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(2+ 1) gravity on Riemann surfaces in conformal gauge
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Dipartimento di Fisica dell’ Universita’, Firenze and INFN, Sezione di Firenze, Italy
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Abstract. We derive a first-order formalism for solvin@ + 1) gravity on Riemann surfaces,
analogous to the recently discovered classical solutionsVfanoving particles. We choose

the York time gauge and the conformal gauge for the spatial metric. We show that Moncrief's
equations of motion can be generally solved by the solugfonf a O(2,1) oc-model. We

build out of f a mapping from a regular coordinate system to a Minkowskian multivalued
coordinate system. The polydromy is in correspondence with the branch cuts on the complex
plane representing the Riemann surface. The Pdntalonomies, which define the coupling of
Riemann surfaces to gravity, simply describe the Minkowskian free motion of the branch points.
By solving f we can find the dynamics of the branch points in the physical coordinate system.
We check this formalism in some cases, i.e. for the torus and for every Riemann surface with
S0 (2, 1) holonomies.

PACS numbers: 0460K, 1125H, 0420, 0420G, 0420J, 0350

1. Introduction

In this paper we will study three-dimensional gravity as an empty universe. Since there are
no gravitons the only dynamical degrees of freedom of g@re 1) gravity are topological,
i.e. Riemann surfaces evolving in time. The reason for such an investigation is essentially
to understand the peculiar features of quantum gravity in an integrable system [1, 6].

At the classical level there has been a lot of work in the Hamiltonian formalism, selecting
the appropriate foliation on which the solution can exist without spurious singularities [6].
Some particular solutions have been found, for example in the torus case, whose modulus,
7, describes a circular motion in the Teichmuller space [6, 8].

At the quantum level sinc€2 + 1) gravity has a finite number of physical degrees
of freedom quantum field theory can be effectively reduced to quantum mechanics. For
example we can quantize the modulus Lagrangian of a torus, introducing a canonical
momentum tor, and writing down a Sclidinger equation acting on the Hilbert space
of square integrable functions af [8]. This reduced quantization is analogous to the
particle case [4], where one can integrate out the field into an effective action for the
particle degrees of freedom. However, there is no clear picture of how to deal with second-
guantized processes, i.e. for example how to treat topology-changing amplitudes or creation
and annihilation processes for particles [1].

Maybe a new treatment of three-dimensional gravity resembling two-dimensional
guantum field theory can handle these problems. At the classical level particle dynamics
has already been solved in the gaugie= 0 [9] only because this gauge makes possible
extensive use of the complex variable and the vast knowledge on conformal mappings.
Exact results have been found in the two-body case [10], and an interesting connection
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with Painlee VI for the three-body case [10-12]. Furthermore, Ciafaloni has proposed
extending this gauge to higher topologies and he found an explicit solution for the torus
case [13].

In this paper we investigate how to generalize our first-order formalism, which has been
by far the simplest method to deal with particle scattering, in order to treat topological
degrees of freedom. Moncrief has shown that a good time slicing for topology is the York
time slicing (K constant but not zero). The resulting equations of motions can be simplified
by choosing a conformal gauge for the spatial metric. Each spatial slice is equivalent to a
Riemann surface, which we choose to represent with branch cuts on the complex plane. The
corresponding metric is singular at the branch points, which move as particle singularities.

The property of instantaneous propagation of the fields still holds in this gauge, and the
field dynamics can be reduced to a two-dimensional field theory. It turns out that instead
of having a Liouville field theory, which is classically solved by a conformal nfgp, we
have to deal with a sinh—Gordon model, which can be solved by a solytiany), of the
0(2,1) o-model.

We will analyse the general properties of this mépgiving some explicit solutions in
several cases. We will build out gf a multivalued mapping(¢ = X“(x) from a regular
coordinate system to a multivalued Minkowskian coordinate system. The motion of the
branch points in thex? coordinates is free and determined by the Poiadawlonomies,
defining the coupling of the Riemann surface to gravity. By solving the mappinge
can find the dynamics of the branch points and of the moduli of the Riemann surface in the
physical coordinate system.

In section 2 we give as reference the York time gauge in the second-order formalism.
In section 3 we introduce the first-order formalism and we explain its connection with the
0(2, 1)c-model. In section 4 we give some explicit solutions with which we can check
this formalism and explain the qualitative behaviour of the general solution. In section 5
after reviewing our results we give some concluding remarks. In the appendix we give the
proof how to derive from the) (2, 1) o-model Moncrief's equations of motion.

2. York time gauge in the second-order formalism

We shall work in theA DM formalism, assuming that spacetime can be globally decomposed
asX(t) ® R, whereX () is a set of spacelike surfaces [13, 14]. We take as parametrization
for the metric:

ds? = @?dr® — €?|dz — B dr|?, (2.1)

where we have chosen conformal coordinates for the spatial metric. This choice of variable,
the lapse functiorx and the shift functiong, is particularly useful when we discuss how
to solve the Eulero—Lagrange equations of motion.

Let us recall theA DM decomposition of the Einstein—Hilbert action into a spatial part,
intrinsic to the surfaceX (¢), and an extrinsic part, coming from the embedding, as follows

S = —%/\/@R(S) dBx = —%/\/@[R@ + (TrK)? = Tr(k?]d3x, (2.2)

The extrinsic curvature tensok;;, or second fundamental form of the surfakgr), is
given in terms of the covariant derivativ§$2) with respect to the spatial part of the metric:

1 [igyl

2 2
=2\ el (V{?g0; + V; 'g0i — 08i)- (2.3)
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Our aim is to simplify the Moncrief program for solving 2 1) gravity on Riemann
surfaces. The choice of conformal coordinates for the spatial metric allows us to represent
a Riemann surface on a complex plane with branch points (four branch points for a torus,
2g + 2 for an hyperelliptic surface of gengs and so on). This means that the metric has a
singular particle-like behaviour on such branch points, which, however, must satisfy some
integrability condition, such as a finite aredr) = [ dz dz €* on each spatial slice.

The Lagrangian fo(2 + 1) gravity, restricted to a spatial metric in conformal gauge, is
defined by:

&
L=aVZp+ae® K2 — ?|az/3|2

1 o2 (2.4)
K = 58" Kij = 5 —[0.(B&) + 0:(Be”) + 30€™'].
A simplifying feature appears in the equation of motion farwhich reads
e _
=N +€*9.K =0, N = Z—BZ/S. (2.5)
o

From this equation it is clear that ¥ is conformal whenevek = 0 or K is a time-
dependent constant. In general, we can always choose to define the time coordinate such
that

K=02n"1t>aN=0. (2.6)
Therefore, our gauge choice is defined by the conditions
g.=8==0 K=" (2.7
and thus corresponds to a conformal gauge, with York timé&"/ = —(nL.

The above conditions are enough to eliminate time derivatives from the Lagrangian and
to give an instantaneous propagation of the metric, as it appears from the Eulero—Lagrange
equations forx and¢:

V2 — 1172 + ANNe® =0
VZa + (1— 3a)t7?¢? —8aNNe® =0.

These equations are difficult to solve directly. However, we will show that in the first-
order formalism it naturally appears a quite simple structure, related t0 tBel) o-model,
which automatically solves them.

Although not explicit, the appearance of singularities in the metric produces &xtra
function sources, localized on the branch points, in the equations of motion (2.8). The
t dependence of the Riemann surface moduli is, therefore, provided by the covariant
conservation of the ‘underlying’ energy—momentum tensor, which in turn implies the
geodesic equations for the branch-point singularities.

(2.8)

3. First-order formalism and the O(2, 1) o-model

The first-order formalism gives a direct language for relating holonomies to the physical
metric [16,17]. For example, in [10] we have proposed a non-perturbative solution for
the metric and the motion aV interacting spinless particles 2 + 1) gravity, based on
a harmonic mappind(“ = X“(z, z,z) from a regular coordinate system to Minkowskian
multivalued coordinates.

Analogous to what we found for the gauge= 0, we are going to solve th& = 1/2r
gauge with a polydromic dreibein obeying the conditigfy, = 0 locally. This gauge choice
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allows us to define Minkowskian multivalued coordinas= (T, Z, Z). Multivaluedness

of X is useful not only for introducing particles, but also for introducing topology. In fact
the simplest definition of a genug, Riemann surface coupled to gravity is the quotient of a
(24 1) Minkowskian spacetime by a finite set of elements of X§& (2, 1) Poincaé group,

i.e. we identify all the points that can be reached with isomefiigsV;,i =1, ..., g) of

the Minkowskian metric ¢ = d7? — dX? — dY? satisfying

[Juviutvit=1 (3.1)

This means that circling many times around the cyiesb;,i = 1,..., g) of the Riemann
surface, the image of a point in the regular coordinate system b¥‘thmapping is a lattice
of points in Minkowskian spacetime. The identification of this lattice with a point produces
non-trivial topology.

To make contact with the physical metric, we need to build a representation &f'the
starting from a regular coordinate systaerth= (¢, z, 7), as follows:

dX¢ = E} dx" = Eqdr + Ef dz + EZ dz. (3.2)
Here the dreibeirEy, is multivalued and satisfies the integrability condition :
a[MES] =0, (3.3)

which implies a locally vanishing spin connection.

In order to have well defineg-coordinates, a Lorentz transformation should relate the
values of &“’s circling around the cycles and circling around the branch points, so that
the line element & = n,, dX* dX? is left single valued.

The conformal gauge choice can be implemented by parametrizing:¢ in terms of
null vectors:

E* = NW*, ES = NW*, (3.4)

where W2 = W2 = 0, andN(z, 1) should be a single-valued meromorphic function with
poles at the branch points= &. We have to build¥¢, W¢ in order to represent the DJH
[2] matching conditions (analogous to the particle case) ofstheoordinates, on the cycles
(Ci=a;,Ciyg =b;,i =1,..., g) of the Riemann surface:

Xy, S5 (dX)y = (L;)4(dX?), i=12...,2¢ (3.5)

whereL, denotes the holonomies of the spin connection, i.e. the Lorentz part of the Roincar
holonomies(U;, V;).

The simplest realization of suaf (2, 1) monodromies is given by a sp%] projective
representation;

Aif(z,z,0)+ B;
Bf f(z,Z,1) + A}’
where the mapping functiofi(z, z, #) is an arbitrary function with branch cuts representing
the Riemann surface andl;, B; represent Minkowskian velocities, which are constants of
motion.

The W vectors, being in the adjoint representation®§2, 1), can be built from the
mapping functionf, which is in the spin% representation, as:

L oq g2 e L
azf(f”f)’ iy

fz7.0 <> |AiP— B> =1 (3.6)

Wa = (7! 72’ 1) (37)

|
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The Minkowskian coordinateX“ are obtained integrating the spatial components of
the dreibein at constant time, along a generic path which does not intersect the branch cuts
describing the Riemann surface on thelane:

(z,2)
X =X{ +f - (dzE? 4 dz EY). (3.8)
(GR
Let us remark that we can completely solve the geodesic equations describing the
branch-point trajectories, or equivalently the moduli trajectories in the first-order formalism,
by measuring the distance between two branch points irktheoordinates:
(52.€7) .
X4(t) — X4(1) =/ (M2 NW(z, 1) + &ZNW(Z, 1)). (3.9)
(61.61)
The explicit solution is obtained by inverting these relations to obtain the trajectories
& (t) as functions of the Poincarholonomies, which are the constants of motion of the
problem.
In order to determine the metric completely, we derive (3.8) with respect to time, and
we obtain

Eg = 9,X°

(z,2) .
=8,X‘{+at/ (dz NW* 4+ dz NW*)
(GRI)

(z,2) .
=c”(t)+/  (dz 8, (NW) + dzo,(NW)) (3.10)
(51,61

In terms of the vectorsZ§ = 9, X, E! = NW¢, Ef = NWw¢, the components of the
metric are given by :

—2g: =€ = [NP(-2WW),

g0 = zﬂe2¢ NW,Eg, go: = 3p¥ = NW,E§ (3.11)
goo = a® — |BI*€” = ESES, o = n,E¢
To derive the expression far we need to define the unit vector
1
n’ = If|2(1+|f|2 2F,2f) = L WWE(WW) (3.12)

which represents the normal with respect to the surfd€ée= X“(t, z,z7), embedded at
fixed time in the Minkowskian spacetime?d= 7,, dX¢ dX”. The tangent plane is instead
generated by the vectors

9, X" = NW*, =X = NWe. (3.13)
The K = (2r)~! gauge condition can be rewritten in a first-order formalism as:
=)' — E§(3,ES + :EY) = (21) *Egn,e”. (3.14)

Therefore, we must relax the condition th} satisfies the Coulomb gauge as it happens
in the K = 0 gauge, and we require instead that

1
0.E¢ = 0:E¢ = En‘*e%
(3.15)

‘= = 2 oF a2 __
" _1_|f|2(1+|f| 27, 2f) ()2 =1
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Can we solve this equation of motion? Yes, the answer can be written in several ways,
i.e. by noticing that the vector®, satisfying the conditiorin?)?> = 1, is a solution of the
equation of motion of ar0 (2, 1) o-model, whose Lagrangian is:

L= 3,n"dn" (n"? =1, (3.16)

or by noticing that the conformal factor can be represented in two ways resembling the
solution of a Liouville-type equation:

NN 2 o, fo-f
et = —1—|fP =162 — =
aragr A-IfP?

It is not difficult to realize that this identity is generated by a basic first integral of the
0(2,1) o-model equations of motion:

3zf8z7 _ N(z)
5 = .
a-1p
For future reference, we give the various forms on which the equations of motion of
the Lagrangian (3.16) can be expressed:

(3.17)

(3.18)

2fo.fo=f

+ ———5 =
A-1f1?

The solution forf in equation (3.18) has to respect monodromy conditions around each
cycle (a;, b;) in order that the Minkowskian coordinaté&’ represent the Poingargroup
holonomies, which define the coupling of Riemann surfaces to gravity. In particular, the
Lorentz group holonomies are in correspondence With(1, 1) Mobius transformations
(3.6) that map thef-unit disk into itself.

The metric is instead a scalar with respect to the gr&Ul, 1). Since every Riemann
surface can be thought as arsheeted complex plane, the monodromy conditions around
each branch point must be a cyclic subgroupsSéf(1, 1). For example, since for a torus
circling around each branch point twice we come back to the same point, the cyclic group
is Z, which is represented by:

Fo g (3.20)

The monodromy conditions fof do not contain all the global information. To represent
the translations, we need to play with the non-analyticity of the solution obtheodel.
As we shall see, if the holonomies are only Lorentz transformations, yhdiecomes
holomorphic. In the torus case, where we have to represent both Lorentz boosts and
translations, a non-analytic dependence of the solution appears.

This remarkable connection between €2, 1) o-model and surfaces of constant mean
curvature is analogous to what has been discussed in [18], for the Euclidean case.

In general every surfac&Z(z) (in this context a genug Riemann surface) immersed
in a three-dimensional flat spacetime is characterized by its first and second fundamental
form. By using conformal coordinates, the first form, i.e. the spatial metric, reads

0.9:n" + (90" dnp)n® =0 0.0:f

¥z

0. (3.19)

| = € dz dz. (3.21)
The second fundamental form is parametrizedkbynd N as follows:
Il = K;;dx' dx’
(3.22)

K,,=N K.:=3Ke”.
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Given such data of the surface, the position vecdfértz, 7, r), describing the foliation
of Minkowski spacetime in terms of gengsRiemann surfaces, can be found by solving
the Gauss—Weingarten equations:

32X = 20,49, X + Nn“
3.9:X* = 1Kn“e® (3.23)
9.n" = Ko, X" +2Ne 2 9-x°.

The integrability conditions of these equations, the Gauss and the Codazzi—Mainardi
equations, take the form of the Einstein equations¢gfaand N. Then it is not difficult to
show that, substituting the conditidti = (2r)~2, these equations are solved by €2, 1)
o-model. Our mapping’ is called the Gauss map of the surface.

4. Some solutions in conformal gauge

In this section we shall apply the first-order formalism method to discuss some examples
of the solution of theO (2, 1) o-model.

For the torus case, equation (3.1) becortidé = VU and it is solved by an Abelian
subgroupU (1) ® U (1) of the ISO(2, 1) Poincaé group, which can be taken as a Lorentz
boost along ther direction+ a translation in the direction. The torus coupled to (21)
gravity is defined by the following holonomy transformations:

T — coshyiT + sinhyx; X T — coshy,T + sinhy,X
U:{ X — coshyi X + sinhy,T V i { X — coshy,X + sinhy,T . 4.1)
Y —>Y+w Y —>Y+4+w

Starting from a generic point7y, Xo, Yo) and applying the transformationd/, V)
connected to the cycle&:, b) of the torus, we obtain a lattice of points which belong
to the surface

T2 - X2=T¢ - X2=C. (4.2)

At a given C such a surface again describes a torus, and the spacetime evolution is
simply obtained by allowing a time-dependent consi@nt C(¢), which in the York time
gauge is

C=1>=T?-Xx2 (4.3)
After a transformation of the Minkowskian coordinates
U U
T = tcoshT X = tsmh?, 4.4)

we obtain a plane lattice in th@/, Y) coordinates, which is analogous to a static torus.
The rescaling factor /¢ in front of U is necessary to keep the spatial metric in conformal
gauge:

U2 U
ds?=(1—- = ) d? + 2= dU dr — dU? — dY?, (4.5)
12 t

from whicha =1, 8 = U/ is real and & = 1.
The variableZ = U +iY has a simple translation monodromy:

7% 7 + X1t +iw 7 —b> 7 + xot + iwy. (46)
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Z — plane

Figure 1. The Minkowskian and the branch cut representation of a torus.

It can be represented as a standard Abelian integral pplane with two branch cuts
(see figure 1)

w(z, t)
where the position of the third singularigy(z) is time-dependent, in order to represent the
translation monodromies (4.6).
Therefore, the solution for the torus is given by the following mapping:

1 *odg T odz _
! ZICOSh[Z_t(/o W@ 1) +/o BE, r))] = e an
. 1 2 dg T dz . _
X = zsmh|:z</0 v —i—/o el t))] =tsinh¢(z,z,1) (4.8)

v ven [ wen)
T 2i\Jo wizt Jo wz )

The Poincag holonomies (4.1) tell us that the motion of the branch points is trivial in
the X coordinates:

X0 =(1,0,0)

XD =D, y(DBD1, by) (4.9)

X&) = (v, y (2B, by).
Taking for example the particle in O at rest, the particle in 1 is moving inxturection
with constant velocityg(l) = tanh% x1 and impact parametdr; = %wl. Analogously
the particle in§ is moving in thex-direction with velocity8(2) = tanh%xz and impact
parameter, = %a)z. In the z-coordinates, only the motion of the third singularigyz),
is necessary up to global rescalings of theoordinate, while the other two can remain at
rest.

It is straightforward to derive the equations of motion for the modulus of the torus and
for the area, which take the usual form [7, 8]:

Z= / = w?(z,1) = R(t)z(z — D(z — £@)), (4.7)
0

_xat tiwor

Xot + 1w

The motion of the modulus is essentially a consequence of the free motion in
Minkowskian coordinates of the branch points. It has also to satisfy another consistency
condition [8], namely that the motion of the moduli must be geodesic with respect to the
natural metric of the moduli space, the Weil-Petersson metric, which in the case of the torus
is equivalent to the Poincametric of the upper half plane:

dr dt
ds? =

T (Im1)?

(1) A = /dzd2e2¢ = t((1w2 — x2w1). (4.10)

(4.11)
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The form (4.10) of the solution for the modulus is consistent since it describes a circular
arc in the moduli space, which is a geodesic of the Ponoagtric.
The corresponding dreibeiit;; = 9, X, is given by(a = (¢, x, y)):
E = 1 (X, T, —it)
L 2tw(z, )
T g X g Y
E¢=—+X—,—4+17—,—).
0 (t+ o T T e az)
The conformal gauge conditio@a&“;’)2 = 0 is verified due to equation (4.3).
From equation (4.12) we can read the solution fband f satisfying equation (3.18):

_ X P(z,2, 1)
fz,z, 1) T an >

(4.12)

(4.13)

N(Z,t) = m

So we have found that, for the special case of boosts along-theés, f is real andV
is related to the quadratic holomorphic differential. In general, we can gues®/that)
is a known source for equation (3.18), being a combination of the quadratic holomorphic
differentials of the Riemann surface.

The function tanh can also be expected since it diagonalizes the monodromy conditions
for f around the cycle€; = (a, b) of the torus:

Ci Aif+ B;
f=

Bi f + A;

The linear dependence of its argument from the Abelian integrals represents the change of
sign f — — f around each branch point.

Let us integrate equation (2.8), which specifies the spatial data, on the two-dimensional
surface:

/v2¢dzd2=7§%¢.ﬁdz :4/ 0] 8Zf,j%fdzd2=4/ WY (415
A—-1f1% A—1f1%

The line integral has to be done around all the singularities orz{lane. In the case
of the torus the power behaviour of?earound each singularity ensures that the contour
integral is finite. Then the last relation says that the modifu$ is always limited inside
the unit disk (f|?> < 1). This is an important property of this temporal splicing, since
then we are safe from spurious singularities and the determinant of the metric is always
non-vanishing.

Such integral property must be essential to prove that in this gauge the foliation for
every Riemann surface is well defined, once suitable boundary conditions for the singular
behaviour of & are imposed, such as a particle-like singularity with a power behaviour.

Since f is real in the case of the torus and its image must be contained inside the
unit disk, we conclude thay maps the real variablé(z, z, ¢) inside the real diameter
D =[—1,1]. Sincef is polydrome, it can be restricted to cover a segmenbofCircling
many times around each cycle of the torus,figives a tessellation of the diameter.

This particular feature of the torus should be valid in general. For every Riemann surface
the image of the Gauss map can be restricted to a polygon inside the unit disk. Circling
many times around each cycle we should obtain a tessellation of the unit disk, instead of the
diameterD, as a consequence of the non-Abelian relation (3.1) which replaces the Abelian
oneUV = VU for the torus. An example of tessellation of the unit disk with curvilinear
triangles is given in figure 2 [19].

A; = cosh% B, = sinh% i=12 (4.14)
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Figure 2. Tesselation of the unit disk with hypergeometric functions.

There is another limit in which equation (3.18) can be solved, i.e. when we consider the
Gauss map/f, depending on a single variabje= f(z). We shall show that, in this case,
the basic relation (3.1) defining the Riemann surface evolution is solved by representing the
U; andV; holonomies with arbitrary boost but no translations. This is a totally different case
from Moncrief’s solution for the torus, which contains mixed Lorentz boost and translation
holonomies.

This case corresponds 1 = 0 [1, 8], and the equation (3.18) can have a meaning, as
N — 0,9, f — 0 but the ratio

N a.f
= 4tz—f2 (4.16)
6L @=1rP
still finite. From this identity, the dreibein reads:
a a’? 2
E! =4 ————(f.1 f?. (4.17)
A—=1119
It gives rise to a Minkowskian transformation of the type:
1 2 f
T=2 +|f|2, Z:4t%. (4.18)
1-171 1-1f1

The particular relation (4.18) between Minkowskian coordinatesfarehlizes explicitly
the isomorphism betweeSO (2, 1) and SU (1, 1), and the Mbius transformations of
correspond to pure Lorentz transformation holonomies forXtheoordinates.
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We easily recognize that the Minkowskian coordinates satisfy the constraint:
T2 — 27 = 4°. (4.19)

The same surface can be obtained starting from a generic (#iro, Zo) and applying
all the SO (2, 1) movements related to the cyclés, b;). Hence this time foliation is natural
since it is induced by the Poin@&holonomies.

The X = X (x) mapping (4.18) produces the hyperbolic metric on the disk:

df df
a-1fP*

from which we can readr = 2, 8 = 0 and & = 16:2/(1— |f|2)2 which solve
equation (2.8).

The conformal mapping (z) still has to be determined. First, we remember that every
genusg Riemann surface is determined by a fundamental graX) generated by theg?
holonomies U;, V;) satisfying the relation (3.1). Let us denote withthe unit disk with
its metric of negative constant curvature. The grdp(1, 1) acts on it, maintaining its
metric. Consider a subgroup oflit ¢ SU(1, 1), isomorphic tor; (%), the quotientd /T’
is a Riemann surface of genys with the same constant curvature metric of the unit disk
H.

Therefore, we can think that the image of the conformal mappingjives a tessellation
of the unit disk on which the holonomy acts &8 (1, 1) and we can restrict the fundamental
region of Imf to be inside a closed geodesig-gon of the unit disk with hyperbolic metric,
where the conformal mapping becomes one to one.

For pureSO (2, 1) holonomies, the equations of motion for the branch points are simply:

X&) — X&) = (Vi = V. (4.21)

Since theX* = X“(x) mapping in equation (4.18) is also linearsinrwe conclude that there

is no evolution in thez-coordinate for the branch points. As a consequence, there is no
time evolution for the moduli [8], and the only time dependence comes from the overall
scale factorz?, in equation (4.20). We can suppose that the branch pdintbave fixed
positions on the real axis. Then to find the Gauss rfighe theorem of complex analysis

is helpful: given a simple and closed geodesic polydorof the Poincag metric in the
upper halfw-plane, whose sides are circular arcs making angles ayr, ..., «,, at the
vertices A1, Ay, ..., A, where 0< «; < 2, then there exist real numbegs, &, ..., &,

B1, B2, ... B, such that

ds? = 4dr? — 1612 (4.20)

g1 <& <. <&, Z,szo
=1

; ) (4.22)
(28i& +1—a}) =0, D BiEF+ A —ed)E) =0
j=1 j=1
and the uppet-plane is conformally mapped insidé by
() = 19 (4.23)
uz(z)

whereu(z) andu,(z) are two linearly independent solutions of the Fuchsian differential
equation:

n1—a? n

1 1 J 1 ﬁj _

=1 Pty
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The pointsg; correspond to the vertices;. A simple conformal mapping relates the
upper w-plane endowed with the Poinéametric to thef-unit disk with the hyperbolic
metric.

Let us remark that in order to obtain the tessellation property of the unit disk, the
anglesa;r must be chosen ag(1 — 1/n;), with n; positive integers. Such a mapping
problem has been investigated in connection with Fuchsian groups and functions. In fact,
to each geodesic polygon of theunit disk, whose angles in the vertices have the measure
7(1— 1/n;), with n; positive integers, a discrete group of movementand an analytic
functionz(f) defined in thef-unit disk is connected, which is invariant under fhection
on the f variable. Thel’ group of SU (1, 1) Mobius transformations on the disk is called
the Fuchsian group. The functiasff /) is a Fuchsian function with respect to the group
I'. Instead the invers¢g = f(z) is polydrome, and it can be restricted to mapping the
z-plane into the geodesic polygon. Therefore, we conclude that our conformal mapping is
the inverse of such a Fuchsian functigiy). Examples of them can be built from the series
of the form (Poinca series):

0(f) = Z _Lf)z,n (4.25)
i=1 (bi f +a;)
wherem is a positive integerH (f) is a rational function in the geodesic polygon and the
sum is extended to all the elements of the Fuchsian group, generated by the holonomies.
This series has the following Poinéaproperty:

o (ilkf +ﬁk
b f + ax

This means that it has a very simple transformation rule under the action of the Fuchsian
group. Taking the ratio of two Poindaseries with the same index

) = (b f +5k)2m®(f) V(ag, by) €T. (4.26)

O1(f)
2(f) = —= 4.27
4 ©2(f) ( )
we obtain a Fuchsian function, which is invariant under the action of the Fuchsian group
+5b a
z (fkf—_k> =z2(f) = 2(X*) = z(AP“X?) Vk. (4.28)
b f + ay

Maybe the special functions which integrate the whol€, 1) o-model have to be
searched as non-analytic generalizations of such a series, with the property

2(X%) = 2(APXP 4 g0 Vk, (4.29)

in which one has to sum over all the group elements generated by the Rolmatanomies
(A, 0.

However, only an analytic function is inequivocally defined by its monodromy
properties. For the general case we expect that finding new solutions is a difficult question.

5. Discussion

We have shown here that the first-order formalism, that has allowed us to sol¥ehbdy
problem, can be extended to the case of Riemann surfacés-inl) gravity. We have
found that theO (2, 1) o-model solves explicitly all the Einstein equations. The solution
is characterized by an analytic functidf(z) which is the componenk,, of the extrinsic
curvature tensor and by the Gauss m@g, z, r). This function f maps a complex plane
with branch cuts into the unit disk with hyperbolic metric. The holonomieg afe elements
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of SU(1, 1) and isometries of this metric. Therefore, we can delimitflimto a geodesic
polygon inside the unit disk. This property is also true for the conformal mappirg

our N-particle solution [10]. The peculiar signal of topology should be that this mapping
produces a tessellation of the unit disk, a property which is not generally true for the particle
case.

We have discussed in [20] that the line defined|lfy = 1 is a spurious singularity of
the conformal gauge, since the metric determinant vanishes there, and also the boundary
for the existence of closed time-like curves (CTC) [21]. Therefore, our qualitative analysis
on the behaviour of the mapping functighsuggests that the Riemann surfaces solutions
should not suffer from the CTC problem.

We have given explicit solutions for the mapping functigrfor the torus and for all
Riemann surfaces havingO (2, 1) holonomies. It turns out that in both cases the inverse
mappingz = z(f) is a single-valued function, i.e. an automorphic function. The&)
function for the torus is related to the quadratic holomorphic differential, a property that is
probably true for all Riemann surfaces.

We have found that the Poiné&holonomies have a quite simple particle interpretation.
They determine the evolution for the branch points, which move freely in the Minkowskian
X coordinates according to

X&) — X&) = (V@ — V)i + B — B (5.1)

The moduli trajectories, which have to be geodesic of the metric of Teichmuller space,
should be a consequence of the trajectories of the branch points.

The next step would be to find a quantization scheme which takes into account this
classical reduction of three-dimensional gravity in two-dimensional field theories.
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Appendix. Einstein equations from theO(2, 1) o-model

Let us verify that the second-order equations of motion are reproduced by the first-order
equations of motion.
For example, to obtain equation (2.8) we have to show that

TGS kY K7 R

3,00 (A1)
@- 1’
From the definition ofp:
¢ = 31099, fo:f —log(L — | 1) (A.2)

making use of the.-model equation of motion foyf (equation (3.19)), we can easily obtain
(A.1).
Let us compute the equation of motion f@r By definition

d.0:0 = 3,0-:(n"E) = (3,0:n)EX + 8,n"3-E2 + 3:n"9. E° + n9,9-EL. (A.3)
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We can easily compute the first term which is exactly shenodel equation fom“
(equation (3.19)):

3.0-f + 0, fo- — 1
0,0:n" = —(aznbagnb)n“ — ZMWJ = (2NNe ® + —&* | ne, (A.4)
A= 113’ 212
from which
— 1
Vo = <8NNe2¢ + ﬁe&f’) o + 4n®9,0-E° + 43:n"9. E° + 4n“9.0-EQ. (A.5)

Let us compute the residual contribution:

(A.6)

200f f d
9.E% = 0.90X, = 0oE" = [30 logN — 8ologd, f — ﬂ} xi 4+ N2l

Q-1 d.f
Similarly, the spatial derivative of* can be decomposed as a sum of the two orthogonal
vectorsW¢* and W¢:

2.1 a, 2200 u_ Lya, 20007 o,

0.n = = (A7)
T a—1p? A-f1»? 2 A [f1»)?

from which

1 NN 2 1
3,n0-E° + 9-n9.E° = —NNWW | lo — 1= P | = ——0,€". A.8
n ~a+ N 0L, 2 0|: 98283( |f|):| 4lt ( )
The last contribution is given by:
1 1 1
n9.0:E2 = n"9,(3,9-X") = n"d, (En“e%’) = _Eez‘l5 + Za,e% (A.9)

Summing the various contributions, we reproduce equation (2.8).
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