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APPROXIMATION OF FRACTURE ENERGIES WITH p-GROWTH

VIA PIECEWISE AFFINE FINITE ELEMENTS

Sergio Conti1, Matteo Focardi2 and Flaviana Iurlano3,∗

Abstract. The modeling of fracture problems within geometrically linear elasticity is often based on
the space of generalized functions of bounded deformation GSBDp(Ω), p ∈ (1,∞), their treatment is
however hindered by the very low regularity of those functions and by the lack of appropriate density
results. We construct here an approximation of GSBDp functions, for p ∈ (1,∞), with functions
which are Lipschitz continuous away from a jump set which is a finite union of closed subsets of C1

hypersurfaces. The strains of the approximating functions converge strongly in Lp to the strain of the
target, and the area of their jump sets converge to the area of the target. The key idea is to use piecewise
affine functions on a suitable grid, which is obtained via the Freudenthal partition of a cubic grid.
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1. Introduction

The modeling of plasticity and fracture in a geometrically linear framework leads to vectorial variational
problems in which the local energy depends on the symmetric part of the deformation gradient, and the defor-
mation can jump in a set of finite (n − 1)-dimensional measure [22, 28, 29]. If one assumes that the total
variation of the distributional symmetrized gradient is controlled by the energy then one deals with functions
of bounded deformation, which are defined as the functions u ∈ L1(Ω;Rn) such that the distributional strain
Eu := 1

2 (Du+DuT ) is a bounded measure [1, 3, 27, 29, 30]. Here Ω ⊂ Rn is an open set, and BD(Ω) denotes
the set of functions of bounded deformation on Ω.

In fracture problems one often deals with the proper subspace SBDp(Ω), which is characterized by the fact
that the distributional strain Eu is the sum of an elastic part e(u)Ln Ω, with e(u) ∈ Lp(Ω;Rn×nsym ), and a
singular part [u]� νuHn−1 Ju concentrated on a (n− 1)-rectifiable set of finite (n− 1)-dimensional measure,
with νu the approximate normal and [u] the jump of the traces of u across Ju (see [4, 5, 8, 22]). Typical fracture
models, such as Griffith’s model, do not, however, give control of the amplitude of the jump of u over the
discontinuity set; a typical energy takes the form

ˆ
Ω

f(e(u))dx+Hn−1(Ju), (1.1)
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which is the natural vectorial generalization of the Mumford-Shah functional in linear elasticity. The function f
is assumed to be convex and to have p-growth at infinity. One is then lead to compactness results in the space
GSBDp(Ω), which was introduced by Dal Maso in [20] and recalled in Section 2.

In the study of problems modeled in SBDp or GSBDp (see for example [25]) it is crucial to have good
approximation results for functions in those spaces. On the one hand, smooth functions are dense in BD(Ω)
in the strict topology, which entails weak convergence of the distributional strains. This is clearly not enough
to ensure continuity of the energy in (1.1) along such approximating sequences. Indeed, the smooth approxi-
mants (which are typically obtained by mollification) replace both the discontinuities and the Lp strain e(u) by
smooth components, mixing fracture and elastic deformation. It is apparent that this will, in general, increase
significantly the energy. In the scalar case from the point of view of applications to fracture mechanics, the
functional setting for the problem is provided by SBV p(Ω;Rn) functions, and a density result which guarantees
separate convergence of the two terms in (1.1) was obtained by Cortesani and Toader [19]. The approximants
are still discontinuous, but the jump set has become regular (a finite union of simplexes) and each function
is regular away from the jump set. The gradients converge strongly away from the jump set, and the jumps
and the orientation of the jump set converge. More generally, in such a restricted framework one can allow the
domain and the codomain to have different dimensions, in what follows we shall limit to comment the case of
interest in this paper.

In the vector-valued case, and restricting to energies with quadratic growth, density of regular functions in
SBD2(Ω) ∩ L2(Ω;Rn) was proven by Chambolle in 2004 for n = 2 [9] and then for n ≥ 3 [10]. His proof was
extended to GSBD2(Ω) ∩ L2(Ω;Rn) by Iurlano [26]. Their result shows that any u ∈ GSBD2(Ω) ∩ L2(Ω;Rn)
can be approximated by functions which are continuous away from a finite union of closed pieces of C1

hypersurfaces, are Lipschitz continuous away from this set, with strong convergence of the strains and, in
an appropriate sense, of the discontinuities. This permits to obtain convergence of energies of the type (1.1),
as long as f has quadratic growth, and of more general functionals where the surface term has the form´
Ju
ϕ(u+, u−, x, ν)dHn−1(x) for a suitable surface energy density ϕ : Rn×Rn×Ω×Sn−1 → R. For a discussion

of the related problem of density for partition problems we refer to [7].
The restriction of the mentioned results of [9, 10, 26] to the quadratic energies does not originate from

simplicity of presentation, but is instead a consequence of the type of construction used. Indeed, the key idea,
first introduced in [9], is to replace the function u by a componentwise linear approximation on a suitably
chosen (very fine) cubic grid, and then to remove the cubes which intersect, in a suitable sense, the jump set.
The fact that the energy is quadratic permits an explicit integration of the energy density in each cube, and
leads to the identification of the continuum energy of the approximation with a discrete energy, which consists
of sums of squares of difference quotients along the edges of the grid. In turn, for a suitable choice of the grid
this discrete energy approximates the original energy. For nonquadratic expressions the first step, in which one
integrates explicitly over a unit cell, breaks down. Estimates are of course still possible, but the result will only
hold up to a p-dependent factor, even in the easy case where the functions are smooth to start with. Therefore
we use a different strategy, and resort to a piecewise affine interpolation on a suitable refinement of the grid,
see discussion in Section 3 below.

Our result permits to replace functions GSBDp(Ω) ∩ Lp(Ω;Rn) with much more regular functions in a num-
ber of problems related to fracture (see for example [11, 13–15]). After the completion of this work, Chambolle
and Crismale in [11] have extended our main result to all functions in GSBDp(Ω) by adopting a different
technique. We stress that the extra integrability hypothesis that we impose on the relevant function is often not
meaningful for problems in fracture mechanics.

Together with the elliptic regularity results for solutions to linear elasticity type systems established in [17],
our result has been instrumental for the proof of existence in dimension n = 2 of minimizers for the strong
counterpart of the Griffith functional in (1.1), that was presented in [14, 15]. More precisely, in [15] it is proved
that any local minimizer u of (1.1) has relatively closed jump set, i.e. H1(Ju ∩ Ω \ Ju) = 0, and it is smooth
outside it, namely u ∈ C1,α(Ω \ Ju;R2) for some α ∈ (0, 1). The equivalence between the weak formulation of
the problem as stated in (1.1) and the classical strong form then follows (cf. [14, 15] for more details).
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Figure 1. Freudenthal partition of [0, 1]3: the origin is the vertex on the bottom in front,
(1,1,1) is at the top in the back.

Such a mild regularity result extends the analogous statement for SBV p functions proved in the celebrated
paper [21] by De Giorgi, Carriero and Leaci, corresponding in applications to the (generalized) antiplane shear
setting. As already mentioned before, in [14, 15] the strong approximation property established in this paper is
used to infer such kind of regularity; viceversa the quoted approximation result by Cortesani and Toader [19]
uses De Giorgi, Carriero and Leaci’s regularity result (in particular by means of [6], Lem. 5.2 by Braides and
Chiadó Piat) as a key tool to prove the strong approximation property.

In closing this introduction we mention a complementary approach to the regularity of SBDp and GSBDp

functions, which has received a lot of attention in the last years, namely, the proof of rigidity estimates for
functions with small jump set. A Korn-Poincaré bound in term of the elastic energy alone was proven for SBDp

functions in [12]. An improved estimate, which controls also the gradients, was obtained in the two-dimensional
case in [16, 23, 24].

Finally, we summarize the structure of the paper. Section 2 is devoted to fix the notation for the piecewise
affine finite elements and the functional spaces which are involved in our main approximation result, Theorem 3.1,
that we shall prove in Section 3.

2. Notation

One key ingredient of our piecewise affine approximation is the Freudenthal partition of the n-cube [0, 1]n.
We say that the vertex (i1, . . . , in), ik ∈ {0, 1}, precedes the vertex (j1, . . . , jn), jk ∈ {0, 1}, if ik ≤ jk for all k.
The convex hull of a chain of n + 1 distinct vertices is a n-simplex. Then the Freudenthal partition S of the
n-cube is defined as the set of all n-simplexes obtained through maximal chains of ordered vertices connecting
the origin to the vertex (1, . . . , 1) (see Fig. 1). Such partition counts n! simplexes.

Alternatively, for any permutation σ of {1, . . . , n} one defines a simplex Sσ as the convex envelope of the
points vi :=

∑
j≤i eσ(j), i = 0, 1, . . . , n. Explicitly one obtains

Sσ :=

∑
i

λi
∑
j≤i

eσ(j) : λi ≥ 0,
∑

λi = 1

 =

∑
j

eσ(j)

∑
i≥j

λi : λi ≥ 0,
∑

λi = 1

 .

It is then apparent that Sσ consists of the points x ∈ [0, 1]n such that j 7→ xσ(j) is nonincreasing. Therefore the
sets Sσ have disjoint interiors and cover [0, 1]n. They differ only by a permutation of the components, hence
they are congruent and each has volume 1/n!.

We use standard notations for the space BV and its subspaces SBV p always referring to the book [2] for
details.
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As already mentioned in Section 1 BD(Ω) is the space of functions u ∈ L1(Ω;Rn) for which the symmetrized
distributional strain Eu = 1

2 (Du + DuT ) is a Radon measure. The subspace SBDp(Ω), p ≥ 1, contains all
functions u ∈ BD(Ω) for which

Eu = e(u)Ln Ω + (u+ − u−)� νuHn−1 Ju,

with e(u) ∈ Lp(Ω;Rn×n) and Hn−1(Ju) <∞ (cf. [1, 4]).
Given u ∈ L1(Ω;Rn), for Ω ⊂ Rn open, ξ ∈ Sn−1 and y ∈ Rn one defines the slice uξy : Ωξy → R by

uξy(t) = u(y + tξ) · ξ, where Ωξy := {t ∈ R : y + tξ ∈ Ω}. If u ∈ BD(Ω) one can show that uξy ∈ BV (Ωξy) for

almost every y. One denotes with Ωξ := (Id− ξ ⊗ ξ)Ω the set of “relevant” values of y, i.e., the set of y ∈ Rn
such that y · ξ = 0 and (y + Rξ) ∩ Ω 6= ∅.

An Ln-measurable function u : Ω → Rn belongs to GSBD(Ω) if there exists a bounded positive Radon
measure λu ∈ M+

b (Ω) such that the following condition holds for every ξ ∈ Sn−1: for Hn−1-a.e. y ∈ Ωξ the
function uξy(t) = u(y + tξ) · ξ belongs to SBVloc(Ωξy), where Ωξy := {t ∈ R : y + tξ ∈ Ω}, and for every Borel set
B ⊂ Ω it satisfies

ˆ
Ωξ

(
|Duξy|(Bξy \ J1

uξy
) +H0(Bξy ∩ J1

uξy
)
)

dHn−1 ≤ λu(B),

where J1
uξy

:= {t ∈ Juξy : |[uξy](t)| ≥ 1}.
If u ∈ GSBD(Ω), the aforementioned quantities e(u) and Ju are still well-defined, and are respectively

integrable and rectifiable in the previous sense. Moreover for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Ωξ we have

Juξy ⊂ (Ju)ξy and e(u)(y + tξ)ξ · ξ = (uξy)′(t) a.e. t in Ωξy, (2.1)

where (uξy)′ denotes the absolutely continuous part of the distributional derivative. In analogy to SBDp(Ω),
the subspace GSBDp(Ω) includes all functions in GSBD(Ω) satisfying e(u) ∈ Lp(Ω;Rn×n) and Hn−1(Ju) <∞
(cf. [20]).

3. The main result

Theorem 3.1. Let Ω ⊂ Rn be a bounded Lipschitz set and let p > 1. Given u ∈ GSBDp(Ω) ∩Lp(Ω;Rn), there
exists a sequence (uj) ⊂ SBV p ∩ L∞(Ω;Rn) such that each Juj is contained in the union Sj of a finite number
of closed connected pieces of C1-hypersurfaces, uj ∈W 1,∞(Ω \ Sj ;Rn), and the following properties hold:

(1) ‖uj − u‖Lp(Ω,Rn) → 0;
(2) ‖e(uj)− e(u)‖Lp(Ω,Rn×n) → 0;
(3) Hn−1(Juj )→ Hn−1(Ju).

Remark 3.2. The sequence (uj) in Theorem 3.1 can be constructed in a way that it satisfies in addition

Hn−1(Juj4Ju)→ 0,ˆ
Juj∪Ju

(
|u±j − u

±| ∧ 1
)
dHn−1 → 0.

These further properties can be obtained by following the arguments in [26] step-by-step, with obvious modifi-
cations due to the fact that the proof there is written for p = 2. In this respect, since only a technical effort is
required, we focus here on the main difficulties and we prove Theorem 3.1 in the stated form.

Remark 3.3. By combining Theorem 3.1 and ([19], Thm. 3.1) by Cortesani and Toader, it is possible to obtain
a sequence of approximating functions whose jump set is polyhedral, namely the intersection of Ω with the
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union of a finite number of (n− 1)-dimensional simplexes compactly contained in Ω. If p ∈ (1, 2] the result can
be even improved by taking the (n− 1)-simplexes pairwise disjoint (see [19], Rem. 3.5) and ([18], Sect. 4, Proof
of Cor. 3.11).

As mentioned in Section 1 the proof of Theorem 3.1 follows the general strategy of Chambolle and Iurlano
[9, 10, 26], but uses a different interpolation scheme and a different finite-element grid for the actual construction.
Indeed, we first construct a sequence of SBV p ∩ L∞-functions converging to a given u ∈ GSBDp(Ω), in a
way that the bulk estimate is sharp and the surface estimate is obtained up to a multiplicative factor. Each
approximating function is a piecewise linear interpolation outside from a finite number of cubes, where it is
set equal to 0. Considering piecewise linear interpolations is essential in order to treat the case of maps in
GSBDp(Ω) with p 6= 2. It is the main difference with the mentioned references [9, 10, 26] which deal with
the quadratic case p = 2. Indeed, in [9, 10, 26] piecewise polynomial interpolations (of degree equal to the
dimension of the space) are employed. Such approximations in dimension higher than 3 if p 6= 2 would give
rise to a multiplicative factor in the bulk estimate (cf. with [9], Lem. A.1), so that the strong approximation
property would fail. The piecewise polynomials correspond to a componentwise affine interpolation, that can be
done directly on a cubic grid. In the p 6= 2 case we need to use a piecewise affine interpolation, and therefore
need to decompose the domain in simplexes. However, the strategy of [9, 10, 26] was based on controlling the
longitudinal difference quotients along grid segments (the segments joining two vertices of the grid, which are
edges of the elements or diagonals of their faces). A natural approach would be to choose an expression for the
energy density which uses only these components. In dimension n = 2 this still works, since one can decompose
the square [0, 1]2 into two triangles whose sides have the same orientations (the three orientations being (1, 0),
(0, 1) and (1, 1) for both of the triangles). In dimension 3 and higher this is, however, not any more possible, and
the energy density will typically not match the geometry of the simplex. Therefore we need to decompose each
term of the energy into the components which are “longitudinal” with respect to the edges of the simplexes. We
shall denote by A ∈ A ⊂ Rn×nsym the “components” of e(u) which enter the energy, and by αA,Sj the coefficients
of the decomposition of strain direction A in linear combinations of longitudinal strains along the edges simplex
S, where j labels the sides of S. The key observation on which the construction in this paper is based is that
one can perform this decomposition jointly for the continuous and for the discrete energy.

We now introduce the objects just mentioned in more detail. We fix p ≥ 1 and choose a finite set of matrices
A ⊂ Rn×nsym , which span Rn×nsym and are fixed for the rest of the proof. Let W : Rn×nsym → R be defined by

W (ξ) :=
∑
A∈A
|ξ : A|p (3.1)

where A : B := TrATB =
∑
ij AijBij denotes the Euclidean scalar product on Rn×nsym . We denote by DS the set

of the edges directions for a simplex S in the Freudenthal partion S . Notice that DS contains n(n+ 1)/2 linearly
independent vectors and that for any given S the set {e⊗ e : e ∈ DS} constitutes a basis for Rn×nsym . To see this,
it suffices to show that if ξ ∈ Rn×nsym obeys e · ξe = 0 for all e ∈ DS then ξ = 0. Indeed, the simplex S can be
written as the convex envelope of {0, f1, . . . , fn}, where (fi)i=1,...,n is a basis of Rn. The set DS is then given
by the set of the ±fi’s and the set of all the differences fi − fj ’s with i 6= j. Therefore, if ξ ∈ Rn×nsym is such that
e · ξe = 0 for all e ∈ DS , we deduce first that fi · ξfi = 0 for all i by taking e = fi, and then fi · ξfj = 0 for all
i 6= j by taking e = fi − fj . Hence, ξ = 0. We stress that DS is a set of differences of vertices of S, not a set of
unit vectors.

As in the references mentioned above, the key point is to prove an approximation result that enlarges the
jump set by at most a fixed factor. The sharp constant can then be recovered by applying this to the complement
of a suitable “large” compact subset of Ju.

Theorem 3.4. Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary and let p ≥ 1. Given u ∈
GSBDp(Ω) ∩ Lp(Ω;Rn), there exists a sequence (uj) ⊂ SBV p ∩ L∞(Ω;Rn) such that each Juj is contained
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in the union Σj of a finite number of (n − 1)-dimensional faces of closed simplexes, uj ∈ W 1,∞(Ω \ Σj ,Rn),
and the following properties hold:

(1) ‖uj − u‖Lp(Ω,Rn) → 0;
(2) for a positive constant c1 depending only on n and p

lim sup
j→∞

(ˆ
Ω

W (e(uj)) dx+Hn−1(Σj)
)
≤
ˆ

Ω

W (e(u)) dx+ c1Hn−1(Ju).

In order to prove Theorem 3.4 we need a preliminary lemma, whose proof is entirely similar to Lemma
3.2 of [9] and Lemma 3 of [26] and therefore not repeated here. The given function u is replaced by another
GSBDp-function close in energy to u and defined in a larger set.

Lemma 3.5. Let Ω ⊂ Rn, n ≥ 2, be open bounded with Lipschitz boundary, and let p ≥ 1. Given u ∈
GSBDp(Ω) ∩ Lp(Ω;Rn) and ε > 0 there exists an open bounded set with Lipschitz boundary Ω̂ ⊃⊃ Ω and a
function û ∈ GSBDp(Ω̂) ∩ Lp(Ω̂;Rn), such that the following hold

(1) ||û− u||Lp(Ω,Rn) < ε,

(2)

ˆ
Ω̂

|e(û)|p dx ≤
ˆ

Ω

|e(u)|p dx+ ε,

(3) Hn−1(Jû) ≤ Hn−1(Ju) + ε.

Proof of Theorem 3.4. Fixed u ∈ GSBDp(Ω) ∩ Lp(Ω;Rn) and ε > 0, Lemma 3.5 provides û and Ω̂ satisfying
(1)–(3).

Fixed y ∈ [0, 1)n and h > 0 small, we consider the translated lattice hy + ξ, with ξ ∈ hZn. We introduce the
tubular neighborhood in the direction −τ of Jû,

Jτ :=
⋃
x∈Jû

[x, x− τ ] = {y ∈ Rn : [y, y + τ ] ∩ Jû 6= ∅}, for τ ∈ Rn,

and the longitudinal difference quotient along the edge ẽj of S ∈ S

4Sj,h(z) :=
(û(z + haj + hẽj)− û(z + haj)) · ẽj

h|ẽj |2

for [z + haj , z + haj + hẽj ] ⊂ Ω̂, and zero elsewhere, where aj and aj + ẽj are the only two vertices of S whose
difference is ẽj . Let us introduce the discrete bulk and surface energies

Ey,h1 (Ω̂) :=
hn

n!

∑
A∈A
S∈S

∑
ξ ∈ hZn

∣∣∣∑
j

αA,Sj 4Sj,h(ξ + hy)(1− 1Jhẽj (hy + ξ + haj))
∣∣∣p,

Ey,h2 (Ω̂) := c̃1h
n−1

∑
e∈

⋃
S DS

∑
ξ ∈ hZn

1Jhe(hy + ξ)

|e|
, (3.2)

where 1B denotes the characteristic function of the set B, αA,Sj are the coordinates of A in the basis {ν̃j ⊗ ν̃j :

ẽj ∈ DS} of Rn×nsym , where ν̃j = ẽj/|ẽj | and c̃1 := 2nn
√
n, the latter choice will be motivated later.

Let wy,h be the piecewise affine function obtained interpolating û on each simplex of the partition. Let us
prove that there exist y ∈ [0, 1)n and a subsequence of h ↓ 0 not relabeled, such that

(1′) ‖wy,h − û‖Lp(Ω,Rn) → 0;
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(2′) lim
h→∞

[
Ey,h1 (Ω̂) +Ey,h2 (Ω̂)

]
≤
ˆ

Ω̂

W (e(û))dx+ c1Hn−1(Jû), where c1 is a constant depending on c̃1 and W

is the integrand defined in (3.1).

In order to prove (1′) we observe that for every simplex ξ+hy+hS of the partition with vertices ai, i = 0, . . . , n,
there exist n+ 1 affine functions fi such that

n∑
i=0

fi = 1 and wy,h =

n∑
i=0

û(ai)fi on ξ + hy + hS.

Then integrating on [0, 1)n, we deduce by convexity and Fubini’s theorem for h sufficiently small

ˆ
[0,1)n

dy

ˆ
Ω

|wy,h(x)− û(x)|pdx

≤ c
ˆ

[0,1)n
dy

∑
ξ∈hZn∩Ω̂

ˆ
Ω∩(ξ+hy+[−h,h]n)

|û(ξ + hy)− û(x)|pdx

= c

ˆ
Ω

dx
∑

ξ∈hZn∩Ω̂

ˆ
[0,1)n

1ξ+hy+[−h,h]n(x)|û(ξ + hy)− û(x)|pdy,

where c takes into account the convexity of the power R 3 t 7→ |t|p and the number of simplexes sharing a
certain ai as a vertex. Changing variable z = (x− hy − ξ)/h in the second integral we obtain

ˆ
[0,1)n

dy

ˆ
Ω

|wy,h(x)− û(x)|pdx

≤ c
ˆ

Ω

dx
∑

ξ∈hZn∩Ω̂

ˆ
( x−ξh −[0,1)n)∩(−1,1)n

|û(x− hz)− û(x)|pdz

≤ c
ˆ

(−1,1)n
dz

ˆ
Ω

|û(x− hz)− û(x)|pdx.

By dominated convergence theorem the last term vanishes as h ↓ 0, therefore there is a subsequence of h, not
relabeled, and a measurable set of full measure E ⊂ [0, 1)n such that for every y ∈ E the convergence in (1′)
holds.

Let us prove now (2′). We integrate again on [0, 1)n and estimate first the bulk part. Changing variable
x = hy + ξ and then slicing through Fubini’s theorem we obtain

ˆ
[0,1)n

Ey,h1 (Ω̂) dy

=
1

n!

∑
A∈A
S∈S

∑
ξ∈hZn

ˆ
ξ+h[0,1)n

1Ω̂(x)
∣∣∣∑
j

αA,Sj 4Sj,h(x)(1− 1Jhẽj (x+ haj))
∣∣∣pdx

=
1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj

h|ẽj |

(
û
ν̃j
πj(x+haj)

((x+ haj) · ν̃j + h|ẽj |)

− ûν̃jπj(x+haj)
((x+ haj) · ν̃j)

)
(1− 1Jhẽj (x+ haj))

∣∣∣pdx, (3.3)
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where πj is the orthogonal projection on Π ν̃j := ν̃⊥j . We recall that ν̃j = ẽj/|ẽj | and that the slice is defined as
usual by ûνz(s) := û(z + sν) · ν for z ∈ Πν .

Since û ∈ GSBDp(Ω̂) ∩ Lp(Ω̂;Rn) we have ûνz ∈ SBV p(Ω̂νz), for Hn−1-a.e. z ∈ Πν . Observe that 1Jhe(z +
sν) = 0, for e = |e|ν and z · ν = 0, means z+ sν 6∈ Jhe, which is the same as [s, s+ h|e|]∩ (Jû)νz = ∅. For almost
every z, by (2.1) this implies [s, s+ h|e|] ∩ Jûνz = ∅. Therefore (3.3) yields

ˆ
[0,1)n

Ey,h1 (Ω̂) dy

≤ 1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj

h|ẽj |

ˆ h|ẽj |

0

(û
ν̃j
πj(x+haj)

)′(t+ (x+ haj) · ν̃j))dt
∣∣∣pdx

=
1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj

ˆ h|ẽj |

0

− (e(û)ν̃j · ν̃j)(x+ haj + tν̃j)dt
∣∣∣pdx. (3.4)

As h ↓ 0 we find by the continuity of the translation, the Lebesgue theorem, and the dominated convergence
theorem

lim sup
h↓0

ˆ
[0,1)n

Ey,h1 (Ω̂) dy ≤ 1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj e(û)ν̃j · ν̃j
∣∣∣pdx

=
1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj e(û) : ν̃j ⊗ ν̃j
∣∣∣pdx

=
1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣e(û) : A
∣∣∣pdx =

ˆ
Ω̂

W (e(û))dx.

Arguing in a similar way for Ey,h2 we obtain

ˆ
[0,1)n

Ey,h2 (Ω̂) dy = c̃1
∑

e∈∪SDS

ˆ
Rn

1Jhe

h|e|
dz

≤ c̃1
∑

e∈∪SDS

ˆ
Jû

|νû · νe|dHn−1 ≤ c1Hn−1(Jû), (3.5)

having set c1 := c̃1#(∪S∈SDS) = 2n−1n
5/2(n + 1)n!, νe := e/|e|, and having used in the last inequality the

slicing formula

ˆ
Jû

|νû · νe|dHn−1 =

ˆ
Πνe

#(Jûνez ) dHn−1(z) .

By inequalities (3.4) and (3.5) and Fatou’s lemma we conclude that there exists y ∈ [0, 1)n and a subsequence
of h ↓ 0 not relabeled for convenience such that properties (1′) and (2′) hold. In what follows we drop the index
y and denote wy,h simply by wh.
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We define now a sequence vh as 0 in the cubes Q = ξ+hy+ [0, h)n such that Jû crosses an edge of ξ+hy+hS
for some S ∈ S , while we set vh := wh otherwise. In the first case we say that the cube is bad, in the second
case that it is good. We let Σh be the union of the faces of the bad cubes. We claim that

(1′′) ‖wh − vh‖Lp(Ω,Rn) → 0,
(2′′) the constant c̃1 in (3.2) can be chosen in a way that for every h sufficiently smallˆ

Ω

W (e(vh))dx+Hn−1(Σh) ≤ Eh1 (Ω̂) + Eh2 (Ω̂).

As for (2′′), we first notice that Hn−1(Jvh) ≤ 2nhn−1Nh, being Nh the number of bad cubes. For every bad
cube Q := ξ̃+hy+ [0, h)n there is at least one pair e ∈

⋃
S DS , ξ ∈ hZn, such that [ξ+hy, ξ+hy+he] ⊂ Q and

1Jhe(ξ + hy) = 1. At the same time, the edge [ξ + hy, ξ + hy + he] is shared by at most 2n−1 cubes. Therefore

Nh ≤ 2n−1
∑

e∈
⋃
S DS

∑
ξ∈hZn

1Jhe(ξ + hy).

Recalling that |e| ≤
√
n and defining c̃1 := 2nn

√
n we obtain from the definition of Eh2 (Ω̃) that

Hn−1(Σh) ≤ 2nhn−1Nh ≤ Eh2 (Ω̃). (3.6)

Let us prove now that

ˆ
Ω

W (e(vh))dx ≤ Eh1 (Ω̂). (3.7)

By definition of W , for each good cube Q = [0, h)n + ξ + hy of the lattice being vh = wh we obtain

ˆ
[0,h)n+ξ+hy

W (e(vh))dx =
∑
A∈A
S∈S

ˆ
hS+ξ+hy

|e(wh): A|pdx,

since S gives a partition of the cube. Recalling that αA,Sj denotes the coefficients of A in the basis {ν̃j ⊗ ν̃j :
ẽj ∈ DS}, we have

ˆ
[0,h)n+ξ+hy

W (e(vh))dx =
∑
A∈A
S∈S

ˆ
hS+ξ+hy

|e(wh) :
∑
j

αA,Sj ν̃j ⊗ ν̃j |pdx

=
∑
A∈A
S∈S

ˆ
hS+ξ+hy

|
∑
j

αA,Sj e(wh)ν̃j · ν̃j |pdx.

Since wh is the affine interpolation of û on each simplex constituting Q, we have

e(wh)ν · ν =
(wh(a)− wh(b)) · ν

|a− b|
=

(û(a)− û(b)) · ν
|a− b|

,
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for every pair a, b of vertices of Q, with ν = (a− b)/|a− b|. Therefore

ˆ
[0,h)n+ξ+hy

W (e(vh))dx =
∑
A∈A
S∈S

hn

n!

∣∣∣∑
j

αA,Sj 4Sj,h(ξ + hy)
∣∣∣p,

recalling that the difference quotient is defined by

4Sj,h(z) =
(û(z + haj + hẽj)− û(z + haj)) · ẽj

h|ẽj |2
, for z ∈ Ω̂,

and that aj , aj + ej represent the only two vertices of S whose difference is ẽj . Summing on the good cubes Q
which intersect Ω we finally obtain (3.7). Property (2′′) then follows by (3.6) and (3.7).

To check (1′′) we use (1′) and we observe that

‖vh − wh‖pLp(Ω,Rn) =

ˆ
C

|wh|pdx,

where C denotes the union of the bad cubes. Notice that C has small Lebesgue measure, indeed by (3.6)

Ln(C ) ≤ hnNh = O(h).

Properties (1′), (2′), (1′′), (2′′), together with Lemma 3.5, imply (1) and (2).

Using a by now standard Besicovitch covering argument we can refine the estimate obtained in Theorem 3.4
reducing the coefficient of the surface term to 1. The idea is to cover the most of the jump set of u with a
finite number of pairwise disjoint closed balls, in a way that the jump set in each of them is close to a C1

hypersurface separating the ball into two components. Then Theorem 3.4 is applied in each component and in
the complement of the balls, so that the jump of the resulting function is the union of the C1 hypersurfaces
separating the balls and of the (n− 1)-dimensional faces of closed simplexes obtained by applying Theorem 3.4
(see [9], Thm. 2 or [26], Thm. 6 for more details).

Theorem 3.6. Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary, p ∈ (1,∞), and let u ∈
GSBDp(Ω) ∩ Lp(Ω;Rn). Then there exists a sequence uj ∈ SBV p ∩ Lp(Ω;Rn) such that Juj is contained in
the union Sj of a finite number of closed connected pieces of C1-hypersurfaces, uj ∈W 1,∞(Ω \ Sj ;Rn), and the
following properties hold:

(1) ‖uj − u‖Lp(Ω;Rn) → 0;

(2) lim sup
j→∞

(ˆ
Ω

W (e(uj)) dx+Hn−1(Sj)
)
≤
ˆ

Ω

W (e(u)) dx+Hn−1(Ju).

Remark 3.7. We emphasize that the growth hypothesis p > 1 is in fact not needed in the proof of Theorem 3.6.
It is only used to deduce conditions (2) and (3) in Theorem 3.1 by means of the GSBDp compactness result in
Theorem 11.3 of [20] and strict convexity of W as oulined below.

Theorem 3.1 easily follows from Theorem 3.6.

Proof of Theorem 3.1. Let uj be given by Theorem 3.6. By compactness in GSBDp ([20], Thm. 11.3) there
exists a subsequence of uj , not relabeled, satisfying

e(uj) ⇀ e(u) weakly in Lp(Ω,Rn×n), (3.8)
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ˆ
Ω

W (e(u))dx ≤ lim inf
j→∞

ˆ
Ω

W (e(uh))dx, (3.9)

Hn−1(Ju) ≤ lim infj→∞Hn−1(Juj ). (3.10)

By virtue of inequality (2) of Theorem 3.6, (3.9), and (3.10) we obtain

ˆ
Ω

W (e(u))dx = lim
j→∞

ˆ
Ω

W (e(uj))dx,

Hn−1(Ju) = lim
j→∞

Hn−1(Juj ),

and the thesis follows at once from (3.8) and the strict convexity of W .
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