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Class. Quantum Grav.14 (1997) 1795–1809. Printed in the UK PII: S0264-9381(97)79883-6

(2+ 1) gravity on Riemann surfaces in conformal gauge

P Valtancoli
Dipartimento di Fisica dell’ Universita’, Firenze and INFN, Sezione di Firenze, Italy

Received 27 November 1996, in final form 13 February 1997

Abstract. We derive a first-order formalism for solving(2+ 1) gravity on Riemann surfaces,
analogous to the recently discovered classical solutions forN moving particles. We choose
the York time gauge and the conformal gauge for the spatial metric. We show that Moncrief’s
equations of motion can be generally solved by the solutionf of a O(2, 1) σ -model. We
build out of f a mapping from a regular coordinate system to a Minkowskian multivalued
coordinate system. The polydromy is in correspondence with the branch cuts on the complex
plane representing the Riemann surface. The Poincaré holonomies, which define the coupling of
Riemann surfaces to gravity, simply describe the Minkowskian free motion of the branch points.
By solvingf we can find the dynamics of the branch points in the physical coordinate system.
We check this formalism in some cases, i.e. for the torus and for every Riemann surface with
SO(2, 1) holonomies.

PACS numbers: 0460K, 1125H, 0420, 0420G, 0420J, 0350

1. Introduction

In this paper we will study three-dimensional gravity as an empty universe. Since there are
no gravitons the only dynamical degrees of freedom of pure(2+1) gravity are topological,
i.e. Riemann surfaces evolving in time. The reason for such an investigation is essentially
to understand the peculiar features of quantum gravity in an integrable system [1, 6].

At the classical level there has been a lot of work in the Hamiltonian formalism, selecting
the appropriate foliation on which the solution can exist without spurious singularities [6].
Some particular solutions have been found, for example in the torus case, whose modulus,
τ , describes a circular motion in the Teichmuller space [6, 8].

At the quantum level since(2 + 1) gravity has a finite number of physical degrees
of freedom quantum field theory can be effectively reduced to quantum mechanics. For
example we can quantize the modulus Lagrangian of a torus, introducing a canonical
momentum toτ , and writing down a Schrödinger equation acting on the Hilbert space
of square integrable functions ofτ [8]. This reduced quantization is analogous to the
particle case [4], where one can integrate out the field into an effective action for the
particle degrees of freedom. However, there is no clear picture of how to deal with second-
quantized processes, i.e. for example how to treat topology-changing amplitudes or creation
and annihilation processes for particles [1].

Maybe a new treatment of three-dimensional gravity resembling two-dimensional
quantum field theory can handle these problems. At the classical level particle dynamics
has already been solved in the gaugeK = 0 [9] only because this gauge makes possible
extensive use of the complex variable and the vast knowledge on conformal mappings.
Exact results have been found in the two-body case [10], and an interesting connection
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1796 P Valtancoli

with Painlev́e VI for the three-body case [10–12]. Furthermore, Ciafaloni has proposed
extending this gauge to higher topologies and he found an explicit solution for the torus
case [13].

In this paper we investigate how to generalize our first-order formalism, which has been
by far the simplest method to deal with particle scattering, in order to treat topological
degrees of freedom. Moncrief has shown that a good time slicing for topology is the York
time slicing (K constant but not zero). The resulting equations of motions can be simplified
by choosing a conformal gauge for the spatial metric. Each spatial slice is equivalent to a
Riemann surface, which we choose to represent with branch cuts on the complex plane. The
corresponding metric is singular at the branch points, which move as particle singularities.

The property of instantaneous propagation of the fields still holds in this gauge, and the
field dynamics can be reduced to a two-dimensional field theory. It turns out that instead
of having a Liouville field theory, which is classically solved by a conformal mapf (z), we
have to deal with a sinh–Gordon model, which can be solved by a solution,f (z, z), of the
O(2, 1) σ -model.

We will analyse the general properties of this mapf , giving some explicit solutions in
several cases. We will build out off a multivalued mappingXa = Xa(x) from a regular
coordinate system to a multivalued Minkowskian coordinate system. The motion of the
branch points in theXa coordinates is free and determined by the Poincaré holonomies,
defining the coupling of the Riemann surface to gravity. By solving the mappingf , we
can find the dynamics of the branch points and of the moduli of the Riemann surface in the
physical coordinate system.

In section 2 we give as reference the York time gauge in the second-order formalism.
In section 3 we introduce the first-order formalism and we explain its connection with the
O(2, 1)σ -model. In section 4 we give some explicit solutions with which we can check
this formalism and explain the qualitative behaviour of the general solution. In section 5
after reviewing our results we give some concluding remarks. In the appendix we give the
proof how to derive from theO(2, 1) σ -model Moncrief’s equations of motion.

2. York time gauge in the second-order formalism

We shall work in theADM formalism, assuming that spacetime can be globally decomposed
as6(t)⊗R, where6(t) is a set of spacelike surfaces [13, 14]. We take as parametrization
for the metric:

ds2 = α2 dt2− e2φ|dz− β dt |2, (2.1)

where we have chosen conformal coordinates for the spatial metric. This choice of variable,
the lapse functionα and the shift functionsβ, is particularly useful when we discuss how
to solve the Eulero–Lagrange equations of motion.

Let us recall theADM decomposition of the Einstein–Hilbert action into a spatial part,
intrinsic to the surfaces6(t), and an extrinsic part, coming from the embedding, as follows

S = − 1
2

∫ √
|g|R(3) d3x = − 1

2

∫ √
|g|[R(2) + (TrK)2− Tr(K2)] d3x, (2.2)

The extrinsic curvature tensor,Kij , or second fundamental form of the surface6(t), is
given in terms of the covariant derivatives∇(2)i with respect to the spatial part of the metric:

Kij = 1

2

√
|gij |
|g| (∇

(2)
i g0j +∇(2)j g0i − ∂0gij ). (2.3)
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(2+1) gravity on Riemann surfaces 1797

Our aim is to simplify the Moncrief program for solving (2+ 1) gravity on Riemann
surfaces. The choice of conformal coordinates for the spatial metric allows us to represent
a Riemann surface on a complex plane with branch points (four branch points for a torus,
2g+2 for an hyperelliptic surface of genusg, and so on). This means that the metric has a
singular particle-like behaviour on such branch points, which, however, must satisfy some
integrability condition, such as a finite areaA(t) = ∫ dz dz e2φ on each spatial slice.

The Lagrangian for(2+ 1) gravity, restricted to a spatial metric in conformal gauge, is
defined by:

L = α∇2φ + αe2φK2− e2φ

α
|∂zβ|2

K = −1

2
gijKij = e−2φ

2α
[∂z(βe2φ)+ ∂z(βe2φ)+ ∂0e2φ ].

(2.4)

A simplifying feature appears in the equation of motion forβ, which reads

∂zN + e2φ∂zK = 0, N = e2φ

2α
∂zβ. (2.5)

From this equation it is clear that isN is conformal wheneverK = 0 or K is a time-
dependent constant. In general, we can always choose to define the time coordinate such
that

K = (2t)−1→ ∂zN = 0. (2.6)

Therefore, our gauge choice is defined by the conditions

gzz = gzz = 0 K = (2t)−1, (2.7)

and thus corresponds to a conformal gauge, with York timegijK
ij = −(t)−1.

The above conditions are enough to eliminate time derivatives from the Lagrangian and
to give an instantaneous propagation of the metric, as it appears from the Eulero–Lagrange
equations forα andφ:

∇2φ − 1
4t
−2e2φ + 4NNe−2φ = 0

∇2α + (1− 1
2α)t

−2e2φ − 8αNNe−2φ = 0.
(2.8)

These equations are difficult to solve directly. However, we will show that in the first-
order formalism it naturally appears a quite simple structure, related to theO(2, 1) σ -model,
which automatically solves them.

Although not explicit, the appearance of singularities in the metric produces extraδ

function sources, localized on the branch points, in the equations of motion (2.8). The
t dependence of the Riemann surface moduli is, therefore, provided by the covariant
conservation of the ‘underlying’ energy–momentum tensor, which in turn implies the
geodesic equations for the branch-point singularities.

3. First-order formalism and the O(2, 1) σ-model

The first-order formalism gives a direct language for relating holonomies to the physical
metric [16, 17]. For example, in [10] we have proposed a non-perturbative solution for
the metric and the motion ofN interacting spinless particles in(2+ 1) gravity, based on
a harmonic mappingXa = Xa(t, z, z) from a regular coordinate system to Minkowskian
multivalued coordinates.

Analogous to what we found for the gaugeK = 0, we are going to solve theK = 1/2t
gauge with a polydromic dreibein obeying the conditionωaµ,b = 0 locally. This gauge choice
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allows us to define Minkowskian multivalued coordinatesXa ≡ (T , Z,Z). Multivaluedness
of Xa is useful not only for introducing particles, but also for introducing topology. In fact
the simplest definition of a genus,g, Riemann surface coupled to gravity is the quotient of a
(2+1) Minkowskian spacetime by a finite set of elements of theISO(2, 1) Poincaŕe group,
i.e. we identify all the points that can be reached with isometries(Ui, Vi, i = 1, . . . , g) of
the Minkowskian metric ds2 = dT 2− dX2− dY 2 satisfying∏

i

UiViU
−1
i V −1

i = 1. (3.1)

This means that circling many times around the cycles(ai, bi, i = 1, . . . , g) of the Riemann
surface, the image of a point in the regular coordinate system by theXa mapping is a lattice
of points in Minkowskian spacetime. The identification of this lattice with a point produces
non-trivial topology.

To make contact with the physical metric, we need to build a representation of theXa ’s
starting from a regular coordinate systemxµ = (t, z, z), as follows:

dXa = Eaµ dxµ = Ea0 dt + Eaz dz+ Eaz dz. (3.2)

Here the dreibeinEaµ is multivalued and satisfies the integrability condition :

∂[µE
a
ν] = 0, (3.3)

which implies a locally vanishing spin connection.
In order to have well definedz-coordinates, a Lorentz transformation should relate the

values of dXa ’s circling around the cycles and circling around the branch points, so that
the line element ds2 = ηab dXa dXb is left single valued.

The conformal gauge choice can be implemented by parametrizingEaz , Eaz in terms of
null vectors:

Eaz = NWa, Eaz = NW̃a, (3.4)

whereW 2 = W̃ 2 = 0, andN(z, t) should be a single-valued meromorphic function with
poles at the branch pointsz = ξi . We have to buildWa, W̃ a in order to represent the DJH
[2] matching conditions (analogous to the particle case) of theXa coordinates, on the cycles
(Ci = ai, Ci+g = bi, i = 1, . . . , g) of the Riemann surface:

(dXa)I
Ci−→ (dXa)II = (Li)ab(dXb)I i = 1, 2, . . . ,2g (3.5)

whereLi denotes the holonomies of the spin connection, i.e. the Lorentz part of the Poincaré
holonomies(Ui, Vi).

The simplest realization of suchO(2, 1) monodromies is given by a spin12 projective
representation:

f (z, z, t)
Ci−→ Aif (z, z, t)+ Bi

B∗i f (z, z, t)+ A∗i
, |Ai |2− |Bi |2 = 1 (3.6)

where the mapping functionf (z, z, t) is an arbitrary function with branch cuts representing
the Riemann surface andAi, Bi represent Minkowskian velocities, which are constants of
motion.

The W vectors, being in the adjoint representation ofO(2, 1), can be built from the
mapping functionf , which is in the spin1

2 representation, as:

Wa = 1

∂zf
(f, 1, f 2), W̃ a = 1

∂zf
(f , f

2
, 1). (3.7)
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The Minkowskian coordinatesXa are obtained integrating the spatial components of
the dreibein at constant time, along a generic path which does not intersect the branch cuts
describing the Riemann surface on thez-plane:

Xa = Xa1 +
∫ (z,z)

(ξ1,ξ1)

(dzEaz + dzEaz ). (3.8)

Let us remark that we can completely solve the geodesic equations describing the
branch-point trajectories, or equivalently the moduli trajectories in the first-order formalism,
by measuring the distance between two branch points in theXa coordinates:

Xa2(t)−Xa1(t) =
∫ (ξ2,ξ2)

(ξ1,ξ1)

(dzNWa(z, t)+ dzNW̃a(z, t)). (3.9)

The explicit solution is obtained by inverting these relations to obtain the trajectories
ξi(t) as functions of the Poincaré holonomies, which are the constants of motion of the
problem.

In order to determine the metric completely, we derive (3.8) with respect to time, and
we obtain

Ea0 = ∂tXa

= ∂tXa1 + ∂t
∫ (z,z)

(ξ1,ξ1)

(dzNWa + dzNW̃a)

= ca(t)+
∫ (z,z)

(ξ1,ξ1)

(dz ∂t (NW
a)+ dz∂t (NW̃

a)) (3.10)

In terms of the vectorsEa0 = ∂tXa, Eaz = NWa, Eaz = NW̃a, the components of the
metric are given by :

−2gzz = e2φ = |N |2(−2WW̃),

g0z = 1
2βe2φ = NWaE

a
0, g0z = 1

2βe2φ = NW̃aE
a
0

g00 = α2− |β|2e2φ = Ea0Ea0, α = naEa0
(3.11)

To derive the expression forα we need to define the unit vector

na = 1

1− |f |2 (1+ |f |
2, 2f , 2f ) = εabcWbW̃ c(WW̃)

−1
, (3.12)

which represents the normal with respect to the surfaceXa = Xa(t, z, z), embedded at
fixed time in the Minkowskian spacetime ds2 = ηab dXa dXb. The tangent plane is instead
generated by the vectors

∂zX
a = NWa, ∂zX

a = NW̃a. (3.13)

TheK = (2t)−1 gauge condition can be rewritten in a first-order formalism as:

K = (2t)−1→ Ea0(∂zE
a
z + ∂zEaz ) = (2t)−1Ea0nae

2φ. (3.14)

Therefore, we must relax the condition thatEaµ satisfies the Coulomb gauge as it happens
in theK = 0 gauge, and we require instead that

∂zE
a
z = ∂zEaz =

1

4t
nae2φ

na = 1

1− |f |2 (1+ |f |
2, 2f , 2f ) (na)2 = 1

(3.15)
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Can we solve this equation of motion? Yes, the answer can be written in several ways,
i.e. by noticing that the vectorna, satisfying the condition(na)2 = 1, is a solution of the
equation of motion of anO(2, 1) σ -model, whose Lagrangian is:

L = ∂zna∂zna (na)2 = 1, (3.16)

or by noticing that the conformal factor can be represented in two ways resembling the
solution of a Liouville-type equation:

e2φ = NN

∂zf ∂zf
(1− |f |2)2 = 16t2

∂zf ∂zf

(1− |f |2)2
. (3.17)

It is not difficult to realize that this identity is generated by a basic first integral of the
O(2, 1) σ -model equations of motion:

∂zf ∂zf

(1− |f |2)2
= N(z)

4t
. (3.18)

For future reference, we give the various forms on which the equations of motion of
the Lagrangian (3.16) can be expressed:

∂z∂zn
a + (∂znb∂znb)na = 0 ∂z∂zf + 2f ∂zf ∂zf

(1− |f |2)2
= 0. (3.19)

The solution forf in equation (3.18) has to respect monodromy conditions around each
cycle (ai, bi) in order that the Minkowskian coordinatesXa represent the Poincaré group
holonomies, which define the coupling of Riemann surfaces to gravity. In particular, the
Lorentz group holonomies are in correspondence withSU(1, 1) Möbius transformations
(3.6) that map thef -unit disk into itself.

The metric is instead a scalar with respect to the groupSU(1, 1). Since every Riemann
surface can be thought as ann-sheeted complex plane, the monodromy conditions around
each branch point must be a cyclic subgroup ofSU(1, 1). For example, since for a torus
circling around each branch point twice we come back to the same point, the cyclic group
is Z2 which is represented by:

f →−f. (3.20)

The monodromy conditions forf do not contain all the global information. To represent
the translations, we need to play with the non-analyticity of the solution of theσ -model.
As we shall see, if the holonomies are only Lorentz transformations, thenf becomes
holomorphic. In the torus case, where we have to represent both Lorentz boosts and
translations, a non-analytic dependence of the solution appears.

This remarkable connection between theO(2, 1) σ -model and surfaces of constant mean
curvature is analogous to what has been discussed in [18], for the Euclidean case.

In general every surface6(t) (in this context a genusg Riemann surface) immersed
in a three-dimensional flat spacetime is characterized by its first and second fundamental
form. By using conformal coordinates, the first form, i.e. the spatial metric, reads

I = e2φ dz dz. (3.21)

The second fundamental form is parametrized byK andN as follows:

II = Kij dxi dxj

Kzz = N Kzz = 1
2Ke2φ.

(3.22)
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Given such data of the surface, the position vectorXa(z, z, t), describing the foliation
of Minkowski spacetime in terms of genusg Riemann surfaces, can be found by solving
the Gauss–Weingarten equations:

∂2
z X

a = 2∂zφ∂zX
a +Nna

∂z∂zX
a = 1

2Kn
ae2φ

∂zn
a = K∂zXa + 2Ne−2φ∂zX

a.

(3.23)

The integrability conditions of these equations, the Gauss and the Codazzi–Mainardi
equations, take the form of the Einstein equations forφ andN . Then it is not difficult to
show that, substituting the conditionK = (2t)−1, these equations are solved by theO(2, 1)
σ -model. Our mappingf is called the Gauss map of the surface.

4. Some solutions in conformal gauge

In this section we shall apply the first-order formalism method to discuss some examples
of the solution of theO(2, 1) σ -model.

For the torus case, equation (3.1) becomesUV = VU and it is solved by an Abelian
subgroupU(1)⊗ U(1) of the ISO(2, 1) Poincaŕe group, which can be taken as a Lorentz
boost along thex direction+ a translation in they direction. The torus coupled to (2+ 1)
gravity is defined by the following holonomy transformations:

U :


T → coshχ1T + sinhχ1X

X→ coshχ1X + sinhχ1T

Y → Y + ω1

V :


T → coshχ2T + sinhχ2X

X→ coshχ2X + sinhχ2T

Y → Y + ω2

. (4.1)

Starting from a generic point(T0, X0, Y0) and applying the transformations(U, V )
connected to the cycles(a, b) of the torus, we obtain a lattice of points which belong
to the surface

T 2−X2 = T 2
0 −X2

0 = C. (4.2)

At a givenC such a surface again describes a torus, and the spacetime evolution is
simply obtained by allowing a time-dependent constantC = C(t), which in the York time
gauge is

C = t2 = T 2−X2. (4.3)

After a transformation of the Minkowskian coordinates

T = t cosh
U

t
X = t sinh

U

t
, (4.4)

we obtain a plane lattice in the(U, Y ) coordinates, which is analogous to a static torus.
The rescaling factor 1/t in front of U is necessary to keep the spatial metric in conformal
gauge:

ds2 =
(

1− U
2

t2

)
dt2+ 2

U

t
dU dt − dU2− dY 2, (4.5)

from whichα = 1, β = U/t is real and e2φ = 1.
The variableZ̃ = U + iY has a simple translation monodromy:

Z̃
a−→ Z̃ + χ1t + iω1 Z̃

b−→ Z̃ + χ2t + iω2. (4.6)
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Figure 1. The Minkowskian and the branch cut representation of a torus.

It can be represented as a standard Abelian integral on az-plane with two branch cuts
(see figure 1)

Z̃ =
∫ z

0

dz

w(z, t)
w2(z, t) = R(t)z(z− 1)(z− ξ(t)), (4.7)

where the position of the third singularityξ(t) is time-dependent, in order to represent the
translation monodromies (4.6).

Therefore, the solution for the torus is given by the following mapping:

T = t cosh

[
1

2t

(∫ z

0

dz

w(z, t)
+
∫ z

0

dz

w(z, t)

)]
= t coshφ(z, z, t)

X = t sinh

[
1

2t

(∫ z

0

dz

w(z, t)
+
∫ z

0

dz

w(z, t)

)]
= t sinhφ(z, z, t)

Y = 1

2i

(∫ z

0

dz

w(z, t)
−
∫ z

0

dz

w(z, t)

)
.

(4.8)

The Poincaŕe holonomies (4.1) tell us that the motion of the branch points is trivial in
theXa coordinates:

Xa(0) = (t, 0, 0)

Xa(1) = (γ (1)t, γ (1)β(1)t, b1)

Xa(ξ) = (γ (2)t, γ (2)β(2)t, b2).

(4.9)

Taking for example the particle in 0 at rest, the particle in 1 is moving in thex-direction
with constant velocityβ(1) = tanh1

2χ1 and impact parameterb1 = 1
2ω1. Analogously

the particle inξ is moving in thex-direction with velocityβ(2) = tanh1
2χ2 and impact

parameterb2 = 1
2ω2. In the z-coordinates, only the motion of the third singularity,ξ(t),

is necessary up to global rescalings of thez-coordinate, while the other two can remain at
rest.

It is straightforward to derive the equations of motion for the modulus of the torus and
for the area, which take the usual form [7, 8]:

τ(t) = χ1t + iω1

χ2t + iω2
A(t) =

∫
dz dz e2φ = t (χ1ω2− χ2ω1). (4.10)

The motion of the modulus is essentially a consequence of the free motion in
Minkowskian coordinates of the branch points. It has also to satisfy another consistency
condition [8], namely that the motion of the moduli must be geodesic with respect to the
natural metric of the moduli space, the Weil–Petersson metric, which in the case of the torus
is equivalent to the Poincaré metric of the upper half plane:

ds2 = dτ dτ

(Im τ)2
. (4.11)
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The form (4.10) of the solution for the modulus is consistent since it describes a circular
arc in the moduli space, which is a geodesic of the Poincaré metric.

The corresponding dreibein,Eaµ = ∂µXa, is given by(a = (t, x, y)):

Eaz =
1

2tw(z, t)
(X, T ,−it)

Ea0 =
(
T

t
+X∂φ

∂t
,
X

t
+ T ∂φ

∂t
,
∂Y

∂t

)
.

(4.12)

The conformal gauge condition(Eaz )
2 = 0 is verified due to equation (4.3).

From equation (4.12) we can read the solution forN andf satisfying equation (3.18):

f (z, z, t) = X

t + T = tanh
φ(z, z, t)

2

N(z, t) = 1

4tw2(z, t)
.

(4.13)

So we have found that, for the special case of boosts along thex-axis,f is real andN
is related to the quadratic holomorphic differential. In general, we can guess thatN(z, t)

is a known source for equation (3.18), being a combination of the quadratic holomorphic
differentials of the Riemann surface.

The function tanh can also be expected since it diagonalizes the monodromy conditions
for f around the cyclesCi = (a, b) of the torus:

f
Ci−→ Aif + Bi

Bif + Ai Ai = cosh
χi

2
Bi = sinh

χi

2
i = 1, 2. (4.14)

The linear dependence of its argument from the Abelian integrals represents the change of
sign f →−f around each branch point.

Let us integrate equation (2.8), which specifies the spatial data, on the two-dimensional
surface:∫
∇2φ dz dz =

∮
E∇φ · En dl = 4

∫
∂zf ∂zf − ∂zf ∂zf
(1− |f |2)2

dz dz = 4
∫

df df

(1− |f |2)2
. (4.15)

The line integral has to be done around all the singularities on thez-plane. In the case
of the torus the power behaviour of e2φ around each singularity ensures that the contour
integral is finite. Then the last relation says that the modulus|f |2 is always limited inside
the unit disk (|f |2 < 1). This is an important property of this temporal splicing, since
then we are safe from spurious singularities and the determinant of the metric is always
non-vanishing.

Such integral property must be essential to prove that in this gauge the foliation for
every Riemann surface is well defined, once suitable boundary conditions for the singular
behaviour of e2φ are imposed, such as a particle-like singularity with a power behaviour.

Since f is real in the case of the torus and its image must be contained inside the
unit disk, we conclude thatf maps the real variableφ(z, z, t) inside the real diameter
D = [−1, 1]. Sincef is polydrome, it can be restricted to cover a segment ofD. Circling
many times around each cycle of the torus, Imf gives a tessellation of the diameter.

This particular feature of the torus should be valid in general. For every Riemann surface
the image of the Gauss map can be restricted to a polygon inside the unit disk. Circling
many times around each cycle we should obtain a tessellation of the unit disk, instead of the
diameterD, as a consequence of the non-Abelian relation (3.1) which replaces the Abelian
oneUV = VU for the torus. An example of tessellation of the unit disk with curvilinear
triangles is given in figure 2 [19].
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Figure 2. Tesselation of the unit disk with hypergeometric functions.

There is another limit in which equation (3.18) can be solved, i.e. when we consider the
Gauss map,f , depending on a single variablef = f (z). We shall show that, in this case,
the basic relation (3.1) defining the Riemann surface evolution is solved by representing the
Ui andVi holonomies with arbitrary boost but no translations. This is a totally different case
from Moncrief’s solution for the torus, which contains mixed Lorentz boost and translation
holonomies.

This case corresponds toN = 0 [1, 8], and the equation (3.18) can have a meaning, as
N → 0, ∂zf → 0 but the ratio

N

∂zf
= 4t

∂zf

(1− |f |2)2
(4.16)

still finite. From this identity, the dreibein reads:

Eaz = 4t
∂zf

(1− |f |2)2
(f, 1, f 2). (4.17)

It gives rise to a Minkowskian transformation of the type:

T = 2t
1+ |f |2
1− |f |2 , Z = 4t

f

1− |f |2 . (4.18)

The particular relation (4.18) between Minkowskian coordinates andf realizes explicitly
the isomorphism betweenSO(2, 1) and SU(1, 1), and the M̈obius transformations off
correspond to pure Lorentz transformation holonomies for theXa coordinates.
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We easily recognize that the Minkowskian coordinates satisfy the constraint:

T 2− ZZ = 4t2. (4.19)

The same surface can be obtained starting from a generic point(T0, Z0, Z0) and applying
all theSO(2, 1) movements related to the cycles(ai, bi). Hence this time foliation is natural
since it is induced by the Poincaré holonomies.

TheX = X(x) mapping (4.18) produces the hyperbolic metric on the disk:

ds2 = 4 dt2− 16t2
df df

(1− |f |2)2
, (4.20)

from which we can readα = 2, β = 0 and e2φ = 16t2/(1− |f |2)2 which solve
equation (2.8).

The conformal mappingf (z) still has to be determined. First, we remember that every
genusg Riemann surface is determined by a fundamental groupπ1(6) generated by the 2g
holonomies (Ui, Vi) satisfying the relation (3.1). Let us denote withH the unit disk with
its metric of negative constant curvature. The groupSU(1, 1) acts on it, maintaining its
metric. Consider a subgroup of it0 ⊂ SU(1, 1), isomorphic toπ1(6), the quotientH/0
is a Riemann surface of genusg, with the same constant curvature metric of the unit disk
H .

Therefore, we can think that the image of the conformal mapping,f , gives a tessellation
of the unit disk on which the holonomy acts asSU(1, 1) and we can restrict the fundamental
region of Imf to be inside a closed geodesic 4g-gon of the unit disk with hyperbolic metric,
where the conformal mapping becomes one to one.

For pureSO(2, 1) holonomies, the equations of motion for the branch points are simply:

Xa(ξi)−Xa(ξj ) = (Vi − Vj )t. (4.21)

Since theXa = Xa(x) mapping in equation (4.18) is also linear int , we conclude that there
is no evolution in thez-coordinate for the branch points. As a consequence, there is no
time evolution for the moduli [8], and the only time dependence comes from the overall
scale factor,t2, in equation (4.20). We can suppose that the branch points,ξi , have fixed
positions on the real axis. Then to find the Gauss mapf the theorem of complex analysis
is helpful: given a simple and closed geodesic polygon5 of the Poincaŕe metric in the
upper halfw-plane, whose sides are circular arcs making anglesα1π, α2π, . . . , αnπ , at the
verticesA1, A2, . . . , An where 06 αj 6 2, then there exist real numbersξ1, ξ2, . . . , ξn,
β1, β2, . . . βn such that

ξ1 < ξ2 < · · · < ξn,

n∑
j=1

βj = 0

n∑
j=1

(2βjξj + 1− α2
j ) = 0,

n∑
j=1

(βj ξ
2
j + (1− α2

j )ξj ) = 0

(4.22)

and the upperz-plane is conformally mapped inside5 by

w(z) = u1(z)

u2(z)
, (4.23)

whereu1(z) andu2(z) are two linearly independent solutions of the Fuchsian differential
equation:

u′′ +
[

1

4

n∑
j=1

1− α2
j

(z− ξj )2
+ 1

2

n∑
j=1

βj

z− ξj

]
u = 0. (4.24)
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The pointsξj correspond to the verticesAj . A simple conformal mapping relates the
upperw-plane endowed with the Poincaré metric to thef -unit disk with the hyperbolic
metric.

Let us remark that in order to obtain the tessellation property of the unit disk, the
anglesαiπ must be chosen asπ(1− 1/ni), with ni positive integers. Such a mapping
problem has been investigated in connection with Fuchsian groups and functions. In fact,
to each geodesic polygon of thef -unit disk, whose angles in the vertices have the measure
π(1− 1/ni), with ni positive integers, a discrete group of movements0 and an analytic
functionz(f ) defined in thef -unit disk is connected, which is invariant under the0 action
on thef variable. The0 group ofSU(1, 1) Möbius transformations on the disk is called
the Fuchsian group. The functionz(f ) is a Fuchsian function with respect to the group
0. Instead the inversef = f (z) is polydrome, and it can be restricted to mapping the
z-plane into the geodesic polygon. Therefore, we conclude that our conformal mapping is
the inverse of such a Fuchsian functionz(f ). Examples of them can be built from the series
of the form (Poincaŕe series):

2(f ) =
∞∑
i=1

H(f )

(bif + ai)2m
, (4.25)

wherem is a positive integer,H(f ) is a rational function in the geodesic polygon and the
sum is extended to all the elements of the Fuchsian group, generated by the holonomies.
This series has the following Poincaré property:

2

(
akf + bk
bkf + ak

)
= (bkf + ak)2m2(f ) ∀(ak, bk) ∈ 0. (4.26)

This means that it has a very simple transformation rule under the action of the Fuchsian
group. Taking the ratio of two Poincaré series with the same indexm

z(f ) = 21(f )

22(f )
(4.27)

we obtain a Fuchsian function, which is invariant under the action of the Fuchsian group

z

(
akf + bk
bkf + ak

)
= z(f )⇐⇒ z(Xa) = z(3(k)a

b Xb) ∀k. (4.28)

Maybe the special functions which integrate the wholeO(2, 1) σ -model have to be
searched as non-analytic generalizations of such a series, with the property

z(Xa) = z(3(k)a
b Xb + q(k)a) ∀k, (4.29)

in which one has to sum over all the group elements generated by the Poincaré holonomies
(3

(k)a
b , q(k)a).
However, only an analytic function is inequivocally defined by its monodromy

properties. For the general case we expect that finding new solutions is a difficult question.

5. Discussion

We have shown here that the first-order formalism, that has allowed us to solve theN -body
problem, can be extended to the case of Riemann surfaces in(2+ 1) gravity. We have
found that theO(2, 1) σ -model solves explicitly all the Einstein equations. The solution
is characterized by an analytic functionN(z) which is the componentKzz of the extrinsic
curvature tensor and by the Gauss mapf (z, z, t). This functionf maps a complex plane
with branch cuts into the unit disk with hyperbolic metric. The holonomies off are elements
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of SU(1, 1) and isometries of this metric. Therefore, we can delimit Imf into a geodesic
polygon inside the unit disk. This property is also true for the conformal mappingf of
our N -particle solution [10]. The peculiar signal of topology should be that this mapping
produces a tessellation of the unit disk, a property which is not generally true for the particle
case.

We have discussed in [20] that the line defined by|f | = 1 is a spurious singularity of
the conformal gauge, since the metric determinant vanishes there, and also the boundary
for the existence of closed time-like curves (CTC) [21]. Therefore, our qualitative analysis
on the behaviour of the mapping functionf suggests that the Riemann surfaces solutions
should not suffer from the CTC problem.

We have given explicit solutions for the mapping functionf for the torus and for all
Riemann surfaces havingSO(2, 1) holonomies. It turns out that in both cases the inverse
mappingz = z(f ) is a single-valued function, i.e. an automorphic function. TheN(z)

function for the torus is related to the quadratic holomorphic differential, a property that is
probably true for all Riemann surfaces.

We have found that the Poincaré holonomies have a quite simple particle interpretation.
They determine the evolution for the branch points, which move freely in the Minkowskian
X coordinates according to

Xa(ξi)−Xa(ξj ) = (V ai − V aj )t + Bai − Baj . (5.1)

The moduli trajectories, which have to be geodesic of the metric of Teichmuller space,
should be a consequence of the trajectories of the branch points.

The next step would be to find a quantization scheme which takes into account this
classical reduction of three-dimensional gravity in two-dimensional field theories.
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Appendix. Einstein equations from theO(2, 1) σ-model

Let us verify that the second-order equations of motion are reproduced by the first-order
equations of motion.

For example, to obtain equation (2.8) we have to show that

∂z∂zφ + ∂zf ∂zf − ∂zf ∂zf
(1− |f |2)2

= 0. (A.1)

From the definition ofφ:

φ = 1
2 log∂zf ∂zf − log(1− |f |2) (A.2)

making use of theσ -model equation of motion forf (equation (3.19)), we can easily obtain
(A.1).

Let us compute the equation of motion forα. By definition

∂z∂zα = ∂z∂z(naE0
a) = (∂z∂zna)E0

a + ∂zna∂zE0
a + ∂zna∂zE0

a + na∂z∂zE0
a . (A.3)

https://www.researchgate.net/publication/40436431_21-Gravity_with_moving_particles_in_an_instantaneous_gauge?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/222456604_Non-perturbative_particle_dynamics_in_21-gravity?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
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We can easily compute the first term which is exactly theσ -model equation forna

(equation (3.19)):

∂z∂zn
a = −(∂znb∂znb)na = 2

∂z∂zf + ∂zf ∂zf
(1− |f |2)2

na =
(

2NNe−2φ + 1

2t2
e2φ

)
na, (A.4)

from which

∇2α =
(

8NNe−2φ + 1

2t2
e2φ

)
α + 4na∂z∂zE

0
a + 4∂zn

a∂zE
0
a + 4na∂z∂zE

0
a . (A.5)

Let us compute the residual contribution:

∂zE
0
a = ∂z∂0Xa = ∂0E

a
z =

[
∂0 logN − ∂0 log∂zf − 2∂0f f

(1− |f |2)

]
Xa +N ∂0f

∂zf
na. (A.6)

Similarly, the spatial derivative ofna can be decomposed as a sum of the two orthogonal
vectorsWa andW̃ a:

∂zn
a = 2∂zf ∂zf

(1− |f |2)2
W̃ a + 2∂zf ∂zf

(1− |f |2)2
Wa = 1

2t
Xa + 2∂zf ∂zf

(1− |f |2)2
W̃ a, (A.7)

from which

∂zn
a∂zE

0
a + ∂zna∂zE0

a =
1

2t
NNWW̃∂0

[
log

NN

∂zf ∂zf
(1− |f |2)2

]
= − 1

4t
∂te

2φ. (A.8)

The last contribution is given by:

na∂z∂zE
0
a = na∂t (∂z∂zXa) = na∂t

(
1

4t
nae2φ

)
= − 1

4t2
e2φ + 1

4t
∂te

2φ. (A.9)

Summing the various contributions, we reproduce equation (2.8).

References

[1] Witten E 1988Nucl. Phys.B 311 46
Witten E 1989Nucl. Phys.B 323 113

[2] Deser S, Jackiw R and ’t Hooft G 1984Ann. Phys., NY152 220
[3] Gott J R and Alpert MGen. Rel. Grav.16 243

Gott J R 1985Astrophys. J.288 422
[4] ’t Hooft G 1988 Commun. Math. Phys.117 685
[5] Nelson J E and Regge T 1991Commun. Math. Phys.141 211

Nelson J E and Regge T 1992Int. J. Mod. Phys.B 6 2091
Nelson J E and Regge T 1992Class. Quantum Grav.9 S187

[6] Moncrief V 1989J. Math. Phys.30 2907
Moncrief V 1990J. Math. Phys.31 2978

[7] Carlip S 1989Nucl. Phys.B 324 106
Carlip S 1990Phys. Rev.D 42 2647
Carlip S 1992Phys. Rev.D 46 4387
Carlip S 1993Class. Quantum Grav.10 207

[8] Hosoya A and Nakao K 1990Prog. Theor. Phys.84 739
Hosoya A and Nakao K1990Class. Quantum Grav.7 163

[9] Bellini A and Valtancoli P 1955Phys. Lett.348B 44
Bellini A, Ciafaloni M and Valtancoli P 1995Nucl. Phys.B 454 449

[10] Bellini A, Ciafaloni M and Valtancoli P 1995Phys. Lett.B 357 532
Bellini A, Ciafaloni M and Valtancoli P 1996Nucl. Phys.B 462 453

[11] Welling M 1996Class. Quantum Grav.13 653
[12] Fuchs R 1907Mater. Ann.63 301

https://www.researchgate.net/publication/226034622_21_gravity_for_genus_1?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/222499220_Solving_the_N-body_problem_in_21_gravity?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/222182703_Three-dimensional_Einstein_gravity_Dynamics_of_flat_space?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/13276605_Observables_gauge_invariance_and_time_in_21-dimensional_quantum_gravity?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/40436431_21-Gravity_with_moving_particles_in_an_instantaneous_gauge?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/222456604_Non-perturbative_particle_dynamics_in_21-gravity?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==


(2+1) gravity on Riemann surfaces 1809

[13] Ciafaloni M 1996Preprint hep-th/9612219
[14] Arnowitt R, Deser S and Misner C W 1962Gravitation: An Introduction to Current Researched L Witten

(New York: Wiley)
[15] Hanson A J, Regge T and Teitelboim C 1976Constrained Hamiltonian Systems(Rome: Accademia Nazionale

dei Lincei)
[16] Cappelli A, Ciafaloni M and Valtancoli P 1992Nucl. Phys.B 369 669

Cappelli A, Ciafaloni M and Valtancoli P 1991Phys. Lett.B 273 431
[17] Grignani G and Nardelli G 1991Phys. Lett.B 264 45

Grignani G and Nardelli G 1992Nucl. Phys.B 370 491
[18] Ody M S and Ryder L H 1995Int. J. Mod. Phys.10 337

Puzio R S 1994Class. Quantum Grav.11 2667
[19] Yoshida M 1987Fuchsian Differential Equations Max-Planck-Institut f¨ur Mathematik(Bonn: Fried)
[20] Ciafaloni M and Valtancoli P 1996Preprint hep-th/9609105
[21] Gott J R 1991Phys. Rev. Lett.66 1126

Deser S, Jackiw R and ’t Hooft G 1992Phys. Rev. Lett.68 2647
Menotti P and Seminara D 1992Phys. Lett.B 301 25

https://www.researchgate.net/publication/221942674_A_flat_Chern-Simons_gauge_theory_for_21-dimensional_gravity_coupled_to_point_particles?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/222071992_Gravity_in_2_1_dimensions_coupled_to_point-like_sources_a_flat_Chern-Simons_gauge_theory_equivalent_to_Einstein's?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/248561167_Gravitation_An_Introduction_to_Current_Research?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==
https://www.researchgate.net/publication/248561167_Gravitation_An_Introduction_to_Current_Research?el=1_x_8&enrichId=rgreq-ab940b68-5cf6-4e43-8a8b-de278ec47f25&enrichSource=Y292ZXJQYWdlOzIzOTQ0MjIzMTtBUzozNDA2MDM2MjQ4MDQzNTdAMTQ1ODIxNzY0MDc5Mw==

