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I can live with doubt, and uncertainty, and not knowing. I think it’s much more interesting
to live not knowing than to have answers which might be wrong. I have approximate
answers, and possible beliefs, and different degrees of certainty about different things, but
I’m not absolutely sure of anything. There are many things I don’t know anything about,
such as whether it means anything to ask “Why are we here?” I might think about it a little
bit, and if I can’t figure it out then I go on to something else. But I don’t have to know an
answer. I don’t feel frightened by not knowing things, by being lost in the mysterious
universe without having any purpose — which is the way it really is, as far as I can tell.
Possibly. It doesn’t frighten me.

Richard P. Feynman



ii

Acknowledgments
First of all, I would like to express my gratitude to my advisor Prof. Paolo Frasconi
for his expert guidance, for the important insights he shared about the field of AI
and the always new and inspiring inputs about research.

Second, I would like to thank Leonardo Ventura, Prof. Gianni Amunni, and
ISPRO for giving me the opportunity to work with their data and making this work
of thesis possibile.

Thanks to Prof. Søren Brunak and Prof. Beatrice Lazzerini for helping me ad-
vancing my research.

I’m grateful to Prof. Enrico Vicario for introducing me to this doctorate and to
Prof. Simone Marinai for his precious advice.

A special thanks goes to the peoplewho shared theAI-Team lab and the Ph.D life
with me. In alphabetical order: Daniele Baracchi, Samuele Capobianco, Alessandro
Lazzeri, Francesco Orsini, Giulia Pellegrini, Dasara Shullani, Alessandro Tibo, La
Ode Toresano, Amin Zadenoori, and Zahra Ziran.

I would like to thank all my friends that were always there to support me, root
for me and cheer me up in moments of crisis and doubt. Special mentions: Andrea
Benassai, Vito Bonelli, Giulia Bondielli, Giulia Bono, Tiberio Uricchio. Thanks to my
dear family Mauro, Rosa, and Simone for their presence and affection throughout
my whole life. Thanks to Fede for all the help that she gave me in this thesis and
in my whole life and for loving me dearly. Last but not least, thanks to Spallina for
accompanying me from the start to the end of my academic path.



iii

Abstract

Natural Language Processing (NLP) is a discipline that involves the design
of methods that process text. Deep learning, and Machine Learning (ML) in
general, is the discipline that studies and implements methods that learn to
make predictions from data. In the last years, many different ML methods
have been presented in the context of NLP. In this work we focused in par-
ticular on text classification methods. Cancer registries collect pathology re-
ports from clinical data sources and combine them with administrative data
sources to identify cancer diagnoses in a specific area. Here we present a large
scale study on deep learning methods applied to cancer pathology reports in
Italian language. In this study we developed several classifiers to predict to-
pography and morphology ICD-O codes. We compared classic machine learn-
ing approaches, i.e. Support Vector Machine (SVM), with recent deep learn-
ing techniques, i.e. Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU). Furthermore, we compared recent attention-based and hierar-
chical techniques, e.g. Bidirectional Encoder Representations from Transform-
ers (BERT), with a more simple hard attention method, showing that the latter
is enough to perform slightly better in this specific domain.
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Chapter 1

Introduction

1.1 Cancer registries

Cancer is a major concern worldwide, as it decreases the quality of life and leads to
premature mortality. In addition it is one of the most complex and difficult-to-treat
diseases, with significant social implications, both in terms of mortality rate and in
terms of costs associated with treatment and disability [1, 15, 46, 48]. Measuring
the burden of disease is one of the main concerns of public healthcare operators.
Suitable measures are necessary to describe the general state of population’s health,
to establish public health goals and to compare the national health status and per-
formance of health systems across countries. Furthermore, such studies are needed
to assess the allocation of health care and health research resources across disease
categories and to evaluate the potential costs and benefits of public health interven-
tions [5].

Cancer registries emerged during the last few decades as a strategic tool to quan-
tify the impact of the disease and to provide analytic data to healthcare operators
and decision makers. Cancer registries use administrative and clinical data sources
in order to identify all the new cancer diagnoses in a specific area and time period
and collect incidence records that provide details on the diagnosis and the outcome
of treatments. Mining cancer registry datasets can help towards the development of
global surveillance programs [51] and can provide important insights such as sur-
vivability [14]. Although data analysis software would best operate on structured
representations of the reports, pathologists normally enter data items as free text in
the local country language. This requires intelligent algorithms for medical docu-
ment information extraction, retrieval, and classification, an area that has received
significant attention in the last few years (see, e.g., [41] for a recent account and [58]
for the specific case of cancer).

3



4 Introduction

1.2 ICD-O
Pathology reports can be classified according to codes defined in the International
Classification of Diseases for Oncology, third edition (ICD-O-3) system [20], a spe-
cialization of the ICD for the cancer domain which is internationally adopted as the
standard classification for topography and morphology [19]. The development of
text analysis tools specifically devoted to the automatic classification of incidence
records according to ICD-O3 codes has been addressed in a number of previous
papers. However, these works have either focused on reasonably large datasets but
using simple linear classifiers based on bag-of-words representations of text [28, 29],
or applied recent state-of-the-art deep learning techniques [22, 45] but using smaller
datasets and restricted to a partial set of tumors. Additionally, the use of deep learn-
ing techniques usually requires accurate domain-specificword vectors (embeddings
of words in a vector space) that can be derived from word co-occurrences in large
corpora of unlabeled text [16, 39, 43]. Large medical corpora are easily available for
English (e.g. PubMed) but not for other languages.

A topographical ICD-O-3 code is structured as Cmm.s where mm represent the
main site and s the subsite. For example, C50.2 is the code for the upper-inner quad-
rant (2) of breast (50).

Amorphological ICD-O-3 code is structured as tttt/bwhere tttt represent the cell
type and b the tumor behavior (benign, uncertain, in-situ, malignant primary site,
malignant metastatic site). For example, 8140/3 is the code for an adenocarcinoma
(adeno 8140; carcinoma 3).

1.3 Existing works on ICD-O
Early works for ICD-O3 code assignment were structured on rule-based systems,
where the code was assigned by creating a set of handcrafted text search queries
and combining results by standard Boolean operators [13]. In order to prevent spu-
rious matches, rules need to be very specific, making it very difficult to achieve a
sufficiently high recall on future (unseen) cases.

A number of studies reporting on the application of machine learning to this
problem have been published during the last decade. Direct comparisons among
these works are impossible due to the (not surprising) lack of standard publicly
available datasets and the presence of heterogeneous details in the settings. Still, we
highlight the main differences among them in order to provide some background.
In [28], the authors employed support vector machine (SVM) andNaive Bayes clas-
sifiers on a small dataset of 5 121 French pathology reports and a reduced number
of target classes (26 topographic classes and 18 morphological classes), reporting
an accuracy of 72.6% on topography and 86.4% on morphology with SVM. A much
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larger dataset of 56 426 English reports from the Kentucky Cancer Registry was later
employed in [29], where linear classifiers (SVM, Naive Bayes, and logistic regres-
sion) were also compared but only on the topography task and using 14, 42, and
57 classes. The authors reported a micro-averaged F1 measure of 90% when using
SVMwith both unigrams and bigrams. Still, the bag-of-words representations used
by these linear classifiers do not consider word order and are unable to capture sim-
ilarities and relations among words (which are all represented by orthogonal vec-
tors). Deep learning techniques are known to overcome these limitations but were
not applied to this problem until very recently. In [45], a Convolutional Neural Net-
work (CNN) architecture fed byword vectors pretrained on PubMedwas applied to
a small corpus of 942 breast and lung cancer reports in English with 12 topography
classes; the authors demonstrate the superiority of this approach compared to linear
classifiers with significant increases in both micro and macro F1 measures. In [22],
the same research group also experimented on the same dataset using Recurrent
Neural Networks (RNNs) with hierarchical attention [57], obtaining further im-
provements over the CNN architecture. Also [21] is from the same group, and in
this work they overcome the problem of the small corpus and experimented a new
hierarchical self attention mechanism on a big dataset of 374, 899 pathology reports
obtained from the Louisiana cancer register with 70 labels for site, 7 for laterality, 4
for behavior, 516 for histology and 9 for grade. This latter work was published after
the writing of the present thesis and before the public defence, thus we cited it in
this section for completeness, but we did not compare our work with theirs.

1.4 Motivation and contributions
With this work we want to answer to some questions.

Q1 At the best of our knowledge, there are no large scale studies on deep learning
method applied to pathology reports. Cancer registries collect large amount of
records and invest time labeling them with topographical and morphological
codes. Existing works focus on ICD-O classification of small datasets or using
few classes. Wewant tomake a step further applying deep learning techniques
to a large scale dataset.

Q2 We want to apply novel deep learning techniques, like attention models and
BERT, to cancer pathology reports text classification. We want to propose ex-
periments to assess how they perform on this kind of data.

Q3 It is not yet clear from the literature if, in this domain, bag-of-words techniques
are inferior to deep learning techniques. The structure of the sentences in
italian-language cancer pathology reports differs substantially from the struc-
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ture of the text where RNNmethods are usually employed. The records often
do not present the usual subject-verb-object structure.

Q4 It is not clear if the use of novel attention-based and hierarchical techniques
represents an improvementwith respect to simpler RNNmethods on this kind
of text.

Q5 It is not clear the contribution and the applicability of unsupervised learning
techniques to uncommon text corpora. Usually, word vectors are trained on
long english text corpora, taken from Wikipedia, Gigaword, or similar. Our
documents not only are in a different language, but they also have a different
structure.

Q6 Wewant to evaluate the possibility to give some interpretation to the notoriously
uninterpretable deep learning models.



Chapter 2

Machine Learning

2.1 Machine Learning Theory
ML is a branch of Artificial Intelligence (AI) where the focus is to develop systems
that learn from data. ML is a field that is located in the intersection of different
disciplines:

statistics deals with the uncertainty of the world and, as we will see, ML can be
framed as a probability estimation;

data science is the science that interprets and studies the information contained in
the data and how it can be used;

optimization theory is the mathematical branch that defines methods to optimize
functions. ML can be seen as an optimization problem;

computer science is the science that studies algorithms and their complexity;

computer engineering focuses on the development of efficient software.

In order to learn we must provide some data. The data can be of different kinds.
Based on the type of data and on the problem that we need to resolve, we can denote
three different types of ML: supervised, unsupervised, and reinforcement learning.

Supervised Learning
In supervised learning we have a dataset S of samples xi each one labeled with yi:

S = ((x1, y1), . . . , (xn, yn)) ,

where xi ∈ X and yi ∈ Y. Usually, X is a space of integer or real tensors of cer-
tain dimensionality, and Y is a space of integer vectors for classification tasks and

7



8 Machine Learning

real vectors for regression tasks. In binary classification tasks Y = 0, 1, in multil-
abel classification Y = 0, 1k with k possible labels, and in multiclass classification
Y = 0, 1k with only one value equal to 1 and the rest equal to 0. The samples xi of a
dataset must be drawn from the same unknown distribution xi ∼ D. The relation-
ship between the samples and the labels is defined by an unknown labeling function
f : X→ Y such that for each sample yi = f (xi).

A learning algorithm receives a training set S as input, and should output a pre-
dictor hS : X → Y that minimizes the prediction error. For a generic predictor h, the
prediction error is:

LD, f (h)
def
= Px∼D[h(x) 6= f (x)] def

= D({x : h(x) 6= f (x)}), (2.1)

where, for A ⊂ X, the probability D assign a likelihood D(A) of observing a value
x ∈ A. Given that both D and f are unknown, to find hS the learning algorithm
minimizes the empirical prediction error (or empirical risk):

LS(h)
def
=
|i ∈ {1, . . . , n} : h(xi) 6= yi|

n
. (2.2)

This learning paradigm of finding hS is called Empirical Risk Minimization (ERM).
ERM rule may lead to overfitting if not restricted. A predictor can perform well

over the training set S — having a low empirical error — but it can perform badly
over the entire distribution D with a high prediction error. A solution is to apply
ERM over a restricted search space. With H we denote the hypothesis class of the
possible predictors h ∈ HSet : X→ Y. For a given class H and a training sample S,
the ERMH learner uses the ERM rule to choose a predictor hS ∈H with the lowest
possible empirical error over S:

hS = ERMH(S) ∈ arg min
h∈H

LS(h).

We induce an inductive bias introducing restrictions over H. Intuitively, choosing
a more restricted hypothesis class better protect the model against overfitting but at
the same time may cause a stronger bias.

2.2 Support Vector Machine (SVM)
SVMs [12] are supervised learning models commonly used in classification prob-
lems. The basic idea of linear SVMs is to find a hyperplane in the features space that
separates examples belonging to different classes. At prediction time, the model
classifies new examples based on their position relative to the hyperplane. For a
given set of data, infinite separating hyperplanes could exist. SVMs search for the
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maximum-margin separating hyperplane, i.e. the onewithmaximumdistance from
the nearest examples.

The basic SVM algorithm works only if the features belonging to the two classes
are linearly separable. The soft margin method manages the cases where the classes
are not linearly separable. A set of slack variables allows for a certain degree of
misclassification. They allow for samples to be on the wrong side of the split.

The soft margin allows to separate data that is linearly separable except for some
examples. Sets that are hardly not linearly separable sets can be approached using
the kernel trick. If we call S the space of the features, the kernel trickworks by finding
a transformation φ : S → V from the original space to a new space V where the
examples are more easily separable. SVMs can then be used on the new space V.

2.3 Neural Networks
In our work, we used mainly a specific kind of RNNs: LSTM. RNNs are a class of
ANNswhere the connections are not only sequential from one layer to the following
one, but they form loops instead.

Artificial Neural Network (ANN)

x1

x2

x3
...

xn

Σ

b

f y

w
1

w2
w3

wn

Figure 2.1: Artificial neuron.

An ANN is a model that performs elaborations in a way that mimics the brain
functioning. The base unit is the Artificial Neuron (AN), also called perceptron, in
fig. 2.1. It performs the weighted sum of the inputs x1, . . . , xn, shifted by a bias b,
followed by an activation function f . If we add a dummy input x0 = 1 and rename
the bias b = w0, we can express the computation of the AN as in eq. (2.3):

y = f (
n

∑
i=0

wixi). (2.3)

The activation function f can be of different types, the most common are:

• Softmax;
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• ReLU;

• TanH;

• Sigmoid;

• Linear.

...
... ...

x1

x2

x3

xn

y1

ym

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2: MLP with one hidden layer.

ANs are organized in network structures. The basic layout of an ANN is the
Multilayer Perceptron (MLP) structured in layers like in fig. 2.2. Each AN of each
layer is connected to all the outputs of the previous layer. The first layer is connected
to the inputs of the ANN and the output of the last layer is also the output of the
network. The execution of the MLP is feed forward:

1. the input values x0,1, . . . x0,n are presented to the network and they are the in-
put of the first layer;

2. the computation is carried one layer at a time, where each neuron i of the layer
l calculates the value yl,i of the intermediate output yl,1, . . . , yl,m;

3. the intermediate output yl,1, . . . , yl,m of the layer l becomes the input xl+1,1, . . . , xl+1,m
of the subsequent layer l + 1, unless l is the last layer - in that case the output
of l is the output y1, . . . , ym of the MLP.
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The weights of the ANs are initialized to random values and, in order to have
meaningful outputs, the ANN needs to be trained. In a supervised learning frame-
work, the dataset is composed of the matrices X (N × n) of the N inputs xi,j and Y
(N × m) of the corresponding outputs yi,j. The training process is called backprop-
agation and it is organized in a sequence of phases. For each phase p there are two
steps:

execution where an input xp,1, . . . xp,n is given to the network and an output ŷp,1, . . . , ŷp,m

is calculated;

weight update where the error between ŷp,1, . . . , ŷp,m and the correct output yp,1, . . . , yp,m

is calculated. This error is back propagated through all the layers and a correc-
tion ∆wi is calculated for each weight wi of the network, in order to minimize
the error surface in the space of the weights.

In detail, to calculate the weights w(p+1) for the next phase p + 1, it is sufficient to
determine the gradient of the error surface in the current point w(t) in order to apply
an optimization method like Stochastic Gradient Descend (SGD). We discuss SGD
in detail below.

Loss
The goal of the lerning algorithm is to learn a function f such that predictions
ŷ = f (x) over the training set are accurate respect to the correct labels y. The loss
function measures the prediction error. Formally, given the true expected output y,
a loss function L(ŷ, y) assigns a scalar to a predicted output ŷ. The loss function
should be lower bounded with the minimum value attained only for cases where
the prediction is correct. The parameters of the learned function, i.e. the weights
w, are set in order to minimize the loss over the training examples. Given a labeled
training setD = (x1:n, y1:n) and a parameterizedmodel f (x; θ), the goal of the train-
ing algorithm is then to set the values of the parameters θ such that the value of the
loss is minimized:

θ̂ = arg min
θ

1
n

n

∑
i=1
L( f (xi; θ), yi). (2.4)

The parameters θ represent the set of all the weights w of the ANN. We proceed
to describe common loss functions.

Hinge loss

Hinge loss (also known as margin loss) is used in binary classification problems,
when the classifier output ỹ is a single scalar and y ∈ {+1,−1}. The classification
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rule is ŷ = sign(ỹ) and the classification is considered correct if y · ỹ > 0. The hinge
loss is defined as:

Lhinge(ỹ, y) = max(0, 1− y · ỹ).

It is 0 when ỹ and y share the same sign and |ỹ| ≥ 1, otherwise the loss is linear. It
attempts to achieve a correct classification with a margin of at least 1.

Hinge loss can be also extended to multi-class settings, where ŷ = ŷ1, . . . , ŷn

are the classifier’s output and y the one-hot vector of correct output classes. The
classification rule is defined as selecting the class with the highest score arg maxi ŷi.
Denoting by t = arg maxi yi the correct class index, and by k = arg maxi 6=t ŷi the
highest scoring class such that k 6= t, the multi-class hinge loss is defined as:

Lhinge(ŷ, y) = max(0, 1− (ŷt − ŷk)).

It attempts to score the correct class above all other classes with a margin of at least
1.

Log loss

The log loss is a common variation of the hinge loss, it can be seen as a soft version
with an infinite margin [34]. It is defined as:

Llog(ŷ, y) = log(1 + exp(−(ŷt − ŷk)).

Binary cross-entropy loss

The binary cross-entropy loss, also called logistic loss, is used in binary classification
with conditional probability outputs. We have a set of two target classes labeled
with y ∈ {0, 1}. The classifier’s output ỹ is transformed using the sigmoid (also
logistic) function σ(x) = 1/(1 + e−x) to the range [0, 1]. It can be interpreted as the
conditional probability ŷ = σ(ỹ) = P(y = 1|x). The prediction rule is:{

0 ŷ < 0.5,

1 ŷ ≥ 0.5.

The network is trained tomaximize the log conditional probability for each train-
ing example (x, y). The logistic loss is defined as:

Llogistic(ŷ, y) = −y log ŷ− (1− y) log(1− ŷ).

While the hinge loss is preferred when we require a hard decision rule, the bi-
nary cross-entropy is useful whenwewant the network to produce class conditional
probability.
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Categorical cross-entropy loss

The categorical cross-entropy, also called negative log likelihood, is used when a
probabilistic interpretation of the scores is desired. Let y = y1, . . . , yn be a vector
representing the true multinomial distribution over the labels 1, . . . , n, and let ŷ =

ŷ1, . . . , ŷn be the classifier’s output transformed by a softmax function:

so f tmax(x)i =
exi

∑j ex
j

.

ŷ represents the class membership conditional distribution ŷi = P(y = i|x). The
categorical cross-entropy loss measures the dissimilarity between the true label dis-
tribution y and the predicted label distribution ŷ. It is defined:

Lcross−entropy(ŷ, y) = −∑
i

yi log(ŷi).

For hard classification problems in which each training example has a single cor-
rect class assignment, y is the one-hot vector of the true class. In such cases the
cross-entropy loss can be simplified to:

Lcross−entropy(ŷ, y) = − log(ŷt),

where t is the correct class.

Regularization
The attempt to minimize the loss with (2.4) may result in overfitting the training
data, i.e. the model loses the capability to generalize to new data and the loss eval-
uates poorly on new data that is not present in D. To counter that, we often pose
soft restrictions on the form of the solution. This is done using a regularization func-
tion R(θ) over the parameters returning a scalar that reflect their complexity. This is
equivalent to introduce a restriction over the hypothesis space, as seen in section 2.1.
We want to keep the model complexity low, Hence we add the regularizer to (2.4)
and we let the optimization problem to balance between low loss and low complex-
ity:

θ̂ = arg min
θ

{
1
n

n

∑
i=1
L( f (xi; θ), yi) + λR(θ)

}
. (2.5)

Different combinations of loss function and regularization criteria result in dif-
ferent learning algorithms with different inductive biases.

Essentially, regularizers work penalizing high values for ANN weights, thus
avoiding that the network concentrates only on few features. In (2.5), R is applied
to all the parameters, in practice it can be applied on the single layers.

We proceed to describe common regularization functions.
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L2 regularization

In L2 regularization, also called gaussian prior orweight decay, R takes the form of the
squared L2 norm of the parameters:

RL2(W) = ||W ||22 = ∑
i,j
(Wi,j)

2.

L2 regularization penalizes high parameters, but when their values become near
to 0 their effect is negligible.

L1 regularization

In L1 regularization, also called sparse prior or lasso, R takes the form of the L1 norm
of the parameters:

RL1(W) = ||W ||1 = ∑
i,j
|Wi,j|.

In contrast to L2, L1 regularization penalizes uniformly low and high parameters.
This has the effect of encouraging a sparse solution [50].

Elastic-net

The elastic-net regularizer [61] combines both L1 and L2 regularization:

Relastic−net(W) = λ1RL1(W) + λ2RL2(W).

Dropout

Similarly to other regularization techniques, dropoutmethod [24] is designed to pre-
vent the network from learning on specific weights. It works by randomly setting to
0 the output of randomly chosen neurons for each sample. The connections between
the dropout technique and other regularizations are established [54].

Stochastic Gradient Descend (SGD)
To successfully train amodel, it is necessary to solve the optimization problem (2.4).
A common solution is to use gradient based methods. Gradient based methods
work by estimating the error computing the loss L over the training set and then
calculating the gradients of the error respect to the parameters θ. Once the gradient
is computed, the values of the weights are moved in the opposite direction of the
gradient.

Stochastic Gradient Descend (SGD) is a general optimization algorithm that is
profitably used in training ANN [3, 33]. The hyperparameter νt is the learning rate.
It can either be fixed throughout the learning process, or decay as a function of the
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Input: Parametrized function f (x; θ)
Training set D(x1:n, y1:n)
while stopping criteria not met do

Sample training example xi, yi;
Compute L( f (xi; θ), yi);
ĝ → gradients of L( f (xi; θ), yi) w.r.t. θ;
θ → θ − νt ĝ

end
Algorithm 1: Stochastic Gradient Descend (SGD).

time step t. Adam is a widely used algorithm that adaptively change the learning
rate [30]. The error calculated in algorithm1 is based on only one example. Thismay
result in an inaccurate gradient calculation. A common way to reduce the noise of
this inaccuracy is to estimate the error and the gradients on a sample of m examples.
This is called minibatch SGD.

Recurrent Neural Network (RNN)
RNNs are kinds of ANNs specialized for sequences. They exhibit an internal state
h that changes during the training and that recursively depends on the state of the
previous phase. Precisely we have eq. (2.6):

h(t) = f (h(t−1), x(t); θ), (2.6)

where h is the state vector, x is the input vector and θ are the parameters of the state-
function f . The index t indicates the iteration number and can be interpreted as a
discrete time or, more in general, as the progressive number of the sequence that is
presented as input.
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x(t+1)

h(t+1)

y(t+1)

h(t−2) h(t+2)

(b)

Figure 2.3: RNN, folded (a) and unfolded (b) models.

In order to express a compact visualization of RNNs, it is possible to use the
computational graph in fig. 2.3a where the black box is a delay of one iteration. An
extract of the unfolding of the computation graph is shown in fig. 2.3b.
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x(t)

h(t)

x(t+1)

h(t+1)

...
· · · x(τ)

h(τ)

y(τ)

h(t−1) h(τ+1)

Figure 2.4: RNN with single output after a sequence of inputs.

The model in fig. 2.3 provides an output y(t) for every input x(t). An alterna-
tive is the model of fig. 2.4 where an output y(τ) is provided only after a sequence
x(t), . . . , x(τ) of inputs.

In order to train a RNN, it is sufficient to apply the backpropagation to the entire
unfolded model.

Long Short-TermMemory (LSTM)

Themajor drawback of RNNs is the vanishing gradient problemduring the backprop-
agation. The gradient for long-term associations, propagated through many stages,
tends to become zero. A possible solution for this problem is LSTM [25].

The LSTM model is structured as in fig. 2.5. It is equivalent to a generic RNN
where the hidden state h is a layer of memory cells.

In detail, a single memory cell (fig. 2.5a) has four Artificial Neuron (AN). One
is labelled input and processes the cell’s inputs into an internal state. The other three
ANs are labelled as gates and process the cell’s inputs together with the previous-
phase state in order to decide:

• how much of the current input must be learned (input gate);

• how much of the previous-phase state must be forgotten (forget gate);

• how much of the state constitutes the output (output gate).

The memory-cells layer (fig. 2.5b) is composed of a number of cells equal to the
dimension of the output. Each cell calculates one dimension of y. The input x is
copied for every cell and, together with the previous-phase output, constitutes the
input in1, . . . , inm of the single cells.
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Figure 2.5: LSTM model: detail of memory cell (a), and general scheme (b). The
black box is a delay of one iteration.

Gated Recurrent Unit (GRU)
Gated Recurrent Units (GRUs) were introduced by [9] as an alternative to LSTM.
GRU is also based on gating mechanism, but it has fewer gates respect to LSTM
and the memory is directly exposed to the output. One gate r called reset is used to
control access to the previous state ht−1 and computes a proposedupdate h̃. The new
status ht is calculated as an interpolation between the previous and the proposed
status, where the proportion of the interpolation is controlled by the update gate z.
Formally, at time t the GRU computes its new state ht as:

ht = (1− zt)
⊙

ht−1 + zt
⊙

h̃t,

and the proposed new state h̃t as:

h̃t = tanh(Whxt + rt � (Uhht−1) + bh).

The update gate z controls howmuch information from the past should be keep and
how much new information should be have. zt is updated as:

zt = σ(Wzxt + Uzht−1 + bz).



18 Machine Learning

The reset gate r controls how much of the past state contributes to the candidate. It
is calculated as:

rt = σ(Wrxr + Urht−1 + br).

x1 xm h1 hn
· · · · · ·

σupdate
gate

σ

reset
gate

× ×

+ state

× ×

t

outi

celli

1−

(a)

cell1cell2 · · · celln

x

y

(b)

Figure 2.6: GRU model: detail of memory cell (a), and general scheme (b). The
black box is a delay of one iteration.

The choice between LSTM andGRU is context dependent, in certain applications
LSTM gives better performances, in other applications GRU does [59].



Chapter 3

Text analysis with deep learning

3.1 NLP
NLP is the field of designingmethods that takes natural language data as an input or
produces it as an output. Natural language is ambiguous and variable, for instance
the sentence “i saw a woman on a hill with a binocular” can means that I had a
binocular andwith those I sawawomanon a hill, or that awomanwas on a hill using
the binocular. This ambiguity can also be the source of problems in a specific domain
like the one of the medical text, and specific countermeasures may be adopted [10,
60].

Language is symbolic and discrete, the relationship between different words, i.e.
symbols, cannot be inferred from the symbols themselves. It is possible to easily
compare concepts that have a continuous representation, e.g. two different colors in
an image, while it cannot be done easilywithwordswithout using large lookup table
or advancedmethods. Language is also compositional, letters formwords, andwords
form sentences. Language is also sparse, the way in which words can be combined
to form meanings is practically infinite.

3.2 ANN in NLP
ML approaches are characterized by learning to make predictions based on past
observations. ANN approaches work by learning not only to predict, but also to
correctly represent data. A common component of ANN applied to NLP is the em-
bedding layer, i.e. a mapping from discrete symbols to continuous vectors in a rel-
atively low dimensional space. This representation allows to transform the isolated
symbols into mathematical objects that can be operated on.

The primary model that is used in NLP are RNNs. They are capable of produc-
ing a vector that summarizes the entire input sequence. With them, it is possible
to abandon the markov assumption that was prevalent in NLP for decades, and to

19
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design models that can condition on entire sentences or documents. This capability
leads to impressive progress in language-modeling, the task of predicting the proba-
bility of the next word in a sequence.

Features
The mapping from textual data to real valued vectors that can be used as input for
ANN models, is called features extraction.

When the focus entity is a word out of context, the main source of information
is the letters. We can look at a lemma, i.e. dictionary entry of the word, e.g. words
such as “booking”, “booked”, “books” have “book” as their common lemma. This
mapping is usually performed using lemma lexicons or morphological analyzers. It
is a linguistically defined process and may not work well for forms that are not in
the lexicon or for mispellings. A coarser process is called stemming, it maps words
to shorter words that are not necessarily grammatically valid, e.g. “picture”, “pic-
tures”, and “pictured” will be stemmed to “pictur”. Lexical resources are dictionary
that are meant to be accessed by machines rather than humans. They typically con-
tain information about words, e.g. there are lexicons that map inflected word forms
to their possible morphological analyses, informing that a certain word may be a
singular masculine noun or a past perfect verb.

When the focus entity is text, i.e. sentences or paragraphs documents, the fea-
tures are the count and the order of the letters and words within the text. Bag of
words is a very common feature extraction procedure. We look at the histogram of
the words within the text. We can compute quantities that are directly derived from
the words and the letters, such as the length of the sentence. We can also integrate
statistics based on external information. When using bag of words, it is common
to use Term-Frequency Inverse-Document-Frequency (TF-IDF) weighting [37]. A
word w in a document d that is part of a large corpus D of documents is represented
by:

#d(w)

∑w′∈d #d(w′)
· log

|D|
|d ∈ D : w ∈ d| ,

where #d(w) is the number of times that w appears in d. Besides words, one may
also look at consecutive pairs or triplets of words. These are called ngrams. A bag of
ngrams representation is much more informative than a bag of words.

When considering a word within a sentence or a document, the features of a
word are its position within the sentence and the words or letters surrounding it.
It is common to focus on the immediate context of a word by considering a window
surrounding it (with typical values of 2, 5, and 10 words to each side). We may also
be interested in the absolute position of a word inside a sentence, having features
such as “the word is the 5th in the sentence” or “the word appears within the first
10 of the sentence”.
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When considering more than a word within a context, we can also look at the
text distance between them or the identities of the words that appear between them.

In natural language, sentences have structures beyond the linear order of their
words. The structure is not directly observable and is referred to as syntax. While it
is not observable, it can be inferred from the sentence. Specialized systems exist for
the prediction of parts of speech, syntactic trees, semantic roles, discourse relations,
and other linguistic properties. These prediction often serve as good features for
classification problems.

Different features can also be combined together. Instead of combining them
manually, we can provide a set of core features to an ANN model and rely on the
training procedure to pick up important combinations of them. Core features can
also be learned by ANN, but enough data is needed. The distributional hypothesis
of language states that the meaning of a word can be inferred from the contexts in
which it is used. By observing co-occurrence patterns of words across a large body
of text, it is possible to infer that a word is similar to another word. Many algorithms
were derived to make use of this property. They can be categorized into clustering-
based methods that assign similar words to the same cluster and represent each
word by its cluster membership [40], and embedding-based methods which repre-
sent eachword as a vector such that similar words (with a similar distribution) have
similar vectors [39, 43].

3.3 Text classification
The classic approach is to employ bag-of-words representations of textual docu-
ments [37]. In this approach, a document is described by a set or amultiset of words.
Multisets allow one to take into account the number of occurrences of a word in
the document. Vector representations of documents are easily derived from bag-of-
words. When using unigrams, the dimensionality of each vector equals the size of
the vocabulary in use. In the simplest case, the vector x representing a document
has Boolean components xj = 1 if and only if term j appears in the document. A
slightly more informative representation, derived frommultisets, is TF-IDF [37]. In
this case xj = nj log |D||Dj|

, where nj is the number of times term j occurs in the docu-
ment, |D| is the cardinality of the data set, and Dj is the set of documents containing
term j. In those representations, common terms receive a lower weight. An alter-
native representation suggested in [38] employed within-category frequencies but
only yielded modest improvements over TF-IDF.

A more informative representation of documents can be obtained by consider-
ing bigrams and trigrams, i.e. pairs or triplets or terms that occur consecutively in
a document. These representations are suitable for large data sets and have been
commonly employed in other contexts.
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Bag-of-words representations (including those employing bigrams or trigrams)
enable the application of very simple text classifiers like Naive Bayes (NB) or SVM
[12]. However, they suffer two fundamental problems. First, the relative order of
terms in the documents is lost, making it impossible to take advantage of the syn-
tactic structure of the sentences. Second, distinct words have an orthogonal repre-
sentation evenwhen they are semantically close. Moreover, with this representation
the vast majority of the dataset, i.e. the unlabeled records, remains unused. As de-
tailed in section 3.4, word vectors can be used to address the second limitation and
also allow us to take advantage of unlabeled data, which can be typically obtained
in large amounts and with little cost.

3.4 Word Vectors
Many modern approaches to NLP take advantage of vector-space word representa-
tions to solve specific tasks such as retrieval, classification, named entity recognition
or parsing. The use of word vectors eliminates the need for complex ontologies like
WordNet [18], that express various kinds of semantic relations among words (such
as synonymy, hypernymy, meronymy, etc). Word vectors are typically constructed
in such a way that analogies are directly encoded in vector space. One often cited
example of analogy is “king is to man as queen is to woman”, which should corre-
spond to the similarity in vector space [39]:

xking − xman + xwoman ≈ xqueen.

In a similar spirit, one could imagine the following vector space similarity to occur
in the oncology domain:

xglioma − xglia + xconnective ≈ xfibroma.

Most algorithms for obtaining word vectors are based on co-occurrences in large
text corpora. Co-occurrence can be measured either at the word-document level
(e.g. using latent semantic analysis) or at theword-word level (e.g. usingword2vec [39]
or Global Vectors (GloVe) [43]). It is a common practice to take advantage of pre-
compiled libraries of word vectors trained on several billion tokens extracted from
various sources such as Wikipedia, the English Gigaword 5, Common Crawl, or
Twitter. These libraries are generally conceived for general purpose applications and
are only available for the English language. Since our cancer registry textual data
is written in Italian and employs a very specific domain terminology, we retrained
word vectors from the almost 1.5millions unlabeled records described in Section 4.1.
For this purpose, we trained GloVe [43]. An excerpt of the trained dataset is visible
in fig. 3.1.
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Figure 3.1: Extract from constructed vector space. The Italian labels are grassa for
fat, connettivi for connectives, ghiandole for glands.

The training process involves the construction of the n× n triangular matrix C
of words’ co-occurrence, where n is the number of unique words w1, . . . , wn inside
the text (possibly with the exclusion of the most and the least frequent terms). In
order to do this, a window of size ω slides through the text. After the construction
of C, GloVe uses the information contained in it to train a model that produces vec-
tor of specific dimension ν. ω, ν, and the number of training iterations η are the
hyperparameters of the method.

3.5 Attention models

Conditioned generation with attention is a powerful architecture. They find the
main application in the context of sequence-to-sequence generation.

The first results with attentive models where due to Bahdanau et al. [2], who
used an architecture based on two parts. The task of the first part is to encode the
input using an RNN to create hidden representations of the sequence. Contrarily
to previous approaches, the sequence is not encoded in a single representation, but
each word of the input has its representation. The second part generates the output
sequence, with a generative RNN, using aweighted average of the input representa-
tion to condition the generation. The weights are calculated by the attention mecha-
nism, based on the values of the hidden representation of the input and the state of
the output generating RNN. The attention mechanism is trained together with the
rest of the model. Luong et al. [36] explored variation on the attention mechanism
leading to some improvement.
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3.6 Hierarchical models
Recent works on attention employ hierarchical structures of the models. Yang et al.
[57] proposed amodel calledHierarchicalAttentionNetwork (HAN) that combines
two characteristics: a hierarchical structure that reflects the hierarchical structure of
the text and an attention mechanism applied to each one of the two methods. Their
hypothesis was that a better text representation can be obtained incorporating the
document structure in themodel. Theirmodel is structured in two levels: a sentence
encoder that uses a bidirectional GRU layer to extract hidden representations of each
word, followed by an attention mechanism that aggregates them; a document en-
coder that repeats the same process obtaining document representations from the
sentences representations. The attention mechanism calculates the importance of a
word as the similarity between a hidden word representation and a learned context
vector.

Gao et al. [22] applied HAN [57] in the context of cancer pathology reports.
They implemented two classification tasks on 942 reports: one with 12 main site
ICD-O codes and the other with 4 histological grade. They demonstrated that in
their tasks HAN outperforms other conventional machine learning and deep learn-
ing approaches.

Wang et al. [56] organized ngrams in a hierarchical structure, and used a tree-
structured LSTM to achieve a self-explaining text classification model. They evalu-
ated the model on a public medical text classification dataset.

3.7 BERT
BERT [16] is a recent model that represents the state of the art in many NLP related
tasks [7, 27, 35, 52]. It is a bi-directional pre-training model supported by the Trans-
former Encoder [53]. This model is attention-based and learns context-dependent
word representation on large unlabeled corpora, and then the model is fine tuned
end to end on specific labeled tasks. During pre-training, the model is trained on
unlabeled data over two different tasks. In Masked Language Model (MLM) some
tokens are masked and the model is trained to predict those tokens based on the
context. In Next Sentence Prediction (NSP) the model is trained to understand the
relationship between sentences predicting if two sentences are actually consecutive
or if they where randomly replaced (with 50% probability). After the pre-training,
the model is fine-tuned to the specific task.



Chapter 4

Materials and Methods

4.1 Dataset

We collected a set of 1 592 385 anatomopathological exam results from Tuscany re-
gion Registro Tumori della Toscana, Tumor Registry of Tuscany (RTT) in the pe-
riod 2004-2013. About 6% of these records refer to a positive tumor diagnosis and
have topological and morphological ICD-O3 labels, determined by tumor registry
experts. Other reports are associated with non-cancerous tissues and with unla-
beled records. When multiple pathological records for the same patient existed for
the same tumor, experts selected the most informative report in order to assign the
ICD-O3 code to that tumor case, leaving a set of 94 524 labeled tumor cases.

The histological exam records consist of three free-text fields (not all of them
always filled-in) reporting tissue macroscopy, diagnosis, and, in some cases, the
patient’s anamnesis. We found that field semantics was not always used consis-
tently and that the amount of provided details varied significantly from extremely
synthetic to very detailed assessments of the morphology and the diagnosis. Field
length ranged from 0 to 1 368 words, with first quartile, median and third quartile
respectively 34, 62, 134. For these reasons, we merged the three text fields into a sin-
gle text document. We did not apply any conflation (except for case normalization)
and we kept punctuation.

We also collected the remaining unlabeled part of the dataset to train unsuper-
vised methods.

For some of our experiments, we further split the records in sentences for the
use on hierarchical models. For this purpose we employed the spaCy sentence seg-
mentation1. We note that the distribution of our documents in fig. 4.1 is different
respect to the one in [22]. The distributions of words per sentence are similar, but
our documents contains on average less sentences per document.

1https://spacy.io/

25
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Figure 4.1: Distribution of the number of sentences per document (top) and the
number of words per sentence (bottom).
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Figure 4.2: Original dataset tables.

Originally, the data comes in two tables. As depicted in fig. 4.2, the first one
is composed of a list of neoplasm records, for each one are specified: a series of
administrative variables, e.g. the date of incidence, the hospital; ICD-O codes, both
first and third editions, for topography and morphology; other clinical variables,
e.g. Gleason, Clark,Dukes scores. ICD-O codes inside neoplasm records are assigned
by RTT personnel, thus they can be considered reliable and used as ground truth
for the learning models.

Furthermore, there is a histology table containing records resulting from mi-
croscopy exams. Each record contains three free-text fields: one for the macroscopy,
one for the diagnosis, and one for other information.

The neoplasm and histology tables can be joined using a neoplasm identifier.
Thus connecting the text fields with the true ICD-O codes.

There are neoplasm cases without a related histology exam because RTT uses
also other sources to collect tumor cases, e.g. Hospital Discharge Registers (HDRs)
and death certificates. There are also histology exams without a related neoplasm
case because not always a histology results in a tumor case.

To train the unsupervised methods, we kept all the records from the histology
table that cannot be joined with the neoplasm table.

4.2 Models
In total, we created fourteen models:
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U-SVM uses SVM trained on TF-IDF representations of text using unigrams;

B-SVM uses SVM trained on TF-IDF representations using unigrams and bigrams;

B-XGB uses gradient boosted decision trees [8] on TF-IDF representations using
unigrams and bigrams

B-LSTM uses LSTM layers trained on TF-IDF representations using bigrams;

G-CRNN uses mixed convolutional and LSTM layers trained on GloVe representa-
tions;

G-LSTM uses LSTM trained on GloVe representations;

G-GRU uses GRU layers trained on GloVe representations;

G-MAX uses GRU layers with max pooling trained on GloVe representations;

G-ATT uses GRU layers with attention trained on GloVe representations;

G-MAXi uses GRU layers with max pooling, in an interpretable setting, trained on
GloVe representations;

G-ATTi usesGRU layerswith attention, in an interpretable setting, trained onGloVe
representations;

G-MAXh uses hierarchical GRU layers with max pooling trained on GloVe repre-
sentations;

G-ATTh uses hierarchical GRU layers with attention trained on GloVe representa-
tions;

BERT is the model in [16] pretrained on our unlabeled data and fine tuned with
our labeled data.

We decided to use U-SVM, B-SVM and B-XGB as a baseline and to compare
unigrams with bigrams representations. With B-LSTM and G-LSTM we wanted
to compare bag of word with GloVe representations, and we choose LSTM because
it is a common kind of model for text data. With G-CRNN we wanted to evalu-
ate if a convolutional layer can helps with the classification. In the other models,
except BERT , we use GRU because they are a simpler layer to train and because
we successfully confronted them with LSTM. We choose those models because we
wanted to use G-GRU as a baseline and we wanted to compare max pooling lay-
ers (G-MAX and G-MAXh) with attention layers (G-ATT and G-ATTh), and to
compare plain layers (G-MAX and G-ATT) with hierarchical layers (G-MAXh and
G-ATTh). Moreover with G-MAXi and G-ATTi we tried to develop interpretable
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models. Finally we choose BERT because it represents the state of the art in many
NLP tasks.

In modelsU-SVM and B-SVM, we used a TF-IDF representation ignoring terms
present in less than 3 documents or in more than 30% of the documents.

We trained all the models except SVM minimizing the categorical crossentropy.
In B-LSTM we used aword embedding of 30. The embedding layer corresponds

to a one-hot representation of the input followed by a dense layer of 30 neurons.
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Figure 4.3: Accuracy top 1,5,10 and 15 for an intrinsic test with varying word vector
dimension.

In G-LSTM and G-CRNN we used the word vector representation explained in
section 3.4. We trained GloVe with a window dimension of 15, in 50 iterations to
produce representations in dimension 60. To decide these parameters, we devel-
oped intrinsic tests collecting quadruples like:

(melanoma, cute, duttale, mammella)

translated:
(melanoma, skin, ductal, breast)

in order to verify if xbreast is near xskin − xmelanoma + xductal. Then we proceeded to
confront the different parameters as in fig. 4.3.

In order to accelerate the computation for the models B-LSTM, G-LSTM and
G-CRNN , we cut the length of text to 200. The 87% of records have less than 200
words.

B-LSTM is the ANN in fig. 4.4. It is composed of two layers of 150 bidirectional
LSTM cells, followed by an average pooling of the sequences, followed by a dense
Rectified Linear Unit (ReLU) layer, followed by a dense softmax layer. The number
of ANs of the last two layers is equal to the number of classes for each task.

G-CRNN , in fig. 4.5, is composed of a convolutional filter of size two, followed
by a bidirectional LSTM layer of 150 cells, followed by an average pooling of the
sequences, followed by a dense ReLU, followed by a dense softmax layer.
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Figure 4.4: Scheme for B-LSTM model.
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Figure 4.5: Scheme for G-CRNN model.

G-LSTM, in fig. 4.6, is composed of two bidirectional LSTM layer of 150 cells, fol-
lowed by an average pooling of the sequences, followed by a dense ReLU, followed
by a dense softmax layer.
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Figure 4.6: Scheme for G-LSTM model.

G-GRU is a stacked bidirectional GRU model.
The other models where trained on different hyperparameters configurations

whose range is explained in section 5.3. We proceed to explain in detail their struc-
ture.

G-MAX , G-ATT

In our setting, a dataset D = {(x(i), y(i))} consists of variable length sequence vec-
tors x(i). For t = 1, . . . , T(i), x(i)t is the t-th word in the i-th document and y(i) ∈
{1, . . . , K} is the associated target class. To simplify the notation in the subsequent
text, the superscripts are not used unless necessary. Sequences are denoted in bold-
face. The RNN-based sequence classifiers used in this work compute their predic-
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tions f (x) as follows:

et = E(xt; θe), (4.1)
h f

t = F(et, h f
t−1; θ f ), (4.2)

hr
t = R(et, hr

t+1; θr), (4.3)
ut = G(ht; θh), (4.4)
φ = A(u; θa), (4.5)

f (x) = g(φ; θc). (4.6)

E is an embedding function mapping words into p-dimensional real vectors where
embedding parameters θe can be either pretrained and adjustable or fixed, see Sec-
tion 3.4 below. Functions F and R correspond to (forward and reverse) dynamics
that can be described in terms of several (possibly layered) recurrent cells. Each vec-
tor ht, the concatenation of h f

t and hr
t , can be interpreted as latent representations of

the information contained at position t in the document. G is an additional MLP
mapping each latent vector into a vector ut that can be seen as contextualized repre-
sentation of the word at position t. A is an aggregation function that creates a single
d-dimensional representation vector for the entire sequence and g is a softmax layer.
Possible choices for the aggregator function include:

• φ = (h f
T, hr

1) (in this case G is the identity function), which extracts the extreme
latent representations; in principle, these may be sufficient since they depend
on the whole sequence due to bidirectional dynamics. However, note that this
approach may require long-term dependencies to be effectively learned;

• φ = ∑t at(u; θa)ut, using an attention mechanism as in [57]. In this case,
(scalar) attention weights are computed as

ct = C(u; θa),

at(u; θa) =
e〈c,ct〉

∑i e〈c,ci〉
,

where C is a single layer that maps the representation ut of the word to a hid-
den representation ct. Then, the importance of the word is measured as a sim-
ilarity with a context vector c that is learned with the model and can be seen
as an embedded representation of an high level query as in memory networks
[47];

• φj = maxt uj,t. This approach is closely related to the bag-layer proposed in
the context ofmulti-multi-instance learning [49]. In this case, each “feature” φj
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will be positive if at least one of uj,1, . . . , uj,T is positive. The resulting classifier
will find it easy to create decision rules predicting a document as belonging to
a certain class if a given set of contextualized word representations are present
and another given set of contextualized word representations are absent in the
sequence. Note that this aggregator can also be interpreted as a kind of hard
attentionmechanismwhere attention concentrates completely on a single time
step but the attended time step is different for each feature φj. As detailed in
Section 5.2, a new model interpretation strategy can be derived when using
this aggregator.

The parameters θ f , θr, θh, and θa (if present) are determined byminimizing a loss
function L (categorical cross-entropy in our case) on training data:

θ̂ = arg min
θ

∑
(x,y)∈D

L (y, f (x)) , (4.7)

where θ = θ f ∪ θr ∪ θh ∪ θa.
We call G-MAX the model f (x) when setting the aggregator function A equal

to the max pooling maxt ut. When we use the attention ∑t at(u; θa)ut instead, we
call the model G-ATT . When the aggregating function is equal to φ = (h f

T, hr
1) the

model represents a plain bidirectional RNN and we call it G-GRU.

G-MAXi, G-ATTi
The model is flexible enough to gain interpretability under certain assumptions. If
we remove the last layer in (4.6), the size of last layer in (4.4) needs to be equal to
the output size. The model in this configuration compute their predictions f (x) as
follows:

et = E(xt; θe), (4.8)
h f

t = F(et, h f
t−1; θ f ), (4.9)

hr
t = R(et, hr

t+1; θr), (4.10)
ut = G(ht; θh), (4.11)

f (x) = A(u; θa), (4.12)

where E, F, R, G and A are defined as in section 4.2.
We hypothesized that, in this case, the values of ut (or the weighted values

at(u; σa)ut, if we use the attention as aggregator) collect information on the impor-
tance of the area around xt for the purpose of classification task. This information
can be used to interpret the model decision. We call G-MAXi this interpretable set-
ting when using the max aggregator, and G-ATTiwhen using the attention.
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G-MAXh, G-ATTh
Weextend the plainmodel of section 4.2with a hierarchical setting, similarly to other
works [57]. In this setting our dataset D = {x(i), y(i)} consists of variable length
sequence of sequence vectors x(i), where, for s = 1, . . . , S(i) and t = 1, . . . , T(i,s), x(i)s,t
is the t-th word of the s-th sentence in the i-th document, and y(i) ∈ {1, . . . , K} is
the associated target class. The prediction f (x) is calculated:

es,t = E(xs,t; θe), (4.13)
h f

s,t = F(es,t, h f
s,t−1; θ f ), (4.14)

hr
s,t = R(es,t, hr

s,t+1; θr), (4.15)
us,t = G(hs,t; θh), (4.16)
φs = A(us; θa), (4.17)
h̄ f

s = F̄(φs, h̄ f
s−1; θ̄ f ), (4.18)

h̄r
s = R̄(φs, h̄r

s+1; θ̄r), (4.19)
φ̄ = Ā(h̄; θ̄a), (4.20)

f (x) = g(φ̄; θc). (4.21)

As in the plain model, E is an embedding function, F and R correspond to forward
and reverse dynamics that processword representations, hs,t = h f

s,t⊕ hr
s,t is the latent

representation of the information contained at position t of the s-th sentence, us,t is
the contextualized representation of the word at position t of the s-th sentence, and
A is an aggregation function that creates a single representation for the sentence.
Furthermore, F̄ and R̄ correspond to forward and reverse dynamics that process
sentence representations, and Ā is the aggregation function that creates a single
representation for the entire document. h̄s = h̄ f

s ⊕ h̄r
s can be interpreted as the latent

representation of the information contained in the sentence s for the document.
We call G-MAXh and G-ATTh the hierarchical model when we use respectively

the max pooling and the attention.





Chapter 5

Experiments

With the experiments we want to show the feasibility of deep learning methods
and, more generally, machine learning methods applied to large scale histological
records. Moreover, we want to compare classical bag-of-word techniques with re-
cent deep learning methods. We also want to assess the effects of leveraging large
corpora of unlabeled text that comes from the same distribution, in the context of
text classification. Finally, we want to check if attention-based methods determine
an improvement, especially when used in a hierarchic way like in previous works.
We also want to show some practical use cases and evaluate the interpretation of
deep learning models.

In appendix A, we describe some useful metrics that can be used to assess the
classifier behavior and also to use the classifiers in different use cases.

In section 5.1, we organize a comparative study between SVM and deep learn-
ing techniques using both bag-of-words and word vectors. We trained the models
U-SVM, B-SVM, B-LSTM, G-CRNN , and G-LSTMin 10-fold cross validation. We
calculated different metrics for all the models and we summarized the average and
standard deviation along the folds. In these experiments we can appreciate the im-
provements of using word vectors. Furthermore, we can notice that by using SVM,
either on unigrams and bigrams, we already achieved good results.

Related to the motivations in section 1.4, with these experiments we want to
prove Q1. Also we want to answer to Q3 by comparing LSTM with SVM with both
GloVe and bag-of-word features. With the training of word vectors we also want to
answer to Q5.

In section 5.2wewant to investigate the potentialities of the attention basedmod-
els and the simpler max aggregation. We designed an artificial experiment where
the two different kinds of aggregation are compared. Moreover, we also used this
artificial dataset to preliminarily investigate the interpretability potentialities of G-
MAXi and G-ATTi. With these experiments we want to show that the attention
model is not always better than a simpler max aggregation.

35
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Regarding to the questions in section 1.4, these artificial experiments are a pre-
liminary answer to Q4 andQ6 because we confront attention-based techniques with
simpler aggregation techniques. Also in these experiments we start to study the in-
terpretability of the models.

In section 5.3, we changed the setting, instead of doing a 10-fold cross validation
we adopt a temporal split. This decision was made to reflect a probable practical
employment of the classifier, where it is being trained on the past data and evalu-
ated on future data. In these experiments we are interested in evaluating the effects
of the attention models, comparing them with a simpler form constituted by the
max aggregation of G-MAX . In this section we focused on GRU because the experi-
ments did not show an improvement of using LSTM (compareG-LSTM in tables 5.2
and 5.4withG-GRU in tables 5.6 and 5.7). With these experiments, wewant to show
that in this context the adoption of hierarchical models is not beneficial. Moreover,
we want to evaluate how the interpretable models work respect to the others.

Regarding the questions in section 1.4, these experiments answer to Q1 (with
different settings respect to the experiments in section 5.1). We answer to Q2 andQ4
becausewe apply attention and hierarchical models to the cancer pathology reports.
We also want to answer to Q6 because we implement interpretable models.

5.1 Bag-of-words VS word vectors, SVM VS deep
learning

The focus of this section is to asses the improvement of employing word vectors
respect to the use of bag-of-words and to evaluate the employment of deep learning
techniques.

We realized four multiclass classifiers for the histological exams. Regarding the
ICD-O classification introduced in section 1.2, we call X the distribution of texts; Ys

of site, i.e. the first two digits mm of the topographical code; Y f of full site (site plus
subsite), i.e. all the digits mms of the topographical code; Yt of type, i.e. the first
four digits tttt of the morphological code; and Yb of behavior, i.e. the last digit b of
the morphological code. The learning tasks are:

Main-site estimates P(Ys|X), e.g. classify a report as a case of breast cancer;

Full-site estimates P(Y f |X), e.g. classify a report as a case of cancer of upper-inner
quadrant of breast;

Type estimates P(Yt|X), e.g. classify a report as a case of adenoma;

Behavior estimates P(Yb|X), e.g. classify a report as a case of malignant cancer.
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The tasks have a variable number of represented classes, summarized in table 5.1.
Moreover, data is not balanced. As visible in fig. 5.1, some classes are common,while

Table 5.1: Number of classes for different tasks.

task classes
Main-site 70
Full-site 284
Type 434
Behavior 5
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Figure 5.1: Documents in classes (ordered by frequency).

The frequency of words in the text follows the typical Zipf’s distribution with
few words that cover the majority of text and a long tail of infrequent words.

Experiments
We used leave-one-out ten-folds cross validation to take advantage of all the avail-
able data. The whole pathological-record dataset was split in ten equal parts called
folds. To preserve labels distribution, this was performed in a stratified way (all the
folds have the same proportions of labels). Afterwards, each model was trained ten
times, using one fold at a time as test dataset and the remaining as training. For each
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metric we summarized the average and the standard deviation among the runs. Re-
garding the curves we calculated the cumulative for each one, i.e. we concatenated
the prediction for all the folds and calculated the curves on them.

Table 5.2: Results for Main-site task.
U-SVM B-SVM B-LSTM G-CRNN G-LSTM

accuracy 89.8 ± 2.0 89.8 ± 2.0 88.6 ± 2.0 90.0 ± 1.6 90.5 ± 1.6
kappa 88.5 ± 2.2 88.6 ± 2.3 87.2 ± 2.3 88.9 ± 1.8 89.3 ± 1.8
MAPs 93.0 ± 1.5 93.0 ± 1.5 92.2 ± 1.5 93.5 ± 1.2 93.8 ± 1.1
MAPc 61.6 ± 3.9 61.3 ± 4.0 55.7 ± 3.7 62.7 ± 3.5 64.1 ± 4.1

pre. ma. 65.5 ± 4.8 64.7 ± 3.2 55.0 ± 2.8 61.5 ± 3.4 61.8 ± 3.7
we. 88.7 ± 2.0 88.8 ± 2.0 87.8 ± 1.8 89.2 ± 1.6 89.5 ± 1.7

rec. ma. 55.7 ± 4.1 54.7 ± 3.8 51.6 ± 3.2 56.5 ± 3.0 58.1 ± 3.5
we. 89.8 ± 2.0 89.8 ± 2.0 88.6 ± 2.0 90.0 ± 1.6 90.5 ± 1.6

f1s. ma. 58.4 ± 4.1 57.5 ± 3.6 52.1 ± 3.1 57.0 ± 2.7 58.2 ± 3.3
we. 88.9 ± 2.0 89.0 ± 2.1 88.0 ± 2.0 89.3 ± 1.6 89.7 ± 1.7

Table 5.3: Results for Full-site task.
U-SVM B-SVM B-LSTM G-CRNN G-LSTM

accuracy 68.4 ± 2.3 68.7 ± 2.0 67.4 ± 1.7 70.1 ± 2.1 70.9 ± 2.0
kappa 66.5 ± 2.4 66.8 ± 2.1 65.6 ± 1.7 68.4 ± 2.2 69.3 ± 2.1
MAPs 78.4 ± 1.9 78.4 ± 1.7 78.5 ± 1.3 80.6 ± 1.4 81.3 ± 1.4
MAPc 43.1 ± 2.2 43.4 ± 2.2 36.8 ± 2.3 42.9 ± 2.6 45.0 ± 2.0

pre. ma. 41.4 ± 1.6 41.6 ± 1.5 33.0 ± 2.8 38.7 ± 3.1 39.8 ± 2.3
we. 66.3 ± 1.9 67.1 ± 1.7 66.1 ± 1.3 68.8 ± 1.9 69.5 ± 1.5

rec. ma. 35.7 ± 1.9 35.1 ± 2.1 32.0 ± 2.5 36.6 ± 3.0 38.0 ± 2.2
we. 68.4 ± 2.3 68.7 ± 2.0 67.4 ± 1.7 70.1 ± 2.1 70.9 ± 2.0

f1s. ma. 36.6 ± 1.5 36.4 ± 1.7 31.2 ± 2.3 35.9 ± 2.9 37.3 ± 2.1
we. 66.2 ± 2.1 66.8 ± 1.8 66.0 ± 1.3 68.5 ± 2.0 69.5 ± 1.8

Table 5.4: Results for Type task.
U-SVM B-SVM B-LSTM G-CRNN G-LSTM

accuracy 81.9 ± 1.9 82.9 ± 2.0 82.8 ± 1.4 84.6 ± 1.4 84.9 ± 1.5
kappa 79.5 ± 2.2 80.7 ± 2.3 80.6 ± 1.6 82.7 ± 1.6 83.0 ± 1.7
MAPs 87.8 ± 1.3 88.6 ± 1.4 88.7 ± 1.0 90.3 ± 0.9 90.6 ± 1.0
MAPc 62.4 ± 1.6 64.4 ± 1.8 55.1 ± 3.1 64.2 ± 1.9 65.9 ± 1.9

pre. ma. 56.1 ± 2.4 58.3 ± 1.9 47.0 ± 3.3 56.5 ± 1.8 57.0 ± 2.6
we. 80.3 ± 1.8 81.8 ± 1.9 82.0 ± 1.3 84.1 ± 1.3 84.3 ± 1.5

rec. ma. 51.1 ± 2.6 52.2 ± 2.2 47.0 ± 2.6 56.8 ± 2.2 58.6 ± 2.0
we. 81.9 ± 1.9 82.9 ± 2.0 82.8 ± 1.4 84.6 ± 1.4 84.9 ± 1.5

f1s. ma. 51.4 ± 2.5 52.9 ± 1.9 45.0 ± 2.9 54.6 ± 1.9 55.5 ± 2.3
we. 80.4 ± 2.0 81.7 ± 2.0 81.9 ± 1.3 83.8 ± 1.4 84.0 ± 1.5

The results are summarized in tables 5.2 to 5.5, one table for each task, one col-
umn for each model described in section 4.2. Rows specify the metrics described
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Table 5.5: Results for Behavior task.
U-SVM B-SVM B-LSTM G-CRNN G-LSTM

accuracy 95.9 ± 1.0 96.0 ± 1.1 94.1 ± 3.0 94.4 ± 4.2 96.5 ± 0.8
kappa 82.3 ± 4.6 82.8 ± 5.0 70.4 ± 25.5 67.6 ± 35.9 85.6 ± 3.4
MAPs 97.7 ± 0.6 97.8 ± 0.6 96.6 ± 1.8 96.8 ± 2.5 98.1 ± 0.5
MAPc 85.4 ± 5.9 85.9 ± 5.7 71.4 ± 18.4 75.5 ± 26.4 89.5 ± 4.2

pre. ma. 87.0 ± 5.0 87.9 ± 4.8 69.9 ± 19.9 72.7 ± 27.1 85.5 ± 4.0
we. 95.8 ± 1.1 95.9 ± 1.2 92.6 ± 6.4 92.1 ± 9.0 96.6 ± 0.8

rec. ma. 78.6 ± 7.3 78.6 ± 7.4 67.6 ± 17.4 72.1 ± 25.4 85.9 ± 4.9
we. 95.9 ± 1.0 96.0 ± 1.1 94.1 ± 3.0 94.4 ± 4.2 96.5 ± 0.8

f1s. ma. 81.7 ± 6.3 82.0 ± 6.3 68.0 ± 18.5 72.1 ± 26.0 85.5 ± 4.2
we. 95.8 ± 1.1 95.9 ± 1.2 93.2 ± 4.8 93.1 ± 6.7 96.5 ± 0.8

in appendix A, with also macro and weighted average for precision, recall and F1

score. Micro averages are not visualized because equivalent to accuracy. Values are
expressed in percentage, indicating average and standard deviation among folds.
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Figure 5.2: Macro-averaged recall-precision curves for Main-site task.

Macro-averaged recall-precision curves for every method and task are summa-
rized in figs. 5.2 to 5.5. Areas under the curves are indicated in plot legends.

One of the aims of these experiments was to investigate different machine learn-
ingmodels for cancer cases classification based on the interpretation of pathological-
reports free text. We can state that Considering SVM models, the improvement of
using bigrams respect to monograms is not remarkable. The use of deep learning
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Figure 5.3: Macro-averaged recall-precision curves for Full-site task.
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Figure 5.5: Macro-averaged recall-precision curves for Behavior task.

is not necessarily beneficial to the classification task, we already obtained good re-
sults using SVM models. We can also observe that, when we took advantage of
the unlabeled data with GloVe, we achieved an improvement. G-LSTM performs
always better than the other models, except regarding macro-averaged precision,
where SVM models are better.

This work demonstrated that the machine learning approaches can be used to
provide an automated support in cancer classification based on the information con-
tained in free-text pathology reports.

5.2 Preliminary aggregation and interpretability
Classic RNN approaches exhibit some limits related to memory. We designed an
artificial experiment in order to investigate how RNN and G-MAX address those
problems. The purpose of these experiments is to compare compare plain RNN
models with attention-based models. Moreover, we also want to compare the atten-
tion with the max-pooling based models, and start to explore the potentiality of the
interpretable setting. The dataset D = (X ∈ [0, . . . , 9]n×m, y ∈ [0, 1]n) is composed
of n sequences of length m of digits xi,j ∈ [0, . . . , 9]. If the i-th sequence contains
at least three consecutive digits xi,j−1, xi,j, xi,j+1 that concatenated represent a prime
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number, then the sample is positive and labeled with yi = 1, otherwise is negative
and yi = 0.

We realized a seriesD(m) = (X(m), y(m)) of balanced datasets of increasing com-
plexity. Each D(m) has 100 000 samples with sequence lengths of

m ∈ [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000].

We chose this setting because we wanted to underline the memorizing capability of
GRU. In fact, the network needs to keep track in his memory of all the sequence,
and the larger the sequence, the higher the amount of memory needed.

We trained four models on all the datasets: a plain GRU, a G-MAX , a G-ATT ,
and a G-MAXi, all with the same hidden dimension of 32.
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Figure 5.6: Accuracy of plain GRU on D(m) for different dimensions of m.

In fig. 5.6 and fig. 5.7, we compare the learning curves of the two model trained
on the increasing difficulty problems. We can observe that G-MAX degrades less
than the baseline under the assumption of having the same dimensionality. The
interpretation for this can be that the max pooling forces locality on the sequence,
thus simplifying the task for the underlying RNN that at time t needs to keep track
only of the neighbors of t in the sequence. Thus,G-MAX can be used on increasingly
long sequences without losing potentiality.

Regarding the interpretable models, we can observe that the degradation of the
interpretable G-MAXi model in fig. 5.8 is worse compared to G-MAX in fig. 5.7,
but is still better compared to the base GRU model in fig. 5.6. Conversely, the in-
terpretable model can be used to gain some insights on the decision process. As
visible in fig. 5.9, the model performs the classification task focusing on the part of
the sequences where the prime numbers are present. The reasons why G-MAXi is
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Figure 5.7: Accuracy of G-MAXi on D(m) for different dimensions of m.
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Figure 5.8: Accuracy of G-MAXi on D(m) for different dimensions of m.
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Figure 5.9: Visualization of outputs prior to the max pooling of G-MAXi for some
samples. Red boxes represent the prime numbers ground truth, green highlighting
represents the values of ut in (4.4).

not scaling as G-MAX can be found in the fact that in the interpretable setting we
basicallymoved the aggregation from before to after the classification part. Themax
pooling in G-MAXi does not have the same localizing effect on the underlying part.
Nevertheless, it still has some effect on simplifying the task.
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Figure 5.10: Visualization of weighted features after softmax in G-ATTi for some
positive samples. Red boxes represent the prime numbers ground truth, green high-
lighting represents the values of at(u; θa)ut in (4.5).

Wewanted also to compare the difference of themax vs attention aggregation. In
fig. 5.10we have empirical evidence that the attention aggregation is not sufficient to
guarantee the model interpretability (at least in this setting). This can be explained
with the fact that the softmax function does not avoid the learning of underlying
distribute representations. On the loss calculation, the effects of a distribution with
high variance before the aggregation are the same to the ones of a distribution with
lower variance. Thus, the SGD does not favor focused representations in ut.

In fig. 5.11, we show the maximum reached accuracy for the models, summariz-
ing figs. 5.6 to 5.8 and also adding G-ATT . From this plot we can evince that G-ATT
degrades faster than G-MAX . This can be due to the fact that the attention, using
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Figure 5.11: Max reached accuracy of G-MAX , G-ATT , G-MAXi, and base GRU
models on D(m) for different dimensions of m.

a softmax on all the underlying representations, still needs to rely on the entire se-
quence. Thus, there is not the strong focusing effect of the max aggregation.

5.3 Aggregation, interpretability, hierarchy
In these experiments we further refined the dataset. We removed duplicate reports
and reports labeled with extremely rare (1048 samples that do not appear in all
three of training, validation, and test sets) ICD-O3 codes. In the end we obtained
a dataset suitable for supervised learning consisting of 85 170 labeled records, over
203 morphological classes, and 68 topological classes.

We defined two multi-class classification tasks: (1) main tumor site prediction
(68 mutually exclusive classes) and (2) morphology prediction (203 mutually ex-
clusive classes). Although the two tasks maybe somewhat correlated, we did not
attempt multi-task approaches given the small number of tasks and large enough
size of the dataset.

We decided to arrange our experiments on cancer data in a setting that simulates
a predictive task. We sorted the medical records by insertion date, then we used the
most recent 80% of records as test dataset, an equal amount of the remaining most
recent records as validation dataset, and the rest as training dataset. The splitting of
data resulted in 51 101 records for training, 17 034 for validation, and 17 035 for test
datasets.

We used the text in the 1.5 millions unlabeled records, plus the text in training
datasets to train GloVe word vectors representations.
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We trained the models G-MAX , G-ATT , G-MAXi, G-MAXh, and G-ATTh on
both prediction tasks. We found the hyperparameters configurations doing grid
search on the space explained in section 5.3.

We trained the models minimizing categorical cross entropy with Adam [30]
using a starting learning rate of 0.001. The experiments were performed in PyTorch
on machines with GeForce RTX 2080 Ti GPU using batches of 32 samples.

Hyperparameters
The hyperparameters of (4.1) - (4.6) and (4.13) - (4.21) control the structure of the
model.

ξe is associated with the embedding layer E and in our case refers to GloVe hy-
perparameters [43]. With an intrinsic evaluation, we found that the better config-
uration was 60 for the vector size, 15 for the window size, and 50 iterations. ξ f , ξr,
ξ̄ f , and ξ̄r define the number of GRU layers (ξ(l)) and the number of unit per each
layer (ξ(d)) respectively for F, R, F̄, and R̄. G is a MLP, ξh controls the number of
layers and their size. Regarding F, R, and G, we decided to have all the stacked layer
with the same size to limit the hyperparameters space. ξa and ξ̄a control the kind of
aggregating function of A and Ā respectively and, in case of attention, it controls the
size of the attention layer. Finally, ξc controls the data-dependent output size of g.

Optimal values were obtained by grid search using the validation accuracy as
the objective. In G-MAX we used the max aggregation function in the plain model
of section 4.2.

ξ
f
(l) = ξr

(l) ∈ [1, 2],

ξ
f
(d) = ξr

(d) ∈ [2, 4, 8, 16, 32, 64, 128, 256, 512],

ξh
(l) ∈ [1, 2, 4],

ξh
(d) ∈ [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048],

for the topography site task, and:

ξ
f
(l) = ξr

(l) ∈ [1],

ξ
f
(d) = ξr

(d) ∈ [2, 4, 8, 16, 32, 64, 128, 256, 512],

ξh
(l) ∈ [1, 2, 4],

ξh
(d) ∈ [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048],

for the morphology type task.
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In G-ATT we used the attention aggregation function in the plain model. The
hyperparameters space was:

ξ
f
(l) = ξr

(l) ∈ [1],

ξ
f
(d) = ξr

(d) ∈ [64, 128, 256],

ξh
(l) ∈ [0, 1],

ξh
(d) ∈ [256, 512, 1024],

ξa
(d) ∈ [128, 256, 512, 1024],

for the site, and:

ξ
f
(l) = ξr

(l) ∈ [1],

ξ
f
(d) = ξr

(d) ∈ [64, 128, 256],

ξh
(l) ∈ [0, 1],

ξh
(d) ∈ [64, 128, 256],

ξa
(d) ∈ [128, 256, 512, 1024],

for the morphology.
InG-MAXhwe used themax aggregation in the hierarchicalmodel of section 4.2.

The hyperparameters space was:

ξ
f
(l) = ξr

(l) = ξ̄
f
(l) = ξ̄r

(l) ∈ [1],

ξ
f
(d) = ξr

(d) = ξ̄
f
(d) = ξ̄r

(d) ∈ [32, 64, 128, 256],

ξh
(l) ∈ [0, 1, 2, 4],

ξh
(d) ∈ [256, 512, 1024, 2048],

for the topography, and:

ξ
f
(l) = ξr

(l) = ξ̄
f
(l) = ξ̄r

(l) ∈ [1],

ξ
f
(d) = ξr

(d) = ξ̄
f
(d) = ξ̄r

(d) ∈ [32, 64, 128, 256],

ξh
(l) ∈ [0, 1, 2, 4],

ξh
(d) ∈ [256, 512, 1024, 2048],

for the morphology.
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In G-ATTh we used the attention aggregation in the hierarchical model. The hy-
perparameters space was:

ξ
f
(l) = ξr

(l) = ξ̄
f
(l) = ξ̄r

(l) ∈ [1],

ξ
f
(d) = ξr

(d) = ξ̄
f
(d) = ξ̄r

(d) ∈ [32, 64, 128, 256],

ξh
(l) ∈ [0, 1, 2, 4],

ξh
(d) ∈ [256, 512, 1024, 2048],

ξa
(d) = ξ̄a

(d) ∈ [64, 128, 256, 512],

for the topography, and:

ξ
f
(l) = ξr

(l) = ξ̄
f
(l) = ξ̄r

(l) ∈ [1],

ξ
f
(d) = ξr

(d) = ξ̄
f
(d) = ξ̄r

(d) ∈ [32, 64, 128, 256],

ξh
(l) ∈ [0, 1, 2, 4],

ξh
(d) ∈ [256, 512, 1024, 2048],

ξa
(d) = ξ̄a

(d) ∈ [64, 128, 256, 512],

for the morphology.
In G-MAXi we used the max aggregation in the plain model. Also we set the

model to be interpretable. The hyperparameters space was:

ξ
f
(l) = ξr

(l) ∈ [1, 2, 4],

ξ
f
(d) = ξr

(d) ∈ [2, 4, 8, 16, 32, 64, 128, 256, 512],

ξh
(l) ∈ [1, 2, 4],

ξh
(d) ∈ [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048],

for the topography, and:

ξ
f
(l) = ξr

(l) ∈ [1, 2, 4],

ξ
f
(d) = ξr

(d) ∈ [64, 128, 256, 512],

ξh
(l) ∈ [1],

ξh
(d) ∈ [],

for the morphology. Note that, in this setting, the size of the last layer of G must be
equal to the output size of the model (and the softmax is applied directly after the
aggregation A, without any layer). Thus, ξh

(d) refers only to the layers before the last
one, if they exist.
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Regarding G-GRU, we searched in a space of [1, 2, 4] number of layers of dimen-
sion in [128, 256, 512, 1024]. We found that the best configuration was using 2 layers
of dimension 256.

Results

Table 5.6: Topography site prediction (61 classes)

Accuracy Top 3 Acc. Top 5 Acc. MacroF1
U-SVM 89.7 95.9 96.8 60.0
B-XGB 89.1 95.8 97.2 58.0
G-GRU 89.9 96.5 97.7 58.3
BERT 89.9 96.3 97.8 56.6

G-MAXi 88.0 95.4 96.2 46.1
G-MAXh 89.9 96.2 97.8 58.8
G-ATTh 89.9 96.3 97.7 58.0
G-MAX 90.3 96.6 98.1 61.9
G-ATT 90.1 96.2 97.6 60.0

Table 5.7: Morphology type prediction (134 classes)

Accuracy Top 3 Acc. Top 5 Acc. Macro F1
U-SVM 82.4 94.0 95.6 53.7
B-XGB 84.1 94.4 96.5 59.6
G-GRU 83.3 94.6 96.6 55.2
BERT 84.3 93.2 94.9 51.1

G-MAXi 73.4 91.0 93.6 31.3
G-MAXh 83.7 94.4 96.4 54.5
G-ATTh 83.7 94.4 96.2 57.5
G-MAX 84.6 95.0 96.9 59.2
G-ATT 84.8 94.9 96.9 61.3

In table 5.6 and table 5.7 we summarize the results of different models on test
data in terms of accuracy, top-3 and top-5 accuracy (counting as correctly classified
a document whose true class appears within the first three or five top predictions),
and macro-averaged F1 score. In table 5.8 we investigate the F1 score on different
subsets of classes. We consider a class easy if it has more than 1000 examples in the
test set, average if it has between 100 and 1000 examples, and hard if it has less than
100 examples.

In the case of topography, when focusing on the performance on classes with
many examples, all models tend to perform similarly, with even the interpretable
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Table 5.8: Macro F1 measure by groups of class frequency

Topography Morphology
easy avg. hard easy avg. hard
(4 cls) (18 cls) (39 cls) (5 cls) (18 cls) (111 cls)

U-SVM 95.7 86.9 50.9 90.5 68.6 48.4
B-XGB 95.6 86.4 48.2 92.0 72.4 54.8
G-GRU 96.1 72.2 48.0 91.4 71.6 49.7
BERT 95.7 73.2 44.9 92.9 74.4 43.9

G-MAXi 95.0 66.6 31.4 87.1 41.9 25.1
G-MAXh 95.8 72.4 48.8 92.7 71.8 48.8
G-ATTh 96.0 73.1 47.1 91.9 72.3 52.6
G-MAX 96.0 73.3 53.1 92.7 72.3 53.8
G-ATT 96.0 73.1 50.3 92.8 72.3 56.7

model attaining high F1 scores. The advantage of recurrent networks over bag-of-
word representations is more pronounced when focusing on rare classes. One pos-
sible explanation is that the representation learned by recurrent networks is shared
across all classes, leveraging the advantage of multi-task learning [6] in this case.
We also note that in no case hierarchical attention models outperform flat attention
models and max-pooling performs the best on rare classes. In the case of morphol-
ogy, differences among different models are more pronounced, with BERT being
very effective for densely populated classes (but not for rare classes). Again hierar-
chical attention does not outperform flat attention. This result differs from the ones
reported in [22] but datasets are very different in size and number of classes, and of
course differences in the writing style of pathologist in our dataset could be signif-
icant. In particular our documents contains on average few sentences (see fig. 4.1),
and this can be the main reason of the poor performances of hierarchical models.

The interpretable model is not as powerful as G-MAX , and in this task not even
as the baseline, but it can be used as a classification support and to gain insight
in the classification process. In table 5.9, we show three different samples where
we underline with different colors — only for the indicated relevant codes — the
values of hi,j in (4.4). We consider a code relevant if the corresponding value in the
68-dimension vector hi,j is greater than 0.1. In the first sample, that was correctly
classified, all the terms related to prostate gland cancer are strongly underlined.
Apart from prostatico and prostata that are Italian terms for prostatic and prostate, the
main underlined terms are PSA (Prostate-Specific Antigene) and Gleason score that
are two common exams in prostate cancer cases [4].

The second sample is a more difficult document, it is roughly translated in en-
glish as:
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Table 5.9: Visualization of interpretable outputs.
yi Relevant hi,j xi,j, relevant hi,j

61
61 (PROSTATE
GLAND)

DISOMOGENICITA ’ DIFFUSE . PSA NON PERVENUTO .
ADENOCARCINOMA PROSTATICO A GRADO DI DIFFERENZIAZIONE MEDIO
- BASSO ( GLEASON 3 + 4 ) NEI PRELIEVI DI CUI AI NN . 2 E 3
. AGOBIOPSIA DELLA PROSTATA : 1 ) 1 PRELIEVO LL DX . 2 ) 2
PRELIEVI ML DX . 3 ) 2 PRELIEVI M DX . 4 ) 1 PRELIEVO M SX .
5 ) 2 PRELIEVI ML SX . 6 ) 1 PRELIEVO LL SX . 7 ) 1 PRELIEVO
TRANSIZIONALE SX . 8 ) 1 PRELIEVO TRANSIZIONALE DX .

20

18 (COLON)

20 (RECTUM)

21 (ANUS AND

ANAL CANAL)

ISOLATI FRAMMENTI RIFERIBILI AD ADENOMA TUBULARE INTESTINALE

DI ALTO GRADO . FRAMMENTI ( NR . 2 ) DI POLIPO PEDUNCOLATO

A 20 CM DALL ’ ORIFIZIO ANALE . ( ESEGUITA COLORAZIONE

EMATOSSILINA - EOSINA ) .

34

34 (BRONCHUS

AND LUNG)

56 (OVARY)

67 (BLADDER)

80 (UNKNOWN

PRIMARY SITE)

VERSAMENTO PLEURICO SX DI N . D . D . E ADDENSAMENTI

POLMONARI DI N . D . D . , NODULI PARETE ADDOMINALE .

INFILTRAZIONE CANCERIGNA DEGLI STROMI CONNETTIVO - ADIPOSI

. IMMUNOISTOCHIMICA : CK7 + , CK20 - , TTF - 1 - , PROTEINA

S - 100 - . LESIONE DI CM 2 , 0 X 1 , 3 X 0 , 7 . 1 - 2 )

SEZIONI SERIATE .

ISOLATED FRAGMENTS ATTRIBUTABLES
TO HIGH DEGREE
INTESTINAL TUBULAR ADENOMA.
FRAGMENTS (NR. 2) OF PEDUNCULATED
POLYPUS AT 20 CM FROM
THE ANAL ORIFICE. (PERFORMED
HEMATOXYLIN-EOSIN COLORING).
For this sample, themodel propose the three classification codes 18, 20, and 21 (with
value 1 for both 18 and 20, and little less for 21). It suggests that the terms intesti-
nal tubular adenoma and pedunculated polypus are related to colon, polypus can be re-
lated also to rectum, and anal orifice is related to rectum and anus. Note that this
record was labeled from the RTTwith the code for rectum, while the medical report
explicitly mentions that the fragments have been extracted at 20 cm from the anal
orifice (the human rectum is long approximately 12 cm and the anal canal 3-5 cm
[23]). This record is an example of the complexity of the dataset. The mislabeling
is not necessarily a human classification error, RTT have access to more information
respect to the one contained in our dataset. The fact that this example refers in par-
ticular to an operation to the colon does not exclude that it was related to a rectum
tumor.

The third sample is an even more complex record, in english it is translated as:
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LEFT PLEURAL EFFUSION OF
UNKNOWN ORIGIN AND LUNG
THICKENING OF UNKNOWN ORIGIN,
NODULES OF THE ABDOMINAL WALL.
CANCEROUS INFILTRATION OF THE
CONNECTIVE-ADIPOSE STROMA.
IMMUNOHISTOCHEMICAL: CK7 +,
CK20 -, TTF-1 -, PROTEIN
S-100 -. 2 CM LESION,
0 X 1,3 X 0,7. 1-2)
SERIAL SECTIONS.
The model classifies the record mainly with codes 34 and 80, and less with 56 and
67. It underlines with the lung code the terms plurial effusion and lung thickening, but
interestingly it also underlines the immunohistochemical results. The positive CK7,
negative CK20 pattern represents a common diagnosis of lung origin for metastatic
adenocarcinoma [32]. Also, immunohistochemistry is a common approach in the
diagnosis of tumors of uncertain origin [17]. This can be the reason for the underly-
ing with code 80 of the immunoistochemical part. It is interesting to note also that
pleuric is suggested to be related to ovary cancer, in fact the pleural cavity constitutes
the most frequent site for extra abdominal metastasis in ovarian carcinoma [44].

These experiments with interpretable models serve the purpose of illustrating
that these models can be useful even if they perform poorly in the classification. In
a practical context, it is possible to combine the more powerful G-MAX with the
interpretable G-MAXi. A software that helps humans in the classification process
can use G-MAX to suggest the most-probable class and G-MAXi to highlight the
most relevant terms.

To quantify the effectiveness of the interpretability, we designed an experiment
where a dataset is created taking for each document the first k words selected by or-
dering the results of the aggregator ut in case of G-MAXi, and at(u; θa)ut in case of
G-ATTi. In fig. 5.12, we plot the accuracy obtained training a plain GRU model on
the cleaned datasets, for increasing values of k. Surprisingly, even with few words
the document is classified practically with the same results as G-GRU. This can
mean both that the interpretation is working well distilling the document with its
most relevant terms, and that the information contained in our medical texts is con-
centrated in few terms. The latter can also be the reason why in tables 5.2 and 5.4 we
do not observe a big improvement in using deep learning methods respect to SVMs.
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Figure 5.12: Training of a plain GRUmodel on a dataset created using G-MAXi and
G-ATTi to keep the first k words.





Chapter 6

Conclusions

Since the cancer registration process is partially based on manual revision, includ-
ing also the interpretation of the free text in pathological reports, significant delays
in data production and publication may occur. This weakens data relevance for the
purpose of assessing compliance with updated regional recommended integrated
case pathways, as well as for public health purposes. Improving automated meth-
ods to generate a list of putative incident cases and to automatically estimate process
indicators is thus an opportunity to perform an up-to-date evaluation of cancer-care
quality. In particular, machine learning techniques like the ones presented in this
work could overcome the delay in cancer case definition by the cancer registry and
allow a powerful tool for timely indicators computation. The implementation of this
procedure could guarantee an automated and validated instrument to monitor and
evaluate diagnostic and therapeutic pathways.

We analyzed the available data and created different models in order to imple-
ment an automated classification system. We obtained very encouraging results in
classifying cancer cases based on the interpretation of free text in the data-flow of
pathology reports. This suggests that machine learning methods can be usefully
leveraged in this context. Moreover, we demonstrated that unlabeled data can be
effectively used to construct useful word vectors and improve classification accu-
racy.

Ourmodels also have the added value that they can be utilized to retrieve records
adjusting the precision-recall trade-off.

The use of administrative data sources that are up to date combined with pow-
erful machine learning techniques to automate text classification is in the interest
of the development of a standardized surveillance system at Regional and National
level. Stakeholders and decisionmakers need timely and updated indicators to eval-
uate and plan healthcare activities. The availability of timely indicators, routinely
and automatically produced, is technically possible. The main novelty of this work
is to show the power of machine learning techniques applied to the classification of
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free text pathological records. This was not yet been systematically implemented in
other Italian cancer registries. This provides a usefulmonitor tool for cancer patients
pathways, allowing to describe population’s general health state and to establish
public health goals.

The results of the interpretable models can be used to assist the human classi-
fication process on simple records. It can be used as a form of text compression,
highlighting the most important terms. On more complex records it can be used
to leverage the knowledge of the model to gain insight on the decision process. To
overcome the limitations of the interpretable model respect to the general model, in
terms of classificationmetrics, is it possible to combine the two variants. The general
model can be used to give a more authoritative classification on the samples while
at the same time, the interpretable model can highlight the same samples.

We comparednovel deep learning techniques andmore classicalmodels to pathol-
ogy records. In this specific context we did not obtain significant improvements
using novel deep learning approaches respect to classic machine learning methods.
Also, the attentionmethods usually employed in text classification tasks do not have
better results respect to a more simple max pooling hard attention. Furthermore,
hierarchical models do not work better than plain models. Unsupervised methods,
in particular Word Vectors, can be used successfully in the domain of pathological
text records. At the best of our knowledge, this is the first large scale study of deep
learning methods applied to pathology records. Other studies where performed on
smaller datasets with records labeled with less classes.

Regarding the questions in section 1.4, Q1 is answered by the fact that we imple-
mented several different models to a large scale dataset of cancer pathology reports.
Q2 is answered by the fact that we used attention models and BERT in our exper-
iments. To answer to Q3, from our experiments we have evidence that by using
deep learning methods we do not have a breakthrough compared to classic ML ap-
proaches in this specific domain. RegardingQ4, we observe that hierarchicalmodels
are not beneficial in this context. Moreover, we achieve a little improvement by using
attention models, but in this context a simple max aggregation is equally powerful
to the commonly used attention. About Q5 we observe a successful improvement
whenwe leverage the unlabeled data, thus we can conclude that unsupervised tech-
niques can be successfully used in this context. Finally, in relation to Q6 we studied
the potentialities of interpretable models in the pathology records context.

At the moment it is not possible to use the treated techniques to completely au-
tomate the classification process. The human work is still needed to get the gold-
standard classification where the supervised models are trained. Moreover, the un-
derlying distribution of data can drift with time [31] (e.g. due to the introduction
of new protocols or terminology), and the most reliable method to deal with this is
to periodically update the model retraining it with fresh labelled data.
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Another limit of those techniques is that they can be profitably used on well
represented classes, i.e. common cancer types, but they commit errors with a rate
that is proportional to the rareness of the cancer cases. The best we can do on this
front is to use machine learning techniques to fast classify cancer cases with the
awareness of this problem, and rely on the slower human labelling for sensible cases.

In the future, those techniques can be leveraged to develop a report classification
platformwith the double objective of providing an automated labelling tool, and an
aiding tool that helps and accelerates the human labelling process. The automated
labelling allows the implementation of a fast-speed cancer register that is able to
produce updated statistics at cost of committing errors. The errors can be controlled
choosing the classification threshold accordingly to the recall-precision trade-off —
for this purpose it is possible to use curves like figs. 5.2 to 5.5. The aiding tool can
employ the interpretable models to implement an interface similar to table 5.9 that
can be useful to accelerate the reading of the report and suggest the most probable
classes.

Labelling,
Statistics  

StatisticsLabelling

LabellingTraining

Figure 6.1: Current cancer registry workflow (top) and possible integration of ma-
chine learning methods (bottom).

To evaluate a possible use case, consider the currentworkflowof cancer registries
in the top part of fig. 6.1. The medical reports of the competence area are collected
and manually labelled by registry operators. Subsequently the registry calculates
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useful statistics on cancer cases. The manual classification of reports causes a neces-
sary delay on the statistics production. A possible integration of machine learning
methods in this workflow, depicted in the bottompart of fig. 6.1, is to use them to au-
tomatically label the medical reports. This labelling can be used to provide fast and
updated statistics on (common) cancer cases. The registry operators can confirm or
change the automatic labels providing in this way new data to train and improve
the model in a feedback loop.

A future research direction can be to use multi-task learning approaches [6],
where multiple task can be solved at the same time. Those approaches can be lever-
aged to improve the classification by sharing the representations. Another research
direction can be to improve the classification on rare cancer cases using few-shot learn-
ing techniques [55]. Few-shot learning deals with classes with few samples, like in
our data. Transfer learning [42] transfers knowledge learned from a domain where
data is available to a domain where data is scarce. In meta-learning [26] a meta-
learner learns generic knowledge across tasks and this allows to rapidly generalize
a learner for a specific new task. Both transfer learning and meta-learning can be
used in the context of few-shot learning.

Finally, another research line can focus in the improvement of the interpretable
models. In fact at present time they cannot compete with other models.



Appendix A

Metrics

Weuseddifferentmetrics in order to evaluate themodels. All themetrics are defined
between 0 and 1 or between−1 and 1, the higher the value, the better the assessment.

A.1 Accuracy
is defined as the ratio between the correct-classified documents and all documents.
If y is the ground truth and ŷ is the predicted classification vectors for n samples,
then the accuracy is defined as:

accuracy (y, ŷ) ≡ 1
n

n

∑
i=1

1 (ŷi = yi) ,

where
1(a = b) ≡

{
1 if a = b,

0 otherwise.

In an unbalanced dataset, like the one of this work, it is a biased score - a model
that predicts well only the most frequent classes, and ignores the rest, achieves a
good accuracy. To resolve this we also considered other metrics.

A.2 Cohen’s kappa
score is usually used to asses the agreement of two annotators [11]. It measures the
difference between the observed agreement and the agreement that can happen by
choosing randomly the class. It can then be used to mitigate the bias caused by the
unbalanced dataset. Cohen’s kappa is defined as:

κ(y, ŷ) ≡ po(y, ŷ)− pe(y, ŷ)
1− pe(y, ŷ)

= 1− 1− po(y, ŷ)
1− pe(y, ŷ)

,
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where po is the observed agreement that is equal to the accuracy and pe represents
the probability of agreement by chance. For n samples and k classes it is defined by:

pe(y, ŷ) =
1
n2

k

∑
i=1

µi(y) · νi(ŷ),

where µi and νi are the number of samples classified as i for the first and second
classifier. They are defined as:

µi(y) =
n

∑
j=1

1(yj = i)

νi(ŷ) =
n

∑
j=1

1(ŷj = i)

A.3 Mean Average Precision (MAP)
is a measure used in information retrieval [37]. It expresses how well the true clas-
sification can be retrieved in the first results of the classifier. We define two variants
of MAP, one (MAPc) to state how well all records for a specific class are retrieved,
the other (MAPs) to asses how well the correct class is retrieved for a specific sam-
ple. The first is defined for n samples and k classes, with Y = y1, . . . , yk being the
ground truth and Ŷ = ŷ1, . . . , ŷk being the prediction. The formula is:

MAPc(Y , Ŷ) ≡ 1
k

k

∑
c=1

AveP(yc, ŷc),

where AveP is the average precision for class c:

AveP(y, ŷ) ≡ 1

∑k
i=1 1(yi)

k

∑
j=1

Pj(y, ŷ) · 1(yσŷ(j)),

where 1(y) is an indicator function that is 1 for the elements classified positively, 0
otherwise. σŷ(j) is a function that returns the index in ŷ of the j-th element in the
ordered version of ŷ . Pj is defined as:

Pj(y, ŷ) ≡ 1
j

j

∑
c=1

1(yσŷ(c)).

MAPs is defined like MAPc, but on the transposed classification matrices

MAPs(Y , Ŷ) ≡ MAPc(YT, ŶT).
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A.4 Precision
is defined for n samples and binary classifications as:

P(y, ŷ) ≡ ∑n
s=1 1(ŷs and ys)

∑n
s=1 1(ŷs)

. (A.1)

It expresses the ratio of correct positive predictions over all the positive predictions.

A.5 Recall
is defined as:

R(y, ŷ) ≡ ∑n
s=1 1(ŷs and ys)

∑n
s=1 1(ys)

, (A.2)

and it is the ratio of correct predicted positive over all the positive classes.

A.6 F1-score
is the harmonic mean of precision and recall, combining the two measures:

F1(y, ŷ) ≡ 2
P(y, ŷ) · R(y, ŷ)

P(y, ŷ) + R(y, ŷ)
.

Precision, recall, and thus F1 score are defined only for binary classifiers. In order
to use these metrics in a multi-class classification problem it is possible to average
the measures for the different classes. We considered different methodologies of
averaging:
micro averaging is performed flattening the array of truth and prediction of the

different classes and then applying the scoring formula;
macro average is performed calculating the metrics on the single classes and then

averaging them:
1
k

k

∑
c=1

S(yc, ŷc);

weighted average uses the normalized number of samples for each class in order to
give a weight to them:

1

∑k
i=1 |ŷi|

k

∑
c=1
|ŷc| · S(yc, ŷc).

Micro average considers all the samples equally, regardless of the representative-
ness of classes in the dataset. Macro average considers the unbalancement and it is
more sensible to few represented classes. Precision, recall, and F1 score are equal to
the accuracy when micro averaged in a multiclass environment.
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A.7 ROC curve
is a graph of true positive rate versus false positive rate with the change of the clas-
sifier threshold. The true positive rate is equal to the recall defined in eq. (A.2).
Conversely the false positive rate is defined as:

FPR(y, ŷ) ≡ ∑n
s=1 1(ŷs and not ys)

∑n
s=1 1(not ys)

. (A.3)

ROC curves start from (0, 0) and end in (1, 1). The area under the curve can be
used as a metric for the classifier, a perfect classifier has an area of 1.

The curves can be calculated only for binary classifiers. Like for the precision,
recall and F1 score, it is possible to generalise them tomulticlass problems averaging
micro or macro.

A.8 Precision-recall curve
is a graph of precision (eq. (A.1)) versus recall (eq. (A.2)) with the change of the
classifier threshold. The curves start from (0, 1) and end in (1, 0). A perfect classifier
has an area under the curve of 1.

Also, precision-recall curves can be calculated only for binary classifiers. In order
to generalise them to multiclass problem, it is necessary to micro or macro average.

A.9 Use cases
The different metrics are useful to assess models in different situations. In case you
need to retrieve records of a specific cancer case from the register, MAPc assesses
how well the task is executed. Conversely in case of an operator-assistance soft-
ware, MAPs assess how the correct classification for a specific histological record is
retrieved on top results.

Cohen’s kappa measures the agreement of automatic and human annotators.
Thus, it is an indirect measure of the classification correctness.

Precision and recall are two measures in trade off between them. The former is
more significant when you need a list of correctly-classified records, at cost of not
retrieving all of them. The latter is more meaningful when you need to retrieve the
greatest number of cases at cost of retrieving also some false positives. A peculiarity
of the automatic annotator is that you can change the threshold to support higher
precision or recall depending on the specific retrieving task. Recall-precision curves
can be used to assess the correct threshold.



Appendix B

Publications

Journal papers
1. Stefano Martina, Leonardo Ventura, Paolo Frasconi, “Classification of cancer

pathology reports: a large-scale comparative study”, Journal of Biomedical and
Health Informatics, in review. Candidate’s contributions: prepared dataset,
designed methods and experiments, designed algorithms

Peer reviewed conference papers

Workshop papers

Papers under review

Other
(e.g. ArXiv preprints not yet submitted)
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