755.00 100 0.000 0.000 1236.35

rgn(500)-RSS 0 3.182 0.343 inf 0 3.134 0.312 inf

ack(10)-RSS 100 0.000 0.000 270.00 100 0.000 0.000 300.60

ack(30)-RSS 100 0.000 0.000 357.50 100 0.000 0.000 354.15

ack(50)-RSS 100 0.000 0.000 617.50 100 0.000 0.000 337.85

ack(70)-RSS 100 0.000 0.000 405.00 100 0.000 0.000 393.95

ack(100)-RSS 100 0.000 0.000 390.00 100 0.000 0.000 342.80

ack(300)-RSS 100 0.000 0.000 722.50 95 0.207 0.000 369.63

ack(500)-RSS 0 0.047 0.000 inf 0 0.112 0.085 inf

sch(10)- 100 0.000 0.000 13330.00 100 0.000 0.000 2873.50

sch(30)- 100 0.000 0.000 11532.50 100 0.000 0.000 2881.30

sch(50)- 100 0.000 0.000 12027.50 100 0.000 0.000 2810.60

sch(70)- 95 118.439 0.000 12013.15 100 0.000 0.000 3154.00

sch(100)- 100 0.000 0.000 12212.50 100 0.000 0.000 3208.35

sch(300)- 95 118.442 0.000 14726.31 100 0.000 0.000 4070.00

sch(500)- 95 118.445 0.000 13284.21 100 0.000 0.000 4350.30

Table 4.1: This table reports the numerical results for the test suite for G-MDE

and CG-MDE with the parameter σ = 5 · 10−6. The population size is equal to 50

for all test functions.

4.5 Conclusion 79

Algorithm G-MDE CG-MDE + RP

Function %S D SD LS/S %S D SD LS/S

rgn(10)-RSS 100 0.000 0.000 20065 100 0.000 0.000 1191.95

rgn(30)-RSS 100 0.000 0.000 21410 100 0.000 0.000 1854.80

rgn(50)-RSS 100 0.000 0.000 20655 100 0.000 0.000 1805.45

rgn(70)-RSS 100 0.000 0.000 21190 100 0.000 0.000 1903.10

rgn(100)-RSS 100 0.000 0.000 20930 100 0.000 0.000 2031.65

rgn(300)-RSS 100 0.000 0.000 21380 100 0.000 0.000 2412.85

rgn(500)-RSS 0 2.994 0.027 inf 0 2.982 0.014 inf

ack(10)-RSS 100 0.000 0.000 575.00 100 0.000 0.000 563.75

ack(30)-RSS 100 0.000 0.000 1230.00 100 0.000 0.000 681.10

ack(50)-RSS 100 0.000 0.000 2760.00 100 0.000 0.000 691.95

ack(70)-RSS 100 0.000 0.000 805.00 100 0.000 0.000 802.20

ack(100)-RSS 100 0.000 0.000 1840.00 100 0.000 0.000 753.15

ack(300)-RSS 100 0.000 0.000 940.00 100 0.000 0.000 777.45

ack(500)-RSS 0 0.047 0.000 inf 0 0.050 0.015 inf

sch(10)- 100 0.000 0.000 24565 100 0.000 0.000 6436.50

sch(30)- 100 0.000 0.000 22790 100 0.000 0.000 5800.20

sch(50)- 100 0.000 0.000 22920 100 0.000 0.000 5907.90

sch(70)- 100 0.000 0.000 22835 100 0.000 0.000 5885.65

sch(100)- 100 0.000 0.000 22695 100 0.000 0.000 6159.30

sch(300)- 100 0.000 0.000 23495 100 0.000 0.000 7170.25

sch(500)- 100 0.000 0.000 23730 100 0.000 0.000 7102.15

Table 4.2: This table reports the numerical results for the test suite for G-MDE

and CG-MDE with the parameter σ = 5 · 10−6. The population size is equal to

100 for all test functions.

80 Scalability Study for C-MDE

Chapter 5

Conclusion

In this research we dealt with the use of local searches within global opti-

mization algorithms. Though we discussed different issues, we focused our

attention on the strategies to decide whether to start or not a local search

from a given point. More specifically, our aim was to avoid the waste of

computational effort due to local searches which lead to already detected

local minima or to local minimizers with a poor function value. For most

GO methods local searches are called with a fixed frequency like, e.g., in the

well-known Multistart method, but in some other approaches once a starting

point is generated, a local search is not necessarily started. The idea of using

statistical clustering techniques in order to decide whether to start a local

optimization from a sampled point arose in the 80’s and was a first example

of that. Clustering methods provide a way to organize local information and

focus the optimization effort on promising areas of the feasible space.

Unfortunately, in recent years, these approaches have not been used any-

more, for a number of different reasons. First of all, local optimization is

now quite a mature subject with many very efficient algorithms available,

so that saving local searches, in many cases, is no more a fundamental re-

quirement. Secondly, and most important, computing power and modern

algorithms, e.g., evolutionary methods powered by local searches, give us

the opportunity to solve very large dimensional GO problems and, when

the dimension becomes large, clustering methods are no more an option as

they compare solutions based on the value of their variables. Despite these

defects, the idea of clustering for global optimization was really bright and

therefore, in this research, we have proposed new ways to exploit it for GO.

81

82 Conclusion

In Chapter 2, we developed structural descriptors for representing the solu-

tions of two well-known geometrical problems in a compact way, and adapted

a clustering method to work in the restricted space induced by our choice

of geometrical features. Large scale solutions are therefore compared and

grouped based on their overall characteristics rather than the value of their

variables. Thanks to our strategy, we were able to obtain the same quality

of a very effective Multistart approach, while employing a tiny percentage

of local searches to converge to the putative global optimum. Moreover, we

extended the idea of MSL toward methods with sophisticated (and more ex-

pensive) ”local” searches, e.g., the cluster surface smoothing method, that

are able to preserve the set of features during the descent in the funnels of

the problem. In Chapter 3, instead, we showed a different way to use clus-

tering techniques applying them to population-based methods powered by

local searches, i.e., memetic algorithms. It is quite natural to extend these

evolutionary processes by performing a local search to each newly generated

point and to base comparisons on the objective function values at local min-

ima. However, the frequency of local search can have a tremendous impact

on the performance of the method. First, we addressed questions concerning

the hybridization of the differential evolution with local search while also ex-

ploring some variants; then we proposed a clustering-based approach, called

C-MDE, that provided significant improvement with respect to the original

approach. Our results showed that, considering standard GO test functions

with moderately small dimensions, the clustering method was able to balance

the exploration and the exploitation of the evolutionary process enhancing

the performance of the method in general.

In Chapter 4, we combined the previous presented ideas into a single,

general, method. In particular, in order to successfully apply C-MDE in

large dimension, we dealt with the curse of dimensionality by using random

projections to reduce the dimensionality of the search space, thus adapting

the clustering method to work in a reduced space of arbitrary dimension (no

geometrical descriptors are required). We investigated the performance of

the proposed method using a benchmark consisting of challenging functions

carefully chosen from the GO literature with quite interesting results.

In conclusion, we hope that this work will encourage further research

in the use of clustering techniques within modern global optimization algo-

rithms.

Appendix A

Publications

This research activity has led to several publications in international journals.

These are summarized below.

International Journals

1. F. Bagattini, F. Schoen, L. Tigli. “Clustering methods for large scale ge-

ometrical global optimization”, Optimization Methods & Software, vol. 34,

2019. [DOI: 10.1080/10556788.2019.1582651]

2. F. Bagattini, F. Schoen, L. Tigli. “Clustering methods for the optimization

of atomic cluster structure”, The Journal of Chemical Physics, vol. 148,

2018. [DOI: 10.1063/1.5020858]

83

84 Publications

Bibliography

[1] D. Achlioptas, “Database-friendly random projections: Johnson-lindenstrauss

with binary coins,” Journal of Computer and System Sciences, vol. 66, no. 4,

pp. 671 – 687, 2003, special Issue on PODS 2001.

[2] B. Addis, M. Locatelli, and F. Schoen, “Disk packing in a square: A new

global optimization approach,” INFORMS J. on Computing, vol. 20, no. 4,

pp. 516–524, 2008.

[3] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for pa-

rameter optimization,” Evol. Comput., vol. 1, no. 1, pp. 1–23, Mar. 1993.

[4] F. Bagattini, F. Schoen, and L. Tigli, “Clustering methods for the optimiza-

tion of atomic cluster structure,” The Journal of Chemical Physics, vol. 148,

no. 14, p. 144102, 2018.

[5] R. W. Becker and G. V. Lago, “A global optimization algorithm,” in Proceed-

ings of the 8th Allerton Conference on Circuits and Systems Theory, 1970,

pp. 3–12.

[6] F. Cabassi and M. Locatelli, “A computational comparison of memetic differ-

ential evolution approaches,” in Proceedings of the Companion Publication of

the 2015 Annual Conference on Genetic and Evolutionary Computation, ser.

GECCO Companion ’15. New York, NY, USA: ACM, 2015, pp. 1181–1184.

[7] ——, “Computational investigation of simple memetic approaches for con-

tinuous global optimization,” Computers Operations Research, vol. 72, 02

2016.

[8] A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone, “Ma-

chine learning for global optimization,” Computational Optimization and Ap-

plications, vol. 51, no. 1, pp. 279–303, 2012.

[9] J. Cheng and R. Fournier, “Structural optimization of atomic clusters by tabu

search in descriptor space,” Theoretical Chemistry Accounts, vol. 112, no. 1,

pp. 7–15, 2004.

85

86 BIBLIOGRAPHY

[10] ——, “Structural optimization of atomic clusters by tabu search in descriptor

space,” Theoretical Chemistry Accounts, vol. 112, no. 1, pp. 7–15, Apr 2004.

[11] L. Cheng, Y. Feng, J. Yang, and J. Yang, “Funnel hopping: Searching the

cluster potential energy surface over the funnels,” The Journal of Chemical

Physics, vol. 130, no. 21, p. 214112, 2009.

[12] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups.

[13] L. C. W. Dixon and G. P. Szegö, Towards Global Optimization. North-

Holland, 1975.

[14] L. C. W. Dixon and G. P. Szegö, Towards Global Optimization 2. North-

Holland, 1978.

[15] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with per-

formance profiles,” Mathematical Programming, vol. 91, no. 2, pp. 201–213,

2002.

[16] M. Dorigo, M. Birattari, and T. StÃ¼tzle, “Ant colony optimization â artificial

ants as a computational intelligence technique,” IEEE Comput. Intell. Mag,

vol. 1, pp. 28–39, 2006.

[17] J. P. K. Doye, R. H. Leary, M. Locatelli, and F. Schoen, “Global optimiza-

tion of morse clusters by potential energy transformations,” INFORMS J. on

Computing, vol. 16, no. 4, pp. 371–379, Sep. 2004.

[18] J. P. Doye, R. H. Leary, M. Locatelli, and F. Schoen, “Global optimization of

morse clusters by potential energy transformations,” INFORMS Journal on

Computing, vol. 16, no. 4, pp. 371–379, 2004.

[19] J. P. Doye and D. J. Wales, “Magic numbers and growth sequences of small

face-centered-cubic and decahedral clusters,” Chemical Physics Letters, vol.

247, no. 4, pp. 339 – 347, 1995.

[20] J. P. Doye, D. J. Wales, and R. S. Berry, “The effect of the range of the

potential on the structures of clusters,” The Journal of chemical physics, vol.

103, no. 10, pp. 4234–4249, 1995.

[21] X. Fern and C. Brodley, “Random projection for high dimensional data clus-

tering: A cluster ensemble approach,” 2003, pp. 186–193.

[22] R. Fournier, “Theoretical study of the structure of silver clusters,” The Jour-

nal of chemical physics, vol. 115, no. 5, pp. 2165–2177, 2001.

[23] C. Garćıa-Mart́ınez, P. D. Gutiérrez, D. Molina, M. Lozano, and

F. Herrera, “Since cec 2005 competition on real-parameter optimisation:

a decade of research, progress and comparative analysis’s weakness,” Soft

Computing, vol. 21, no. 19, pp. 5573–5583, Oct 2017. [Online]. Available:

https://doi.org/10.1007/s00500-016-2471-9

https://doi.org/10.1007/s00500-016-2471-9

BIBLIOGRAPHY 87

[24] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for

large-scale constrained optimization,” SIAM review, vol. 47, pp. 99–131, 2005.

[25] R. Graham and B. Lubachevski, “Repeated patterns of dense packings of

equal disks in a square,” The Electronic Journal of Combinatorics [electronic

only], vol. 3, 07 2004.

[26] W. E. Hart, “Adaptive global optimization with local search,” Ph.D. disser-

tation, 1994, uMI Order No. GAX94-32928.

[27] R. Horst and H. Tuy, “Global optimization - deterministic approaches, 3.

auflage,” 1996.

[28] W. B. Johnson, J. Lindenstrauss, and G. Schechtman, “Extensions of lipschitz

maps into banach spaces,” Israel Journal of Mathematics, vol. 54, no. 2, pp.

129–138, 1986.

[29] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp.

1942–1948 vol.4.

[30] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python jit

compiler,” in Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, ser. LLVM ’15, 2015, pp. 7:1–7:6.

[31] L. Landau and E. Lifschitz, Quantum Mechanics.

[32] R. H. Leary, “Global optima of lennard-jones clusters,” Journal of Global

Optimization, vol. 11, no. 1, pp. 35–53, 1997.

[33] R. H. Leary and J. P. K. Doye, “Tetrahedral global minimum for the 98-atom

lennard-jones cluster.” Physical review. E, Statistical physics, plasmas, fluids,

and related interdisciplinary topics, vol. 60 6 Pt A, 1999.

[34] W. Lefebvre, T. Philippe, and F. Vurpillot, “Application of delaunay tessella-

tion for the characterization of solute-rich clusters in atom probe tomography,”

Ultramicroscopy, vol. 111, pp. 200–6, 2011.

[35] T. W. Liao, “Two hybrid differential evolution algorithms for engineering

design optimization,” Applied Soft Computing, vol. 10, no. 4, pp. 1188 – 1199,

2010.

[36] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale

optimization,” Mathematical programming, vol. 45, no. 1, pp. 503–528, 1989.

[37] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,”

Soft Computing, vol. 9, pp. 448–462, 2002.

[38] M. Locatelli, “On the multilevel structure of global optimization problems,”

Computational Optimization and Applications, vol. 30, pp. 5–22, 01 2005.

88 BIBLIOGRAPHY

[39] M. Locatelli, M. Maischberger, and F. Schoen, “Differential evolution methods

based on local searches,” Computers Operations Research, vol. 43, pp. 169 –

180, 2014.

[40] M. Locatelli and F. Schoen, “Fast global optimization of difficult Lennard-

Jones clusters,” Computational Optimization and Applications, vol. 21, no. 1,

pp. 55–70, 2002.

[41] ——, “Efficient algorithms for large scale global optimization: Lennard-jones

clusters,” Computational Optimization and Applications, vol. 26, pp. 173–190,

2003.

[42] ——, “Local search based heuristics for global optimization: atomic clusters

and beyond,” European Journal of Operational Research, vol. 222, no. 1, pp.

1–9, 2012.

[43] ——, Global Optimization: theory, algorithms, and applications, ser. MOS-

SIAM Series on Optimization. Society for Industrial and Applied Mathe-

matics and the Mathematical Optimization Society, 2013, vol. MO15.

[44] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approxi-

mation and Projection for Dimension Reduction,” ArXiv e-prints, 2018.

[45] J. Morales and J. Nocedal, “Remark on ”algorithm 778: L-bfgs-b: Fortran

subroutines for large-scale bound constrained optimization”,” ACM Transac-

tions on Mathematical Software, vol. 38, no. 1, 2011.

[46] F. Neri and C. Cotta, “Memetic algorithms and memetic computing optimiza-

tion: A literature review,” Swarm and Evolutionary Computation, vol. 2, pp.

1 – 14, 2012.

[47] N. Noman and H. Iba, “Accelerating differential evolution using an adaptive

local search,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1,

pp. 107–125, 2008.

[48] K. J. Nurmela and P. R. J. Österg̊ard, “Packing up to 50 equal circles in

a square,” Discrete & Computational Geometry, vol. 18, no. 1, pp. 111–120,

1997.

[49] J. P. K. Doye and D. J. Wales, “Structural consequences of the range of the

interatomic potential a menagerie of clusters,” J. Chem. Soc., Faraday Trans.,

vol. 93, pp. 4233–4243, 1997.

[50] ——, “Structural consequences of the range of the interatomic potential a

menagerie of clusters,” J. Chem. Soc., Faraday Trans., vol. 93, pp. 4233–4243,

1997.

[51] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent

semantic indexing: A probabilistic analysis,” Journal of Computer and System

Sciences, vol. 61, no. 2, pp. 217 – 235, 2000.

BIBLIOGRAPHY 89

[52] A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization

methods. Part I: Clustering methods,” Mathematical Programming, vol. 39,

pp. 27–56, 1987.

[53] ——, “Stochastic global optimization methods. Part II: Multi level methods,”

Mathematical Programming, vol. 39, pp. 57–78, 1987.

[54] J. Schaer, “On the densest packing of spheres in a cube,” Canad. Math. Bull,

vol. 9, p. 265â270, 1966.

[55] ——, “The densest packing of ten congruent spheres in a cube,” Intuitive

geometry, (Szeged, 1991), vol. 63, pp. 403–424, 1994.

[56] H.-P. Schwefel, Numerical Optimization of Computer Models, 01 1981, vol. 33.

[57] X. Shao, H. Jiang, and W. Cai, “Parallel random tunneling algorithm for

structural optimization of lennard-jones clusters up to n = 330,” Journal of

Chemical Information and Computer Sciences, vol. 44, pp. 193–199, 2004.

[58] M. Spadoni and L. Stefanini, “A Differential Evolution algorithm to deal

with box, linear and quadratic-convex constraints for boundary optimization,”

Journal of Global Optimization, vol. 52, no. 1, pp. 171–192, 2012.

[59] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, “Bond-orientational order

in liquids and glasses,” Physical Review B, vol. 28, no. 2, p. 784, 1983.

[60] R. Storn and K. Price, “Differential evolution: A simple and efficient adaptive

scheme for global optimization over continuous spaces,” Journal of Global

Optimization, vol. 23, 01 1995.

[61] K. J. Strandburg, Ed., Bond–Orientational Order in Condensed Matter Sys-

tems. New York: Springer-Verlag, 1992.

[62] P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and

I. Garcãa, New Approaches to Circle Packing in a Square: With Program

Codes (Springer Optimization and Its Applications). Springer-Verlag New

York, Inc., 2007.

[63] H. Takeuchi, “Clever and efficient method for searching optimal geometries of

lennard-jones clusters,” Journal of chemical information and modeling, vol. 46,

no. 5, pp. 2066–2070, 2006.

[64] Y. Tenne and S. W. Armfield, A Memetic Algorithm Using a Trust-Region

Derivative-Free Optimization with Quadratic Modelling for Optimization of

Expensive and Noisy Black-box Functions. Springer Berlin Heidelberg, 2007,

pp. 389–415.

[65] L. Tigli. (2019) saving local searches in global optimizations: supplementary

material. [Online]. Available: webgol.dinfo.unifi.it/luca-tigli/c-mde.pdf

webgol.dinfo.unifi.it/luca-tigli/c-mde.pdf

90 BIBLIOGRAPHY

[66] A. A. Törn, “Cluster analysis using seed points and density-determined hy-

perspheres as an aid to global optimization,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 7, no. 8, pp. 610–616, 1977.

[67] A. Torn and A. Zilinskas, Global Optimization. Springer-Verlag, 1989.

[68] A. A. Törn, “A search clustering approach to global optimization,” in Towards

global optimization 2, L. C. W. Dixon and G. P. Szegö, Eds. North-Holland,

1978, pp. 49–62.

[69] S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent recombination with

simplex crossover in real coded genetic algorithms,” 1999.

[70] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” 2008.

[71] S. Vempala, “The random projection method,” 01 2004.

[72] D. J. Wales and J. P. K. Doye, “Global optimization by basin-hopping and

the lowest energy structures of Lennard-Jones clusters containing up to 110

atoms,” Journal of Physical Chemistry A, vol. 101, no. 28, pp. 5111–5116,

1997.

	Contents
	Introduction
	Global Optimization
	Clustering methods for GO
	Multilevel Single Linkage

	Contributions

	Clustering Methods for Geometrical GO
	Introduction
	MSL in a feature space
	Geometrical GO problems
	Atomic cluster structure prediction
	Sphere packing

	Some geometrical descriptors
	Exploring the funnels
	Cluster Surface Smoothing
	Monotonic Basin Hopping

	Experiments
	Experimental setup
	Numerical results

	Conclusions

	Enhancing the Performace of Memetic Algorithms
	Introduction
	Memetic Algorithms
	Differential Evolution
	Hybridization of DE
	Memetic Differential Evolution
	Some variants of MDE

	Clustering-based MDE
	Standard GO test functions
	Experiments
	Experimental setup
	Performance criteria
	Numerical results and comparison

	Conclusion

	Scalability Study for C-MDE
	Introduction
	Dimensionality reduction
	Random Projection

	C-MDE with RP
	Experiments
	Test functions and settings
	Performance, comparison and discussion

	Conclusion

	Conclusion
	Publications
	Bibliography

