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Data from the latest World Health Organization estimates paint a picture
where one-seventh of the world population needs at least one assistive

device. At the same time, clinical facilities are more and more overcrowded.
On one side, due to the aging of the population, on the other side, thanks to
the advances in medicine for which pathologies once certainly deadly, nowadays
present a low mortality rate. However, only a small percentage of those who
need an assistive or rehabilitative aid can get it properly because the healthcare
system is globally under heavy pressure.

The early 2000s are also characterized by a marked technological drive which,
starting in the middle of the twentieth century, took the name of the Fourth
Industrial Revolution. Increasingly smaller processors deliver ever higher com-
puting power, production processes are optimized, data transmission reaches
impressive speeds, and technology becomes more and more accessible.

In this terrain, robotics is making its way through more and more aspects
of everyday life, and robotics-based assistance or rehabilitation to physically
impaired people are considered two of the most promising applications of this
widely investigated technology. Providing high-intensity rehabilitative sessions
or home assistance through low-cost robotic devices can be an effective solution
to democratize some services otherwise not accessible. Simultaneously, it will
also contribute to lower the burden over the healthcare system.

The work presented in this thesis has aimed to tackle the topic mentioned
above by developing an innovative control strategy to be implemented on a low-
cost hand exoskeleton system to support people suffering from hand disabilities
during the activities of daily living. Most of the independence in everyday life
is due in fact to the activities carried out using the hands; this is why restoring
their dexterity when pathologically lost, is vitally important.

This work has been conducted starting from the solutions available within
state of the art and following the main trends, heading to the development of an
intuitive and easy to manage control strategy based on the intention recognition
from surface electromyographic signals. Exploiting epidermal measurements of
the myoelectric activity lends itself well to research activities as it is a non-
invasive procedure and therefore is widely studied in the literature, including
in the field of control of robotic devices. The application of these techniques to
the real control of robotic devices is rarely addressed, however, and only a few
cases are reported in the literature.

The main contribution of this activity is hence not only to propose a novel
control strategy but also to provide a detailed explanation of its implementation
into a real device. The performance of the resulting systems has been tested
enrolling a patient suffering from spinal muscular atrophy in a pilot study.
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Chapter 1

Introduction

“We stand on the brink of a technological revolution that will fundamentally
alter the way we live, work, and relate to one another.”

K. Schwab. The Fourth Industrial Revolution. Foreign Affairs, 12th Dec. 2015

Over the last years, this revolution — known as the “Fourth Industrial Revo-
lution” or “Industry 4.0” and characterized by a range of new technologies

that fuse the physical, digital and biological worlds together — has been in-
creasingly impacting all disciplines, economies, and industries, and it has even
been challenging the idea about what it means to be human. Driven by the tide
of this change, robots have more and more permeated many aspects of human
life to such an extent that even a delicate area as the Healthcare System has
started consolidating the use of robotic devices as part of the so-called Assis-
tive Technology (AT). Common examples of assistive technology are wheelchairs
communication aids, prostheses, pill organizers, hearing, and memory aids.

Conventionally born at the dawn of the nineteenth century — when an
Italian printer, Pellegrino Turri, designed a rudimentary typewriter for a blind
friend — the AT has evolved over the years to obtain a first formal definition
within the Technology-Related Assistance for Individuals with Disabilities Act
which has become law under the US President Ronald Reagan in August 1988.
Ten years later, the United States Assistive Technology Act has revisited what
was written in the previous document to identify as AT, also called adaptive
technology, any “product, device, or equipment, whether acquired commercially,
modified or customized, that is used to maintain, increase, or improve the func-
tional capabilities of individuals with disabilities.”

1



2 CHAPTER 1. INTRODUCTION

Nowadays, the AT is a broad family of products adequately described within
the International Standard ISO 9999, where its definition has been revised once
again to match the terminology of the International Classification of Function-
ing, Disability and Health (ICF). As a part of the World Health Organization
(WHO) - Family of International Classifications Network (FIC), the ISO 9999
defines as AT any “product (including devices, equipment, instruments, and
software) especially produced or generally available, used by or for persons with
disability to protect, support, train, measure or substitute for body functions,
structures and activities, or to prevent impairments, activity limitations or par-
ticipation restrictions”. The same International Standard also offers a detailed
three-level hierarchical classification — classes, subclasses, and divisions — of
the AT products based on its function. Each class, subclass, or division consists
of a three-pair digit code, a title, and notes and references to other parts of the
classification if necessary (see Figure 1.1).

 

ISO 9999:2016(E)

04 ASSISTIVE PRODUCTS FOR MEASURING, SUPPORTING, TRAINING OR REPLACING  
BODY FUNCTIONS

Products that monitor or assess a person’s medical condition, and products that support,  

Included are, e.g. products used in “medical treatment”.

  Assistive products for education and for training in skills, see 05

 
movement related functions (orthoses) and replacing anatomical structures  
(prostheses), see 06

Tilting tables, see 05 36 06

Assistive products for seeing, see 22 03

Assistive products for hearing, see 22 06

04 03 Assistive products for respiration

Equipment for assisting a person to breathe

  Vibrators, see 04 27 12

Assistive products for environmental improvement, see 27 03

04 03 03

 

04 03 06

Devices for assisting a person to inhale or to administer drugs in the form of vapour,  

 

04 03 12 Respirators

 

 

04 03 18

 
and mouth

04 03 21 Aspirators

Devices for sucking secretions and substances out of the lungs

04 03 24 Benches and cushions for respiration

Devices for positioning a person in order to enable him/her to breathe or to drain  
secretions from the lungs

 

© ISO 2016 – All rights reserved 11

Provläsningsexemplar / Preview

Figure 1.1: An excerpt from the ISO 9999 that shows how the classification is
made: codes (on the left), titles, notes and references (on the right).
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Six are the ISO 9999 editions that have been produced from 1992 to 2016
thanks to the collaboration with the International Society for Prosthetics and
Orthotics (ISPO), the Rehabilitation International (RI), the United Nations
Economic Commission for Europe (UNECE), and the WHO. Each version aimed
to revise wrong titles or notes from the previous one, and add new ones in
step with the latest technological trends. The last edition, the ISO 9999:2016,
has 945 titles, of which about 44 are new, and 456 have been revised. It is
worth noting that the standard reports that “all of the assistive products in
this classification are primarily intended for use outside of health care settings;
however, some of the products can be used in facilities such as rehabilitation
centers”. Furthermore, there is also a specific reference to the use of such devices
in settings where employment-related activities are usually performed.

Recently, the WHO, within its report on disability [1] and its last action
plan on disability [2], has pictured a detailed scenario of the current and

future need of AT products all around the world. What emerges from these
documents is a considerable demand for innovative solutions to tackle the issue
of the disability. It is estimated that today more than one billion people need
one or more assistive products — these numbers are even destined to double by
2030 due to the global population aging — however, only one out of ten people
in need has access to assistive technology. The leading causes are high costs and
a lack of awareness, availability, trained personnel, policy, and financing.

Such demographic, economic, social, technological, environmental, and polit-
ical factors (DESTEP factors1) have paved the way to the advent of the Robotics
for Medicine and Healthcare as a potent tool to overcome the availability limits
of the standard AT [3, 4]. This branch of robotics is considered “the domain of
systems able to perform coordinated mechatronic actions (force or movement
exertions) on the basis of processing of information acquired through sensor
technology, with the aim to support the functioning of impaired individuals,
rehabilitation of patients, care and medical intervention of patients and also to
support individuals in prevention programs”, and can be divided in five dif-
ferent classes: (i) Robotics for medical interventions; (ii) Robotics supporting
professional care; (iii) Robotics assisted preventative therapies and diagnosis;
(iv) Robotic assistive technology; (v) Robotics for rehabilitation treatment.

1The DESTEP analysis is a model used for strategic decision-making over a process. It
deals with external macroscopic factors. DESTEP stands for Demographic, Economic, Socio-
cultural, Technological, Ecological, and Politics. The purpose of such analysis is to cover all
these six topics looking for strengths, weaknesses and possible correlations between them.
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Examples of such systems are powered exoskeletons [5, 6], as the one shown in
Figure 1.2, active prostheses [7, 8], or controlled robotic tools for surgery [9].

Figure 1.2: An example of an assistive robotic device. The figure shows a lower
limb exoskeleton designed to assist people with motor disability during the gait.

Robotics for Medicine and Healthcare products offer many advantages over
non-robotic ones. Having to “perform coordinated mechatronic actions”, robotic
devices generally incorporate an automatic control system to provide an intu-
itive and safe utilization. The control systems mentioned above are usually
composed not only of hardware with computing power, such as processors but
also of sensors, remote communication channels, and data storage capacity. The
combination of these elements makes robotic devices capable of continuously
monitoring the user’s activity, making possible the fruition of remote services,
as the telerehabilitation or the home assistance, otherwise difficult to achieve.
Both telerehabilitation and home assistance would indeed positively impact on
the Healthcare System, lightening the pressure that currently burdens on hos-
pital facilities and rehabilitation centers, and, at the same time, it would also
increase the time each patient can undergo their rehabilitation sessions. Besides,
robotic devices are in general highly customizable and, thus, they can adapt well
to different users or also to different needs of the same user — e.g., different
rehabilitation exercises or different levels of assistance required. Precisely for
the above-mentioned reasons, several studies in literature [10, 11] demonstrate
that the correct use of such tools would remarkably improve the effectiveness of
the rehabilitation therapies and the quality of life of people who need assistance.
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However, as is natural, Robotics for Medicine and Healthcare also presents
several flaws. Since it is still a relatively new discipline, the level of awareness in
the population, the policies that manage and regulate its use, and the amount
of investment and financing in this sector are so far meager. Consequently,
the lack of a wholly developed dedicated industrial fabric for the production of
these devices and their high level of manufacturing complexity cause their cost
to remain very high and, thus, out of the reach of most of the people in need.
Moreover, since such products are mainly designed to share the environment
and to physically interact with people with disabilities, they have to meet strict
requirements in terms of wearability, safety, and comfort. Therefore they repre-
sent also one of the most significant open points and one of the most challenging
aspects in the human-robot interaction field.

The research activity presented within these pages stems from the desire to
intervene in this delicate subject, aiming not only to develop innovative

solutions in the field of robotic devices but also to democratize their use and
dissemination thanks to the adoption of guidelines of simplicity and low-cost
throughout the whole design process. In particular, the work summarized in
this thesis focused on the challenging subject of assisting hand-impaired people
employing a HESs and, going even further into detail, on the design, devel-
opment, and testing of a dedicated control strategy which, exploiting sEMG
signals, classifies and reproduces the user’s motor intentions. The hand is, in
fact, one of the most important providers of independence in everyday life,
and, from the engineering point of view, it also represents a significant chal-
lenge both for the mechanical design and the control strategy because of its
compound anatomy and the broad set of movements it can perform.

1.1 Overall framework

The work behind this thesis has been carried out at the MDM Lab of the DIEF
of the UNIFI, operative in the field of Robotics for Medicine and Healthcare

since 2013. In that year, with the development of the very first prototype of
HES, the journey through the challenges and the open points of this subject
began. Such exoskeleton was designed for a specific user: a person suffering
from Spinal Muscular Atrophy (SMA) who proposed and voluntarily enrolled
in the activity. The whole design process has been centered on his particular
needs and requirements. That preliminary version represented, nonetheless, the
first embodiment of a novel concept of a kinematic architecture which has been
taken as a starting point for the improvements made in the following years.
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Driven by the needs to enlarge the target group of the developed technology
and to test it in a real case scenario, a collaboration with the Don Carlo Gnocchi
Foundation2 was born in 2016 — in particular with its rehabilitation center in
Scandicci (Florence): the IRCCS Don Gnocchi. Since then, the Foundation has
made the clinical expertise of its professionals, the use of equipment within the
center, and the possibility to recruit patients for the joint research available
to the MDM Lab researchers. The same collaboration, become part of the
current research of the rehabilitation center, has continued over the years until
today, providing fertile ground for the development of two other versions of
the HES prototype and the birth of this thesis work. Despite the exploitation
of sEMG signals, as a non-invasive control technique for wearable devices, is
a well-known procedure, literature is still lacking in studies carried out on real
patients outside the laboratory walls. At the time of writing, preliminary studies
have been successfully concluded on a real patient, and other subjects are being
recruited for testing campaigns, which will be the object of future projects.

As for the MDM Lab current research activity, two are the ongoing projects
which involve the use of the HES: one, titled “HOLD: Hand exoskeleton

system, for rehabilitation and activities Of daily Living, specifically Designed
on the patient anatomy”, funded by the University of Florence which will end in
December 2019, the other, titled “BMIFOCUS: Brain Machine Interface in space
manned missions: amplifying FOCUSed attention for error counterbalancing”,
funded by the Tuscany Region which will end in September 2020.

The two-year project HOLD aims to develop a HES that moves away from
the laboratory to get as close as possible to the clinical environment in order
to deal with real-case scenarios. Dysfunctions to the use of the hands can have
pathological causes of a chronic (e.g., degenerative diseases) or incidental nature
(e.g., strokes); in both cases, both rehabilitation and assistance are equally im-
portant since they are complementary in their purpose. While assistance aims
to confer greater independence during the Activities of Daily Living (ADLs)
and to increase the overall social interaction capabilities, on the other hand,
the rehabilitative use of such device focuses on improving the outcome of the
therapeutic approach. This project was born with a very practical spirit and,
thus, the expertise of the researchers of the DIEF are merged with the exper-
tise of the professional of the IRCCS Don Gnocchi to center the design process
on the actual needs and requirements of real patients suffering from hand dis-

2The Don Gnocchi Foundation carries out rehabilitation activities and service for the el-
derly people in 28 residential structures and about thirty clinics spread in 9 Italian regions.
https://www.dongnocchi.it
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abilities. Started after the realization of the first exoskeleton prototype, the
project focused in particular on improving its wearability, portability, and ease
of use employing new mechanical design techniques — based on accurate er-
gonomic and structural studies to promote the prolonged use of the device —
and through bio-inspired and flexible control strategies — to allow an intuitive
and natural management of the device, both for rehabilitation and assistance.
Finally, the fact that the resulting exoskeleton shall be much cheaper than other
commercially available devices is another crucial point of the project.

The other two-year project BMIFOCUS aims instead to build up an inte-
grated training platform to study the cognitive, sensory, and locomotor systems
of pilots in extreme conditions such as piloting a spacecraft or a rover. Through
the use of augmented reality, the end-users will be trained to manage stress and
emotions in the face of possible contingencies. Such system will be composed
of four subsystems: (i) a cerebral neurostimulation system which uses transcra-
nial electrical stimulation techniques based on real-time analysis of biomedical
signals to monitor and stimulate when needed the cognitive capabilities; (ii) an
integrated acquisition system of electrophysiological and biomechanical signals;
(iii) a simulation system of piloting tasks, that interfaces a virtual reality sub-
module with a haptic platform to reproduce one or more case scenarios through
combined immersive experiences (motor, tactile, visual); (iv) a robotic rover to
validate and test the whole system. In this framework, a bilateral HES shall be
integrated with a training platform to reproduce the interaction forces with the
virtual environments on the user’s hand, e.g., during objects handling.

Figure 1.3: Logos of the ongoing projects at the MDM Lab of the UNIFI DIEF.



8 CHAPTER 1. INTRODUCTION

1.2 State of the art

Nowadays, HESs are proven solutions capable of speeding up the recovery
process of the hand by giving the possibility to carry out high-intensity

rehabilitative sessions, otherwise not achievable through the standard physio-
therapy [12]. Such systems can also be used to monitor and record the patients’
signs of progress by measuring suitable anatomic parameters, allowing for a
more accurate evaluation of the rehabilitation status. Unfortunately, not al-
ways hand function is recovered even after the full treatment. There are cases
[13, 14, 15, 16] in which post-stroke patients cannot regain the original dexterity
of their affected arm. In such situations, the hand exoskeletons can still play
a critical role by providing partial or complete assistance to the impaired limb.
For both uses, the stringent requirements on weight and dimensions — which
limit the electronics, the transmissible power, and the use of standard mechan-
ical components — have meant that the currently available HESs do not show
an outcome as positive as expected.

According to recent state of the art reviews [17, 18, 19, 20], four are the main
ways to classify hand exoskeletons: (i) structure typology; (ii) number of

Degrees Of Freedom (DOF); (iii) linkage system; (iv) type of actuation.

The first classification method separates HESs being based on whether they
have a rigid or soft structure. Rigid exoskeletons — old and well-known typology
— are generally made in plastic materials or metal, and they transmit the
motion to the hand through rigid kinematic chains. The soft ones — new and
emerging class — are instead made in inherently compliant materials, such as
fabric and elastomers, and they typically act on the hand by directly changing
their geometry and their shape [21, 22, 23, 24, 25]. The formers are preferable
when high forces, accurate position, and fast dynamics are required, the latters
when portability and comfort are the main requirements. For this reason, the
use of the two different typologies is more complementary than substitutive [26].

The second classification is based on the number of DOF of the system.
While the use of multi-DOF kinematic chains is largely reported [27, 28, 29], the
use of rigid single-DOF ones is not large as well [30, 31]. The formers have com-
plex kinematic architectures and well reproduce the natural hand movements,
the latters have a simpler kinematics but struggle in following the hand motion.
Due to their complicated functioning, multi-DOF solutions need complex setup
and, thus, are mainly used for rehabilitative purposes since the portability re-
quirement is not of crucial importance. This distinction applies only to rigid
exoskeletons since the number of DOF in soft ones is not properly identifiable.
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The third clustering parameter takes into account how the HES is connected
to the fingers. This method groups the exoskeletons into the multi-phalanx ones,
which independently act on the different phalanxes [32, 33], and the single-pha-
lanx devices, which actuates only one phalanx [34]. In general, multi-phalanx
and single-phalanx approaches are corresponding to a multi-DOF and single-
DOF architecture and, therefore, they have the same pros and cons.

The fourth and final grouping relies on the type of actuators which can
mainly be electric [35, 36] or pneumatic [37]. Electric actuators, unlike pneu-
matic ones, are usually more compact and transmit smaller forces to the hand.

The exoskeleton involved in this research activity is rigid, single-DOF, single-
phalanx, and electrically actuated. Although it has not been the subject

of this very thesis, the next chapter will go into detail about the mechanical
evolution process that, over the years, has ensured that the HES in question
can accurately reproduce the trajectory of the fingers.

An accurate study of the state of the art concerning possible control strate-
gies has begun based right on such a result — which had already been partially
achieved when the thesis started. In particular, since the device was already
mechanically optimized to follow the trajectories of the fingers reliably, this
first phase has focused on the fascinating field of recognizing and classifying the
user’s intention — regarded as the will to move a limb in a certain way — rather
than searching for complete control strategies for robotic devices.

Latest trends in literature indicate the use of sEMG signals as one of the
most promising ways to classify the user’s motor intention [38, 39, 40, 41]. Many
and different techniques have been investigated in recent times. Such methods
are, more or less, based on the same procedure [42]: (i) collect time series
of sEMG signals and split them into labeled time segments of an appropriate
length; (ii) apply a filtering action to each segment and extract, if needed, time
domain or frequency domain features (or a combination of them); (iii) use those
features to train specific classifiers running pattern recognition algorithms, such
as neural networks, support vector machines, hidden Markov models. Assuming
that the existence of a two-way relationship between EMG patterns and the
corresponding gestures is reasonable, the classifier output can then be translated
into appropriate low-level commands for the actuation system of the HES in
order to reproduce the classified intention.

While literature is well stocked with studies on sEMG classifiers [43, 44,
45, 46, 47, 48, 49, 50, 51, 52], not many are the available research works which,
moving from the laboratory, are centered on the implementation of such methods
to a real-use exoskeleton. This difference, which may seem small, is instead
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significant. The sEMG patterns modifications due to the use of an exoskeleton,
or solely to its wearing, are indeed not negligible. Also, many refined techniques
suggested by literature are not applicable in most cases: constraints on the
complexity (e.g., number of DOF and number of sensors), wearability (e.g.,
setup for sensors and actuators, as well as the necessity to be as accessible as
possible to a hand-impaired user), responsiveness (e.g., real-time requirements
achievable on embedded electronics), and cost of the HES are also inherent
limits to the classification strategy. As it will be observable in the detail of the
other available works reported below, sophisticated strategies give way to more
elementary approaches when it comes to the application to a real device. At the
time of writing and to the best of the author’s knowledge, few are the studies
that can be found in literature that are strictly related to this thesis topic.
The following selection will be analyzed based on three main characteristics:
(i) sensors setup, in terms of number, positioning, and application on the user;
(ii) classification method, in terms of classification criterion, classifiable gestures
and exploited features; (iii) actuation protocol, discriminating between single-
trigger and continuous-effort. Other aspects, such as the sensors typology and
the assistive or rehabilitative use, will not be considered discriminant since the
signals characterization and collection are not subject of this study.

Ochoa et al. (2011) - The control strategy presented in [53] exploits sEMG
signals collected from two forearm muscular bands: the extensor digitorum3

and from the flexor digitorum4. The number of sensors is not specified, and an
external and trained supervisor performs their application on the patient. The
control system, designed to classify only the opening and closing gesture of the
hand, runs on a custom-made printed circuit board. It real-time compares the
amplitude of each signal to a corresponding voltage threshold and classifies the
relative intention every time one of the two limits is overcome. The device is
then moved accordingly, and the entire Range Of Motion (ROM) is covered in
percentile steps of 10%.

3The extensor digitorum is a muscular band of the posterior forearm, responsible for open-
ing the four long fingers by acting principally on the metacarpophalangeal joints. Under
continued action, it also extends the wrist, and then the elbow.

4The flexor digitorum muscular band, located in the anterior compartment of the forearm,
can be split in two muscles: the flexor digitorum superficialis and the flexor digitorum profun-
dus. It can be considered the antagonist of the extensor digitorum, and, therefore, it produces
opposing joints torques and opposite movements.
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Ho et al. (2011) - The method described in [54] uses again the muscular
signal generated by the extensor digitorum to trigger the opening action of the
HES. At the same time, unlike the previous case, the management of the closure
is entrusted to the signals coming from the abductor pollicis brevis5. A trained
person places one sensor on each muscle, and the classification is performed by
comparing the amplitude of the signals with a threshold set at 20% of the user’s
maximum voluntary contraction of the corresponding muscle. Once the user’s
intention, namely, an opening or closing gesture, is classified, the actuation
system is triggered to execute the entire movement at once. The whole control
system runs on embedded hardware, fully wearable.

Leonardis et al. (2015) - Here in [55], an approach that involves the use of
both hands is proposed: a bilateral HES for rehabilitation. It is meant to be used
when the patient has only one impaired hand, since the driving sEMG signals
are collected from the non-paretic limb. The sensor application still needs to
be performed thanks to external intervention, and the involved muscular bands
are those three mentioned above. However, one crucial difference concerning the
two previous works is represented by the fact that the signals collection does not
take place on the arm influenced by the exoskeleton and, thus, the exoskeleton
itself does not modify the sEMG patterns on which the classifier works. In this
work, the authors use a light neural network, implemented on a desktop PC, as
the classifier, but no reference is given to the actuation method.

Meeker et al. (2017) - In [56], the authors present the application of a
commercially available armband to the control strategy of a HES. The elastic
armband includes eight sensors and, although it does not need to be precisely
positioned by a trained person, it still requires an external intervention to be
worn by the patient. A random forest algorithm, fed with the raw signals from
the eight sensors, is in charge of the classification of the only two classifiable
movements: opening and closing of all the fingers. Interesting that the classifier
output is not directly translated into a command signal, but it is first processed
through a median filter and then compared to two thresholds. In the paper, nor
the hardware nor the actuation method are mentioned.

5The abductor pollicis brevis is a superficial muscle located on the palm, right under the
base of the thumb. As the name suggests, it is responsible for the abduction of the thumb,
defined as the movement towards the palm.
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1.3 Contribution and thesis structure

Starting from the scenario mentioned above, the research activities presented
within this thesis dealt with the topic of providing the low-cost assistive

hand exoskeleton prototype previously developed within the MDM Lab of the
UNIFI DIEF with an intuitive and reliable control strategy, which guaranteed
the portability, wearability, and inexpensiveness of the device. As will be fur-
ther discussed in Chapter 2, at the beginning of this work, the HES control
system consisted of a two-button trigger, connected in open loop to the device.
The necessity of using one hand to operate — by pressing the buttons — the
exoskeleton placed on the other, and the complete lack of feedback on the user’s
hand state made the employment of the device unintuitive as well as unsafe.

From the analysis of the state of the art, it emerged that not only a feasible
but also preferable and widely undertaken way to replace the trigger system
could have been the acquisition and classification into appropriate motor inten-
tions of the user’s sEMG patterns. The main reason was the non-invasive and
extraordinarily intuitive type of control that could be achieved; sEMG signals
can be collected directly from the skin and are derivatives of the natural means
by which the brain controls the body movement. However, even if literature
presents many promising solutions about sEMG classifiers, only a small number
of studies about the implementation of such decision-making algorithms on HES
can be found. Focusing just on the few related works reported in the previous
section, it can be seen that: (i) they all present control techniques which are
based, when specified, on the classification of only three of the possible hand
gestures — resting, and complete opening or closing; (ii) the independent con-
trol of the single finger is taken into account by none of them; (iii) the works
reported by Ochoa et al. and Ho et al. are the only ones which explicitly indi-
cate that the whole control system, including the classifier, runs on an embedded
hardware — necessary condition for the HES to be portable and fully wearable;
(iv) the number of total sensors varies in a range from two to eight and, in each
case, they need to be positioned by an external person; (v) only the work of
Ochoa et at. shows a continuous-effort actuation method, which, compared to
the single-trigger ones, offers more control over the ROM and lends itself also
to rehabilitation scenarios.

The main contribution of the work proposed in this thesis is to offer a solution
that, embodying a suitable trade-off among the strategies mentioned above,

overcomes some of the limits of the current state of the art, and it is ready to
be part of a proper clinical trial after the approval of an ethics committee.
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Such novel sEMG-based approach aims to merge the strengths of the already
known techniques and introduce a new classification criterion never applied
before to wearable robotics. In particular:

• it involves the use of sEMG sensors placed adequately in specific positions
to maximize the selectivity of the measurements on the specific muscles
and, thus, to reduce possible disturbances deriving from the activation of
other muscle groups;

• it provides the possibility to classify only the three elementary hand motor
actions (opening, closing and resting) to keep the complexity of the whole
classification system low and to exploit a classifier computationally light
enough to be run on embedded controller boards;

• it is based on a continuous-effort actuation method to offer a complete
control over the entire ROM, to allow for intermediate poses of the hand,
and to result as natural as possible;

• it is specifically designed for the clinical sector and, thus, it can be quickly
and straightforwardly tuned on different patients’ needs by non-technical
staff through a dedicated and easy-to-use GUI developed in the framework
of this research activity;

• it is integrated into a patient-friendly, low-cost and fully wearable HES.

Chapter 2 gives a detailed description of the state of the art of the HES
developed by the MDM Lab of the UNIFI DIEF at the beginning of this thesis
work. Since this research activity has been performed in a symbiotic and circular
manner with the mechanical development of the device, this chapter also gives
an overview of the mechanical modifications and improvements the exoskeleton
has undergone until today.

Chapter 3, after a brief introduction of the physiology of the sEMG signals
and the base principles of the classification theory, reports all the work done
towards the implementation of the new control strategy: the changes made to
the electronics of the system, the choice of the classification algorithm, and the
development of two dedicated GUIs.

Chapter 4 the actual implementation and the testing of the new control
strategy. The modifications to the old HES electronics also involved an onerous
mechanical redesign of the device, and an overview of the final system will be
given. The chapter will finally focus on the experimental tests that have been
performed in a pilot study and their results.

Chapter 5 concludes the thesis, providing a critical analysis of the achieve-
ments and opening up scenarios for possible future developments.





Chapter 2

First-stage device

The work described in this thesis started in 2016 from the need to implement a
safe and effective control system on an assistive hand exoskeleton developed

by the researchers of the MDM Lab of the DIEF over the previous three years
[57, 58]. Starting from an in-depth kinematic study of the mechanisms that
transmit motion to the fingers, the main features of such HES will be discussed
to clarify its functioning and highlight the aspects on which the control system
requirements (reported in Section 1.3) have been identified.

Section 2.1 deals with the closed-form forward kinematic study, conducted
to mathematically characterized the mechanisms chosen to actuate the user’s
fingers. Such mathematical delineation has been the basis of an optimization
procedure, implemented to geometrically optimize the same mechanism archi-
tecture to fit different hand sizes.

Section 2.2 describes the hinted optimization procedure, giving an overview
of the idea behind and presenting in short the process itself. Details are left to
the in-depth analysis presented in [59].

Section 2.3 finally describes the HES which embodies the aforementioned
kinematic analysis and optimization procedure. The end of the section em-
phasizes the main flaws found according to the results of several intermediate
clinical tests performed on a single patient at the IRCCS Don Gnocchi1 under
the supervision of health professionals.

1The Don Carlo Gnocchi Foundation has agreed to the execution of the tests upon the
presentation of an informed consent form signed by the involved subject (available on request).

15
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2.1 Kinematic synthesis

The first HES prototype was composed of five different parts: the housing
for motors and electronics, and four independent planar mechanisms for

the transmission of motion to the index, middle, ring, and little finger. This
section is dedicated to the kinematics of the index mechanism, and to the scal-
ing procedure implemented to adapt it to the other fingers. It will finally be
discussed the possibility of using the scaling procedure not only to fit different
finger dimensions but also directly to different hand sizes. The main purposes
of this analysis were to mathematically characterized and, later on, numerically
optimize a chosen single-DOF mechanism to make it reproduce, as accurately
as possible, the complex trajectories of the fingers resulting from their multi-
DOF structure. The choice of focusing on the optimization of a single-DOF
mechanism — henceforth called “finger mechanism” — instead of opting for the
exploitation of a multi-DOF one has been made according to the guidelines of
wearability, simplicity, and cheapness imposed by the faced scenario. Such a
decision has represented an effective solution in terms of functionality and man-
ufacturability, leading to a smaller and lighter HES, easier to produce, actuate
and control, and, thus, cheaper.

6
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Figure 2.1: The graphical representation of the 2D kinematic chain of the finger
mechanism. Joints are identified by circled numbers, while the different links
are named according to the colors legend in the low left corner.
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The study of the forward kinematics of the finger mechanism will be presented
referring to what shown in Figure 2.1, where:

• 1 , 2 and 4 are revolute joints;

• 3 , 5 and 6 are pin slot joints;

• 1 is the only actuated joint and controlled DOF;

• reference systems x1y1 is integral with component A, x2y2 and x5y5 with
component C, x3y3 with component B, x4y4 with component D, x6y6 with
component F and xeye with component E;

• x1y1, whose correct positioning is at a known distance on the vertical
above the MetaCarpalPhalangeal (MCP) joint of the hand, is the only
fixed frame against which the pose of all the others is calculated;

• component A, E and F are respectively integral with the back of the hand,
with the intermediate phalanx (henceforth also called middle phalanx),
and with the distal phalanx;

• O4, namely the origin of x4y4 and actual end effector of the mechanism,
is the main interaction point between the finger and the exoskeleton2.

The investigation will mainly focus on reconstructing the trajectory of the
origin of frame x4y4 reported in frame x1y1 (1O4) as the joint 1 variable varies.
Analytically knowing such a trajectory is indeed the first step to optimize the
geometry of the whole finger mechanism, as it will be shown in the next section.
However, since they will be required later, the calculation of the trajectory of
the other remarkable points of the finger mechanism (1O2, 1O3, 1O5 and 1O6)
will also be presented here below.

Analysing the kinematic chain of the finger mechanism the following eight
independent relations can be identified:

1O1 = 1O2 + R1
2

2O1 (2.1)

1O2 = 1O3 + R1
3

3O2 (2.2)

1O4 = 1O3 + R1
3

3O4 (2.3)

1O5 = 1O2 + R1
2

2O5 (2.4)

2Component F is an idle thimble which does not impact on the kinematic chain of the
device. It is a passive element, added to accompany the motion of the distal phalanx.
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1O5 = 1O4 + R1
4

4O5 (2.5)

1O6 = 1O4 + R1
4

4O6 (2.6)

a3
1Ox3 + b3

1Oy3 + c3 = 0 (2.7)

a5
4Ox5 + b5

4Oy5 + c5 = 0 (2.8)

where the generic vector jOi =
(
jOxi

jOyi
jOzi

)T ∈ R3 denotes the position

of Oi in xjyj , the generic matrix Rj
i represents the rotation of xiyi with re-

spect to xjyj , (a3, b3, c3) and (a5, b5, c5) are coefficients dependent on the linear
constraints of the pin slot joints 3 and 5, and the terms referring to known
geometrical quantities are underlined. Since the mechanism moves on a fixed
plane, all the jOzi components are imposed equal to zero, and all the rotation
matrices will result in elementary rotations about zi axis through an angle αi.

The kinematic state vector can now be defined as:

q =
[
1OT

2
1OT

3
1OT

4
1OT

5
1OT

6 α2 α3 α4

]T ∈ R18 (2.9)

This vector contains the position of all the points of interest of the mechanism
and three scalar angles of which one, α2, represents the joint variable 1 and,
thus, it is the control variable of the system. The elements inside the state vector
can be calculated by solving the Equations 2.1 - 2.8 as function of α2 ∈

[
0 π

2

]
itself and of all the geometrical quantities of the generic mechanism enclosed in:

S = [2OT
1

3OT
2

2OT
5

3OT
4

4OT
6 a3 b3 c3 a5 b5 c5]T ∈ R21 (2.10)

In light of these premises, let q̃ ∈ R17 be the vector composed of all the
unknown elements of q so that q = [q̃ α2], and let f(α2,S) ∈ R17 be the
vector function composed by Equations 2.1 - 2.8, it is possible to solve the
problem of the forward kinematics of the mechanism, q̃ = f(α2,S), as follows.
From henceforth, fixed geometrical quantities will no longer be underlined and
every element of the vector q̃, solved in terms of α2, elements of S and already
calculated terms, will be boxed to indicate that it is a known quantity and, as
such, shall be considered in the resolution of the subsequent equations.
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The vector Equation 2.1 can be split into two scalar equations3:

0 = 1Ox2 + cα2
2Ox1 − sα2

2Oy1 (2.11)

0 = 1Oy2 + cα2
2Oy1 + sα2

2Ox1 (2.12)

and thus:

1Ox2 = −
(
cα2

2Ox1 − sα2
2Oy1

)
(2.13)

1Oy2 = −
(
cα2

2Oy1 + sα2
2Ox1

)
(2.14)

Then, dividing Equation 2.2:

1Ox2 = 1Ox3 + cα3
3Ox2 − sα3

3Oy2 (2.15)

1Oy2 = 1Oy3 + cα3
3Oy2 + sα3

3Ox2 (2.16)

placed these two as a system with Equation 2.7, the followings are obtained:

1Oy3 =

−A+

√√√√√(A)
2 −

( b3
a3

)2

+ 1

H
(
b3

a3

)2

+ 1

(2.17)

1Ox3 = − 1

a3

(
b3

1Oy3 + c1
)

(2.18)

sα3 =

−1Ox2 + 1Ox3 +

3
Ox2

3Oy2

1Oy2 −
3Ox2
3Oy2

1Oy3

3Oy2 +

(
3Ox2

)2
3Oy2

(2.19)

3As already mentioned, the z-component of all vectors is imposed equal to zero and, there-
fore, the calculation of such elements will not be taken into account.
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cα3 =
1Oy2 − sα3

3Ox2 − 1Oy3
3Oy2

(2.20)

where:
A =

(
b3
a3

1Ox2 +
b3c3
a32
− 1Oy2

)
(2.21)

and:

H =
(
1Ox2

)2
+
(
1Oy2

)2 − (3Ox2)2 − (3Oy2)2 +
2b3
a3

1Ox2 +

(
c3
a3

)2

(2.22)

Equations 2.3, 2.4 and 2.5 can now be split into:

1Ox4 = 1Ox3 + cα3
3Ox4 − sα3

3Oy4 (2.23)

1Oy4 = 1Oy3 + cα3
3Oy4 + sα3

3Ox4 (2.24)

1Ox5 = 1Ox2 + cα2
2Ox5 − sα2

2Oy5 (2.25)

1Oy5 = 1Oy2 + cα2
2Oy5 + sα2

2Ox5 (2.26)

1Ox5 = 1Ox4 + cα4
4Ox5 − sα4

4Oy5 (2.27)

1Oy5 = 1Oy4 + cα4
4Oy5 + sα4

4Ox5 (2.28)

In order to proceed in the calculation of cα4 and sα4, the last two equations
have to be placed as a system with Equation 2.8 and, then, it can be solved
similarly to the previous one, resulting in:

4Oy5 =
− (b5c5) +

√
(b5c5)

2 −
(
b5

2 + a52
)
T

b5
2 + a52

(2.29)

4Ox5 = − 1

a5

(
b5

4Oy5 + c5
)

(2.30)

cα4 =
1Ox5 + sα4

4Oy5 − 1Ox4
4Ox5

(2.31)
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sα4 =
1(

4Oy5
)2

4Ox5
− 4Ox5

(
1Oy5 − 1Oy4 −

4Oy5
4Ox5

1Ox5 +
4Oy5
4Ox5

1Ox4

)
(2.32)

where:
T = −a52

[(
1Ox5 − 1Ox4

)2
+
(
1Oy5 − 1Oy4

)2]
+ c5

2 (2.33)

Finally, the two scalar equations coming from the breakdown of the remain-
ing Equation 2.6 complete the kinematic analysis:

1Ox6 = 1Ox4 + cα4
4Ox6 − sα4

4Oy6 (2.34)

1Oy6 = 1Oy4 + cα4
4Oy6 + sα4

4Ox6 (2.35)

The kinematics of the mechanism is now completely described and the tra-
jectory of 1O4 is reported in Figure 2.2.

x4

y4

x4

y4

Figure 2.2: In pink, the trajectory 1O4(α2,S) with α2 ∈
[
0 π

2

]
.
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2.2 Optimization procedure

Once identified the trajectory 1O4(α2,S) through the analysis of the for-
ward kinematics of the mechanism, the following step is to reconstruct

the trajectory of the same point starting from the kinematics of the finger. By
comparing these two, it is possible to study the quality of the coupling between
the exoskeleton and the hand, and optimize the mechanism by modifying the
geometrical terms contained within the vector S to minimize the displacements.

As reported in Figure 2.2, the connection point between the hand and the
exoskeleton (identified as the point O4) can be assumed placed approximately
on the middle-upper part of the intermediate phalanx. The first step of the
optimization procedure is to track the natural motion of such a point through a
Motion Capture (MoCap) analysis of the user’s index finger. The exploitation of
the MoCap technique to define the objective function to optimize is a remarkable
advantage since, downstream of a fully non-invasive procedure, the physiologi-
cal finger motion can be tracked. Such tracking is possible by recording video
images of markers placed on the lateral side of the right index finger in corre-
spondence with the MCP joint, theProximal InterPhalangeal (PIP) joint, and
the Distal InterPhalangeal (DIP) joint — the marker positioned on the MCP
joint, assumed fixed in position during finger motion, constitutes the origin of
the reference frame in which the trajectory of the other markers are calculated.

The acquired images are then processed through the open-source software
Kinovea to extract the coordinate vectors of the trajectories of the markers as the
finger moves. Henceforth, MOD, MOP , and MO4 will indicate, respectively, the
position of the DIP joint, the PIP joint, and the connection point calculated in
xMyM . The position of the interaction point MO4 cannot be directly extracted
from the MoCap analysis but, assuming that component E and the intermediate
phalanx constitute a single rigid body when the exoskeleton is coupled to the
hand, it is possible to reconstruct the trajectory of a virtual marker placed on
O4 starting from the trajectories of OD and OP . In detail:

MOh
4 =

MOh
D + MOh

P

2
+Rz,π2

m

2

MOh
D −MOh

P

||MOh
D −MOh

P ||
(2.36)

where the first addend represents the position of the midpoint of the second
phalanx and the second addend is equivalent to a shift of half of the phalanx
thickness (m) in the direction perpendicular (Rz,π2 ) to the phalanx axis, namely
the joining between DIP and PIP. The index h identifies a specific time instant
because the trajectories of DIP and PIP joint are not analytical functions but
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time series of subsequent positions. However, in order to compare the trajectory
just calculated with the one output by the forward kinematics other two more
steps are required: (i) rewrite such trajectory in x1y1; (ii) interpolate the new
trajectory to get a continuous function to be then resampled at certain α2 values.
As shown in Figure 2.3, the trajectory of MO4 can be easily reported to x1y1
by adding the displacement vector 1OM , which is a fixed and know quantity:

1Oh
H = MOh

4 + 1OM (2.37)

where OH is the position of the interaction point imposed by the hand kinemat-
ics. Knowing such trajectory, it is possible to interpolate this point series as a
function of α2 by imposing the initial and the final point of the trajectory with
α2 = 0 and α2 = π

2 — respectively (0, 1O0
H) and (π2 ,

1Of
H) — and accordingly

remapping all the other points within this interval. What it is obtained is an
approximation of the trajectory 1OH(α2).

Section 2.1 proves that, given S (Equation 2.10), the vector that encloses the
geometrical properties of the kinematic chain of the finger mechanism, it is

possible to calculate in closed-form the trajectory of 1O4 (Equation 2.23 - 2.24)
as a function of the joint variable α2. The aim of the optimization procedure
is instead to travel the other way around: the MoCap gives the trajectory
of the contact point, 1OH(α2), and the geometrical features in S become the

x1

y1
x4

y4

MCP

DIPPIP xM

yM

1

4

Figure 2.3: The finger kinematic chain can be simplified into three revolute joints
which, starting from the metacarpus, direct the motion of the three phalanges
on the flexion/extension plane.
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free variables to be modified intending to make the finger mechanism track it
as accurate as possible. Remembering 1O1(α2) as the position of the contact
point reproduced by the finger mechanism it is possible to define, firstly, the
error between the two trajectories at a generic angular sample αk (Equation
2.38), and, secondly, an objective function weighting not only the average but
also the maximum error (Equation 2.39):

ek = e (αk,S) =
∣∣∣1OH (αk)− 1OR (αk)

∣∣∣ (2.38)

f (S) = γmax
k
|ek|+ (1− γ)

K∑
k=0

|ek|
K + 1

(2.39)

where γ, assumed as a scale coefficient to set the relative weight of the two
errors has been set to 0.5 in this study to equally weigh maximum and average
error. The optimization problem is hence defined as finding a particular vector
of geometrical parameters S? which minimizes such objective function:

S? = min
S
f (S) (2.40)

Finally, because the nature of the problem itself was constrained — among
the others, please remember the requirement of wearability of the HES — upper
and lower boundaries have been imposed on each of the free variables. These
constraints are chosen to rely on the user’s anatomy and aim at defining a
suitable geometry of the resulting mechanism which shall be safe for the user,
practically manufacturable and not too bulky for the real use.

The constrained problem thus defined results to be nor convex nor linear
because of the non-differentiability, non-continuity and the complexity of

the objective function. The solution to such kind of problem is usually left
to the recursive algorithm of numerical optimization. In this case, the applied
techniques is the one proposed in [60] based on the Nelder-Mead simplex method
[61]. The main idea behind this strategy is to perform a certain number of local
searches for a sub-optimal solution, so that altogether, cover as much as possible
the function domain. Each local search finishes when one or more conditions
for the resulting simplex are met, and the starting point for the following search
is probabilistically chosen to maximize the coverage of the domain. Once the
number of iterations is over, the method examines all the convergence points to
appoint the optimum.
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2.3 The original prototype

Everything reported in the previous section has paved the way to the ac-
tual manufacturing of a prototype of HES designed explicitly for a patient

voluntary enrolled in the study (Figure 2.4). Having suffered from SMA, a neu-
romuscular disorder resulting in progressive muscle impairment, since birth, he
had lost, among other body functions, the ability to extend hand fingers au-
tonomously. Such a thing, as he claimed, was more limiting to him than other
disabilities as it prevented him from natural and comfortable objects handling.
In this section, the details of the device developed to assist him will be discussed.

Figure 2.4: The original prototype of the assistive hand exoskeleton system de-
veloped at the UNIFI DIEF. The figure, in addition to the mechanical structure
and the actuation system, also shows the original control system (the blue box)
composed of a switch, a controller board, and two buttons, which triggered the
movement of the four motors.

Before the beginning of the design process, a clinical assessment of the state
of the patient’s illness has been performed with the help of a physiotherapist.
Some key points of the addressed scenario have thus been identified. Among
them, the fact that the level of calcification of the finger joints was still low
and that the patient still had a functional thumb mobility. Both of these points
have proved to be of particular importance: the former, ascertained that the
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use of a finger-handling device would not have caused pain to the user, has
given the green light to the mechanical design process; the latter has instead
significantly lightened the process itself which could not have concerned, at least
in the preliminary stages, a very complicated finger like the thumb.

According to the procedure presented in the previous section, the clinical
assessment has been followed by the acquisition of the average two-dimensional
trajectories of the user’s index finger joints during the complete extension of
the four long fingers. While the physiotherapist assisted the patient in per-
forming several repetitions of the movement, video images of the patient’s hand
have been captured and processed using Kinovea. The acquired trajectories,
extracted from the tracking of the markers placed on the index joints, have
been then fed to the optimization algorithm leading to the definition of the
first three-dimensional geometrical architecture of the index finger mechanism.
Before moving on towards the manufacturing of such a mechanism, it has been
virtually tested employing SOLIDWORKS R© Motion. The mechanism has been
paired with a 3D Computer Aided Design (CAD) model of the patient hand, and
the kinematic coupling between the mechanism and the index finger has been
qualitatively verified to avoid possible interpenetrations and assess the proper
tracking of the finger trajectory. Once finished the preliminary investigations,
the geometry of the index finger has been scaled to match the dimensions of the
other fingers. Then, the docking for the four finger mechanisms, as well as the
housing for the motors have been designed. Finally, just before the manufac-
turing phase, the components have undergone an additional reshaping: Figure
2.4 shows that the shapes of the components differ from the straight lines of
the kinematic model. This final step, which has changed the shapes but not
the kinematics, has been mandatory to avoid possible interpenetration with the
user’s finger. Moreover, integrating pins and shafts directly on the parts during
this phase helped to reduce the lateral encumbrance of each mechanism remark-
ably. After that, all the components have been 3D-printed in ABS exploiting a
Dimension Elite printer by Stratasys.

As visible in Figure 2.4, the mechanical structure is composed of five parts:
four independent finger mechanisms, and a back frame designed as their

docking station and as the housing for the actuation system. The choice of 3D-
printing all the device parts in ABS has allowed not to worry too much about
the complex geometries which some parts could take after the optimization pro-
cess — the additive manufacturing technology is indeed free from some of the
typical geometric limits of the standard machining based on subtracting pro-
cesses. Besides, the use of such material has meant that the resulting device was
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already somehow inherently safe for the user. Indeed, the ABS has mechanical
characteristics that make it suitable for transmitting rigid motion for this kind
of application but, at the same time, it gives all the parts an intrinsic mechani-
cal clutch function against high loads that could harm the user; in other words,
ABS components and joints would have broken before the loads transferred to
the hand had become dangerous.

Following the requirements of lightness — indispensable for achieving a
highly wearable device — high power density servo motors, one per finger, have
been chosen as the core of the actuation system. The motion transmission from
each actuator, housed in the fixed frame on the back of the hand, to the finger
mechanisms, positioned over each finger, has been designed to be carried out
using a cable that was unwound or wrapped by custom pulleys integral with
the motors shafts. It is worth noting that exoskeleton has been designed to
intervene in the motion of hand unnaturally forced in a clenched fist deformity.
Therefore, the exploitation of a cable transmission, capable of actively pulling
the finger in extension and passively follow them during the flexion, fit perfectly
into such a scenario and, also, it turned out to be one of the simplest and least
cumbersome solutions. On the mechanisms themselves, holes have been repro-
duced for the passage and anchoring of the cables, while the pulleys have been
3D-printed after being designed of different sizes, aiming to confer the different
fingers with the same MCP joint angular velocity. Moreover, since the length
of cable to unwind to achieve a complete motion of the fingers resulted in being
longer than the one unwound during a full rotation of the pulleys, these motors
have been modified to allow for the continuous rotation of their shaft. Such an
adjustment was preferred to the design of sufficiently large pulleys as it would
have compromised the compactness and the wearability of the system.

An Arduino Nano control board, housed in a separate box placed on the
forearm, managed the actuators’ behavior according to the triggers coming from
two buttons (the two white circles in Figure 2.4) designed to be pressed with
the other hand even if impaired as well. A standard 6-Volt lithium battery pack
— placed next to the shoulder using a Velcro band — powered the Arduino
and the motors. The control strategy was straightforward: a very light code
recursively checked for the state of the two buttons, if one of them happened
to be pressed the control board reacted by sending the servo command to the
actuators which, all together, started spinning at a fixed speed in the direction
indicated by the specific pressed button. This prototype did not include sensors
for automatically control the finger mechanisms position, and their ROM was
manually managed by the user.
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The whole mechatronic system presented above has been finally assembled
and worn on the hand of the patient using a sport glove — to which it

had previously been sewed — as a base. The user has been told to perform
several complete opening and closing gestures while, once again, video images
have been captured to be later processed with Kinovea. This time, the colored
markers have not been placed on the index finger joints, which were not easily
accessible once the HES was worn, but instead on the mechanism joints and their
trajectories have been extracted from those images. The idea was to compare
the acquired trajectories of the finger mechanism joints with the ones coming
from the kinematic model optimized on the acquired trajectories of the patient’s
index finger joint as a preliminary assessment of the accuracy of the device in
reproducing the correct motion. Even though this comparison, more qualitative
than quantitative in the end, has given promising results, the tests conducted
on this first version highlighted several flaws — some of those pointed out by the
patient himself — which negatively impacted on its practical usability: (i) the
exoskeleton, not allowing for the abduction-adduction movement of the fingers,
forced the user to move the fingers only on the flexion-extension plane resulting
in an extremely annoying feeling; (ii) having to use one hand to control the
motion of the other because of the buttons-triggered control strategy resulted
in being, as it could be expected, very unintuitive, unnatural and doubly clumsy;
(iii) the absence of any type of position feedback over the flexion-extension angle
of the MCP joint, and thus the lack of an automatic control over it did not make
the user feel completely safe, causing additional mental stress and fatigue due
to the necessary high amount of attention he had to pay continually.

In conclusion, the first-stage device ended up being compact (the HES did not
exceed the hand size), fully wearable, light (it weighed just under 500 g)

and cheap (it cost just over 500 ¤), nonetheless the user’s feedback pointed out
that it resulted still far from the real clinical application and the practical use.
Starting from such a review, this thesis work and other parallel activities —
aiming at revamping the mechanical structure and, in particular, the actuation
system — have begun, and their results will be presented and discussed in the
following chapters. As the heart of this work, the attention will be focused on
the steps that have led to the development and implementation of an automatic
control logic which overcame the limits arose testing this version of the HES.



Chapter 3

The new control system

Beyond the just reported control issues — arisen during the HES tests —
an important thing that has also emerged was the accurate tracking of

the acquired trajectories of the fingers. This point was crucial for the choice
of the new control strategy to implement. The availability of a device that
already benefits from such mechanical optimization has indeed directed this
thesis work towards the research for a suitable technique that would allow a
reliable classification of the user’s intentions to reproduce, leaving the motion
management of the exoskeleton to a standard position and speed control.

When it comes to classifying the motor intentions of a person to control
wearable robotic devices, the technical literature (Section 1.2) is evident in
indicating the use of biological signals as the solution to be adopted to obtain a
control experience as intuitive and natural as possible. In particular, in the last
years, the use of sEMG signals, i.e., the result of the epidermal measurement of
the muscular activity in the form of electric potential, is attracting the attention
of more and more researchers. Surface electromyography is indeed an emerging
discipline that boasts among its strengths the total non-invasiveness, the ease of
setup, and, thanks to the technological progress of sensors and signal processing
techniques, a remarkable characterization of the muscular state.

This chapter will deal with the topics mentioned above, giving the basis to
understand the path taken, discussing the choices made in detail, and reporting
every step of the work done. Finally, it will be essential to consider that the
work phases described from now on are the result of a circular process: each
phase has been carried out in parallel and has influenced the other ones.

29
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Section 3.1 describes the fundamental principles of the physiology of sEMG
signals and the theory of classification. They both will constitute the theoretical
background to understand better the choices reported in the following sections.

Section 3.2 presents the electronics changes, which have been the basis for
the implementation of the new control strategy. Each component is described
in its functioning, and its main characteristics are stressed.

Section 3.3 tackles the main focus of this work: the choice and the devel-
opment of the new control strategy. Particular emphasis will be given to the
original requirements, the various issues that have come up during the early
stages of testing, and the efforts taken for their resolution. Ample space is also
left to the description of a custom GUI, designed to ease the process of sEMG
signals collection and classifier initialization.

3.1 Theoretical background

This section aims to discuss the central theoretical notions on which the
research work described in this thesis has been based. In particular, the

principles of electromyography and classification will be addressed. Both are
vast, complex, and above all, still in discovery subjects. What is written is not
intended to be an exhaustive treatment of such topics but rather a summary
of the information available in the literature, with particular attention given to
those areas that will be referred to later along the thesis.

3.1.1 sEMG signal physiology

Electromyography is the discipline that, from the beginning of the 20th
century, studies and interprets the bioelectric signals coming from the neu-

romuscular system, also called myoelectric activity [62, 63]. The neuromuscular
system is the apparatus humans use to interact with the environment; it com-
prises nerve endings in the corticospinal tract, (α)-motoneurons in the spinal
cords and skeletal muscles. The set of an (α)-motoneuron and the innervated
muscle fibers is called Motor Unit (MU) and represents the elementary units re-
sponsible for the contraction of muscles [64, 65]. When a motoneuron is excited
by a nervous stimulus, the action potential propagation activates all muscular
fibers supplied by its axonal branches; the propagation starts from the Innerva-
tion Zone (IZ) and moves in the opposite direction toward the extremities of the
muscle. The number of MUs per muscle in humans varies roughly in a range
from 100 to 1000, moreover, their fibers are randomly distributed in the muscle
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and intertwined with fibers belonging to different MUs. For these reasons, their
activation is observable only as an overlapping of the single contributes: this
resulting signal goes under the name of Motor Unit Action Potential (MUAP).
Collecting such signals is possible by placing in the proximity of the muscle
one or more electrodes, which record the electrical potential generated by the
electromagnetic field due to polarization and depolarization of muscle fibers.

In practice, there is much difference between the various electromyographic
sensors commercially available, and it is precisely their typology and their func-
tioning that discriminates the nature of the signal that can be measured. Intra-
muscular sensors allow for the collection of the classic EMG signals. Although
this practice is decidedly invasive as needle-like electrodes are implanted directly
into the muscle, the signals that are obtained are very selective and not very
noisy. Epidermal sensors are instead designed to capture the electromyographic
signal directly through the skin. This signal, which takes the name of sEMG,
is characterized by a significantly higher noise level than the intramuscular one
because it is filtered by layers of different tissue (e.g., fat, skin, other muscles)
before reaching the electrode (see Figure 3.1). Nevertheless, surface electromyo-
graphy is in active growth as, being a completely non-invasive technique, it lends
itself very well to scientific experimentation. The third category of electromyo-
graphy is the High Density Surface ElectroMyoGraphy (HDsEMG), which uses
sensors made of dense matrices of individual electrodes. The use of such sensors
allows for a better spatial representation of the muscular activity, paving the
way to the EMG decomposition — i.e., decompose the signals into the single
MUAPs to observe the behavior of the motoneurons.

0 mV

muscular contractionbaseline

Figure 3.1: An example of sEMG signal captured using Ag/AgCl electrodes.
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Surface electromyography, which is the technique exploited in this research
work, will now be discussed in detail, presenting the main characteristics of

a typical acquisition setup and the conditioning issues of sEMG signals.
The most used sEMG electrodes are made of a silver wire coated with a layer

of solid silver chloride (Ag/AgCl). Unlike the other standard types of electrodes
(silver chloride, silver, and gold), Ag/AgCl ones present lower sensibility to the
rubbing on the skin and usually lead to a cleaner signal collection, especially
when soaked with an electrolyte gel. Properties of such contacts are indeed
higher signal to noise ratios and decent filtering of motion artifacts and power
line disturbances.

Electrodes dimensions vary from a few millimeters to some centimeters, and
they can be of circular or rectangular shape. While the shape does not influence
much the acquired signal, dimensions do matter: the larger the electrode, the
lower the selectivity of the measurement.

EMG signals can be, in general, acquired in monopolar or bipolar disposition.
Monopolar acquisitions reflect the electrical status of the skin right below the
electrode, to which, however, all the possible environmental (e.g., electromag-
netic interference) and physiological (e.g., muscle crosstalk) disturbances also
contribute. On the other hand, bipolar signals are acquired as the analogical
difference between two monopolar signals. Using the difference of two signals,
in particular when acquired from two sources very close to each other, means
that the resulting measurement is less affected by the so-called common-mode
disturbances, i.e., those that act in the same way on both monopolar signals.
In light of the reasons mentioned above, not only the EMG collection is usually
performed in the bipolar configuration, but in general, an additional electrode,
common to all bipolar couples, is also added in a skin area free from muscular
activity to serve as a shared reference of the overall electrical level of the body.

It is observable that, due to the bipolar acquisition methods and to a sus-
ceptible skin interface, electrode positioning and skin preparation are crucial
for a good quality sEMG collection. For example, placing a bipolar sensor sym-
metrically with respect to the IZ and on the propagation direction of the action
potential will result in a null signal detection since the two electrodes will record
the same action potential but with opposite sign. Recommendations for the cor-
rect positioning [66] suggest thus to place the sensor in the area between the
IZ and the tendon region to avoid such problems. As regards the improvement
of the electrode-skin contact, the removal of body hair and layers of dead epi-
dermal cells, together with the sprinkling with electrolyte liquid of the affected
skin areas, are indicated as the steps to the correct skin preparation.
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Whatever the type of surface electrodes used, the myoelectric signals ap-
pear on the skin in the form of an electric potential difference of limited

amplitude (in the range of microvolts and millivolts) and bandwidth (∼ 10 to
500 Hz). Such signals also have a stochastic behavior, present a low signal to
noise ratio, and are affected by several disturbances (e.g., interference from the
electric power line, electromagnetic pollution, motion, and electrocardiographic
artifacts and crosstalk). For these reasons, they are particularly tricky to collect,
and very accurate equipment is required for its measurements.

Commonly used Analog-to-Digital Converters (ADCs) have an operational
range that varies from few up to 10 V, this means that sEMG signals have to be
adequately amplified before their digital conversion. After the sampling, which
according to the Nyquist-Shannon theorem, occurs at a frequency equal to or
higher than 1000 Hz, the signals are processed by a differential amplifier, which
is also responsible for the analogical filtering for rejecting the common-mode
disturbances. Other undesired phenomena, as the aliasing, motion artifacts,
and parasitic frequencies due to environmental disturbances, can be attenuated
after the digitization using appropriate digital filters [67, 68].

However, even after all the processing mentioned above, the information con-
tained in the raw sEMG signals remains challenging to interpret. It is a common
practice to split the signals into epochs (or time windows), lasting from 250 ms
to 500 ms [69], and extract representative indices (or features) from each time
interval. These indices can be calculated mainly in the Time Domain (TD),
and thus directly extracted from raw sEMG signals, or in the Frequency Do-
main (FD), hence derived from their spectrum analysis. Not requiring prior
signal processing, TD features extraction is usually easier to implement. Nev-
ertheless, sEMG signals are strongly non-stationary, and this introduces errors
and uncertainty in the calculation of the TD features since it assumes the data
to be stationary. Finally, in the few particular cases in which neither the TD
nor the FD features prove representative for the problem in question, it is pos-
sible to use the so-called Entropy-Based (EB) features which are based on the
concept of entropy of a stochastic signal. Since the latter features are only used
in very uncommon cases, they will not be further explored in this thesis.

Well known examples of TD features are the Mean Absolute Value (MAV),
also known as Average Rectified Value (AVR), and the Root Mean Square
(RMS) defined as:

MAVe =
1

Ne

Ne∑
k=1

|sk| RMSe =

√√√√ 1

Ne

Ne∑
k=1

(sk −MAVe)
2

(3.1)
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where the subscript e highlights the quantities that depend on the length of the
epoch considered, Ne is the number of samples within the considered epoch, and
sk is the k-th signal sample of the epoch. Both these indices are very similar,
and both are used to express the amplitude of the signal, but their physical
meaning is different: the MAV can be interpreted as the myoelectric activity
level; the RMS gives information about the power of the sEMG signal itself.

In the FD, common features are instead the Mean Frequency (MNF) and
Median Frequency (MDF), which give information on the power distribution of
the signal. Both are based on the assumption of having already calculated the
power spectral density function, P (f), that describes the power associated with
the different signal frequencies. MNF and MDF are defined as follows:

MNFe =

∑fs/2
f=0 fPe(f)∑fs/2
f=0 Pe(f)

MDFe s.t.

MDFe∑
f=0

Pe(f) = 0.5 (3.2)

where f is the generic frequency and fs is the sampling frequency.

The four listed above are just some typical examples of the many indices
that can be extracted from the electromyographic signal to study its information
content. An overview on other possible sEMG features, according to the most
recent data available in literature [70, 71, 72], is given in Table 3.1.

3.1.2 Classification theory

Classification theory is a section of the model theory comprising all the
doctrines regulating the grouping of objects based on their similarities,

differences, or according to a given set of principles. Such a set of principles
usually depends upon the nature of the objects themselves. The basic rules for
organizing a domain of objects into classes require that such division should not
leave two classes with any object in common and, as well, that all of the objects
of the domain should be contained in one class. However, there are cases in
which some objects can, with equal correctness, be accepted into two different
classes. Classification theory, as it has just been described, can be applied in
all the branches of knowledge, but, as it can be expected, it assumes different
characteristics and rules depending on the context. In the fields of Computer
Science and Robotics the term classification is strictly related to Artificial In-
telligence (AI) and Machine Learning (ML) [73]. In particular, Classification is
an actual division of supervised learning, which in turn is a subcategory of the
ML together with the unsupervised learning. Nonetheless, classification prob-
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Feature name Acronym Methodology

Integrated EMG IEMG TD
Mean Absolute Value MAV TD

Modified Mean Absolute Value (Type 1) MMAV TD
Modified Mean Absolute Value (Type 2) MMAV2 TD

Mean Absolute Value Slope MAVSLP TD
Simple Square Integral SSI TD

Variance VAR TD
Root Mean Square RMS TD
Waveform Length WL TD

Zero Crossing ZC TD
Slope Sign Change SSC TD
Willison Amplitude WAMP TD

Autoregressive Coefficients AR TD
Mean Frequency MNF FD

Median Frequency MDF FD
Modified Mean Frequency MMNF FD

Modified Median Frequency MMDF FD
Shannon entropy Hsh EB
Fisher entropy Hfi EB

Table 3.1: Commonly-used features in surface electromyography.

lems can be found and addressed in each of the ML branches. Classifiers aim
at labeling new instances in specific categories based on training performed on
past observations.

Aconventional classification problem is tackled in three steps: (i) data col-
lection and preprocessing; (ii) model training and validation; (iii) model

testing. The first step plays a vital role since the quality and the phenomenon
representativeness of the acquired dataset are crucial to obtain acceptable and
consistent solutions to the problem. Moreover, data is rarely presented in the
right format to be correctly processed by the model. There can be cases in which
the classifier algorithm needs some features to be extracted from the raw data to
improve its performance, others in which the required features are not indepen-
dent, and the meaningful information has to be separated from the redundant
one. In each of the above-mentioned cases, preprocessing is a mandatory activ-
ity. It can take the form of normalization, filtering action, features selection,
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and dimensionality reduction technique, e.g., Principal Components Analysis
(PCA), Random Projection (RP), or Independent Components Analysis (ICA),
or of a labeling procedure. This first phase ends by dividing the original dataset
into three different subsets: a training and a validation set, which are used in
the second phase and a test set, which is the protagonist in the third phase.

Before continuing with the explanation of the second and third stages, it is
essential to remember that different classifiers are distinguished not only among
the various classes but also within the same class: each classifier has its param-
eters and hyperparameters indeed. In general, it is possible to affirm that, once
fixed the hyperparameters — which define the morphology of the classifier —
the parameters — which strongly depend on the hyperparameter selection —
establish the classification performance.

In the model training and validation phase, firstly, a metric for measuring
the model performance is selected. However, it is usually recommended to have
more than one metric, e.g., accuracy, i.e., the percentage of the correctly classi-
fied instances over the total number of them, is a commonly used one, but also
the time required to perform a single classification is another critical value for
real-time applications that might have to be taken into account. Then, different
algorithm morphologies, obtained by exploiting distinct parameter and hyper-
parameter configurations, are trained over the training set until an acceptable
level of the chosen metric(s) is reached and the best — the one with the highest
value — is chosen. Finally, the parameters of the trained models are fine-tuned
to fit also the validation dataset, which, being different from the training one,
allows the learning process state to be monitored to avoid the “overfitting” issue.
Overfitting is defined as a sort of excessive specialization of the classifier on the
training data, which makes the classifier exceptionally performing only on the
data with which it has trained. The training and validation strategy, i.e., the
way the parameters and hyperparameters are recursively tuned for improving
the model performance, is heavily dependable on the class of the model itself.

During the last phase, the focus shift to the level of generalization of the best
model identified by the previous steps. Generalization stands for the ability
of the classifier to adapt to unseen data; as a consequence, it also indicates
the ability to generalize the prediction regardless of the type of input data.
Qualitatively speaking, it is the opposite of overfitting and results as a key
feature in providing an idea of the classifier performance within a real application
task. This third step is carried out by feeding the classifier with the test set,
the one subset which has been kept aside since right after the first passage.
Typically, the generalization performance of the classifier is finally assessed using
the same metric(s) used in the training and validation phase.
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When it comes to ML classification metrics, it is noteworthy to introduce
first the concept of Confusion Matrix. Confusion matrices are useful tools

to evaluate the performance of ML classification models, represented by tables
with different combinations of predicted, in the columns, and actual values, in
the rows (see Figure 3.2). As a matter of fact, from the intersection of rows and
columns it does arise the possibility to compute the desired metrics.
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Figure 3.2: A standard confusion matrix for a binary classification problem.
The cells show the number (or the percentage) of samples that meet the char-
acteristics indicated by the rows and columns.

The interpretation of the labels reported in the table is the following:

• True Positives (TP): the number of times the model predicts the condition
when the condition is present;

• True Negatives (TN): the number of times the model does not predict the
condition when the condition is absent;

• False Positives (FP): also known as “Type I error”, the number of times
the model predicts the condition when the condition is absent;

• False Negatives (FN): also known as “Type II error”, the number of times
the model does not predict the condition when the condition is present.
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The following features can be defined as well: (i) the total number of actual
negatives (TN + FP); (ii) the total number of actual positives (TP + FN); (iii)
the total number of predicted negatives (TN + FN); (iv) the total number of
predicted positives (TP + FP); (v) some reference metrics1.

Accuracy - One of the most used metrics, it ranges from 0 to 1, and represents
the ratio of correctly predicted observations to the total ones.

A =
TP + TN

TP + FP + FN + TN
(3.3)

Instinctively assumed as a great measure of the model performance, it actually
provides very little information about false positives and false negatives. In
general, it is not recommended to base the assessment of the goodness of a
classifier model solely on Accuracy, since it is a metric that can easily mislead.
Indeed, other metrics, such as Precision and Recall, can be used to assess the
impact of those wrong predictions on the model performance.

Precision - Also known as Positive Predictive Value (PPV), it ranges from 0
to 1, and is the ratio of true positives over all true positives and false positives:

P =
TP

TP + FP
(3.4)

High precision means that the model total positive predictions are mostly com-
posed of cases in which the condition is present (right guesses); it can be seen
as percentage error on the total number of predicted positives.

Recall - Also known as True Positive Rate (TPR), it ranges from 0 to 1, and
represents the ratio of true positives over the sum of true positives and false
negatives:

R =
TP

TP + FN
(3.5)

High recall means that the model predicts correctly the most of the cases in
which the condition is present; it can be seen as percentage error on total number
of actual positives.

1Many metrics can be used to measure the performance of a classifier: Accuracy, Precision,
Recall, Specificity, F Measure (F1,F0.5,F2), Matthews Correlation Coefficient, ROC Area,
Fallout. Only Accuracy, Precision, and Recall will be analyzed in detail as those mainly used
in the continuation of this thesis.
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The classification theory has developed over the years different classifier mod-
els, from the most straightforward and lightest — computationally speaking

— to the most complex and most refined. Whether and when to apply one or
the other is strictly dependent on the type of application. Some of the most
common classification algorithms used in ML problems are reported below [74].

Dummy classifier - Also known as the “Baseline classifier”, it gives a base-
line accuracy (also called “null rate”) that shall always be checked before select-
ing a more sophisticated classifier. A dummy one is a type of classifier whose
behavior, rather than fitting a model by generating an insight into the training
data, relies on simple rules in order to perform the classification task. It is also
used as a comparison tool to verify that there are no errors in the implementa-
tion of other types of classifiers: i.e., any other classifier is expected to perform
better on the given dataset since any analytic approach for a classification prob-
lem should be better than a random guessing approach. Among the possible
classification criteria, the most used are: (i) “Most Frequent”, which makes the
dummy classifier always predicts the most frequent class label in the training
data; (ii) “Stratified”, which generates probabilistic predictions by respecting
the class distribution of the training data; (iii) “Uniform”, which makes predic-
tions uniformly at random; (iv) “Constant”, which always predicts a constant
class label.

Logistic Regression (LR) - Logistic Regression is a simple but powerful
classification algorithm and, for these reasons, one of the most exploited to
tackle binary classification problems. Nonetheless, there are also extensions to
deal with multi-class scenarios. In the One-vs-Rest (OvR) logistic regression,
a separate model is trained for each class, predicting whether an observation
corresponds to that class or not, and assuming that each classification problem
is independent. Logistic regression is named after the function used at the core
of the method: the logistic function also called the Sigmoid function. The output
of the Sigmoid function is interpreted as the probability of a specific sample to
belong to one of the two classes given its input features xi linearly combined
by the weights wi. This probability is then processed by a quantizer that sets
a minimum probability threshold of belonging to the given class, returns a zero
(i.e., the sample does not belong to the class) or a one (i.e., the sample belongs
to the class). The training phase of this classifier is achieved by modifying the
weights wi through a process that optimizes the likelihood function [75].
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Support Vector Machine (SVM) - Support Vector Machines are classi-
fiers primarily used to address supervised learning problems. Their popularity
is due to their ease to be adapted to both linear and non-linear cases. In linear
problems, they aim at defining the best “decision hyperplane” that separates
the involved classes by maximizing the distance between this hyperplane and
the closest sample points, which are called support vectors. Two are the ways
used to handle non-linearly separable datasets: (i) a slack variable is introduced
to relax the linear constraints and to allow for the optimization process con-
vergence; (ii) in the kernel-based methods, samples are mapped onto a higher
dimensional space to make them linearly separable, the decision hyperplane can
thus be detected, then the inverse transformation is applied to project it back
to the original space [76, 77].

Decision Trees (DT) - DT classifiers rely on dividing the dataset by asking
if-questions until it is narrowed enough to make a prediction; as a consequence,
their graphic representation looks like a tree ramification. This kind of classifier
is still used in supervised learning cases. During the training and validation
phase, these algorithms learn the most suitable series of questions to predict
the class of the input data correctly. The maximum depth, which is the max-
imum number of branches from the roots to the leaves, the maximum and the
minimum sample number for each branch, and the maximum feature number
to check at every split represent the most relevant hyperparameters to be de-
termined. When lots of features characterize the dataset, they usually tend
to overfit, remarkably deteriorating their generalization performance. In such
cases, the results of multiple decision trees, developed around the same dataset
but taking into account less randomly-chosen features, are combined: they are
called Random Forest (RF) algorithms [78, 79].

K-Nearest Neighbors (KNN) - In supervised learning, KNN classifiers are
part of the family of the so-called lazy algorithms since the dataset is memo-
rized rather than learned to be distinguished. Once defined an integer K and
a distance metric (e.g., Euclidean distance, Manhattan distance), they classify
each new sample by finding the other K closest samples and assigning to the
new one the more numerous label in the neighborhood. The main strengths of
the lazy algorithms, as KNN, are that they do not require a training phase and
that they adapt significantly well to new data. Conversely, the major drawback
is that the computational cost of the classification task increases every time a
new data is labeled since more and more distances have to be calculated [80, 81].
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3.2 Embedded hardware

As it was at the beginning of this thesis work, the exoskeleton prototype re-
quired substantial modifications to its electronic apparatus. The button

control system and the absence of sensors for finger position feedback imposed
strict limits on the usability of the device. Moreover, the simultaneous drive of
four motors for the reproduction of the same movement on all the four long fin-
gers was challenging to manage and also particularly subject to synchronization
issues. The main components that replaced the previous electronics and formed
the new embedded hardware are reported here below in Figure 3.3.

Figure 3.3: The main electronic components used during the revamping process
of the device: from the top left corner, a servomotor, a micro-controller board,
a Bluetooth module, two sEMG sensors, a motor driver and a custom PCB.

The choice of these components has been crucial for setting up the embed-
ded hardware environment that would have host the control system. Having
adequate performance was not the only constraint that guided the pick. Each
part has been selected in complete agreement with the guidelines of a research
activity aimed at developing a control strategy for a low-cost wearable device
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intended for clinical use: it should have been small, lightweight, low-powered
(and thus safe), easy to set up, and as cheap as possible.

The design of the new hardware system has started with the choice of micro-
controller. It is the component that has both computational power, having

inside a micro-processor, storage capacity, thanks to the integrated memory,
and it is capable of interacting with different input/output peripherals.

In light of these reasons, it is good practice to choose the micro-controller
first because it is the nerve center of the control system: not only all the other
components will have to interface with it, but also its performances will deter-
mine the general complexity of the manageable hardware architecture and the
computational weight of the executable control logic.

Distinctive features of a microprocessor are usually its architecture (e.g.,
AVR, ARM), the clock frequency — i.e., the number of computational cycles
that the processor carries out in a second — and the bus width — which de-
termines the number of bits that can be processed per computational cycle.
The integrated memory is instead evaluated by the number of bytes that can
be stored inside the Flash memory — the one used to store the code — then,
the SRAM memory — which is used for managing dynamic variables — and,
finally, the EEPROM memory — which is the space that can be used to store
long-term information. Then there is additional information that can be taken
into consideration for the appropriate choice of the micro-controller: power sup-
ply voltage, energy consumption, logic level, number of input and output ports,
embedded ADCs, communication protocols with other devices (e.g., USART,
SPI, I2C, FTDI), and support for wireless connection (e.g., Bluetooth, WiFi).

Figure 3.4: The Arduino Nano board and the HC-05 Bluetooth module.
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The first-stage exoskeleton exploited an Arduino Nano controller board from
the Arduino company (Figure 3.4). The characteristics of such micro-controller
board — the main ones will be listed right below — have been considered suffi-
cient for the application of the new control strategy and, therefore, it has been
confirmed part of the project. It is based on the micro-controller ATmega328p
from Atmel (part of Microchip Technology Inc. since 2016), which is its com-
putational and storage core: 8-bit AVR architecture, 16 MHz clock frequency,
32kB, 2kB and 1kB of, respectively, Flash, SRAM, and EEPROM memory.
The tiny Printed Circuit Board (PCB), in just 18 x 45 mm and 7 g, offers a
Universal Serial Bus (USB) programming interface and ready-to-solder pins for
connecting to the 32 ports of the ATmega328p. Of these 32 lines, 23 are general
purpose input/output while the others are reserved for the serial, SPI, and I2C
communications, and the power supply. Even if the Atmega328p has an operat-
ing voltage of 5 V, the board accepts from 7 to 12 V as input supply, thanks to
the embedded voltage regulator, and, integrating some LEDs for monitoring the
operational status, has a power consumption of about 20 mA. The presence of a
10-bit 6-channel ADC and the possibility of generating up to six PWM signals
make this board perfect for a quick interfacing with different types of sensors
and actuators. The cost of the Arduino Nano is about 20 ¤.

Figure 3.4 shows, alongside with the micro-controller board, the Bluetooth
module HC-05 from Guangzhou HC Information Technology Company. It

is one of the most popular and inexpensive class-2 Bluetooth modules used for
radio frequency communications. Its cost is less than 10 ¤and, since it can be
found already mounted on a breakout board, it is easy to implement in projects
that involve micro-controller boards. This module has a range of 10 meters,
its communication parameters can be changed through AT commands, and it
is programmable both as a master and a slave device — the former is the one
which looks for connections, the latter instead waits for an external connection
to be received. The supply voltage can be between 3.6 and 6 V, the logic level
is at 3.3 V, and the size and the weight of the component are respectively 28
x 15 mm and 5 g. The current required in the coupling phase is about 35 mA,
while during the communication, it drops to about 8 mA. The HC-05 allows for
the conversion of a serial port into a Bluetooth 2.0 port, generally with a Serial
Port Profile (SPP), thus becoming a serial-over-Bluetooth communication port
with a configurable Baud rate up to 1382400 bps.

This component has been added to the HES to provide it with a wireless
connection that could be used both for managing the sEMG collection from a
computer and for remotely monitoring the exoskeleton functioning.
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Once the micro-controller has been confirmed, the choice of the other compo-
nents have focused on those with a tested and reliable compatibility with it.

This research becomes difficult in the field of surface electromyographic sensors,
as many types are intended for exclusive use in clinical or laboratory environ-
ments rather than on embedded platforms. They are usually sold accompanied
by a dedicated software that allows the management of the collection charac-
teristics. The main problems with such software are that it runs on a desktop
operating system which, in most cases, is Microsoft Windows, that is usually a
proprietary software distributed under a licensing, and that this software, whose
source code is not released, is the only way to intervene on data sampling. Fi-
nally, it is worth noting that the cost of these systems is around several thousand
euros, which is not compatible with the order of costs that this research activity
has as one of the main goals. In this complex scenario, a suitable solution for
the sEMG signals collection has been found in the MyoWareTM Muscle Sensors
from Advancer Technologies (Figure 3.5).

These sensors incorporate the housing for two monopolar snap electrodes
into a small breakout board (20.8 x 52.3 mm) specifically designed to work
with low-powered development boards as the Arduino and the Raspberry Pi.
Even if there are two electrodes, the MyoWareTM behaves as a single bipolar

Figure 3.5: Two MyoWareTM Muscle Sensors and the Ag/AgCl snap electrodes
used to capture the sEMG signal.
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sensor capable of generating two different types of differential output. The
third electrode housing is thought to host the reference electrode. Since the
computational power available on micro-controller boards is notoriously low,
these sensors have been equipped with an internal control logic that partly
preprocesses the signal before returning it. In such a manner it is possible to
have as output not only the raw sEMG signal but also the envelope of the
rectified signal (see Figure 3.6). This feature is the equivalent to the IEMG —
introduced in Table 3.1 — and gives already an idea of the force associated with
the muscle contraction. The simple formula that allows the calculation of the
IEMG is given below:

IEMG =

Ne∑
k=1

|xk| (3.6)

where xk is the k-th sample of the time window on which this parameter is
calculated, and Ne is the total number of samples of the same time window.

muscular contraction

envelope (IEMG)

raw signal

baseline

Figure 3.6: A qualitative representation of the difference between the two pos-
sible outputs of the MyoWareTM Muscle Sensors.

These measures are carried by a single wire and can be read by an analog
input port. They can be powered with a voltage from 2.9 up to 5.7 V and have
a maximum power consumption of 15 mA so that the necessary power can be
supplied directly from the output port of any micro-controller board. With a
straightforward design and a low price (∼ 35 ¤ each), they are a remarkably
good option to go for low-cost wearable applications. The choice of using only
two of these sensors will be justified by the considerations that will be given in
the next section.
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Figure 3.7: The HS-5495BH actuator and the 01TM Supermodified V3.0 driver.

Likewise, in Section 3.3 the adoption of an actuation system equipped with
a single servomotor will be discussed. The servomotor in question is the

HS-5495BH High-Torque Servo from Hitec, visible on the left in Figure 3.7,
next to the SuperModified V3.0 driver for RC-servos from 01TM Mechatronics.
The very possibility of integrating such a motor driver was discriminating in the
choice of the actuator type and model.

The HS-5495BH can be powered with a 7.4 V power supply (the capability of
a standard 2-cell LiPo battery) with a power consumption of 190 mA in non-load
operations and a maximum stall current of 1400 mA. The maximum practicable
torque is about 0.7 Nm, while the maximum achievable angular speed is 6.7
rad/s. Having to replace the use of four engines in the new electronic setup,
these features have been heuristically and empirically considered sufficient for
the movement of the four long fingers. Its dimensions, weight, and cost are 39.8
x 19.8 x 38 mm, 45 g, and 25 ¤.

The 01TM Supermodified V3.0 is a fully enclosed motion control module
composed of three stand-alone electronics layers: (i) a stage that manages the
correct power supply (from 5 up to 24 V and up to 5 A) of the other two stages
and to the motor; (ii) a controller stage, also equipped with the ATmega328p
micro-controller, wholly dedicated to deliver a closed-loop PID control at 9.765
kHz on the angular position and speed of the crankshaft; (iii) a sensitized stage
provided with a 15-bit absolute magnetic encoder which delivers angular feed-
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back with 32768 discrete positions per revolution. The communication with
the 01TM Supermodified V3.0 is straightforwardly achieved through standard
protocols as the RS-485, UART, SPI or I2C. Another critical point is that, by
following the guidelines released from 01TM Mechatronics itself, it is possible
to fit this motor driver inside the right-size servomotors replacing their origi-
nal electronics. In just 16 x 16 x 27.5 mm and for a price of 70 ¤, it turns a
servomotor into a fully controlled — position and speed — continuous rotating
motor directly interfaceable with the Arduino Nano board.

From the tests conducted on the previous version of the exoskeleton, as re-
ported at the end of Section 2.3, it was found that a good part of the safety

deficiencies in the use of the device was due to the total absence of an automatic
control on the position of the fingers. To compensate for this lack, the same
magnetic encoder inside the 01TM Supermodified V3.0 for 30 ¤, available as
the 01TM MagEnc V3.0 Low Rev, has been chosen to be applied to the index
finger mechanism. In particular, concerning Figure 2.1, the encoder was chosen
to be mounted on the axis of the Joint 1 and integral with the component C,
to measure the control variable α2 and, indirectly, to provide a measurement
also of the MCP joint status. This sensor can also measure the angular speed
directly. The index finger mechanism has been chosen as it offers more lateral
space available for the 01TM MagEnc V3.0 Low Rev installation and, since all
the four long fingers are meant to be moved simultaneously, the measurements
taken on it are assumed representative also for the status of the other ones.

The final step of this process was the design of a custom PCB to house all the
components exploiting the Electronic Design Automation (EDA) software

Autodesk EAGLE. The result is visible in Figure 3.8, which shows how the whole
electronics has been hooked up together to the PCB. As already specified, the
new electronic hardware still has at its core the micro-controller board Arduino
Nano. Since the board is already tiny and dimensionally optimized, it has
been opted to house the whole board on top of the PCB. In addition to the
one reserved for the Arduino Nano, the space for four JST connectors (4 pins,
2 mm pitch), a bistable switch, an RGB LED, and a circuit both dedicated to
monitoring the status of the battery have been set up on the new custom board.
The use of JST connectors — reserved for the motor, the two sEMG sensors
and the encoder — has been preferred to the direct welding of the components
on the board to facilitate their eventual replacement. It is powered using a
standard 2-cell LiPo battery (7.4 V), and the routing has been made using two
different track measures. The smaller tracks connect the components with low
current consumption — such as the encoder and the sEMG sensors — and have
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Figure 3.8: The new HES embedded electronics.

been oversized for safety with a thickness of 0.4 mm for current transport up to
1 A. The larger traces have instead been destined to the motor power supply
and, therefore, dimensioned to withstand a current flow up to 2 A, which is 40%
greater than the maximum current absorbed by the motor in stall conditions.
The final dimensions of the board are 45 x 45 x 2 mm.

3.2.1 sEMG bracelet

During the preliminary assessment of the new integrated electronics — tests
which took place on a test bench in laboratory and involved only healthy

subjects — some issues regarding the wiring management and the dressing of
the electromyographic sensors have emerged. The tests have been carried out by
asking the subjects involved to wear two MyoWareTM sensors on the forearm and
trigger the motion of an HS-5495BH servomotor with the muscle contraction.
The sEMG sensors were worn on the extensor digitorum and the flexor digito-
rum and the control logic was that based on the signal amplitude thresholds
presented by Ochoa et al., reported in Section 1.2. The subjects were sitting in
front of a table on which the servomotor was fixed.
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The motor motion was regularly activated according to the muscular con-
tractions of the subjects. However, the wrist movements could sometimes es-
tablish excessive tensions in the cables that connected the sEMG sensors to the
micro-controller. These traction or compression stresses quickly caused the de-
tachment of the electrodes from the skin, compromising the signal acquisition.
In an attempt to solve this problem a first-tentative forearm bracelet for the
sEMG collection has been designed. The bracelet has been made by integrat-
ing some of the components already identified, such as the micro-controller, the
MyowareTM sensors, and the Bluetooth module, with a 500 mAh Li-ion battery,
a custom made 3D-printed case, and a Velcro band. This solution has not only
proved to be valid for decoupling the acquisition system from the movements
of the wrist by exploiting a Bluetooth bridge for data transmission, but it has
also proved to be useful for lightening the workload on the original processor,
taking on the sampling and the eventual preprocessing of the sEMG signals.

Figure 3.9: The sEMG bracelet developed to reduced the disturbances coming
from the sensor wires. The central unit houses the micro-controller, the Blue-
tooth module and the battery. The two lateral units contain the two MyowareTM

sensors. The total cost and weight of the bracelet are about 150 ¤ and 80 g.
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3.3 The novel control strategy

The lack of sufficient safety for the user, and the limited intuitiveness of the
actuation of the original exoskeleton prototype have strongly highlighted

the need to develop an alternative control strategy. Both issues have arisen in
the light of the first clinical trials performed on a single patient and were mainly
due to the absence of automatic control over the position of the fingers and the
uncomfortable use of a two-button actuation strategy.

The first problem — the lack of security on the motion range control of the
fingers — has been solved by inserting the feedback of an angular sensor in the
new control strategy of the device. This sensor, the magnetic encoder presented
in the previous section, has been integrated into the index finger mechanism
to monitor the position and angular speed of the controlled joint. By knowing
such measurements, it is indeed possible to uniquely reconstruct the position
and angular speed of the MCP anatomical joint from the study of the 1-DOF
kinematic chain presented in Section 2.1. The detail of the type of control
that has been implemented thanks to the angular feedback from this encoder
will be discussed in Subsection 3.3.1, where the overall architecture of the new
controller algorithm will be examined and analyzed.

The second issue to be addressed concerned the difficulty in actuating the
HES. The test user — a man, born with SMA — pointed out that, once the
exoskeleton was worn on the one hand, having to use the other one to operate
the device by pressing the buttons was not only very uncomfortable but also
more cumbersome than not using the exoskeleton. Having had to deal with
his illness from birth, the patient had developed alternative strategies of object
grasping and handling for which the reduced residual mobility of his hands was
sufficient. From this point of view, it was necessary to provide him with a
device that would at least allows him to independently control the movement
of the hands so that its effectiveness could then be compared to that of the
replacement techniques he developed.

Finally, before going into depth in the analysis of the new control strategy,
it is essential to remember the choice to focus on the development of a fast and
robust technique for the classification of the user’s motor intentions rather than
on motion control techniques. The mechanical structure of the device, already
optimized to accurately track the natural trajectory of the fingers, and based
on a kinematic chain with a single degree of freedom did not require special
attention indeed in controlling position and speed, except those just mentioned.
Once the user’s intention has been recognized, the device would be triggered
and actuated, relying on the PID control, already integrated in the motor.
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3.3.1 Control algorithm

The control algorithm proposed in this thesis [82, 83] is born for managing
the movement of an assistive hand exoskeleton meant to help patients with

clenched fist deformity to open their hands. This device consists of a motor block
positioned on the back of the hand — which contains both the implementation
and transmission systems and the control electronics — and four planar 1-DOF
mechanisms that act on the flexion and extension movements of the four long
fingers and are placed above them. The four finger mechanisms are optimized
at the mechanical design stage to optimally track the finger trajectory of the
specific patient for whom the device is designed. Their movement derives from
the action of specific cables which, wound or unwound by servomotors, pull
the mechanism in the extension movement or manage its flexion in a controlled
manner — no forces are transferred to the fingers during flexion. In the original
version of the control system, the actuation command was communicated to the
motors using two buttons pressed by the user. Through the same buttons, it was
also managed the ROM of the fingers; in other words, the user himself released
the actuation button once he reached a limit of opening or closing deemed right.
Ultimately, however, such a preliminary technique resulted in being remarkably
uncomfortable and unsafe.

The basic idea for the new control strategy implementation relies on the
introduction of new sensors in the electronic hardware to fill the gaps left by
the previous one, and the fusion of known control algorithms to innovatively
manage the information provided by the new sensor technology. Such informa-
tion will be needed for the ROM management of the fingers, and to recognize
and predict in some way the motor intentions of the user, without having him
to perform a physical activity that involves the use of the hands. In addition to
the above-reported features, the resulting overall system still requires to keep
meeting the requirements introduced in Chapter 1 (i.e., to be fully wearable,
lightweight, low-powered, stand-alone, low-cost). In light of these considera-
tions, micro-controllers constituted the most suitable hardware technology for
the development of the new control strategy by representing a feasible trade-off
for the long list of design patterns and requirements. Hence the choice of all
the devices detailed in Section 3.2. However, since this kind of hardware offers
limited resources and computational power compared to desktop PCs, worksta-
tions or industrial controllers, the design of the new control system has begun
with the awareness that a compromise would have to be found between the
performance of the refined techniques tested on benchtop computers and the
computational lightness required by the used hardware.
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As already pointed out in Section 1.2 — the one dedicated to the analysis of
the state of the art that characterized the first phase of this research activ-

ity — and reiterated at the beginning of this chapter, modern literature reports
more and more convincing studies on the application of control techniques for
wearable robotic devices based on the use of surface electromyographic signals.
What these methods propose to do is, first of all, to classify the motor intention
of the person by using the device within a set of possible classes, and, conse-
quently, to control the robotic system by activating the state corresponding to
the recognized class. Since sEMG signals are not straightforwardly decipher-
able, most of the strategies that compose the state of the art of such type of
control make use of the high computational power distinctive of those bench
equipment that is not suitable for an assistive application. There are also cases
in the literature where naive variants of these methodologies have been imple-
mented on wearable devices. The trade-off that is made in all these control
strategies concerns the maximum number of classifiable movements. This de-
sign pattern is explained by taking into account that increasing the number of
classes to be identified unavoidably increases, in turn, the complexity as well as
the computational cost of the algorithm in charge of fulfilling the classification
task. Algorithms with a high computational cost require a longer time to be
executed — time which extends as the performances offered by the processors
decrease — and, therefore, they risk resulting unresponsive and not functional:
the literature affirms that a control latency higher than 300 ms is perceived as
a considerable delay and produces an intense frustration in the user [84].

When it comes to exoskeletons for the hand, this aspect becomes even more
complicated. First of all, the limited space available around the upper

limb, as well as the low bearable weight, means that the exoskeletal system
shall be considerably small. Consequently, by minimizing the size, the volume
of the electronics that can be integrated into such a device is reduced, and,
generally speaking, its computational power is also reduced. Finally, this limited
technological scenario has to deal with the very high natural dexterity that
a healthy hand would possess. The human hand can indeed perform lots of
different movements, which are products of the contraction of several muscle
bands located in a tiny space inside the forearm where they are very close to
each other. In light of what is reported in Subsection 3.1.1 about the nature
and the noise level of the sEMG signals, being able to accurately classify all the
possible movements of the upper limb from these signals necessarily requires
the use of high computational power machines running heavy ML algorithms —
and yet, nowadays, it is still not possible to distinguish them robustly.
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In this complex scenario, a suggestion for an alternative approach comes
from a recent study, which demonstrates that the independent use of the fingers
is not crucial in carrying out most of the common Activities of Daily Living
(ADLs) [85]. From this point of view, it is possible to think of an assistive
HES that could be of practical use even without allowing the movement of
individual fingers. This assumption, which in itself dramatically reduces the
number of hand gestures to be distinguished, also has a positive impact on
the architecture of the mechanical and electronic hardware. The choice on the
number of electronic components reported in the Section 3.2 have been made
based on the simplification to consider classifiable just the three main motion
of the whole hand, i.e., opening, closing, and resting. The use of only two
MyoWareTM Muscle Sensors is the result of the combination of the fact that two
are the sufficient muscle bands whose myoelectric activity has to be recorded to
classify these three movements, and that in a low-cost perspective and aiming
at high wearability, a low number of sensors is preferable. As it is possible to
move all the fingers together, just a single motor is required for the actuation
system — remembering that the actuation is cable-driven, a pulley with four
different diameters, applied to the crankshaft, shall then allow the synchronous
motion of the fingers despite their different size. Once it has been ascertained
that the correct sizing of the multi-diameter pulley of the motor guarantees the
same angular speed for all the fingers at any time, a single encoder mounted on
a single finger mechanism is sufficient to characterize the position and angular
speed of the all fingers.

Figure 3.10 and Algorithm 1 show the general scheme of the new control
strategy, which can be split into two sequential subroutines: the “classification
loop” and the “actuation loop”. The first one is performed on the micro-con-
troller integrated in the data collection bracelet (Section 3.2.1), whereas the
second one runs on the micro-controller placed inside the motor block and is
responsible for the management of the device actuation. Everything is designed
to be run at a frequency of 50 Hz, which is a right control frequency for a system
— the muscular one — interested by slow dynamics after all, even slower when
it comes to patients suffering from motor disabilities. Although the second of
the series, the control strategy will now be described by starting from the quick
analysis of the subroutine that, downstream of the classification loop, handles
the actuation of the exoskeleton, as it is conceptually easier and composed of
only standard procedures that nothing new adds to what is already available in
literature. More space will be left to the description of the other loop as it is
the real innovative point compared to state of the art of control techniques for
HES based on the classification of electromyographic patterns.
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Algorithm 1 Pseudo code of the proposed control strategy

Input:
Fp = current finger position
Fv = current finger velocity
Ma = current muscular activity

Classification loop:
if Ma compatible with opening gesture then

return open
end
else if Ma compatible with closing gesture then

return close
end
else

return rest
end
Actuation loop:
if open then

if Fp compatible with range of motion then
run motor to pull the cables to assist the hand opening

end
else

max opening reached: stop motor and wait for a new close command
end

end
if close then

if Fp compatible with range of motion then
run motor to release the cables to follow the hand closing
if Fv lower than velocity threshold and motor is running then

object grasped: stop motor and wait for a new open command
end

end
else

max closure reached: stop motor and wait for a new open command
end

end
if rest then

do nothing: wait for a new different command
end
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Figure 3.10: The block diagram of the overall control strategy. In the top
box, the classification loop that, given the two signals sEMG, returns the user’s
intention. In the bottom box, the actuation loop that, given the user’s inten-
tion, handles the actuation system of the exoskeleton. The motor commands
(identified by Ñ, ¶ and ·) are executed until the next one is received.

All that is required of the actuation loop can be summarized in the trans-
lation of the classification loop output (namely an opening, a closing or

a resting intention) into a set of valid low-level commands to be sent to the
actuator, while two inner loops take care of controlling the ROM of the fingers
and the eventual grasping of an object.

Every time an opening intention is detected, the motor will be requested
to spin in order to pull the cables which are connected to every finger mecha-
nism. Therefore, the result will be an opening movement of the fingers, which
shall take place as close in time as possible with the user’s muscle contraction.
Similarly, the motor shall spin in the opposite direction as soon as a closing
intention is classified. Also in this case the motion of the exoskeleton should
take place without excessive delay from the muscle contraction. When the clas-
sification loop recognizes neither of the previous two intentions, the actuator
will be required to hold its position. Commands are given through the 01TM

Mechatronics proprietary libraries provided with the motor driver.
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To ensure that the movement of the exoskeleton is perceived as sufficiently
reactive by the user, the actuation command is sent to the motor at a frequency
of 50 Hz, thus allowing the exoskeleton to reproduce a different movement up
to 50 times per second; subsequent intentions belonging to the same class are
translated into a single prolonged actuation. This design choice presents a
further benefit: the complete control over all the intermediate positions of the
ROM. In fact, unlike the strategies which are based on motion triggers, the user
can interrupt the motion of the exoskeleton, at every time once reached the
desired degree of opening/closing, by simply relaxing the corresponding muscle
contraction. However, the need to maintain a stable level of muscle contraction
to achieve a smooth HES motion emerges as an inevitable price to pay; as a
consequence, the device control will then be more fatiguing in the long run.

As previously mentioned, the translation of the user’s motor intention into
actual exoskeleton movement is not the only thing that is handled by this con-
trol loop. At each control cycle, the angular position of the fingers is measured
before the actual actuation takes place. The position feedback of the MCP joint
is indirectly real-time measured using the magnetic encoder mounted on the in-
dex finger mechanism; before issuing the command to the motor, this measure is
checked to verify that has not already reached the permissible limit values. The
maximum opening and the maximum closing position values are identified dur-
ing a preliminary phase in which a physiotherapist, firstly, makes the user wear
the device and, secondly, manually moves the patient’s hand, making complete
opening and closing gestures several times. During this process, the exoskeleton
control system records the maximum and the minimum value measured by the
encoder and set them as the admissible ROM upper and lower boundaries. The
upper and lower bound to be set at the ROM for that user are then extracted
from the average of the maximum and minimum values recorded by the encoder.
Subsequently, during the regular functioning, if the encoder records that one of
these limits has been reached, the motion is immediately stopped. The entire
system waits then for the classification of the correct command to restart in
the opposite direction. E.g., once the maximum closing limit has been reached,
a halt is sent to the motor, any other closing command is rejected, and the
motor will move again only after an opening command. The problem of the
poor device safety resulting from the absence of an automatic control over the
admissible ROM has been therefore solved.

While the outermost control loop supervises the ROM, another loop —
nested inside the part of the algorithm that handles the closing motion — is in
charge of detecting the grasping of rigid or semi-rigid objects. Since there are
no force sensors on the HES, this detection is performed by using the angular
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velocity measurements of the MCP joint and the motor crankshaft. When the
first one drops over a certain threshold and the motor is still running at full
speed, continuing to unroll the cable, it is reasonable to think that the fingers
have encountered an object or an obstacle during the motion. In these cases,
the control system commands the actuator to stop before an excessive cable
length is released. Preventing excessive cable unwinding by actively controlling
the grip of objects has proved necessary since the first laboratory tests. Before
this additional control level was introduced, the user had to relax the flexor
muscles to stop the motor motion while grasping an object2 Nevertheless, the
transition from the closing to the resting intention has proved to be challenging
when interfacing with an object and has often made the motor run after the
actual grasping. As a result, the cable kept on being released even when not
requested, and it risked giving rise to the problem of cable twisting and also
introduced a deleterious delay in control actions after the grasping.

The subroutine in charge of taking care of the sEMG signal classification is
instead the first to be executed. The two MyowareMT collects every 20 ms,

the muscular activity of the extensor digitorum and the flexor digitorum Muscle
Sensors. It is then processed by the Arduino Nano (the one on the bracelet),
which classifies it in one of the three reproducible user intentions: hand opening,
closing or resting. The EMG envelope has been preferred over the raw output
for two different reasons: (i) to make most of the electronics integrated on the
sensors and not to burden the micro-controller ADC with the sampling of the
raw signal; (ii) because this feature in itself provides a qualitative idea of the
state of the muscle activation and it is convenient for the discrimination of the
three above-mentioned gestures. Once the current user’s intention has been
classified, the corresponding signal is passed to the actuation loop, which, as
already described, translates it into the appropriate control commands for the
actuation system.

The related works reported in Section 1.2, present similar techniques which
independently monitors the myoelectric state of the same muscle bands, and
then recognize the user’s intention by comparing the amplitude of the collected
signal with respective lower thresholds, corresponding to the minimum levels of
muscle activation for some given movements. As a consequence, this strategy
makes the classification process one-dimensional. However, even though this

2As much as having to relax the muscles to maintain the grip on an object may seem
counter-intuitive; it is crucial to remember that the exoskeleton has been designed for people
whose hands are forced to fist by a considerable tendon tension and, therefore, can exert
passive closing forces even when their muscles are relaxed.
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method is computationally very light and produces a decent control experience,
it carries some inherent problems. Unwanted movements, little impacts with
objects in proximity of the sensors, and skin-electrode sliding might indeed pro-
duce motion artifacts. From the applied use of a similar technique, however, it
can be seen that these artifacts, although not corresponding to actual muscle
activation, can easily be misinterpreted by the sensors to which they appear
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Figure 3.11: The graph shows a two-dimensional representation of the forearm
muscular activity during hand opening (blue) and closing (red). On the abscissa
axis the sEMG signal measured by the sensor placed on the extensor digitorum
is shown, whereas on the ordinate axis the signal from the flexor digitorum is
reported. The scale of the axes will be discussed later in Section 3.3.2.
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as muscular activity, generally of high intensity. Besides, different movements
might result in the same muscular activation because of the cross-talk effect.
Paying particular attention to the movements of the wrist when handling ob-
jects is a typical example of how this problem can be harmful for such an
application: the wrist extensor muscles are located under the extensor muscles
of the fingers. An extension movement of the wrist would indeed most likely
activate the opening motion of the exoskeleton, producing the hand opening and
the consequent fall of the object. Being subject to these types of disturbance
makes these methods considerably vulnerable and prone to misclassifications.

Aiming at reducing the risk that these unforeseen events may cause damage
to the system or even to the user, the new control strategy has been based
on a different classification criterion, which no longer relies on the value of the
individual sensor, but on the combination of the measures provided by both.
Rather than independently comparing the two signals to a lower threshold,
every sample interval a point — whose coordinates are the envelopes of both
the sEMG signals — is plotted on a 2D Cartesian plane (as visible in Figure
3.11) and is tested against the belonging to a specific area. The classification
process thus becomes two-dimensional, and a disturbance acting on a single
muscle has fewer chances to lead to misclassification.

The choice of the classifier required more than one attempt to find an optimal
solution for the under-consideration case and resulted in an iterative pro-

cedure rather than a deterministic process. However, the procedure followed for
each model remained unchanged and was characterized by the steps below: (i) a
sufficient dataset has been collected; (ii) the original dataset has been split into
the training and validation set, equivalent to the 80% of the original one, and
the testing set, corresponding to the remaining 20%; (iii) accuracy, precision,
and recall have been selected as the evaluation metrics; (iv) during the training
and validation phase, the cross-validation and the grid search techniques have
been exploited to tune the classifier parameters and hyperparameters; (v) the
test dataset has been used to extract the real metrics of the trained model.
The whole process has been carried out by using the open-source library Scikit-
learn: the gold standard, in terms of ease to use, flexibility, and completeness
for Machine Learning in Python [86]. All the different algorithms introduced in
Subsection 3.1.2 have been trained on the randomly chosen 80% of the dataset
shown in Figure 3.11 to distinguish the user’s intentions on a set consisting of
only two classes: hand opening and closing. The resulting metrics for the dif-
ferent classifiers are visible in Figure 3.12 and Figure 3.13, where the confusion
matrices and the corresponding decision boundaries are reported.
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Figure 3.12: The confusion matrices from the testing of the five 2-class classifiers.
A stands for Accuracy, P for Precision, R for Recall.
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(c) SVM classifier
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Figure 3.13: The decision boundaries from the testing of the five 2-class classi-
fiers. In blue and red the opening and the closing intention respectively.
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Three are the principal considerations that can be done by analyzing the
results reported above. Firstly, by looking at the different accuracy, precision,
and recall values, it can be seen that the Dummy classifier arises by far as the
worst-performing algorithm among the tested ones. It is relevant to notice that
the verification of such a condition provides a preliminary (but essential) con-
firmation of the classification process goodness. Secondly, continuing to focus
on the perspective of a quantitative analysis in terms of the judgment metrics,
SVM — in the radial-basis-function-kernel-based version — and KNN high-
lighted outperforming results by best fitting this non-linearly separable dataset.
Thirdly, the performance of all the algorithms were not utterly satisfying since
none of them achieved an acceptable level of accuracy, precision, or recall.

This last datum can be interpreted by concentrating the attention on the de-
cision boundaries shown in Figure 3.13. In qualitative terms, by merely looking
at how the two classes are divided in the Cartesian plane, it can be noted that
the classification was very accurate in those areas which were representative of a
substantial muscle contraction — i.e., where the flexor or the extensor activity
signal assumed large values. However, the same classification accuracy could
not be achieved where the muscle contraction was weak, and the corresponding
sample fell around the origin. As the graphs show, the sEMG signals collected
during the opening and closing of the fingers are indeed well distinguishable in
most of the two-dimensional space. Conversely, a not-negligible overlap among
the samples of the two different classes is present just in the area near the graph
origin, the one which collects all the states of weak muscle relaxation. As a
result, it was almost impossible to distinguish one movement from the other
during the initial moments of the muscle contraction.

Nevertheless, this is the state in which both movements always begin and,
therefore, it was necessary to delimit this area by imposing a “resting” label on
all the samples that fell into it. Since the rest state represented the safe mode of
the system — it did not imply any HES motion — the choice of associating each
point which fell in the above area to the resting class was made in an attempt
to mitigate possible damages resulting from incorrect classifications keeping the
exoskeleton stationary until a less ambiguous signal was recorded.

Aiming at confirming what had been qualitatively perceived from the deci-
sion boundaries of the four tested classifiers, the K-means clustering technique
has been used. Widely exploited in unsupervised learning problems [87, 88, 89],
this technique partitions a not labeled dataset into a K number of clusters. The
base idea is that the closer the data points are, the higher the possibility they
belong to the same class is. Chosen K as the number of classes to be found,
K-Means, in particular, clusters the data points utilizing a recursive algorithm
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which, firstly, assigns K randomly-chosen centroids to the different classes and,
then, optimizes their positions by minimizing the sum of squared distances from
every point of the cluster, which can be seen as an index of the dispersion of the
samples assigned to a specific cluster. The “Elbow method” [90, 91] has been
utilized to determine the optimum number of classes to be searched within the
given dataset, which has turned out to be exactly three. Once the number of
classes has been established, the algorithm has been executed on the original
dataset to identify the different clusters; the results are visible in Figure 3.14.
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Figure 3.14: The graph shows the clustering performed by exploiting the K-
means technique as the K value was set to three. In red and blue, the intention of
closing and opening respectively; in green, the newly identified resting intention.
Furthermore, the black circles represent the optimized centroids for each cluster.

In light of the considerations mentioned above, the classification tuning has
been performed again over the same algorithms. This time, however, the dif-
ferent classifiers have been trained and tested on a modified dataset, consisting
of the three classes that the clustering had identified. The results of this new
attempt are reported in Figure 3.15 and Figure 3.16.
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Figure 3.15: The confusion matrices from the testing of the five 3-class classifiers.
A stands for Accuracy, P for Precision, R for Recall.
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Figure 3.16: The decision boundaries from the testing of the five 3-class classi-
fiers. In blue, red and green the opening, the closing and the resting intention
respectively.
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The resulting metrics for the classifiers tested on the recognition of the three
possible motor intentions report values that, on the whole, have improved up to
10% compared to those of the classifiers previously evaluated on the recognition
of the only intentions of opening and closing: except for the Dummy classifier,
all the other algorithms have metrics ranging from 92% to 94%. The apparent
improvement in performance is mainly shown by the decrease in the number
of false positives and negatives, which is represented by all the terms that are
not on the main diagonal of the confusion matrices. This reduction is a direct
consequence of the addition of the new resting class to the dataset, and the plots
of the new decision boundaries confirm it. If these new plots are compared to
the plots from the 2-class classifiers, no particular differences in the level of
class separation can be spot where the sEMG signals are strongest; conversely,
remarkable changes in the class separation can be easily noticed right where the
new points labeled as “resting” have been added. Thus acting, the number of
harmful misclassifications has been reduced at the expense of a worse sensitivity
to small muscle contractions. As a matter of fact, before the myoelectric activ-
ity could be classified into an actual motor intention, i.e., opening or closing,
the muscle contraction has to exceed the area of the Cartesian plane close to
the origin which contains all the resting-labeled samples — indeed the resting
intention does not involve any exoskeleton motion.

Although the classification had assumed a sufficiently reliable functioning
to be able to undergo a real experimentation, intrinsically, the problem of the
management and rejection of misclassifications due to peaks of the signal caused
by environmental disturbances remained unchanged. Indeed, through the use
of the standard classifiers presented so far, the problem of upper delimiting the
classes to avoid misclassifications from the recordings of possible artifacts had
not yet been solved — the only case in which a complete delimitation of a class
is recorded is that of the SVM shown in Figure 3.16c but just for the open-
ing intention. An appealing alternative that contained all the characteristics
sought in the classifier has been offered by rummaging the state of the art for
a particular two-dimensional algorithm used to address classification problems.
Once defined the classifier characteristics to be suitable to the case study under
consideration (i.e., that it shall not only separate at least three different classes
in a two-dimensional plane, but also circumscribe them in closed and limited
areas) and recalled the constraints imposed by the clinical scenario to which the
HES has to be applied (i.e., the classification shall be done in real-time while
exploiting limited computational power), the algorithm, known as “Point-in-
Polygon”, has been identified and adopted as the most viable path among the
others available in the scientific literature.



3.3. THE NOVEL CONTROL STRATEGY 67

Algorithm 2 Point-in-Polygon algorithm (Ray casting version)

Input:
Nv = number of the polygon vertices
Vx[ ], Vy[ ] = arrays of coordinate of the vertices
Tx, Ty = coordinate of the test point

int j = Nv − 1
bool inside = false
for ( int i = 0; i < Nv; i ++) do

if ( ( ( Vy[ ] [ i ] < Ty and Vy[ ] [ j ] ≥ Ty ) or ( Vy[ ] [ j ] < Ty && Vy[
] [ i ] ≥ Ty ) ) and ( Vx[ ] [ i ] ≤ Tx or Vx[ ] [ j ] ≤ Tx ) ) then

inside ∧= ( Vx[ ] [ i ] + ( Ty − Vy[ ] [ i ] ) / ( Vy[ ] [ j ] − Vy[ ] [ i ] ) ∗
( Vx[ ] [ j ] − Vx[ ] [ i ] ) < Tx )

end
j = i

end

return inside

This algorithm, which can be implemented in the few lines of code reported
in Algorithm 2, has been known since the early 1960s [92]. Even though it

is widely used in fields such as computational geometry and computer graphics,
it had never found application in the field of assistive robotics before. Turning
to the functioning strategy, the Point-in-Polygon algorithm checks whether a
point in the plane lies inside or outside a given polygonal area. Moreover, two
major versions of the base algorithm have been developed for this purpose by
following two distinct approaches.

Ray casting version - Also known as the “Crossing number algorithm” or
the “Even-odd rule algorithm” due to its operation logic, it is based on the
Jordan curve theorem. First proposed in 1887 by the French mathematician
Camille Jordan, it states that: “any continuous simple closed curve in the plane,
separates the plane into two disjoint regions, the inside and the outside3.” [93]
A direct consequence of this theorem is the mathematical certainty that any
path from a point in one region to a point in the other region shall pass through

3Fun fact: even if it sounds pretty evident as a theorem, it has been very hard to verify.
The proof Jordan gave in his famous textbook “Cours d’Analyze de l’École Polytechnique”
turned out to be flawed, and the first valid proof was given almost 20 years later by the
American mathematician Oswald Veblen, in 1905.
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the curve; it is on this observation that the logic of the algorithm is built. Given
a geometrical plane and given a polygon and a point on such a plane, be the
point chosen at will inside or outside the polygon, by drawing from that point
a straight line in any direction the perimeter of the polygon will be intersected
a certain number of times. By moving the point on this line, for each of these
times it crosses the perimeter, it is known that it will pass from one region of
the plane to the other, but above all, it is straightforward to notice that the
point initial region of belonging can be traced back from the total number of
intersections with the perimeter of the polygon (see Figure 3.17).

a)

b)

c)

d)

e)

CN = 4 : OUT

CN = 1 : IN

CN = 2 : OUT

CN = 2 : OUT

CN = ∞ : ?

Figure 3.17: The graphic representation of the operation principle of the ray
casting version of the Point-in-Polygon algorithm. CN is the Crossing Number,
i.e., the number of times the ray crosses the polygon perimeter: if it is odd, the
point lies inside the polygon; the point lies outside if it is even. Case a), b) and
d) are correctly classified; c) and e) are particular failure cases of this method.

In practice, for simplicity, a ray casting to the right is performed, which
means that, given the coordinates of the starting point, the ray is plotted keeping
that ordinate constant. If the ray crosses the polygon edges an even number
of times, the point belongs to the outside region, vice versa if the perimeter
of the polygon is intersected an odd number of times. This technique has,
however, singularities when the point is on the edge of the polygon and, when
implemented on a computer, the result might be wrong even if the point lies in
a small enough area around the perimeter due to finite precision arithmetics.
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The most common implementation of such algorithm — the one presented
in Algorithm 2 — recursively checks for intersections with all the edges of the
polygon in turn. The main drawback of this method is that the result might
be ambiguous when the ray passes precisely through one of the vertexes of the
polygon. In this case, the ray will intersect two edges at their endpoints, the
resulting number of crossing will be even, and the point will be counted as
external. While the result is correct for some of the cases (e.g., case a in Figure
3.17), others require that the number of intersections is not counted more than
once, as in case c in Figure 3.17. A similar problem arises when checking for
intersections with horizontal segments (case e). Even if this is not generally
a big issue — as the computational speed provided by the Point-in-Polygon
algorithm brings much more value than the one lost in lack of accuracy in this
very particular cases — the ambiguity can be solved by counting the intersection
on a vertex only if the second vertex of the edge lies below the ray.

Overall, the Point-in-Polygon in its Ray casting version is a lightweight
and high-performance algorithm when it comes to two-dimensional classification
problems, whose level of complexity and calculation time are directly propor-
tional to the number of polygon vertices, and whose robustness strongly depends
on the finite arithmetics of the machine on which it is implemented.

Winding number version - The second version of the Point-in-Polygon al-
gorithm still lays the foundation of its operation logic on Jordan’s Theorem, but
it is based instead on the calculation of the winding number of the given point
for the given polygon. In mathematics, this number — which in automation
forms the basis of the Nyquist criterion for the stability of unstable open-loop
systems, with a possible single or double pole in the origin — is defined as the
total number of times that a closed curve in the plane travels counterclockwise
around a certain point. The winding number is, therefore, a characteristic of
the curve-point pair rather than the individual geometric entities. The point is
certainly inside the curve if the resulting winding number is different from zero
and, for this reason, this version of the algorithm is also called “Nonzero-rule
algorithm”; Figure 3.18 shows its base functioning.

Two are the main ways to compute the winding number. The first technique
involves to sum up the angles subtended by each side of the polygon [94]. It
is generally slower than the ray casting algorithm since it involves the use of
inverse trigonometric functions, which are computationally heavy. Nonetheless,
since the sum of all such angles in a polygon can add up to multiples of 2π only,
the algorithm can be sped up by just keeping track of the number of quadrants
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a)

b)

WN = 1 : IN

WN = 0 : OUT

Figure 3.18: The graphic representation of the operation principle of the winding
number version of the Point-in-Polygon algorithm. WN is indeed the Winding
Number, i.e., the number of complete counterclockwise turns that the segment
(dashed in the figure), which has as its extremes the point to be tested and any
point of the polygon perimeter, makes around the point itself along the entire
perimeter: if this number is different from zero, the point lies inside the polygon;
conversely the point lies outside if it is zero.

that the polygon winds as it turns around the test point [95]. This second
method, a direct improvement of the previous one, makes the speeds of the two
versions of the Point-in-Polygon algorithm comparable. The winding number
version, however, provides the correct answer also for non-simple polygons or
particular cases, whereas the ray casting algorithm, as it has been presented,
fails. Nevertheless, a more recent review of the ray casting [96] method has also
smoothed out this difference, making the two versions practically equivalent.

Since there are no substantial differences in the execution speed or the results
of the two codes, it has been arbitrarily chosen to use the Point-in-Polygon
algorithm in its ray casting version.
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The use of this type of classifier results to be particularly interesting. Indeed,
it is possible to enclose only the opening and closing classes within well-

defined areas — as shown in Figure 3.19b — and implicitly assign the resting
label to the remaining of the two-dimensional space. Not only the classification
of the motor intentions becomes more selective and, consequently, more reliable
in terms of the exoskeletal output but, at the same time, the rejection of dis-
turbances and unwanted movements [97] is automatically improved and has no
additional computational costs. While maintaining a performance comparable
to the other classifiers — see Figure 3.19a — the Point-in-Polygon also offers
this additional safety level: all spurious electromyographic patterns, which do
not selectively fall within the polygonal areas traced to delimit the intentions
of opening and closing, are cataloged as resting and will not produce undesired
effects on the HES.

One of the disadvantages of using this algorithm, however, is the great
difficulty of efficiently automating the tracing of the polygons. Although the
definition of polygonal decision boundaries for three classes, working in a two-
dimensional plane, represents a simple task for human intelligence, it is still
challengingly accomplished with the modern AI algorithms. One of the possible
solutions could be to develop a Deep Neural Network (DNN) — an Artificial
Neural Network (ANN) prepared for the application of Deep Learning tech-
niques — that was able to trace the polygons optimizing the separation of the
classes. Not only would this have required extended time to train the network,
but above all, it would not have adapted very much to an environment, such
as the clinical one, characterized by a great diversity of patients — multiplicity
that increases even more if the different types of pathologies and the different
stages of the single disease are considered — which would have required fre-
quent training of new networks on high-performance workstations, usually not
included in clinical facilities. However, these steps require experience in the field
of Computer Sciences to be carried out in the best possible way; instead, they
will probably be carried out by personnel with non-technical expertise, perhaps
by the physiotherapists themselves, already employed within the clinical envi-
ronment. In light of this perspective, once abandoned the idea of automating
the design of polygons, a custom GUI has been developed to provide a user-
friendly tool for a quick and easy data collection and tuning of the classification
parameters — namely the training phase of the classifier which will be carried
out manually — that could be used on any desktop-PC. Such GUI, specifically
designed to be used by clinical staff, also allowed the trained parameters of
the classifiers to be straightforwardly uploaded directly to the micro-controller
board. The next section will present how it works in detail.
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Figure 3.19: The results of the testing of the Point-in-Polygon classifier.
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3.3.2 Graphical user interface

The research for the classifier model that best suited the scenario under con-
sideration has concluded with the adoption of the Point-in-Polygon algo-

rithm. In particular, it has been chosen in its ray casting version which —
taking as inputs the number and the coordinates of a polygon vertices, and the
coordinates of a given test point — counts the total number of times a ray from
the point intersects the perimeter of the polygon and, based on this number,
determines whether or not the point falls within the figure. As already men-
tioned, the choice of this classifier has implied the development of a phase of
training and parameter tuning to be carried out through an external interven-
tion. Since the HES has been designed for use in a clinical environment, it has
been immediately mandatory to develop a software application — a Graphical
User Interface — that would allow a straightforward collection of the train-
ing dataset of sEMG signals, a quick identification of the classifier parameters
(i.e., number and coordinates of the polygon vertices), and a straightforward
programming of the micro-controller4 to non-technicians personnel.

Developed for the first time at the Xerox Palo Alto research laboratory in
the late 1970s, a GUI is an interface through which a user interacts with elec-
tronic devices such as computers, handheld devices, processors. This interface
uses interactive components such as icons, menus, and other graphical objects
and visual indicators to display information and related user controls. GUI rep-
resentations are manipulated by a pointing device such as a mouse, trackball,
stylus, or a finger on a touch screen, but it can also be navigated using a key-
board. By using specially designed and labeled images, pictures, shapes, and
color combinations, objects were depicted on the computer screen that either
resembled the operation to be performed or were intuitively recognized by the
user. Unlike using command-line instructions or dealing with an Integrated De-
velopment Environment (IDE), GUI-based applications are much easier to learn
and use, mainly because commands do not need to be memorized and users do
not need to have any programming skills. Nowadays, such visual language has
become commonplace in both operating systems and software applications, and
there are even IDEs — which are nothing more than graphical interfaces in turn
— fully dedicated to the development of custom GUIs.

One of the most used development environments for creating graphical in-
terfaces as well as cross-platform applications is Qt Creator IDE, which, in the

4The micro-controller board Arduino Nano is the one in charge of classifying the sEMG
signals and, therefore, the tuned classifier parameters shall be uploaded to it from the PC
where the training phase is performed.
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Figure 3.20: The main window of the GUI developed for manually training the
classifier. The interface is developed almost entirely on this unique view and
the interaction takes place via keyboard and mouse pointer.

framework of this research activity, has been chosen for its compatibility with all
major desktop platforms and most mobile or embedded platforms. Qt Creator
is a multi-platform IDE specifically designed for application development based
on the C++ language. Released for the first time in 2009, over the years, it
has evolved to become the hub of application development, integrating project
management, source editing, graphics interface design and third-party debug-
ging and versioning tools. Qt Creator IDE is distributed by the Qt Company
in two versions: one with an LGPL license, which involves some restrictions on
distribution methods, and one with a commercial license that also guarantees
technical support for developers. The graphical interface for tuning the classifier
has been designed using QT Creator IDE non-commercial distribution and tar-
geting the PCs running Microsoft Windows operative system, which was, and
still is, by far the first PC operating system for dissemination5.

Figure 3.20 shows the main window of the GUI. The four main sections of
the interface shown in the figure are: (i) on the top left corner, the Univer-

sity logo and the application name; (ii) below that, the command layout that

5Source: c© StatCounter, https://gs.statcounter.com/os-market-share.



3.3. THE NOVEL CONTROL STRATEGY 75

contains all the buttons through which commands are sent to the interface; (iii)
in the center, an interactive two-dimensional Cartesian plane that is populated
with the points sampled during the collection phase; (iv) on the right, from the
top to bottom, two real-time graphics, the legend, and the status box.

Going into the detail of the command layout, starting from the top, there is a
line of editable text in which to enter the title of the training session to be opened
(e.g., patient name current date). Immediately below are the commands for
initialization of the serial port: the interface has a button for automatic search of
all the serial devices connected to the platform on which it is executed, however,
not wanting to limit the number of devices that can be used in conjunction with
the interface, it was preferred to implement the manual selection of the port
rather than the automatic connection. Nevertheless, in an attempt to simplify
this step as much as possible and reduce the actions to be performed to the
bone, the interface saves in memory the parameters of the last paired device
and suggests them by default during the opening of the further session. Below,
the interface initialization box ends with two buttons: “Load”, which opens the
standard Windows folder browser and allows for the selection and loading of
data from an old session — so doing the name of the session is loaded from
the previous one along with the data contained — and “Start”, which instead
uses all the data entered previously to activate the other areas of the interface,
disabled until now, and initialize the serial communication with the device.
The serial connection can be either wired or Bluetooth. In the second case, the
initialization will take a slightly longer time to complete because of the pairing.

Once “Start” has been pressed and the session has begun, the data acqui-
sition options can be managed with the tools that the interface provides under
the initialization box. If the session has started for a new user — hence with-
out using the “Load” button — the central graph and the legend will remain
empty, while the two graphs in the top right corner will start to show the real-
time envelope of the two sEMG signals and the confirmation of the connection
with the serial device in use will appear in the “status” box (see Figure 3.21).
Any connection errors will, in turn, be shown in red in the status box, and a
new session shall be open to reset them. If the session is instead opened for an
already-registered user, the behavior of the interface will be the same, but the
user will also be able to see the previous acquisitions on the central graph.

The line of text, marked by default with a “New Gesture” label, is a drop-
down menu that contains all the gestures acquired up to that moment — whether
they have come from the current session or one of the previous sessions. The
menu can be explored by clicking on the small arrow on the right of the panel,
and scrolled with the mouse wheel. If already present in the list, it is possible
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Figure 3.21: The figure shows what happens on the interface once the “Start”
key is pressed. In the top right corner the two graphs show the real-time trend of
the electromyographic data collected by the two MyoWareTM Muscle Sensors; in
the bottom left corner, within the status box, the serial port and its connection
status ared shown; below the title of the current session is reported.

to select a specific gesture and proceed with the acquisition of new data by
pressing “Record” — this option overwrites the previously acquired dataset.
If the deletion of the old data is not desired or until there are no gestures
already recorded in memory, the acquisition of a new gesture can be made, once
again, by pressing “Record” while leaving the default label on the gesture drop-
down menu. Before the acquisition starts, the name of the gesture that will
be recorded shall be entered in the text box that appears — the insertion of a
name already within the gesture list will cause the creation of a copy and not the
overwriting of the data. There are no limits to the number of gestures that can
be acquired using the GUI, but the constraint of being able to classify and then
reproduce only three hand gestures (opening, closing, and resting) remains.

As reported in Figure 3.22, once in the data recording mode, the timer will
start showing the recording time while the central graph will start populating
itself with electromyographic data from the two real-time plots. The myoelectric
signals are shown in the graph as points whose coordinates are the values of the
envelopes recorded by the two different sEMG sensors — the reason why the
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Figure 3.22: The custom GUI in recording mode. On the left, the label of
the gesture can be read in the drop-menu, just below, the “Pause” button has
replaced the “Record” one and, below again, the timer that marks the time
from the beginning of the acquisition can be seen. In the graph in the middle,
the points show in real-time the muscular state of the two muscle bands under
examination. Finally, within the status box, on the bottom right corner, a new
line says “Recording...”, confirming the current modality.

axes of the graph are limited to the interval of integers between 0 and 255
will be examined later on. On the graph ordinate axis, the muscle activation
of the flexor digitorum is reported, while the abscissa shows the one from the
extensor digitorum. Different gestures will be highlighted in different colors.
As the recording proceeds, it is possible to pause the collection by pressing
the “Record” button, on which the label will have been replaced by “Pause”.
The collection will then resume from where it was interrupted by pressing the
same button again. The “Clear record” button allows for the deletion of all
the acquired data from the current gesture without interrupting the ongoing
collection. The “Stop record” button has a double effect instead, depending on
whether the current record contains data or not. If data is present, the button
will proceed with interrupting the acquisition, followed by the saving of the data
in a text file (.txt) within a specific folder, and, finally, with the insertion of the
name of the gesture in the list of the acquired gestures. Inside the text file the
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Figure 3.23: The drawing mode that allows to trace the polygons on the central
graph. Vertices are drawn by clicking on the graph, polygon sides are previewed
while moving the mouse and defined when drawing the second vertex, and,
finally, on the top right corner of the Cartesian plane the coordinates are shown.

sEMG envelopes are saved trivially as pairs of integers separated by a horizontal
tab; samples belonging to different sample times are reported on different rows.
When there is no data recorded for the gesture being acquired (e.g., because it
has just been cleaned up with the “Clear record” button), the stop button ends
the recording and deletes all its tracks — this process can also be used to delete
old recordings that are no longer useful. The points of the gestures correctly
acquired and saved will remain on display on the Cartesian plane until the end
of the session, or until they are deleted using the method described above. The
status box will show the history of the actions carried out during the acquisition.

Once the acquisition phase of the (training) dataset has been completed —
that is when an arbitrary number of gestures has been recorded — the next
step will involve the manual drawing of two polygonal areas around the points
that identify the closing and the opening gesture, as shown in Figure 3.23. In
order to do so, the two gestures (one at a time) shall be selected from the
drop-down menu and then it will be possible to interact with the central graph
and draw the relative polygon by pressing the “Draw” button — a red border
around the button will highlight the entering of the drawing mode. The first
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vertex to be drawn will be circled in the same color as the gesture points. The
circle helps closing the polygon: it is sufficient to insert any other vertex within
this circumference to end the drawing and close the polygon on the first drawn
vertex. The area within the just drawn polygon will be colored with a light
shade of the gesture color, and the “gesture name gesture saved.” line will be
appended to the status box. The same steps can be repeated to draw the other
polygon after having changed the selected gesture from the drop-down menu.
It is also possible to delete a polygon already drawn by pressing the “Draw”
button, having selected the gesture in question.

Next to the “Draw” button, the keys labeled “Send” and “Save” are in charge
of respectively uploading the classifier parameters to the micro-controller board
and saving the coordinates of the polygon vertices. The data saving part is
done on text files, in a similar way to the saving of the electromyographic ac-
quisitions. The reasoning behind the data transmission protocol — which also
influenced the sampling of the sEMG signals itself — is insisted more articu-
lated and engaging. It shall start from the awareness that the data sent to the
Arduino Nano board have to be saved on the non-volatile memory so that, each
time it is turned on, it can automatically reload them from the internal memory
without having to connect again to the graphic interface. The only non-volatile
storage that Arduino Nano can offer is called EEPROM memory, which stands
for Electrically Erasable Programmable Read-Only Memory6. Contrary to what
the name seems to suggest, this type of memory can be programmed byte to byte
exploiting particular programming signals. This process is facilitated, however,
by already implemented medium-high level functions; the Arduino IDE itself
provides a ready-to-use library for such task. Unlike flash memory, which can
handle multi-byte operations for many life cycles that often stands at ten thou-
sand, EEPROM memory is designed to generally manage operations on a single
byte for a number of life cycles that can reach up to one million. While this
ensures a long duration of its integrity, it also makes it more challenging to
manage the storage of information that shall take place in individual memory
registers, each of which contains one byte, namely 8 bits — this means that in
every register can be stored just one number from 0 to 255. It is precisely in
light of this that it has been decided, from the very beginning, to map the 10-bit
sEMG signal (a number between 0 and 1023) returned by Arduino Nano’s ADC
to 8 bits before plotting them on the Cartesian plane. The classifier parameters,
namely the coordinates of the vertices of the polygons, will be hence already

6The ATMega328p micro-processor, the one at the core of the Arduino Nano board, offers
1 kB of EEPROM memory.
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Figure 3.24: A new line in the status box indicates the total number of bytes
sent to the micro-controller pressing the “Send” button. Immediately after, the
serial communication is interrupted to avoid disturbances that could corrupt
the data. The classifier training session is hence concluded.

in the correct format to be appropriately stored in the EEPROM memory of
the micro-controller since they are generated from a Cartesian plan limited to
abscissa and ordinate values lower than 255. In light of this, the data is then
sent to the Arduino Nano in individual packets of one byte, each in a precise
sequence. The first outgoing value represents the number of polygons — at the
moment two is the only number that is possible to send. Then the number of
vertices of the first polygon is sent. Assuming this number is K, the following
2K values to be sent are the coordinates of the vertices (first the abscissa and
then the ordinate). The same is then repeated for the second polygon. All
these values are transmitted interspersed with the separator character “;” to
facilitate the micro-controller in receiving and parsing them. At the end of the
data transmission, the confirmation of the correct execution of the command is
added to the status box with the number of sent bytes attached (Figure 3.24).

During a regular use of the interface the last key to be pressed is the one
labeled “Close Session”, in the bottom left corner. Doing this proceeds with
closing the session, emptying the serial buffer, and returning the interface to
the original state shown in Figure 3.20.
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Through the procedure shown above, it is possible to perform the training
phase of the Point-in-Polygon manually classifier using a custom made GUI

running on Microsoft Windows. The classifier parameters are transferred from
the desktop PC to the micro-controller via serial communication over a Blue-
tooth bridge, and are then stored on the EEPROM memory. Assigning these
parameters on the specific patient’s needs can improve classification accuracy
and disturbances rejection, and, since these needs are very likely to vary over
time thanks to therapy progress or due to the pathology evolution, it was essen-
tial to provide the clinical staff with an easy-to-use tool to quickly change them
according to the situation. Their tuning is hence meant to be done manually by
professionals who know the medical history of the future users and have followed
them during their clinical pathway; it is also likely to be performed within the
clinical facility before the patients get discharged.

Once the classifier has been prepared for the real-time recognition of the
user’s intentions, the code on the micro-controller is changed by pressing a
hardware button provided by the Arduino Nano board. The new algorithm no
longer sends sEMG signals outwards but, after having collected and correctly
mapped them in the [0 255] interval, combines them as the coordinates of the
test point whose position in the plane has to be tested. Every sample time,
the position of this point is evaluated based on whether or not it belongs to
a specific polygon. The code loads the polygon vertices into its flash memory
from the EEPROM memory the first time this code is turned on. Classification
is performed, therefore, in an exclusive way for precautionary purposes. This
means that, although no constraints have been imposed on the reciprocal posi-
tion of the two different polygons, each point shall belong to only one of them
in order to be classified as an open or close intention. All points that simultane-
ously belong to both polygons or none of them are classified as rest intentions.
The just achieved classification is translated into a numeric code — each class is
assigned with an integer number — that is transmitted to the paired Bluetooth
device as a single byte at 50 Hz frequency.

All this takes place on the micro-controller placed inside the bracelet module
which can be interfaced, once again, with a desktop PC for monitoring the
classification, or directly to the controller module responsible for implementing
the exoskeleton. At this point, the user can control the exoskeleton behavior
by reproducing as close as possible the signals which have been used to train
the classifier. However, similarly to learning how to drive a car or to ride a
bike, the correct, quick, and efficient use of such a wearable device is usually a
process that takes time to be mastered and which needs training not only for
the classifier but also for the user.
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Figure 3.25: Three views of the 3D hand model developed for the training of
the exoskeleton user.

For this reason, a further intermediate learning phase has been thought to be
carried out before letting the patient wear the HES and testing the resulting

control. Another GUI has been developed to ensure that this additional step
would not have been too tedious. Instead of resort to the Qt Creator IDE again,
Processing 37 has been used as it is open source too, it supports both 2D and
3D graphics, it is provided with OpenGL integration for accelerated 2D and
3D, it is well documented. Besides, it can be readapted to different platforms
(GNU/Linux, Mac OS X, Windows, Android, ARM). In this graphical interface,
has shown in Figure 3.25, a straightforward 3D hand model is displayed — the
view can be dynamically changed by dragging the mouse cursor. The movement
of this hand is directly related to the type of user’s intention that is classified
by the electromyographic bracelet, and, as it would happen by controlling the
exoskeleton, it is possible to control not only the complete movements but also
all the intermediate positions. The speed of the hand motion can be adjusted
according to the user’s taste, and it is then translated into the actual speed of
the exoskeleton movements.

7Processing 3 is the third major version of a software sketchbook which takes the name
from the homonym programming language.



Chapter 4

Tests and results

All the electronic changes presented in Section 3.2 have necessarily been fol-
lowed by a profound mechanical redesign of the exoskeleton architecture

and transmission system. Also, this process has been used to address some of
the problems that emerged while testing the first device (Section 2.3). Although
they have not been the subject of this thesis work, they will be briefly described
in this chapter in order to make the discussion on the conducted tests more
complete. Afterward — in Section 4.1 and Section 4.2 — the chapter will focus
on the actual testing phase of the HES resulting from all the modifications intro-
duced by this research activity and by the other works which have accompanied
it. The experimental protocol will be described in detail, and the solutions in-
troduced to tackle the significant issues that have arisen during these new tests
will be emphasized. At the end of each section, the test results will be presented
in terms of device usability aiming at handling objects from daily use.

From the study of the strengths and weaknesses of the mechanical design
process that has led to the production of the first HES prototype, the

ergonomic, kinematic and dynamic study of the coupling between the hand
and the exoskeleton has undergone significant improvements. Over the years,
these improvements have resulted in an evolutionary process that has not only
radically changed the appearance and equipment of the device [98, 99], but has
also made it considerably easy to adapt the exoskeleton to the most diverse hand
sizes, including those of children [100, 101]. The wise choice of the production
process of the various components — carried out by additive manufacturing in
ABS — has also made the replacement of broken or old parts cheap and quick.

83
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Figure 4.1: The final version of the assistive HES developed at the UNIFI DIEF.
On the right, the two rechargeable lithium-ion batteries that power the device.

The new prototype, shown in Figure 4.1, is already at first glance very dif-
ferent from the one shown in Figure 2.4. However, among all the differences —
which will be detailed below — it is also possible to see how the planar mech-
anisms of the fingers, although slimmer than the previous ones, keep the same
kinematic structure at the base: a planar single-DOF kinematic chain which
acts on the middle phalanx to make the finger perform a complete flexion/ex-
tension movement, that is an average ROM for the MCP rotation of about 80
degrees. The motion remains actuated through a cable-driven transmission.

The first notable difference with the previous prototype is that this final
version has been designed to have a modular structure in which the motor and
control box and the module that collects all the finger mechanisms are two
separate and independent entities. The main idea behind this design choice is
to minimize downtime for maintenance, whether it is programmed or not. The
mechanisms of the fingers are the part that will be mainly subject to replacement
as the weaker part from a mechanical point of view and hence easy to break.
Each finger mechanism has been designed to bear a maximum load of about
15 N applied by the closing hand to the contact point — value that has been
considered an appropriate force output for the manipulation of everyday objects
during normal activities [102]. Moreover, since both the recovery from the
pathology and the pathology itself may evolve, the trajectories of the fingers
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may change during the use of the device and, therefore, the geometry of the
finger mechanisms might need to be revised. Finally, the same actuation box
can be used for different but similar hand sizes, thus streamlining both the
production and the design process.

The latter, as it can be seen in Figure 4.2, now incorporates not only all the
electronics presented in Section 3.2 but also the batteries, which are therefore no
longer located along the forearm. If on one side this means a worse disposition
of the masses, which are now concentrated on the hand — the miniaturization
process is left to future investigations — on the other it allows for the complete
elimination of visible power wiring, making the system electrically safer. The
power supply stage, consisting of two rechargeable 3.7 V lithium-ion batteries
connected in series with a capacity of 2600 mAh each, has been designed to last
from one to two hours depending on the usage. Also, the actuation system has
had to undergo changes that have drastically changed its functioning. Reducing
the number of motors from four to one has led to the necessary redesign of the
transmission of motion from the actuator to the four finger mechanisms. While
in the previous device each motor unwound and wrapped the actuation cable
around a pulley integral with its shaft, concentrating on the left module in the
figure, it can be seen that in the new actuating system the motor no longer acts
directly on the cables, but instead sets in motion a secondary shaft through

Figure 4.2: An exploded view of the new motor box: on the left, the innermost
module houses the actuator, the transmission system, and the control electron-
ics; in the centre, the power stage contains the batteries and it is the only stage
accessible to the user once the system has been delivered; on the right, the case
enclosing and protecting the other modules, equipped with a switch button.
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a toothed belt drive. Four pulleys of different diameters are mounted on this
shaft and distributed along its length which, rotating at the same angular speed,
wind and unwind different quantities of cable. This adjustment allows the same
extension and flexion time to be obtained for all the fingers, although they have
different dimensions and, thus, their trajectories have different lengths.

Another meaningful change is that an additional passive DOF has been in-
troduced in joint 1 in the form of a second revolute joint — please continue
to refer to Figure 2.1 for joint and component nomenclature. In particular, this
revolute joint has the axis lying on the flexion/extension plane of the finger
and has been added to pander its natural movement of adduction/abduction
passively. This addition has resulted not only in improved ergonomics and user
comfort but also allows for the alignment of the plane of action of the mechanism
with the flexion/extension plane of the finger and helps them to be arranged
more efficiently for the object grasping. To note that this inclusion did not affect
the total number of DOF of the finger mechanism for it continues to be integral
with the finger and to act in the same two-dimensional plane. As a result, the
new HES has a total of eight independent DOFs, of which four active and con-
trolled, and four passive, uniformly distributed on all the four long fingers. The
average ROM for the MCP rotation is about 80 degrees on the flexion/extension
plane while it is roughly 15 degrees on the adduction/abduction one.

The last significant variation from the original prototype concerns the er-
gonomics of the system dressing. As mentioned in Section 2.3, the previous
device was placed in position, over the hand, using a sports glove to which it
was sewn. The elasticity of the glove, however, had a double effect: on the one
hand, it ensured greater safety of the coupling — as it was intrinsically compli-
ant with any possible displacement between the hand and the exoskeleton — on
the other hand, this same characteristic made the exoskeleton produce different
trajectories from those for which it was designed — each displacement modified
the coupling and thus the relative position between joint 1 and the MCP joint.
In addition to being uncomfortable and limiting for the user — who was forced
to make unnatural movements — this excessive mobility of the exoskeleton base
did not ensure a reliable repeatability of the motion. To overcome this problem,
an anatomical wrist splint was used to provide a sufficient rigid interface base
with the upper limb.

A splint is defined as a device that — when applied over or around an in-
jured segment — increases, improves, or controls the impaired function. They
are made by a suitably trained therapist, using thermoplastic material that can
be modeled even at relatively low temperatures (about 75◦). The splints are
modeled directly on the anatomy of the patient and have significant advantages
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Figure 4.3: On top, the anatomical wrist splint thermoformed on the patient’s
anatomy; below, the 3D printed reproduction in ABS incorporating a slide and
threaded holes for mounting the two HES modules.

for the therapy itself as their wearing is a rehabilitation treatment in itself.
Moreover, they are light, resistant, easily removable, easily washable, and have
the advantage of being able to be continuously reviewed and modified according
to the new requirements of the treatment plan. There are different types of
splints: (i) the immobilization ones, which aim to maintain a correct posture
of the limb to limit the onset of deformity and to protect the repair of injured
tissues; (ii) the ones for protected mobilization, designed to selectively neutral-
ize the proximal or distal joints to facilitate specific muscle or motor activity;
(iii) the integrative ones, designed to facilitate a function by compensating with
their rigidity the presence of paralyzed muscles or even prevent the appearance
of deformities caused by the imbalance between the agonist and antagonist mus-
cles; (iv) the ones for joint recovery, which promote joint recovery in cases of
rigidity. In this case, the splint that has been exploited (see Figure 4.3) can
be considered as a combination of the typologies for protected mobilization and
the integrative one. The main task of the splint was to stiffen the wrist articu-
lation so that the interaction forces between the exoskeleton and the hand were
discharged on throughout the forearm. Besides, it also resulted in concentrating
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Figure 4.4: The final HES mounted on the tailor-made splint ready to be tested.

the HES action on the fingers and giving greater stability to the system (pro-
tected mobilization). Secondly, this splint also provides a rigid support that
keeps the first phalanx of the thumb in position of semi-opposition to the palm
to facilitate the object grasping, mitigating the tendon retraction (integrative).

Just as it has come out of the thermoforming process, however, the splint
was still not suitable as an anchor base for the exoskeleton. A three-dimensional
CAD model, which would allow for the processing of the upper surface while
maintaining the anatomical correctness of the lower surface, has been created.
This process has taken place by exploiting a measuring arm equipped with a
3D laser scanner. Finally, the housing for the module of the fingers — which
provides for its attachment through some screws — and a magnetic slide for
anchoring the motor box have been designed on the CAD model (both visible
in Figure 4.3), and a 3D-printed version of the splint has been produced.

Figure 4.4 shows the complete and assembled version of the HES made within
the MDM Lab at the UNIFI DIEF. The device — whose cost and weight have
remained almost unchanged since the previous version (excluding the sEMG
bracelet) — is fixed to the upper limb through two Velcro straps.
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4.1 First test session

A first test session, in the form of a pilot study, has been carried out at
the Don Gnocchi IRCCS Rehabilitation Centre once the development of

the prototype described above had been completed. The purpose of this study
was to verify the actual impact of the exoskeleton use in object handling when
worn by a real patient. Given the de facto exploratory nature of these tests,
the minute size of the test sample, and due to the low repetitiveness of the
classifier training — which was manually performed — no statistical analysis
on the classification accuracy has been performed. The test focused instead
on measuring grabbing and handling times. One subject (male, aged 54, 1+
Modified Ashworth Scale [103]) has been enrolled for the study. The patient
suffers from birth from SMA type II, which is a neuro-degenerative disease with
several possible different outcomes. In this specific case, SMA produced selective
damage to the extensor muscles of both hands, causing a clenched fist deformity
and resulting in hand opening impairment due to tendons retraction. Before the
beginning of the tests, the subject has been provided with a written informed
consent form and an information sheet.

Figure 4.5: The HES and the sEMG bracelet mounted on the test subject’s
right arm.
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Figure 4.6: The figure shows the collection of the sEMG signal during the
training phase which has preceded the test session.

Experimental setup - In order to provide a comfortable and high customized
clamping system on the patient’s limb, the ergonomics of the device has been
improved by housing the HES on a 3D-printed splint, directly manufactured
starting from the user’s anatomy. Such tailor-made interface has been then
fixed to the user’s upper limb employing a Velcro fastening, as visible in Figure
4.5, so that it assures a stable kinematic coupling between the exoskeleton and
the hand. The bracelet has been previously placed on the user’s forearm, and
the two EMG sensors have been placed, with the help of a physiotherapist, on
the extensor digitorum and flexor digitorum muscle bands exploiting adhesive
Ag/AgCl electrodes. However, since the selected subject was not able to pro-
vide reliable signals concerning finger extension without feeling annoyance, it
has been decided to use the remarkable cross-talk components from the muscu-
lar activity coming from the wrist motions. Before starting the test, the subject
has conducted a complete training session of the classifier exploiting the GUI
described in Subsection 3.3.2 under the supervision of the same physiothera-
pist1 who assisted the dressing. Firstly, the sEMG signals related to the flexion
and extension of the wrist have been recorded and labeled respectively as hand

1The physiotherapist has been taught how to use the GUI to properly tune the classifier
parameters in two practice sessions for a total of four hours the week before the tests.
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closing and hand opening intention (the process is shown in Figure 4.6). This
phase had necessarily to be performed while the subject was wearing the whole
system since the dressing of the device itself also influences the overall muscu-
lar activity. Secondly, the physiotherapist has drawn the gesture polygons in
the way he thought best. Thirdly, the patient has virtually tested the control
experience by commanding the motion of the 3D hand model. A user-training
approach has been followed to teach the patient to consistently produce EMG
patterns corresponding to clear commands for the exoskeleton, and the transi-
tion to the actual test phase has taken place only when the subject expressed
positive feedback on the reliability, reactivity, and sensitivity of the classifica-
tion output. Until that moment, for each time the control was considered not
suitable, the training process was repeated from the second step.

Figure 4.7: An example of the test scenario: the subject is seating in front of a
blue dais and a shoe box, in the center of the blue dais one of the test objects
(in this case an empty mug) is placed, such object that must be moved over the
shoe box, and the action shall be carried out using only the upper right limb on
which the HES has been previously mounted.
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Experimental protocol - The Single-Case Experimental Design methodol-
ogy [104] has been chosen for the study: 10 objects of different sizes and shapes
from those of daily use (i.e., an apple, a tangerine, a tennis ball, a mug, a 0.5 l
bottle of water, a door handle, a spray can, a pot, a felt-it pen, a smartphone)
have been selected for a chronometric functional task test. The subject seated
in front of a table on which the objects mentioned above have been previously
placed within a fixed area (Figure 4.7). The subject, wearing the exoskeleton,
has been asked to grasp each object and move it on a standard shoebox (12.5
x 28.5 x 10 cm) placed 10 cm away from the initial position. For each object,
a total of five trials have been conducted, and the average grasping time was
calculated. Figure 4.8 shows instead the subject wearing the HES while carrying
out one of the chronometric tasks.

Figure 4.8: The HES user as he moves an empty mug over the shoe box.

Results - The results of the first test session are reported in Figure 4.9. More
than the actual time taken to perform the complete tasks — which still results
to be quite high compared to reasonable standards for able-bodies — it is in-
teresting to note how these results give an overview of the behavior of the HES
as the type of the handled object varies. They show that, in general, grasping
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time is longer as the object shape gets more complicated, e.g., grasping an apple
is quicker than grasping a felt-it pen. This trend can be attributed to the fact
that, when actuating four 1-DOF mechanisms at once, grasping an object with
a spherical shape requires less time since the exoskeleton better adapts to such
forms. It is also worth noting that lateral grasping arose to be more compli-
cated than the vertical one. This difference can be seen comparing grasping of
the bottle of water with the tangerine/tennis ball one: the latter required less
time despite a similar diameter of the grip. The difficulties encountered by the
subject to produce the correct sEMG pattern in the different positions might
be attributed to the fact that the upper limb muscles differently compensate for
the exoskeleton weight and such cross-talk effects can modify the sEMG signals.

Figure 4.9: The graph shows the results of the second chronometric tasks test.
The histogram reports on the x-axis the objects involved and on the y-axis the
average time (rounded to the second) taken to complete the exercise.
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Figure 4.10: In the central graph of the figure, some conditions in which the
control becomes glitchy are highlighted by the circled areas. This happens
because of the alternation between muscular states whose signals fall alternately
in and out of the polygonal areas, producing a flickering transition from motion
to stop of the actuator.

Discussion - These tests have also highlighted that executing a command
action at 50 Hz frequency results in a stressful operative condition both for the
motor and for the user himself. The control system forced the motor to execute
the commands coming from the classification loop every time they were different
from the previous one. This condition has proven to occur quite frequently when
the user (voluntarily or not) has found himself operating the exoskeleton with
muscular signals mapped very close to the perimeter of the gestures polygons. In
such cases, the classified intention would likely jump from “closing” to “resting”
and then back to “closing” very often, as visible in Figure 4.10, even if the actual
intention did not change. The motor might have hence been told to move (when
the current test point was inside the polygon) and to stop (when the test point
was outside the polygon) up to 50 times per second. This working condition
has ended up resulting in a glitchy actuation of the exoskeleton which caused:
(i) a quick overheating of the motor; (ii) a consequent loss of performance of
the whole system; (iii) the onset of a sense of frustration in the user, fatigued
by the vibrations and the problematic use.
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These tests have also confirmed the goodness of leaving the decision-making
process of the classifier parameters to physiotherapists. During the training
phase, it has been seen how choosing some key characteristics of the classifier
— such as the size and position of the polygons — through a direct interaction
with the patient, and basing on his needs and the current and past history of his
disease, produces positive results not only on the quality of control but also on
the involvement of the patient in the exercise. On one side, changing the size of
the polygons affects the selectivity of the classifier: the larger the area underlying
the polygons, the easier the user will be able to produce a muscular signal that
falls within those figures. Even though, at the same time, this will increase the
probability that such intention will be incorrectly classified when not desired.
On the other side, the sensitivity of the classification depends on the position
of the polygons: the closer the polygon is to the origin of the graph, the less
muscular effort is required to trigger the corresponding movement. However, it
will also be more challenging to maintain a state of muscle relaxation such as not
to incur in erroneous classifications of movement intentions. Furthermore, by
bringing both polygons closer to the origin and, therefore, even closer together,
there is also a higher risk of particularly harmful incorrect classifications. E.g., a
classification of an intention to open when handling a fragile or precious object,
or a classification of an intention to close when wanting to release a pungent
or hot object quickly. It is therefore essential that these parameters are chosen
together with the patient so that he/she is not only more aware but also more
in control of the strategy that will be implemented on the HES.

4.2 Second test session

During the second test phase, both the same experimental setup and protocol
have been adopted. The same classification strategy has also been exploited.
However, changes have been made to the actuation loop to mitigate the glitchy
control issue, which has arisen in the previous test session. The chain of in-
structions that translated the classified intention into low-level commands for
the motor has been modified by adding a filtering action provided with a sort of
memory of the last executed command and the last classified intentions. Within
this new control strategy, the classifier output was no longer translated directly
into the corresponding motor command — which means that the motor could
have received a new instruction up to 50 times in a second — but it was instead
added to a vector containing the last five classified user’s intentions; every time
a new value is added to such vector the oldest one is overwritten. The vector
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size — five elements that correspond to a time window of 100 ms since a new
element is added every loop — has been chosen not to introduce too much la-
tency, providing a still responsive control experience for a real-time application.
The last executed intention is instead stored in a separate variable.

A customized filtering action has been implemented to combine these six
variables into one output to determine which command action has to be executed
by the HES; the main steps of its operation logic are detailed below. Firstly,
each classifiable intention has been assigned to an integer number, such as the
rest state is the number in between the other two.

opening = 1, resting = 2, closing = 3 (4.1)
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Figure 4.11: The selection process of the five weights to be matched to the dif-
ferent elements contained in the vector of the classified intentions. These values
— which, in the figure, are distributed along the ordinate axis and highlighted in
red — are extracted from the equation of a unitary parabola

(
y = x2

)
so that

their sum is equal to 0.6 and their corresponding abscissa are evenly spaced
on the x-axis. This last characteristic has been chosen since the time interval
between the classification of the different intentions remains constant.
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Secondly, a weight of 0.4 is assigned to the current executed intention, and
the other five weights — heuristically gathered from a unitary parabola for a
total sum of 0.6 — are assigned to the classified intentions. The smallest weight
is matched to the oldest classified intention, while the most significant weights
to the youngest one.

ce → we = 0.4 (4.2)

it−4 → wt−4 = 0.011 (4.3)

it−3 → wt−3 = 0.044 (4.4)

it−2 → wt−2 = 0.098 (4.5)

it−1 → wt−1 = 0.174 (4.6)

it → wt = 0.273 (4.7)

Where ce and we are the last executed intention and its respective weight,
it−4, ..., it the classified intentions at different time step t, and wt−4, ..., wt the
corresponding weights, chosen as shown in Figure 4.11.

Finally, a weighted average is calculated and rounded to the closest integer
corresponding to an intention. The result of these calculations is then assumed
as the new intention (ne) to be executed by the exoskeleton.

ne = wece +

4∑
k=0

wt−kint−k (4.8)

Where int−k are the values assigned to the corresponding intentions it−k,
accordingly to Equation 4.1.

This modification has been done in order to reproduce the effect of a win-
dowed smoothing filter — window length = 100 ms, overlap = 20 ms — which
has proved to reject single jumps from one intention to another actively. Such a
filter also gives much more importance to the latest classified intentions than to
the oldest ones, and it provides the control system with a remarkable but not
excessive inertia to changes. While 40% of the decision on the new command to
be executed depends in fact on the last intention reproduced by the exoskeleton
— this inertial weight is represented by we — the remaining 60% of choice falls
instead on the intentions classified in the last time window of 100 ms and, in
particular, roughly half of this decision weight depends exclusively on the last
of them (27.3%). The selected weights are the result of laboratory tests, which
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Figure 4.12: The graph shows the difference between the resulting command
to be executed generated by the old control strategy (in orange) and the one
generated by the new control strategy after the implementation of the memory
filtering (in blue) at a sampling frequency of 50 Hz. The real actions to be
reproduced are circumscribed in red. The intention labels — opening, closing,
and resting — are assigned to different y values according to Equation 4.1.

highlighted how the modified control experience turns out to be much smoother,
less power consuming, and less fatiguing for the user if compared to the pre-
vious one. The qualitative results of this comparison, in terms of classification
accuracy, are shown in Figure 4.12.

The figure shows a manifest decrease in the number of misclassified inten-
tions, that is, all the points that are not inside the red rectangles. The result
that is even more interesting, though, is the almost complete elimination of those
classifications that are mistakenly recognized as the movement opposite to the
real one (i.e., opening intentions classified as closing ones and vice versa). These
are particularly harmful because, by imposing a sudden inversion of the exoskele-
ton motion, subject both the actuation system and the mechanical structure to
significant stresses. Moreover, reproducing an intention which is opposite to
the one the user wants, not only the control experience risk becoming consider-
ably annoying, but it is also possible to incur in painful or dangerous situations
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for the user; such as the release of a fragile object during the handling, or the
prolonged tightening while touching a pungent or hot object.

Figure 4.13: During the second test session the experimental setup remained
unchanged. In this session, as well as in the previous one, a second small box
(white in this figure) has been used to ease the grasping of small or thin objects.

Figure 4.14: The experimental protocol has not been modified as well. The
figure shows the HES user as he moves a smartphone over the shoe box.
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Results - The second test session has been carried out following the exact
procedure of the first one, and involving the same patient and physiotherapist:
(i) the HES has been worn on the subject’s right upper limb by the physiother-
apist; (ii) the subject has undergone the training phase for the classifier, at the
end of which the physiotherapist has chosen the polygons for the classification;
(iii) the control has been then tested on the virtual 3D hand model; (iv) the
subject has finally carried out the pick-and-place chronometric task tests five
times per object and the average time to complete each task has been calcu-
lated (see Figure 4.13 and Figure 4.14 for another example). The results of this
second test are shown below in Figure 4.15, placed side by side with the results
of the previous test.

Figure 4.15: The graph shows the results of the first and second test sessions,
in orange and green respectively.
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Discussion - The evidence from the second test session shows that the intro-
duction of the filtering action benefits not only the control experience but also
the effectiveness of the device. It should be noted that in almost all cases —
except for the test that involved the tangerine, where the average time required
to perform the task has increased — the results indicate that the new control
strategy has undoubtedly had a positive impact on reducing the time for the
completion of the tasks. In some cases, such as the pot and felt-it pen, the time
recorded has more than halved. It should be added that these improvements are
not only due to the use of an improved control strategy. Although it has not yet
been possible to carry out specific tests to verify the validity of such an assump-
tion, it would, in fact, be unreasonable to exclude the sharing of other factors in
improving the performance of the system. The factor that will certainly have to
be taken into consideration is the human factor: it is likely that, having already
carried out a previous test session, both the subject and the physiotherapist
have learned from the experience to better use the tools with which they had
to interact. Therefore, just as it is to be expected that the subject has become
more familiar with the HES and that he has been able to manage it better, it is
fair to assume that also the physiotherapist has been able to take advantage of
the previous experience to better tune the classifier on the subject’s needs and
abilities through the graphical interface.

The last considerations precisely concern the GUI developed for the tuning
of the classifier parameters. The second test session has confirmed some of the
strengths the graphical interface had already shown in the previous one. Firstly,
its use proved to be particularly simple and intuitive: the four hours of teach-
ing, that the physiotherapist who has supervised the tests has undergone, has
turned out to be more than sufficient for the complete mastery of the instru-
ment. Secondly, the time required for the system to be ready for the correct
classification of sEMG signals — operated through the GUI — turned out to
be remarkably short: in both sessions, it was never more than half an hour of
classifier training. Finally — although the previous observation has also opened
up scenarios in which the training of the classifier takes place before any daily
use — it is possible to use the HES successfully while keeping unchanged the
parameters identified in a past training phase. This occurrence is due to the
possibility of saving data from all the training sessions a patient is subjected
to, and then load them all together in the same session in order to identify the
polygons that fit the overall set of data; producing a robust classification to the
various possible conditions of use of the device.





Chapter 5

Conclusions

This work collects part of the research activities on wearable robotics carried
out at the Mechatronics and Dynamic Modelling Laboratory of the Depart-

ment of Industrial Engineering of the University of Florence from 2016 to 2019.
What is reported in these pages focused, in particular, on the development of
a control strategy for a hand exoskeleton system based on the exploitation of
surface electromyographic signals. Paving the way to innovative low-cost so-
lutions in the field of robotic assistance for people with hand disabilities has
constituted the main subject of this work, motivated by the fact that people
who have lost — wholly or partially — hand dexterity are deeply compromised
in the possibility of living an independent and healthy life. Under the pressure
of substantial technological progress in the middle of the Fourth Industrial Rev-
olution, with the World Health Organization indicating a clear positive trend in
the number of people who will need assistance in the short term future, robotic
devices nowadays represent a useful tool to democratize the regaining of a better
quality of life, both for those who have lost it as a result of an accident or for
those who see it undermined due to a chronic disease.

The overall research activity aimed not only to present a novel sEMG-based
strategy to control a lightweight (' 500 g) and low cost (' 500 ) fully wearable
assistive HES, but also to describe the patient-centered process that has led
to its implementation on an embedded system. The focal point of the whole
activity remains the choice of the classifier algorithm for the recognition of the
user’s motor intentions to be reproduced by the exoskeleton, the very same de-
vice which has later been tested on a real patient during simulated ADLs. The
novelty of this work lies in the fact that, comparing it with the related works
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available in literature — reported in Chapter 1 — and with the previously im-
plemented control strategy — described in Chapter 2 — the proposed solution
shows a peculiar aspect which raises the bar of the current state of the art
of wearable assistive technologies. Unlike other studies, the complexity of the
classifier has been brought from a one-dimensional to a two-dimensional level
exploiting a particular algorithm whose use in the field of wearable robotics is
not reported in any other work in literature even though its performance has
proved to be valid in comparison with standard machine learning techniques —
as reported in Chapter 3. This lightweight decision-making algorithm, which is
more robust to external disturbances and more flexible to the classification of
different intentions compared to the one-dimensional strategies, has remained
suitable for embedded applications and this is another crucial point of the work.
Two test sessions have been performed on a real patient in a clinical environ-
ment to validate the discussed approach and qualitatively assess the usability of
the proposed control strategy during everyday life object handling. Promising
results — outlined in Chapter 4 — have been obtained at the end of this pilot
study, highlighting the goodness of the proposed solution, which has proved to
be an attractive approach in the development of control strategies for wearable
robotic devices. Nonetheless, there is still room for improvement.

Through this research activity, a more mature state of the device has been
reached, for which it is now possible to request approval from an ethics commit-
tee for the actual clinical trial. Enlarging the test sample will allow for a proper
statistical analysis both for classification accuracy and for the average grasping
time of different everyday objects. It will also honestly assess if the same strat-
egy can fit different users with different pathologies. In parallel, a variant of
the actuation strategy will be tested for accelerating the grasping process but
also to provide a more natural control of the hand motion. The base idea will
be to command the motor to move at a speed proportional to the level of mus-
cle contraction. Finally, the classification phase will be further enhanced: the
development of a new classification procedure based on the execution of more
sophisticated algorithms has already started to be designed. Micro-controllers
technologies are evolving fast nowadays, and some manufacturers already pro-
vide tools for the implementation of pre-trained artificial neural networks di-
rectly in their microchips. The exponential growth of the computational power
of the micro-controllers is opening, in fact, the doors of deep learning to wearable
applications based on low-power embedded electronics.

All these topics, whose investigation constitutes a natural continuation of the
research activity carried out thus far, will be subjected to further developments.
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