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Abstract

We study the asymptotic behaviour of nonnegative solutions of
the Cauchy problem for doubly degenerate parabolic equations with
variable coefficients. When the initial datum has a finite mass, the
asymptotic expansion of the solution for a large time, uniformly in
whole space, is established.
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1 Introduction

We study the large time behaviour of a solution of the Cauchy problem for
quasilinear degenerate parabolic equations of the form

(1.1)


∂u

∂t
=

N∑
i,j=1

∂

∂xj

(
aij(x, t)u

m−1 |Du|p−2 ∂u

∂xi

)
,

u(x, 0) = u0(x), x ∈ RN .

Where , (x, t) ∈ QT = RN × (0, T ), N ≥ 1, T > 0. We assume that m +
p− 3 > 0, p > 1 which means that (1.1) has a structure of the slow diffusion
(see [22]). It is assumed that aij(x, t) = aji(x, t) i, j = 1, .., N are measurable
functions and there exists ν > 1 such that

(1.2) ν−1|ξ|2 ≤
N∑

i,j=1

aij(x, t)ξiξj ≤ ν|ξ|2

for any ξ ∈ RN , a.e. x ∈ RN , u0(x) is a non negative measurable function be-
longing to L1

loc(R
N). If aij(x, t) = δij, i, j = 1, .., N , where δij is the Kronecker

symbol, then (1.1) reduces to the doubly degenerate parabolic equation:

(1.3) ut =
N∑
i=1

∂

∂xi

(
um−1 |Du|p−2 ∂u

∂xi

)
.

In particular, if p = 2, then (1.3) is the porous media equation (or PME for
short):

(1.4) ut =
1

m
∆um

and, if m = 1, (1.3) is the nonstationary p−Laplacian:

(1.5) ut =
N∑
i=1

∂

∂xi

(
|Du|p−2 ∂u

∂xi

)
.

Recall that (1.3) admits the one parameter family of Barenblatt’s solutions
which have a selfsimilar form
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(1.6)


E(x, t) = t−α

(
C − c(m, p,N) |ξ|

p
p−1

) p−1
m+p−3

+
,

with α = N/β, β = N(m+ p− 3) + p, ξ = xt−
1
β ,

c(m, p,N) = β−1/(p−1)(m+ p− 3)/p

Here C is a free parameter. In particular, choosing C such that

(1.7)

∫
RN

E(x, t)dx = M > 0.

E(x, t) satisfies the condition

(1.8) E(x, 0) = Mδ(x),

where δ(x) is the Dirac measure. This is the reason why E(x, t) is also called
a fundamental solution (FS for short).
The function given in (1.6) suggests us the sharp bounds for the maximum,
for the speed of propagation of the interface and for the admissible regularity
of the solutions to degenerate parabolic equations (1.1). In what follows, we
denote EM(x, t) the FS satisfying (1.7).
The purpose of this paper is to get the asymptotic expansion as t→∞ of a
solution of (1.1) uniformly in the whole space when u0 belongs to L1(RN).

Note that if define v = uα where α =
m+ p− 2

m+ 1
and u is the solution of

(1.1), we have that v satisfies the equation

(v
1
α )t =

N∑
i=1

∂

∂xi

(
aij(x, t) |Dv|p−2 ∂v

∂xi

)
.

This equation is degenerate whenever
1

α
+ 1 > p i.e. when m + p > 3 (for

more details about this classification we refer the reader to ([37]).
Hence we have to understand (1.1)) in the weak sense. We say that u(x, t) ≥ 0
is a weak solution of (1.1)) in QT , T > 0 if for any bounded domain Ω of RN

(1.9) u ∈ C((0, T ]; L1
loc(R

N)) and

T∫
0

∫
Ω

um−1 |Du|p−1 dxdt <∞
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and for every test function ϕ(x, t) ∈ W 1,∞(0, T ; L∞(RN))∩L∞(0, T ;W 1,∞
0 (RN))

vanishing on the hyperplane {t = T}

(1.10)

∫∫
QT

(−uϕt +
N∑

i,j=1

aij(x, t)u
m−1 |Du|p−2 uxiϕxj)dxdt =

=

∫
RN

u0(x)ϕ(x, 0)dx.

We call u(x, t) a strong solution to (1.1) in QT , T > 0 if u is a weak solution
to (1.1) ) and ut ∈ L1((0, T ), L1

loc(R
N)).

We say that u is a FS of (1.3) in QT with mass M > 0 if u is a nonnegative
weak solution of (1.3), (1.8) in QT in the sense that the following identity
holds for any test function ϕ as in (1.10)

(1.11)

∫∫
QT

(−uϕt +
N∑
i=1

um−1 |Du|p−2 uxiϕxi)dxdt = Mϕ(0, 0).

Hence the initial conditions (1.8) is satisfied as

(1.12) lim
t→0

∫
RN

u(x, t)ψ(x)dx = Mψ(0)

for any continuous ψ with compact support in RN .
We have

Theorem 1.1 Let u(x, t) be a weak solution of the Cauchy problem (1.1) in
Q∞ with non negative initial datum belonging to L1(RN) and ‖u0‖1 = M.
Assume that aij, i, j = 1, .., N satisfy (1.2) and:

(1.13) lim
ρ→∞

ρ−N−β
ρβ∫

0

∫
Bρ(0)

|aij(y, τ)− δij|p dydτ = 0.

Then the following limit exists

(1.14) lim
t→∞

tα |u(x, t)− EM(x, t)| = 0

uniformly in x ∈ RN . Where α and β are defined as in (1.6).
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The asymptotic expansion in the parabola Pa =
{
|x| < at1/β

}
for the Cauchy

problem of the PME when the initial datum has a finite mass is proved in
([16]). A similar result for the p−Laplacian equation was obtained in ([21]).
The results concerning the asymptotic expansions in the whole space were
treated in ([25]) for the p−Laplacian equation and in ([34]) for the PME. For
semilinear parabolic equations we quote ([17]). We refer the reader to the
monograph ([35]) for the qualitative properties of solutions to the PME. Let
us quote also the interesting results proved in ([8]) (see also references therein)
where the asymptotic representation of solutions in suitable Lq(RN) norms
has been obtained using the sharp constant in Sobolev type inequalities.
In ([2]) it is proved the asymptotic expansion in parabola for the PME for
various classes of initial data which are asymptotically powers.
Let us stress the fact that the results concerning asymptotic expansions deal
with model equations only. Therefore one of the main motivations of this
paper is to extend the results concerning asymptotic behaviour to equations
with measurable coefficients. Uniqueness of FS is known for the PME ([28])
and for nonstationary p−Laplacian ([25]). In the case of PME the result holds
for very general operator. This is not true in the case of the p-Laplacian where
the result is known only for the prototype operator. The uniqueness of FS for
a doubly degenerate parabolic equations (1.3) when β = N(m+p−3)+p > 0
can be proved following the approach of ([25]) as quoted in the recent paper
([1]). In the fast diffusion case (i.e. when 2 < m+ p < 3 and p > 1, for more
details about the fast diffusion case see the monographs ([34]) and ([35]) )
the uniqueness result is due to ([30]). Finally, we refer the reader to ([27]) for
the uniqueness of energy solutions (i.e. weak solutions with extraregularity
on the initial datum) for doubly degenerate parabolic equations.
In particular, the approach of ([27]) can be adapted to (1.1) if aij(x, t) =
a0(x, t)δij where a0 is a measurable function such that ν−1 ≤ a0(x, t) ≤ ν
a.e. (x, t)∈ QT .

Note that assumption (1.13), which characterizes the behaviour of coefficients
of (1.1) at infinity, is natural and comes from the linear case. It was intro-
duced by Kamin ([23]) (see also ([15])) where similar conditions are used
to get criteria of stabilization for linear parabolic equations with variable
coefficients (in which case β = 2 and p = 2).

The proof of Theorem 1.1 is divided in two steps:
1) the asymptotic expansion in the parabola Pa
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2) L∞ estimates outside of the parabola Pa.

In the first step we use the rescaling arguments introduced by Kamin and
used in several papers (see ([23]), ([24]), ([31]), ([2]), ([21]), ([15])). The
asymptotic behaviour can also be studied using different approaches. For
more details on this subject we refer the reader to ([34]) and ([35]).
In the second step we use essentially the energy approach introduced in ([5])
to prove a local energy estimates outside of Pa. An alternative proof for the
PME can be found in ([34]) and ([25]).
Throughout the paper we consider the solution of (1.1) as a strong solution.
For the weak solution of the problem it is necessary to proceed with the
Steklov mollifier in time. This process is quite standard and is described for
instance in ([26]). For simplicity we omit this standard procedure.
The structure of this paper is organized as follows. Section 2 deals with pre-
liminary results. There we state some local and global estimates of solutions
of (1.1) for u0 ∈ L1(RN). In section 3 we adapt to our case a technique
introduced by Vazquez ([34]) in the context of the PME. Finally section 4 is
devoted to the proof of Theorem 1.1.
Throughout all the paper we will use symbols c, C, b and bi for positive
constants depending only on the parameters of the problem which may vary
from line to line while α and β are always defined as in (1.6).

2 Preliminary results

Let f(x) ∈ L1
loc(R

N) and r > 0. Denote

|||f |||r = sup
R≥r

R−
β

m+p−3

∫
BR(0)

|f | dx

Let us recall a result proved in ([18]).

Theorem 2.1 Consider equation (1.1). Assume that the coefficients ai,j(x, t),
i, j = 1, .., N satisfy conditions (1.2) and that u0 ∈ L1

loc(R
N). Assume also

that |||u0|||r < ∞, r > 0. Then there exists a time T = T (u0) and a
weak solution u(x, t) of (1.1) in QT such that u ∈ C([0, T ); L1

loc(R
N) and

u(x, t)→ u0 in L1
loc(R

N).
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Moreover there exists a positive constant C0 such that for any 0 < t < Tr(u0),
where

Tr(u0) = C0 |||u0|||−(m+p−3)
r

we have
1) |||u|||r ≤ c1 |||u0|||r ,
2) ‖u(t)‖∞,BR(0) ≤ c2t

−N/βRp/(m+p−3) |||u0|||p/βr

Where the constants c1 and c2 depend only upon the data.

Under the above assumptions it is possible to prove the Hölder regularity of
the solution, see ([19]) and ([29]). See ([9]), ([10]) when p = 2 or m = 1.

Theorem 2.2 Assume we are in the same hypotheses of the previous The-
orem. Then u(x, t) is Hölder continuous in Qτ,T,R = BR(0) × (τ, T ), τ > 0
and the Hölder constant and the Hölder exponent depend only upon N, p, m,
ν, τ, T, R and |||u0|||r.

For Cauchy problem with initial datum in L1(RN) the optimal L1 − L∞

estimates were obtained in ([36]) in the case of nonstationary p−Laplacian. In
([3]) and ([14]) similar results were proved if correspondingly p = 2 or m = 1.
The gradient estimates and the Hölder continuity of gradient were proved in
([12]) for systems when m = 1. Note also that similar results are known for
solutions of the Neumann problem in domains with non compact boundaries
(see ([4])) and for solutions of the Cauchy problem for doubly degenerate
parabolic equations with variable coefficients degenerating at infinity (the so
called inhomogeneous density, see for instance ([32])).
Notice that if u0 ∈ L1(RN) then Tr(u0) = ∞ . This clearly implies that
(1.1), is globally solvable. Moreover for all t > 0 (see ([18]), ([4]), ([32]))

(2.1) ‖u(t)‖∞ ≤ c2t
−N/β ‖u0‖p/β1 .

The following result is proved in ([5]), Lemma 3.1. Such a result holds also
for systems (see ([33])).
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Proposition 2.1 Assume we are in the same hypotheses of the previous
Theorems. Let 0 < r2 < r1, 0 < t2 < t1 < t. Define D1 and D2 as Di =
(RN\Bri)× (ti, t), i = 1, 2. Then for all h1 > h2 > 0 and all s > 0

sup
t1<τ<t

∫
RN\Br1

(u− h1)s+1
+ dx+

∫∫
D1

∣∣∣D(u− h1)
(m+p+s−2)/p
+

∣∣∣p dxdτ
≤ c((t1 − t2)−1

∫∫
D2

(u− h2)s+1
+ dxdτ

(2.2) +
1

(r1 − r2)p

(
h1

h1 − h2

)(m−1)+ ∫∫
D2

(u− h2)m+p+s−2
+ dxdτ).

Where the constant c depends only on p, m and ν.

The following entropy estimates are proved in ([18]), ([3]), ([14])

Theorem 2.3 Assume we are in the same hypotheses of the previous Theo-
rems. Let R > 0 then

(2.3)

τ∫
0

∫
BR(0)

|Du|p−1 um−1dxdt ≤ c (‖u0‖1 , R) τσ,

(2.4)

τ∫
0

∫
BR(0)

udxdt ≤ c (‖u0‖1 , R) τσ,

where σ > 0.

In the sequel we also need two interpolation inequalities and the celebrated
Gagliardo-Nirenberg inequality (for both these results, see, for instance,
Chapter 0 of [13]).

Lemma 2.1 (see also [26])
Let {Yn}∞n=1 be a sequence of equi-bounded positive numbers satisfying the
recursive inequalities

Yn ≤ CbnY 1+α
n+1
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where C, b > 1 and α > 0 are given constants. If

Y0 ≤ C−
1
α b−

1
α2

then Yn → 0 when n→ +∞.

Lemma 2.2 (see also [26])
Let {Yn}∞n=1 be a sequence of equi-bounded positive numbers satisfying the
recursive inequalities

Yn ≤ CbnY 1−α
n+1

where C, b > 1 and α > 0 are given constants. Then

Y0 ≤
(

2C

b
α−1
α

) 1
α

Lemma 2.3 Let u ∈ W 1,p(RN) with p > 1. Let 0 < µ < q < pN
N−p if p < N

and 0 < µ < q otherwise

(2.5) ‖u‖q ≤ C‖Du‖ap‖u‖1−a
µ

where C is a constant depending only by N, p, q, µ and

a =
( 1

µ
− 1

q

)( 1

N
− 1

p
+

1

µ

)−1
.

Note that in general the Gagliardo-Nirenberg is stated with the assumption
that 1 < µ < q. But the proof works also in the weaker assumption 0 < µ <
q, even if, in general, the space Lµ(RN) and Lq(RN) are no longer Banach
spaces.

3 Auxiliary results

Consider now the family of functions

(3.1) wk(x, t) = kαu(k1/βx, kt).
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For any k, wk(x, t) solves the problem

(3.2)


∂wk
∂t

=
N∑

i,j=1

∂

∂xj

(
a

(k)
ij (x, t)wm−1

k |Dwk|p−2 ∂wk
∂xi

)
,

wk(x, 0) = kαu0(k1/βx).

with (x, t) ∈ QT = RN × (0, T ), N ≥ 1, T > 0. Note that a
(k)
ij (x, t) =

aij(k
1/βx, kt) satisfy (1.2) with the same ν and ‖wk(x, 0)‖1 = ‖u0(x, 0)‖1.

Hence by (2.1)

(3.3) ‖wk(t)‖∞ ≤ c2t
−N/β ‖u0‖p/β1 .

Proposition 3.1 Let wk(x, t) be a weak solution of the problem(3.2) in Q∞
and ||u0||1 < ∞, where α and β are defined in (1.6). Assume that (1.2)
and (1.13) hold. Then there exists a sequence kn and a continuous function
q̃(x, t) in QT for any T > 0 such that wkn → q̃(x, t) uniformly in any compact
subset of QT . Moreover

(3.4) −
∫∫
QT

q̃(x, t)ϕtdxdt+

∫∫
QT

|Dq̃|p−2 q̃m−1Dq̃Dϕdxdt = ‖u0‖1ϕ(0, 0).

for any ϕ(x, t) in C∞(QT ) with compact support in RN vanishing on the
hyperplane {t = T}

Note that the proof works even if u0(x) ∈ L1
loc(R

N). In such a case,the right-

hand side of (3.4) can be replaced by lim
kn→∞

∫
RN

wkn(x, 0)ϕ(x, 0)dx provided

such a limit exists.

Proof.
Fix R > 0. Let ζ(x) be a smooth cutoff function in a ball BR(0) such that
ζ(x) = 1 when |x| < R/2, ζ(x) = 0 outside of BR(0) and |Dζ| ≤ c/R.
Multiplying the equation (3.2) by wakζ

p, a > 0, and integrating by parts over
BR(0)× (τ, T ), we get

1

a+ 1

∫
BR(0)

wa+1
k (·, T )ζpdx+a

T∫
τ

∫
BR(0)

ζpwa−1
k

(
N∑

i,j=1

a
(k)
ij (x, t) |Dwk|p−2wm−1

k wk,xiwk,xj

)
dxdt

10



=
1

a+ 1

∫
BR(0)

wa+1
k (·, τ)ζpdx+

(3.5) −p
T∫
τ

∫
BR(0)

ζp−1wak

(
N∑

i,j=1

a
(k)
ij (x, t) |Dwk|p−2wm−1

k wk,xiζxj

)
dxdt.

By (1.2), the second term in the left-hand side of (3.5) is bounded from below
by

aν−1

T∫
τ

∫
BR(0)

ζpwm+a−2
k |Dwk|p dxdt = aν−1I1,

while the second term in the right-hand side of (3.5) is bounded from above
by

pν

T∫
τ

∫
BR(0)

ζp−1wm+a−1
k |Dwk|p−1 |Dζ| dxdt = pνI2.

By Young’s inequality

pνI2 ≤ aν−1I1/2 + c(p, ν)

T∫
τ

∫
BR(0)

|Dζ|pwm+p+a−2
k dxdt.

Hence from (3.3) and (3.5) :

(3.6)

T∫
τ

∫
BR(0)

ζpwm+a−2
k |Dwk|p dxdt ≤ c (R, ‖u0‖1) τ−N(m+p+a−2)/β.

Let be ϕ(x, t) any C1(QT,R),with compact support in RN vanishing on the
hyperplane {t = T}. Multiply both sides of the equation (3.2) by ϕ(x, t) and
integrate by parts to get

(3.7)

∫∫
QT,R

(−wkϕt +
N∑

i,j=1

a
(k)
ij (x, t)wm−1

k |Dwk|p−2wk,xiϕxjdxdt =
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=

∫
BR(0)

wk(x, 0)ϕ(x, 0)dx.

Thanks to (3.3) and the regularity result of Theorem 2.2, wk(x, t) is uniformly
bounded with respect to k and wk(x, t) is Hölder continuous in Qτ,T,R =
(τ, T ) × BR(0) for any T > τ > 0 with exponent and constant independent
of k. Therefore there exists a sequence kn still denoted by k and a continuous
function q̃(x, t) such that wk → q̃(x, t) uniformly in any compact subset of
QT,R.
In the next step, we will prove that q̃(x, t) is a weak solution of the limit
problem; i.e. (3.4) holds.

In order to identify the limit equation for q̃(x, t), we split the second term in
the left-hand side of (3.7) in the following way:

∫∫
Qτ,T,R

N∑
i,j=1

(
a

(k)
ij (x, t)− δij

)
|Dwk|p−2wm−1

k wk,xiϕxjdxdt+

∫∫
Qτ,R,T

|Dwk|p−2wm−1
k DwkDϕdxdt+

(3.8)

+

τ∫
0

∫
BR(0)

N∑
i,j=1

a
(k)
ij (x, t) |Dwk|p−2wm−1

k wk,xiϕxjdxdt = A1,k + A2,k + A3,k.

Apply Hölder’s inequality to get

(3.9) |A1,k| ≤ c


T∫

0

∫
BR(0)

N∑
i,j=1

∣∣∣a(k)
ij (x, t)− δij

∣∣∣p dxdt


1/p

×


T∫
τ

∫
BR(0)

w
(m−1)p/(p−1)
k |Dwk|p |Dϕ|p/(p−1) dxdt


(p−1)/p

= cI
1/p
k J

(p−1)/p
k .

Going from a
(k)
ij to aij, we have
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Ik = k−
N
β−1

kT∫
0

∫
BR̃(0)

N∑
i,j=1

|aij(y, s)− δij|p dyds.

where R̃ = k
1
βR

Let γ = max
{
R−1T 1/β, 1

}
and ρ = γk1/βR, then

Ik ≤ (γR)N+βρ−N−β
ρβ∫

0

∫
Bρ(0)

N∑
i,j=1

|aij(y, s)− δij|p dyds.

Due to the assumption (1.13) Ik → 0 as k → ∞. On the other hand Jk

is bounded uniformly with respect to k by (3.6) choosing a =
m+ p− 2

p− 1
.

Therefore A1,k → 0 as k →∞.

Using now the uniform convergence of wk and Minty’s monotonicity trick,
we prove that

(3.10) A2,k →
∫∫

Qτ,T,R

q̃m−1 |Dq̃|p−2Dq̃Dϕdxdt

as k →∞.
First of all, note that by the L∞ estimates (3.3), the pointwise convergence
of wk and the Lebesgue dominated convergence theorem we have

T∫
τ

∫
BR(0)

−wkϕtdxdt→
T∫
τ

∫
BR(0)

−q̃ϕtdxdt

as k →∞.
Moreover by (3.6) with a = σ = (m+p−2)/(p−1) it follows thatDwσk → Dq̃σ

weakly in Lp(Qτ,T,R) and |Dwσk |
p−2Dwσk → χ weakly in L

p
p−1 (Qτ,T,R).

Hence, we get the following identity as k →∞

(3.11)

T∫
τ

∫
RN

(q̃ϕt − σ−(p−1)χDϕ)dxdt =

13



=

∫
RN

(q̃(x, T )ϕ(x, T )− q̃(x, τ)ϕ(x, τ)) dx

for any τ > 0 and any smooth ϕ such that ϕ(., t) ∈ C1
0(RN) for any t ≥ 0.

Thus it remains to prove that

(3.12)

T∫
τ

∫
RN

(
χ− |Dq̃σ|p−2Dq̃σ

)
Dϕdxdt = 0.

Notice that we have the monotonicity property of the diffusion part, that is
for any v ∈ Lploc(0, T ;W 1,p(RN)) and for every nonnegative test function ϕ,
we have

(3.13)

T∫
τ

∫
RN

ϕ
(
|Dwσk |

p−2Dwσk − |Dvσ|
p−2Dvσ

)
(Dwσk −Dvσ) dxdt ≥ 0.

Multiply both sides of (3.2), by ϕ = ψ(x)wσk where ψ ∈ C1
0(RN), 0 ≤ ψ ≤ 1.

Then integrate by parts over RN × (τ, T ) and get

1

σ + 1

∫
RN

wσ+1
k (x, T )ψdx− 1

σ + 1

∫
RN

wσ+1
k (x, τ)ψdx+

+

T∫
τ

∫
RN

σ−(p−1)ψ |Dwσk |
p−2DwσkDw

σ
kdxdt+

(3.14) +

T∫
τ

∫
RN

σ−(p−1)wσk |Dwσk |
p−2DwσkDψdxdt+ γk(T, τ) = 0

where γk(T, τ) → 0 as k → ∞. Applying (3.13) to the third term in (3.14)
and letting k →∞, we get

1

σ + 1

∫
RN

q̃σ+1(x, T )ψdx− 1

σ + 1

∫
RN

q̃σ+1(x, τ)ψdx

14



+

T∫
τ

∫
RN

σ−(p−1)q̃σχDψdxdt+

T∫
τ

∫
RN

σ−(p−1)ψχDvσdxdt

(3.15) +

T∫
τ

∫
RN

σ−(p−1)ψ |Dvσ|p−2Dvσ(Dq̃σ −Dvσ)dxdt ≤ 0.

Now plug ϕ = ψ(x)q̃σ in (3.11) to get

1

σ + 1

∫
RN

q̃σ+1(x, T )ψdx− 1

σ + 1

∫
RN

q̃σ+1(x, τ)ψdx

+

T∫
τ

∫
RN

σ−(p−1)q̃σχDψdxdt+

T∫
τ

∫
RN

σ−(p−1)Dq̃σχψdxdt = 0.

Therefore from (3.15) we deduce

T∫
τ

∫
RN

ψ(|Dvσ|p−2Dvσ − χ)(Dq̃σ −Dvσ)dxdt ≤ 0

for any vσ ∈ Lploc(0, T ;W 1,p(RN)). Let vσ = q̃σ − θ, ∀θ ∈ C1
0(RN). Thus

from the last inequality we conclude

T∫
τ

∫
RN

ψ(|Dvσ|p−2Dvσ − χ)Dθdxdt ≤ 0.

Finally, noting that this inequality also holds for −θ, we deduce that the
distributional derivative of ψ(|Dvσ|p−2Dvσ − χ) is equal to zero and this
implies (3.12).

To estimate A3,k we apply Theorem 2.3. By estimates (2.3) and (2.4), we get

(3.16)

τ∫
0

∫
BR(0)

|Dwk|p−1wm−1
k dxdt ≤ c (‖u0‖1 , R) τσ,
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(3.17)

τ∫
0

∫
BR(0)

wkdxdt ≤ c (‖u0‖1 , R) τσ,

where σ > 0 and the constant c is independent on k. Therefore letting k
→∞ and τ → 0 in (3.8) we have that also A3,k tends to zero. Hence passing
to the limit with respect to k and τ in (3.7) we deduce (3.4).
Therefore Proposition 3.1 is proved. �

4 Proof of Theorem1.1

The proof of Theorem1.1 contains two steps. In the first step we prove the
asymptotic expansion in a parabola PR using Proposition 3.1, the uniqueness
of the FS and the equicontinuity property of wk(x, t). In the second step we
prove the L1 − L∞ bound of wk(x, t) outside of PR.

The first step.
From (3.4) we obtain

−
∫∫
QT

q̃(x, t)ϕtdxdt+

∫∫
QT

q̃m−1 |Dq̃|p−2Dq̃Dϕdxdt = ϕ(0, 0)

∫
RN

u0(x)dx.

This identity means that q̃(x, t) is FS of (1.3). Since EM(x, t) is the unique
FS of (1.3) we have q̃(x, t) = EM(x, t) and wk → EM(x, t) for any sequence
k. Due to the Hölder continuity result of ([19]) or ([29]), we deduce that
{wk(x, t)} is relatively compact for any t > τ > 0. Thus

|wk(x, t)− EM(x, t)| → 0

uniformly on BR(0) as k →∞, for all t ∈ [ε, T ], ε > 0.
Therefore∣∣∣kαu(k

1
β x, t)− EM(x, t)

∣∣∣→ 0 uniformly on BR(0) as k →∞.

Set t = 1 and k = t, to get
∣∣∣tαu(t

1
β x, t)− EM(x, 1)

∣∣∣ → 0 as t → ∞. Hence,

defining y = t
1
β x, we have

16



(4.1) tα |u(y, t)− EM(y, t)| → 0, |y| < Rt1/β

for any R > 0.

The second step.
This step is based on two lemmata.

Lemma 4.1 Let wk(x, t) be a weak solution of problem (3.2) in Q∞. Then
under the conditions of Proposition 3.1 for any t > 0

(4.2) ‖wk(·, t)‖∞,|x|>R

≤ c(N,m, p, ν)δ−b

 sup
0<τ<t

∫
|x|>(1−δ)R

wk(·, τ)dx


p
β

t−α,

0 < δ < 1/4, b = b(N,m, p) provided

(4.3) R ≥ C∗(N,m, p, ν) ‖u0‖(m+p−3)/β
1 t1/β.

Lemma 4.2 Under the assumptions of Lemma 4.1 with C∗- large enough
and 0 < t ≤ T < 2 the following estimate holds

(4.4) sup
0<τ<T

∫
|x|>R

wk(·, τ)dx ≤ 2

∫
|x|>R/2

w0k(x)dx.

Note that ∫
|x|>R/2

w0k(x)dx =

∫
|x|>k

1
β R/2

u0(x)dx→ 0 as k →∞.

Then, taking t = 1 and k = t, it follows from (4.2) and (4.4) that

tα ‖u(y, t)‖∞,|y|>Ct1/β → 0 as t→∞.

Now taking into account that supp EM(x, t) ⊂ BR(t)(0), where R(t) = Ct1/β,
we have

(4.5) tα ‖u(y, t)− EM(y, t)‖∞,|y|>Ct1/β → 0

17



as t→∞. Therefore, Theorem 1.1 is a consequence of (4.1) and (4.5).
So, in order to complete the proof of Theorem1.1 it remains to prove Lem-
mata 4.1 and 4.2.

Proof of Lemma 4.1
Let 0 < r2 < r1, 0 < t2 < t1 < t. Define D1 and D2 as Di = (RN\Bri) ×
(ti, t), i = 1, 2. By Proposition 2.1, for all h1 > h2 > 0 and all s > 0

sup
t1<τ<t

∫
RN\Br1

(wk − h1)s+1
+ dx+

∫∫
D1

∣∣∣D(wk − h1)
(m+p+s−2)/p
+

∣∣∣p dxdτ
≤ c((t1 − t2)−1

∫∫
D2

(wk − h2)s+1
+ dxdτ

(4.6) +
1

(r1 − r2)p

(
h1

h1 − h2

)(m−1)+ ∫∫
D2

(wk − h2)m+p+s−2
+ dxdτ).

Let 0 < σ1 < σ2 <
1
2

which will be chosen later. Introduce the sequences :

ti :=
t

2
(1− σ2) + t2−i(

σ2 − σ1

2
),

Ri = R(1− σ2) +R2−i(σ2 − σ1),
li = l(1− σ2) + l2−i(σ2 − σ1).

Note that
t0 = t

2
(1− σ1) and t∞ = t

2
(1− σ2),

R0 = R(1− σ1), R∞ = R(1− σ2),
l0 = l(1− σ1), l∞ = l(1− σ2).

Let Bi := BRi , Di = Bi × (ti, t).

Then from (4.6) with t1 = ti, t2 = ti+1, r1 = Ri, r2 = Ri+1, h1 = li, h2 = li+1

where li = (li + li+1)/2, we deduce

sup
ti<τ<t

∫
RN\Bi

(wk − li)s+1
+ dx+

∫∫
Di

∣∣∣∣D(wk − li)
m+p+s−2

p

+

∣∣∣∣p dxdτ
18



≤ c(σ2 − σ1)−pbi1(t−1

∫∫
Di+1

(wk − li+1)s+1
+ dxdτ

(4.7) +R−p
∫∫
Di+1

(wk − li+1)p+m+s−2
+ dxdτ)

Let ηi be a smooth function such that 0 ≤ ηi ≤ 1, ηi = 1 in Di and ηi = 0
outside of Di+1, |Dηi| ≤ c2i(σ2 − σ1)−1R−1, 0 ≤ ηit ≤ c2i(σ2 − σ1)−1t−1.
Plugging ηi in the previous inequality, we have

(4.8)

∫∫
Di

∣∣∣∣D((wk − li)
m+p+s−2

p

+ ηi−1

)∣∣∣∣p dxdτ

≤ 2p−1

∫∫
Di

∣∣∣∣D(wk − li)
m+p+s−2

p

+

∣∣∣∣p dxdτ+2p−1

∫∫
Di

|Dηi−1|p (wk−li)p+m+s−2
+ dxdτ

≤ c(σ2−σ1)−pbi1

(
t−1

∫∫
Di+1

(wk−li+1)s+1
+ dxdτ+R−p

∫∫
Di+1

(wk−li+1)p+m+s−2
+ dxdτ

)

Define vi := (wk−li)
m+p+s−2

p

+ ηi−1. Since (3.3) holds, i.e. ‖wk(t)‖∞ ≤ ct−α ‖u0‖p/β1

then using (4.4) and assumption (4.3), from the previous inequality, we get

(4.9) sup
ti<τ<t

∫
RN\Bi

vqi dx+

∫∫
Di

|Dvi|p dxdτ

≤ cbi2t
−1

∫∫
Di+1

vqi+1dxdτ

where q = (s+ 1)p/(p+m+ s− 2)

19



Next, apply the Gagliardo- Nirenberg inequality (2.5) with µ =
p

p+m+ s− 2
and

A =
aq

p
=

Ns

β +Ns
,

(1− a)q

µ
=

β + sp

β +Ns
,

integrate in time and apply Hölder inequality, to get

ct−1bi2

∫∫
Di+1

vqi+1dxdτ ≤ cbi2t
−A

∫∫
Di+1

|Dvi+1|p dxdτ


A sup

ti+1<τ<t

∫
RN\Bi+1

vµi+1dx


β+sp
β+Ns

Let

Yi := sup
ti<τ<t

∫
RN\Bi

vqi dx+

∫∫
Di

|Dvi|p dxdτ

With this notation, we have

Yi ≤ cbi2t
−A

 sup
ti+1<τ<t

∫
RN\Bi+1

vµi+1dx


β+sp
β+Ns

Y A
i+1

≤ ct−A

 sup
t∞<τ<t

∫
RN\B∞

vµ∞dx


β+sp
β+Ns

bi2Y
A
i+1

Then using the iterative Lemma 2.2 with b = b2, α = 1− A, and

C = ct−A

 sup
t∞<τ<t

∫
RN\B∞

vµ∞dx


β+sp
β+Ns

,

we obtain

Y0 ≤ ct−s
N
β

 sup
t∞<τ<t

∫
RN\B∞

vµ∞dx


1+ sp

β
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From this inequality it follows that

(4.10) sup
t0<τ<t

∫
RN\B0

(wk − l0)1+s
+ dx

≤ ct−s
N
β

 sup
t∞<τ<t

∫
RN\B∞

(wk − l∞)+dx


1+ sp

β

where t0 = t
2
(1−σ1), t∞ = t

2
(1−σ2), l0 = l(1−σ2)+ 3

2
l(σ2−σ1), l∞ = l(1−σ2),

R0 = R(1− σ1), R∞ = R(1− σ2).
From the previous inequality, we deduce that

(4.11) sup
t0<τ<t

∫
RN\B0

(wk − l0)+dx ≤
4

(σ2 − σ1)s ls
sup
t0<τ<t

∫
RN\B0

(wk − l0)1+s
+ dx

≤ c
4

(σ2 − σ1)s ls
t−s

N
β

 sup
t∞<τ<t

∫
RN\B∞

(wk − l∞)+dx


1+ sp

β

.

In order to realize a second iteration, choose σ1 = δ2−n−1, σ2 = δ2−n. With
this choice t0 → t

2
(1 − δ2−n−1), t∞ → t

2
(1 − δ2−n), R0 → R(1 − δ2−n−1),

R∞ → R(1 − δ2−n), l0 → l(1 − δ2−n−1), l∞ → l(1 − δ2−n). So set tn =
t
2
(1− δ2−n), Rn = R(1− δ2−n), ln = l(1− δ2−n) to have

Mn+1 := sup
tn+1<τ<t

∫
RN\Bn+1

(wk − ln+1)+dx ≤ cδ−sbnl−st−s
N
βM

1+ sp
β

n

By the iterative Lemma 2.1 , we have Mn → 0 as n→∞ if δ−1l−1t−
N
βM

p
β

0 ≤
c0 where c0 is a sufficiently small constant depending only upon the data of
the problem. Therefore wk ≤ l and hence, Lemma 4.1 is proved choosing

l = 2c−1
0 δ−1t−αM

p
β

0 . �

Proof of Lemma 4.2
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Let Rn = R(1 − 2−n−1), Rn = (Rn + Rn+1)/2 and ζn(x) be a smooth
cutoff function ζn(x) = 1, |x| > Rn+1, ζn(x) = 0 outside of |x| > Rn,
|Dζn| ≤ c2nR−1. Multiplying both sides of the equation (3.2) by ζn(x)p and
integrating by parts, we get∫

RN\Bn

ζpn(x)wk(x, t)dx−
∫

RN\Bn

ζpn(x)wk(x, 0)dx

(4.12) = −p
∫∫
Qt

ζp−1
n (x)wm−1

k |Dwk|p−2
N∑

i,j=1

akij(x, t)wkxiζnxjdxdτ.

By using Hölder inequality we bound the right-hand side of (4.12) by

pν

∫∫
Qt

ζn(x)pτµw−θk wm−1
k |Dwk|p dxdτ

(p−1)/p

(4.13) ×

 ∫∫
Qt

|Dζ|p τ−(p−1)µw
(p−1)θ
k wm−1

k dxdτ

1/p

= J
(p−1)/p
1 J

1/p
2

where θ = 2−m
p−1

and µ is a constant which satisfies the condition: N
β
< µ < 1

p−1

To estimate J1, consider the equation

∂wk
∂t

=
N∑

i,j=1

∂

∂xj

(
a

(k)
ij (x, t)wm−1

k |Dwk|p−2 ∂wk
∂xi

)
,

choose as test function ζpn(x)τµw1−θ
k and integrate by parts, to get

1

2− θ

∫
RN\Bn

ζpn(x)τµw2−θ
k (x, τ)dx+(1−θ)

∫∫
Qt

ζpn(x)τµwm−1−θ
k |Dwk|p−2

N∑
i,j=1

akij(x, τ)wkxiwkxjdxdτ

=
µ

2− θ

∫∫
Qt

ζpn(x)τµ−1w2−θ
k (x, τ)dxdt−p

∫∫
Qt

ζp−1
n (x)τµwm−θk |Dwk|p−2

N∑
i,j=1

akij(x, τ)wkxiζnxjdxdτ
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Then using the ellipticity of the coefficients and dropping the first term from
the left-hand side, we obtain

(1−θ)v−1J1 ≤
µ

2− θ

∫∫
Qt

ζpn(x)τµ−1w2−θ
k (x, τ)dxdτ+pν

∫∫
Qt

ζp−1
n (x)τµwm−θk |Dwk|p−1 |Dζn| dxdτ

On the other hand by Young inequality we have

pν

∫∫
Qt

ζp−1
n (x)τµwm−θk |Dwk|p−1 |Dζn| dxdt ≤ (p− 1)νε

p
p−1J1

+νε−p
∫∫
Qt

τµwp+m−θ−1
k |Dζn|p dxdt.

Choosing ε such that: (p− 1)νε
p
p−1 = pν/2, we get

(4.14) J1 ≤ c

∫∫
Qt

ζpn(x)τµ−1w2−θ
k (x, τ)dxdτ + c

∫∫
Qt

τµwp+m−θ−1
k |Dζn|p dxdτ

By Lemma 4.1, plugging in (4.2) δ = 1/(2n+2 − 3) and R = Rn we have

(4.15) ‖wk‖∞,|x|>Rn ≤ cbnt−
N
β

 sup
0<τ<t

∫
|x|>Rn

wk(x, τ)dx


p/β

.

Therefore from (4.12), (4.14) (4.15) we get

J1 ≤ c

 sup
0<τ<t

∫
|x|>Rn

wkdx



×

 t∫
0

‖wk‖1−θ
∞,|x|>Rn τ

µ−1dτ + 2npR−p
t∫

0

‖wk‖1−θ+m+p−3

∞,|x|>Rn
τµdτ

 ,
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and

J2 ≤ bnR−p

 sup
0<τ<t

∫
|x|>Rn

wkdx


 t∫

0

τ−(p−1)µdτ

 ,

Hence, if we define

En+1(T ) = sup
0<τ<T

∫
|x|>Rn+1

wk(·, τ)dx

by the previous estimates we deduce

(4.16) En+1(T ) ≤
∫

|x|>R/2

w0kdx+ bnT 1/βR−1E1+(m+p−3)/β
n (T ).

where b = b(µ, θ,N,m, p) > 1.
If

E∞ ≤ 2

∫
|x|>R/2

w0kdx

we have nothing to prove. If not, we have

E∞ > 2

∫
|x|>R/2

w0kdx

and this implies

En+1(T ) ≤ 2bnT 1/βR−1E1+(m+p−3)/β
n (T ).

Hence the interpolation Lemma 2.1 implies that En → 0 as n→∞ provided

T 1/βR−1E
(m+p−3)/β
0 ≤ ε(N,m, p).

Choosing now in (4.3) C∗ large enough, we deduce that E∞ = 0 that, in turn,
implies the statement of Lemma 4.2. �
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