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Describing particle transport at the macroscopic or mesoscopic level in non-ideal

environments poses fundamental theoretical challenges in domains ranging from inter

and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature

of the constraints coming from many-body interactions or reflecting a complex and

confining environment are better understood and modeled at the microscopic level. In

this paper we review the subtle link between microscopic exclusion processes and the

mean-field equations that ensue from them in the continuum limit. We show that in an

inhomogeneous medium, i.e., when jumps are controlled by site-dependent hopping

rates, one can obtain three different nonlinear advection-diffusion equations in the

continuum limit, suitable for describing transport in the presence of quenched disorder

and external fields, depending on the particular rule embodying site inequivalence at the

microscopic level. In a situation that might be termed point-like scenario, when particles

are treated as point-like objects, the effect of crowding as imposed at the microscopic

level manifests in the mean-field equations only if some degree of inhomogeneity is

enforced into the model. Conversely, when interacting agents are assigned a finite size,

under the more realistic extended crowding framework, exclusion constraints persist in

the unbiased macroscopic representation.

Keywords: transport equations, nonlinear diffusion, macromolecular crowding, non-ideal fluids, stochastic

processes

PACS numbers: 02.50.Ey, 05.60.Cd, 87.10.Ed, 66.10.cg, 61.20.-p

1. INTRODUCTION

Diffusive transport is central in many areas of physics, chemistry, biology, and soft matter [1–
4]. However, while the mathematics of diffusive processes in dilute and simple media is fairly
well developed and understood [1], many interesting and relevant diffusive processes take place
in strongly non-ideal conditions. These include a wealth of different highly dense media, from
non-ideal plasmas [5] to biological membranes [6], media with complex topological structures,
including porous media [7–9] and living cells [10, 11] and strongly confining environments [3, 12–
16].

Crowding and confinement effects on diffusion-influenced phenomena still pose fundamental
yet unanswered questions. Several computational [17] and experimental [18, 19] evidences
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exist of anomalous diffusion under dense crowded conditions
[20]. Anomalous diffusion refers to phenomena that lead to
a nonlinear growth of particles’ mean square displacement.
Deviation from the standard linear behavior arise, for example,
when obstacles impede the motion of particles [17, 21, 22]
or when distinguishable species compete for the available
spatial resources [10, 23–27]. These conditions are certainly
met when studying the molecular mobility inside a cell [28,
29]. Cells are occupied for over 30% of their volume by
membrane delimited organelles and different sorts of cytoskeletal
structures. In this respect, living cells behave much like fractal
or otherwise disordered systems [30, 31]. However, strong
evidences also exist in favor of normal (Brownian) diffusion,
crowding, and confinement resulting in this scenario in (often
nontrivial) modifications of the diffusion coefficient [10, 27,
32, 33]. Moreover, as shown in Galanti et al. [34], the effect
of crowding can result in crossovers between normal and
anomalous diffusion, leading to different descriptive scenarios
which appear to depend on the selected initial conditions and on
the specific time scale of observation.

Another related issue is that of diffusion-limited
reactions [35], which are ubiquitous in many domains in
biology and chemistry, touching upon problems such as
association, folding and stability of proteins [13, 36] and
bimolecular reactions in solution [37–41], including enzyme
kinetics [42], but also the dynamics of active agents [43, 44].
Many theoretical studies have tackled these and related problems
under different angles [13, 39, 42, 44–47]. Nevertheless, a full
theoretical comprehension of transport in non-ideal media
remains an elusive task, Fick’s law itself and the very notion of
effective diffusion coefficient being questionable in a disordered
medium [31].

In this paper we review the subtle link between macroscopic
transport equations, such as the diffusion equation, and
microscopic processes, modeling the stochastic dynamics of some
agents. For a classical and comprehensive account on diffusion in
disordered media the reader can refer to Haus and Kehr [48]and
references therein [49–56].

The purpose of our study is to contribute to the debate with
a two-fold approach. One the one hand, we wish to understand
in greater depth the delicate procedure of obtaining mean-field
transport equations from microscopic, agent-based stochastic
models. The idea is that sometimes it may prove simpler or more
effective to describe a complex transport process (or a simple
one occurring in a complex medium) at the microscopic level.
On the contrary, it is sometimes better to deal with macroscopic
equations. It is thus important to investigate how the two levels
of description interface with each other. Furthermore, we will
elaborate on the reasons why considerable information can be
eventually lost when passing from the microscopic stochastic
process to the macroscopic mean-field description, and draw
attention on the distinct notions of point-like and extended
crowding, this latter bearing potentially interesting applications,
only partially explored in the relevant literature.

The paper is organized as follows. In Section 2 we discuss the
general framework of simple exclusion processes (SEPs), which
constitute the basic tool of the microscopic description, as well

as the process of obtaining mean-field equations from SEPs in
the continuum limit. We show that SEPs in inhomogeneous
media can be constructed in apparently equivalent manners as
for the site-dependence of the hopping rates. However, different
advection-diffusion equations can ensue in the continuum limit,
rendering this operation a rather subtle one in disordered
systems [57]. Moreover, we show that the effect of crowding,
enforced in the microscopic description through an excluded
volume effect, is recognizable in the continuum limit only if some
degree of inhomogeneity is introduced. In Section 3, we move
a step forward and consider microscopic exclusion processes
involving agents characterized by a finite size, as opposed to
standard SEPs. In the last section we draw the conclusions and we
summarize the different extent to which the crowding fine-tunes
deviation from the classical picture.

2. FROM MICROSCOPIC PROCESSES TO

MACROSCOPIC EQUATIONS

SEPs are space-discrete, agent-based stochastic processes
modeling some kind of transport according to specific rules and
bound to the constraint that no two agents can ever occupy
the same site. SEPs occupy a central role in non-equilibrium
statistical physics [58, 59]. While the first theoretical ideas
underlying such processes can be traced back to Boltzmann’s
works [60], SEPs were introduced and widely studied in the 70s as
simplified models of one-dimensional transport for phenomena
like hopping conductivity [61] and kinetics of biopolymerization
[5]. Along the same lines, the asymmetric exclusion process
(ASEP), originally introduced by Spitzer [62], has become
a paradigm in non-equilibrium statistical physics [63–66]
and has now found many applications, such as the study of
molecular motors [67], transport through nano-channels [68]
and depolymerization of microtubules [69].

The most general SEP in one dimension is described by a
stochastic jump process on a 1D lattice with inequivalent sites in
the presence of a field

ni(k+ 1)− ni(k) = z+i−1ni−1(k)[1− ni(k)]

+ z−i+1ni+1(k)[1− ni(k)]

− z+i ni(k)[1− ni+1(k)]

− z−i ni(k)[1− ni−1(k)] (1)

Equation (1) is to be regarded as the update rule for a Monte
Carlo process, where ni(k) is the occupancy of site i at time
t = k1t, which can be either zero or one. The quantities z±i
are variables which have the value 0 or 1 according to a random
number ξi which has a uniform distribution between 0 and 1. By
defining the jump probabilities q±j (j = i, i± 1) one can formally
write:

z+i−1 = θ(ξi)− θ(ξi − q+i−1)

z−i+1 = θ(ξi − q+i−1)− θ(ξi − q+i−1 − q−i+1)

z+i = θ(ξi − q+i−1 − q−i+1)− θ(ξi − q+i−1 − q−i+1 − q+i )

z−i = θ(ξi − q+i−1 − q−i+1 − q+i )− θ(ξi − 1) (2)
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where θ(·) stands for the Heaviside step function and where we
are assuming that q+i−1 + q−i+1 + q+i + q−i = 1. Note that the

ordering of appearance of the q±j in the above expressions is

arbitrary. Equations (2) entail that 〈z±j 〉 = q±j , where 〈·〉 indicates
an average over many values of ξi, for a given configuration {ni}.
The above process is fully determined by the fields q±i , specifying
the probability of jumping from site i to site i + 1 (q+i ) or to site
i− 1 (q−i ) in a time interval 1t.

A (discrete-time) master equation for the above SEP can be
obtained by averaging over many Monte Carlo cycles performed
according to rule (1)

Pi(k+ 1)− Pi(k) = q+i−1[Pi−1(k)− Pi,i−1(k)]

+ q−i+1[Pi+1(k)− Pi,i+1(k)]

− q+i [Pi(k)− Pi,i+1(k)]

− q−i [Pi(k)− Pi,i−1(k)] (3)

where we have defined the one-body and two-body site
occupancy probabilities

Pi(k) = 〈〈ni(k)〉〉 (4)

Pi,i±1(k) = 〈〈ni(k)ni±1(k)〉〉 (5)

Here 〈〈·〉〉 denotes averages over many independent Monte Carlo
cycles performed until time k1t, starting from the same initial
condition. We emphasize that the same equation has been
derived through a slightly different procedure by Richards in
1977 [61].

2.1. Mean-Field Equations
With the aim of deriving macroscopic transport equations from
the microscopic stochastic process described by Equation (1), it
is customary to assume a mean-field (MF) factorization,

Pi,i±1(k) ≡ 〈〈ni(k)ni±1(k)〉〉 = 〈〈ni(k)〉〉〈〈ni±1(k)〉〉
= Pi(k)Pi±1(k) (6)

With the help of Equation(6), the master Equation (3) becomes

Pi(k+ 1)− Pi(k) = q+i−1Pi−1(k)[1− Pi(k)]

+ q−i+1Pi+1(k)[1− Pi(k)]

− q+i Pi(k)[1− Pi+1(k)]

− q−i Pi(k)[1− Pi−1(k)] (7)

Nonlinear mean-field equations for exclusion process of this
type have been used since the 70s to investigate one-
dimensional transport in solids [70]. In fact, despite mean-
field descriptions for the inhomogeneous ASEP are known
to provide imperfect descriptions of certain non-equilibrium
observables in one dimension, e.g., the current-density relation
and critical exponents [71], continuum descriptions can be
employed reliably to track the time-evolution of large-wavelength
density fluctuations [34, 72–78]

2.2. Site-Dependent Rates: Three Jump

Processes Yield Three Transport Equations
Let a be the lattice spacing and let us define a reversal probability
ǫi, such that

q+i = Qi q−i = Qi − ǫi (8)

The condition (Equation 8) (with ǫi > 0) amounts to considering
a field introducing a bias in the positive x direction. In order
to take the continuum limit lima,1t→0 Pi(k) = P(x, t), we must
require

lim
a,1t→0

Qia
2

1t
= D(x) (9)

lim
a,1t→0

ǫia

1t
= v(x) (10)

Equation (9) defines the position-dependent diffusion coefficient,
while Equation (10) defines the field-induced drift velocity. Note
that we are assuming that the reversal probability vanishes
linearly with a.

A pondering pause is required at this point before carrying
out the continuum limit. In fact, a moment’s thought is enough
to realize that there are different ways one can enforce quenched
disorder, corresponding to spatially varying hopping rates, in
a jump process with the aim of modeling propagation in a
inhomogenous medium. The master Equation (7) reflects only
one of the possible choices. This observation has been made and
thoroughly discussed in Painter and Sherratt [57]. In this paper
the authors investigate the movements of cells capable of sensing
strategies which depend on environmental factors.

To illustrate this interesting mathematical property, let us
consider the jump from site i to site i + 1. The probability of an
agent taking an i → i + 1 leap can be equally well taken as (1)
proportional to q+i , (2) proportional to q+i+1 or (3) proportional

to (q+i + q+i+1)/2. All three cases correspond to the same space-
dependent function D(x) in the continuum limit, as prescribed
by Equation (9). However, as we shall see in the following,
depending on whether rule (1), (2), or (3) is chosen, one is led to
totally different advection-diffusion equations in the continuum
limit.

2.2.1. No-Exclusion Processes
In order to illustrate this subtle point, let us start with jump
processes in the presence of quenched disorder but with no
exclusion constraints on the allowed moves. Following the same
reasoning that led us to Equation (7), it is not difficult to realize
that the three possible choices (1), (2), and (3) referred above lead
to the following master equations

Pi(k+ 1)− Pi(k) = q−i+1Pi+1(k)+ q+i−1Pi−1(k)

− (q+i + q−i )Pi(k) (11)

Pi(k+ 1)− Pi(k) = q−i Pi+1(k)+ q+i Pi−1(k)

−(q+i+1 + q−i−1)Pi(k) (12)

Pi(k+ 1)− Pi(k) =

(

q−i+1 + q−i
2

)

Pi+1(k)
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+

(

q+i−1 + q+i
2

)

Pi−1(k)

− Pi(k)

[(

q+i+1 + q+i
2

)

+

(

q−i−1 + q−i
2

)]

(13)

In the first case, Equation (11) (already obtained above), the rate
for a given jump depends on the starting site, while the second,
Equation (12), is the opposite, the rate depends on the index of
the target site. The third case, Equation (13) is an intermediate,
symmetric situation where jump rates are associated with links
rather than with nodes. In the continuum limit a,1t → 0 one
has

Qi±1 ≈ Q(x)±
∂Q

∂x
a+

1

2

∂2Q

∂x2
a2 + . . . (14)

ǫi±1 ≈ ǫ(x)±
∂ǫ

∂x
a+ . . . (15)

Pi±1(k) ≈ P(x, t)±
∂P

∂x
a+

1

2

∂2P

∂x2
a2 + . . . (16)

Therefore, recalling Equations (9) and (10), we have from
Equations (11), (12) and (13), respectively,

∂P(x, t)

∂t
= −

∂J1(x, t)

∂x
(17)

∂P(x, t)

∂t
= −

∂J2(x, t)

∂x
(18)

∂P(x, t)

∂t
= −

∂J(x, t)

∂x
(19)

where

J1(x, t) = −D(x)
∂P(x, t)

∂x
+
[

v(x)−
∂D(x)

∂x

]

P(x, t) (20)

J2(x, t) = −D(x)
∂P(x, t)

∂x
+
[

v(x)+
∂D(x)

∂x

]

P(x, t) (21)

J(x, t) = −D(x)
∂P(x, t)

∂x
+ v(x)P(x, t) (22)

We see that the stochastic processes (11) and (12) correspond to
diffusion with drift (or, equivalently, in an external potential).
The drift velocity comprises two contributions: the difference
between the right-bound and left-bound jump rate fields and a
contribution arising from the spatial variation of the diffusion
coefficient. Interestingly, the latter term has the opposite sign
depending on whether jumps at the microscopic level are
controlled by the rates evaluated at the start or target sites. This
means that in these cases, even a symmetric jump process results
in diffusion with drift. Conversely, considering symmetrized
jump rates does not result in the appearance of such additional
term in the drift velocity. Working in this setting one hence
recover the standard diffusion equation.

2.2.2. Enforcing the Excluded-Volume Constraint
We can now come back to our original aim, i.e., taking the
continuum limit of the master Equation (1). It is now clear that,

if we want to consider an inhomogeneous medium, we must not
restrict to the prescription leading to Equation (1), but we must
also consider the other two kinds of processes described above
in the absence of exclusion. Extending the reasoning that led us
to Equation (1) and recalling Equations (12) and (13), the three
master equations with excluded-volume constraints read

Pi(k+ 1)− Pi(k) = [q−i+1Pi+1(k)+ q+i−1Pi−1(k)][1− Pi(k)]

− Pi(k){q+i [1− Pi+1(k)]

+ q−i [1− Pi−1(k)]} (23)

Pi(k+ 1)− Pi(k) = [q−i Pi+1(k)+ q+i Pi−1(k)][1− Pi(k)]

− Pi(k){q+i+1[1− Pi+1(k)]

+ q−i−1[1− Pi−1(k)]} (24)

Pi(k+ 1)− Pi(k) =

(

q−i+1 + q−i
2

)

Pi+1(k)[1− Pi(k)]

+

(

q+i−1 + q+i
2

)

Pi−1(k)[1− Pi(k)]

−

(

q+i+1 + q+i
2

)

Pi(k)[1− Pi+1(k)]

−

(

q−i−1 + q−i
2

)

Pi(k)[1− Pi−1(k)] (25)

The mean field limit a,1t → 0 of the above master equations is
readily obtained by introducing as above the Taylor expansions
of q(x) and P(x, t). By doing this, we find

∂P(x, t)

∂t
= −

∂J1(x, t)

∂x
(26)

∂P(x, t)

∂t
= −

∂J2(x, t)

∂x
(27)

∂P(x, t)

∂t
= −

∂J3(x, t)

∂x
(28)

where

J1(x, t) = −[1− P(x, t)]
∂

∂x
[D(x)P(x, t)]− D(x)P(x, t)

∂P(x, t)

∂x
+ v(x)P(x, t)[1− P(x, t)] (29)

J2(x, t) = P(x, t)
∂

∂x
{D(x)[1− P(x, t)]}

− D(x)[1− P(x, t)]
∂P(x, t)

∂x
+ v(x)P(x, t)[1− P(x, t)] (30)

J3(x, t) = − D(x)
∂P(x, t)

∂x
+ v(x)P(x, t)[1− P(x, t)] (31)

We see that even in the case of excluded-volume interactions,
the mean-field equations can be cast in the form of
continuity equations with suitably defined currents given
by Equations (29), (30) and (31). We note that, as it happens with
the symmetric exclusion process without quenched disorder,
the microscopic exclusion constraint disappears in taking the
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continuum limit of the master Equation (25) in the absence of
external fields, which yields a transport equation, Equation (28),
identical to its counterpart with no exclusion, Equation (19) in
the case v(x) ≡ 0.

Equations (26), (27) and (28) are nonlinear advection-
diffusion equation, appropriate for describing the continuum
limit of a microscopic exclusion process occurring on a lattice
of inequivalent sites in the presence of a field. It is interesting
to note that in the case of equivalent sites, which translates to a
constant diffusion coefficient, the diffusive parts become linear,
i.e., the microscopic exclusion rule is lost in the diffusive part.
In the case of zero field, one then simply recovers the ordinary
diffusion equation for the three jump processes, which, as it is
widely known, can be derived from a microscopic jump process
with no exclusion rules. This curious observation has been first
reported by Huber [70]. If both the diffusion coefficient and the
drift velocity are constant, Equations (26), (27) and (28) all reduce
to

∂P

∂t
= D∇2P − v

∂

∂x
[P(1− P)] (32)

an equation already obtained recently in Simpson et al. [78].
Equations (26), (27) and (28) contain the single-particle

probability field P(x, t), which is a number between zero and one.
The value P = 1 should correspond to the maximum density
ρM allowed in the system. Thus, more physical equations can be
obtained by introducing the agent density

ρ(x, t) ≡ ρMP(x, t) =
φM

v1(σ/2)
P(x, t) (33)

where

v1(r) =
(π1/2r)d

Ŵ(1+ d/2)
(34)

is the volume of a d-dimensional sphere1 of radius r and φM is the
maximum packing fraction for systems of d-dimensional hard
spheres, φM = 1 (d = 1), φM = π/

√
12 ≈ 0.907 (d = 2) and

φM = π/
√
18 ≈ 0.740 (d = 3) [79]. With these definitions,

and using a more general vector notation, Equations (26), (27)
and (28) become

∂ρ(x, t)

∂t
= −∇ · J 1(x, t) (35)

∂ρ(x, t)

∂t
= −∇ · J 2(x, t) (36)

∂ρ(x, t)

∂t
= −∇ · J 3(x, t) (37)

with

J 1(x, t) = −
(

1−
ρ

ρM

)

∇[D(x)ρ(x, t)]− D(x)

(

ρ

ρM

)

∇ρ(x, t)

+ v(x)ρ(x, t)

(

1−
ρ

ρM

)

(38)

1We emphasize that we use the general terminology of d-dimensional hard

spheres. Obviously, these are hard rods in one dimension and hard disks in two.

J 2(x, t) = ρ(x, t)∇
[

D(x)

(

1−
ρ

ρM

)]

− D(x)

(

1−
ρ

ρM

)

∇ρ(x, t)

+ v(x)ρ(x, t)

(

1−
ρ

ρM

)

(39)

J 3(x, t) = − D(x)∇ρ(x, t)+ v(x)ρ(x, t)

(

1−
ρ

ρM

)

. (40)

3. EXTENDED CROWDING

In the previous section we described how to derive macroscopic
mean-field equations starting frommicroscopicmaster equations
which account for exclusion effects. In our description we did
not take into account size and shape of the agents by prescribing
that each molecule occupies a single lattice site and can not
move if the target site is already occupied by another particle.
To recover a macroscopic continuous description, we performed
the limit for vanishing lattice spacing. This strategy amounts to
considering agents of vanishing size in the continuum limit. We
term this peculiar situation in the macroscopic world point-like
crowding. As we have shown in the previous section, considerable
microscopic information is lost in the continuum limit with
point-like agents. The point-like characterization has to be the
reason why the mean-field approximation loses the memory of
the microscopic exclusion constraint and the diffusion equation
is recovered for equivalent sites in the absence of a field.
Starting from these premises, we set to work in the extended
crowding framework, where the finite size of the particles is
explicitly accounted for. Operating within this scenario, the
exclusion constraint shall be detectable in the mean-field limit
even for unbiased motion and homogeneous domain. A reason
for employing the extended crowding philosophy is that in
many biological contexts one has to model the interaction
between agents displaying complicated shapes, which are not
well represented by spherical particle occupying a single lattice
site. Biological macromolecules diffusing in the cytoplasm,
or even proliferating cells, for example, are often elongated
and rod-shaped, a property that inspired the derivation of
microscopic models using hard rods as the individual units [80,
81]. This is for example the case of the human peritoneal
mesothelial cells modeled in Simpson et al. [80] as hard rods
of aspect ratio equal to four. Moreover, when modeling the
interaction between multiple species diffusing in the same
environment, the differences in shape and dimension of the
agents do have an influence on the extent of the collective
motion.

The first model for the diffusion of extended particles with
exclusion interactions on a one-dimensional lattice was described
in Schönherr and Schütz [82] for a general process involving
symmetric, as well as asymmetric, hopping dynamics of the rods
(the theory is named L-ASEP). Referring to rods of length L,
where L has to be interpreted as the aspect ratio between the
dimensions of the elongated agent, the authors derive a mean-
field equation for the one-dimensional exclusion process. In the
absence of a field and for equivalent sites the equation for the
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density of particles reads

∂ρ

∂t
= D0

∂2

∂x2

[

ρ

1− (L− 1)ρ

]

. (41)

The previous equation shows that, at least in one dimension, the
extended-crowding procedure yields a modified diffusion term
even in the absence of external fields or spatial inhomogeneities.
By defining a density-dependent diffusion coefficient, which has
to be regarded as a collective diffusivity D(ρ) = D0/[(1 − (L −
1)ρ]2, eq. (41) can be reformulated as a nonlinear transport
equation:

∂ρ

∂t
=

∂

∂x

[

D(ρ)
∂ρ

∂x

]

. (42)

The nonlinear diffusion Equation (41) has been derived through
an ingenious but complicate change of variables based on a
quantitative mapping between the L-ASEP and the zero-range
process [82]. However, it is interesting to note that it can be
regarded as the local-density approximation (LDA) of a simple
general property of one-dimensional exclusion processes. As
pointed out in 1967 by Lebowitz and Percus [83] concerning bulk
properties:

”For many purposes, however, adding a finite diameter does
not introduce any new complications; it merely requires the
replacement in certain expressions of the actual volume per particle
ρ−1 by the reduced volume ρ−1 − σ , i.e., ρ → ρ/(1− σρ).”

In that sense, the quantity ρ/[1 − (L − 1)ρ] is recognized
as an effective density in Ferreira and Alcaraz [84] within the
analysis of the velocity of finite sized particles which occupy L
units of lattice spacing in one dimension. By performing the
substitution

ρ(x, t) →
ρ(x, t)

[1− (L− 1)ρ(x, t)]

in Fick’s law, one recovers (41). Point-like crowding in the mean
field approximation corresponds to systems of fully penetrable
spheres, while extended-size crowding yields a transport equation
suitable for systems of totally impenetrable (hard) objects. We
stress that the case of point-like crowding is recovered for
agents of aspect ratio L = 1. The discussion above which
leads to Equation (41) applies to one dimensional systems.
Starting from this setting, one can raise the question whether
similar arguments might be employed to obtain a modified
nonlinear equation accounting for excluded volume effects in
the diffusion of hard spheres in two and three dimensions.
Unfortunately, the strategy used to recover Equation (41) in
Schönherr and Schütz [82] can not be employed to provide
a description of the extended crowding in higher dimensions.
Several other models have been proposed for two and three
dimensional domains [76, 80, 85], starting from stochastic
processes enforced with different microscopic rules. Depending
on the shape of the agents (hard rods or hard spheres), on
the prescribed hopping rules, on the allowed mechanisms for
changing the orientation of the agents (rotation or reptation),
and on the mean field assumptions made to recover the

macroscopic picture, different equations are derived for the
density of extended particles in higher dimensions. All models
yield however the same qualitative behavior at low densities,
suggesting that the diffusion coefficient should increase linearly
with the concentration amount.

4. SUMMARY AND DISCUSSION

Crowding and confinement certainly affect diffusion-driven
phenomena, and potentially impact a large plethora of distinct
applications. Particularly relevant is the study of mobility inside
the cell: the complex cellular environment is in fact populated
by obstacles and compartments, which impede the particles
flowing. Moreover, the cytoplasm is quite densely packed,
different molecular species competing for the available spatial
resources. Given these premises, it is important to elaborate
on plausible theoretical pictures that enable one to adequately
capture the constraints imposed by many-body interactions
or reflecting the specificity of the embedding, confining
environment.

In this paper, we have reviewed a general framework
allowing to obtain macroscopic transport equation accounting
for excluded volume effects starting from microscopic stochastic
exclusion processes. The aim of this procedure is to derive
mean-field equations suitable for describing transport processes
in many-body systems in highly non-ideal conditions. Two
strategies can be identified to carry out this task. The first route,
termed point-like crowding, leads from standard SEPs to the
mean-field Equations (35), (36) and (37). For a homogenous
medium in the absence of a field these reduce to a simple
diffusion equation, which is why this scenario can be dubbed
point-like crowding. Only for inequivalent sites and/or in
the presence of a field the microscopic exclusion constraint
does survive in the mean-field limit. Different is the case of
multiple species [86] or recognizable agents [34], where cross-
terms appear in the mean field limit due to the fact that
particles are made distinguishable. In general, we can state that
crowding reflects in the macroscopic limit of the point-like
description only if some degree of inhomogeneity is enforced
at the microscopic level. Moreover, we have highlighted that
in the presence of quenched disorder, i.e., inequivalent sites,
there are (at least) three different ways to assign the site
dependence of the hopping rates. These correspond to different
microscopic stochastic processes and lead to as many different
nonlinear advection-diffusion equations in the continuum
limit.

The second strategy, named extended-crowding, takes
inspiration from amodifiedmicroscopic exclusion process in one
dimension involving extended agents, the so-called L-ASEP [82].
Qualitatively similar equations for the continuous density
are found in higher dimensions at moderate concentrations
for different shapes of the individual units. Remarkably, for
extended objects characterized by a finite size, the blueprint
of the crowding persists at the macroscopic level, even for
systems defined on homogeneous domains and without external
potentials. This observation marks a clear distinction between
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the two approaches to which we alluded above and points
to the potential interest of the extended crowding setting,
which, to the best of our knowledge, remains to be largely
explored.
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