
20 April 2024

A template-based methodology for the specification and automated composition of performability models
/ leonardo montecchi, paolo lollini, andrea bondavalli. - In: IEEE TRANSACTIONS ON RELIABILITY. - ISSN
0018-9529. - ELETTRONICO. - 69:(2020), pp. 293-309. [10.1109/TR.2019.2898351]

Original Citation:

A template-based methodology for the specification and automated
composition of performability models

Published version:
10.1109/TR.2019.2898351

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1151379 since: 2021-03-25T18:46:00Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

1

A Template-Based Methodology for the
Specification and Automated Composition of

Performability Models
Leonardo Montecchi, Paolo Lollini, and Andrea Bondavalli, Member, IEEE

Abstract—Dependability and performance analysis of modern
systems is facing great challenges: their scale is growing, they
are becoming massively distributed, interconnected, and evolv-
ing. Such complexity makes model-based assessment a difficult
and time-consuming task. For the evaluation of large systems,
reusable submodels are typically adopted as an effective way to
address the complexity and to improve the maintainability of
models. When using state-based models, a common approach is
to define libraries of generic submodels, and then compose con-
crete instances by state sharing, following predefined “patterns”
that depend on the class of systems being modeled. However,
such composition patterns are rarely formalized, or not even
documented at all. We address this problem using a model-
driven approach, which combines a language to specify reusable
submodels and composition patterns, and an automated composi-
tion algorithm. Clearly defining libraries of reusable submodels,
together with patterns for their composition, allows complex
models to be automatically assembled, based on a high-level
description of the scenario to be evaluated. This paper provides
a solution to this problem focusing on: i) formally defining the
concept of model templates, ii) defining a specification language
for model templates, iii) defining an automated instantiation and
composition algorithm, and iv) applying the approach to a case
study of a large-scale distributed system.

Index Terms—modularity, model-based evaluation, state-based,
Stochastic Activity Networks, performability, template models,
composition, model-driven engineering.

I. INTRODUCTION

Model-based evaluation [1] plays a key role in dependability
[2] and performability [3] evaluation of systems. Modeling
allows the system to be analyzed at different levels of abstrac-
tion, it can be used to perform sensitivity analysis, to identify
problems in the design, to guide experimental activities, and
to provide answers to “what-if” questions, all without actually
exercising the real system. For this reason, modeling and
simulation are widely used in the assessment of high-integrity
systems and infrastructures, for which faults and attacks can
potentially lead to catastrophic consequences.

While ad-hoc simulators are used in some domains, (e.g.,
see [4]), state-based formalisms like Stochastic Petri Nets
(SPNs) and their extensions [5] are widely used to assess
non-functional properties across different domains. Such for-
malisms have several key advantages: they provide a con-
venient graphical notation, they support different abstraction

L. Montecchi is with the Institute of Computing, University of Campinas,
Brazil. leonardo@ic.unicamp.br

P. Lollini, and A. Bondavalli are with the Dipartimento di Matematica e
Informatica, University of Firenze, Italy. {lollini,bondavalli}@unifi.it

levels, they enable modular modeling via state sharing (i.e.,
superposition of state variables), and they are well-suited for
the representation of random events (e.g., component failures).
Moreover, due to their generality, such formalisms can be used
in different domains, and for the analysis of different kinds of
system properties.

Nowadays, the analysis of modern systems is facing great
challenges: their scale is growing, they are becoming mas-
sively distributed, interconnected, and evolving. The high num-
ber of components, their interactions, and rapidly-changing
system configurations represent notable challenges for model-
based evaluation. A transition towards the Systems-of-Systems
paradigm [6], [7] is occurring: new services emerge by the
aggregation of preexisting, independent, constituent systems,
whose internals may not be precisely known.

A key principle in addressing the complexity in the spec-
ification of analysis models is modularization. When using
approaches based on SPNs, reusable submodels addressing
different concerns are typically defined and then composed
by state sharing, following predefined “patterns” based on the
scenario to be analyzed. The reusability and maintainability of
the obtained analysis model is therefore improved: submodels
can be modified in isolation from the rest of the model,
they can be substituted with more refined implementations,
they can be rearranged based on modifications in the system
configuration.

In practice, “libraries” of reusable models are defined,
specific to a certain system or class of systems. However,
while models in those libraries can be precisely defined using
well-established formalisms (e.g., SPNs), means to specify
customized patterns for their instantiation and composition
are limited, and in practice such patterns are often defined
only informally. As a result i) model libraries are difficult to
be shared and reused, and ii) composite models for different
scenarios must be assembled by hand by people who know
the appropriate rules to follow. Even when rules have been
properly specified, obtaining a valid (i.e., correctly assembled)
composite model requires a lot of manual effort, involving
error-prone, time-consuming, and repetitive tasks.

In this paper we address this problem by defining a
methodology that supports the automated assembly of large
performability models, based on well-specified libraries of
reusable submodels. The approach is built around the concept
of “model templates” and a specification language that we
call Template Models Description Language (TMDL), used
to precisely specify and instantiate model templates. The idea

2

behind the approach was initially introduced in [8]. In this
paper we provide a formal definition of the approach, and we
apply it to a real use case from the literature.

Summarizing, the contributions of this paper are the fol-
lowing: i) we formally define the concept of model templates
and their composition, ii) we define a specification language
for model templates, iii) we define an automated instantiation
and composition algorithm, and iv) we apply the approach to
a concrete case study of a large-scale distributed system.

The approach has been devised with the main objective of
facilitating the selection, parametrization and composition of
predefined models from model libraries. The key distinguish-
ing aspects of our approach are the following: i) it enables
the formal specification of libraries of model templates and
composition patterns, with a clear separation between model
specification (the “interface” modeling elements required for
model composition) and model implementation (the internal,
formalism-specific, structure of the model); ii) it enables the
formal specification of the different scenarios that need to be
analyzed, which are used to automatically assemble model
templates to form the global system model, via a model-
transformation algorithm; and iii) such model-transformation
algorithm is defined and implemented only once, since com-
position patterns become part of reusable model libraries.

In the application of the approach we focus on the Stochas-
tic Activity Networks (SANs) formalism [9], [10], for two
practical reasons: i) the use case we use as reference [11]
was modeled with SANs (Section VI), and ii) we can use the
discrete-event simulator provided by Möbius [12] to actually
analyze the composed models that are generated.

The paper is organized as follows. Related work is discussed
in Section II, while an overview of the proposed approach is
presented in Section III. Formal definitions are then given in
Section IV. The language to concretely support our framework,
TMDL, is introduced in Section V. The application to the use
case is then presented in Section VI. Finally, conclusions are
drawn in Section VII.

II. RELATED WORK

Work related to this paper can be grouped according to
three main topics: i) modular approaches to construct per-
formability models, ii) variants of Petri Nets that provide a
compact notation, and iii) model-driven approaches applied
to performability evaluation. Each group is discussed in more
detail in the following.

A. Modularity in Performability Models

The application of modularity and composition for tack-
ling the complexity of modern systems is well-established
in domains like software engineering, e.g., [13], and real-
time embedded systems, e.g., [14], [15]. Our focus is on the
modular construction of state-based models for performability
analysis, by means of reusable elements. In this context,
compositional modeling approaches were initially introduced
to reduce the size of the generated state space [16] or its
representation [17]. Other approaches, e.g., [18], [19], de-
fine strategies for decomposing models in submodels having

specific characteristics, and exploit them to achieve a more
efficient solution.

Modularization has later gained importance also for improv-
ing the specification of models, since it also brings a number of
other practical advantages: submodels are usually simpler to be
managed, they can be reused, they can be refined, and they can
be modified in isolation from other parts of the model. While
techniques for efficient analysis of performability models are
fundamental, the growing complexity of modern systems is
also posing challenges for the specification of models. In this
paper we focus on this aspect, while discussions on efficient
evaluation methods can be found for example in [1], [20].

Several approaches based on Petri nets and their extensions
apply modularity in the construction of performability models.
In such approaches, the overall model is built out of a well-
defined set of submodels addressing specific aspects of the
systems, which are then composed by state sharing following
predefined rules based on the actual scenario to be represented.
Often, submodels include parameters and structural variability,
to improve their reuse. Examples of works that apply such
approach are [11], [21], [22], [23], [24], [25], [26], [27], [28].

However, composition patterns and variability aspects are
typically provided informally or by examples. Sometimes,
those “rules” are not even written somewhere, but they are
only known to the person(s) that developed the library of
models for the system under analysis. The main gap in apply-
ing this approach is that, while established formalisms exist
both for defining the submodels (SPNs) and for composing
them (state sharing), means to define customized patterns for
their instantiation and composition are limited. Consequently,
reusing submodels and composition patterns, and sharing them
between different teams is currently impracticable.

In this paper we address exactly this problem, by defining
a methodology for specifying and using libraries of reusable
submodels. The ability to precisely define generic submodels
and composition patterns allows the overall performability
model to be automatically assembled via model transformation
from a high-level specification of the scenario of interest.

B. Compact Specification of PN-Based Models

In the literature, several variants of the Petri Nets formalism
have been defined, some of them having features that provide
more compact and reusable specifications. The Box Algebra
[29] operates on a restricted class of Petri net models (boxes)
that represent a step of computation. Boxes are composed
using process algebra operators, which are mapped to spe-
cific Petri net submodels (operator boxes). Composition is
performed by essentially replacing the transitions of operator
boxes with the submodels used as operands, possibly syn-
chronizing transitions based on their labels. In our approach,
composition is performed by fusion of state variables, without
knowledge of the internal behavior (transitions) of models.
Therefore, we do not impose restrictions on their internal
structure.

Colored Petri Nets (CPNs) [30] allow tokens to be dis-
tinguished, by attaching data to them. Tokens can be of
different data types, called colors. Hierarchical CPNs support

3

modularization by means of substitution transitions, i.e., a
transition is replaced by a whole subnet in a more detailed
model. CPNs are able to provide very compact representations,
and use concepts similar to those we propose in this paper
(e.g., multiplicity).

Stochastic Reward Nets (SRNs) [31] also contain features
that allow for a compact specification of SPNs, e.g., marking
dependency, variable-cardinality arcs, priorities, etc. Further-
more, they embed extensions to define reward rates. We
emphasize however that our objective is not to propose a
new variant of Petri nets, but to automatize the composition
of models exploiting existing primitives (i.e., sharing of state
variables).

Stochastic Activity Networks (SANs) can also be considered
a variant of SPNs [10]. In their Möbius implementation [12],
they support tokens having different datatypes, including struc-
tured datatypes. The input gate and output gate primitives can
be used to specify arbitrary complex functions for the enabling
of transitions (called activities) and for their effects. SANs
models can be composed using the Rep/Join state sharing
formalism [16]. However, which state variables are composed,
and how, is specified manually for each composition. In
this paper we propose an approach based on Model-Driven
Engineering (MDE) [32] techniques to i) define reusable
composition patterns, and ii) automate their application. Such
automation also reduces the possibility of introducing human
mistakes in the model specification.

C. Model-Driven Approaches

Several works in the literature have applied MDE techniques
for the automatic derivation of performance and/or dependabil-
ity models from UML (Unified Modeling Language) or similar
representations, e.g., see [33], [34], [35]. However, the purpose
of such approaches is usually to provide an application-specific
abstraction to users of a certain domain, in the form of a UML
profile, and then automatically derive formal models defined
by an expert. Composition patterns are embedded in the model
transformation algorithm, which is different for every different
library of submodels. Reuse across different domains, or with
different libraries of submodels is not usually a concern.

More recently, the authors of [36] defined an approach
to integrate different model generation chains. They assume
the existence of multiple, independent, transformation chains,
each one directly generating a formal model (e.g., SPNs)
from a high-level model (e.g. UML). The integration of a
pair of such transformation chains is performed by means of
an “integration model”, defined at UML level, which is then
processed by a third transformation to generate a low-level
integration model that connects the generated formal models.

While we share a similar long-term objective (a framework
to reuse performability models), we address the problem from
a different perspective. Our approach defines a method to spec-
ify and instantiate libraries of reusable submodels specified
with SPNs. The language we define, TMDL (see Section V),
is a sort of “intermediate model” to specify composition
patterns for SPNs, as opposed to using generic transformation
languages. In a certain sense, we are proposing an API

(Application Programming Interface) for the composition of
SPN-based models. Composition rules become part of model
libraries, and only one single model transformation/composi-
tion algorithm is defined, which is the same for every library of
model templates. Essentially, we use a horizontal intermediate
model (between the design-level representation and formal
models), while the work in [36] uses a vertical intermediate
model (between different transformation chains).

Finally, it should be noted that existing modeling frame-
works, e.g., Möbius [12] or CPNTools [30], provide some
means for reducing the effort in the specification of complex
models. For example, they both allow multiple instances of
a submodel to be reused. However, instances have identical
structures, and each of them still needs to be manually con-
nected to the rest of the model. Our objective here is to propose
an approach that facilitates the selection, parametrization,
and composition of predefined models from model libraries,
without knowledge of their internal implementation.

With a partially similar idea, the recent work in [37] defines
an approach for automated “non-anonymous” replication of
SANs models. That is, instead of replicating SANs models
with the Rep operator [12], leading to identical replicas, they
automatically generate a set of model instances, auxiliary
places, and Join operators, based on predefined rules. Their
objective is however to achieve efficient simulation, and do not
focus on simplifying the specification or reusing models. Also,
the approach in [37] is limited to replication only. In this paper,
we define a generic approach to specify complex composition
patterns and automate their application using MDE techniques.

III. APPROACH OVERVIEW

Before introducing formal definitions, here we provide an
overview of the proposed approach, in terms of its require-
ments (Section III-A), the overall workflow (Section III-B),
the underlying methodology (Section III-C), and the main
concepts (Section III-D). Formal definitions of such concepts
are provided next, in Section IV.

A. Requirements
Throughout the paper we use the term formalism to mean “a

class of models that share the same primitives and notation”.
In MDE terms this concept is called a metamodel [38].
Our framework assumes the existence of an instance-level
formalism, and a template-level formalism.

The instance-level formalism is a formalism having the
concept of state variable [39], and it is the one that is actually
used for performability evaluation (e.g., SANs). A template-
level formalism provides a generalized representation of a
set of similar instance-level models, by including variability
and parameters. We do not impose the use of a specific
template-level formalism. We only assume the existence of a
concretize() function, which generates an instance-level model,
taking as input a template-level model and an assignment of
values to its parameters. Further details on this function are
provided in Section IV-F.

Different approaches for defining a template-level formalism
can be used, depending on the adopted instance-level formal-
ism, and on the desired level of detail. A possible approach is

4

to use languages like the Common Variability Language (CVL,
[40]) to specify parameterized variation points. This approach
can in principle be applied to define a “template-level version”
of any formalism.

On the other extreme, it is possible to use the same formal-
ism both at template-level and at instance-level. In this case
concretize() is the identity function, implying that template-
level models do no include variability at all. Automated model
composition based on predefined state sharing patterns would
still be applicable.

B. The Workflow

The overall workflow of our approach is depicted in
Figure 1. Note that the activities in the workflow are not
strictly sequential. In particular, the creation of the model
library (Activity 1) is performed once, and the resulting library
stored for future access. Libraries are then used repeatedly to
construct and to evaluate system models (Activities 2 and 3).
When needed, libraries can however be updated.

Activity 1. Starting from requirements and architecture of
a system (or class of systems), an expert in performability
modeling develops a “Model Templates Library”, i.e., a library
of reusable model templates and composition rules. Such
library consists of two parts:

• Templates Specifications, which contain a description of
the available model templates, their interfaces and param-
eters, and information on where their implementation is
stored. Templates are specified using the TMDL, which
is described later (Section V).

• Templates Implementations, which are the internal im-
plementation of atomic model templates specified in the
library. For atomic templates, the implementation is a
model in the instance-level formalism and the storage
format depends on the specific tools that are adopted. The
PNML (Petri Net Markup Language) [41] is an option
for models based on Petri Nets. Another possibility is
to store models using XMI (XML Metadata Interchange)
[42], which can be used for any template-level formalism
having a metamodel in the MOF (Meta-Object Facility)
standard [43]. For composite templates the implemen-
tation consists in a set of composition rules, and it is
specified using the TMDL.

Descriptions in textual format can also be associated to
templates in the library, to facilitate users in managing and
selecting them.

Activity 2. The second activity consists in defining the
different system configurations that should be analyzed. The
input for this activity may come from different sources, e.g.,
designs of the system architecture, a new system configuration
detected by in-place sensors, etc. The configuration to be
analyzed is specified using the TMDL as well, as a Scenario
element. A TMDL Scenario defines which templates are
needed and how they have to be instantiated. From a practical
perspective, Scenario specifications can be either created
manually starting from informal descriptions (e.g., provided
using the natural language), or they can be automatically

generated from structured models (e.g., UML models), by ap-
plying model transformation techniques. Generation of TMDL
Scenario specifications from UML models or other high-
level representations is outside the scope of this paper.

Activity 3. Starting from the Model Templates Library
defined by Activity 1, and from the description of scenarios
provided by Activity 2, the models for all the different system
configurations are automatically instantiated, assembled, and
evaluated. The generation of composed models is accom-
plished by means of the TMDL “Automated Composition
Algorithm”, which takes as input a TMDL Scenario speci-
fication and generates the corresponding model by generating
model instances and properly assembling them based on the
patterns specified in the TMDL Library specification.

It is important to note that the “Automated Composition Al-
gorithm” of Figure 1 is the same for every library of template
models, i.e., it is specified and implemented only once, and it is
reused to automatically assemble models of different systems,
possibly implemented in different state-based formalisms. This
is one of the key points of our approach, and the main reason
to develop the TMDL.

C. Composition Systems

From a methodological point of view, our approach defines a
new composition system for the domain of state-based models.

According to [44], a composition system is defined by three
elements: i) composition technique, ii) component model, and
iii) composition language. The component model defines what
a component is, how it can be accessed, and which are its
interfaces for composition. The composition technique defines
how components are physically connected. The composition
language is used to specify “composition programs”, i.e.,
specifications of which components should be selected and
connected, and how, in order to obtain the intended product.

Looking at the workflow in Figure 1 under this perspec-
tive, the component model is given by the definition of
model templates (Section IV-C); the composition technique
is superposition of state variables on model interfaces; the
composition language is the TMDL we define in Section V.
TMDL Scenario specifications are our notion of composi-
tion programs. Finally, the automated composition algorithm
of Figure 1 is the composition engine, which interprets com-
position programs specified in TMDL, and properly assembles
instances of the selected model templates.

D. Main Concepts

We introduce here the main concepts of our approach. The
basic building blocks are model templates, which are the
result of Activity 1. A set of model templates constitutes a
model templates library (or model library for short). A model
template consists of a specification and an implementation.
The specification includes a set of interfaces, which specify
how a template can interact with the other models, a set of
parameters, and a set of observation points. The latter are
selected state variables that can be used to “observe” the
model, i.e., to define metrics. Interfaces and observation points

5

 Model Templates Library

Templates Specifications

- Composite Implementations
 (Composition Patterns)

Scenario #1 Automated
Composition Algorithm

Model Transformation
- e.g., using the QVT standard
 (Query/View/Transformation)

Composed Model
(Configuration #1)

Composed Model
(Configuration #2)

Composed Model
(Configuration #3)

Scenario #2

Scenario #N

Target System

Configuration #N

Configuration #2

Configuration #1

Architecture

Requirements

(1)

(2)
(3)

- Model Interfaces

- Parameters

- Observation Points

Templates Implementations

- Atomic Implementations

TMDL "Library"

TMDL "Scenario"

Models in the
template-level
formalism

Composition of models in
the instance-level formalism

Information FlowArtifactComponent

Figure 1: Our workflow for the automated generation of performability models. Elements depicted in gray are specified using
the TMDL (Template Models Description Language), which is defined in Section V.

are defined in terms of state meta-variables, i.e., state variables
with variability elements.

The implementation describes how the internal behavior of
the template is realized. Based on its implementation, a model
template can be either an atomic template or a composite
template. For atomic templates the implementation consists
in a model in the template-level formalism of choice.

Composite templates specify patterns to compose other
model templates. Their implementation consists in a set of
blocks and a set of composition rules. Each block is a place-
holder for instances of other model templates. Composition
rules define patterns to connect such instances.

A model variant is obtained from a model template by
resolving all the variation points. That is, an atomic variant
is a reference to an atomic template and an assignment for
its parameters. A composite variant, in addition to assigning
values to template parameters, also specifies which other
variants are used to fill the blocks defined in the template. A
selection of model variants defines a scenario to be analyzed,
and it is the output of Activity 2.

A model instance is an individual instantiation of a model
variant. Multiple instances of a model variant can be used
to construct a global system model. An atomic instance is
a concrete model in the instance-level formalism of choice
(e.g., SANs), derived by applying the concretize() function
to the atomic template implementation and the assignment
of parameters in the variant. A composite instance is an
instance of a composite variant, i.e., a collection of other
model instances that get composed according to the rules
defined in the composite template. Model instances are the
output of Activity 3, and are automatically generated by the
model composition algorithm.

IV. THE TEMPLATES FRAMEWORK: FORMAL DEFINITIONS

We now take a step forward and provide formal definitions
for the concepts introduced in the previous section. In Sec-
tion IV-A we introduce basic definitions that will be used in
the rest of the paper, while in Section IV-B we define the
concept of model interfaces. Section IV-C, Section IV-D, and
Section IV-E, formalize the concepts of templates, variants,
and instances, respectively.

A. Preliminaries

1) Basic Definitions: We adopt the definitions of sort, op-
erator, term and assignment from the ISO/IEC 15909 standard
[45], which apply to a wide range of formalisms based on Petri
Nets. However, instead of places, we use the more general
concept of state variable, as in [39]. The definitions of term
and assignment will be used extensively in the rest of the
paper.

A state variable is the basic unit of decomposition of system
state. The set of possible values of a state variable is defined
by its associated sort (i.e., type).

A many-sorted signature is a pair (S,O), where S is a set
of sorts and O is a set of operators, together with their arity.
Arity is a function from the set of operators to S∗×S, where
S∗ is the set of finite sequences over S, including the empty
string ε. An operator is thus denoted as o(σ,s), where σ ∈ S∗
are the input sorts, and s ∈ S is the output sort. Constants are
operators with empty input sorts, and are denoted as o(ε,s) or
simply os.

We denote with ∆ a set of parameters; a parameter in ∆ of
sort s ∈ S is denoted by δs. ∆s ⊆ ∆ is the set of parameters
of sort s.

6

Terms of sort s ∈ S may be built from a signature (S,O)
and a set of parameters ∆. The set of terms of sort s is denoted
by TERM(O ∪∆)s, defined inductively as [45]:
• for all o(ε,s) ∈ O, o(ε,s) ∈ TERM(O ∪∆)s;
• ∆s ⊆ TERM(O ∪∆)s; and
• for s1, . . . , sn ∈ S, if e1 ∈ TERM(O ∪ ∆)s1 , . . . , en ∈
TERM(O ∪ ∆)sn are terms and o(s1...sn,s) ∈ O, is an
operator, then o(s1...sn,s)(e1, . . . , en) ∈ TERM(O ∪∆)s.

A many-sorted algebra H provides an interpretation of a
signature (S,O). For every sort s ∈ S there is a corresponding
set Hs, and for every operator os1...sn,s ∈ O there is a
corresponding function oH : Hs1× . . .×Hsn → Hs. A many-
sorted algebra is thus a pair H = (SH , OH), where SH =
{Hs|s ∈ S},∀s ∈ S,Hs 6= ∅, and OH = {oH |o(σ,s) ∈ O} is
the set of corresponding functions.

Given a many-sorted algebra H , and many-sorted parame-
ters in ∆, an assignment for H and ∆ is a family of functions
ξ, comprising an assignment function for each sort s ∈ S,
ξs : ∆s → Hs. The function may be extended to terms by
defining a family of functions V alξ comprising, for each sort
s ∈ S the function V als,ξ : TERM(O ∪∆)s → Hs [45].

To support the subsequent definitions, we require the ex-
istence of at least the “integer”, “real”, “set of integers”,
and “set of reals” sorts. Formally, we assume a signature
(S,O), such that {Int, Real, Set{Int}, Set{Real}} ⊆ S,
and O contains the common operators applicable on such
sorts. The corresponding many-sorted algebra is (SH , OH),
with {N,R,P(N),P(R)} ⊆ SH , and OH containing the set
of functions corresponding to operators in O.

2) Indices, Multiplicity, Labels: Template-level models
contain variable elements, which serve as a placeholder for
a set of concrete elements that will be derived upon the
instantiation of the template. Multiple concrete elements can
be originated from the same variable element. We use indices
to distinguish them. Such indices are not required to form a
progressive sequence.

Figure 2 shows a simple example adapted from the SANs
models in [24]. The right part of the figure shows two
models in the instance-level formalism (SANs), representing
two different classes of users in a mobile network. UserX
may make requests for services 1, 6, or 7, by adding a token
in places Req1, Req6, or Req7, with a certain probability.
Similarly, UserAmbulance may make requests for services 3
or 7, by adding a token in places Req3 or Req7, with a certain
probability. This behavior can be abstracted to a generic User
template model, shown in the left part of the figure. Such
model contains a generic “place template” Req. Based on
the value assigned to parameters of the template-level model,
different models in the instance-level formalism are generated
by concretize(), resulting in a different model structure and
different indices.

The number of concrete elements to which a template
element gets mapped, and their indices, is called its multi-
plicity, denoted as k. The multiplicity is specified as a set
of values in N (i.e., k ⊆ N), which indicate the indices
assigned to concrete elements. In the previous example, the
multiplicity assigned to the Req place in the generation of
UserX would be k = {1, 6, 7}. In general, the multiplicity

User atomic template
(template-level formalism)

IUser model interface

Serv
ice

s=
{1

,6,
7}

concretiz
e()

Services={3,7}

concretize()

UserX instance
(instance-level formalism)

UserAmbulance instance
(instance-level formalism)

Figure 2: Example of two different instances originating from
the same User template, using SAN as the instance-level
formalism. The IUser model interface is formed by the state
meta-variables Req, Failed, and Dropped.

may depend from the parameters of the template, and is thus
more accurately defined as a term of sort “set of integers”,
i.e., k ∈ TERM(O ∪∆)Set{Int}.

In our framework, variability (and thus multiplicity) appears
at different levels, i.e., elements of an atomic template, in-
stances of atomic templates, block of composite templates, in-
stances of composite templates. For this reason, state variables
in a model may be assigned more than one index, identifying
the variable across different dimensions. To generalize this
aspect, each index is coupled with a label, which identifies
the dimension that is captured by the index.

Formally, a labeled state variable is a triple (vs, L
ξ, f),

where vs is the state variable (of sort s), Lξ is the set of labels,
and f : Lξ → N is a function that associates a numeric index
with each label. Labeled state variables belong to instance-
level models; the concrete values of Lξ and f are a result of
the instantiation process, discussed later (Section IV-F). In the
rest of the paper, we denote with L∗ the set of all the possible
labels.

B. Model Interface

A model interface defines in which ways a model template
can interact with the other models, and with the rest of the
framework. A model interface can be realized by different
model templates having different implementations. Two tem-
plate models that realize exactly the same model interfaces
can be interchanged. Clearly, depending on the internal im-
plementation, the resulting behavior might be different. The
selection of the most appropriate template should be based on
the scenario under analysis.

A model interface specifies a set of state variables that
a model must have. As model templates include variability,
model interfaces are specified by means of state variables
having variability information, that is, multiplicity and labels.
A model interface is thus a set of state “meta-variables” V .

Formally, a state meta-variable is a tuple (vs,∆
v, L, k),

where v is the state variable (of sort s), ∆v is a set of param-

7

eters, L ⊆ L∗ is a set of labels, and k ∈ TERM(O∪∆v)Set{Int}
is the parametric multiplicity. A multiplicity k = ∅ indicates
that any multiplicity is admitted for that variable. The instan-
tiation process generates a set of labeled state variables (in
the instance-level model) from each state meta-variable, and
assigns labels and indices to them. We denote as V ξ(v) the set
of labeled state variables generated from a state meta-variable
v under an assignment ξ.

Following this definition, the IUser interface of Figure 2
contains three state meta-variables, and it is specified as:

IUser = {v1, v2, v3},
v1 = (ReqInt, {sSet{Int}}, {srv}, sSet{Int}),

v2 = (FailedInt, ∅, ∅, {1}),
v3 = (DroppedInt, ∅, ∅, {1}.

(1)

Note in particular that: i) the multiplicity k for the Req place is
defined by the s parameter of sort “set of integers” (sSet{Int}),
ii) the multiplicity of Failed and Dropped is constant, and iii)
the Req state meta-variable is labeled with the srv label.

C. Templates

A model template is defined as:

MT = ((I,∆, O, LT),Ψ),

Ψ =

{
M for atomic templates,

(B,R) for composite templates.

The quadruple (I,∆, O, LT) constitutes the specification of
the template. I is the set of model interfaces that are realized
by the template, ∆ is the set of parameters, O is the set of
observation points, and LT ⊆ L∗ is the set of template-specific
labels. Note that ∀V ∈ I, ∀(v,∆v, L, k) ∈ V, ∆v ⊆ ∆
must hold, i.e., the parameters of the template must include
all the parameters of its interfaces. Observation points are
specific state meta-variables that the model shall have, with
the purpose to define metrics for observation. A state meta-
variable may act at the same time as an interface variable and
as an observation point.

Ψ is the implementation of the template, which can be either
atomic or composite. For an atomic template, Ψ =M, where
M is a model in the template-level formalism of choice;
in our examples we use a formalism derived from SANs.
For completeness, its formal definition can be found in a
technical report [46]. The implementation of the template must
be compatible with its specification, i.e., the implementation
should contain all the state meta-variables that are declared in
the specification (interface variables and observation points).

The implementation of a composite template is given by
Ψ = (B,R), where B is a set of blocks and R is a set of
composition rules. Blocks are slots to be filled by instances
of other templates, which will then be composed together
according to the rules in R. Blocks define which kinds of
templates are required to perform the composition, and their
roles.

A block b ∈ B is a triple (Ib, Lb, kb), where: Ib is
the set of required model interfaces; Lb ⊆ L∗ is a set of
block-specific labels; and kb ∈ TERM(O ∪ ∆)Set{Int} is the
block multiplicity. kb = ∅ indicates an optional block with

unspecified multiplicity. Block-specific labels allow instances
originating from different blocks to be distinguished, i.e., they
identify different roles in the composition. The multiplicity
defines how many instances of the block should be generated,
possibly based on template parameters.

Each composition rule r ∈ R defines how a specific set of
labeled state variables belonging to different block instances
will be connected together. Three composition rules are pos-
sible in our framework: all, match, and forward. Clearly, only
state variables of the same sort can be connected. Besides
specifying how variables are connected, they also specify
how indices and labels are altered, thus defining labeled state
variables for the resulting composite model instance.

We denote with V B the set of all the interface variables that
are required by all the blocks in B, i.e., V B = {v ∈ V | V ∈
I, (I, L, k) ∈ B}. The subset of V B formed by its elements
having sort s is denoted as V Bs . Then, for each s ∈ S:
• An all rule is a pair (ω,W), with W ⊆ V Bs . The rule

specifies that all the labeled state variables generated from
interface variables in W should be composed together.
Such composition forms a new labeled state variable
(ω, ∅, ∅).

• A match rule is a triple (ω,W,L), with W ⊆ V Bs , and
L ⊆ L∗ a set of labels. The rule specifies that labeled state
variables generated from interface variables in W should
be composed together based on their labels and associated
indices. That is, instances having the same indices for
labels in L are composed together: a labeled state variable
(a, La, fa) is composed with any (b, Lb, fb) such that
fa(l) = fb(l) ∀l ∈ L. Each of such compositions forms
a new labeled state variable (ω,La ∪ Lb, f ′).

• A forward rule is a pair (ω,W), with W ⊆ V Bs ,
specifying that all the interface variable instances gen-
erated from interface variables in W will simply become
state variables of the composite instance, available to be
exposed as interfaces.

Note that also for composite templates the implementation
(B,R) must comply with the specification (I,∆, O, LT). In
this case it means that i) for each meta-variable of interfaces
specified in I, there is at least one rule in R such that v = ω,
and ii) for each observation point in O there is an interface
variable required by one of the blocks B.

D. Variants

A model variant is derived from a template by assigning
concrete values to its parameters. Formally, a model variant is
defined as:

MV = (MT, ξ, γ),

γ =

{
∅ for atomic variants,

γ : B → P(V) for composite variants.

where MT is a model template, and ξ is an assignment.
For composite variants (i.e., those derived from composite
templates), γ : B → P(V), with V the set of all model variants,
is a function that assigns a set of variants to each block of the
referenced template. Note that the variants selected by γ must
realize all the model interfaces required by the block, i.e.,

8

∀(Ib, Lb, kb) ∈ B, ∀((I,∆, O, LT),Ψ) ∈ γ(b), Ib ⊆ I. For
variants of atomic templates, γ is the empty function.

E. Instances

A model instance is derived by combining i) the imple-
mentation given in the model template, and ii) the assign-
ment of parameters given in the model variant. To build a
model for a given scenario, many instances derived from the
different variants are typically needed. The definition of a
composite template is recursive: it is built connecting together
other model templates, which in turn can be either atomic
or composite. Instances are thus organized in a tree, where
internal nodes are instances of composite templates, and leaves
are instances of atomic templates. The root of the tree is the
model instance representing the complete model of the system.
We call such model instance the model root.

Formally, a model instance is defined as:

MI = (kξ, V ξ, Oξ,Ψξ),

Ψξ =

{
Mξ for atomic instances,

(Iξ, Cξ) for composite instances.

where kξ ∈ N is the index of the instance, V ξ is the set
of labeled state variables derived from interface variables
of the template, Oξ is the set of labeled state variables
derived from observation points of the template, and Ψξ is
the implementation of the instance.

For an atomic instance, Ψξ = Mξ is a concrete model
in the instance-level formalism (SANs in our case), derived
through the concretize() function from the implementation of
the template M, and the assignment ξ in the variant.

For a composite instance, Ψξ = (Iξ, Cξ), where Iξ is the
set of model instances that have been generated from the
blocks of the template, and Cξ is a set of connections (i.e.,
superposition of state variables) of such model instances, as in
[30]. The implementation of composite instances is generated
by the automated composition algorithm, described in the next
section. In both cases, V ξ, Oξ, and kξ are also generated by
the automated composition algorithm. That is, model instances
are fully generated by the composition algorithm.

F. Instantiation and Composition Algorithm

The instantiation and composition algorithm is constituted
of three procedures: instantiateVariant, concretize, and con-
nectStateVariables, described in the following.

1) instantiateVariant: This is the main procedure of the
composition algorithm, and it is executed on the model variant
corresponding to the scenario to be analyzed. The algorithm
is recursive, and consists of two phases. In the first phase, the
tree of model templates is traversed top-down, all the model
instances are generated, and they are temporarily added to a
list. This step defines the set Iξ of each composite instance.
Indexes are assigned by evaluating the terms in the multiplicity
specification with current parameter values.

In the second phase, instances are progressively retrieved
from the list, and connected together according to the composi-
tion rules in their template. The pseudo-code of this procedure
is listed in the following.

instantiateVariant((MT, ξ, γ), k) {
/∗ allInstances variable is a set of model instances ∗/
allInstances as List = {};
/∗ Phase 1: Generate Instances ∗/
if(MT is atomic) {

/∗ for atomic templates call the formalism−specific ∗/
/∗ instantiation procedure ∗/
inst = concretize(MT, ξ);
inst−>setIndex(k);
allInstances = allInstances−>append(inst);

}else{
/∗ For composite templates, instantiate all the blocks ∗/
/∗ Note: MT = ((I,∆, LT), (B,R) ∗/
for(b ∈ B) {

/∗ For each block − Note: b = (Ib, Lb, kb) ∗/
for(v ∈ γ(B) {

/∗ For each variant assigned to the block ∗/
for(j ∈ V alξ(kb)) {

/∗ For each term in the multiplicity ∗/
/∗ generate an instance with that index ∗/
inst = instantiateVariant(v, j);
allInstances = allInstances−>append(inst);

}
}

}
}
/∗ Phase 2: Connect state variables according to the rules ∗/
for(i ∈ allInstances) {

connectStateVariables(i);
}
return allInstances;

}

2) concretize: As introduced in Section III-A, we assume
the existence of a concretize() function, which generates a
model in the instance-level formalism, based on a template-
level formalism and an assignment of parameters. That is, it
takes as input the pair (M, ξ) and returnsMξ. The actual im-
plementation of this function depends on the selected template-
level and instance-level formalisms. An interested reader may
find a definition of this function for a template-level formalism
based on SANs in the technical report in [46].

3) connectStateVariables: This procedure assigns labels
and indices to interface variables of the generated instances,
and executes connection rules specified in composite tem-
plates. The procedure takes as input a model instance MIi =
(i, V ξ, Oξ,Ψξ).

For atomic instances, the procedure generates labeled state
variables from meta-variables, assigning them initial indices
and labels. That is, it populates sets V ξ and Oξ. Given a state
meta-variable (v,∆v, L, k), and the assignment ξ, the set of
labeled state variables derived from it is:{

(vj , L
ξ, f) | j ∈ V alξ(k)

}
,

with Lξ = L ∪ LT , and LT the set of labels associated with
the template. Being j the index associated to the state variable,
the function f is defined as:

f =

{
j, ∀τ ∈ L,
i, ∀τ ∈ (LT \ L).

That is, for each state meta-variable, the indices of generated
labeled state variables is given by the set of integers resulting
from evaluating the multiplicity k. Each generated state vari-
able receives the labels from its meta-variable, L, which gets

9

assigned its index, j, as well as those of the template itself,
LT , which get assigned the index of the model instance, i.

For composite instances, i.e., Ψ = (Iξ, Cξ) the procedure
executes the composition rules in the corresponding template
(I,∆, O, LT ,Ψ = (B,R)), consequently generating labeled
state variables for the composite instance. Before actually
executing the rules, labeled state variables of children instances
in Iξ are updated, based on properties of the originating
blocks. Each labeled state variable (v, Lξ, f), belonging to
an instance filling block (Ib, Lb, kb), is updated to (v, L′, f ′),
where L′ = Lξ ∪ Lb, and, denoting with j the index of the
model instance:

f ′(α) =

{
j if α ∈ Lb,

f(α) otherwise.

Then, composition rules are applied. Their application de-
fines the sets Cξ and V ξ for the composite instance. This
step is described in the following, denoting with ψ(x) the
state meta-variable from which the labeled state variable x
has originated, and with i the index of the composite instance
being processed.

• When applying an all rule (ω,W), all labeled state
variables x such that ψ(x) ∈ W are connected together.
The result, which is added to V ξ, is a single labeled state
variable (ω,L′, f ′), with L′ = LT and f ′(α) = i ∀α ∈
L′.

• When applying a match rule (ω,W,Lω), any labeled
state variable x = (ωx, Lx, fx) is composed with any
other labeled state variable y = (ωy, Ly, fy), such that
ψ(x), ψ(y) ∈ V and fx(α) = fy(α), ∀α ∈ Lω . Each
composition results in a labeled state variable (ω,L′, f ′)
being added to V ξ, with L′ = Lx ∪ Ly ∪ LT , and:

f ′(α) =

fx(α) ≡ fy(α) if α ∈ Lω ∩ Lx ∩ Ly,

fx(α) if α ∈ Lx \ Ly,
fy(α) if α ∈ Ly \ Lx,
i otherwise.

Note that when applying a match rule, each labeled
state variable may be composed with one or more other
labeled state variables. If no matching variable exists,
the outcome of a match rule is exactly the same as the
forward rule, defined in the following.

• When applying a forward rule (ω,W), any labeled state
variable x = (ωx, Lx, fx) such that ψ(x) ∈ W simply
becomes a labeled state variable (ωx, L′, f ′) ∈ V ξ of the
composite instance, with L′ = Lx ∪ LT , and:

f ′(α) =

{
i if α ∈ LT ,

f(α) otherwise.

The final step of this procedure consists in managing the
observation points of composite instances, that is, defining the
Oξ sets. This task is performed simply by looking at the meta-
variables in O in the corresponding template: all the labeled
state variables generated from them are added to Oξ, i.e., Oξ =
{v ∈ V (ω) | ω ∈ O}.

G. Definition of Metrics

The main purpose for constructing this kind of models is to
understand the behavior of a complex system, and evaluate
probabilistic metrics. Such metrics are typically defined as
reward variables [39], [47].

Normally, a reward variable is defined based on a function
that maps each state of the model and each transition of
the model to a number in R. One of the main objectives of
our framework is to encapsulate the internal implementation
of templates, and improve reusability of models. For this
reason, we restrict reward variables to be defined based on
observation points only, that is, all the labeled state variables
in set Oξ of any model instance. Such observation points
are part of the specification of the template. The model
library would then include a textual description of the purpose
and meaning of each observation point. Examples of reward
variables definition based on observation points are provided
in the case study in Section VI.

It should be noted that this approach implies that all the
reward variables must be based on rate rewards only, since
all the observation points are state variables. From a practical
point of view, the absence of impulse rewards (defined on the
firing of transitions) is not a limitation, as an equivalent rate
reward can be defined by adding a state variable that tracks the
number of transition firings and exposing it as an observation
point.

V. TEMPLATE MODELS DESCRIPTION LANGUAGE

We have now introduced all the concepts that enable our au-
tomated model composition approach. In this section we define
a Domain-Specific Language (DSL) [48] that can be used to
concretely specify and use libraries of model templates. We
call this language the Template Models Description Language
(TMDL).

The metamodel of the TMDL is shown in Figure 3, using the
Ecore notation. We use the support for generic types provided
by Ecore [49] to implement the sort concept; that is, some
entities of the metamodel accept a type parameter S, indicating
their sort. We denote an element of sort S with <S>.

A TMDLSpecification may be either a Library (of
model templates), or a Scenario. Some elements are com-
mon to both kinds of specifications. A TMDL Parameter
has a name and type S. An Assignment references a
Parameter<S>, and assigns it a concrete value of type
S. The Set entity is a representation of the set concept;
accordingly, it contains items of type S. A Term<S> is an ab-
stract element representing a generic term t ∈ TERM(O∪∆)s.
Each Term<S> can be evaluated with respect to a set of
Assignment elements, returning a value of type S.

There can be different kinds of terms, each one repre-
senting an operator in O. In Figure 3 we included those
that specify: i) literal values, ii) parametric values, and iii)
set of values. TermLiteral<S> is a term representing a
literal value of sort S. TermParameter<S> is a reference
to a Parameter<S>. TermSet<S> is an abstract element
extending Term<Set<S>>. A TermSetOfTerms<S> con-
tains a set of elements of sort S, thus being able to return a

10

TMDLSpecification

name : EString

Library Scenario

Template

name : EString
labels : EString

Parameter

name : EString

S

Assignment

value : S

S

MetaVariable

name : EString
labels : EString

S

Interface

name : EString

Implementation

ImplementationAtomic

source : EString

ImplementationComposite

Variant

name : EString

Block

name : EString
labels : EString

BlockRealization
CompositionRule

name : EString

S

CompositionRuleAllS

CompositionRuleForward
S

CompositionRuleMatch

labels : EString

S

Set

items : S

S

Term

evaluate(assignments Assignment) : S

S

TermLiteral

value : S

S

TermParameter
S

TermSetS

TermSetOfTermsS TermSetInt

TermSetIntInterval

[1..*] templates

[0..*] parameters

[0..*] parameters

[0..*] metavariables [1..*] interfaces

[1..*] interfaces

[1..1] implementation

[1..*] observationPoints

[1..1] template

[0..*] assignments

[1..*] requiredInterfaces

[1..1] block

[1..*] assignedVariants

[1..1] root[1..*] variables

<<bind S>> S

<<bind S>> S

<<bind S>> S

[1..*] blocks
[1..*] rules

[1..*] variants

[1..1] parameter

[0..*] blockRealizations

<<bind S>> S

<<bind S>> S

[1..1] parameter

<<bind S>> Set

<<bind S>> S <<bind S>> EIntegerObject

[0..*] terms
[1..1] multiplicity

[0..1] multiplicity

[1..1] start

[1..1] end

[0..*] parameter

Figure 3: TMDL metamodel.

value of sort Set<S> when evaluated. TermSetInt extends
TermSet<EIntegerObject>1, meaning that it is a Term
of sort “set of integers”, i.e., t ∈ TERM(O∪∆)Set{Int}. Finally,
a TermSetIntInterval represents the set of integers
{n ∈ N | start ≤ n ≤ end}, where start and end are terms of
integer type, i.e. Term<EIntegerObject> elements.

The hierarchy can then be extended with new operators as
needed, thus extending the expressiveness of the framework.
For example, a SumInt operator could be added, to specify a
term of sort Int as the arithmetic sum of other terms of sort
Int. This would allow the modeler, for example, to define
a multiplicity as the sum of the values assigned to various
parameters.

A. TMDL Library

A TMDL Library is created in Activity 1 of the workflow
in Figure 1. A Library contains a set of Interface and
Template elements.

A MetaVariable has a name (v), a sort (S), a set of
labels (L), and a mutliplicity (k), which is specified as a Term
of sort Set<EIntegerObject>. In TMDL, parameters
are owned by Interface and Template elements. As
such, each MetaVariable only contains references to the
parameters it uses.

An Interface contains a set of MetaVariable ele-
ments (V) and a set of Parameters; this is the union of all
the parameters of all meta-variables contained in the interface,
i.e., {δ ∈ ∆v | (v, s,∆v, L, k) ∈ V }.

Each template references a set of Interface elements
(I), it has a set of Parameter elements (∆), a set of
MetaVariable elements that define observation points (O),
and a set of labels (LT), which collectively represent the
specification of the template. A template also includes an

1EIntegerObject is the Ecore type for integer objects, and it is mapped
to java.lang.Integer.

Implementation (Ψ), which may be either atomic or com-
posite. An ImplementationAtomic consists of a source
attribute that indicates where the implementation of that tem-
plate can be found (M). An ImplementationComposite
consists of a set of Block elements (B) and a set of
CompositionRule elements (R).

A Block has a name and a set of labels (Lb), and it
references a set of Interface elements (Ib). As for meta-
variables, the multiplicity of the block (kb) is specified as a
Term of sort Set<EIntegerObject>.

A CompositionRule has a name (ω) and it references a
set of MetaVariable elements (W). In accordance with the
definitions in Section IV, three kinds of composition rules ex-
ist: CompositionRuleAll, CompositionRuleMatch
and CompositionRuleForward. For rules of kind
CompositionRuleMatch a set of labels on which the
composition is restricted can be specified (L). If it is not
specified we assume L = L∗, i.e., composition is performed
taking into account all the labels.

B. TMDL Scenario

A TMDL Scenario defines a concrete scenario to be
evaluated, and it is produced during Activity 2 of the workflow
in Figure 1.

A Scenario consists of a set of model variants (Variant
elements). One of them is marked as the model root, which
identifies the entry point of the automated composition algo-
rithm. Each Variant contains a reference to a Template
(MT) and a set of Assignment elements (ξ). A composite
variant also contains a set of BlockRealization elements
(γ): each of them associates a Block b with the set of
Variant elements that fill that block, i.e., it defines γ(b).

VI. APPLICATION EXAMPLE

In this section we demonstrate the application of our
approach to a concrete case study from the literature. The

11

case study is based on the work in [11], in which a large-
scale distributed application was analyzed, focusing on how
different configuration and arrangement of system components
would reflect on performability metrics.

A. The World Opera

The modeled system is the one envisioned by “The
World Opera” (WO) consortium, which aims at conduct-
ing distributed, real-time, live opera performances across the
world. Participating artists from different real-world stages are
mapped to virtual-world stages, which are projected as video
and shown to the audience at the local opera house, as well
as to audiences at geographically distributed (remote) opera
houses.

The infrastructure enabling such an application includes a
high number of specialized hardware and software compo-
nents, whose slight malfunction could severely affect the per-
formance. Fault-tolerant architectural solutions are therefore
necessary to ensure the correct execution of a WO perfor-
mance. To design such solutions it is essential to understand
the interactions between components, and the potential effects
of their failures on the overall quality as perceived by users.

The typical setup for a World Opera performance consists
of 3 to 7 real-world stages with different artists and possibly a
different set of technical components (microphones, projectors,
etc.). Components like cameras and microphones generate
multimedia streams of different kinds: video, audio, and sensor
(e.g., to track the movement of an artist on the stage). Streams
are then processed in different ways, and transmitted to and
from the remote stages. Finally, streams are rendered, i.e.,
decoded, synchronized, and reproduced to the audience.

The number and kinds of components in a certain stage,
and their interconnections, depend on the artists present in the
stage, and the role of the stage in the overall performance.
For example, some stages may only contain audience, while
others may contain only a specific set of artists.

In this context, model-based evaluation is needed to evaluate
the impact of component failures and compare different archi-
tectural solutions. Metrics for this kind of systems are based on
the reliability and availability of individual application streams
(i.e., video and audio streams) during the show. Given an
application stream j (e.g., audio or video stream), and being
T the duration of the show, we are interested in the following
metrics: i) Rj(T), the reliability of the stream until the end
of the show, and ii) Aj(0, T), the fraction of time the stream
is available during the show (interval-of-time availability).

This scenario is well-suited for showing the benefits of our
approach. The complexity is given not only by components
having variability in their structure, but also by the complex
interconnections that exist between them, and the need to
modify them in order to assess different configurations.

B. Model Templates

The model in [11] considers components and streams as the
basic elements of a WO performance, both having different
possible working states (e.g., working/failed for components,
good/missing/delayed for streams). The state of a stream in

a certain point of the architecture depends on the state of
all the components that have processed it so far (including
components that captured it). The state of different streams as
they are reproduced to the audience determines the quality
as perceived by the users and it is therefore the target of
evaluation.

In [11], a template-based approach was “empirically” used,
that is, without formally defining such templates, variability
aspects, or composition rules. Four atomic templates were
identified: Component, StreamAcquiring, StreamProcessing,
and StreamMixing. Component represents a single functional
component of the WO architecture, StreamAcquiring models
the process of capturing a stream, and StreamProcessing
models the processing of the stream by some component.
StreamMixing represents the act of mixing two or more
streams in a single one.

Instances of those templates are connected in a way that re-
flects the path that multimedia streams follow across the stage
components. By changing the way in which such templates
are arranged it is possible to assess different scenarios in an
efficient way. For example, it may be required to evaluate how
the target metrics would change if a certain stream is processed
by a given workstation instead of another one, or if different
combinations of components are used to reproduce multimedia
streams.

All the model templates for the WO system interact by
means of three model interfaces, each comprising a single
meta-variable (vs,∆

v, L, k):

IComponent = {(FailedStateInt, ∅, ∅, {1})} ;

IStreamInput = {(StreamStateInInt, ∅, ∅, ∅)} ;

IStreamOutput = {(StreamStateOutInt, ∅, ∅, ∅)} ;

(2)

The IComponent interface provides a view of the current
working state of a component, through the FailedState meta-
variable. The IStreamInput interface models the reception
of input streams, with StreamStateIn encoding the current
stream state. Similarly, the IStreamOutput interface models the
production of stream as output, with the current stream state
encoded in the StreamStateOut meta-variable. The multiplicity
of StreamStateIn and StreamStateOut is not specified, meaning
that the interface may refer to any number of streams.

The Component model template realizes the IComponent
model interface, and adds specific parameters:

Component = ((I,∆, O, LT),Ψ),

I = {IComponent}, ∆ = {λReal, NInt, cReal, tReal},
O = {FailedState}, LT = ∅, Ψ = [SAN template],

(3)

where λ is the failure rate of the component, N is the number
of spares, c and t are the coverage and delay of the failover
process, respectively. The current state of the component
(FailedState) is provided as an observation point.

The StreamProcessing model template represents the pro-
cessing of one multimedia stream by a component of the stage
architecture. It realizes all the three model interfaces:

StreamProcessing = ((I,∆, O, LT),Ψ),

I = {IComponent, IStreamInput, IStreamOutput}, ∆ = ∅,
O = {StreamStateOut}, LT = {s}, Ψ = [SAN template].

(4)

12

Figure 4: Implementation based on SANs of the StreamPro-
cessing atomic template.

The SAN implementation of this model template is very
simple (Figure 4). Basically, the current state of the stream
produced as output (StreamStateOut from the IStreamOutput
interface) is set based on the state of the stream received
in input (StreamStateIn from the IStreamInput interface), and
the current state of the component itself (FailedState from
IComponent).

The Component and StreamProcessing atomic templates can
be composed together using the WONode composite template,
which represents a node of the WO stage architecture:

WONode = ((I,∆, O, LT),Ψ),

I = {IStreamOutput, IStreamInput},
∆ = {sSet{Int}}, O = ∅, LT = ∅, Ψ = (B,R).

(5)

The s parameter defines how many streams are flowing
through the node, and their identifiers. The composite template
has three blocks, which are formally defined as follows:

B = {Bcomponent, Bstreams, Bpreviousnode},
Bcomponent = ({IComponent}, ∅, {1}) ,

Bstreams =

 IComponent,
IStreamInput,
IStreamOutput

 , ∅, sSet{Int}

 ,

Bpreviousnode = ({IStreamOutput}, ∅, ∅) .

(6)

The block Bcomponent represents the functional component as-
sociated to the architectural node (e.g., a workstation, a mixer),
Bstreams are the streams that flow through the component,
and Bpreviousnode is the previous node in the architecture,
i.e., another instance of the WONode template to which it
is directly connected. Actually, it could be an instance of
any model template that realizes the IStreamOutput model
interface. Bcomponent has a constant multiplicity of {1}, while
the multiplicity of Bstreams is given by parameter s: there is
a model instance for each stream that flows through the node,
and their identifiers are given by the values assigned to the
set s. The multiplicity of block Bpreviousnode is unspecified,
meaning that there can be any number of its realizations; in
fact, different streams con reach the node from different paths.

Composition rules in R are given in the TMDL notation:
1 template WONode realizes IStreamInput,IStreamOutput {
2 parameters { Set<Int> s }
3 block Component requires IComponent
4 block Streams[s]
5 requires IComponent,IStreamInput,IStreamOutput
6 block PreviousNode[] requires IStreamOutput

7 rules {
8 all FailedState { Component, Streams }
9 match StreamStateIn labels s {

10 Streams.StreamStateIn,
11 PreviousNode.StreamStateOut
12 }
13 forward StreamStateOut { Streams.StreamStateOut }
14 }
15 }

Lines 1–6 define the WONode template, its parameters, and its
blocks. Three composition rules are defined. Line 8 defines
an all rule, in which the FailedState interface variable
of the Component block is composed with the one having
the same name in each of the Streams blocks. Basically,
this allows instances of the StreamProcessing template
to access the current state of the component. Lines 9–12
specify that the StreamStateIn interface variables be-
longing to a given stream should be connected with the
matching StreamStateOut interface variables from the
previous node in the architecture. To be able to distinguish
the states of different multimedia streams, a match rule is
used, specifying that interfaces should be joined based on the
identifiers associated to the “s” label.

Finally, line 11 specifies that the interface variables
StreamStateOut of Streams models should be for-
warded as interface of the composite template. This
is what allows the states of the streams to be fur-
ther propagated. In fact, they will have the role of
PreviousNode.StreamStateOut (as in line 11) in an-
other instance of the WONode model template.

C. Scenario Specifications

In this section we revise the scenario analyzed in [11] using
the approach proposed in this paper, and show how alternative
scenarios can be defined.

1) Scenario #1: The scenario consisted of a WO perfor-
mance comprising three stages and five multimedia streams:
audio of the orchestra (1); audio of actors (2); video of the
orchestra (3); video of actors (4); and video of the director (5).
Streams 1, 3, and 5 are captured in Stage A, while streams
2 and 4 are captured in Stage B. Stage C only contains the
audience. All the streams are reproduced in all the three stages.

The composed model corresponding to one of the stages,
Stage A, is depicted in Figure 5. Using the traditional ap-
proach, composing such model requires considerable manual
effort. Each Submodel block is obtained by selecting a previ-
ously defined SANs model; if two submodels have the same
behavior but different numerical parameters, the source model
typically needs to be duplicated and modified. Then, for each
Join block the state variables of submodels need to be carefully
connected together, following the devised patterns. This has
to be done recursively, starting from the bottom until reaching
the root of the model, in this case the Gateway with Streams
node in the top right part of the figure.

Furthermore, the one in Figure 5 is only one of the three
stages that are needed in the model; the same procedure has to
be repeated for the other two, which have a different structure.
Then, all the three models have to be composed together. Note
that this is just for the evaluation of a single scenario. If the
architecture of a stage changes, or a different show is planned

13

CameraWS_with_Streams

Gateway_with_Streams
CameraWS_DisplayWS

Camera2NodeCamera1Node

AudioWS_with_Streams

Mixer_with_Streams

DisplayWS_with_Streams

MicNode

MIcWifiNode

DisplayNode

SpeakerNode

sp_gw_A1

sp_gw_A2

sp_gw_V3

sp_gw_V4

sp_gw_V5

gateway

camera1 camera2sa_cam1_V3 sa_cam2_V5

sp_wsp_A1

sp_wsp_A2

ws_audio

sp_mix_A2

mixer sp_mix_A1

sp_wsd_V3

sp_wsd_V4

sp_wsd_V5

ws_display

microphone

sa_mic_A1

microphone_wifi
sa_micwifi_A1

sp_spk_A2

sp_spk_A1 speaker

display

sp_disp_V3

sp_disp_V4

sp_disp_V5
ws_camera

sp_wsc_V3

sp_wsc_V5
CameraWS_with_Streams

Gateway_with_Streams
CameraWS_DisplayWS

Camera2NodeCamera1Node

AudioWS_with_Streams

Mixer_with_Streams

DisplayWS_with_Streams

MicNode

MIcWifiNode

DisplayNode

SpeakerNode

sp_gw_A1

sp_gw_A2

sp_gw_V3

sp_gw_V4

sp_gw_V5

gateway

camera1 camera2sa_cam1_V3 sa_cam2_V5

sp_wsp_A1

sp_wsp_A2

ws_audio

sp_mix_A2

mixer sp_mix_A1

sp_wsd_V3

sp_wsd_V4

sp_wsd_V5

ws_display

microphone

sa_mic_A1

microphone_wifi
sa_micwifi_A1

sp_spk_A2

sp_spk_A1 speaker

display

sp_disp_V3

sp_disp_V4

sp_disp_V5
ws_camera

sp_wsc_V3

sp_wsc_V5

Join

Join
Join

JoinJoin

Join

Join

Join

Join

Join

Join

Join

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel SubmodelSubmodel Submodel

Submodel

Submodel

Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel
Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Submodel

Submodel
Submodel

Submodel

Submodel

Figure 5: A SAN composed model for a WO stage, built
from multiple instances of the four identified atomic templates.
Figure adapted from [11].

(i.e., different streams) the model has to be composed again
reflecting the different structure.

Our approach facilitates the composition of the model,
which is automated, as well as the specification and update
of the scenario. An excerpt of the TMDL specification corre-
sponding to this scenario is reported in the following:
1 variant Camera from Component {
2 lambda=0.002, s=1, c=0.95, t=60 }
3 variant Workstation from Component {
4 lambda=1.0E-5, s=1, c=0.95, t=5 }
5 ...
6 variant Camera1Node from WONode {
7 s=(3)
8 with Camera as Component,
9 with StreamAcquiring as Streams

10 }
11 variant Camera2Node from WOnode { ... }
12 variant VideoWorkstationNode from WONode {
13 s=(3,5)
14 with Workstation as Component,
15 with StreamProcessing as Streams,
16 with Camera1Node,Camera2Node as PreviousNode
17 }
18 ...
19 variant StageA from Stage {
20 out=(1,3,5), in=(2,4)
21 with GW as GatewayNode
22 }
23 variant StageB from Stage { ... }
24 variant StageC from Stage { ... }
25 ...
26 variant root Performance3Stages from WOPerformance {
27 with StageA,StageB,StageC as Stages
28 }

Lines 1–4 define two variants of the Component model
template, setting the parameters corresponding to cameras
and workstations. Lines 6–10 define a node of the WO
architecture based on the WONode template. As specified by
the s parameter, the node will handle stream number 3, i.e., the
video of the orchestra, and will use an instance of the Camera
variant as its Component block. A similar structure is defined
in line 11 for another camera; in this case the involved stream
is stream number 5 (video of the director).

Lines 12–17 define another variant of the WONode template,
in this case representing a video workstation node. This
node handles streams 3 and 5, and uses Camera1Node and
Camera2Node to fill PreviousNode block. This means
that the workstation receives the video streams from the two
cameras. Lines 19–24, define variants for each of the involved
stages, identifying which streams are received or transmitted

1 variant VideoMixer from Component { ... }
2 variant VideoMixerNode from WONode {
3 s=(3,5)
4 with VideoMixer as Component,
5 with StreamProcessing as Streams,
6 with Camera1Node, Camera2Node as PreviousNode
7 }
8 variant VideoWorkstationNode from WONode {
9 s=(3,5)

10 with Workstation as Component,
11 with StreamProcessing as Streams,
12 with VideoMixerNode as PreviousNode
13 }

CameraWS_with_Streams

Gateway_with_Streams

CameraWS_DisplayWS

Camera2NodeCamera1Node

AudioWS_with_Streams

Mixer_with_Streams

DisplayWS_with_Streams

MicNode

MIcWifiNode

DisplayNode

SpeakerNode

VideoMixerNode

sp_gw_A1

sp_gw_A2

sp_gw_V3

sp_gw_V4

sp_gw_V5

gateway

camera1 camera2sa_cam1_V3 sa_cam2_V5

sp_wsp_A1

sp_wsp_A2

ws_audio

sp_mix_A2

mixer sp_mix_A1

sp_wsd_V3

sp_wsd_V4

sp_wsd_V5

ws_display

microphone

sa_mic_A1

microphone_wifi
sa_micwifi_A1

sp_spk_A2

sp_spk_A1 speaker

display

sp_disp_V3

sp_disp_V4

sp_disp_V5

ws_camera
sp_wsc_V3

sp_wsc_V5

video_mixer

sp_vmix_V3 sp_vmix_V5

Join

Join

Join

JoinJoin

Join

Join

Join

Join

Join

Join

Join

Join

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel SubmodelSubmodel Submodel

Submodel

Submodel

Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel
Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Submodel

Submodel

Submodel
Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Figure 6: Modification of the base scenario to add a video
mixer.

by the stage, and the model variant that represents the gateway.
Finally, lines 26–28 define the root variant that represents the
scenario.

2) Scenario #2: Let us now suppose that the architec-
ture of Stage A changes, and that a pre-processing step
is added before sending the video streams to the work-
station; this is performed by a video mixer, which syn-
chronizes the two streams and possibly applies effects like
closed captions. Using the TMDL this can be modeled by
simply modifying the Scenario specification as shown in
the listing in Figure 6. Another variant of WONode rep-
resenting the mixer has been added, using Camera1Node
and Camera2Node as its PreviousNode block. The
VideoWorkstationNode is modified to use this newly
created variant as PreviousNode.

The lower part of the figure highlights the modifications
that would be needed if changes were manually applied on the
model. Note that each connection (Join nodes) that is changed
involves selecting and connecting with the proper pattern the
interface variables of submodels.

3) Scenario #3: Further, we can imagine adding another
multimedia stream, Stream 6, which needs to be acquired by
another camera. Suppose the camera is from a different vendor,
thus having different parameters. In this case, it is sufficient
to create a new variant of the Component and WONode
templates, and use the latter to fill the PreviousNode block
for the node corresponding to the mixer (TMDL listing in
Figure 7).

Even these simple operations, if performed manually, would

14

1 variant NewCamera from Component { ... }
2 variant NewCameraNode from WONode {
3 s=(6)
4 with NewCamera as Component,
5 with StreamProcessing as Streams
6 }
7 variant VideoMixerNode from WONode {
8 s=(3,5,6)
9 with VideoMixer as Component,

10 with StreamProcessing as Streams,
11 with Camera1Node,Camera2Node,NewCameraNode as

PreviousNode
12 }

CameraWS_with_Streams

Gateway_with_Streams

CameraWS_DisplayWS

Camera2NodeCamera1Node

AudioWS_with_Streams

Mixer_with_Streams

DisplayWS_with_Streams

MicNode

MIcWifiNode

DisplayNode

SpeakerNode

VideoMixerNode

NewCameraNode

sp_gw_A1

sp_gw_A2

sp_gw_V3

sp_gw_V4

sp_gw_V5

gateway

camera1 camera2sa_cam1_V3 sa_cam2_V5

sp_wsp_A1

sp_wsp_A2

ws_audio

sp_mix_A2

mixer sp_mix_A1

sp_wsd_V3

sp_wsd_V4 sp_wsd_V5

ws_display

microphone

sa_mic_A1

microphone_wifi
sa_micwifi_A1

sp_spk_A2

sp_spk_A1 speaker

display

sp_disp_V3

sp_disp_V4

sp_disp_V5

ws_camera
sp_wsc_V3

sp_wsc_V5

video_mixer

sp_vmix_V3 sp_vmix_V5

sp_gw_V6

sp_wsd_V6

sp_disp_V6

newcamera sa_newcam_V6

sp_vmix_V6

sp_wsc_V6
CameraWS_with_Streams

Gateway_with_Streams

CameraWS_DisplayWS

Camera2NodeCamera1Node

AudioWS_with_Streams

Mixer_with_Streams

DisplayWS_with_Streams

MicNode

MIcWifiNode

DisplayNode

SpeakerNode

VideoMixerNode

NewCameraNode

sp_gw_A1

sp_gw_A2

sp_gw_V3

sp_gw_V4

sp_gw_V5

gateway

camera1 camera2sa_cam1_V3 sa_cam2_V5

sp_wsp_A1

sp_wsp_A2

ws_audio

sp_mix_A2

mixer sp_mix_A1

sp_wsd_V3

sp_wsd_V4 sp_wsd_V5

ws_display

microphone

sa_mic_A1

microphone_wifi
sa_micwifi_A1

sp_spk_A2

sp_spk_A1 speaker

display

sp_disp_V3

sp_disp_V4

sp_disp_V5

ws_camera
sp_wsc_V3

sp_wsc_V5

video_mixer

sp_vmix_V3 sp_vmix_V5

sp_gw_V6

sp_wsd_V6

sp_disp_V6

newcamera sa_newcam_V6

sp_vmix_V6

sp_wsc_V6
Join

Join

Join

JoinJoin

Join

Join

Join

Join

Join

Join

Join

Join

Join

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel

Submodel SubmodelSubmodel Submodel

Submodel

Submodel

Submodel

Submodel

Submodel Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Submodel

Submodel
Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Submodel

Submodel

Submodel
Submodel

Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Submodel

Submodel Submodel

Submodel

Submodel

Figure 7: Modification of the base scenario to add another
camera, which is used to capture a new video stream.

require considerable effort for the modeler. Manually perform-
ing the same modifications would require the following steps:
i) duplicating the atomic model for the camera, modifying the
parameters as needed; ii) adding an instance of the new camera
node to the composed model; and iii) properly connecting the
interfaces of the new model across the involved Join nodes.
As shown in Figure 7 this would lead to modify the shared
variables within all the Join nodes until the root of the overall
model, a process which would also be prone to human errors.

D. Specification of Metrics

Reward structures and variables are then defined as part
of the model evaluation process. In fact, different reward
variables can be defined on the same model, based on the
desired metrics and available observation points. Furthermore,
the specification of reward variables is closely related to the
evaluation method, e.g., steady state or transient evaluation,
time points, accuracy, etc. For this reason, we decided not to
provide constructs for defining reward variables [47] directly
in the TMDL. Instead, we only provide means for identifying
“interesting” states of the state space, through the concept of
observation points. In this way, we leave flexibility on the kind
of metrics that can be defined, while keeping TMDL simple.

In the case study in this section, the composed
model generated by the framework will have an ob-
servation point StreamStateOut for each instance of
StreamProcessing template. Such state variable repre-
sents the state of the stream at a given point of the processing

chain. Quantitative metrics can be defined by defining proper
reward variables over those observation points.

Referring to the previously defined metrics Rj(T) and
Aj(0, T), they can be evaluated by defining, for each obser-
vation point StreamStateOutj , a rate reward function Rj
such that:

Rj(v) =

{
1 if v = {(StreamStateOutj , 1)}
0 otherwise,

and then evaluate the reward functions corresponding to reli-
ability and interval-of-time availability, as in [47]. The actual
evaluation of a wide range of metrics for the WO system can
be found in [11].

E. Approach Evaluation

To quantify the benefits provided by our approach, we
compare the number of actions that the user needs to perform
when using the manual approach, and when using the proposed
framework. Because they involve different kinds of task, it is
somewhat difficult to precisely compare the two approaches.
To perform a fair comparison, we selected actions that are at
a comparable level of abstraction.

For the “Manual” approach, we considered a user creating
a model with the Möbius [12] tool, based on preexisting
atomic models. We identified the following basic actions: i)
duplicating a SAN atomic model; ii) modifying2 an element in
an atomic SAN model, e.g., adding a place or changing the
name of a variable; iii) modifying a node in a Rep/Join model;
and iv) modifying a shared state variable in a Rep/Join node.
For the “TMDL” approach proposed in this paper we instead
consider only: v) modifying an element in a TMDL scenario
specification, as the whole specification process is performed
using the TMDL. With “element” we mean here an instance
of a metaclass of the metamodel.

The number of actions required to construct the WO models
presented in this section is reported in Table I. We analyzed the
effort required to create specifications for the three scenarios
presented in this section, as well as the effort to change a
scenario into another. As illustrated in the table, the proposed
approach reduces the number of actions in all the analyzed
tasks. As expected, the greatest gain (50% action reduction) is
obtained when modifying existing scenarios, while the differ-
ence is smaller when creating new scenarios from scratch. We
note that this comparison is very conservative, as actions for
the “TMDL” approach are typically performed much faster. In
fact, they simply consist in changing some words in a textual
specification. Referring to Figure 7, just modifying the text
highlighted in the listing counts as 11 actions (2 Variant, 6
Assignment, and 3 BlockRealization elements need
to be added or modified).

On the other hand, a single action in the “Manual” approach
typically consists of several sub-tasks. For example, “modify a
shared state variable in the Rep/Join model” consists at least
of i) selecting the node in the Rep/Join model, ii) selecting
the variable to be modified, iii) modifying the variable, iv)
clicking on a confirmation button. It seems thus reasonable to

2We consider creation and deletion as special cases of modification.

15

Table I: Number of actions required by the user to specify
the WO model of Stage 1 for different scenarios. Comparison
between using a traditional manual approach and the proposed
framework.

Manual TMDL Reduction

Create Scenario #1 141 85 39.7%
Create Scenario #2 155 99 36.1%
Create Scenario #3 183 109 40.4%

Modify Scenario #1 to Scenario #2 18 11 38.9%
Modify Scenario #1 to Scenario #3 46 23 50.0%
Modify Scenario #2 to Scenario #3 28 14 50.0%

expect that the time saved in using the proposed approach will
be much higher. Concerning performance, the execution time
needed of the automated composition algorithm is of the order
of magnitude of seconds. It is thus negligible with respect to
the time required to actually simulate such kind of models,
typically hours or days.

Finally, it should be noted that many correctness checks
are performed by default by the Ecore framework [49], which
prevents users from specifying incorrect compositions. In
particular, it warns the user if the model under specification (li-
brary or scenario) does not conform to the TMDL metamodel
(Figure 3). Ecore has also a validation framework, which can
be used to check additional constraints. For example, requiring
that the value assigned to a parameter is compatible with its
type, or that only state variables of the same type are connected
together.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an approach for the auto-
matic assembly of complex state-based models, based on the
concepts of model templates libraries and composition rules.
We have formally defined all the concepts involved in the
framework, and provided a DSL that can be used to concretely
specify them. This language, called TMDL, allows libraries
of template models to be precisely defined, and then applied
to specify different system configurations and compose the
concrete analysis model.

This paper introduces the formalization of the proposed
framework. In its concrete application, users will be supported
by editors and tools in all the phases; we thus believe that
improvements over manual practice will be much greater.
Tools under development include means to: i) edit template
implementations using graphical abstractions, ii) write textual
TMDL specifications, iii) write TMDL specifications using
graphical abstractions, and iv) define commonly used metrics
using predefined reward variables.

A current limitation of the proposed approach is that it
does not provide specific countermeasures to the state-space
explosion problem, as it focuses on the specification aspect
only. As such, generated models would be most likely need
to be solved by discrete-event simulation. However, many
techniques for the exact evaluation of complex performability
models exist in the literature, e.g., [1], [19]. Future work will
investigate the possibility to integrate some of these techniques

directly in the model composition algorithm, based on the
characteristics of the involved model templates.

Another possible improvement consists in providing better
mechanisms for the specification of metrics. Solution to be ex-
plored consist in i) the definition of metrics using probabilistic
temporal logics (e.g., [50]), or ii) the adoption of observation
patterns as in [28] as specific kinds of model templates. In the
context of MDE, techniques like code generation and model-
weaving [51] are also promising: they can be exploited to
generate TMDL specifications from system descriptions in
other forms, e.g., UML models or structured textual files.

ACKNOWLEDGMENT

This work has been partially supported by the REGIONE
TOSCANA POR FESR 2014-2020 SISTER “SIgnaling &
Sensing Technologies in Railway application”, and by the
DEVASSES (DEsign, Verification and VAlidation of large-
scale, dynamic Service SystEmS) project, funded by European
Union’s Seventh Framework Programme under grant agree-
ment PIRSES-GA-2013-612569. This work is related to the
activities of the H2020 MSCA-RISE-2018 project ADVANCE
“Addressing Verification and Validation Challenges in Future
Cyber-Physical Systems”.

REFERENCES

[1] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based evaluation:
from dependability to security,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pp. 48–65, 2004.

[2] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[3] J. Meyer, “On evaluating the performability of degradable computing
systems,” IEEE Transactions on Computers, vol. C-29, no. 8, pp. 720–
731, 1980.

[4] C. McLean, Y. T. Lee, S. Jain, and C. Hutchings, “Modeling and
Simulation of Critical Infrastructure Systems for Homeland Security
Applications,” U.S. National Institute of Standard and Technology
(NIST), Tech. Rep. NISTIR 7785, September 2011.

[5] G. Ciardo, R. German, and C. Lindemann, “A characterization of the
stochastic process underlying a stochastic petri net,” Software Engineer-
ing, IEEE Transactions on, vol. 20, no. 7, pp. 506–515, 1994.

[6] M. Jamshidi, Ed., Systems of Systems Engineering – Innovations for the
21st Century. Wiley, 2009.

[7] A. Bondavalli, S. Bouchenak, and H. Kopetz, Eds., Cyber-Physical
Systems of Systems – Foundations – A Conceptual Model and Some
Derivations: The AMADEOS Legacy, ser. Programming and Software
Engineering. Springer International Publishing, 2016, vol. 10099.

[8] L. Montecchi, P. Lollini, and A. Bondavalli, “A DSL-Supported Work-
flow for the Automated Assembly of Large Performability Models,” in
Proceedings of the 10th European Dependable Computing Conference,
Newcastle upon Tyne, UK, May 13-16, 2014.

[9] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity net-
works: Structure, behavior, and application,” in International Workshop
on Timed Petri Nets, Turin, Italy, July 1-3, 1985, pp. 106–115.

[10] W. Sanders and J. Meyer, “Stochastic activity networks: formal defini-
tions and concepts,” in Lectures on formal methods and performance
analysis, ser. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2002, vol. 2090, pp. 315–343.

[11] N. R. Veeraragavan, L. Montecchi, N. Nostro, R. Vitenberg, H. Meling,
and A. Bondavalli, “Modeling QoE in Dependable Tele-Immersive
Applications: A Case Study of World Opera,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 9, pp. 2667–2681, 2016.

[12] T. Courtney, S. Gaonkar, K. Keefe, E. W. D. Rozier, and W. H.
Sanders, “Möbius 2.3: An extensible tool for dependability, security, and
performance evaluation of large and complex system models,” in 39th
IEEE/IFIP International Conference on Dependable Systems Networks,
Estoril, Portugal, 2009, pp. 353–358.

16

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides., Design Patterns.
Addison-Wesley, 1995.

[14] H. Kopetz and N. Suri, “Compositional design of RT systems: a
conceptual basis for specification of linking interfaces,” in 6th IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing, Hokkaido, Japan, May 16, 2003, pp. 51–60.

[15] S. Bliudze and J. Sifakis, “The Algebra of Connectors – Structuring
Interaction in BIP,” IEEE Transactions on Computers, vol. 57, no. 10,
pp. 1315–1330, 2008.

[16] W. H. Sanders and J. F. Meyer, “Reduced base model construction
methods for stochastic activity networks,” IEEE Journal on Selected
Areas in Communications, vol. 9, no. 1, pp. 25–36, 1991.

[17] B. Plateau and K. Atif, “Stochastic automata network for modeling
parallel systems,” IEEE Transactions on Software Engineering, vol. 17,
no. 10, pp. 1093–1108, 1991.

[18] G. Ciardo and K. S. Trivedi, “A decomposition approach for stochastic
reward net models,” Performance Evaluation, vol. 18, no. 1, pp. 37–59,
1993.

[19] P. Lollini, A. Bondavalli, and F. Di Giandomenico, “A decomposition-
based modeling framework for complex systems,” IEEE Transactions
on Reliability, vol. 58, no. 1, pp. 20–33, 2009.

[20] G. Ciardo, Y. Zhao, and X. Jin, “Ten Years of Saturation: A Petri
Net Perspective,” in Transactions on Petri Nets and Other Models of
Concurrency V, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 6900, pp. 51–95.

[21] K. Kanoun, M. Borrel, T. Morteveille, and A. Peytavin, “Availability
of CAUTRA, a subset of the French air traffic control system,” IEEE
Transactions on Computers, vol. 48, no. 5, pp. 528–535, 1999.

[22] K. Kanoun and M. Ortalo-Borrel, “Fault-tolerant system dependability-
explicit modeling of hardware and software component-interactions,”
IEEE Transactions on Reliability, vol. 49, no. 4, pp. 363–376, 2000.

[23] M. Rabah and K. Kanoun, “Performability evaluation of multipurpose
multiprocessor systems: the “separation of concerns” approach,” IEEE
Transactions on Computers, vol. 52, no. 2, pp. 223–236, 2003.

[24] A. Bondavalli, P. Lollini, and L. Montecchi, “QoS Perceived by Users
of Ubiquitous UMTS: Compositional Models and Thorough Analysis,”
Journal of Software, vol. 4, no. 7, 2009.

[25] E. Battista, V. Casola, N. Mazzocca, R. Nardone, and S. Marrone, “A
compositional modelling approach for large sensor networks design,” in
8th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, Compiegne, France, October 28-30, 2013, pp. 422–429.

[26] S. Chiaradonna, F. D. Giandomenico, and G. Masetti, “A stochastic
modelling framework to analyze smart grids control strategies,” in 2016
IEEE Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada,
August 21-24, 2016, pp. 123–130.

[27] G. Nencioni, B. E. Helvik, and P. E. Heegaard, “Including Failure
Correlation in Availability Modeling of a Software-Defined Backbone
Network,” IEEE Transactions on Network and Service Management,
vol. 14, no. 4, pp. 1032–1045, 2017.

[28] N. Ge, M. Pantel, and S. D. Zilio, “Formal Verification of User-
Level Real-Time Property Patterns,” in 11th International Symposium on
Theoretical Aspects of Software Engineering (TASE), Sophia Antipolis,
France, September 13-15, 2017, pp. 1–8.

[29] E. Best, R. Devillers, and M. Koutny, “The box algebra — a model
of nets and process expressions,” in Application and Theory of Petri
Nets 1999. ICATPN 1999, ser. Lecture Notes in Computer Science,
Williamsburg, Virginia, USA, June 21-25, 1999, pp. 344–363.

[30] K. Jensen and L. Kristensen, Coloured Petri Nets — Modelling and
Validation of Concurrent Systems. Springer Berlin Heidelberg, 2009.

[31] J. K. Muppala, G. Ciardo, and K. S. Trivedi, “Stochastic reward nets for
reliability prediction,” in Communications in Reliability, Maintainability
and Serviceability, vol. 1, no. 2, 1994, pp. 9–20.

[32] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, 2006.

[33] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability modeling
and analysis of software systems specified with UML,” ACM Computing
Surveys, vol. 45, no. 1, 2012.

[34] M. Cinque, D. Cotroneo, and C. Di Martino, “Automated generation of
performance and dependability models for the assessment of wireless
sensor networks,” IEEE Transactions on Computers, vol. 61, no. 6, pp.
870–884, 2012.

[35] L. Montecchi, P. Lollini, and A. Bondavalli, “Towards a MDE Trans-
formation Workflow for Dependability Analysis,” in 16th IEEE Inter-
national Conference on Engineering of Complex Computer Systems
(ICECCS), Las Vegas, USA, 2011, pp. 157–166.

[36] S. Bernardi, S. Marrone, J. Merseguer, R. Nardone, and V. Vittorini,
“Towards a model-driven engineering approach for the assessment of
non-functional properties using multi-formalism,” Software & Systems
Modeling, 2018.

[37] G. Masetti, S. Chiaradonna, and F. D. Giandomenico, “A Stochastic
Modeling Approach for an Efficient Dependability Evaluation of Large
Systems with Non-anonymous Interconnected Components,” in 2017
IEEE 28th International Symposium on Software Reliability Engineering
(ISSRE), Toulouse, France, October 23-26, 2017, pp. 46–55.

[38] C. Atkinson and T. Kühne, “Model-Driven Development: A Metamod-
eling Foundation,” IEEE Software, vol. 20, no. 5, pp. 36–41, 2003.

[39] A. Zimmermann, Stochastic Discrete Event Systems — Modeling, Eval-
uation, Applications. Springer Berlin Heidelberg, 2008.

[40] O. Hauge et al., “Common Variability Language (CVL),” OMG Revised
Submission, August 2012, OMG document: ad/2012-08-05.

[41] ISO/IEC 15909-2:2011, “Systems and software engineering – High-level
Petri nets – Part 2: Transfer format,” February 2011.

[42] Object Management Group (OMG), “XML Metadata Interchange (XMI)
Specification,” formal/2014-04-14, April 2014, version 2.4.2.

[43] ——, “OMG Meta Object Facility (MOF) Core Specification,”
formal/2016-11-01, November 2016, version 2.5.1.

[44] U. Aßmann, Invasive Software Composition. Springer-Verlag Berlin
Heidelberg, 2003.

[45] ISO/IEC 15909-1:2004, “Systems and software engineering – High-
level Petri nets – Part 1: Concepts, definitions and graphical notation,”
December 2004.

[46] L. Montecchi, P. Lollini, and A. Bondavalli, “Stochastic Activity Net-
works Templates,” Resilient Computing Lab, Tech. Rep. RCL180401,
v1.0, April 2018, http://rcl.dsi.unifi.it/publication/show/849.

[47] W. H. Sanders and J. F. Meyer, “A Unified Approach for Specifying
Measures of Performance, Dependability, and Performability,” in De-
pendable Computing for Critical Applications. Springer, Vienna, 1991,
vol. 4, pp. 215–237.

[48] M. Voelter, DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. CreateSpace Independent Publishing
Platform, January 2013.

[49] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd Edition. Addison-Wesley Professional, 2009.

[50] S. Donatelli, S. Haddad, and J. Sproston, “Model Checking Timed and
Stochastic Properties with CSLTA,” IEEE Transactions on Software
Engineering, vol. 35, no. 2, pp. 224–240, 2009.

[51] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly, “Weaving
an Assurance Case from Design: A Model-Based Approach,” in IEEE
16th International Symposium on High Assurance Systems Engineering
(HASE’15), Daytona Beach Shores, FL, USA, January 8-10, 2015, pp.
110–117.

http://rcl.dsi.unifi.it/publication/show/849

	Introduction
	Related Work
	Modularity in Performability Models
	Compact Specification of PN-Based Models
	Model-Driven Approaches

	Approach Overview
	Requirements
	The Workflow
	Composition Systems
	Main Concepts

	The Templates Framework: Formal Definitions
	Preliminaries
	Basic Definitions
	Indices, Multiplicity, Labels

	Model Interface
	Templates
	Variants
	Instances
	Instantiation and Composition Algorithm
	instantiateVariant
	concretize
	connectStateVariables

	Definition of Metrics

	Template Models Description Language
	TMDL Library
	TMDL Scenario

	Application Example
	The World Opera
	Model Templates
	Scenario Specifications
	Scenario #1
	Scenario #2
	Scenario #3

	Specification of Metrics
	Approach Evaluation

	Conclusions and Future Work
	References

