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Abstract: We report herein a novel ChemMatrix® Rink resin functionalised with two phenylboronate
(PhB) moieties linked on the N-α and N-ε amino functions of a lysine residue to specifically
capture deoxyfructosylated peptides, compared to differently glycosylated peptides in complex
mixtures. The new PhB-Lys(PhB)-ChemMatrix® Rink resin allows for exploitation of the previously
demonstrated ability of cis diols to form phenylboronic esters. The optimised capturing and
cleavage procedure from the novel functionalised resin showed that only the peptides containing
deoxyfructosyl-lysine moieties can be efficiently and specifically detected by HR-MS and MS/MS
experiments. We also investigated the high-selective affinity to deoxyfructosylated peptides in
an ad hoc mixture containing unique synthetic non-modified peptides and in the hydrolysates
of human and bovine serum albumin as complex peptide mixtures. We demonstrated that the
deoxyfructopyranosyl moiety on lysine residues is crucial in the capturing reaction. Therefore,
the novel specifically-designed PhB-Lys(PhB)-ChemMatrix® Rink resin, which has the highest affinity
to deoxyfructosylated peptides, is a candidate to quantitatively separate early glycation peptides
from complex mixtures to investigate their role in diabetes complications in the clinics.

Keywords: phenylboronate; affinity chromatography; ChemMatrix® Rink resin; Nε-deoxyfructosyl-
lysine; LC-MS analysis

1. Introduction

In high-glucose concentration, typical of different diabetes conditions, the reducing sugar
reacts with free amino functions, such as the Nε-side chain of lysine residues in proteins,
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to form, by a nonenzymatic reaction, the so-called Schiff bases. Those imines are not stable
and after the Amadori rearrangement, the more stable 1-deoxyfructosyl moiety is formed,
leading to Nε-deoxyfructosyl-lysine residues in proteins, usually termed early glycation adducts.
Many different advanced glycation end products (AGEs) are then formed in vivo, such as
oxoaldehydes and α,β-diketones, by subsequent dehydration, condensation, fragmentation, oxidation,
and cyclization reactions of the Nε-deoxyfructosyl-lysines. Reactive dicarbonyls, glyoxal, methylglyoxal,
and 3-deoxyglucosone are potent glycation agents, highly reactive more than the glucose itself and thus
originate glycation chain reactions on more and more protein sites [1–3]. AGEs and their concentration
levels are considered, in the clinics, relevant for diagnosis of diabetes complications and proteomics
technologies are proposed for their characterisation [4–7]. However the possibility to trap early
glycation adducts (i.e., deoxyfructosylated proteins) and the corresponding peptides by efficient mass
spectrometry technology is a challenge to anticipate AGEs formation. In fact, gradual accumulation of
proteins aberrantly modified with deoxyfructosyl-lysines, earlier, and AGEs, later, in the blood vessel
walls cause pathological effects responsible for diabetes-related micro- and macro-vascular diseases [8].
Analysis of such aberrantly modified peptides is extremely difficult due to their low abundance in
biological fluids and complexity of the sample. Therefore, efficient methods for isolation, enrichment,
and recognition of glycated proteins are of current research interest.

Hereof, boronate affinity materials (BAMs) have gained increasing attention in recent years [9],
because of the specificity of the reaction of boronic acid that has been demonstrated efficient for
the separation of a wide variety of cis diol-containing compounds, including catechols, nucleosides,
nucleotides, nucleic acids, carbohydrates [10], glycoproteins [6,7,11], and enzymes [12]. In particular,
boronic acid forms with cis diols esters (in aqueous solution under basic conditions) that can be easily
hydrolysed under acidic conditions. This reversible reaction is useful for selective detection of cis
diol-containing compounds. Therefore, BAMs are commonly used for immobilisation, detection,
and separation of glycoproteins [9]. To date, many ligands bearing the boronic acid moiety immobilised
on monoliths [13], magnetic particles [14], mesoporous silica [15], polymer nanoparticles [16], and gold
nanoparticles [17] have been used for enrichment of cis diol-containing compounds. The first
commercially available product, based on m-aminophenylboronic acid (m-APBA) immobilised on an
agarose gel, was proposed for capturing immunoglobulins, glycosylated [18], but also glycated peptides
(involved in diabetes) [6,19,20]. However the m-APBA support demonstrated some undesirable and
non-specific interactions with peptides containing tyrosine, threonine, and/or serine residues that
can dramatically affect the efficiency of the method [19]. Despite these non-specific interactions,
the proposed method allowed enrichment of the mixture with glycated peptides [19]. In particular,
incorporation of electron-withdrawing groups into the phenylboronic acid moiety [21], but also
heterocyclic analogues of boronic acids [22], required a low-binding pH. For example, functionalisation
of monolithic capillary with BSPBA (e.g., the 3-butenylsulfonyl-phenylboronic acid) allowed capturing
nucleosides and glycoproteins at neutral pH [21]. Magnetic nanoparticles with dendrimer-boronate
moieties enhanced binding of glycoproteins, demonstrating the effectiveness of a multivalent binding
strategy [16].

We previously reported on the ability of cis diols to form boronic, but also phenylboronic
esters, demonstrating that boronate and phenylboronate complexes of peptides containing the
deoxyfructosyl-lysine moiety can be efficiently and specifically detected by HR-MS and MS/MS
experiments [11,23]. In particular, stabilisation of the deoxyfructosyl moiety by boronate and
phenylboronate derivatives, stabilised in MS/MS conditions, makes their fragmentation pattern simpler
and; therefore, easier to elucidate. Moreover, we demonstrated that derivatisation of phenylboronic
acid as quaternary ammonium salts (QAS) improves the efficiency of mass spectrometry ionisation.
Therefore, these derivatives allowing to discriminate glycosylated peptides versus deoxyfructosylated
peptides (useful tools as biomarkers of early glycation), make reliable mass spectra obtained by the
technique proposed herein [23].
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In the current study, we selected the ChemMatrix® Rink resin (CMRR) to increase selectivity
of detection of deoxyfructosylated peptides as an alternative to the previously proposed
m-aminophenylboronic acid (m-APBA) immobilised on the agarose gel [6]. In particular, the advantages
of the ChemMatrix® Rink resin are: compatibility with a large variety of solvents, including water;
high chemical stability; optimal swelling properties; and the possibility to build on it any type of
peptide sequence. Moreover, the ChemMatrix® resin (initially designed for solid-phase synthesis
of difficult peptide sequences, including long and hydrophobic ones) [24,25], was recently used for
peptide-affinity chromatography based on combinatorial strategies for protein purification [26]. Last,
but not least, derivatisation of the CMRR is relatively simple following the optimised protocols set up
for peptide synthesis [26].

Therefore, CMRR has been selected to design a novel stationary phase for affinity chromatography
of deoxyfructosylated peptides. In particular, we propose herein a simple synthetic protocol using
the low-cost Fmoc-Lys(Fmoc)-OH as starting material to act as a linker between the CMRR and two
phenylboronate moieties (Scheme 1). In particular, we developed the PhB-Lys(PhB)-CMRR as a
capturing support for reversible binding of deoxyfructosylated peptides for further mass spectrometry
identification. According to the literature, there is no evidence that the lysine moiety with two
phenylboronate moieties linked to CMRR has been reported and applied for a specific affinity
chromatography technique. Therefore, we examined the peptide-capturing properties of the novel
functionalised resin PhB-Lys(PhB)-CMRR as a function of time to determine its efficiency. We confirmed
its stability in different solvents and we developed analytical methods to perform its quality control,
including loading and homogeneity of PhB-Lys(PhB)-NH2 once cleaved from the resin. A synthetic
protocol for the preparation of the novel functionalised resin PhB-Lys(PhB)-CMRR was optimised. We
proved that the introduction of two phenylboronate moieties attached to the lysine linker has a significant
impact on binding the deoxyfructosylated peptides. We showed that the PhB-Lys(PhB)-CMRR is
recyclable having demonstrated the same ability to separate deoxyfructosylated peptides in solution
after several cycles of capturing. Moreover, the resin was tested to demonstrate that deoxyfructosylated
peptides could be captured specifically compared to other glycopeptides modified with different
glycosyl moieties. In fact, its high selectivity and affinity for the deoxyfructosylated peptides were
investigated using an ad hoc mixture containing unique synthetic glycopeptides and non-modified
peptides, and complex peptide mixtures obtained from hydrolysis of human and bovine serum albumin
(HSA and BSA).
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Scheme 1. Synthesis of the new functionalised PhB-Lys(PhB)-ChemMatrix® Rink resin.

2. Materials and Methods

2.1. Synthesis of the PhB-Lys(PhB)-ChemMatrix® Rink Resin

The ChemMatrix® Rink resin (loading 0.4–0.6 mmol/g) was linked to Fmoc-Lys(Fmoc)-OH
(3 eq) by 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate (TBTU, 3 eq) in
the presence of N,N-Diisopropylethylamine (DIEA) (6 eq) in 2 h. The reaction was monitored by
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ninhydrin test. After removal of Fmoc-protecting groups from the N-terminus and ε-amino function of
lysine using 25% piperidine in DMF, the 4-carboxyphenylboronic acid (PhB-OH, 6 eq) was linked by
(Benzotriazol-1-yl-oxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP) (6 eq) in 12 h in the
presence of DIEA (12 eq). Then the functionalised resin was dried under vacuum for three days at room
temperature. PhB-Lys(PhB)-NH2 was cleaved in 2 h from the resin using a mixture of TFA/H2O/TIS
95:2.5:2.5 (v:v:v). The solution was evaporated under a gentle stream of nitrogen and then lyophilised
and used to evaluate final loading (details are reported in Supporting Information—SI).

2.2. General Capturing Protocol of Model Deoxyfructosylated Peptide 1

PhB-Lys(PhB)-CMRR (5 mg) were swelled in a syringe for 30 min in ammonium bicarbonate
buffer (50 mM) at pH 8 in H2O/MeCN 1:1 (v/v). Equimolar amount of deoxyfructosylated peptide
H-K(Dabcyl)AK(1-DeoxyFru)AF-NH2 (1) was dissolved in the same buffer (1 mL), and added to the
resin and mixed for 1 h. Then the solution was filtered off and the resin was washed three times with
the buffer solution to remove the possible unreacted deoxyfructosylated peptide. All the fractions were
collected and lyophilised. Then, the cleavage mixture containing 0.1% HCOOH in H2O/MeCN 1:1
(v/v) was added and the syringe was stirred for 1h. The solution was filtered off and the resin was
washed four times with the cleavage mixture. All the cleavage fractions were collected, lyophilised,
and analysed by LC-MS, LC-MS/MS, and UV-VIS (Scheme S1, see SI).

To regenerate the functionalised resin, it was washed with the same ammonium bicarbonate buffer
(3 × 1 min) and then with DCM (3 × 1 min), THF (3 × 1 min), Et2O (3 × 1 min), and dried under vacuum.

2.3. Capturing Conditions of Peptides 2–8

The general procedure optimised for peptide 1 was applied separately to the synthetic peptides
2–8 using equimolar concentrations of all the peptides (1.4 µmol/mL). The capturing reaction time was
extended to 2 h. The remaining steps of the procedure were applied without changes. All the cleavage
fractions were collected, lyophilised, and analysed by LC-UV-MS.

2.4. Capturing Conditions of Peptide 2 in the Mixture of Peptides 7 and 9–17

Three ad hoc aqueous solutions containing the equimolar concentrations of non-glycosylated
peptide sequences (1.4 µmol/mL), including the deoxyfructosylated peptide 2, at the same concentration
(1.4 µmol/mL), or 5% w/w (10.5 nmol/mL), or 2% w/w (4.2 nmol/mL), were prepared and used following
the general capturing protocol described above, extending the time to 2 h. The remaining steps
of the protocol were applied without changes. All the fractions (uncaught and released from
PhB-Lys(PhB)-ChemMatrix@ Rink resin) were collected, lyophilised, and analysed by LC-UV-MS.

2.5. Capturing Conditions of Peptide 2 and 18 in HSA or BSA Hydrolysate

Human Serum Albumin (HSA, BioLabs) was hydrolysed according to the procedure reported in
SI. The deoxyfructosylated peptide 2 was added to the HSA hydrolysate at the same concentration used
for the non-glycosylated peptides (1.4 µmol/mL), or 5% w/w (10.5 nmol/mL), or 2% w/w (4.2 nmol/mL),
and applied in the general capturing protocol, also extending the time reaction to 2 h. The remaining
steps were followed without any changes. All the cleavage fractions were collected, lyophilised,
and analysed by LC-MS, LC-UV-MS, or LC-MS/MS. The LC-MS/MS data were analysed using PEAKS
search engine.

The general protocol described above was applied to a mixture of the commercially available
Bovine Serum Albumin hydrolysate (500 pmol, BSA, BioLabs) including peptide 18 (300 pmol),
extending the time reaction to 2 h. The remaining steps were followed without any changes. All the
cleavage fractions were collected, lyophilised, and analysed by LC-MS/MS. Obtained LC-MS/MS data
were analysed using PEAKS search engine.
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2.6. Bioinformatic Analysis with PEAKS

LC-MS/MS analyses of the samples were performed on a SHIMADZU IT-TOF instrument using
automatic fragmentation mode. The spectra were analysed by a bioinformatic approach using the
LabSolution software to convert LC data file to mzXML format. Data were analysed using PEAKS
search engine. For this purpose, we downloaded a FASTA file from the UniProt database. The following
search parameters were set: precursor mass error tolerance ±0.1 Da; fragment ion tolerance ±0.2 Da;
CID fragmentation, semi-specific digestion mode by trypsin, assuming up to three missed cleavages
per peptide. Moreover, carbamidomethylation, as a fixed post-translational modification (PTM), was
chosen. Deamidation, dehydration, oxidation of methionine, and hexose modifications were set as
variable PTMs and three maximum variable PTMs per peptide were allowed. A false discovery rate
(FDR) < 2% at the spectra level was used to filter search results. Additionally, the presence of at least
two unique peptides was set for the identification of the corresponding protein. The obtained results,
especially the statistical data, were reported into the Supporting Information.

3. Results and Discussion

3.1. Development of a Specific ChemMatrix® Rink Resin Functionalised to Selectively Capture
Deoxyfructosylated Peptides

We report herein a novel stationary phase designed and optimised for affinity chromatography
technology, to selectively capture deoxyfructosylated peptides, as we demonstrated on different
samples. We selected the ChemMatrix® Rink resin (CMRR) as an ideal solid support for
its well-described intrinsic properties [24,25]. Fmoc-Lys(Fmoc)-OH was used as a low-cost,
commercially-available building block to introduce a linker between CMRR and two phenylboronate
moieties (PhB). The proposed novel capturing support (e.g., PhB-Lys(PhB)-CMRR) was designed
to carry two PhB (linked to the N-α and N-ε amino functions of the lysine residue respectively),
to significantly improve trapping of deoxyfructosylated peptides. The CMRR is fully compatible
with a solid-phase synthetic protocol to develop a collection of different phenylboronate
derivatives. Therefore, the synthetic procedure (Scheme 1) initially binds Fmoc-Lys(Fmoc)-OH
to CMRR using 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate (TBTU) as
a coupling reagent and, after removing the two Fmoc-protecting groups in a piperidine solution,
the 4-carboxyphenylboronic acid (PhB-OH) was reacted with the two lysine-amino functions by
PyBOP. We previously reported an efficient strategy to link PhB-OH to a lysine side chain without any
protecting group on hydroxyl functions [23].

In contrast to the m-aminophenylboronate agarose support previously proposed [6], successful
functionalisation and loading of the PhB-Lys(PhB)-ChemMatrix® Rink resin can be easily and
efficiently monitored by quantitative LC-ESI-MS determination of the acidic hydrolysis product
PhB-Lys(PhB)-NH2. In fact, the HPLC (Figure S1) and ESI-MS spectrum profiles (Figure S2) of
the PhB-Lys(PhB)-NH2 crude show an intensive signal corresponding to the m/z value and the
characteristic isotopic pattern consistent with the hydrolysis product corresponding to the molecular
formula C20H25N3O7B2Na (Figure S3).

A calibration curve was set up with the commercially available 4-carboxyphenylboronic acid
(purity > 99%) as a standard (Figure S4). In particular the crude PhB-Lys(PhB)-NH2 (Figure S5)
at 236 nm (not interfering with amide bond absorptions) [27] allows calculation of the loading of
PhB-Lys(PhB)-ChemMatrix® Rink resin, after cleavage of PhB-Lys(PhB)-NH2 from an exactly weighted
quantity of resin, lyophilisation, and final UV analysis (Table 1).
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Table 1. Loading of PhB-Lys(PhB)-ChemMatrix® Rink resin (M = 0.28 mmol/g, SD = 0.007).

PhB-Lys(PhB)-CMRR (mg) Sample Dilution Abs (OD) n [mmol] PhB-Lys(PhB)-CMRR
Loading (mmol/g)

2.91 50 0.4784 8.18 × 10−4 0.281
3.50 50 0.5758 9.73 × 10−4 0.278
5.40 100 0.4552 1.56 × 10−3 0.289
6.07 50 0.9892 1.63 × 10−3 0.269
5.00 50 0.8333 1.38 × 10−3 0.277

We demonstrated that the novel PhB-Lys(PhB)-ChemMatrix® Rink resin is stable to capture
reaction conditions and the resin loading is constant. In fact, after incubation of the functionalised
resin in different solvents, accurate ESI-MS analysis of the lyophilised solutions did not display any
signal corresponding to the possible cleaved linker PhB-Lys(PhB)-NH2.

We used, as first model the simple synthetic pentapeptide visible sequence,
H-Lys(Dabcyl)Ala-Lys(1-DeoxyFru)Ala-Phe-NH2 (1) to demonstrate the capturing properties of the
novel PhB-Lys(PhB)-ChemMatrix® Rink resin. Therefore, we built a calibration curve to discriminate,
in mixtures, deoxyfructosylated peptides in presence of differently glycosylated peptides. In particular,
peptide 1 contains the deoxyfructopyranosyl moiety linked to Lys3 side chain (already known to form
esters with phenylboronic acid) [12], but also the 4-((4-(dimethylamino)phenyl)azo)benzoyl moiety
(Dabcyl) linked to Lys1 side chain, exploiting its broad and intense visible absorption, to determine
the minimal detectable concentration of the deoxyfructosylated model peptide 1 (Figures S6–S10).
The synthetic building block Fmoc-Lys(Dabcyl)-OH (I) was used to prepare the calibration curves
(Figures S11 and S12) and determine the concentration of the model peptide 1 before and after the
capturing reaction. The maximum absorption of Fmoc-Lys(Dabcyl)-OH (I) in the capturing solution
was ca. 445 nm, but in the cleavage solution the absorption was shifted to 455 nm (Figure S13).

To determine the maximum capacity of the PhB-Lys(PhB)-ChemMatrix® Rink resin (substitution
grade 0.28 mmol/g) in the capturing reaction conditions, we performed an experiment in saturating
conditions of model deoxyfructosylated peptide 1 (Scheme S1). PhB-Lys(PhB)-CMRR (5 mg) was able
to capture the model peptide 1 (0.0014 mmol), considering that only one active phenylboronic group
attached to the lysine moiety could bind cis diol groups.

According to the obtained data, 5 mg of resin is capable to capture 1.11 mg of pure peptide.
Therefore, the capturing efficiency of the proposed procedure is 81%. We proved that both the new
resin and the regenerated resin batches have the same ability to capture the deoxyfructosylated peptide
model 1 from the solution (Table 2).

Table 2. Comparison of capturing efficiency of new and reused (once or twice) batches of the
PhB-Lys(PhB)-ChemMatrix® Rink resin.

Results
PhB-Lys(PhB)-CMRR After First Use of

PhB-Lys(PhB)-CMRR
After Second Use of

PhB-Lys(PhB)-CMRR

Unreacted Released
from Resin Unreacted Released

from Resin Unreacted Released
from Resin

Absorbance (OD) 0.1436 0.6670 0.1498 0.5602 0.3069 0.4872
n (nmol) 0.200 0.531 0.125 0.446 0.260 0.388

mass (mg) 0.117 0.519 0.122 0.435 0.252 0.375

Capturing yield (%) 81 78 60
Reused batch (%) - 96 73

Moreover, we determined the minimum time to dry the functionalised resin after synthesis
obtaining a constant mass (Figure S14), showing that resin storage under atmospheric pressure causes
insignificant changes in its weight (Figure S15).
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3.2. The PhB-Lys(PhB)-ChemMatrix® Rink Resin Is Specific for Deoxyfructosylated Peptides and Not for
Differently Glycosylated Peptides

In order to assess the capturing efficiency of the PhB-Lys(PhB)-ChemMatrix® Rink resin,
a series of β-turn peptide structures of a model peptide termed CSF114 [28,29] were synthetically
modified on the tip of the β-turn, with the amino acids Ser, Asn, and Lys at position 7 (u) bearing,
on the side-chains by an O-glycosidic bond, amide, or amine bond, different glycosyl moieties
(Table 3). The CSF114 peptide sequence (i.e., TPRVERu7GHSVFLAPYGWMVK) was selected
for its optimised and previously demonstrated properties to expose at the best, at position 7,
post-translational modifications [30]. The deoxyfructosylated peptide [(1-DeoxyFru)Lys7]CSF114
(2) was obtained, introducing during the solid-phase conditions of the synthesis, at position
7, the building block Fmoc-L-Lys(Boc)(2,3:4,5-di-O-isopropylidene-1-deoxyfructopyranosyl)-OH
(II) [31]. The same approach was followed to synthesise [Asn7(Man)]CSF114 (3),
[Asn7(Gal)]CSF114 (4), [Asn7(GlcNAc)]CSF114 (5), and [Asn7(Glc)]CSF114 (6) using the
building blocks Fmoc-L-Asn[β-d-Man(OAc)4]-OH (III), Fmoc-L-Asn[β-D-Gal(OAc)4]-OH (IV),
Fmoc-L-Asn[β-d-GlcNAc(OAc)3]-OH (V), and Fmoc-L-Asn[β-D-Glc(OAc)4]-OH (VI), respectively [32].
As control peptides, we synthesised the phosphorylated analogue [Ser7(PO3H2)]CSF114 (7) [33]
(bearing the O-phosphoryl moiety on Ser7) and the corresponding non-glycosylated peptide CSF114
(8). We selected O-phosphorylation as control modification, because in previous studies we evaluated
that dysregulation in protein expression can be involved in diabetes immune dysfunction [33].

Table 3. Model peptides 2–7 based on the β-turn structure CSF114 (8) bearing, at position 7, different
post-translational modifications.

Glycopeptide Building Block

[(1-DeoxyFru)Lys7]CSF114 (2)
Fmoc-L-Lys(Boc)(2,3:4,5-di-O-isopropylidene-1-

deoxyfructopyranosyl)-OH (II) a

[Asn7(Man)]CSF114 (3) Fmoc-L-Asn[β-d-Man(OAc)4]-OH (III) b

[Asn7(Gal)]CSF114 (4) Fmoc-L-Asn[β-d-Gal(OAc)4]-OH (IV) b

[Asn7(GlcNAc)]CSF114 (5) Fmoc-L-Asn[β-d-GlcNAc(OAc)3]-OH (V) c

[Asn7(Glc)]CSF114 (6) Fmoc-L-Asn[β-d-Glc(OAc)4]-OH (VI) b

[Ser7(PO3H2)]CSF114 (7) Fmoc-L-Ser(PO3Bzl,H)-OH (VII) c

CSF114 (8) Fmoc-L-Asn(Trt)-OH (VIII) c

a [31]; b [34]; c commercially available building blocks (Merck).

According to the literature data, the furanose forms of the sugars display the best affinity for
phenylboronic acid [35]. In particular, in solution, fructose is 25% in the β-d-fructofuranose form (with
potentially reactive hydroxyl functions at positions 2, 3, and 6), galactose is 2.5% as α-d-galactofuranose
(with potentially reactive hydroxyl functions at positions 2, 3 and 5, 6), while glucose is only 0.14% as
α-d-glucofuranose (with potentially reactive hydroxyl functions at positions 1, 2 and 3, 5, 6). Moreover
Kowalczyk et al. showed higher affinity and significant selectivity for the N-acetylneuraminic moiety
over methyl-α-d-galactopyranoside, methyl-α/β-l-fucopyranoside, and N-acetyl-d-glucosamine [36].
In fact, the highest capturing affinity by PhB-Lys(PhB)-ChemMatrix® Rink resin was observed with
[(1-DeoxyFru)Lys7]CSF114 (2) (85% yield). The yield of the capturing reaction was estimated by the
calibration curves reported in the SI (Figures S16–S18). [Asn7(Man)]CSF114 (3) was captured with a very
low yield (5%) (Figure S19). On the other hand, the glycosylated peptides 4–6, the O-phosphorylated
peptide 7, and the unglycosylated peptide CSF114 (8) did not react with CMRR (Figure S20).
These results are the first insight that the deoxyfructopyranosyl moiety on lysine residues is crucial in
the capturing reaction with the novel PhB-Lys(PhB)-ChemMatrix® Rink resin (Figure S21).
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3.3. The PhB-Lys(PhB)-ChemMatrix® Rink Resin Is Specific for Deoxyfructosylated Peptides and Not for
Unrelated Non-Glycosylated Peptides

We tested the binding efficiency of the PhB-Lys(PhB)-ChemMatrix® Rink resin for
deoxyfructosylated peptides as early glycation biomarkers of diabetes, in a peptide mixture mimetic
of a digestion procedure of biological fluids. Therefore, we prepared three ad hoc aqueous solutions
containing equimolar concentrations of all the synthetic peptides reported in Table 4 (1.4 µmol/mL),
including the deoxyfructosylated peptide 2: (i) at the same concentration (1.4 µmol/mL); (ii) 5% w/w
(10.5 nmol/mL); (iii) 2% w/w (4.2 nmol/mL), to estimate the limit of detection of the deoxyfructosylated
model peptide 2 by LC-MS. The ten synthetic peptides 7 and 9–17 (Table 4 and Table S2) were
dissolved in an ammonium bicarbonate buffer solution at pH 8 and then subjected (as model matrix)
to the capturing reaction conditions described above. These peptides were selected for the following
characteristics: amino acid sequence, hydrophobicity, different length (from 4 to 35 amino acids) and
post-translational modification (DeoxyFru, Ac, PO3H2, and Pam). The hexapeptide LSETTI (11) was
selected as a previously developed peptide mimicking the HNK1 tri-saccharide epitope [37].

Table 4. Synthetic peptides used as a matrix for capturing [(1-DeoxyFru)Lys7]CSF114.

N Peptide

2 [(1-DeoxyFru)K7]TPRVERGHSVFLAPYGWMVK
9 Ac-GKNAT

10 Ac-MSKVVNPTQK-NH2
11 LSETTI
12 DQDAEQAPEYRGRTELLKET
13 EKEK
14 REKLVVRRGQPFWLTLHFEGR
7 [(PO3H2)S7]TPRVERGHSVFLAPYGWMVK

15 GQFRVIGPGYPIRALVGDEAELPCRISPGKNATG
16 ENPVVHFFKNIVTPRTP
17 Pam-ENPVVHFFKNIVTPRT

Ser, Tyr, and Thr highlighted in red; Lys highlighted in blue; post-translational modifications (DeoxyFru, Ac, PO3H2,
and Pam) highlighted in green.

It is interesting to notice that Frolov et al. [19] previously reported that the efficiency of the
m-aminophenylboronic acid (m-APBA) immobilised on agarose resin to capture Amadori peptides,
after digestion of plasma protein from type 2 diabetes, was affected by unspecific recognition of peptide
sequences containing several, often neighbouring, hydroxyamino acid residues. Therefore, in order to
demonstrate the ideal and optimised capacity of the newly-functionalised PhB-Lys(PhB)-ChemMatrix®

Rink resin (herein proposed), only for deoxyfructosylated peptides, we selected the series of synthetic
peptides containing those amino acid residues (Table 4). In addition, the tetrapeptide EKEK (13) was
designed as a control sequence, because it contains only lysine residues (but no Tyr and Thr) that in
diabetes are putative glycation motifs.

Our experiments demonstrated that the only peptide captured from the reaction mixture was the
peptide [(1-DeoxyFru)Lys7]CSF114 (2). None of the non-deoxyfructosylated peptides were captured
by the novel CMRR resin, demonstrating the high selectivity of our procedure for deoxyfructosylated
peptides (Figures S22–S25). The lowest detectable concentration with proper signal-to-noise ratio is 5%
(Figures S26 and S27).

3.4. The PhB-Lys(PhB)-ChemMatrix® Rink Resin Is Also Specific for Deoxyfructosylated Peptides in Complex
Peptide Mixtures (i.e., Human Serum Albumin and Bovine Serum Albumin Hydrolysates)

The affinity of the PhB-Lys(PhB)-ChemMatrix® Rink resin for the deoxyfructosylated peptides 2
and 18 was tested in complex hydrolysate mixtures of human and bovine serum albumin (HSA and BSA,
respectively). Therefore, the above described procedure was applied to a mixture of the commercially



Molecules 2020, 25, 755 9 of 15

available hydrolysate of HSA (97–99%, Sigma-Aldrich) in the presence of the deoxyfructosylated
peptide 2 that was added: (i) at the same concentration (1.4 µmol/mL); (ii) 5% w/w (10.5 nmol/mL); or
(iii) 2% w/w (4.2 nmol/mL) to estimate the limit of detection of the deoxyfructosylated peptide model 2
by LC-UV-MS (Figures S28 and S29). Interestingly, the most intensive signal detected corresponds
to the deoxyfructosylated peptide model 2. Detailed LC-MS/MS of the HSA hydrolysate containing
peptide 2 at 5% w/w concentration, followed by bioinformatic analysis using the PEAKS software
(see Materials and Methods), showed that only a negligible amount of two unrelated peptide sequences
from HSA hydrolysate (ALVLIAFAQYLQQCPFEDHVK and DVFLGMFLYEYAR) were captured by
CMRR (Figure S30). Interestingly, one of the sequences (including two tyrosine residues) was also
reported by Frolov et al. [19] Moreover, the deoxyfructosylated peptide 2 at 2% w/w concentration
was detectable only by LC-MS, but not by UV (Figure 1). At this concentration, no peptide sequence
derived from the HSA hydrolysate could be detected (PEAKS software).
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Figure 1. Analytical characterisation after performing the capturing procedure of the hydrolysate
of Human Serum Albumin (HSA) with 2% w/w [(1-DeoxyFru)Lys7]CSF114 (2). Panel (A): Total Ion
Chromatogram. Panel (B): ESI-MS. Panel (C): ESI-MS/MS.

Unspecific interactions between the new functionalised resin and peptides derived from HSA
hydrolysate were carefully investigated, applying the capturing procedure described above without
addition of any deoxyfructosylated peptide. Detailed LC-MS analyses are presented in Figure S31.
In particular, PEAKS bioinformatic analysis revealed that protein sequence coverage was only 16%
and the seven low-intensity non-modified peptides identified (Figure S32) could be detected only if the
deoxyfructosylated peptide 2 (besides having the highest affinity for the CMRR) is not present in the
mixture and therefore, it cannot compete in binding.
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An additional experiment was performed using the complex mixture of the commercially available
BSA hydrolysate (500 pmol, BioLabs) in the presence of the analytically pure deoxyfructosylated
BSA fragment DTEK(1-DeoxyFru)QIKKQT (18) (300 pmol). Before treating the complex mixture
in the capturing reaction conditions, a detailed LC-MS/MS analysis was performed (Figure 2).
Sequence coverage was 61% (Figure S33) and identity of the peptide DTEK(1-DeoxyFru)QIKKQT
(18) was confirmed by XIC (Extracted Ion Chromatography), ESI-MS, and ESI-MS/MS (Figure 2).
The concentration of the deoxyfructosylated peptide 18 was chosen unquestionably lower than
the other peptides to display a lower mass intensity. Nevertheless, LC-MS/MS analysis revealed
that the most intense signal (after reaction with the functionalised resin) corresponded to the
deoxyfructosylated peptide 18 (Figure 3 and Figure S34). Moreover, bioinformatic analysis showed
in BSA hydrolysate nine low intensity, but negligible peptide sequences, compared to peptide 18
(Figures S34 and S35). In conclusion, we demonstrated that decrease in deoxyfructosylated peptide
concentration in the hydrolysate mixture might cause unspecific but insignificant interactions. Therefore,
these unspecific but negligible interactions do not hamper the quality of the analysis, because the
deoxyfructosyl-lysine containing the peptide 18 continues maintaining the highest affinity for the
novel PhB-Lys(PhB)-ChemMatrix® Rink resin presented herein and specifically-designed to trap
deoxyfructosylated peptides to be efficiently detected by an enhanced mass spectrometry technique.
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Figure 2. Analytical characterisation before performing the capturing procedure of the hydrolysate
of Bovine Serum Albumin (500 pmol, BSA, BioLabs) with the deoxyfructosylated peptide
DTEK(1-DeoxyFru)QIKKQT (18) (300 pmol). Panel (A): Total Ion Chromatogram. Panel (B): Extracted
Ion Chromatogram. Panel (C): ESI-MS.
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Figure 3. Analytical characterisation after performing the capturing procedure of the hydrolysate
of Bovine Serum Albumin (500 pmol, BSA, BioLabs) with the deoxyfructosylated peptide
DTEK(1-DeoxyFru)QIKKQT (18) (300 pmol). Panel (A): Total Ion Chromatogram, expanded range.
Panel (B): ESI-MS. Panel (C): ESI-MS/MS.

4. Conclusions

Deoxyfructosylation of peptides in human proteins is the early event of the complex glycation
pathway typical of diabetes. Up to now, specific, selective, and high affinity early diagnostics of
deoxyfructosylated peptides is always an unmet need for clinicians, to prevent further and, in most
cases, fatal complications. In the present paper, we report the preparation, chemical characterisation,
and capturing properties specific for deoxyfructosylated peptides, of a novel ChemMatrix® Rink
resin functionalised with two phenylboronate moieties (PhB) linked to the two amino functions of a
lysine residue. The new PhB-Lys(PhB)-ChemMatrix® Rink resin allows exploitation of the previously
demonstrated ability of cis diols (present in the deoxyfructosyllysine moiety) to form phenylboronic
esters. We demonstrated, by accurate ESI-MS analysis, that the novel PhB-Lys(PhB)-ChemMatrix® Rink
resin is stable to capturing reaction conditions. In fact, no signal corresponding to the possibly cleaved
linker PhB-Lys(PhB)-NH2 was detected. Moreover, the resin loading is constant. Resin-capturing and
-cleavage procedures were optimised to ensure that only the peptides containing deoxyfructosyllysine
moieties can be efficiently and specifically detected by HR-MS and MS/MS experiments. The selectivity
and affinity of the PhB-Lys(PhB)-ChemMatrix® Rink resin was demonstrated in the case of three
different peptides used in complex mixtures. First, we used, as a model, the simple synthetic
pentapeptide H-Lys(Dabcyl)Ala-Lys(1-DeoxyFru)Ala-Phe-NH2 (1) containing Lys(Dabcyl), which,
with its characteristic broad and intense visible absorption, allowed for the determination of the minimal
detectable concentration. Using peptide 1, the capturing efficiency of PhB-Lys(PhB)-ChemMatrix®

Rink resin was approximately 80%. It is worth highlighting that CMRR allows both the performance of
orthogonal multidirectional synthesis, as well as accurate control by the specific PhB-Lys(PhB)-linker
on the resin. The product can be removed from the resin at any time and can be characterised by
analytical methods, which is not possible in the case of the agarose resin.
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The significant binding of deoxyfructosylated peptides by functionalised CMRR, in comparison
to other glycosylated peptides, may be explained considering the equilibrium of the different cyclic
anomeric forms in solution, as reported in the literature (i.e., β-pyranose: ca. 75%; β-furanose: ca. 13%;
and α-furanose: ca. 12%) [38,39]. Boronic acid is known to bind glucose preferentially in the α-furanose
form and not in the more abundant α-pyranose form. β-D-Fructofuranose binds favourably to boronic
acid because of the high presence of syn-periplanar hydroxyl groups [40]. This can explain the different
binding constants to other sugars, such as galactose, mannose, or glucose. The binding of differently
glycosylated and deoxyfructosylated peptides are strongly in agreement with data reported with free
sugars, because only the deoxyfructosylated peptides bear the sugar in the furanose form. In the case
of glycosylated peptides (e.g., galactosylated or glucosylated), only pyranose forms are present.

Moreover, we demonstrated that the regenerated resin has the same ability to capture the
deoxyfructosylated peptide model 1 from the solution. Afterwards we investigated the high-selective
affinity to deoxyfructosylated peptides 2 and 18 in an ad hoc mixture, containing also unique synthetic
non-modified peptides, and in the hydrolysate of human and bovine serum albumin as an example
of complex peptide mixture. We demonstrated that only peptide [(1-DeoxyFru)Lys7]CSF114 (2) was
captured from the reaction mixture of synthetic non-modified peptides by the novel CMRR resin,
showing unambiguously that the deoxyfructopyranosyl moieties on lysine residues are crucial in the
capturing reaction. Testing the affinity of the PhB-Lys(PhB)-ChemMatrix® Rink resin for different
concentrations of deoxyfructosylated peptides 2 and 18 in complex hydrolysate mixtures of HSA and
BSA, LC-MS/MS analysis showed that the most intense signal (after reaction with the functionalised
resin), corresponded to deoxyfructosylated peptide 18 (or 2). PEAKS bioinformatics analysis revealed
that decreasing the concentration of deoxyfructosylated peptides in the hydrolysate mixture might
cause unspecific, but insignificant interactions, because intensity of the identified peptides originating
from hydrolysate was low compared with the deoxyfructosyl-lysine containing peptides (18 or 2).
Therefore, the novel specifically-designed PhB-Lys(PhB)-ChemMatrix® Rink resin, displaying highest
affinity to deoxyfructosylated peptides, is a candidate to quantitatively separate early glycation
peptides from complex mixtures to investigate their role in diabetes complications.

Supplementary Materials: The following are available online: Details of the synthetic procedures, technical
details for the analytical procedures, i.e., UV-VIS, ESI-MS, ESI-MS/MS, LC-MS, LC-UV-MS, and LC-MS/MS spectra
and PEAKS bioinformatics data analyses.
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