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Abstract. New techniques for analysing the earth's surface have been explored, such as the use 

of remotely piloted aircraft (RPA) to obtain aerial images. However, one of the obstacles of 

photogrammetry is the reliability of the scenes, because in some cases, considerable geometric 

errors are generated, thus necessitating adjustments. Some parameters used in these adjustments 

are image overlaps and control points, which generate uncertainties about the amount and 

arrangement of these points in an area. The aim of this study was to test the potential of a 

commercial RPA for monitoring and its applicability in the management of and decision-making 

about coffee crops with two different overlaps and to evaluate geometric errors by applying four 

grids of georeferenced points. The study area is located in an experimental Arabica coffee 

plantation measuring 0.65 ha. To capture the images, the flight altitude was standardized to a 

30 m altitude from the ground, and a constant travel speed of 3 m s-1 was used. The treatments 

studied were two combinations of image overlap, namely, 80/80% and 70/60%. Six points were 

tracked through Global Navigation Satellite System (GNSS) receivers and identified with signs, 

followed by an RPA flight for image collection. The obtained results indicated distinct residual 

error rates pointing to larger errors along Cartesian axis Y, demonstrating that the point 

distribution directly affects the residual errors. The use of control points is necessary for image 

adjustments, but to optimize their application, it is necessary to consider the shape of the area to 

be studied and to distribute the points in a non-biased way relative to the coordinate axes. It is 

concluded that the lower overlap can be recommended for use in the flight plan due to the high 

resolution of the orthomosaic and the shorter processing time. 

 

Key words: orthorectification of images, geometric error, photogrammetry, UAS (Unmanned 

Aircraft System), overlap. 

 

INTRODUCTION 

 

Photogrammetry consists of the analysis of a terrestrial surface strip using a set of 

aerial photographs, providing the observer with information about the objects on the land 

surface and a safe way to analyse the environment. According to Moriya (2015), remote 
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sensing and photogrammetry products have great potential for use in precision 

agriculture, encouraging the development of new methodological approaches and 

applications that produce good spatial information to support rural farmers in crop 

planning and decision-making. 

To facilitate classical photogrammetry, new technologies have been tested, such as 

the use of remotely piloted aircraft (RPA). The use of RPA in precision agriculture can 

help rural farmers identify management strategies, supporting measures to increase 

efficiency in the management of the production process, maximizing crop yields, and 

reducing input costs, thus making this activity more competitive (Oliveira et al., 2007; 

Silva et al., 2008; Carvalho et al., 2009). These platforms are being studied and used to 

obtain images with a high temporal resolution (for example, acquired several times a 

day), high spatial resolution (in centimetres and even millimetres), and low operating 

costs (Lelong et al., 1998; Hunt et al., 2005; Nebiker et al., 2008; Rango et al., 2009; 

Hardin & Hardin, 2010; Laliberte & Rango, 2011; Xiang & Tian, 2011; Honkavaara et 

al., 2013; Torres-Sánchez et al., 2014). They can be applied in smaller areas and in 
specific locations for obtaining data in less time, accompanying the growth of several 

crops, for example. 

In addition, photogrammetry and remote sensing stand out due to the speed and 

quality of the data obtained, as indicated by Volterrani (2003), enabling the use of remote 

images to identify plant species; to calculate leaf areas, biomass and soil cover; and even 

to quantify levels of nitrogen, chlorophyll, water or nutritional deficiencies. The use of 

aerial images has emerged as a promising alternative since they are already used in 

agriculture for mapping crops, evaluating cultivated areas, and detecting different types 

of deficiencies (Molin, 2015). 

Although RPA has built-in GPS, its accuracy is not high enough for direct geo-

referencing, requiring soil control points (GCPs) (Chang et al., 2017). Thus it is 

necessary to use referenced points for in order to obtein a corect georeferencing in 

projects that require good geometric precision, such as the generation of a digital terrain 

model (DTM), planting rows monitoring, monitoring crop growth and obtaining 

information for field interventions. According to Zanetti et al. (2017), GCPs are 

necessary to ensure accuracy in the generation of orthophotos and can directly influence 

the positional quality of the products generated. GCPs can greatly increase the accuracy 

of maps, and these control points can either be marked on the ground or be landmarks 

such as the intersections of roads or the corners of buildings that can be identified in the 

image (Wang et al., 2012). According to Agüera-Vega et al. (2017) at least three GCPs 

are needed for this process, but it is recommended to use significantly more to reach 

better accuracies. 

The flight parameters used when obtaining images such as the overlap, height, and 

speed may affect the quality and accuracy of the orthomosaic. Studies carried out by 

Mesas-Carrascosa et al. (2016) show that the overlap is a factor that can affect the 

accuracy and quality of the final product. The authors tested two configurations of 

longitudinal and transverse overlaps (80%–50% and 70%–40%) and found that the 

highest overlap (longitudinal 80% and transverse 50%) was the most recommended for 

creating the orthomosaic. However, depending on the purpose and final product, larger 

overlaps will increase the capture time of the images, which will result in a larger number 

of point clouds and, consequently, a longer processing time. Therefore, whether there is 

a need for a high amount of overlap for an intended purpose should be studied and 
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evaluated. Siebert & Teizer (2014) recommend using longitudinal and transverse 

coverage areas of at least 70 and 40%, respectively. 

In this context, overlap for coffee crop analysis and the number of GCPs to be used 

in a given area is still unknown, requiring accurate and precise data from aerial images 

processed with different GCPs. 

The aim of the present work was to test the potential of a commercial RPA for 

monitoring and applicability in the management of and decision-making about coffee 

crops with two different overlaps and to evaluate geometric errors by applying four grids 

of georeferenced points. 

 

MATERIALS AND METHODS 

 

The study was carried out at the Federal University of Lavras (UFLA) (Fig. 1), in 

the city of Lavras, Minas Gerais, Brazil. The study site comprises 0.65 hectares of an 

experimental area at 21°13'33.23" South latitude, 44°58'17.63" West longitude. A área 
de estudo é considerada um terreno plano  
 

 
 

Figure 1. Digital model of elevation of the study area and distribution of control points. 

 

The study site is the remnant area of an experiment described by Caldas et al. (2018) 

and was established in February 2009 with Coffea arabica L., cultivar Travessia, with 

2.60´0.60 m spacing, totalling 36 blocks with 3 planting rows and 14 plants per row. 

The coffee plants were pruned (‘esqueletamento’) in the third week of July 2016. 
According to Queiroz-Voltan et al. (2006), ‘esqueletamento’ is considered a drastic 
pruning that consists of removing a large part of the plagiotropic branches, 

approximately 20 cm at the top, and ending with 40 cm in the low plagiotropic branches, 

with the recovery of production in around one year. In 2017, the irrigation and fertigation 

treatments were not applied, although there was likely a residual effect from the previous 

fertilization. 

In this area, 6 GCPs were pre-defined and were fixed and tracked in the field using 

a pair of Global Navigation Satellite System (GNSS) devices with Real Time Kinematics 

(RTK), composed of a base and rover, and the Spectra Precision SP60 model with the 

following characteristics: 240-channel receptors operating at frequencies C/A, L1, L2 

and L3 and in kinematic mode (RTK). Data were processed to improve data quality. 
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Four points were collected at the extremes of the area and two points in the middle 

of the area. The rover rod was 2.0 m high, the height of the coffee trees ranged from 1.80 

to 2.10 m, with no multi-streaming effect. The collections were made on the floor, on the 

control plates fixed to the floor. The 

points were fixed to the field in the RTK 

mode with accuracy of 0.03 m, if there 

were the distance between the base and 

the rover, it would be corrected with the 

longest follow-up time. Thus, the distance 

between the points and the base was small 

to consider the effect of the distance on 

the errors. 

 

 
 

Figure 2. Control point model for 

characterization of the georeferenced points. 

An identification sign was placed on each tracking site (Fig. 2 and Table 1) for 

identification in the images obtained by RPA. 

 
Table 1. Description of the control points and their distance from the base of the GPS RTK 

GCP North (m) East (m) Altitude (m) Point Distance With RTK Base (m) 

1 7652806.21 502913.00 931.45 67.81  

2 7652822.58 502899.8 929.78 79.00 

3 7652846.57 502945.72 930.46 40.98 

4 7652858.42 502960.23 930.42 40.52 

5 7652896.29 502992.93 929.83 75.19 

6 7652878.80 503004.58 931.61 61.97 

 

An RPA DJI Phantom 3 Professional was used, which is a four-bladed rotary-wing 

aircraft with four battery-powered motors, vertical landing and take-off, 23 minute flight 

autonomy, a gimbal for camera stabilization, and damping of vibrations and correction 

of camera orientation when taking photos. It is oriented perpendicular to the ground, has 

an integrated Global Positioning System (GPS), and is operated by remote control. It has 

a coupled Sony digital camera, model EXMOR 1/ 2.3”, with 12 megapixel resolution, 
obtaining images in true colour (red R, green G, blue-B) and 8-bit radiometric resolution; 

the camera has a 20 mm lens with an f/2.8 aperture and a maximum image resolution of 

4,000´3,000 pixels, and its photos are stored on an SD card. 

To capture the images, the flight height was standardized to an altitude of 30 m 

from the ground with a constant travel speed of 3 m/s, with two combinations of forward 

and side overlaps, namely, 80/80% and 70/60%. 

For processing the images and creating the orthomosaics, PhotoScan software from 

Agisoft Pro version 1.4.4 (Agisoft LLC, St. Petersburg, Russia) was used. This software 

identifies homologous points in the images, forming a dense point cloud, thus enabling 

the reconstruction of the model and the creation of the orthomosaic as a final product. 

The orthomosaic was exported in GEOTIFF format and later processed on GIS software. 

The GCPs were analysed with the highest overlap, 80/80%, to ensure the accuracy and 

quality of the final product. 

The GCPs obtained from the GNSS tracking were divided into three sets of 4, 5, 

and 6 points, as shown in Fig. 3. The georeferencing was performed as follows: linear 

transformation and re-sampling method, coordinate reference system SRC, SIRGARS 

2000 UTM and zone 23 south. Then, the points were adjusted manually, informing the 
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software of the locations of the points and generating an accuracy report that contained 

the residual errors of each adjusted point. Fig. 3 shows the conformation of how the 

tracking was performed and the final product of the georeferencing of the images. 

 

    
 

Figure 3. Locations of georeferenced GCPs: a) 4 points; b) 4 points with a centre point; 

c) 5 points; d) 6 points. 

 

RESULTS AND DISCUSSION 
 

From the image processing, and with the orthomosaics observed in Fig. 4 as the 

end result, it was possible to analyse the generated images. The evaluation of the two 

overlaps reveals the presence of invasive plants in the canopies of some of the coffee 

plants. In addition, with the analysis of the images, it is possible to characterize the crop 

uniformity, with the northeast region of the area displaying a block of uneven coffee 

plants, in addition to detecting the planting and alignment gaps. 
 

a)  b)  
 

Figure 4. Ortomosaics obtained through field image processing with vertical / horizontal overlap 

of (A) 80/80% and (A) 60/70% respectively. 

 

From the results, it is justifiable to use RPA as a tool for guiding crop management 

practices with greater assertiveness in the field, citing as an example the uses of 

agricultural inputs at variable rates. Castaldi et al. (2016), who carried out the mapping 

of invasive species for the targeted application of herbicides in a corn crop, concluded 

that the use of post-emergence image data obtained by RPA led to a decrease in herbicide 

use, increasing the untreated areas from 14% to 39.2% for uniform spraying and from 

16 to 45 € ha. This fact justifies the adoption of such technologies in the coffee crop. 

a) b) c) d) 

   

   

1 1 1 

2 2 2 2 

3 

4 4 4 

5 5 5 5 

6 6 6 6 
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Analysing the data described in Table 2, as well as the results of the image 

processing, it is possible to conclude that the resolution of the images is lower than 

1.5 cm pixel-1. 

From the parameters observed in Table 2, it is possible to infer that the spatial 

resolutions observed in the field images are very close, with a difference of only 0.02 

cm/pixel, which is a negligible value for the purpose of the present evaluation. Another 

relevant point is the flight time for each of the observed overlaps, in which the 70/60% 

overlap leads to a 26.9% shorter flight time of the RPA for collecting the images for the 

same area. 

 
Table 2. Result of the image processing, demonstrating the evaluated flight parameters for the 

two image overlaps 

 

Regarding the processing time, it is known that images collected with a high 

overlap generate more points and that the cloud is one of the processing procedures that 

requires the most time; such processes are differentiated by the quantity of the images 

and the quality of the product. However, a higher-quality procedure results in a higher 

quality of the model generated. For both overlaps evaluated, high-quality parameters were 

used, both of which resulted in high-quality products. Therefore, there was no significant 

difference in the processing time, which was 0.09 hours or slightly more than 5 minutes. 

Obtaining images with a low overlap, less than that recommended by 

photogrammetry (60/30%), may affect the accuracy and quality of the final product and 

the estimates (Mesas-Carrascosa et al., 2016). The overlap is a factor that must be taken 

into account, as it may compromise the analyses of the biophysical parameters of crops, 

as observed in studies by Haas et al. (2016), where the authors used a 60/60% overlap 

and obtained a non-homogeneous point density and data holes, due to the low overlap 

and consequently few points in the dense cloud, which hinders model construction, 

causing gaps in the images. Dandois et al. (2015) used an 80% overlap with good 

accuracy, and Guerra-Hernández et al. (2017) used an 80% longitudinal overlap and 75% 
lateral overlap and obtained good results. The greater the overlap was, the greater the 

number of points in the point cloud the consequently longer the processing time and the 

hardware and software demand to support such processing. 

Chang et al. (2017) used overlays with 90% frontal and lateral overlap, the authors 

state that source error may include uncertainties in DTM generation, inaccurate geo-

spatial data product geo-referencing and unstable data acquisition conditions. These 

uncertainties in the generation of DTMs include flight planning and its features such as 

overlap, flight height, flight speed, as well as the quality of processing of these images. 

Another parameter that can be discussed is the flight height of the aircraft, which 

in this case for both overlaps evaluated was 30 m. The flight height of the RPA is directly 

Overlap  

(%) 

Image evaluation parameters 

Flight time  

(min) 

Number of 

Images 

Processing time  

(h) 

Space Resolution 

(cm pixel-1) 

80´ 80 7.88 93 4.79 1.31 

70´ 60 5.76 90 4.88 1.33 

Fixed flight parameters 

Velocity (m s-1) 3.0 

Flight height (m) 30 
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related to the spatial resolution of the images. In this situation, due to the height of the 

aircraft being very close to the target, it allowed greater detail of the crop, which had a 

positive effect on the final products generated in the processing. In studies carried out 

by Romero et al. (2015), the authors obtained a spatial resolution of 10 cm using an RPA 

model Phantom 2, with a flight height of 120 m, that is, the spatial resolution and the 

coverage of the area are directly affected by the flight height. 

The visual displacement of the tacked point relative to the georeferenced point is 

observed in Fig. 5. This shows the need for adjustments in the obtained images, as the 

square should have been overlapped with the circle. 
 

 
 

Figure 5. Error found before the georeferencing of images. The circle represents the point tracked 

through GNSS, and the square is a point that was visualized by the RPA. 

 

As observed in Table 3, the field-tracking data in RTK mode indicates the  

high reliability of the tie points, showing an accuracy between 0.014 and 0.024 m. These  

standard deviation rates are indicative 

of a high accuracy. According to the 

standard NBR 13133 (1994), GNSSs 

are considered to be highly accurate 

electronic distance metres (EDM), as 

they reach minimum errors of 3 mm. 

Tahar & Ahmad (2013) studied 

the GCPs on a area of 150 ha and 

observed that any number and 

distributions of GCPs studied, as in 

this work, the horizontal accuracy was 

better than the vertical one. 

 

Table 3. Results of the reports resulting from 

post-processing adjustments of the field data 

collected through GNSS in RTK mode 
 

Vector 

ID 

Type of 

solution 

Precision H 

(m) 

Precision V 

(m) 

1 Fixo 0.017 0.024 

2 Fixo 0.021 0.029 

3 Fixo 0.014 0.022 

4 Fixo 0.021 0.027 

5 Fixo 0.017 0.027 

6 Fixo 0.019 0.027 

From the analysis in Table 4, it is possible to observe the residual errors in metres, 

indicating the differences between the points tracked by the GNSS and the points 

visualized by the RPA, that is, the displacement of the coordinates in metres obtained in 

both systems. When analysing the average error, the arrangement with 4 points located 

at the vertex of the area was the most advantageous of the conformations, which may 

have been due to the small size of the area studied, responding better to the points in the 

vertices only. 
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Table 4. Residual errors in metres of the UTM coordinates "X and Y" 

  

ID  

4 points 4 points A 5 points 6 points 

Res X Res Y Res X Res Y Res X Res Y Res X Res Y 

1 - - 3.83 -6.16 4.33 -8.94 4.58 -10.77 

2 1.77 0.42 -3.03 4.27 -1.74 9.03 -0.96 10.52 

3 - - - - - - 0.45 4.09 

4 -4.11 -8 - - -4.46 -2.92 -7.72 -6.88 

5 -0.36 -9 -2.85 -12.14 -1.44 -11.82 -0.36 -11.8 

6 2.69 17 2.06 14.03 3.32 14.64 4 14.84 

Mean error 2.23 8.60 2.94 9.15 3.05 9.47 3.011 9.81 

 

The results indicate that the latitude (Y) coordinates are the ones with the highest 

errors, generating high residual error rates. Fig. 3, b (3 points in the vertex and one 

central point) and Fig. 3, d (6 points), 17 and 14.84 m, respectively, showed that the 

residual values of (Y) are better in the conformation represented in Fig. 3, a (4 points 

located at the vertices of the area), with better results when the points are positioned at 

the vertices. This indicates the influence of the position of the points in the area and may 

complement the recommendations of Pix4d, which stipulate only a minimum of 5 control 

points for small surface areas and recommends 5 to 10 control points for large projects. 

At the longitude points (X), the values are relatively low relative to the (Y) axis, 

making it clear that the shape of the area influences the residual errors of the GCPs, since 

the smaller distances are on the (X) axis, indicating that the clustering of the points 

improves the residual errors. However, this work reaches results different from those 

found by Tahar & Ahmad (2013) and Perin et al. (2016), who concluded that the higher 

the number of points, the greater the accuracy. Although the number of points is 

important, the results show the high level of significance of the clustering and 

distribution of points and the size of the area studied. 

Studies by Wallace et al. (2016) used 24 targets as GCPs collected with dual-

frequency RTK GPS in a 30´50 m area, obtaining a position error within ± 0.05 m 

horizontally and ± 0.20 m vertically. Turner et al. (2015) collected 23 GCPs with a dual-

frequency GPS RTK in an area of 125´60 m and obtained position errors of 

approximately 0.04–0.05 m horizontally and 0.03–0.04 m vertically. Both authors used 

a small area with a considerable amount of points, however the present study had good 

results using a minimum number of points when they were scattered in the study area. 

 

CONCLUSIONS 

 

It was possible to test the use of a commercial RPA using two different flight plans 

in a coffee crop area. The presence of weeds both in between the planting rows and in 

the coffee canopy, gaps in the planting, and the alignment and uniformity of the crop in 

both overlaps studied were identified. 

It was also concluded that the number of GCPs for the area evaluated did not alter 

the accuracy but did alter the distribution of the points. The evaluation of the geometric 

errors for the study area showed the importance of the distribution of the GCPs and that 

their clustering or distance can have an isolated effect on each coordinate axis evaluated. 

The study showed that for the better development of this application, it is important to 
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consider the shape of the study area and to distribute the points in a scattered and non-

biased way relative to the coordinate axis. 
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