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Chapter 1

Introduction

In Document Image Analysis (DIA), which deals with solutions to obtain
computer-readable description from document images, understanding and
recognition of a wide spectrum of complex document images from business
and financial documents to floor plans pose a key challenge due to high-level
semantic information carried in such documents. The primary task is then
to isolate different present contents in the documents (e.g., graphical and
textual components).

In this thesis, the main objective is the recognition and understanding
of graphical documents in order to generate accessible graphical documents
using Deep learning-based object detection models. To do so, first, the object
detection in floor plans is addressed by creating and extending floor plan data
sets, and then, proposing reliable detection approaches to suitably operate
in real scenarios. Second, the role of transcript alignment in early printed
loosely annotated texts to support word detection inside unknown images is
investigated.

1.1 Contributions

In general, this thesis follows three main lines of research. It is first focused
on the understanding of floor plan images, using deep learning-based ob-
ject detection methods for text and object recognition. Next, the lack of
large data sets of floor plan images, that could be used to investigate object
detection techniques in floor plan data sets, is addressed by creating a com-
prehensive data set. Then, text alignment in document images is considered
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2 Introduction

by focusing on both deep learning and dynamic programming.
The first contribution focuses on the use of deep neural networks for

object detection in floor plan images. In particular, object detection ar-
chitectures, which originally designed and trained to recognize objects in
scene images, are used for recognizing furniture objects (e.g., doors, table,
chair, bed) in floor plans. Deep neural networks based on Faster R-CNN is
performed on this task and also to text detection in floor plan images.

The second contribution of this thesis is the creation of two data sets
that have been used for performing the experiments covering different types
of floor plans with different peculiarities. The first data set, called ISTA,
comes from an architectural firm. The second one, called Flo2plan, which is
at least 3 times larger than ISTA, includes different kinds of floor plans made
by different companies. Although a lot of data sets in floor plan images have
been created, there is still a lack of a comprehensive and reasonable large
data set for implementing deep learning methods to create an accessible
graphical document for visually impaired people.

The third contribution focuses on proposing a technique for transcript
alignment in early printed books by using deep models in combination with
dynamic programming algorithms. Two object detection models, based on
Faster R-CNN, are trained to locate words. First, an initial model is trained
to recognize generic words and hyphens by using information about the num-
ber of words in text lines. Using the model prediction on pages with a
line-by-line ground-truth annotation is available, a second model is trained
which is able to detect landmark words. The alignment is then based on the
identification of landmark words in pages where only the text corresponding
to zones in the page is known. The proposed technique is evaluated on a
publicly available digitization of the Gutenberg Bible while the transcription
is based on the Vulgata, a late 4-th century Latin translation of the Bible.

1.2 Outline

This thesis is organized in five chapters as follows:

• Chapter 2 presents the state of the art of different approaches pro-
posed for addressing the problems associated with document image
analysis and also presents deep learning-based object detection meth-
ods in this thesis.
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• Chapter 3 investigate the use of deep networks for object detection
in floor plan images. The usage and the adaptation of the Tensorflow
Object Detection API are explored to identify floor plan objects in two
data sets that have been built to address this task.

• Chapter 4 first proposes a model for transcript alignment in early
printed books by using deep models together with dynamic program-
ming algorithms. Second, a textual contents processing model is pro-
posed in floor plan images.

• Chapter 5 introduces two novel floor plan image data sets, ISTA and
Flo2plan. The labeling approach, adopted to annotate these data sets,
is also highlighted.

• Chapter 6 concludes this dissertation by highlighting the suitabil-
ity of the presented deep learning-based object detection models for
document image understanding together with a brief discussion about
future research directions.
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Chapter 2

Literature review

This chapter gives a brief survey of related work on Document
Image Analysis using deep neural networks. The first part of the
chapter briefly introduces the problem of object detection in doc-
ument images and some useful applications in document image
analysis, while the second part deals with the different architec-
tures of convolutional neural networks for object detection. Fi-
nally, text Detection in scene images is presented as another task
that has been used in this research.

2.1 Document Image Analysis

One general framework for document image analysis is described in this
section. Figure 2.1 shows the sequence of steps in document image analysis.
The steps include capturing data from a computer, binarization, feature level
analysis, text, and graphical components’ analysis and recognition.

Data capturing: the data in a paper document are usually captured
using a scanner and stored in a file in the form of an image with different
extensions (e.g., jpeg, tiff, bmp, png). The captured document may be a
colorful or grayscale image.

Binarization and preprocessing: To separate foreground and back-
ground information, the document image is binarized. This step converts
the captured document into pixels with intensity level 1 or 0. Preprocessing
includes noise reduction, segmentation and converting the image into the
required form for further processing. Noise in the document image is pos-
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6 Literature review

Figure 2.1: Steps involved in document analysis.

sible from many sources including degradation due to aging, photocopying,
or during data capture. Segmentation is carried out to separate textual and
graphical components of the document. Segmentation of textual information
helps in locating columns, paragraphs, words, characters, and segmentation
of graphics which aim at separating symbols, logo, signature, and lines from
the document image.

Feature level analysis: This step is to carry out an analysis of textual
and graphical components. Image features, structural features or textual
features are extracted from the document image. These features may be
either local or global. Figure 2.2 summarizes the different features used for
document image analysis.

Text level analysis and recognition: Two main types of analysis are
applied to text in documents. The first one is Optical Character Recognition
(OCR) to extract the meaning of the characters and words from document
images. The second method is page-layout analysis to recognize the format-
ting of the text in a document image that includes text bodies in different
functional blocks ( e.g., headers, footers, titles, subtitles).

Graphics level analysis and recognition: Graphics level analysis
includes recognizing lines, curves, and other features to identify different
components such as graphic symbols, logos, and layout of the document for
further inspection.

Document description: The result of document image analysis is doc-
ument description and consists of both textual and graphical components
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present in the document.

Figure 2.2: Different features used in document image analysis

2.1.1 Application of DIA

In this section, different aspects of real problems of document image analysis,
as well as examples of successful applications are covered.

Table detection is a crucial step in many document analysis applications
as tables are used for presenting essential information to the reader in a
structured manner. This is a hard problem due to varying layouts and
encodings of the tables. Researchers have proposed numerous techniques
for table detection based on layout analysis of documents.

Pacha et al [75] performed a study called “Handwritten Music Object
Detection: Open Issues and Baseline Results”. In their study, they stated
that the main aim of Optical Music Recognition (OMR) is to automatically
understand written music scores. By recognizing the visual structure and
the objects within a music sheet, this method tries to understand the mu-
sical content of documents containing printed or handwritten music scores.
After recognition of all the objects, there will be a semantic reconstruction
step to identify the objects’ relations with each other and recover the mu-
sical semantics. In light of recent developments in computer vision, which
have been promoted through the popularity of deep convolution neural net-
works, OMR received several groundbreaking contributions that result in
inaccurate results for particular sub-problems including staff line removal or
symbol classification With the aim of accurate music objects detection in
music scores, Pacha et al. studied the problems with music object detection.
It is generally agreed that there are two possible forms for music objects
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including primitive glyphs or compound symbols implemented in music no-
tation. The job of a music object detector is to take an image and yield the
bounding-box and class-label for every found object. Pacha et al. used a ma-
chine learning approach and an end-to-end trainable object detector on the
MUSCIMA++ data set to state the way of creating an accurate and gener-
alizable music object detector. The performance of different object detectors
and feature extractors were studied through several experiments to evaluate
their proposed approach. Other fields such as staff line removal effects and
the impact of removing rare symbols are also investigated. They used the
deep learning library TensorFlow to adopt a work on detecting music objects
through. It is possible to find the entire source code such as detailed instruc-
tions and training protocols in Music Object Detector-TF which consists of 4
steps. In the first step three meta-architectures including -CNN, R-FCN, and
SSD as object detectors have been investigated. The first two architectures
including R-CNN and R- FCN are two-stage detectors and contain a region
proposal network as well as a region classifier. Although a sliding window for
classification is used in Faster R-CNN, position-sensitive score maps and per
RoI pooling is used by R-FCN, which is more beneficial. However, there is
fairly reduced precision. and in the second step, as feature extractors, Incep-
tion ResNet-v2, ResNet50, MobileNet-v1, and Inception-v2 exclude custom
made networks that cannot take advantage of transfer-learning. In the third
step, several images with and without staff lines are studied of all the 105
classes existing in the MUSCIMA++ data set, they reduced to 71 classes.
34 classes that appeared less than 50 times in ground truth are removed.

Pacha et al. in [74] performed a study to build a universal music sym-
bol classifier that can classify music symbols no matter how they are well
printed or just handwritten. They proposed a data-driven approach to build
this kind of classifier. To this end, they made tools which can unify multiple
data sets into a single large data set on which it is possible to train universal
music symbol classifier. They unified seven data sets into a collection con-
taining over 9000 samples which belonged to 79 classes. They stated that
one significant feature of a universal music classifier is the ability to detect
all types of music symbols irrespective of being printed or handwritten. A
powerful and appropriate way for solving computer vision tasks is offered
by deep natural networks including convolutional neural networks by some
researchers in [53] and they built these classifiers through training a convo-
lutional neural network on the aforementioned data set.
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Nguyen et al. [72] stated that several methods have been proposed for ex-
traction/ detection of characters from comics in the past few years which
indicated reasonable performance. To train the comic characters detector,
they have implemented the latest object detection deep networks. The prop-
erties and performance of the deep learning approach for detecting comic
characters are analyzed in this study through their proposed data set called
“Sequencity612” as well as three data sets from the previous studies includ-
ing Sun60 data set[95], Fahad18 data set[50], and Ho42 data set[43]. Since
the standard approach for object detection uses CNN classifiers on various
sub-windows or regions derived from the image, they preferred to use deep
learning methods to do object detection. When the classification was com-
pleted, CNNs adjusted the object localization by eliminating the errors. Two
modern neural networks are trained including RCNN and YOLOv2 via their
Seqencity612 dataset. In their study, it was concluded that YOLOv2 had
better performance in terms of accuracy. They expanded YOLOv2 model
according to the scratch, refined Darknet‘s model, and kept Darknet‘s model
due to its better performance.
One of the most challenging steps in many document analysis applications
is table detection because tables, with different layouts and encodings, use a
structured way to present crucial information. Based on the layout analysis
of documents, several techniques are suggested for table detection. A deep
learning-based approach is proposed by Hao et al. in [37] for table detec-
tion. Region proposals from document images are computed by this system
through some predefined set of rules. Then, these region proposals are passed
to the CNN, which detects if a certain region proposal belongs to the table
region or not. However, one of the main limitations is that although it is
suitable for tables that have ruling lines, when the table is spanned across
multiple columns, it is not able to localize table regions.

Gilani et al. in [32] proposed a deep learning-based method for table
detection. This method includes two main modules including image trans-
formation and table detection. Documents are blank spaces and content
regions. For the separation of these regions, image transformation is used.
However, faster R-CNN is preferred in the table detection module as a ba-
sic element of the deep network. Faster R-CNN depends on the combined
network which contains Fast R-CNN and Region Proposal Networks. Their
approach has been shown in [32].

Gatos et al. in [31] presented an automatic table detection technique in
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Figure 2.3: The document image is first transformed and then fed into a
fine-tuned CNN model. It outputs a feature map which are fed into region
proposal network for proposing candidate table regions. These regions are
finally given as input to fully connected detection network along with the
convolutional feature map to classify them into tables or nontables. [32]

document images. It is generally agreed that lines and tables are the very
common graphic and non-textual entities in documents. Therefore, their
detection is of importance in evaluating OCR performance and describing
document layout. A workflow for table detection is proposed that includes
three steps including image pre-processing, horizontal and vertical line de-
tection and table detection. A performance evaluation scheme is used to
determine the proposed method efficiency which includes newspapers, scien-
tific journals, certificates and so on. Several steps are included in the process
of table detection. First of all, the pixels of the detected lines are removed.
Then, all the detected lines must be grouped horizontally and vertically. Af-
ter that, each group is aligned based on the mean value of the horizontal or
vertical positions. Finally, a reconstruction table is achieved via the drawing
of the horizontal and vertical lines which connect all pairs of line intersection.
Goa et al. in [30] stated that it is important to build a detection method for
PDF documents. In Figure 2.4 an example of formula detection has been
shown.
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Figure 2.4: An example of formula detection. (a) Document page (b) de-
tected results, formulae in it is detected by our method and annotated with
red boxes. [30]

In their study, a CNN and a recurrent neural network (RNN) are com-
bined and refined to detect formula based on their vision and character
properties. They proposed a series of strategies for training and optimizing
deep networks like implicit class down-sampling which can reduce unbalance
dens between formula and the other page elements such as tables and figures.
Also, they redesign the region proposal method to make moderate formula
candidates via a combination of bottom-up and layout analysis. The results
obtained in this study indicate that by combining CNN and RNN, it is possi-
ble to increase the validity of their proposed detection method. According to
the framework of this study, a PDF file is used as the input, and two sequen-
tial parts are used to detect the formula appearing in the papers including
candidate formula region generation and formula identification. In the first
part, the page rendering information is parsed and some steps are used to
check and correct the information. After that, top-down and bottom meth-
ods for layout analysis are used for generating candidate formula regions.
In this step, the text, image information stream of each candidate region,
and graphs, as the output, which is the input of the following process. For
extraction of the candidate features, feature extraction networks are trained
in the formula identification part. There are several post-processing rules
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for adjusting and refining incomplete formula areas. Then classification and
post-processing are implemented until no formula region is modified as it is
shown in Figure 2.5.

Figure 2.5: Method framework [30]

2.1.2 Object Detection in Floor Plan Images

In the past, floor plan analysis is used for different purposes. Heras et al.
[15] presented CVC-FP data set. This database has been generated using the
SGT-tool. They also proposed two different tasks of wall segmentation and
room detection. Heras et al.[10] proposed a perceptual model to describe
the drawing style in architectural plans without interpreting the building
elements (e.g. symbols of the drawing and in a detection frame). This
descriptor allows the search for perceptually similar plans into a database.
Heras et al. [16] proposed a wall segmentation approach in floor plans with
three functions of working independently to the graphical notation, needing
no pre-annotated data for learning, and segmenting multiple-shaped walls
such as beams and curved-walls. Macé et al. [63] presented a two-step
method for the interpretation of architectural floor plans, more specifically
for recognizing the rooms it contains. The method contains the extraction
of the primitives in the image (the lines and the arcs that constitute respec-
tively the walls and the doors) and the detection of the rooms that form the
building. Sharma et al.[89] presented an automatic lookup tool for matching
and retrieving similar floorplans from a large repository of digitized architec-
tural floor plans. First, they perform a graph-based approach incorporating
semantics in terms of the room layout and arrangement of furniture while
analyzing the floor plans to distinguish between layouts with more specificity.
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Second, they adopt a graph spectral embedding approach to represent the
graphs obtained for room layouts as a three-component vector and finally,
they used an algorithm to calculate the semantic difference between layouts.
Ahmed et al. [4] (Automatic Room Detection and Room Labeling from Ar-
chitectural Floor Plans) presented a complete system, containing a corpus of
just 80-floor plans, for automatic room recognition and room labeling from
architectural floor plans. In order to retrieve the room information, the sys-
tem applies structural and semantic analysis steps. Additionally, the system
extracts the room labels to identify the functions of the rooms. Samuel et al.
[20] proposed a method for analyzing floor plan images using wall segmen-
tation, object detection, and optical character recognition. They introduced
a real-estate floor plan data set, R-FP, evaluate different wall segmentation
methods, and propose fully convolutional networks (FCN). In this research
a subset of the R-FP images was annotated for training and testing, with 6
different object classes (doors, sliding doors, kitchen stoves, bath tubs, sinks,
and toilets). The average precision evaluated on 25 test images is 96.0% for
doors, 35.9% for sliding doors, 76.2% for kitchen ovens, 95.8% for bath tubs,
69.2% for sinks, and 70.8% for toilets, for an IoU value of 50% . According
to the state of the art in object detection in the floor plan, we can see still
there are a lot of space in this area to be considered.

2.2 Deep Learning for Object Detection

This section is related to explain two types of object detection frameworks
and various algorithms like Faster R-CNN, YOLO, SSD. Object detection
is defined as the prediction of the location and class of an object. Instead
of object class prediction, however, it is required to predict both class and
rectangle (bounding box) of an object nowadays. To do this, there must
be four variables to identify rectangles separately. Therefore, the variables
which have to be predicted including class name, the top left of the x- and y-
coordinates of the bounding box, the width and the height of the bounding
box).

For any image, generic object detection is commonly used to classify and
locate existing objects. To indicate the confidences of existence, generic ob-
ject detection can label them by rectangular bounding boxes. As seen in
Figure 2.6, the frameworks of generic object detection approaches are cate-
gorized into two types. In a group of approaches, generating region proposals
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is the first step of the traditional object detection for pipeline and the second
step is to classify each proposal into distinct object categories. The second
group of approaches considers object detection as a classification or regres-
sion issue, using a unified framework to obtain final outcomes (i.e., locations
and categories) directly. The region proposal-based approaches mainly con-
sist in region-based fully convolutional network (R-FCN) [8], spatial pyra-
mid pooling (SPP)-net [40], R-CNN [34], Faster R-CNN [84], Fast R-CNN
[33], and feature pyramid networks (FPN) [58] as well as Mask R-CNN [39],
some of which have been correlated to each other. For example, SPP-net
modifies R-CNN by a layer of SPP. The main regression/classification-based
approaches are MultiBox [24], Single Shot MultiBox Detector (SSD) [62],
G-CNN [70], YOLOv2 [82], YOLO [81], deeply supervised object detectors
(DSOD) [91], and deconvolutional single shot detector (DSSD) [29]. The cor-
relations between these two pipelines are bridged by the anchors introduced
in Faster R-CNN. Details of these methods are as follows.

Figure 2.6: Two types of frameworks [108].

2.2.1 Region Proposal-Based Framework

The region proposal-based framework, which has a two-step process, can
match the attentional mechanism in the term of the human brain to some
extent. In the first step, it provides a coarse scan of the whole scenario and in
the second step, it focuses on regions of interest (RoIs). Among [87], [99], and
[42], the most representative study is Overfeat [87] because after providing
the confidences of underlying object categories, this model considers CNN in
the sliding window approach that estimates bounding boxes from locations
of the topmost feature map, instantly.

Region-based Convolutional Neural Networks (R-CNN):
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The classification accuracy affects success because object detection is
modeled based on a classification problem. Although achieving deep learning
had led to the logical idea of using a more accurate convolutional neural
network based on a classifier instead of HOG classifiers, as proposed by
Delal et al. in [9], there was still one problem to be solved. Since CNNs were
too costly and slow, CNNs running on the high number of patches made,
considering a sliding window detector, was not feasible. This problem is
resolved by R-CNN through “Selective Search” which is an object proposal
algorithm. Hence, the bounding boxes fed to the classifier are reduced to
approximately 2000 region proposals. To provide all the possible locations
for an object, this algorithm utilizes some cues including intensity, color,
incidence measure, texture and so on. The R-CNN flow chart is shown in
Figure 2.7. As observed, it is divided into three steps as:

• Implementing Selective Search to make probable objects. The R-CNN
adopts selective search [102] to generate about 2000 region proposals
for each image. The selective search method relies on simple bottom-up
(BU) grouping and salience cues to provide more accurate candidate
boxes of arbitrary sizes quickly and to reduce the searching space in
object detection [26], [19].

• Feeding these patches to CNN, followed by SVM for predicting each
patch class. In this stage, each region proposal is warped or cropped
into a fixed resolution, and the CNN module in [51] is utilized to ex-
tract a 4096-dimensional feature as the final representation. Due to
large learning capacity, dominant expressive power, and hierarchical
structure of CNNs, a high-level, semantic, and robust feature repre-
sentation for each region proposal can be obtained.

• Optimizing patches through training bounding box regression sepa-
rately. When there are scarce or insufficient labeled data, pretraining
is usually conducted. Instead of unsupervised pretraining [88], R-CNN
first conducts supervised pretraining on ImageNet Large-Scale Visual
Recognition Competition, a very large auxiliary data set, and then
takes a domain-specific fine-tuning. This scheme has been adopted by
most of the subsequent approaches [33], [84].

Also, in addition to its improvements compared to common approaches and
significance in bringing CNN into practical object detection, there exist some
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disadvantages as follows: 1) The CNN needs a constant size (for example,
227 × 227) input image that could lead to the recomputation of the total
CNN for obtaining analyzed region, directly, selecting a great deal of time
for the testing period because of the existence of FC layers.2) R-CNN train-
ing is known as a multi-stage pipeline. Firstly, a usual network (ConvNet)
on object suggestions is fine-tuned and after that, to fit in with ConvNet
features, the softmax classifier learned by fine-tuning was changed by SVMs.
Lastly, bounding-box regressors were trained. 3) Training is known as ex-
pensive in time and space. Finally, the achieved region proposals are cur-
rently redundant, however, the selective search produces region proposals
by approximately high recalls. This approach is time-consuming. Moreover,
for solving the inaccurate localization issue, there exists some enhancement.
For guiding the regressions of different BBs, sequentially, in [107] a Bayesian
optimization-based search approach was utilized. Also, researchers trained
class-specific CNN classifiers along with a structured loss for penalizing the
localization mistake explicitly.

Figure 2.7: Flowchart of R-CNN [34], whichconsists of three stages: 1) ex-
tractsBU region proposals, 2) computes features for each proposal using a
CNN,and then 3) classifies each region with class-specific linear SVMs.

Spatial Pyramid Pooling (SPP-net): Since it takes much time to
run CNN on 2000 region proposals made using the selective search algorithm,
RCNN has been too slow and there are still some disadvantages.

Fully connected layers of the CNN it is necessary to make inputs with
the fixed size. That is why R-CNN chooses to warp or crop each region
proposal into the same size. However, the object may exist partly in the
cropped region and unwanted geometric distortion may be produced due
to the warping operation. These content losses or distortions will reduce
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recognition accuracy, especially when the scales of objects vary. To solve
this problem, He et al. [40] took the theory of spatial pyramid matching
(SPM) [52], [76] into consideration and proposed a novel CNN architecture
named SPP-net. SPP-net allows the calculation of the CNN representation
for the whole image just one time and it is possible to utilize that for the CNN
representation calculation for patches produced through Selective Search. To
do this, it is required to perform a pooling type of operation only on that part
of the last cony layer feature maps which are correspondent to the region. It
is possible to calculate the rectangular part of the cony layer corresponding
to a region through the region projection on the convey layer by considering
the downsampling in the intermediate layers. In contrast to traditional max-
pooling, SPP utilizes spatial pooling after the final convolutional layer. A
region with any arbitrary size is divided into a fixed number of bins by SPP
layer, then the max pool is implemented on all the bins and a vector with the
constant size can be generated since the bins number is kept the same. SPP
net had one serious disadvantage. In fact, performing backpropagation by
the spatial pooling layer could not be ignored. Thus, the fully connected part
of the network was only fine-tuned. SPP-Net contributed to the development
of more popular and very fast RCNN which will be described in the following
sections.

Fast R-CNN: Although SPP-net was obtained effective enhancement
in the cases of efficiency and accuracy over R-CNN, it currently has numer-
ous considerable drawbacks. Besides, SPP-net commonly selects the same
multistage pipeline (R-CNN) like network fine-tuning, feature extraction,
bounding box regressor fitting, and SVM training. Hence, an additional
expense is still needed on storage space. As stated in [64], the layers of
convolutional preceding the SPP layer cannot be updated by the fine-tuning
algorithm proposed. It is then determined that the accuracy reduction of
very deep networks is expected. To this end, Girshick [33] introduced a mul-
titask loss on classification and bounding box regression and proposed a novel
CNN architecture named Fast R-CNN. The architecture of Fast R-CNN is
exhibited in Figure 2.8. R-CNN uses a simple back-propagation calculation
to propagate the gradients via spatial pooling. It is not very different from
max-pooling gradient calculation except for the fact that there is an over-
lapping among the pooling region and thus it is possible for a cell to have
gradients pumping in from multiple regions. Another innovation represented
by Fast R-CNN is that the bounding box regression was added to the neural
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network training itself. Therefore, the network came up with two heads in-
cluding bounding box regression head as well as classification head. One of
the most outstanding features of Fast R-CNN is the same multitask objective
since it does not require independent network training for localization and
classification. Consequently, the overall time of training is reduced and the
accuracy is increased compared to SPP-net due to the end to end learning
of CNN.

Figure 2.8: Architecture of Fast R-CNN [33]

Faster R-CNN: Many scholars attempted to produce candidate boxes
with biased sampling as in [55]. However, to propose a candidate pool of
isolated region proposals, state-of-the-art object detection networks are com-
monly based on additional approaches like Edgebox and selective search. Re-
gion proposal computation can act as a bottleneck in enhancing efficiency. In
[84] and [83], authors have suggested an additional region proposal network
(RPN). It is obtained by an FCN that can estimate object scores along with
bounds at each position, simultaneously. RPN can act in a nearly cost-free
method by sharing full-image convolutional features with detection network.
Similar to [102], to make a set of rectangular object proposals, RPN takes a
picture of arbitrary size. It also acts on a particular layer of convolutional
with the preceding layers assigned to the object detection network.

As shown in Figure 2.9, the whole system contains a single and unified
network for detecting objects. This process is modeled by a fully convolu-
tional network since it aims to share computation result with a Fast R-CNN
object detection network. It is possible to predict multiple region proposals
at each sliding-window location simultaneously. The maximum number of
possible proposals for each location is indicated as “k”. Therefore, the reg
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layer contains 4k outputs that encode k boxes coordinates, and the cls layer
has 2k outputs that approximate object or not object probability for each
proposal 4. The parametrization of k proposals is according to the k refer-
ence boxes which are called anchors. The architecture of RPN is shown in
Figure 2.10. Considering anchor boxes is an idea proposed by Faster R-CNN
to manage the variations in the object scale and aspect ratio. Three types
of anchor boxed are used by the original paper at each location for scale
128x128, 256×256 and 512×512. Likewise, three aspect ratios are used for
aspect ratio as follows: 1:1, 2:1 and 1:2. Therefore, there will be 9 boxes at
each location on which being background or foreground probability is pre-
dicted by PRN. Bounding box regression is applied with the aim of anchor
boxes improvement at each location. Thus, various sizes of bounding boxes
are given out with the similar probabilities of each class. Applying Spatial
pooling like Fast R-CNN, allows bounding boxes with various sizes to be
passed further. Faster-RCNN is approximately 10 times faster compared to
Fast R-CNN with the same data set accuracy similar to VOC-2007. That is
why Faster R-CNN is considered as the most accurate algorithm for object
detection.

Figure 2.9: Faster R-CNN is a single, unified network for object detection.
The RPN module serves as the attention of this unified network. [83]
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Figure 2.10: RPN in Faster R-CNN [84]. K predefined anchor boxes are
convoluted with each sliding window to produce fixed-length vectors which
are taken by cls and reg layer to obtain corresponding outputs

Region-based Fully Convolutional Networks (R-FCN):

For object detection, a prevalent family of deep networks can be included
of two subnetworks: an unshared RoI-wise subnetwork and a shared fully
convolutional subnetwork that is known independent of RoIs [33] and [84].
This classification is from pioneering classification architectures, for example,
VGG16 and AlexNet [51]. It consists of various FC layers separated using
a specific spatial pooling layer and a convolutional subnetwork. Image clas-
sification networks such as ResNets [41] and GoogleNets [96], [98] are fully
convolutional. It is natural to make a fully convolutional object detection
network (without RoI-wise subnetwork) to use to these architectures. There-
fore, it cannot be inferior with like a naive solution [41]. In object detection,
this inconsistency is because of the dilemma of respecting translation vari-
ance than enhancing translation invariance in image classification. In object
detection, shifting an object within an image has to be indiscriminative in
image classification whereas any translation of an object in a bounding box
can be significant. At the expense of additional wise layers of the unshared
region, a manual insertion of a layer in the RoI pooling in convolutions may
break down translation invariance. Therefore, scholars [8] suggested an R-
FCNs. For each category, the last conv R-FCN layer generates a total of a
fixed grid of k × k along with k, two position-sensitive score maps, firstly,
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and then for aggregating the responses from these score maps, a position-
sensitive pooling layer of RoI is appended. It is different than Faster R-CNN.
In order to carry out object detection in a fully convolutional architecture,
more powerful classification networks may be used with R-FCN by sharing
nearly all the layers. In [59], at a test speed of equal to 170 ms per im-
age, latest results have been presented in term of both Microsoft COCO and
PASCAL VOC data sets.

Feature Pyramids Network (FPN): As can be observed in Fig-
ure2.11(a), for enhancing scale invariance, feature pyramids construct upon
image pyramids, featured image pyramids, were selected and used in many
object detection systems [26], [40]. However, memory consumption and
training time enhance rapidly. Figure 2.11(d) shows that some approaches
use a single input scale only for increasing the robustness to scale changes and
representing high-level semantics. Moreover, image pyramids were generated
at test time that makes an inconsistency among train/test-time inferences
[33], [84]. Feature maps of various spatial resolutions can be generated by
the in-network feature hierarchy in a deep ConvNet. The in-network feature
hierarchy can introduce large semantic gaps made by different depths (refer
to Figure 2.11(c)). Recently, scholars [62], [5] generated the pyramid starting
from layers in middle (or just sum varied feature responses) to avoid utilizing
low-level features.

The FPN [58] method is different from upper mentioned methods. As
can be seen in Figure 2.11(b), for combining low-resolution as well as seman-
tically strong features to high-resolution and semantically weak features, this
method holds an architecture by a BU pathway, many lateral connections,
and a top-down (TD) pathway. The BU pathway is the fundamental for-
ward backbone ConvNet. It generates a feature hierarchy by downsampling
the relating feature maps with a stride of 2. To construct the following TD
pathway, the layers having the same size of output maps were gathered in a
similar network step. Also, the output of the last layer of each stage was se-
lected as the reference set of feature maps. To construct the pathway of TD,
firstly feature maps of higher network steps were up-sampled and after that
improved by those of the same spatial size from the pathway of BU through
lateral connections. To decrease channel dimensions, a layer of 1 × 1 convo-
lutional was added to the upsampled map. Then, the mergence was obtained
by adding element-wise. In the last step, to decrease the aliasing influence
of upsampling, a 3 × 3 convolution was additionally added to each merged
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map and the final feature map was produced. This approach was repeated to
the finest resolution map was produced. The state-of-the-art representation
can be obtained without sacrificing memory and speed because the feature
pyramid extracts rich semantics of all levels. It also can be trained end to
end by all scales. Meantime, FPN may be used to various stages of object
detection (for example region proposal generation) and is independent of the
backbone CNN architectures and to many other computer vision runs (for
example instance segmentation).

Figure 2.11: Main concern of FPN [58]. (a) It is slow to use an image pyra-
midto build a feature pyramid. (b) Only single-scale features are adopted
for faster detection. (c) Alternative to the featurized image pyramid is to
reusethe pyramidal feature hierarchy computed by a ConvNet. (d) FPN in-
tegrates both (b) and (c). Blue outlines indicate feature maps and thicker
outlines denote semantically stronger features.

2.2.2 Regression-based object detectors

Region proposal-based frameworks are composed of several correlated stages,
including region proposal generation, feature extraction with CNN, classifi-
cation, and bounding box regression, which are usually trained separately.
Even in the recent end-to-end module Faster R-CNN, an alternative train-
ing is still required to obtain shared convolution parameters between RPN
and detection network. As a result, the time spent in handling different
components becomes the bottleneck in the real-time application.
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Mapping directly from image pixels to bounding box coordinates and
class probabilities as well as one-step frameworks according to global regres-
sion classification decreases the time expense. In the present paper, some
pioneer CNN models were reviewed. After that, we focused on two important
frameworks, SSD [62] and YOLO [81]. Many studies have been performed
to model object detection that is a classification or regression task before to
SSD and YOLO.

Pinheiro et al. [77] proposed a CNN model with two branches: one gener-
ates class agnostic segmentation masks and the other predicts the likelihood
of a given patch centered on an object. The inference is efficient since the
class scores and the segmentation can be obtained in a single model with
most of the CNN operations shared.

Erhan et al. [24] and Szegedy et al. [97] proposed the regression-based
MultiBox to produce scored class-agnostic region proposals. A unified loss
was introduced to bias both localization and confidences of multiple com-
ponents to predict the coordinates of class-agnostic BBs. However, a large
number of additional parameters are introduced to the final layer. Yoo et
al. [106] adopted an iterative classification approach to handle object detec-
tion and proposed an impressive end-to-end CNN architecture named Atten-
tion Net. Starting from the top-left and bottom-right corners of an image,
Attention-Net points to a target object by generating quantized weak direc-
tions and converges to an accurate object boundary box with an ensemble
of iterative predictions. However, the model becomes quite inefficient when
handling multiple categories with a progressive two-step procedure. Najibi
et al. [70] proposed a proposal-free iterative grid-based object detector (G-
CNN), which models object detection as finding a path from a fixed grid to
boxes tightly surrounding the objects [70]. Starting with a fixed multiscale
bounding box grid, G-CNN trains a regressor to move and scale elements of
the grid toward objects iteratively. However, the G-CNN has difficulty in
dealing with small or highly overlapping objects.

You only Look Once(YOLO): Redmon and Farhadi in [82] propose
a method to harness the large amount of classification data we already have
and use it to expand the scope of current detection systems. YOLO pre-
dicts the coordinates of bounding boxes directly using fully connected layers
on top of the convolutional feature extractor. Instead of predicting coor-
dinates directly Faster R-CNN predicts bounding boxes using hand-picked
priors. Using only convolutional layers the region proposal network (RPN)
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in Faster R-CNN predicts offsets and confidences for anchor boxes. Since
the prediction layer is convolutional, the RPN predicts these offsets at every
location in a feature map. Predicting offsets instead of coordinates simplifies
the problem and makes it easier for the network to learn. They remove the
fully connected layers from YOLO and use anchor boxes to predict bounding
boxes. First, one pooling layer is eliminated to make the output of the net-
work’s convolutional layers higher resolution. They also shrink the network
to operate on 416 input images instead of 448*448. They do this because
they want an odd number of locations in their feature map so there is a
single-center cell. Objects, especially large objects, tend to occupy the cen-
ter of the image so it’s good to have a single location right at the center to
predict these objects instead of four locations that are all nearby. YOLO’s
convolutional layers downsample the image by a factor of 32 so by using an
input image of 416 we get an output feature map of 13 × 13. When they
move to anchor boxes, the class prediction mechanism is decoupled from the
spatial location, and instead, the class and the objectness for every anchor
box is predicted. Following YOLO, the objectness prediction still predicts
the Intersection over union of the ground truth and the proposed box and
the class predictions predict the conditional probability of that class given
that there is an object. The YOLO detection system is shown in Figure 2.13.

Figure 2.12: YOLO9000 can detect a wide variety of object classes in real-
time. [82]

Single Shot Detector(SSD):
The first deep network-based object detector is proposed by Liu et al.

[61]. In this innovation, Pixels or features are not resampled for bounding
box hypotheses. It is also very accurate. Therefore, considerable improve-
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Figure 2.13: The YOLO detection system. processing images with
YOLO is simple and straightforward. Our system (1) resizes the input image
to 448×448, (2) runs a single convolutional network on the image, and (3)
thresholds the resulting detections by the model’s confidence. [81]

ment happened in speed for high-accuracy detection. SSD approach has
taken its root from the feed-forward convolutional network which generates
bounding box collections with a fixed-size and measures the presence of ob-
ject class instances in those boxes. After that, there is a non-maximum
suppression step for making the final detections. VGG-16 network is used
as a base. Then, an auxiliary structure is added to the network for pro-
ducing detections with 4 key features of multi-scale feature maps for de-
tection, convolutional predictors for detection and default boxes and aspect
ratios,respectively. Architecture of SSD is shown in Figure 2.15.

Figure 2.14: SSD framework [61]

2.3 Text Detection in scene images

Several methods have been proposed for text detection which are mostly
based on sliding windows [46] and connected components (CCs) [104]. A
new framework is introduced by Yi and Tian in [104] for extracting text
strings that have different colors and sizes as well as arbitrary orientations
scene images with a cluttered and complex background. The diagram of this
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Figure 2.15: Architecture of SSD 300 [62]. SSD adds several feature layers
to the end of VGG16 backbone network to predict the offsets to default
anchorboxes and their associated confidences. Final detection results are
obtained by conducting NMS on multiscale refined BBs.

framework is presented in Figure 2.16. It contains two main steps namely: a)
Partitioning the image to find text character candidates based on color uni-
formity and gradient feature. In the aforementioned step, two methods are
proposed for partitioning scene images into binary maps of non-overlapped
connected components: color-based method and gradient-based method. To
remove connected components, a post-processing method is implemented.
b) Grouping of the Character candidate for detecting text strings accord-
ing to the text characters joint structural features in every text strings like
the size of characters, alignment of character as well as the two neighboring
characters intervals. In the aforementioned step, two texts strings structural
analysis are proposed including a text line grouping method and a charac-
ter grouping method. This framework has some advantages compared to
the existing methods. First of all, this framework allows text strings detec-
tion with different sizes, colors, and orientations. In contrast to the current
methods which involve analyzing the single character independently, the text
string structure focuses on distinguishing background interferences derived
from the information included in the text. According to the experimental
results, it can be said that the proposed framework has better performance
on data set reading and text string detection with arbitrary orientations on
the recently collected data set of scene text.

Yi et al.[7] provided some major contributions to robust detection of text
strings with various colors, scales, orientation as well as clutter background
from natural scene images, which are briefly summarized as follows:

• By integrating different types of features of text strings, this paper
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Figure 2.16: Flowchart of the proposed framework of text string detection.
[104]

proposed a framework to robustly detect text strings with variations
of orientation and scale from complex natural scene images with clutter
background.

• A clear distinction is drawn between text character and text string
through partitioning image for extracting candidate character compo-
nents and grouping connected component for extracting text strings.

• A text character is modeled through stroke structure and local gradi-
ent features. Under this model, we develop a gradient-based partition
algorithm to compute connected components of candidate characters.
It is more robust and achieves better results than directly using mor-
phological processing operators.

• Text string is modeled as text line and then a collection of text features
are extended single character component to text line structure, which
is implemented for text string detection in arbitrary orientations.

• An Oriented Scene Text data set(OSTD) is collected with text strings
in arbitrary orientations which is more challenging compared to the
current data sets for text detection.

One of the pioneer methods based on the analysis of connected com-
ponents and their mutual position was proposed by Fletcher and Kasturi
[28]. They developed a robust algorithm for text separation to separate text
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strings from graphics, independent of string orientation and font size or style.
In this algorithm, a simple heuristic is used based on the text strings char-
acteristics. No character recognition is performed in this algorithm and the
separation of characters from the text is done only according to the size and
orientation. One of the drawbacks of this method is the fact that coping
with the text touching graphics is neglected.
An improved approach is proposed by Tombre et al. [101] which can sep-
arate text touching graphical parts. Due to the scalability of the method
proposed by Fletcher Kasturi, they decided to choose this method as the
base of their text or graphics separation since they are dealing with various
kinds of complex graphics documents. They have analyzed certain text fea-
tures under the ICDAR 2003 train data set to achieve a distinctive feature
set that can distinguish character objects from non-character objects. It
contains three main stages as follows: first, the Segmentation stage to find
character candidates. Second, Connected component analysis: it is based
on fast-to-compute but robust features for accepting characters and discard-
ing non-text objects and text line classifier: it is based on gradient features
and support vector machines. Experimental results obtained with several
challenging data sets show the good performance of the proposed method,
which has been demonstrated to be more robust than using multi-scale com-
putation or sliding windows. so robust it, according to the experimental
results from some challenging data sets, the appropriate performance of the
proposed method, which was assumed to be more effective than a sliding
window or using multi-scale computation, is proved.
Chen et. al performed a study in [6]. They linearly adjusted the image in-
tensities at the system input to enhance the contrast. Hence, MSER regions
are efficiently extracted from the image [68] and they have been enhanced
using Canny edges acquired from the original gray-scale image. Using a dis-
tance transform, the stroke width information is robustly computed. Then
highly varied objects in terms of stroke width are rejected. After having
been grouped pairwise, text candidates can form text lines. At last, words
included in the text are separated and the segmented word patches will be
given at the system outputs.
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2.4 Summary of conclusions

In this chapter, first, main object detection algorithms in document image
analysis, addressed in the state of the art, are discussed. A subset of these
algorithms is used in the proposed models in this thesis. In particular, Faster
R-CNN, which is one of the most robust algorithms in object detection, is
used to detect objects (see Chapter 3) and for text recognition (see Chap-
ter 4) in floor plan analysis scenarios. Also, the major applications in the
object detection area, addressed by the academic and industrial communi-
ties, presented including, musical symbol detection, table detection, floor
plan detection, formula detection, just to mention a few. Finally, major ap-
proaches in the state of the art to deal with text detection in scene image
problems briefly discussed. These approaches are then adopted to support
word location detection by improving text alignment in early printed books.
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Chapter 3

Object Detection in Floor Plan
Images

In this work, we investigate the use of deep neural networks for
object detection in floor plan images. Object detection in images
is important for understanding floor plans and is a preliminary
step for their conversion into other representations. In particu-
lar, we evaluate the use of object detection architectures, origi-
nally designed and trained to recognize objects in scene images,
for recognizing furniture objects as well as doors and windows in
floor plans. Even if the problem is somehow easier than the orig-
inal one, in the case of this research the data sets available are
small and therefore the training of deep architectures can be prob-
lematic. In addition to the use of object detection architectures
for floor plan images, another contribution of this work is the
creation of two data sets that have been used for performing the
experiments covering different types of floor plans with different
peculiarities [110]

3.1 Introduction

Detecting and recognizing objects in floor plans is an essential task for the
understanding of these graphical documents. Our research on this topic is
part of the overall task of understanding of graphical documents for generat-
ing accessible graphical documents for visually impaired people [35] [66]. A

31
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comprehensive perception of a floor plan is crucially important for blind peo-
ple, allowing them to find their path as they face a new building. It is worth
noticing that accessing the floor plan images for non-blind people enables
them to download images of floor plans from real estate websites. A decision
has been made to use images instead of CAD files because CAD files are only
available for authors, and not distributed for the public. Object detection
in natural images is basically defined as finding the location of objects in
one image and classifying them. In many cases, the object location is based
on the identification of the bounding boxes surrounding it. Also in this ap-
plication, the identification of the object bounding box is sufficient for our
purposes. Starting from widely studied architectures based on convolutional
neural networks, a few object detectors have been recently proposed, such
as Faster R-CNN [83], R-FCN, Multibox, SSD [61] and YOLO [82]. The
key idea is to study, how the same modern convolutional object detection
performs on our data sets given the special nature of them, like when the
complexity of the shapes vary, the classes are not balanced and the size of
object samples is small.

3.2 Previous Work

As in several domains also the document analysis community faced a grow-
ing use of deep learning in recent research work. Considering the application
of deep learning in the area of graphics recognition, there are a limited, but
interesting research works. Among various techniques, object detectors have
been used to address various problems in document analysis. Symbol de-
tection in on-line graphical documents is proposed in [48] where the authors
use Faster R-CNN do address the task. In particular, the work addresses
the recognition of mathematical expressions and flowcharts in handwritten
documents by using the Tensorflow Object Detection API [45]. Another
application of the latter API is related to handwritten music object detec-
tion [75] where the Faster R-CNN is used to recognize musical symbols. In
both papers, the number of training items is relatively high and the results
are evaluated only considering the accuracy of the model without taking
into account the recall. Other authors used Faster R-CNN for page layout
identification [105], for comic character face detection [78], and for arrow lo-
calization on handwritten industrial inspection sheets [36]. One recent effort
to extract structural information from floor plan images is described in [21]
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where the authors parse floor plan images to estimate the size of the rooms for
interactive furniture fitting. They first perform wall segmentation by using
a fully convolutional neural network, subsequently, they detect objects using
a Faster R-CNN, and finally, they do optical character recognition to obtain
the dimensions of the room. One interesting feature of this work is the com-
bination of three methods to achieve the overall floor plan understanding.
Unfortunately, very few details are provided in the paper about the use of
Faster R-CNN for object location. Moreover, the floor plan dataset created
by the authors only contains the ground-truth about the wall position.

In the work described in [10] the authors address the floor plan under-
standing by segmenting walls, windows, and doors. One of the main focuses
of the paper is to address images with different notations (e.g. for walls or
for furniture objects). The proposed techniques are tested on four floor plan
datasets (named CVC-FP) which are freely accessible to the public. As dis-
cussed also in Section 3.4 the CVC-FP dataset only contains objects of six
classes: sink, toilet, shower, bath, door, and window, without including
furniture objects.

For the neural architecture, one important paper for this work is [44]
where the authors evaluate and compare different object detection architec-
tures. The goal of [44] is to identify the most successful architectures and
support users when choosing one architecture based on various perspectives:
speed, memory, and accuracy. To this end, the authors in [44] implement
some modern convolutional detectors: Faster R-CNN, R-FCN, and SSD in
a unified framework, as a part of the Tensorflow Object Detection API [45].
The authors pre-trained the architectures on several datasets, but the best
performance was achieved by pre-training with the COCO dataset [60].

3.3 The Architecture

In this research, we work with one widely used Tensorflow Object Detection
API [45] for an easy comparison of alternative architectures. We initially
evaluated one COCO-pre-trained Single Shot Detector with MobileNets that
we fine-tuned with floor plan images. We selected this architecture because
it is a small and flexible model that has the benefit of fast training times
compared to larger models, while it does not sacrifice much in terms of ac-
curacy. In these preliminary tests, we also compared the SSD with Faster
R-CNN with ResNet 50 and with ResNet 101. After these preliminary ex-
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Figure 3.1: The internal architecture of the Faster R-CNN as a single, unified
network for object detection (image from [83]).

periments, it turned out that Faster R-CNN performs significantly better
than SSD. Moreover, comparing the performance of ResNet 50 with ResNet
101 on the floor plan datasets, there was no real difference. We, therefore,
used Faster R-CNN with ResNet 50 as a basic model for our work.

Faster R-CNN is one of the most accurate and fast neural object detectors
proposed so far. The internal structure of the network is as follows (see
Figure 3.1): first, the image is passed through some convolutional layers to
produce several feature maps. Then, the main component of Faster R-CNN,
the region proposal network (RPN), uses a 3 × 3 sliding window and takes
the previous feature maps as input. The output of the RPN is a tensor
in a lower dimension.At this stage, each window location generates some
bounding boxes, based on fixed-ratio anchor boxes (e.g. 2.0, 1.0, 0.3) and an
"objectness" score for each box. These are the region proposals for the input
image which provide approximate coordinates of the objects in the image.
The "objectness" scores, if above a given threshold, determine which region
proposal can move forward in the network. Subsequently, the good regions
pass through a pooling layer, then a few fully-connected layers, and finally a
softmax layer for classification and a regressor for bounding box refinement.

As previously mentioned to perform our experiments we use the Tensor-
flow Object Detection API. This is an open-source framework, built on top
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of the widely used Tensorflow library, that takes care of the training and
evaluation of the different architectures implemented. One interesting fea-
ture of the API is that it makes it easy to train different models on the same
dataset and compare their performance. In addition to average precision
performance per category, we extended the API to calculate the number of
false negatives as well as the average recall per class.

3.3.1 False Negative Calculation

By default, the Tensorflow Object Detection API supports the PASCAL
Visual Object Classes (VOC) 2007 [25] detection metric. This metric is
designed to evaluate visual object detection and recognition models, which
helps machine learning researchers have standard evaluation procedures.

In the detection metric, for a detection bounding box to be a true positive,
three conditions must be true:

• The area of the intersection of the detected bounding box Bd and
the ground truth bounding box Bgt over the union area of the two
bounding boxes must be greater than 0.5, according to the following
equation:

ri =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
> 0.5 (3.1)

• The class label of the detection bounding box and the ground truth
bounding box must be the same.

• The probability of the object’s recognition must be greater than some
specific thresholds. In most cases, and also in this work, we consider
the object as found if the probability is higher than 0.50.

To find false negative detections we first matched all the detections to
objects in the ground truth. True/false positives are determined and detec-
tions matched to difficult boxes are ignored. In the next stage, the ground
truth objects that have not been detected are determined as false negatives.

After computing the true positives and false negatives number for each
category it is easy to calculate the average recall in addition to the average
precision computed by the API: Recall = TP

TP+FN .
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3.4 Floor Plan Datasets

To evaluate the object detection in floor plans, we need one or more labeled
datasets. In the past decade, some datasets have been proposed for eval-
uating research on floor plan analysis. The SESYD dataset [17] contains
synthetic floor plans where furniture objects are randomly placed on a few
fixed floor plan layouts. Even if this approach for dataset generation is very
interesting, the actual dataset contains only ten floor plan layouts and the
objects come from a limited number of categories (for instance, there is only
one model for the bed). Moreover, the generated floor plans are somehow
unrealistic with very small beds or similar mistakes. Another dataset widely
used for this research has been proposed in [64]. This dataset contains 90 ac-
tual floor plans generated from one architectural firm. While more realistic
than the others, these floor plans contain only a few objects and therefore
are not suitable for the research carried out in this work. A deeper analysis
of data sets proposed to support research in floor plan analysis is proposed
in chapter 5.

To work with realistic images we first created one small dataset (referred
to as d1 ) using the images that show up in Google’s image search. This
dataset consists of 135 images of variable size containing objects in 15 classes
and a total of 4973 objects (in the experiments we considered 2697 objects
in the training set, 1165 objects in the validation set, and 1111 objects in the
test set). In Figure 3.4 we show one example of floor plan in this collection,
while Figure 3.2 shows the distribution of objects in the different classes.
Some object types are not present in all the images. For instance, the floor
plan of an office might not have any bed in it. Among all the classes, the oven
is the rarest one and the door is the most frequent one.

The second data set that we gathered is called ISTA. It should be noted
that ISTA data set is called ISTA in [110]. This data set contains Middle
Eastern floor plans, with object shapes different from the ones in d1. Another
important feature is that the floor plans in ISTA come from one architectural
firm and are therefore more homogeneous in their content. The ISTA data
set consists of 300 images, but only 160 images have been labeled so far.
The 160 images contain objects in 12 classes and a total of 7788 (in the
experiments we considered 4535 objects in the training set, 1457 objects
in the validation set, and 1796 objects in the test set). In Figure ?? we
show one example of floor plan in this collection, while Figure 3.3 shows the
distribution of objects in the different classes. As a particular property of
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Figure 3.2: Object class distribution of the d1 data set
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Figure 3.3: Object class distribution of the ISTA data set

these floor plan data sets, it is worth to note that the images are mostly
grayscale and contain simple shapes. As we will see in the experimental part
this property has a positive effect on the performance of the model, compared
to data sets that contain images with more complex features and more noise.
The data set d1 has the greatest imbalance in the number of objects in each
class. Moreover, images in d1 have more diversity. For example, almost none
of the objects in ISTA are filled with color, while in d1 all the floor plans are
painted, for presentation purposes. It is noted that since both Flo2plan and
d1 data sets are real ones (as they downloaded using Google search), they
are considered as noisy ones. Also, the images in these data sets mostly are
different with respect to their size. As a result, object and text detection in
them are highly more challenging compared to ISTA data set.

3.4.1 Experimental Results

The Faster R-CNN is first trained on the d1 data set, which contains 135 im-
ages. As mentioned earlier, this data set is substantially diverse and contains
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random non-standard images collected from the Internet.
In the first experiments performed on a smaller data set with the default

configuration of the API, the results on the validation set were not satisfying
with a maximum mean average precision of about 0.26.

To aid generalization, we threw in a few of data augmentation options.
In particular we considered random horizontal flip, random vertical
flip, random rotation 90, and random RGB to gray. These options are
provided by the Tensorflow Object Detection API. In addition to data aug-
mentation, we also changed the scales and aspect ratios of anchor generator
to take into account the peculiarities of the floor plan objects.

Table 3.1: Final Evaluation Results

Dataset Objects False Mean Average Mean Average
Negatives Precision Recall

Val Test Val Test Val Test

d1 1111 411 445 0.32 0.31 0.60 0.56

d2 1796 87 102 0.83 0.86 0.92 0.92

Final evaluation results of the d1 data set after 46916 training steps, and
the ISTA data set after 18550 training steps

With the above mentioned modified configuration we also ran our ex-
periments on the d2 data set. After stopping the training considering the
validation set, the mean average precision and recall on the test set for both
data sets are shown in Figure 3.4.

Taking into account the features of the two data sets it is not surprising
that the best results are achieved on the ISTA data set with a mean average
precision of 0.86, and a mean average recall of 0.92. Part of the difference
in performance is probably related to the special nature of the data set:
compared to d1, the objects are cleaner, less diverse and not different across
images other than rotation and scale. As it turns out, the performance of
the model is not too much affected by an imbalanced data set (ISTA). For
instance the model achieves 0.80 average precision for the couch class that
is the less frequent one. At the same time the model achieved 0.93 aver-
age precision for the door class which has at least 10 times more samples
than the couch class. Concerning the average recall it is very interesting
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to notice that the test images had zero false negatives for the hot-plate
and bed classes. On the basis of the superior performance of the network
on the ISTA data set we wanted to explore more in details the possibility of
doing some transfer learning of this network to improve the performance on
the d1 data set. As we can see in Table 3.4 by finetuning on the d1 data
set one network previously trained on the ISTA data set we achieve a 0.39
mean average precision and 0.69 mean average recall. This is better than
the previously mentioned results obtained by finetuning on the d1 data set
one network previously trained on the COCO data set.

Table 3.2: Average precision and recall calculated by category, for the d1
and ISTA data set after 46916 and 18550 training steps, respectively

Average Average Average Average
Recall(Val) Recall(Test) Precision(Val) Precision(Test)

Class d1 ISTA d1 ISTA d1 ISTA d1 ISTA

armchair 0.92 0.97 0.50 0.95 0.21 0.92 0.21 0.92

bathtub 0.72 N/A 0.80 N/A 0.57 N/A 0.57 N/A

bed 0.56 1.00 0.70 1.00 0.47 0.98 0.47 0.98

bidet 0.57 N/A 0.54 N/A 0.11 N/A 0.11 N/A

chair 0.58 0.68 0.44 0.76 0.12 0.50 0.12 0.62

couch 0.75 0.80 0.52 0.88 0.46 0.52 0.48 0.80

door 0.63 0.97 0.63 0.95 0.60 0.94 0.60 0.93

hot_plate 0.67 0.97 0.52 1.00 0.40 0.92 0.39 0.96

night_table 0.65 0.93 0.34 0.81 0.37 0.86 0.37 0.79

oven 0.12 N/A 0.55 N/A 0.01 N/A 0.01 N/A

shower 0.55 0.97 0.71 0.93 0.19 0.90 0.16 0.90

sink 0.57 0.95 0.47 0.94 0.28 0.80 0.28 0.85

table 0.58 0.94 0.46 0.98 0.33 0.86 0.33 0.93

wc 0.45 1.00 0.65 0.95 0.13 0.79 0.13 0.78

window 0.58 0.91 0.54 0.88 0.49 0.87 0.48 0.85

When the results of different data sets have been compared, it shows how
the same modern convolutional object detector performs on your new data
sets given the special nature of them, like when the complexity of the shapes
vary, the classes are not balanced, and the total size of object samples are
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small. As we can see in Table 3.3 the result on d1 and ISTA and SESYD-
ROBIN data set has been compared. Some objects in this data set, such
as armchairs, bathtubs, are included in all of these data sets. As shown,
although the value of the data set in the literature is larger than the data
set mentioned in this study, the mAp in some objects is better than them.

Table 3.3: Average precision d1 and ISTA and SESYD-ROBIN data set

Average Precision

Class d1 ISTA SESYD-ROBIN [93]

armchair 0.21 0.92 0.89

bathtub 0.57 N/A 0.68

bed 0.47 0.98 0.92

bidet 0.11 N/A N/A

chair 0.12 0.62 N/A

couch 0.48 0.80 N/A

door 0.60 0.93 N/A

hot_plate 0.39 0.96 N/A

night_table 0.37 0.79 0.67

oven 0.01 N/A N/A

shower 0.16 0.90 N/A

sink 0.28 0.85 0.55

table 0.33 0.93 0.94

wc 0.13 0.78 N/A

window 0.48 0.85 N/A
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Table 3.4: More Transfer Learning

Dataset Objects
False

Negatives

Mean
Average
Precision

Mean
Average
Recall

COCO - d1 1111 445 0.31 0.60

ISTA - d1 1111 368 0.39 0.69

The final evaluated results of the pre-trained models that is fine tuned on
data set d1.

3.4.2 Discussion

From the experiments performed on the two data sets we can notice that
by using convolutional object detectors, the recognition performance is not
too much influenced by the class imbalance in the training set. The only
exception is related to the oven class from data setd1, with extremely low
performance, is probably due to the very low sample size and the variability
of the appearance of this object in the data set. On the other hand, the
door and window classes are responsible for 52% of the false negatives in d1
validation set, while they make up 58% of the object samples. In these two
classes the model performs relatively well in terms of average precision, but it
is not capable of detecting many objects. At first, this result might contradict
the intuition that more samples led to better performance. However, it is
important to recall that the performance of the model in one class heavily
depends on the diversity of object samples. It is useful to remark that in
the case of doors and walls the objects are connected to the walls while
other objects are usually more isolated in the rooms. The diversity of walls
and doors is, therefore, higher with respect to other classes because of the
variable context. Another source of errors for windows is also the higher
variability of the aspect-ratio with respect to other objects that in most
cases are simply scaled and rotated, in particular in data set ISTA where
reasonable performance on the data set is obtained. Regarding the three
most frequent classes in ISTA armchair, door, and window, it can be seen
from Table3.2 that the model is nearly perfect in terms of average precision
and the class bed (whose items are more regular) achieve an average precision
of 98%.
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Figure 3.4: An inference result of the model trained on the d1 data set.
False negatives have black bounding boxes and detection bounding boxes
are colorful. Note how new shapes and colors in this test image damage the
performance of the model.
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Figure 3.5: This shows an inference result of the model trained on the ISTA
dataset.
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3.5 Conclusion

In [110] two different floor plan data sets have been created to cover different
architectures and drawing conventions of floor plans from all over the world.
The performance of an object detector which is originally designed for de-
tecting objects in natural images was tested to identify objects in the floor
plans in these data sets. The floor plan has an essential misrepresentation
issue in terms of the sample size of objects. To better analyze the perfor-
mance, false-negative objects of each class have individually been counted to
find out whether the detection results suffer from differences in the number
of samples for each class. We noticed that the performance of the model in
a class heavily depends on the diversity of object samples, object rotation
and scale somehow outweighing the role of sample size. It is interesting also
to notice how a network that pre-trained from another domain (COCO pre-
trained Faster-RCNN with Res Net 50) can perform well on the floor plan
data sets using just a one hundred images. To further improve the results
on this task, it is recommended to either collect larger data sets to cover
different graphical conventions or implement data augmentation techniques
more suitable for object detection in floor plans.
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Chapter 4

Text Recognition and Alignment

In this chapter, a technique for transcript alignment in early
printed books by using deep models together with dynamic pro-
gramming algorithms has been done. The proposed technique
is evaluated on a publicly available digitization of the Gutenberg
Bible while the transcription is based on the Vulgata, a late 4th

century Latin translation of the bible. Also, a model is presented
to improve text recognition in floor plan images, using traditional
text detection methods with image processing techniques and deep
learning-based methods [80].

4.1 Introduction

Document image analysis involves the processing of both handwritten and
printed document images. Text recognition in graphical documents is an im-
portant task in document image analysis. In particular, textual information
in engineering drawings, like floor plans, is momentous for further analysis,
specifically when the semantics of rooms should be detected. From a broader
point of view, reading text in images is a relevant topic in computer vision
with several applications in automatic digitization of documents, real-time
multi-language translation, augmented reality, support to blind people, etc.
The first work presented in this chapter is related to a broader project whose
aim is to allow visually impaired users to access graphical information [67].
By considering the recognized text it is possible to provide visually impaired
users useful information about the room’s functions and size. Hence, by ex-

47



48 Text Recognition and Alignment

tracting and gathering primary information obtained from the floor plan, we
can gain information about the entire building.

On the other hand, training deep architectures require the availability
of large collections of annotated data. In text alignment, the recognition of
early printed books with neural models initially proposed for object location
in scene images has been addressed. The main purpose of this work is the
alignment of digital images of the first pages of the Gutenberg’s Bible (the
Genesis book) with a text (the Biblia vulgata) that was the basis of Guten-
berg’s work. Besides applications for training text recognition networks, text
alignment with a reference text is useful also for paleographic studies where
different instances of specific words need to be compared by scholars. Studies
in the area of text recognition of interest for this work can be categorized
into two groups: works using convolutional models for object detection in
the field of document analysis that I will explain completely in the related
section and text alignment algorithms.

The network training is performed on a semi-automatic transcription of
the document to be recognized. First, an initial model to recognize stop-
words and hyphens in a set of images with a well-aligned transcription made
by hand has been trained. Using the model prediction on a loosely annotated
text we then train another model able to detect some words inside unknown
images. As I have mentioned before, among of some convolutional architec-
tures that have been recently proposed for addressing object detection such
as, Faster R-CNN ([83]), R-FCN, Multibox, SSD ([61]) and YOLO ([82]),
Faster R-CNN is one of the most accurate and fast neural object detectors
proposed so far. For example, in [110] I used Tensorflow Object Detection
API in object detection in floor plan images. I also compared the SSD with
Faster R-CNN with ResNet 50 and with ResNet 101. After these preliminary
experiments, it turned out that Faster R-CNN performs significantly better
than SSD for the task addressed in the paper. Also, [69] proposes a trainable
CNN model for text detection considering the achievement of Faster R-CNN.
The contribution also includes an architecture with multiple RPNs and an
RoI merge layer in addition to the original Faster R-CNN. Therefore, for
having the best results, Both deep networks in this research are based on
Faster R-CNN initially proposed to detect objects in scene images.

The second category of text alignment studies is related to text align-
ment in the transcribed images of documents. One method was proposed
by [79] for aligning historical documents with transcriptions, through which
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a representative of each letter is cropped in the historical texts and then,
the transcribed images are changed to synthetic word images by showing
the letters in the transcription. Then, the images are classified into a group
of interrelated components in the source text using a dynamic programming
algorithm. [85] designed a method to align the handwritten text images with
the related transcripts by which the texts are classified into certain lines to be
detected. [27] introduced one data set composed of images and correspond-
ing transcriptions of a Latin manuscript. The alignment system is based on
character Hidden Markov Models to deal with alignment difficulties. Besides,
[38] have presented a system, through which the image of a historical text
directly with a synthetic image created from the transcript. [94] put forward
a transcript mapping technique that is guided by the number of words as
well as the characters per word of a text line. Using a scoring algorithm, the
proposed method synthesizes the results of a local and a global approach.
[86] presents a system for aligning transcript letters to their coordinates in
a manuscript image.

A suitable GUI and an automatic line detection method enable the user
to perform an exact alignment of parts of document pages. The system
employs an optical flow engine for directly matching at the pixel level the
image of a line of a historical text with a synthetic image created from
the transcript’s matching line. [56] proposed word-to-word alignment in a
segmentation-free and learning-free way. The best word-to-word match lies
in an adapted edit cost between signatures extracted on Unicode characters
and on the images. The results are evaluated on the “Queste del Saint Graal”
(13th c.) by palaeographers through a validation interface. One important
feature of the work presented in this thesis is that in the data used in our
experiments a diplomatic transcription of the images is not available. As a
proxy of this transcription, we start from a text version of the Bible (the
Vulgata) that scholars consider as source fr Gutenberg’s work. Since there
is no exact transcription of the images there are missing (or new) words in
the text and there are also different spellings for the same words.

4.2 Text alignment in early printed books

The basis of the text alignment method described in this work is word lo-
cation by using the Faster neural network. In particular, I look for the five
most common words and for the hyphens that split words at the end of text
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Figure 4.1: Pipeline of the whole system.

lines. The aligned text is then used to increase the amount of data, to train
a neural network able to detect words inside new scanned pages. The word
alignment system proposed in this work is made out of six main parts that are
described in the rest of the chapter: preliminary segmentation of the training
pages at word level; construction of training data set using well-aligned text;
training of the neural network for segmentation; text alignment on loosely
annotated pages; training of the neural network for word recognition, the
test of word recognition.

4.2.1 Text Segmentation

The scope of text segmentation is to detect the words and the hyphens to
generate the data set to train the first network. Segmentation to detect
columns and rows is used to analyze deriving cuttings for word isolation. A
different technique has been used to find the hyphens, through which the
final part of each row (about 14 pixels) is isolated and with the help of the
transcription, by which we can realize that small cutting are a hyphen or
not.

Image pre-processing

In this phase, a pre-processing of the images is implemented to clean and
rectify the pages (Figure 4.3). Since some pages have a content inclination
that does not allow an accurate analysis the first step is a skew correction.
The edges of the images are then cut to make the images as clean as possible
removing the noise in the page borders. For improving the next phases
one white padding is added. Eventually, a reverse binarization is applied to
each image to detect the rectangle’s rotation angle with the minimum range
containing all white pixels to ignore it.
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Figure 4.2: Word segmentation by projection profiles.

Columns, rows and word segmentation

After the pre-processing, we need to perform a preliminary column, row, and
word segmentation. After binarizing the images with a global threshold we
have used the projection profile method on the binarized image since the text
lines are regularly spaced. Considering modern printing in the Gutenberg
bible, like in medieval manuscripts, the words are a quite close one to the
other. For word detection, we empirically separated words when we found
three consecutive white pixels. This algorithm is inaccurate on general texts,
however, in our case, we know from the reference text how many words are
expected in each text line. We, therefore, modify the expected white space
between words decreasing it if the detected words are less than expected
and increasing it if the words are more than the real ones. To take into
account the GPU memory, when applying the object detection algorithm we
split each column in three slightly overlapping parts. Figure 4.2 shows the
segmentation results of a portion of the column.

Word location training

To find words we trained a convolutional neural network using the Faster
R-CNN with a Resnet-50 as a basic model. The word location network is
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Figure 4.3: Genesis first page, before (left) and after (right) pre-processing.

trained with three classes: ‘background ’, ‘=‘, ‘word’. In this case, ’word’
means a generic word and ’=’ represents a hyphen at the end of the next
row. The model was trained for 25.000 epochs. The network reaches a good
level of accuracy after 7000 iterations.

We have evaluated the results of word location using the COCO detection
metrics. The results are shown in Table 4.1. Noticing some examples of
results in Figure 4.5, we can see how the network has difficulty to detect
objects with small sizes, but the network’s behavior is interesting in other
cases.

Table 4.1: Results of preliminary word location.

Metric AP AP50 AP75 APs APm
Value 0.682 0.843 0.817 0.651 0.795
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Figure 4.4: Main phases in text alignment.

4.2.2 Dynamic programming

Starting from the output of the preliminary word location we can rebuild the
structure of each text row. First of all, we delete overlapping bounding-boxes
and add missing ones by computing the distance between two consecutive
bounding-boxes and adding a bounding box if the distance is larger than
a threshold. We generate a “guide text” composed of ‘x’ and ‘=‘. The ‘x’
symbol represents a generic word, the ‘=‘ symbol represents a hyphen. We
consider bounding-boxes as belonging to the same row if they have similar
ordinates (y values). For alignment, we dispose the unaligned text accord-
ing to the structure of the “guide text” considering each hyphen. Figure
4.4 represents all the different phases in the text alignment process. When
generating the training data for the first network we know the portion of
reference text corresponding to each line (right part of Figure 4.4) and with
the help of the guide (central part) it is possible to know the meaning of
each word. The result of this word alignment is shown in Figure 4.7. When
dealing with loosely aligned pages only the left part of Figure 4.4 is available
and in this case, we need to use a dynamic programming-based approach.

When a line-by-line alignment of the reference text is not available we
need to follow a different strategy based on two steps. First, we train a
word location network used to find the five most common words in the text:
ad, cum est, et, in. This network is trained on the output of the previ-
ous alignment and then used to find reference words in the loosely aligned
text where we know the reference text for each of the six portions of the
page. The output is a string containing "X" in the case of a generic word
and placeholders "A"-"D" corresponding to each stop word (BBX in the
second line in Figure 4.6). From the reference text, we can also compute
a similar string that we consider as a ground truth. (GT in first line in



54 Text Recognition and Alignment

Figure 4.5: Preliminary word location (’parola’) represents a generic word
found.

Figure 4.6: Results of the LCS-based data alignment

Figure 4.6). To align the two strings and allow training on loosely annotated
data we use a post-processing method based on dynamic programming, in
particular, we realign words with the Longest Common Subsequence (LCS)
algorithm. Two approaches are proposed to generate this alignment. The
first method is based on extracting the bounding boxes of the output that
are also present in the LCS. This allows us to have a data set that is only
composed of words and bounding-boxes that are certain to be in the tran-
script. A second method improves slightly this approach. It detects some
of the errors that were made during the segmentation: the words that were
detected as a generic word (X), but that should be a stop word. So the only
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Figure 4.7: Alignment result.

thing that is needed is to change the label of the bounding box that has
been detected for being such an error and change it to the proper label. The
algorithms to detect these errors count the number of characters in the LCS
at the left and the right of these characters in the original sequence. If the
number of characters on the left parts of both sequences is the same, and
if this is also true for the right part, then we can exchange the characters.
In Figure 4.6, we show the results of the LCS and its improvement (LCS2)
on one part of the page and its transcript. The characters in red and blue
are the ones that were not selected by the first LCS algorithm. So there will
not be those letters and the related bounding boxes in the output because
they are considered as mistakes of the detector. In blue are the errors that
could be corrected by the system, so the bounding boxes related to those
words have been added again to the series of correct bounding boxes that
are considered to be aligned. Figure 4.8 shows the improvement on test page
17. We can see that some improvement has been made, especially when the
word location misses special words that we know are present in the ground
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truth. The system is sometimes able to replace correctly those words with
the correct bounding box. The skip-lines in each output are determined by
the changes in the y coordinates of the sequence of bounding boxes so it
is a good representation of what the system can do. Underscores represent
parts where the realignment algorithm struggled to find a good match and
we decided to delete this word and the corresponding bounding box. This
phenomenon occurs in mainly three cases: when there is a hyphen at the end
of a line, or when the system deletes a word because it is too hard to find a
correspondence or because some words are over-segmented in the input. In
the third case, the remaining bounding box might have satisfying accuracy
in terms of positioning, but not so much in terms of IoU. In general, we can
conclude that lines with underscores have an uncertainty slightly increased.

Figure 4.8: Results of the LCS-based realignment process on a part of page
17

4.2.3 Dataset

The pages used in the experiments have been downloaded from the Bay-
erische Staatsbibliothek Muenchen, Germany 1

1 Biblia [Gutenbergbibel] ; [1-2] [Mainz] [1454/55, nicht nach 1456.08.24. bzw.
08.15.] [BSB-Ink B-408 - GW 4201 - ISTC ib00526000] http://daten.digitale-
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Word Image % Word Image %

52.65% 41.04%

et 13.68% est 47.01%

33.65% 11.94%

30.80% 78.43%

in 69.68% cum 21.56%

5.53%

ad 92.47%

Figure 4.9: Different forms of words in the Gutenberg Bible.

At this point, we analyzed the problem of word recognition. Having two
available texts (pages 0-16 and pages 17-34), we have decided to train the
network to recognize the most five frequent words in common between the
two texts. These result to be "et", "est", "in", "cum", "ad".

To create the new COCO dataset, we have associated at each word cut
(described by page, column, row, position in the belonging row) to the cor-
responding text word. Thanks to this informations, we have generated a
new COCO data sethaving similar characteristics to the previous one. In
this case categories are six: {"__background__", "et", "est", "in", "ad",
"cum"}.

Incunabula (books printed before 1501) share with medieval manuscripts
an extensive use of ligatures and abbreviations as we observed in our previous
work on these data [92]. As a consequence in the Gutenberg bible, several
words are printed in different ways and this can be problematic for word
recognition. Different representations for the five-stop words considered in
the experiments are shown in Figure 4.9 and together with their relative
distribution in Figure 4.10. For instance "et" and "est" can be represented
in three ways: one with the first word capitalized and two for the regular
form one of which is abbreviated. It interesting to notice that "est" (to be in
Latin) remained as such in modern French, but became é in modern Italian.

sammlungen.de/bsb00004647/image_13
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Table 4.2: Segmentation results.

Total
Rows

Rows with
correct cuts

Rows with
wrong cuts

1674 1334 (74,4%) 340 (21,3%)

In the experiments described in this paper, we consider three sets of data
having different ground-truth annotations.

The first training (Set I) has been executed over the first 17 pages of
Genesis, that is those having a correctly aligned text checked by hand. In
this case, the reference text of each line is checked line by line (including
words split by hyphens). However, the accurate position of each word in the
line is not annotated.

The second training has been executed with another set (Set II) of 17
pages of Genesis (20-34), where the reference text is only split in parts cor-
responding to regions in the page processed by Faster R-CNN (there are six
regions for each page). The test set is made by pages 19− 19 in the Genesis.
In this case, the position of each word and the corresponding transcription
is annotated in the ground truth.

Preliminary word segmentation

In the first test, we evaluate the results of preliminary word segmentation
based on projection profile and alignment with the reference set in Set I as
described in Section 4.2.2. Numerical results are shown in Table 4.2 among
the 340 wrong rows there are 189 rows that have a smaller number of cuts
and 151 with a larger number of cuts. Since this alignment is used to train
the stop-word recognizer not all these errors necessarily impact the training
performance as will be discussed later.

Evaluation of LCS alignment

To evaluate the efficiency of the dynamic programming part, we have devel-
oped an evaluation based on both the text accuracy and the bounding box
accuracy. We count the number of words that are identical as the one in the
transcript and that have an Intersection over Union (IoU) with its relative
bounding box in the ground truth above a certain threshold. We tested this
with different threshold values to study more precisely what our model was
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(a) et (b) in

(c) est (d) cum (e) ad

Figure 4.10: Distribution of most common words

doing and to observe if we had a significant improvement in the quality of
the data set while using dynamic programming. The results for different IoU
thresholds are shown in Table 4.3. The results seem to show a slight but
constant improvement in the quality of the data set in all of the possible
configurations.

Table 4.3: Evaluation of the dynamic programming process with different
IoU thresholds

Threshold input acc LCS acc LCS2 acc
0.4 0.931 0.943 0.939
0.5 0.824 0.837 0.833
0.6 0.677 0.688 0.685
0.7 0.565 0.574 0.571
0.8 0.484 0.492 0.489

Word location tests

To evaluate the LCS-based alignment from a different perspective we com-
pared the performance for the recognition of stop-words in the test set when
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training a word location on ground truth generated with the well-aligned
reference text is Set I and when training on Set II with the loosely aligned
text.

Regarding the training on Set I, we have employed three hours with
30.000 iterations, setting a batch-size equal to 2. The network reaches a good
level of accuracy after 10.000 iterations. The second training has executed on
Set II where we needed three hours with 30.000 iterations, setting a batch-
size equal to 2. The network reaches a good level of accuracy after 10.000
iterations.

Table 4.4: Word recognition on test set.

ad cum est et in Total
Occurrences 27 10 24 103 66 230
Detections

training on set I
26

(96,30%)
8

(80%)
22

(91,67%)
91

(88,35%)
53

(80,30%)
200

(86,96%)
Detections with LCS
training on set II

16
(59,26%)

2
(20%)

11
(45,83%)

73
(70,87%)

22
(33,33%)

124
(53,91%)

Detections
set II - filtered cuts

16
(59,26%)

7
(70%)

12
(50%)

71
(68,93%)

44
(66,67%)

150
(65,22%)

After training the models over the corresponding datasets, these have
tested on the Test Set; the results are shown in Table 4.4 that shows in the
Occurrences column the total number of each stop words (ad, cum, et, est,
in) in the test pages.

Analyzing the case of the trained network over Set I, we can see that
the percentage of correctness is about 90%. In the second case (Set II),
the performance of the network is worse than the other dataset because the
second network has been trained with training data generated from loosely
aligned reference text. For Set II we have worse results because of some
imperfection presents in the text. Therefore, we filtered some cuts erasing
those longer than the expected word length. For this reason, it has been
possible to reduce errors as shown in the last row of Table 4.4.

4.3 Text Recognition in Floor plan Images

As we discussed earlier in this chapter, text recognition in graphical docu-
ments is an important task in document image analysis which deals with the
processing of graphical document images. In floor plan scenarios, text de-
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est 1.00ad 1.00

est 1.00

et 0.99

cum 1.00

est 1.00

Figure 4.11: Example of network detection.

tection can significantly support floor plan understanding, specifically when
it is focused on the semantics of rooms.

The overall processing pipeline is that given floor plan image in input,
three files are generated as output. An XML file containing the information
about text regions; the input image with annotations about results (regions
of text, recognized text, and its type); the input image cleaned up from the
detected text. The system is composed of two main modules: text detection
and text analysis and classification. Detecting text regions is the first step
of the text recognition systems called Optical Character Recognition. This
process requires the separation of text region from non-text region.

4.3.1 Text detection module

The text detection module takes an image as input and returns a list of
rectangles around detected text regions as output. Four different detection
procedures have been used: MSER and SWT, CTPN, EAST, and COM-
BINED. First implemented starting from one library based on MSER and
SWT [73, 2], EAST is based on its OpenCV implementation, and for CTPN
we used the library in [1]. COMBINED combines the results of the other
three. Starting from an input image, the libraries in their original form
calculate a set of points identifying the text areas (EAST and CTPN) or
modify the input image to highlight the located text (MSER and SWT). To
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be integrated into our project, the libraries have been modified to produce
a list of structured data (rectangles identifying text). Moreover, we added
functionalities to each detection method to improve the performance of the
libraries as we will discuss later. Regardless of the detection procedure used,
the module includes a final post-processing phase where rectangles are re-
fined to better locate text within them and facilitate its processing by the
analysis module.

MSER and SWT

At the first step of text regions detection in images only image process-
ing techniques with MSER (Maximally Stable Extremal Regions) and SWT
(Stroke Width Transform) are used . And also Tesseract-OCR tool is used
optionally, as assistance to the algorithm. MSER is an affine feature extrac-
tion algorithm proposed by Neumann [71] et al. In MSER algorithm, the
image is converted into a gray image firstly, and then, the image is converted
into a series of binary images by using the continuous threshold range from 0
to 255. With the increase or decrease of a gray threshold, there is a region of
constant occurrence, and the variation of the two thresholds in the region is
considered stable in a certain range. Mathematical definitions are as follows:
The definition of the image I is the mapping of the region D on the gray.
Among them, the scan meets the gray level full sequence structure. The
relationship between adjacent pixels is defined as A ⊂ D × D. The region
Q ⊂ D can be defined as a subset of satisfy connected region criterion, which
means for any pixel p, q ∈ Q there are more than one path to connect p and
q. The following formula will illustrate the connected region criterion.

pAa1, a1Aa2, . . . , anAq (1)

where ai ∈ Q, i = 1, 2, . . . , n. The definition of the boundary aQ is as
follows: aQ is adjacent to at least one pixel in the Q, and aQ does not belong
to the region Q.

∂Q = {q ∈ D −Q,∃P ∈ Q, aAp} (2)

For ∀p ∈ Qand∀p ∈ Q ,if I(p)>I(q) then Q is the maximum region. For
a series of extremal regions, if change rate q(i) of the region is at the local
minimum, it is considered to be the maximally stable extremal regions. q(i)
defined as follow:
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q(i) =
|Qi+∆ −Qi−∆|

|Qi|
(3)

After obtaining MSER, the connected component analysis is applied to
detect the candidate characters. Text detection methods are usually based
on connected components (CCs) [104], or sliding windows [46]. Fletcher
and Kasturi [28] proposed one of the first methods based on the analysis
of connected components and their mutual position. One weakness of this
method is that it does not cope with text touching graphics. Tombre et al.
[101] proposed an improved approach to separate text touching graphical
parts. Connected component methods divide pixels into characters, then
group these into words. For example, Epshtein et al. [23] address text de-
tection in natural images considering characters as CCs of the Stroke Width
(SWT) transform and then propose an image operator to find the value of
the stroke width. The SWT is used to group pixels into letter candidates. Li
and Lu [57] adopt a stroke width based text detection approach and propose
unique contrast-enhanced Maximally Stable Extremal Region (MSER) to
extract character candidates. Gonzalez et al. [23] efficiently combine MSER
and locally adaptive thresholding.

The text is made up of strokes, which consist of two parallel edges. Hence,
SWT algorithm is based on the fact that texts in the same text line usually
have similar stroke width. Therefore, the canny operator is firstly used to
detect the edge of the image [49] in the SWT algorithm, and then get the
corresponding edge response, finally calculate the distance between the two
parallel edges in certain conditions. This method can effectively detect the
text line and has a robust fault tolerance ability. It detects stroke pixels
by looking for the relative edge pixels q from the beginning of the pixel p
along the gradient direction of the dpq, as shown in Figure 4.12. Only when
the gradient direction of the edge pixels is opposite to each other, the ray
is considered to be effective. All through the ray path pixel has the same
stroke width, which is the distance between two parallel edges. Stroke width
calculation method is as follows: Assume that the bottom left corner of
the edge image is the origin of the coordinate axis, then the coordinates of
the edge pixel p is (xp0,+yp0), the gradient direction is θp. Then from the
starting point p along the gradient direction for ray representation:

yp = tan θp(xp − xp0) + yp0, xp > xp0 (4)

Search along the ray direction until you find the next edge pixel q, con-
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Figure 4.12: Stroke width schematic (image from [54])

sider the relationship betweenθp and gradient direction θq of pixel q, If the
following constraints are satisfied:

abs(θp − θq) ≤ π ±
π

6
(5)

Also, if the distance is the minimum value, then dpq is the stroke width.
If you do not find the matching pixel q from the p point, or the gradient
direction does not meet the criterion’s, the ray is discarded. The algorithm
compares the stroke width between two adjacent pixels, and if there is a
similar value, two pixels will be aggregated. In our research, the original
library [2] is used in combination with Tesseract to discard regions contain-
ing non-readable text. The library detects single words of text returning a
rectangle for each of them. However, in our work near, aligned and seman-
tically correlated words need to be grouped into a unique text object. A
post-processing is carried out to merge detection areas by comparing their
mutual distance and alignment.

Figure 4.13: Example of rectangles respecting alignment and nearness con-
ditions and therefore merged because they identify the same text object.

All possible pairs of rectangles (r1, r2) are considered for merging by
checking their alignment (Fig. 4.13). Let h be the height of the taller rectan-
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gle (r1), ymin the coordinate of the upper edge of r1 and ymax the position
of the lower edge of r1. r1 and r2 are aligned if r2 is entirely contained in
the interval [ymin − h/2, ymax + h/2]. We allow an offset of h/2 at the top
and bottom to deal with ascenders and descenders in r2. If two rectangles
are aligned we then check their horizontal distance: r1 and r2 are near if
their distance is lower than h/2. Pairs of near and aligned rectangles are
then merged into the minimum enclosing rectangle defined by (xmin, ymin),
(xmax, ymax) that corresponds to the minimum and maximum x and y co-
ordinates occupied by the two rectangles.

EAST (Efficient accurate scene text detector)

Figure 4.14: The structure of the EAST text detection Fully-Convolutional
Network (image from [109])

EAST is a very robust deep learning method for text detection based on
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[109]. It is worth mentioning as it is only a text detection method. It can
find horizontal and rotated bounding boxes. It can be used in combination
with any text recognition method. The text detection pipeline in this paper
has excluded redundant and intermediate steps and only has two stages as
shown in Figure 4.14. One utilizes the fully convolutional network to directly
produce word or text-line level prediction. The produced predictions which
could be rotated rectangles or quadrangles are further processed through the
non-maximum-suppression step to yield the final output. EAST can detect
text both in images and in the video. As mentioned in the paper, it runs
near real-time at 13FPS on 720p images with high text detection accuracy.
Another benefit of this technique is that its implementation is available in
OpenCV 3.4.2 and OpenCV 4. We will be seeing this EAST model in ac-
tion along with text recognition In our research. On the other hand, EAST
accepts as input only images having width and height multiples of 32. We,
therefore, add suitable padding of white pixels to those images that do not
respect this constraint. EAST detects single words of text like STD. There-
fore, also in this case, after the detection, we perform the algorithm for
merging near and aligned rectangles described above. The simplicity of this
pipeline is to concentrate effort on designing loss function and neural network
architecture.

Connectionist Text Proposal Network (CTPN)

A Connectionist Text Proposal Network (CTPN) that directly localizes text
sequences in convolutional layers have been proposed in [100]. This over-
comes several main limitations raised by previous bottom-up approaches
building on character detection. They leverage the advantages of strong
deep convolutional features and sharing computation mechanisms, and pro-
pose the CTPN architecture which is described in Figure 4.15. It makes the
following major contributions:

• First, they cast the problem of text detection into localizing a sequence
of fine-scale text proposals. We develop an anchor regression mecha-
nism that jointly predicts the vertical location and text/non-text score
of each text proposal, resulting in excellent localization accuracy. This
departs from the RPN prediction of a whole object, which is difficult
to provide a satisfying localization accuracy.

• Second, they propose an in-network recurrence mechanism that ele-



4.3 Text Recognition in Floor plan Images 67

Figure 4.15: (a)Architecture of the Connectionist Text Proposal Network
(CTPN), (b)The CTPN outputs sequential fixed-width fine-scale text pro-
posals. (image from [100])

gantly connects sequential text proposals in the convolutional feature
maps. This connection allows our detector to explore meaningful con-
text information of text line making it powerful to detect extremely
challenging text reliably.

• Third, both methods are integrated seamlessly to meet the nature of
text sequence, resulting in a unified end-to-end trainable model. This
method can handle multi-scale and multi-lingual text in a single pro-
cess, avoiding further post filtering or refinement.

On the other hand, CTPN library [1] can only process images with a
maximum size of 1200 pixels. For larger images the library automatically
scales the dimensions before performing the detection, thus introducing a
loss of information. When the image is much larger the loss of information
causes a very poor detection. For this reason, in our research large images
are first split into sub-images, which are processed separately by CTPN. The
original image is split into equal parts both in height and in width so that the
dimensions of each sub-image does not exceed the threshold. Unfortunately,
the image split gives rise to new problems that need to be addressed. Text
objects lying across images will be detected as two separate objects; in other
cases, the text area might be wrongly computed by the library, which detects
erroneously text too close to the image borders. To address these problems,
additional sub-images are generated, centered in the transition areas. After
executing CTPN in all the sub-images, we have a list of rectangles returned
by CTPN. Some rectangles can overlap because the same text is recognized in
overlapped regions. These redundant detections are addressed in the post-
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processing. Also, there are rectangles identifying parts of the same text
object recognized in different sub-images. These rectangles are addressed as
follows. For each sub-image (with size (h,w)) its vertical transition areas
are defined as the two vertical rectangles along the vertical border of the
sub-image with the width equal to w/4. The horizontal transition areas
are identified in a similar way considering the horizontal border and height
equal to h/10. The algorithm merges aligned rectangles lying on adjacent
transition areas (that share an edge but belong to different sub-images).
The definition of aligned rectangles and the features of the merged ones are
the same used when merging side by side rectangles in the STD detection
method. As we mentioned above, this analysis of the transition areas is
needed because CTPN struggles to accurately identify text very close to the
image borders.

Combined Detection Methods

After applying all three methods and obtaining three distinct lists of de-
tected rectangles the combined method performs a voting process to discard
false positives. Each rectangle r of a list is compared with all the rectangles
of the other two lists. If there is almost one rectangle coinciding with r, then
r is added to the final detection list, otherwise, it is discarded. Furthermore,
each time two rectangles are found to be coincident, they are merged to re-
fine the detection area. In this case, two rectangles are coincident if their
IoU (Intersection over Union) is greater than 50%. The post-processing per-
forms two steps to refine the detection areas. In the first step, the rectangle
list is cleaned to eliminate redundant detections (mostly generated by the
analysis of intersection areas between different sub-images in CTPN). For
each pair of rectangles, we calculate their IoU: if it is greater than 40% they
are merged. Otherwise, we check if one is contained for 70% in the other,
and in this case, the smaller rectangle is discarded as the two rectangles
are detecting the same object. In the second step aligned and overlapped
rectangles are merged. These are generated by text objects detected as two
split objects for several reasons: splitting into sub-images, presence of noise
or other objects superimposed to the text, or to the incorrect evaluation by
the library. The concept of alignment is the same presented in MSER/SWT
and EAST detection methods.
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4.3.2 Text analysis and classification module

This module gets the floor plan image and the rectangles calculated by the
detection module and computes additional information for each text object:
the text type; the recognized text; a list of rectangles for all the characters
in the area. The module also returns a floor plan with the text erased.

Detection of areas belonging to buildings

we calculate the image CCs and identify a CC corresponding to the building
if the CC is not contained in any other CC and its area is larger than 10% of
the whole image. The convex hull is then calculated from each non-discarded
CC.

Text recognition

Each text area is cropped and passed to Tesseract for recognition, computing
also the position of words and single characters. After recognition, we check
the validity of the text discarding empty strings or not containing letters or
numbers.

Text classification

Each text box is classified as follows: If the text object does not intersect
with a building (the CC’s convex hull computed in step 1) it is classified as
generic text. Otherwise, we examine the recognized text: if there are more
letters than numbers then it is classified as room description, otherwise, it
is classified as room size choosing room size measured in m2 or room size
measured in ft2 according to the suffix of the recognized text (e.g. a room
size measured in ft2 ends with single apex, double apex or "ft").

Text correction and detection area refinement

the text recognition may not be perfect (e.g. because of noise in the area or
poor image quality). We correct the text for the objects classified as room
description using some heuristics. Each word is compared with a dictionary
of valid words and then replaced with the closest according to the edit dis-
tance. In the case of words with the same edit distance, the word with the
highest frequency is chosen. Text corresponding to room size is corrected by
removing from the string non-valid characters (digits, punctuation marks,
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letters, and symbols for units of measure). Since we are not able to make
assumptions about the correctness of their content, no correction is made on
generic text objects. The area of each text object is refined considering the
rectangles of single characters. In the last step, the rectangles surrounding
each character are filled with white.

4.3.3 Data sets

We first present the data sets used in the experiments, explaining their fea-
tures and peculiarities. Then, the detection and classification results are
shown separately. Finally, a qualitative analysis of the results is carried
out. For the experiments, we used two data sets (Table 4.5) CVC-FP and
Flo2Plan, respectively. CVC-FP [14] contains 90 high-quality floor plan im-
ages with a uniform style and a well-readable text. Flo2Plan is a subset of
the data set proposed in [110] and contains 64 floor plans downloaded from
the Internet with very different styles and resolutions. Both data sets have
been manually labeled to provide information about text objects.

Dataset Images Text Description Size Size Generic
Objects (m2) (ft2) Text

CVC-FP 90 2779 1261 925 0 593
Flo2Plan 64 1632 793 0 376 453

Table 4.5: Images and number of labeled text objects in each dataset.

4.3.4 Experimental results

In these tests, we compared the performance of the proposed methods for text
detection and text classification. We ignored the accuracy of the read text
because it mainly depends on Tesseract and the coverage of the dictionary
used to a lesser extent. To evaluate the detection performance we compute
the Precision (P ), Recall (R) and F1 Score indices. To compute these values,
the detection of a text object is considered correct if its IoU with the ground
truth is larger than 65%. We first performed the detection to the CVC-FP
and the Flo2Plan datasets using the STD, EAST and CTPN libraries in
their original version, without modifications. The results, together with the
average execution time per image (on a Mac OSX PC with a 7th generation
Intel i5 CPU without GPU), are shown in Table 4.6. Exploiting a GPU the



4.3 Text Recognition in Floor plan Images 71

CVC-FP Flo2Plan
Original Library P R F1 Time P R F1 Time (s)

STD 14.60% 19.78% 16.80% 21.10 34.26% 23.72% 28.03% 39.21
EAST 17.82% 33.58% 23.28% 16.28 33.11% 43.17% 37.48% 2.34
CTPN 25.62% 5.24% 8.70% 4.52 25.85% 22.43% 24.02% 5.19

Modified Library P R F1 Time P R F1 Time (s)
STD 58.05% 60.00% 59.01% 35.04 56.34% 32.93% 41.57% 45.61
EAST 58.61% 64.90% 61.59% 31.94 61.06% 60.16% 60.61% 13.26
CTPN 84.85% 81.74% 83.27% 103.25 50.36% 39.10% 44.02% 12.27

COMBINED 86.11% 81.05% 83.50% 138.65 68.13% 37.45% 48.33% 52.01

Table 4.6: Detection performance of the methods on the two datasets.

CTPN and EAST execution times would be considerably reduced. As we
can see, the performance is very poor in general. For STD and EAST, this
is mostly because the both libraries detect single words instead of group-
ing neighboring words on the same text line under a single text object like
CTPN does. Conversely, CTPN shows significant limits in the analysis of
poor quality images (Flo2Plan dataset) and large images (CVC-FP dataset)
because of the image scaling and subsequent information loss.

In Table 4.6 we also report P , R, F1 Score, and average execution time of
the four detection methods. The execution time includes the time required
for the classification and analysis module. The execution time grows linearly
with the number of text objects in the image, therefore it can significantly
vary from image to image. Evaluating the results we must first notice that
no method can detect vertical or curved text. With the clean and high-
resolution images of CVC-FP the CTPN method obtains very good results
(P = 85% R = 82%), significantly better than those obtained with the origi-
nal library. The higher execution time is due to the sub-images splitting. Its
performance, however, drops dramatically if applied to the Flo2Plan dataset.
The noise, the compression and the poor resolution of these images strongly
affect the analysis by the CTPN library. On the other hand on the Flo2Plan
data set the EAST method achieves good results (P = 59% R = 65%).
Furthermore, it maintains low execution times. This is possible because
EAST has been developed for real-time detection in video streams. This
result also confirms that text detection methods based on CNNs perform a
better detection than STD not only for scene images but also for graphical
documents.

The combined method shows good performance on both datasets, over-
coming the other methods in terms of Precision. The Recall is very low
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(37%) on the Flo2Plan dataset; this is an expected result considering the
voting system it adopts which increases the number of false negatives on
images where the other methods have some difficulties.

4.4 Conclusion

In this chapter the combined use of object detection deep architectures, used
for word location, and dynamic programming techniques for automatically
generating training data from loosely aligned reference text proposed. The
experiments performed on the first pages of the Gutenberg’s Bible show
promising results even if there is still space for improvements. Besides word
recognition, the word alignment obtained with the proposed method can be
useful for paleographers to better understand the evolution of graphemes
over the years. In the rest of the chapter, we also address text extraction,
classification, and recognition in floor plan images and compare traditional
approaches and methods based on deep learning. The performance of the
original methods is significantly improved thanks to suitable pre and post-
processing steps specifically implemented to address this task.



Chapter 5

Floor Plan data sets

Nowadays, the number of available data sets for research purposes
has been increased owing to the cooperative work of the commu-
nity. Although research centers, universities, and technical com-
mittees contributed through maintaining, updating and sharing
their resources, the lack of enough representative benchmark data
sets can be seen for the different scenarios in the analysis of the
document. There are only a few labeled collections that tested
and compared various approaches in different domains. Hence,
the ad hoc systems that fit very well in the existing data sets can
be benefited more compared to those that better fill in the high
variation of the real world. Therefore, it is required to propose
modern, detailed and well-structured annotated data sets that can
fill empty spaces in any research domain. Regarding the object
detection in floor plans, multiple available databases have been
included due to the different sub-areas covered by it. It is possible
to create these data sets either through synthetic data generation
or through real document annotation. On the one hand, syn-
thetic databases contain data produced by a particular predefined
set of parameters to model different degrees of noise, distortion,
and degradation compared to real documents. The generation of
these types of collections would be much faster than the annotated
ones. Therefore, the model must be as similar as possible to the
reality to provide strong conclusions when using them. On the
other hand, the real variability of the world is reflected by the an-

73
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notated databases of real documents. However, image calculation
and manually ground-truthing of it can be very time-consuming.
This problem can be solved by modifying the annotation processes.

5.1 Introduction

In the literature, the analysis of the floor was utilized for various reasons.
Heras et al in [15] have provided CVC-FP. To produce this data set, they
have utilized and proposed SGT-tool and found that this type of data is
created particularly in a natural approach. Room detection along with wall
segmentation was provided. In the document analysis domain, a large set of
tools expanded for the generation of GT has been proposed. These data were
evaluated by representing the limitations and functionality. Two distinct
labeling options namely bounding box and polygonal were presented because
SGT is user-friendly. The authors considered the output as the standard
Scalable Vector Graphics (SVG).

In [12], in architectural plans, a perceptual model has been proposed to
demonstrate the drawing style without interpreting the building parameters,
for example, symbols of the drawing. It can facilitate the search for similar
plans in the case of perceptual similarity in a database. The method provided
in that work is appearance-based. Therefore, the authors do not identify the
parameters of the building, however, correlate conceptual semantic concepts
with features obtained from raw pictures. In [12], the authors focused on two
topics namely lines and spaces. Lines in a broader sense provide information
about the walls, texture, and width, and also length. Space provides infor-
mation about the layout, the size and the shape of rooms. Lines and spaces
provide a concept of the building structure, for instance, big squared rooms
along with thick external walls can be considered as a query in terms of lines
and spaces, perceptually. The structure may be associated with the building
function, which means a public theater can have bungalow small ones, thin
lines defining the walls and big spaces. In this work, a very simple image
signature model was suggested, but descriptive sufficient to show semantic
topics about some properties of line and space. Also, a run-length histogram
descriptor was proposed. The intuitive concept is introduced as thick lines
showing orthogonal walls provide a high frequency for the codeword of long
runs in the horizontal and vertical direction. Also, it generates another high
frequency in the codeword of run lengths relating to the width of the walls.
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Therefore, large rooms or spaces can be shown by histogram maxima in the
run lengths relating to their size. The suggested retrieval model is a query
with an example framework. The query architectural image, similar images
(in terms of the line and space topics) were retrieved.

This pattern was examined to retrieve like sketch drawings of building fa-
cades. In the paper, qualitative outcomes on arbitrarily downloaded pictures
from the Internet were presented. Our signature can explain in the same ap-
proach for buildings of a similar architectural style and also the drawing
model.

In [11], a method has been proposed for automatic segmentation and de-
tection of rooms for any kind of floor plan. This method is a combination
of two distinct stages. Firstly, in the floor plans, scholars utilized an en-
hanced version of the statistical patch-based segmentation in terms of walls
to graphical entities segmentation. This approach runs at the pixel level
and also can facilitate dealing with any kind of graphical notation (refer to
[10]). A process of off-line learning is needed to adapt the system to a novel
notion. In the second step, a structural approach runs from the record (with
grouping the graphical entities), achieved as an outcome of the segmenta-
tion, in rooms, independently. Figure 5.1 shows the method pipeline. In
the first step, vectorization of the areas of the picture including pixels seg-
mented and also outcomes in extracting wall entities. In the second step, for
searching the final window and door entities on a vectorized image graph,
the segmentation of window and door along with the structural context of
walls were combined by utilizing the algorithm of A*. Rooms were specified
as the cycles in the entity plane graph of windows, doors, and walls utilizing
the method suggested in [47], eventually.

The whole system was carried out on novel released data sets of real ar-
chitectural floor plans using different graphical notations. To analyze the
system, two evaluation protocols were utilized. One is utilized to the rooms’
recognition and another one is used to wall segmentation. By pixel-based
approach, the picture pixels belonging to windows and walls and also doors
were labeled and segmented. Figure 5.2 shows the pipeline of structural-
based recognition. The fundamental graphical segmentation was gathered
into three sorts of structural entities including windows, walls, and doors.
The rooms were discovered by detecting cycles in a graph of entities. It is im-
portant to note that these approaches have capable to extract the structural
parameters without prior knowledge of the graphical modeling convention
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Figure 5.1: Pipeline of the method(image from [10])

in terms of the floor plans. However, they require some corpus of ground-
truthed documents for learning each novel notation.

Figure 5.2: Structural recognition pipeline (image from [10])

An unsupervised wall segmentation method is proposed by Heras et al [12]
that is based on combining two approaches. First, walls are independently
detected to their notation and structure via this method and no labeled data
are required for learning the graphical appearance of the walls. Then, their
appearance is learned according to a revised version of [13] and the initial
segmentation is refined. After that, some Internet images and four avail-
able data sets that were presented in [10] are used for testing the proposed
method. In addition, the latest strategies that reported their results on these
collections are compared to this proposed method. Sébastien, et al in [65]
performed a study on wall and room detection. They proposed a two-step



5.2 Floor Plan data sets 77

method to interpret the architectural floor plans. The presented method
is designed particularly to recognize the rooms. This method includes the
extraction of basic components in the image such as the arcs and the lines
that compose the doors and the walls respectively. It also contains the detec-
tion of rooms that form the building. This algorithm which is proposed for
line detection is based on the coupling of Hough Transform (HT) with im-
age vectorization (IV) with a fixed threshold for the minimum length of the
concatenation of all the lines that are on the same direction. An automatic
lookup tool is presented by Sharma et al. in [90] to match and retrieve similar
floorplans from a large repository of digitized architectural floorplans. They
performed a graph-based approach that incorporates semantics in terms of
the furniture arrangement and the room layout. They also analyzed the floor
plans for distinguishing between layouts with more specificity. Also, a graph
spectral embedding approach is adopted by them to present the graphs ob-
tained for room layouts as a three-component vector. They implemented an
algorithm for calculation of the semantic difference between layouts.

In their study, Ahmad et al. [3] represented a complete system that
contains a corpus of just 80-floor plans. They used this system for automatic
room recognition and room labeling from architectural floor plans. In this
system, structural and semantic analysis steps are applied for retrieving room
information. Also, the room labels are extracted by this system to identify
the functions of the rooms.

5.2 Floor Plan data sets

Although there are many data sets of floor plan images, there is still a signif-
icant need for having a real data set to cover different types of floorplans in
the world. One or more labeled data sets are required to evaluate the object
detection in floor plans. There are some data sets related to floorplan for an-
alyzing the research in this task. For example, The CVC-FP collection com-
prises 122 scanned floor plan documents which are divided into four different
subsets concerning their origin and style. It contains documents of different
qualities, resolutions, and modeling styles, which is suitable for testing the
robustness of the analysis techniques. The data set is fully ground-truthed
for the structural symbols: rooms, walls, doors, windows, parking doors, and
room separations. Two of these collections are ground-truthed at the pixel
level for the structural elements wall, door, window, and room, and they are
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used to evaluate both wall and room detection. A generic method is also
presented in [10] can analyze any type of floorplan without considering the
used notation. These floor plans contain only a few furniture objects and
therefore are not suitable for the research conducted in my work. To obtain a
suitable result in this work, compared to the related studies in the literature,
objects (e.g., toilet, bathtub) without lables were considered. The ground
truth then has been manually created by humans. One of the main reasons
to use CVC-FP data set in my research is that the type of CVC-FP data set
is real and provides similarity features for comparing the results. Two tests
were administered on these new labeled data sets. There is another data set
called SESYD that comes from [18] which is a synthetic graphics documents
and contains non-isolated symbols in a real context(examples are shown in
Figure 5.3). These documents are as follows:

• Drawings which include electrical diagrams and architectural floorplans

• Bags of symbols which include arbitrary compositions of segmented
symbols

• Query symbols including cropped images of symbols

The whole data set contains five document collections involving around
11,100 images representing 128,700 symbols. When furniture objects are
randomly placed on a few fixed floor plan layouts a synthetic floor is designed.
Although this data set generation approach is very appealing, the current
data set includes only ten-floor plan layouts and the objects are derived from
a limited number of categories.

There are 500-floor plan images in the Rakuten-FP data set (with jpg
format) and the pixel-level annotations are divided into the wall and non-
wall pixels in png format as well as 6 different object classes including doors,
sliding doors, kitchen stoves, bathtubs, sinks, and toilets. One example of
this data is shown in Figure 5.4 For training and testing purposes, a subset
of the R-FP images was annotated and is used in [22]. In the aforemen-
tioned paper, the authors parse floor plan images for the estimation of the
rooms’ size for interactive furniture fitting. First of all, they performed wall
segmentation via a fully convolutional neural network. Then, they detected
objects with a Faster R-CNN. Finally, to obtain the rooms’ dimensions, they
used optical character recognition. In [21], a combination of three methods is
used to achieve more understandings about the overall floor plan. However,
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Figure 5.3: (a) two instances of document (b) reproduction of domain rules
(c) bags of symbols (image from [18])

there are limited details on the use of Faster R-CNN for object location in
this study. Furthermore, the proposed floor plan data set only includes the
ground-truth about the wall position.

The ROBIN data set includes three broad categories of layouts. One of
the significant features of ROBIN is that the design of this data set empha-
sizes the need for a potential buyer. The three broad categories included in
this data set differ from the number and type of rooms represented in a floor
plan. According to the global layout shape of the floor plan, every broad
category is then classified into 10 sub-categories. ROBIN can be used for
retrieving the image as well as for other floor plan analysis tasks. ROBIN is
useful for visualizing the floor plans and helps to efficiently capture of var-
ious high-level features while fine-grained retrieval. Although the proposed
approach is appealing for the needs of buyers, the actual data set includes
only 51-floor plan layouts and the objects are derived from a limited number
of categories. One example of this ROBIN data set is shown in Figure 5.5

There is another large-scale data set called “LIFULL” which has ground-
truth for vector- graphics floorplan conversion. It is based on the LIFULL
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Figure 5.4: One example of Rakuten-FP data set

Figure 5.5: Example of a sample floor plan image from ROBIN data set

HOME’S data set containing 5 million floorplan raster images. 1000 floor-
plan images are randomly sampled to create the ground-truth when for each
floor plan image, the annotation of the geometric and semantic information
performed manually. Annotators can draw a line representing either a wall
or an opening. They can also draw either a rectangle and choose an object
type for each object or attach a room label at a specific location. Since
LIFUL data set is really large, I used this data to compare some statistics
about the distribution of objects. These statistics are briefly summarized in
Figures 5.6 and 5.7.
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(a) washing basin ratio (b) Toilet ratio

(c) Closet ratio (d) Bathtub ratio

Figure 5.6: In terms of the size of each object regarding the door size, it can
be seen a similar pattern in toilet, closet, and washing-basin, which shows
that the most number of objects have almost the same ratio ranges from 0.5

to 0.7.

5.3 Data sets Creation

In this section, we briefly describe two new data sets that have been gathered
and annotated to support the approach described in this thesis.

5.3.1 ISTA

Middle Eastern floor plans are included in this data set, and more diver-
sity is seen among object shapes which differ from other data set that they
emerged from Google’s image search. ISTA is known as having some signif-
icant features, for example, since the floor plans are derived from a single
architectural firm and real floor plans are contained in ISTA their contents
are more homogeneous and all the objects are identified in the real-mode as
it is shown in Figure 5.8. Also, the ratio of the dimensions of the object
to each other is real and standard as these floor plans are considered in the
same firm, a similar sample is used for a particular object among different
kinds of samples (e.g., bed, table).
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(a) washing basin Frequency (b) Toilet Frequency

(c) Closet Frequency (d) Bathtub Frequency

Figure 5.7: The graphs show how many objects are in the same size. Ac-
cording to the chart, frequency levels for most of the objects such as toilet,
bathtub, and closet have risen during the maximum length between 20 to 60
whilst for washing-basin the most frequent length is between 20 and 40

(a) (b)

Figure 5.8: ISTA: (a)Different kind of tables, (b)Different kind of beds

Although ISTA includes 300 images, only 160 images have been labeled
so far in my research. The labeled images are divided into 12 classes with
7788 objects. One of the distinct characteristics of these floor plan data sets
is that the images have simple shapes and most of them are grayscale. It is
empirically proven that this feature affects the model performance positively
compared to those data sets with images that contain more noise and more
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complex properties. In the first step, Otsu method is used to binarize Floor
plan images. As a result, they will be able to extract runs. Then, the text-
graphic separation method is implemented to filter out components of the
text because they do not appear in all the images and their global perception
can be biased slightly. Images are also resized and the heights of the images
are fixed to 1200 pixels. On the other hand, the dynamic width re-scaling is
performed to keep the aspect ratio. As a result, the same image proportions
will be preserved as the ones used for generating the ground truth, in which
a fixed screen resolution of 1900 × 1200 is used to show the images to the
observers. An example of this process is shown in Figure 5.9.

5.3.2 FLo2Plan

As the size of the considered data set is increased, the performance of the
training model is increased. Therefore, considering the limited size of d1
data set, a larger data set with the same features, called Flo2Plan, is cre-
ated. The Flo2Plan includes 452 floor plan images from different countries
(e.g., Italy, USA, France, Germany), including colorful and grayscale ones,
which can be different with respect to their size and type (e.g., office, house,
hotel). Moreover, since it has been downloaded using Google search, it can
be considered as a highly noisy data set, in particular, considering blurry or
watermarked images. Also, the object shapes in Flo2Plan do not follow a
fixed design rule. For example, in an image, a table can be a 100 ∗ 100 (cm)
rectangular, while another one is a 30∗30 (cm) oval. Also, Flo2Plan includes
11517 symbol instances and 13 object categories including, door, sink, toilet,
bathtub, shower, bidet, table, chair, couch, armchair, hotplate, night table,
bed.

5.4 Annotatation tools

5.4.1 Labelimg

Recently, a graphical image annotation tool known as LabelImg is proposed
that can label object bounding boxes in images. It is considered as an open-
source image labeling tool with pre-built binaries for Windows. Therefore,
its installation is easy. However, bounding boxes are only supported by
this tool. There are also two other versions that one of them is in the
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(a) Original Image

(b) Prepossessed Image

Figure 5.9: (a)First version of images, (b)Prepossessed Image in ISTA

RotatedRect format and the other is an optimized version used for one-
class tagging. PascalVoc XML format is used. For every image included in
the source file, annotation files are saved separately. Although it contains
no particular project management features, it provides a simple way for
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Figure 5.10: Two exampels of Flo2plan

importing and visualizing annotations and it corrects them. The annotation
process is fastened through a simple offline interface, however, it can support
a few hotkey shortcuts. In Figure 5.11 is shown an example of this labeling
method in floor plan data set.

Figure 5.11: labeling with Labelimg method
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5.4.2 Labelme

Using LabelMe annotation tool which proposed in [103], users will be able to
contribute to the project. It is possible to access this tool either anonymously
or through logging into a free account. If the users tend to access this tool,
they are required to have a compatible web browser that supports JavaScript.
After being loaded, a random image from the LabelMe data set is selected
displayed on the screen via this tool. The object levels will be overlaid on
top of the image in polygon format. If there are associated object labels in
the image, they will be overlaid on top of the image in polygon format. Each
distinct object label is represented with a different color. The user will be
able to use the mouse and draw a polygon including an object in the image
if the image is not completely labeled. As an example, if there is a person in
the adjacent image who is standing in front of the building, the user will be
able to click on a point on the border of the person and click along the outside
edge until returning to the starting point. A bubble pops up on the screen
after closing the polygon that permits the user entrance into a label for the
object. The user can select all the labels that believe the best describe the
object. When the users do not agree with the previous labeling of the image,
they can click on the outline polygon of an object. They can also delete the
polygon completely or edit the text label and give a new name to it. When
the users change the image, they are saved and anyone can download them
from the Labelme data set. Therefore, due to the contribution of the users
who implement the tool, the data is always changing. When the users finish
working on an image, they can click on the Show me another image link.
Then, another random image will be chosen to show to the user.

Modified Labelme

It is required to label a floor plan image in which the background is usually
fixed. However, the objects are often small and close to each other. To solve
these problems, an open-source implementation is extended by my colleague
Samuele Capobianco to add some useful properties for Flo2plan annotation
to allow defining its object classes and properties, considering the real scenar-
ios. Therefore, several features are added to label instances with rectangles
that define a bounding box area. In this case, object annotation is allowed
with two mouse clicks defining the left-top and right-bottom coordinates.
Another feature is added to reduce wasting of time and to start labeling
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phase that starts from the computed output. As a result, a floor plan image
is annotated which is started from the output of an existing trained model
and the labeling time is reduced.

Given the aim of this study, the background is of great importance.
Therefore, the object contour detection embedded in a larger bounding box
area will be possible. In the first step, edge detection through a difference of
Gaussian (DoG) is performed at different scales. In the next step, the major
key points are only selected via a dense fixed grid. After that, the instance
mask is computed as the convex hull on the selected points given the best
key points inside the bounding box which have already been selected. As
a result, the mask creation around each object can be possible. For better
detection of object contour, it can correct the computed mask adding or
removing key points if necessary. The computed key points are indicated
in Figure 5.12 via the difference of the gaussian (DoG) technique. They
are correspondent to the most probable edges which are beneficial for con-
tour definition. DoG edges are computed to select the best key points (red
points) which can object contour definition. In Figure 5.13 it is indicated
that how can edit the computed contour after the movement of the selected
area. In the first window, the selected area can be seen from the input image.
Then the opportunity of adding or removing points in the second window
is possible and the obtained contour is checked via convex hull in the third
window. Inside of the second window can be seen that how beneficial is to
Delaunay tessellation to join selected key-points during the editing phase.
Another tool is added to the system to group defined instances in differ-
ent super categories. Also, a software is implemented to define a rectangle
area to surround an object annotating a super-category area that defines the
relationship among instances to represent more structural information.

Figure 5.12: DoG edges to select the best key points
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Figure 5.13

5.5 Conclusion

Based on the previous study performed on floor plan data set creation, we
find that it is required to have a more comprehensive data set with some
more features in the field of floor plan analysis. In this chapter, two novel
floor plan image data sets are proposed including ISTA and Flo2plan. In
comparison with the other existing annotated floor plan data sets, ISTA is
more realistic and more varied in its annotations which cover over 12-floor
plan object categories. On the other hand, Flo2plan is a comprehensive and
uniform data set and floor plans are highly noisy and non-homogeneous A
modified labeling method is provided together with the novel data sets, which
is extended to an open-source implementation to add some useful properties
for Flo2plan annotation to allow defining its object classes and properties.



Chapter 6

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues
for future research.

6.1 Summary of contribution

The main contributions of this thesis can be summarized as follows:
Object detection in floor plan images We evaluated the perfor-

mance of an object detector which is originally designed for detecting objects
in natural images applied to identify objects in the floor plans in two dif-
ferent data sets with different features. From the experiments performed on
these data sets, we can notice that by using convolutional object detectors,
the recognition performance is not highly influenced by a class imbalance in
the training set while the performance of the model is influenced by data
sets nature. We also noticed that the performance of the model in a class
heavily depends on the diversity of object samples; object rotation and scale
somehow outweighing the role of sample size. It is interesting also to notice
how a network pre-trained from another domain (COCO pre-trained Faster-
RCNN with Res Net 50) can perform well on the floor plan data sets using
just a one hundred training images.

Text recognition in floor plan images we present a method for text
recognition in floor plan images. In particular, we are concerned about locat-
ing, reading, and categorizing text inside floor plan images to obtain infor-
mation about the building. To do so we compare traditional text detection
methods, based on image processing techniques, with recent approaches rely-

89
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ing on convolutional neural networks. Two data sets with different features,
including quality and size, were considered in the experiments performed.
The performance of the original methods is significantly improved thanks to
suitable pre and post-processing steps specifically implemented to address
this task.

Text alignment in early printed books We proposed the combined
use of object detection deep architectures, used for word location, and dy-
namic programming techniques for automatically generating training data
from loosely aligned reference text. The experiments performed on the first
pages of the Gutenberg’s Bible show promising results. Besides word recog-
nition, the word alignment obtained with the proposed method can be useful
for paleographers to better understand the evolution of graphemes over the
years.

Floor Plan Data sets creation and labeling We propose two novel
floor plan image data sets: ISTA and Flo2plan. In comparison with other
existing annotated floor plan data sets, ISTA is more realistic and more
varied in its annotations which cover over 12-floor plan object categories. On
the other hand, Flo2plan is a comprehensive and uniform data set and floor
plans are in this case highly noisy and non-homogeneous. A modified labeling
method is provided, which is extended to an open-source implementation
with the aim of adding some useful properties to Flo2plan annotation to
allow defining its own object classes and properties.

6.2 Directions for future work

In spite of rapid development and achieved promising progress in document
image analysis, there are still many open issues for future work.

The planned future work on understanding floor plans includes the in-
tegration of text detection and object location within a single architecture
and the use of textual information to improve results on object detection,
in particular, if we find the useful textual information in the floor plan, it
could help us to improve the results in object detection. For instance, con-
sidering the room’s name to limit the object that could be detected (e.g. a
WC cannot contain a bed). We can also perform experiments and tune the
aforementioned model on other data sets such as "Rakuten" or "LIFULL".

From the data sets point of view, even if some modifications have been
done to make easier the process of labeling, there is still neede to have more



6.2 Directions for future work 91

automatic labeling.
Another future work includes the use of the proposed alignment system to

automatically obtain a larger corpus starting from more pages and then train
the recognizer with more classes or even use LSTM-based word recognition.
It would be interesting to study a way to combine relational networks, con-
volutional networks, and LSTMs to construct an end to end neural network
that can learn relations between wordssa.
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Publications

This research activity has led to some publications in international confer-
ences and workshops. These are summarized below.

International Journal

1. Z.Ziran, X.Pic, S.Undri Innocenti, D.Mugnai, S.Marinai. “"Text alignment
in early printed books combining deep learning and dynamic programming"”,
Pattern Recognition Letters.

International Conferences and Workshops
1. Z.Ziran, S.Marinai. “Object Detection in Floor Plan Images”, in book: Ar-

tificial Neural Networks in Pattern Recognition, ANNPR 2018, pp. 383-
394, Siena (Italy), September 2018 Lecture Notes in Computer Science DOI:
10.1007/978-3-319-99978-430

2. J.Ravagli, Z.Ziran, S.Marinai. “Text Recognition and Classification in Floor
plan Images”, in Proceedings Workshops International Conference on Docu-
ment Analysis and Recognition, pp. 1-6 , Sydney (Australia)

3. Simone Marinai, Samuele Capobianco, Zahra Ziran, Andrea Giuntini and
Pierluigi Mansueto. Recognition of Concordances for Indexing in Digital
Libraries. Submitted to: Italian Research Conference on Digital Libraries
(IRCDL 2020)
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