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Seismic assessment of existing masonry structures
requires a numerical model able to both reproduce
their nonlinear behaviour and account for the
different sources of uncertainties; the latter have
to be dealt with since the unavoidable lack of
knowledge on the input parameters (material
properties, geometry, boundary conditions, etc.)
has a relevant effect on the reliability of the seismic
response provided by the numerical approaches.
The steadily increasing necessity of combining
different sources of information/knowledge makes
the Bayesian approach an appealing technique,
not yet fully investigated for historic masonry
constructions. In fact, while the Bayesian paradigm
is currently employed to solve inverse problems
in several sectors of the structural engineering
domain, only a few studies pay attention to
its effectiveness for parameter identification on
historic masonry structures. This study combines
a Bayesian framework with probabilistic structural
analyses: starting from the Bayesian finite element
model updating by using experimental data it
provides the definition of robust seismic fragility
curves for non-isolated masonry towers. A
comparison between this method and the standard
deterministic approach illustrates its benefits.
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This article is part of the theme issue ‘Environmental loading of heritage structures’.

1. Introduction
The European territory, and the Italian Peninsula in particular, is subject to seismic hazard. Recent
earthquakes that have hit this territory [1–3] have again highlighted the need for improving the
knowledge about the seismic response of historical structures in order to plan proper prevention
strategies. The relevance of this problem derives from the significant number of fatalities and
injuries caused by masonry structures collapsing during earthquakes, as well as the need to
preserve heritage buildings. In this scenario, having even more accurate predictions of the seismic
vulnerability of existing masonry structures and providing a quantitative assessment of this
accuracy are challenging issues to ensure people’s safety.

One of the major concerns when the structural analysis of an existing construction is performed
is the unavoidable lack of knowledge in the building process, together with the uncertainties
in the parameters governing the structural behaviour: material properties, geometry, boundary
conditions, etc. The level of uncertainty connected with these elements needs to be accounted for
to accurately assess both the structural safety and the confidence level of the results provided
by the analyses. In this respect, the availability of experimental results can provide significant
information to calibrate a numerical model of the structure to be employed subsequently to
perform seismic analyses [4,5].

In seismic codes, uncertainties involved in the seismic assessment of existing structures are
generally treated by simply introducing discrete knowledge levels and associating with each of
them a value of the so-called confidence factor. The latter is a reduction factor to be applied to
material strength and stiffness, and is supposed to account for all sources of uncertainty involved
in the assessment. Despite the simplicity of this approach, several drawbacks are associated with
it [6], one of which being the fact that it is unable to correctly account for the additional knowledge
that can be acquired by means of the new experimental data [7].

In recent decades, the Bayesian approach has been proven to be an effective theoretical
framework for dealing with different sources of uncertainty. The Bayes theorem is commonly
employed to derive a posterior probability distribution of a set of uncertain parameters according
to both their prior probability distribution (i.e. an initial knowledge about their possible range
of values) and the likelihood of the observed data. It allows us to encompass not only the
uncertainty quantification with respect to the values of a model parameter but also to account
for the acquired additional knowledge. An increased interest has been observed in the use of the
Bayesian framework, particularly with reference to the updating of a numerical model from the
results of different experimental tests performed on the structure.

However, while the quantification of the role of different sources of uncertainties through the
Bayesian approach has been gaining increasing attention in traditional structural engineering
fields, e.g. reinforced concrete structures [8,9], only a few studies are reported for masonry
structures. Campostrini et al. [10] employed a probabilistic methodology based on a Bayesian
approach to perform seismic vulnerability assessment at urban scale, which was able to integrate
information obtained by rapid survey and take into account the uncertainty and the lack of
information on the buildings to be analysed. An overall methodology for evaluating the safety
of ancient structures, which employs Bayesian updating techniques, was proposed and applied
to a historic aqueduct by Beconcini et al. [11]. More recently, Conde et al. [12], while investigating
the causes that lead to damage in a masonry arch bridge, adopted an inverse analysis procedure
based on the Bayesian approach. These studies demonstrate that the Bayesian framework can be
employed in the field of historic masonry structures as a useful tool to overcome the difficulties of
identifying the proper value for the model parameters when the experimental data are available.

Given this background, this paper proposes a probabilistic Bayesian model updating (BMu)
framework for robust seismic fragility analyses, with specific reference to the structural typology
of non-isolated historic masonry towers. Specific attention has been paid at first to the parameters
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involved in the Bayesian procedure in order to define their effect on the obtained posterior
distributions. Measurement errors are accounted for by means of a Gaussian distribution
centred on the measured values of the experimental data (the natural periods), while modelling
uncertainties are taken into account to incorporate the lack of knowledge on the constraint
effect originated by the neighbouring structures. The BMu framework is subsequently integrated
with probabilistic seismic analyses to fully develop the seismic risk assessment path. Robust
seismic fragility curves, based on numerical models updated with the dynamic test data, are thus
estimated. The concept of robust reliability [13,14] is here introduced considering a set of possible
structural models to represent the structure rather than a single model, thus including different
sources of uncertainties.

The paper is organized as follows: Section 2 summarizes the main concepts of the methodology
proposed to evaluate the robust fragility curve, highlighting the research novelties. Section
3 focuses on the non-isolated masonry tower typology and discusses the relevant sources
of uncertainty, which constitute the subject of the Bayesian updating. Section 4 reports the
whole procedure employed to obtain robust seismic fragility curves. Eventually, the proposed
methodology is compared with an optimization-based deterministic approach to show its
effectiveness. Its major benefit is the rigorous treatment of the uncertainties involved in the
problem. In fact, while the classical deterministic approach does not allow us to obtain a measure
of the uncertainty contained in the model updating procedure, by introducing the Bayesian
paradigm, it is possible to obtain a probability distribution of the results and then the possible
evaluation of confidence intervals on what has been obtained from the analysis.

2. Methodology
The proposed Bayesian-updated robust fragility curve is derived by calculating the probability of
failure of the structure for each considered seismic demand, with the latter expressed in terms of
Peak Ground Acceleration (PGA). Other demand measures have been proposed apart from the
PGA in literature to characterize the intensity of the seismic hazard, and the interested reader is
referred to the study by Casolo [15], where a rational discussion of these measures is presented
analysing their correlation with damage indicators; nevertheless, PGA has been chosen in the
present study due to its simplicity.

The failure event F is hence defined by using the PGA as an intensity measure of the ground-
motion and by evaluating the condition PGAc ≤ PGAd (c stands for capacity and d for demand).
The robust probability of failure, denoted by PD̄(F) = P(F|D̄), can be written as follows:

PD̄,j(F) =
∫

Pj(F | θ )pD̄(θ ) dθ j = 1, . . . , N, (2.1)

where j represents each level of PGA value considered for the definition of the probability of
failure, θ denotes the vector that collects the updated model parameters, Pj(F | θ ) is the probability
of failure for the jth PGA given the parameters θ and pD̄(θ) represents the updated joint-
probability distribution of the model parameters θ . This latter term is obtained as the result of
a BMu. Based on the Bayes theorem, the prior distribution of the θ parameters, p0(θ), is converted
into the posterior distribution, p(θ |D̄), by using the experimental data D̄ according to the following
expression:

pD̄(θ) = p(θ | D̄) = p(D̄ | θ )p0(θ )
∫ p(D̄ | θ )p0(θ )dθ

. (2.2)

In equation (2.2), the prior probability density function (PDF), p0(θ), is built based on the
expert judgement and reflects the background information on the uncertain parameters, i.e. before
employing the data D̄; p(D̄ | θ ) is the likelihood function, that is the probability of obtaining
the data D̄ given a certain vector of model parameters, θ , while the denominator represents a
normalization factor.

Since the BMu framework allows us to use different types of information in order to update an
initial description of the structural model based on the collected data, the posterior distribution
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becomes a measure of the uncertainty of the parameters. They can be once again updated
when the additional data become available. The robust fragility curve may be used to identify
potentially unsafe scenarios and to promote control strategies when the structure appears
vulnerable to possible future severe loads.

This methodology can be summarized as follows:

1. Perform in situ tests to collect the relevant experimental data D̄k.
2. Select appropriate numerical models and analysis methods to replicate the seismic

behaviour of the structure and the available experimental data.
3. Perform sensitivity analyses to identify the most affecting parameters (θ ) of both

the seismic behaviour of the structure and the model predictions of the available
experimental data.

4. Identify the uncertainties on the θ -parameters.
5. Setting up the BMu framework:

a. Select the prior distribution p0(θ ) through available data and/or expert judgement;
b. Extract samples from prior distribution and perform the numerical output D̃k(θ );
c. Compute the likelihood function p(D̄ | θ), taking into account both the modelling

and the measurement uncertainties;
d. Use equation (2.2) to calculate the posterior distribution p(θ | D̄);
e. When the additional experimental data become available, set the posterior

distribution as new prior distribution and repeat from point b.

6. Define the conditional probability of failure by taking into account the variability of the
uncertain θ -parameters.

7. Use equation (2.1) to integrate the conditional probability of failure on the posterior joint-
PDF of the θ -parameters, thus obtaining the robust seismic fragility curve.

The methodology described above is quite general and can be considered as a general
framework to be employed and extended to other structural typologies. Next, for illustrative
purposes, the methodology is applied for the analysis of a representative historic masonry tower
by examining the numerical model, the uncertain parameters and the available experimental data
and finally evaluating the seismic fragility curves.

3. Representative masonry tower
The methodology is illustrated on a representative non-isolated historic masonry tower. This
structural typology represents the situation where the tower, incorporated within the urban
context, interacts in terms of lateral restraint conditions with the surrounding constructions. The
adjacent structures, sometimes built in different periods, affect both the dynamic behaviour and
the seismic response of the tower, so that distinguishing between isolated and non-isolated towers
becomes mandatory [16,17].

As a reference case, one of the towers in the city centre of San Gimignano (Italy) was selected.
This tower, the so-called Becci tower, shows a quite regular geometry characterized by a total
height of about 38 m and an almost square cross-section sizing 6.8 × 6.9 m. The thickness of the
walls ranges from 2.3 to 1.5 m; the walls are constituted by a multilayered stone masonry typology
with the internal and external faces made from a soft stone. The internal core material is unknown
for this particular tower, but it may be composed of heterogeneous stone blocks tied by a good
mortar, like similar towers in San Gimignano [18]. The section sizes are almost constant along the
height of the tower except for the lower level where larger size openings were created to allow
the connection of the tower with the adjacent buildings.

The reference case study takes advantage of the availability of experimental dynamic
measurements, which allowed us to identify the dynamic behaviour of the tower in terms of
modal frequencies [19].
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(a) Numerical model
A numerical model of the tower was built and used to replicate the experimental data (as required
for the Bayesian finite-element (FE) model updating) and to predict the nonlinear behaviour of
the tower under seismic loads.

The numerical model was built by using the FE code ANSYS, while the geometry was based
on the results of a geometric survey [20]. A macroelement strategy [21] was employed, and the
masonry was modelled as an isotropic continuum: masonry walls were modelled by means of
Solid65 elements (eight node isoparametric elements), with a maximum mesh dimension of about
50 cm, paying attention to reproducing the main geometric irregularities in the wall thickness.

While the geometry of the tower is commonly known, the assessment of the interaction
between the tower and its confining buildings and the assessment of the material’s mechanical
parameters deserve more attention since they represent critical issues that may compromise the
reliability of the results.

The restraint effect given by the adjacent buildings represents a relevant source of uncertainty
because their stiffness is unknown. The scientific literature has proposed reliable approaches for
the systematic seismic assessment of masonry towers; however, the proper evaluation of the
effects of the interaction between the tower and its confining buildings (when the tower is not
an isolated structure) is still an open question [16,17]. From an engineering point of view, this
aspect can be accounted for in deterministic approaches by assuming horizontal lateral restraints,
either fixed or elastic, whose total height along the tower is usually identified in order to replicate
the dynamic behaviour of the tower [22]. In this study, to account for this source of uncertainty,
lateral fixed restraints are still assumed, but their height along the tower has been considered as
a random variable.

Another source of uncertainty is the assessment of the material properties of the masonry (both
linear and strength parameters) constituting the tower walls. Since invasive experimental in situ
tests are difficult for historic buildings, a preliminary evaluation of the mechanical properties’
can be obtained from the classification proposed in the Italian Recommendations [23–25] based
on expert judgement or by literature references [26]. These technical documents provide a
quantification of the mechanical parameters’ variability; document [25], in particular, for the
characterization of the masonry properties suggests considering lognormal distributions, thus
giving for each masonry typology the standard deviation (σ ln) and the mean value corresponding
to the associated Gaussian distribution (μ), as reported in table 1.

(b) Masonry modelling
To reproduce the masonry nonlinear behaviour, a smeared crack approach was used, adopting
an elastoplastic law with tension cut-off. To achieve this aim, the Drucker–Prager (DP) plasticity
model was combined with the Willam–Warnke (WW) concrete failure criterion. This approach
has been already extensively used in the scientific literature to model the post-elastic behaviour
of the masonry [27–32].

The whole model requires the knowledge of (i) the elastic parameters: E and ν (and ρ); (ii)
the plasticity model parameters (DP criterion): c, ϕ and δ and (iii) the failure criterion parameters
(WW criterion): f c,WW, f t,WW, βc and βt.

E denotes the modulus of elasticity and ν denotes the Poisson’s coefficient (and ρ represents
the mass density). Three additional parameters are required to define the plasticity DP model: the
internal friction angle φ, the cohesion c and the dilatancy angle δ. The failure criterion is defined
by two main parameters: the uniaxial compressive and tensile strengths f c,WW and f t,WW. Two
additional parameters, the coefficients βt and βc, rule the shear stresses on the cracking planes
[27,33].

To calibrate these parameters in order to reproduce the brittle cracking behaviour of the
masonry in tension, the combination of DP and WW models must comply with the following
criteria: (i) the tensile strength f t,WW must be smaller than the tensile strength derived from the
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Table 1. Mechanical properties of masonry typologies. f c, compressive strength; E, elastic modulus; G, shear modulus;ρ , mass
density.

masonry typology f c (MPa) E (MPa) G (MPa) ρ (kN m−3)

irregular stone masonry (pebbles, erratic and
irregular stone)

μ 1.40 870 290 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ ln 0.29 0.21 0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uncut stone masonry with facing walls of
limited thickness and infill core

μ 2.50 1230 410 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ ln 0.20 0.17 0.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

regular stone masonry with good texture μ 3.20 1740 580 21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ ln 0.19 0.14 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soft stone masonry (tuff, limestone, etc.) μ 1.90 1080 360 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ ln 0.27 0.17 0.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dressed rectangular stone masonry μ 7.00 2800 860 22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ ln 0.14 0.14 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plasticity model f t,DP; (ii) the compressive strength f c,WW must be greater than the compressive
strength derived from the plasticity model f c,DP to ensure the correct plastic behaviour of the
masonry in the mixed tensile-compression zone [27]. As a result, the proper combination of
the plasticity model with the failure criterion allows for an elastic–brittle behaviour of the
material in the case of biaxial tensile stresses or biaxial tensile-compressive stresses with a
low compression level. On the contrary, the material behaves as elastoplastic in the case of
biaxial compressive stresses or biaxial tensile-compressive stresses with a high compression level.
Overall, the material behaves as an isotropic medium with plastic deformation and cracking and
crushing capabilities. It is noteworthy that the adoption of the elastic perfectly plastic model alone
does not allow for reproducing the collapse displacements since the material behaves like an
elastoplastic continuum with no limits to deformation.

–2.0
–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

–1.5 –1.0

fcDP

WW

DP fcDP

ftDP

ftDP

ftWW

ftWW

–0.5 0 0.5 1.0

Figure 1. Intersection between the plasticity (DP) and the failure (WW) domains. (Online version in colour.)

Based on the experimental results, Betti et al. [27] proposed a calibration procedure between
the failure and the plasticity model that allows us to reproduce the experimental tests (both
strength and deformability of masonry walls) with good accuracy. The same calibration is used
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Figure 2. Lognormal PDF of (a) the elastic modulus and (b) compressive strength of the masonry. (Online version in colour.)

here to define the proper intersection between DP and WW criteria, as shown in figure 1, and the
following relation between f t,WW and f c,DP is employed:

ft,WW ∼= 0.22fc,DP. (3.1)

(c) Uncertainty quantification
The different sources of uncertainties that usually affect the structural assessment of historic
structures within a deterministic approach are usually dealt with by simply assuming the most
probable values of the chosen parameters. These are selected in a physical variability range by
comparing the results of the numerical model with the experimental evidence. However, in order
to have a probabilistic characterization of the system, the uncertain parameters can be more
properly represented through a PDF.

Next, some possible choices of the PDFs are reported and discussed for the most significant
uncertain parameters involved in the seismic vulnerability assessment of the tower.

(i) Mechanical properties of the masonry

Among the mechanical properties of the masonry reported in table 1, the elastic modulus and
the compressive and tensile strength play relevant roles in the dynamic identification and seismic
behaviour, respectively. Owing to the high level of uncertainty of these mechanical parameters,
some PDFs [25] can be selected to represent their variability range. Figure 2 shows the PDFs
selected to represent the initial variability range of the elastic modulus (figure 2a) and the
compressive strength of the masonry (figure 2b).

For the elastic modulus, a lognormal PDF has been assumed as characterized by a standard
deviation equal to 0.17 MPa and a mean value of the associated Gaussian distribution equal
to 1600 MPa. For the compressive strength (f c,DP), a lognormal PDF has been employed,
characterized by a standard deviation equal to 0.20 MPa, and a mean value of the associated
Gaussian distribution, equal to 1.5 MPa; in the following, this variable will be referred to as f c.
Poisson’s modulus has been set as a constant and equal to ν = 0.2. These values have been selected
taking into account the masonry typology of the considered tower, which can be classified as Soft
Stone Masonry [18,24].

(ii) Experimental measurement of the natural periods

Another source of potential uncertainties is due to the experimental results, here represented by
the value of the first natural frequencies of the tower (or equivalent to the first natural periods). In
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Figure 3. PDF of measurement uncertainties.

Table 2. Experimental measurements of the Becci tower.

tower direction natural period, T (s)

Becci N–S 0.73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E–W 0.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the absence of specific information, the uncertainties related to these data have been represented
through zero-mean Gaussian distributions, centred on the experimental values. The standard
deviation can be assumed as the same for each measurement, but different levels of accuracy
can be hypothesized. In this application, only one value of the standard deviation, 0.01 s, was
considered, regardless of the considered mode.

The experimental data considered here are the first two natural periods along the two main
directions of the structure, as summarized in table 2. Figure 3 shows the PDF of the measurement
uncertainties, reporting the distribution of possible values for the first natural period for the Becci
tower.

(iii) Lateral restraint condition

Adjacent buildings, as previously discussed, provide a horizontal restraint for the tower, whose
effectiveness depends on the stiffness of the surrounding buildings and the effectiveness of
the link between them and the tower. This parameter is usually unknown; however, under the
assumption that the restraint offered by lateral buildings can be modelled as fixed restraints
along a certain portion of the tower with unknown height, the uncertainties related to the lateral
restraint condition can be represented through the PDF of the length of the laterally unrestrained
part of the tower. By indicating with effective height (h) the height of the unrestrained part of
the tower [34–36], a schematic representation of this parameter is given in figure 4 for both the
main directions of the tower. To account for the uncertainties related to the effectiveness of the
restraint conditions introduced by the surrounding structures, a PDF was selected to represent
the initial hypotheses about the effective height. In particular, two lognormal PDFs were taken
into account to represent the effective height for the North–South direction (N–S) corresponding
to the first natural period and for the East–West direction (E–W) corresponding to the second
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natural period, as shown in figure 4. Figure 5 shows the selected lognormal PDF for the N–S
direction, characterized by a standard deviation corresponding to 0.04 m and a mean value of the
associated Gaussian distribution equal to 25.0 m.

4. Robust seismic fragility curves
The reference case study presented in the previous section is here employed to illustrate the
application of the proposed Bayesian methodology to obtain seismic fragility curves. The two
terms in the integral of equation (2.1) are here evaluated by showing both the derivation of the
BMu and the conditional probability of failure.

(a) Bayesian model updating
The scientific literature has already shown the key role played by the masonry elastic modulus
and the effective height in the identification of the dynamic behaviour of non-isolated masonry
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towers [34,35]. This suggests, when the experimental data of the natural periods are collected,
that the application of the BMu framework can consider the vector θ as composed by the elastic
modulus, E, and the effective height of the tower, h. The Bayesian paradigm is here employed to
update the PDF of the component of the vector. The measurement of the first natural period of
the tower is used as new information. For the sake of simplicity, it is assumed that the first two
bending natural periods are only affected by the restraint conditions along the corresponding
mode shape direction. The two selected random variables are hence considered as independent;
therefore, their prior joint-PDF can be obtained as the product of the two marginal PDFs, i.e.:

p0(θ) = p0(E, h) = p0(E)p0(h). (4.1)

The assumed marginal distributions for these two random variables are summarized in figure 6.
The application of the Bayes theorem to the BMu framework provides the following relation:

pT̄(E, h) = p(E, h | T̄) = p(T̄ | E, h)p0(E, h)
∫ ∫ p(T̄ | E, h)p0(E, h) dEdh

. (4.2)

The likelihood function represents the discrepancy between the model output and the
measurement, which takes into account two sources of errors: the first is related to the modelling
uncertainties and the second is related to the measurement uncertainties. The proposed likelihood
function, whose definition is one of the crucial elements in each BMu, has been built considering
these two sources of uncertainties:

p(T̄|E, h) =
∫

p(T̄|T, E, h)p0(T|E, h) dE dh. (4.3)

The first term in the integral of equation (4.3) represents the probability of obtaining the
natural period T̄ given the period T, the elastic modulus E and the effective height h (i.e. the
measurement uncertainties), while the second one represents the probability of obtaining T given
the elastic modulus E and the effective height h (i.e. the modelling uncertainties). To represent
these uncertainties, two zero-mean Gaussian distributions were selected. These distributions are
centred on the experimental measurement and the model output, respectively.

By using the experimental measurement of the first natural period, the updated results are
illustrated in figures 7 and 8. A reduction is observed in the range of variability of the two
random variables (figure 8), together with a significant modification of the shape of the posterior
distribution. This change highlights the exclusion of several combinations of the elastic modulus
and the effective height. This aspect is particularly evident in figure 7. Indeed, despite the
fact that the elastic modulus and the effective height can be considered as independent, these
two parameters jointly contributed to the definition of the natural period of the tower. This
consideration explains the shape of the posterior joint-PDF, highlighted in figure 7.
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(b) Conditional probability of failure
The conditional probability of failure is the second element included in equation (2.1) that needs
to be evaluated to build the fragility curves. Taking into account the variability of the uncertain
parameters of the model, its estimation requires performing a significant number of nonlinear
analyses.

(i) Seismic nonlinear analyses

In this work, for illustrative purposes, the seismic vulnerability was evaluated with a pushover
approach [37,38]: nonlinear static analyses were carried out by increasing monotonically, under
constant gravity loads, a uniform profile of horizontal loads directly proportional to the
distribution of the tower mass.

Despite nonlinear time history analyses representing the most sophisticated tool for assessing
the seismic vulnerability of a structure, their computational effort is still highly demanding.
This drawback is highlighted in several research papers [2,18,39]. The Italian code [23,40], like
other international seismic codes, allows us to employ pushover analyses to assess the seismic
vulnerability of existing masonry buildings.
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Table 3. Assumed values for the compressive (f c,DP) and tensile (f t,WW) strength.a

no. c (MPa) ϕ (°) f c,DP (MPa) f t,DP (MPa) f c,WW (MPa) f t,WW (MPa) β c (—) β t (—)

(1) 0.22 40 0.94 0.28 8.0 0.204 0.75 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2) 0.27 40 1.16 0.34 8.0 0.251 0.75 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3) 0.32 40 1.37 0.40 8.0 0.298 0.75 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4) 0.37 40 1.59 0.47 8.0 0.343 0.75 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(5) 0.42 40 1.80 0.53 8.0 0.387 0.75 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aCompressive (f c,DP) and tensile (f t,WW) strength are connected according to equation (3.1).

The three-dimensional numerical model, after BMu, was employed to evaluate the variability
of the seismic behaviour as a function of the variability of the uncertain parameters. The response
surface method [41–43] was used to optimize the computational effort by reducing the samples
of the input parameters involved in the estimation of the probability of failure Pj(F|θ ). It provides
a powerful and effective tool for estimating the failure probability, as demonstrated by several
applications reported in the scientific literature [43,44]. The method allows us to reduce the
computational effort, if compared with classical sampling methods such as Monte Carlo and Latin
Hypercube approaches.

Figure 9 reports the selected samples of the elastic modulus of the masonry and of the effective
height of the tower. For each combination of these parameters, five pushover analyses were
carried out considering the different sets of compressive and tensile strengths reported in table 3.
The seismic behaviour of the tower, investigated along the direction corresponding to the first
natural period (N–S direction), is summarized in figure 10. The figure summarizes the results
of the 245 pushover analyses performed, expressed in terms of capacity curves (i.e. force versus
displacement relationships). The capacity curves were built by assuming the base shear and the
displacement of the mass centre in the upper section of the tower as a control point.

(ii) Definition of damage states

In order to obtain fragility curves, it is necessary to define limit states (LS) that can be directly
checked from the pushover analyses. Usually, for ordinary masonry buildings, three LS are
defined [45]: the first corresponds to the exceedance of an elastic behaviour limit (e.g. a reduction
of the initial elastic stiffness); the second is reached when the maximum resistance is attained
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and finally the third, the ultimate collapse state, is conventionally identified as a resistance
loss corresponding to e.g. 20% of the maximum resistance. In this paper, based on the specific
structural typology investigated (i.e. masonry towers), two LS are proposed to build the fragility
curves. These two LS are assessed by analysing the current tangent stiffness over the pushover
curves and connecting this value with the evolution of the damage on the tower.

In particular, the ratio k/kel between the current tangent stiffness and the initial elastic stiffness
on the pushover curve (figure 11a) was first evaluated. This ratio is represented in figure 11b. It
is possible to obtain unambiguous identification of the damage levels by connecting, at each step
of the pushover analysis, the ratio k/kel with the cracking pattern on the tower. Based on this
procedure, the following two LS were identified:

— Damage limit state (DLS) corresponds to the displacement indicated by δd (figure 11),
where the cracking pattern is widespread, but no masonry elements are crushed; δd was
assumed as the displacement at the level k/kel = 5%.

— Ultimate limit state (ULS) corresponds to the displacement indicated by δu (figure 11),
where several masonry elements are crushed; in this case, it was assumed as the
displacement level at which k/kel = 2%.

For each LS, the value of the corresponding PGA was obtained through the capacity spectrum
method (CSM) [46], expressing the capacity curve and the response spectrum in terms of
spectral acceleration and displacement in the acceleration-displacement response spectra format
(figure 12).

To underline the effect of different values of compressive strength, figure 12 illustrates the
identification of DLS and ULS for one of the analysed cases: θ = {E = 1662 MPa, h = 24.0 m}T. It
is possible to observe that an increase in the compressive strength corresponds to an increase in
both displacement and base shear.

A PGA value can be associated with each identified damage level according to CSM (figure 13),
and its variability, with reference to the ULS for θ = {E = 1662MPa, h = 24.0m}T, is shown in
figure 14. The gradual increase in the PGA as a function of f c allows us to introduce a linear
approximation (dotted line in figure 14) to assess the PGA level for the compressive strength
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values not directly analysed. According to [25], a lognormal distribution was subsequently
selected (figure 2b) to express the uncertainty on f c. A mean and a standard deviation equal
to 1.5 MPa and 0.20 MPa were assumed, respectively. Crude Monte Carlo simulations sampled
from the lognormal distribution were carried out. These samples were projected on the linear
approximation (response surface), defined in figure 14, thus obtaining for each θ i = {Ei, hi}T the
PDF of the PGA. A graphical representation is provided in figure 15a. It is noteworthy that this
PDF takes into account only the uncertainty on the compressive strength, being referred to a
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specific θ i vector. The probability of failure is then calculated, for different levels of PGA, by
integration.

For the sake of clarity, in figure 15a, the area under the curve (blue surface), delimitated by
a generic PGA level (horizontal red plane), represents the probability of failure. This value is
reported in figure 15b.

By extending the procedure to all the θ-parameters, it is possible to obtain a surface, on
the random variables, Pj(F|θ), which represents the probability of failure conditioned to the
θ-parameters and related to the LS.
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(c) Seismic fragility curves
To derive the fragility curve, equation (2.1) is employed. The first term, Pj(F|θ ), which represents
the probability of failure conditioned to the θ-parameters for the jth level of demand PGA was
defined and evaluated in the previous section. The second term, pD̄(θ ), represents the posterior
joint-probability distribution of the θ = {E, h}T random variables vector and is independent from
each selected level of PGA.

The fragility curve, which represents the probability of exceedance according to the considered
damage levels for each level of PGA, is determined pointwise.

Figure 16 reports the result obtained with the distribution of the compressive strength shown
in figure 2b combined with the posterior joint-PDF of the θ-vector shown in figure 7. The resulting
fragility curve describes the seismic vulnerability, expressed in terms of exceedance probability
of the PGA (the considered seismic intensity measure). The proposed methodology allows us to
take into account:

— the Bayesian FE-model updating on the θ = {E, h}T random variables vector, by using
experimental dynamic data (i.e. the natural period measurement);

— the variability of the masonry compressive strength, considered as modelling uncertainty
on the result of each nonlinear seismic analysis;

— the assumed damage levels.

The proposed methodology combines natural period experimental measurement within the
Bayesian framework with modelling uncertainties to derive robust fragility curves.

Usually, in a deterministic framework, the experimental measurements of natural period are
employed to build an objective function that measures the error between the experimental values
and the ones provided by the numerical model. By changing the values of a selected number of
structural parameters, various deterministic linear models can be obtained that meet this objective
function. This approach identifies unique values of the selected structural parameters (f.i.
boundary condition stiffness, material properties, etc.). Afterwards, some correlations between
elastic and inelastic parameters (e.g. between elastic modulus and compressive strength) can
be introduced to identify a deterministic nonlinear model. These assumptions lead to a fragility
curve without uncertainties (a Heaviside function).

This optimization-based deterministic procedure is compared in figure 17 to the one resulting
in this paper; two additional cases are included for illustrative purposes with their corresponding
fragility curves evaluated for the damage level ULS.
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The continuous yellow line represents the deterministic case, here indicated as C1. The
reference parameters employed to build the fragility curve are reported in table 4. If no reliable
information is available on the inelastic masonry parameters, an additional case (C2) can be
introduced where, to account for the variability of the compressive strength, a PDF is considered.
To this end, a lognormal distribution was selected with the same median value of C1 (for
comparative purpose); the values are also reported in table 4. This additional case does not
account for the Bayesian updating, and its fragility curve is represented with the dotted purple
line. The result obtained with the methodology proposed in this paper (denoted as C3) is
represented with a dashed green line. The natural period experimental measurement is included
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Table 4. Characteristics of the reference cases used to evaluate the effect of different sources of uncertainty.

C1 C2 C3 C4

geometric parameters external side, a (m) 6.5 6.5 6.5 6.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thickness, s (m) 1.5 1.5 1.5 1.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total height, H (m) 38.4 38.4 38.4 38.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

effective height, h (m) 24.9 24.9 μ = 24.3 μ = 24.9

σ ln = 0.03 σ ln = 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic parameters specific weight,w (kN m−3) 16 16 16 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic modulus, E (MPa) 1570 1570 μ = 1550 μ = 1600

σ ln = 0.1 σ ln = 0.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plastic parameters cohesion, c (MPa) 0.34 μ = 0.35 μ = 0.35 μ = 0.35

σ ln = 0.2 σ ln = 0.2 σ ln = 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

friction angle,ϕ (°) 40 40 40 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compressive strength, f c (MPa) 1.47 μ = 1.5 μ = 1.5 μ = 1.5

σ ln = 0.2 σ ln = 0.2 σ ln = 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

through the pD̄(θ ), i.e. the posterior joint-PDF of the elastic parameters. The same lognormal
distribution considered for the compressive strength in C2 was employed to build the term
Pj(F|θ). Finally, C4, represented by the dash-dotted blue line in figure 17, does not account for
the natural period experimental measurement. Its fragility curve was evaluated considering the
prior joint-PDF of the elastic parameters (p0(θ )) reported in figure 6. The term Pj(F|θ ) accounts for
the variability of the compressive strength, and the same lognormal PDF employed for case C2
and C3 was selected for comparative purposes.

Comparing the C4 fragility curve with others, it is possible to observe that the median collapse
value is not maintained. This is due to the fact that the prior joint-PDF of the elastic parameters
has a different median value compared with the posterior joint-PDF (figure 7). Moreover, the
dispersion of the collapse fragility curves increases from C1 to C4. This variability is a result of
the role played by the different sources of uncertainties on the seismic vulnerability of masonry
towers, as well as the different approaches employed to define it. Some considerations can
be drawn from the seismic vulnerability of the four cases considered, from the observation
of the fragility curves reported in figure 17. In terms of PGA, the probability of failure PT(F)
corresponding to the 5th percentile, varies from 0.19 g to 0.36 g for C4 and C1, respectively.
Intermediate PGA levels are obtained in the C3 (0.26 g) and C2 (0.30 g) cases.

5. Conclusion
A methodology was proposed, which incorporates both modelling and measurement
uncertainties into a probabilistic assessment of the seismic vulnerability of non-isolated masonry
towers. The procedure allowed us to obtain robust fragility curves, which account for the effect
of different sources of uncertainties through a Bayesian updating. In particular, a Bayesian FE-
model updating was integrated with probabilistic structural analyses. As experimental datum,
the natural period was considered due to its physical relevance for the considered structural
typology.

This research was motivated by the need to specifically address the derivation of fragility
curves for masonry constructions by incorporating uncertainties into the modelling parameters.
The proposed procedure allowed us to include the natural period in the Bayesian updating,
hence improving the FE-model prediction in both linear and nonlinear fields. The reported results
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are those deriving from nonlinear static analyses of a reference masonry tower, considered as
representative of a large number of similar cases. A comparison between this method and the
standard deterministic approach illustrates its benefits. In particular: (i) incorporating sources of
uncertainties increases the dispersion of the fragility curves; (ii) different approaches employed
to incorporate the same sources of uncertainty may originate fragility curves with a significant
scattering and (iii) neglecting the effects of uncertainties seems not to be conservative; f.i. if the 5th
percentile is considered, the deterministic approach overestimates the collapse PGA value. This,
more generally, highlights the need for a proper characterization of the uncertainty parameters
(both for linear and nonlinear models), since their propagation in the assessment procedures may
largely affect the seismic vulnerability prediction.

This original Bayesian-based framework represents an effective engineering approach,
providing an alternative use of the experimental data (short- or long-term field monitoring)
to define a probability distribution over a set of plausible structural models. Although the
methodology has been illustrated for a specific structural typology, that is the historic masonry
towers, the whole procedure may serve as guidance for its application in other structural
typologies. The achieved results, in fact, encourage the extension of this approach to the
safeguarding of different components of the cultural heritage.
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