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Abstract 

We here present a processing method, based on the Multivariate Curve Resolution 

approach (MCR), to denoise 2D solid-state NMR spectra, yielding a substantial S/N ratio 

increase while preserving the lineshapes and relative signal intensities. These spectral 

features are particularly important in the quantification of silicon species, where sensitivity 

is limited by the low natural abundance of the 29Si nuclei and by the dilution of the intrinsic 

protons of silica but can be of interest also when dealing with other intermediate-to-low 

receptivity nuclei. This method also offers the possibility of co-processing multiple 2D 

spectra that have the signals at the same frequencies but with different intensities (e.g.: as 

a result of a variation in mixing time).  The processing can be carried out on the time-domain 

data, thus preserving the possibility of applying further processing to the data. As a 

demonstration, we have applied Cadzow denoising on the MCR-processed FIDs, achieving 

a further increase in the S/N ratio and more effective denoising also on the transients at 
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longer indirect evolution times. We have applied the combined denoising on a set of 

experimental data from a lysozyme-silica composite. 

 

Introduction 

Sensitivity is one of the largest limitations in solid-state Nuclear Magnetic Resonance 

(ssNMR) and becomes more severe as the gyromagnetic ratio and the natural abundance 

of the investigated nucleus decrease. Under these conditions, the signal intensity is low and, 

quite often, the low relaxation mechanisms efficiency requires experiments with long 

recovery delays. One relevant example is 29Si NMR. Silicon is the second most abundant 

element by mass on earth,1 has relevant functions in living organisms,2 and a large share of 

its compounds are solid.3 29Si-solid-state NMR is, therefore, an election technique for a 

plethora of applications, but has to face with some silicon intrinsic limitations. 29Si can be 

described as a diluted isotope with medium sensitivity:4  the natural isotopic abundance is 

4.7% and the frequency with respect to 1H is 19.9%, therefore the receptivity of 29Si is 

roughly twice that of 13C in natural abundance. However, the overall sensitivity of 29Si NMR 

is often negatively impacted by the absence of nuclei with higher gyromagnetic ratios in the 

vicinity, rendering the relaxation times prohibitively long. This latter problem can be 

overcome by paramagnetic doping, at the price of altering the chemical composition of the 

sample.5–8 

The low sensitivity, as it is always the case in NMR,9 is due to the low Boltzmann population 

difference among the ground and excited states. One way to increase this difference is to 

increase the static magnetic field; commercial instruments with fields as high as 28.2 T (1.2 

GHz 1H Larmor frequency) are now available,10 however, not only high field magnets are 

more expensive than the low field ones because of the different manufacturing processes 

but also for their operational costs, so that, overall, the price per experiment gets significantly 

higher even on moving from 16.4 T to 18.8 T (from 700 to 800 MHz). Another option is to 

use larger amounts of sample, but a) the amount of sample is likely limited, b) small rotors 

need to be used to increase the maximal achievable spinning speed and thus the 

resolution,11 and c) more components may be present, imposing a strong dilution on the 

species of interest.12,13 Proton detection, available at high spinning frequency can be used 

to increase the sensitivity,11,14,15 but this is necessarily limited to proton-rich materials. 

Dynamic nuclear polarization (DNP) is also a viable route to study silicon-based materials,16–

19 but the equipment is more expensive than standard NMR. An interesting application of 

ultrafast acquisition based on gradient encoding has been proposed for high resolution MAS 
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of soft solids,20,21 but the applicability to rigid solids is also hardware-limited. Hence, methods 

based on data processing, rather than on data acquisition, might be welcome in preparatory 

studies, before the actual measurements performed at higher fields and/or using DNP. 

Consistent efforts are indeed devoted to the development of processing methods that allow 

for signal extraction from noisy spectra, in this and in different areas of NMR. These efforts 

led to several options to reduce noise: wavelet transform,22 Savitzky-Golay,23 random QR 

denoising,24 Singular Spectrum Analysis,25 and Cadzow filtering.26,27 Each of these 

methodologies, however, has its own benefits and drawbacks.  

We here propose for the first time the use of Multivariate Curve Resolution (MCR) for 

denoising applications in ssNMR. MCR is a chemometric method primarily developed to 

recover pure components information from data of complex mixtures.28–31 Initially developed 

for UV-vis spectroscopy,32 MCR has been then successfully applied to resolve data from a 

plethora of different analytical techniques,33 first of all chromatography, but also chemical 

reaction monitoring,34 spectroscopic imaging,35 environmental monitoring,36 and analysis of 

“omics” datasets, such as genomic37 and metabolomic data.38 It has also been applied to 

the deconvolution of 2D solution NMR data of reaction mixtures.39 MCR has the same aim 

as the blind-source-separation (BSS) method, the applications of which to NMR are 

discussed in references 40–43. We here show that this processing is extremely beneficial for 

ssNMR spectra. We also demonstrate that it can be also successfully applied to the 

simultaneous denoising of spectra of the same sample acquired at different mixing times, 

therefore offering the opportunity for using also the spectra with the lowest S/N ratio from a 

series. 

Finally, while this method would be fully compatible with denoising the processed spectra,39 

we have applied it for denoising time-domain data, thus preserving the possibility of applying 

further processing to the data. In particular, we have applied the Cadzow denoising to further 

increase the S/N ratio, as it appears to be well suited for ssNMR spectroscopy 27. This latter 

point turns out to be particularly relevant. Finally, through the whole process, quantitative 

information is preserved. 

 

Experimental Section 

Experimental data 

Solid-state NMR experiments were recorded on a Bruker Avance II spectrometer operating 

at 700 MHz 1H Larmor frequency (16.4 T), corresponding to 139 MHz 29Si Larmor frequency. 

The spectrometer is equipped with a 3.2 BVT MAS probehead in double resonance mode. 
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The pulse lengths are 2.4 μs and 4.7 μs for 1H and 29Si, respectively. Cross-polarization was 

achieved by matching the k = 1 Hartmann-Hahn condition 44. The spectral windows for the 

different nuclei were 60 and 249 ppm for 1H and 29Si, respectively. During the 1H 

magnetization evolution under the chemical shift in the indirect dimension of heteronuclear 

correlation experiments, the PMLG decoupling sequence was used to suppress 1H–1H 

dipolar couplings 45,46. Spectra were acquired with CPMG echo train acquisition 47, and then 

the echoes were co-added. 

 

Synthetic data 

Synthetic data were generated over the same spectral window as the experimental data. 

The spectra in the series of three (see below) comprise of up to 9 cross-peaks of variable 

intensities and linewidths in the indirect dimension (table S1). 

 

Data processing 

Indicating the features of the MCR algorithm according to the standard chemometric 

nomenclature, MCR decomposes the experimental data matrix ܦ into a “Concentration” 

matrix ܥ and a “Spectra” matrix ܵ, and the part of the data that is not reproduced by the 

factorization contributes to the residual matrix ܧ (see equation 1 in the Results and 

Discussion section). The factorization has been accomplished through alternating least 

squares,28 starting from the purest variables 48 estimate for the matrix C in the time domain. 

The number of components is set to 4, with 10% of the most intense signal as threshold for 

the noise.28 We have implemented the MCR algorithm in Python, but there are several 

implementations available in e.g.: MATLAB.49 The operation is repeated until convergence, 

which is evaluated on the spectral norm of the difference between the matrices associated 

with two consecutive steps, and the optimization ends when the norm in any of the matrices 

goes below 10-5. 

All spectra were processed using the NMR PIPE class from the NMRGlue library 50, with the 

parameters reported in table S2. 

The S/N ratio was estimated dividing the maximum signal intensity by the standard deviation 

of the noise, calculated as follows: 

݁ݏ݅݋݊ =
ଵ
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where N is the total number of points in the noise region, ݊ = (ܰ − 1)/2 and ݕ(݅) is the i-th 

point in the noise region. As a representative noise region, we selected a slice of the 

spectrum where no signal is present. 
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Results and discussion 

Application of the MCR algorithm 

According to the standard nomenclature used in chemometrics, MCR decomposes the data 

matrix ܦ into a “Concentration” matrix ܥ and a “Spectra” matrix ܵ, leaving behind a residuals 

matrix ܧ: 

ܦ = ்ܵܥ +  (1)      ܧ

Intuitively, in a 2D NMR spectrum there is no variation in concentrations, but rather in the 

signal intensities because of indirect evolution. Therefore, the resulting matrix ܥ contains 

the time evolutions of the indirect dimension, and the resulting matrix ܵ contains the FIDs of 

the direct dimension. Given that we wanted to demonstrate that this method is applicable 

regardless of the lineshape of the peaks, we limited the input of prior information to the 

analysis: no forward model (e.g.: using gaussians for modelling the peaks), nor any 

regularization (e.g.: non-negativity of the spectra in the frequency domain, or smoothness), 

for either the FIDs or evolutions, were applied. Therefore, the factorization was obtained 

through a simple Alternating Least Squares approach:28–30 at the k-th iteration, the values 

for ܥ௞ and ܵ௞ are obtained as: 

 

ܵ௞
் = ௞ିଵܥ

ା  ,ܦ

௞ܥ = ௞ܵܦ
்ା 

and 

௞ܧ = ௞ܵ௞ܥ−ܦ
் 

 

where “+” denotes the Moore-Penrose pseudoinverse. The initial guess for the indirect 

evolution matrix, ܥ଴, was obtained through the purest variables algorithm.48  

We have used 4 components for the factorization, as this number ensures the best S/N with 

the least amount of bias and without increasing the number of iterations needed for 

optimization (see table S3 for more details). Therefore ்ܵ is a complex matrix of dimension 

4xN, and ܥ a complex matrix of dimension Mx4 where N and M are the number of points in 

the direct and indirect dimension respectively (see table S2).   

As already mentioned, a very important feature of MCR is that several spectra can be co-

processed with a common basis of FIDs (see below). 

 

Denoising on a single synthetic spectrum 
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The method was first tested on a single synthetic spectrum (Figure 1a). The peak positions, 

linewidths, and intensities are given in table 1. Gaussian noise was added to the spectrum 

(Figure 1b), yielding a S/N ratio of 46. 

 

(a)  (b)  

(d)  (c)  

 

Figure 1: (a) Synthetic spectrum without noise and (b) synthetic spectrum with noise applied, 

(c-d) result of the processing of the (b) spectrum: (c) spectrum reconstructed with MCR and 

(d) spectrum reconstructed with MCR after application of Cadzow denoising. 

The denoising increases the S/N ratio to 221 after MCR and 237 after Cadzow denoising. 

Importantly, it does not alter the relative intensities of the peaks (Figure S1). To be noted 

that the Cadzow denoising gives more emphasis to the earlier points of the time domain and 

requires additional exponential apodization,27 therefore it imposes a modest line broadening 

to the reconstructed spectrum, which manifests itself in the bias observed in the difference 

trace (Figure S1, bottom panel).  

 

Denoising on multiple synthetic spectra 

The power of the MCR method is that it can handle simultaneously multiple data matrices 

and it is therefore ideal for co-processing series of spectra. This is particularly relevant in 
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the case of spectra that are acquired varying some experimental parameter which impacts 

the overall sensitivity, causing some of the spectra of the series to have significantly lower 

signal to noise ratio. This is somewhat similar to the frequency selection in NUS processing 

as described, for instance, in references 51–56, or the application to deconvolution of complex 

mixture through multidimensional NMR.42,54 The synthetic test is designed to match the 

behavior of three spectra acquired on the same sample increasing (e.g.) the mixing time, 

therefore altering the signals intensities but not their linewidths or positions.  

MCR has been applied imposing the 1H spectrum to be common to all three experiments 

and allowing for variations in the 29Si intensities. The physical meaning of this constraint is 

that in all three experiments the proton source is the same and the difference resides in the 

efficiency of the 1H-29Si transfer as a function of mixing time. The results are given in figure 

S2. The improvement in the S/N ratio in the three experiments is quite large (see table 1) 

and, as we had observed for the single spectrum, the shape and the relative intensities of 

the peaks are preserved (Figure S3). 

 

Table 1. S/N ratio in the different spectra across the different processing steps. 

 Spectrum 

Step A B C 

Initial S/N 45 45 47 

 Single Co-processed Single Co-processed Single Co-processed 

MCR S/N 106 206 221 150 250 153 

MCR+Cadzow S/N 130 253 237 191 299 195 

 

It is interesting to observe that, while the S/N ratio improves less for spectra B and C when 

they are co-processed with A, the S/N ratio of A is largely improved when the spectra are 

co-processed. At the same time, the reconstruction of all three spectra shows a higher 

adherence to the noiseless spectrum with respect to the individually processed spectra 

(Figure 2). 
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Figure 2. Impact of the co-processing in the denoising of the synthetic spectrum B. In all 

panels, the blue trace corresponds to the noiseless spectrum. The denoising steps are listed 

from top to bottom:  top) initial spectrum-red trace and difference-black trace, middle) MCR-

reconstructed spectrum-red trace and difference-black trace, bottom) MCR+Cadzow 

reconstructed spectrum-red trace and difference-black trace. 

 
The impact of denoising on experimental spectra 

Given that the quantitative information of the spectra appears to be preserved across the 

denoising steps, we have applied the same procedure to experimental datasets, acquired 

on a silica-lysozyme composite.19,57 The target spectra are 1H-29Si HETCOR with Lee 

Goldburg homonuclear decoupling during the indirect dimension (Figure 3). Further 

examples are described in the supporting information (Figures S4, S5). 
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Figure 3: Effect of denoising on a low S/N experimental spectrum. From left to right: initial 

experimental spectrum, spectrum reconstructed with MCR and spectrum reconstructed with 

MCR after application of Cadzow denoising. 

 

It is also extremely important to evaluate the properties of the noise, to verify that it does not 

change significantly during the denoising procedure. To do so, we have evaluated the 

difference between the initial spectrum and the processed ones and evaluated the noise 

distribution (Figure 4 and Table S3). The noise extracted from the spectra remains 

Gaussian. The noise distribution width is greatly decreased in the “signal” spectra (i.e.: the 

FT of the ்ܵܥ matrix), whereas the noise distribution width in the “error” spectrum (i.e.: the 

FT of the ܧ matrix) remains the same as the noise of the initial spectrum, indicating that no 

part of the signal is discarded into the noise.  
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Figure 4. Distribution of the intensities along the points of the row of the spectrum extracted 

at 50 ppm, which contains only noise, representing the noise in the initial spectrum (initial) 

and after application of combined denoising. Left – intensity in the “signal” spectrum CST; 

Right – intensity in the “noise” spectrum E. The red curves are the best fitting gaussian 

distributions that approximates the intensities, their parameters are given in table S3. 

MCR is ideally versed towards processing of two-dimensional spectra, handling several 

transients at the same time, whereas other denoising methods like Cadzow work on single 

transients. Therefore, one can expect that the order used to apply the different denoising 

schemes has an impact on the reconstruction. To test this, we have inverted the order of 

the processing steps (Figure S6) and we have found that, while the impact of MCR and 

Cadzow yields similar improvements in S/N ratio (from 9 to 32 and 33, respectively), MCR 

is able to improve the Cadzow procedure when applied first (80 for Cadzow+MCR and 99 

for MCR+Cadzow). 

 

Combined denoising on a set of experimental spectra 

We have also applied the combined denoising to a series of 1H-29Si HETCOR spectra 

acquired with different contact times (0.5, 6, and 10 ms, respectively). All the echoes in the 

CPMG were co-added, and the resulting S/N ratio of the three spectra is 9, 42, and 60, 

respectively. The MCR processing increases the S/N ratio to 26, 119, and 160, and the 

subsequent application of Cadzow denoising further increases it to 28, 123, and 177. The 

results are shown in figure 5. 

 

0.5 ms 6 ms 10 ms 
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Figure 5. Denoising of a series of experimental spectra, acquired at different contact times: 

from left to right 0.5, 6, and 10 ms, respectively. Top row) initial spectra, central row) MCR-

reconstructed spectra, bottom row) MCR+Cadzow reconstructed spectra. 

 
Conclusions 

We have presented the use of MCR for denoising of low sensitivity solid-state NMR two-

dimensional spectra. Our results demonstrate that this denoising approach preserves the 

quantitative information of the cross-peak intensity, yielding an improvement in the S/N ratio 

of around a factor 3. Furthermore, it is robust to high levels of noise. We have also 

demonstrated that the intrinsic ability of MCR to co-process multiple spectra can be used to 

improve the reconstruction of the spectra with the lowest S/N ratio across a series of spectra; 

this is particularly relevant in the case of spectra acquired on the same sample, altering 

some parameters in the pulse sequence, e.g.: varying the cross-polarization contact time 

across different experiments. We stress that we have applied the MCR method to time-

domain data, therefore preserving the applicability of other denoising schemes, and even 

improving their performance, increasing the S/N ratio up to a factor 9. Finally, our results 

have been obtained without imposing prior knowledge in the form of regularization of 

additional constraints,42 and thus demonstrate that this method is applicable on systems or 

experiments that are not described by simple forward models. Therefore, this application is 

not limited to 29Si MAS-NMR, but can be applied to other nuclei of moderate or low 

receptivity, and also on multidimensional experiments acquired on static samples, where 
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sensitivity is limited by the fact that the signal is spread over complicated powder patterns.58–

63 

We foresee that MCR can be generally extended to datasets of higher dimensionality and 

non-uniformly-sampled data. 
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