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RTwo distinct types of left ventricular hypertrophy (LVH) have been described: the so called “physiologic” hy-
pertrophy, which is normally found in professional athletes, and “pathologic” LVH which is found in patients
with inherited heart muscle disease such as hypertrophic cardiomyopathy (HCM) or patients with cardiac
and systemic diseases characterized by pressure or volume overload. Patients with pathologic LVH have
often symptoms and signs suggestive of myocardial ischemia despite normal coronary angiograms. Under
these circumstances ischemia is due to coronary microvascular dysfunction (CMD). The abnormalities of
the coronary microcirculation may be unrelated to the degree of LVH and cause a reduction in maximum
myocardial blood flow which, in the absence of epicardial stenoses, is suggestive of CMD. There is no tech-
nique that enables direct visualization of coronary microcirculation in vivo in humans. Therefore, its assess-
ment relies on the measurement of parameters which reflect its functional status, such as myocardial blood
flow and coronary flow reserve which is an integrated measure of flow through both the large epicardial cor-
onary arteries and the microcirculation. In this review article we discuss the pathophysiological mechanisms
responsible for CMD in patients with primary and secondary LVH and how the recognition of this phenom-
enon is providing new important information on patient stratification and prognosis. Finally, we discuss
how assessment of CMD may be used as a valuable surrogate marker to test the efficacy of old and new
drugs. This article is part of a Special Issue entitled ‘Coronary Blood Flow SI’.
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U1. Introduction

The following definition of left ventricular hypertrophy (LVH) can
be found on Wikipedia: LVH is the thickening of the myocardium
(muscle) of the left ventricle of the heart. The etymology (from
Greek πέρ “excess”+ τροφή “nourishment”) derives from the obser-
vation that generally hypertrophy is a reaction to aerobic exercise and
66
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strength training, albeit LVH is most frequently referred to as a path-
ological reaction to cardiovascular disease.

In fact, two distinct types of LVH have been described: the so
called “physiologic” hypertrophy, which is normally found in profes-
sional athletes, and “pathologic” LVH which is found in patients with
genetic cardiomyopathies such as hypertrophic cardiomyopathy
(HCM) or patients with cardiac and systemic diseases characterized
by pressure or volume overload. In both cases demonstration of myo-
cardial thickening has been considered the hallmark of LVH and re-
gression of wall thickness is the main goal of treatment. Left
ventricular mass in athletes is comparable to LVH seen in patients
ventricular hypertrophy, J Mol Cell Cardiol (2011),
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with essential hypertension of mild to marked severity [1]. In ath-
letes, however, the growth of muscular and non-muscular compart-
ments of the heart is proportionate to each other and tissue
homogeneity is preserved. On the contrary, in patients with patholog-
ic LVH, tissue homogeneity gives way to heterogeneity, as a dispro-
portionate involvement of non-cardiomyocyte cells accounts for
pathologic remodeling of tissue structure [2].

The normalmyocardium is composed of a variety of cells: cardiomyo-
cyte and non-cardiomyocyte, which include endothelial and vascular
smooth muscle cells and fibroblasts. Cardiomyocyte hypertrophy is but
one of many structural alterations in LVH. Fibroblasts undergo hyperpla-
sia and conversion to myofibroblasts, along with hypertrophy of vascular
smooth muscle cells. Non-cellular elements are central to myocardial
remodeling in LVH and include expansion of interstitial and perivascular
collagen that makes up the extracellular matrix [3]. Changes in relative
intramyocardial capillary density and arteriolar thickening are also char-
acteristic of the hypertrophied heart [4].

Patients with pathologic LVH have often symptoms and signs sug-
gestive of myocardial ischemia despite normal coronary angiograms
[5]. Under these circumstances ischemia is due to coronary microvas-
cular dysfunction (CMD). The abnormalities of the coronary microcir-
culation may be unrelated to the degree of LVH and cause a reduction
in maximummyocardial blood flowwhich, in the absence of epicardi-
al stenoses, is suggestive of CMD [6]. HCM is also characterized by
CMD which is unrelated to the extent of regional LVH and is an inde-
pendent predictor of prognosis [7,8]. Coronary resistance is distribut-
ed in series along the vascular bed and more than 90% of total
resistance resides in vessels less than 300 μm diameter, autoregula-
tory adjustments are mainly mediated by arterioles less than
150 μm diameter [9] Total resistance is determined by two phenome-
na: 1 — the caliber of the resistance vessels (vascular resistance); 2 —

the deformation of these vessels by the mechanical motion of the
beating heart (extravascular resistance) [9,10]. CMD has been dem-
onstrated in patients with HCM and those with LVH secondary to sys-
temic hypertension. In these two patient groups CMD is primarily
sustained by an increase in the vascular component of resistance
due to anatomical changes in the intramural coronary arterioles
(Fig. 1). In both cases there is massive medial hypertrophy with a re-
sultant increase in the wall/lumen ratio. These changes, however,
have not been observed in the intramural coronary vessels of patients
with LVH due to aortic stenosis, implicating extravascular mecha-
nisms as primarily responsible for CMD in these patients [5]. Other
important factors that contribute to myocardial ischemia in LVH and
U
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Fig. 1. In normal individuals, the coronary flow reserve (CFR, i.e. the ability of the coronary m
supply to meet varying demands of the myocardium in different physiologic situations. In p
exposes the myocardium to recurrent microvascular ischemia when increased oxygen dem

Please cite this article as: Camici PG, et al, The coronary circulation and
doi:10.1016/j.yjmcc.2011.08.028
increase the vulnerability of the hypertrophied heart, include in-
creased oxygen demand, contractile inefficiency that can compromise
the energetics of the myocyte and contribute to diastolic dysfunction
further impairing coronary blood flow which normally occurs almost
entirely (≥90%) in this phase of the cardiac cycle.
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2. Myocardial blood flow and coronary microvascular dysfunction

There is no technique that enables direct visualization of coronary
microcirculation in vivo in humans. Therefore, its assessment relies
on the measurement of parameters which reflect its functional status,
such as myocardial blood flow (MBF) and coronary flow reserve
(CFR). CFR is an integrated measure of flow through both the large
epicardial coronary arteries and the microcirculation [11]. In the ab-
sence of obstructive stenoses on the epicardial arteries, a reduced
CFR is a marker of CMD. Although a single cutoff value of CFR (e.g.
≤2.0) below which microvascular function is deemed abnormal
would be useful clinically, it must be noted that, in normal humans,
CFR varies according to age and gender [12]. Therefore, it is essential
to compare CFR data in patients with those obtained in age- and sex-
matched normal subjects. Adenosine is the vasodilator most widely
used to assess hyperemic blood flow because of its safety profile.
However, some limitations must be taken into consideration. When
administered systemically hypotension and reflex tachycardia alter
the coronary blood flow response and coronary vasomotor tone me-
diated by α-receptors is not fully eliminated resulting in a “near”
maximal vasodilation [13]. Resting myocardial blood flow is linearly
related to cardiac work. Therefore, when comparing different patients
in the clinical setting it is important to correct resting myocardial
blood flow for the main determinants of external cardiac workload,
i.e. as blood pressure and heart rate (rate-pressure product; RPP). A
corrected CFR can then be calculated by dividing hyperemic flow by
RPP-corrected resting MBF [14]. More complex is the assessment of
CMD in territories subtended by stenotic coronary arteries where
the evaluation of microvascular function depends on the clinical con-
text and α-adrenergic vasoconstriction is enhanced by atherosclero-
sis [15].

As proposed by Camici and Crea [5], CMD can be classified in the
following four groups: 1) CMD occurring in the absence of obstructive
epicardial coronary artery disease and myocardial diseases (type A);
2) CMD occurring in the context of cardiomyopathies (type B); 3)
CMD occurring in the presence of obstructive epicardial coronary
icrovasculature to increase myocardial blood flow — MBF) guarantees adequate blood
atients with LVH, coronary flow reserve is impaired due to different mechanisms, and
and cannot be adequately met, such as during exercise or sustained arrhythmias.

blood flow in left ventricular hypertrophy, J Mol Cell Cardiol (2011),

http://dx.doi.org/10.1016/j.yjmcc.2011.08.028
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Table 1t1:1

Pathogenetic mechanisms of coronary microvascular dysfunction.
t1:2 Modified from ref [5].

t1:3 Structural alterations
t1:4 Luminal obstruction Microembolization
t1:5 Vascular wall infiltration Infiltrative heart disease
t1:6 Vascular remodeling HCM, systemic hypertension
t1:7 Dilutional vascular rarefaction Aortic stenosis and systemic hypertension
t1:8 Perivascular fibrosis Aortic stenosis and systemic hypertension
t1:9

t1:10 Functional alterations
t1:11 Endothelial dysfunction CV risk factors smoking, hyperlipidemia,

diabetes etc.
t1:12 Smooth muscle cell dysfunction HCM, systemic hypertension
t1:13 Autonomic nervous

system dysfunction
following coronary re-canalization

t1:14

t1:15 Extravascular alterations
t1:16 Extramural compression Aortic stenosis, HCM, systemic hypertension
t1:17 Reduction in diastolic

perfusion time
Aortic stenosis
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artery disease (type C); 4) iatrogenic CMD (type D). Pathogenetic
classification of microvascular dysfunction is illustrated in Table 1 [5].

3. Myocardial bloodflowmeasured by positron emission tomography

Positron emission tomography (PET) has been shown to allow
non-invasive and accurate quantification of regional MBF if suitable
tracers are used and appropriate mathematical models applied.
These PET measurements of MBF, for which the symbol F/W is also
used, have units of volume per time per unit weight of myocardium
(i.e. ml/min/g) [11,16].

Different tracers can be used for measuring MBF using PET, includ-
ing oxygen-15 labeled water (H2

15O) [17–21], 13NH3 [22–25] and the
cationic potassium analog rubidium-82 (82Rb) [26,27]. 13NH3 and
82Rb are given intravenously as boluses. In the case of H2

15O the tracer
can be administered as an intravenous bolus injection [17,19,28,29],
an intravenous slow infusion [29,30], or by inhalation of oxygen-15
labeled carbon dioxide (C15O2) which is then converted to H2

15O by
carbonic anhydrase in the lungs [18]. Generator-produced 82Rb is a
very appealing MBF tracer because it does not require a cyclotron
on site and has a very short t1/2 (78 s) [27].

Because of its ability to provide non-invasive regional absolute
quantification of MBF, PET has been widely used to assess CFR in
healthy volunteers. Chareonthaitawee et al. [12] have investigated
the range of resting and hyperemic MBF in a large population
(n=160) of healthy males and females over a broad range of ages
(21 to 86 years). They found that baseline and hyperemic MBF are
heterogeneous both within and between individuals. Baseline and
hyperemic MBF exhibit a similar degree of spatial heterogeneity,
which appears to be temporally stable. Resting myocardial perfusion
ranged from 0.59 to 2.05 ml/min/g (average 0.98±0.23 ml/min/g)
and adenosine-induced hyperemic perfusion ranged from 1.85 to
5.99 ml/min/g (average 3.77±0.85 ml/min/g). Significant differences
within subjects were found comparing different segments with each
other, except for anterior versus lateral regions. MBF was significantly
higher in females than in males. There was a significant linear associ-
ation between age and baseline MBF, partly related to changes in ex-
ternal cardiac workload with age. Hyperemic MBF declines over
65 years of age.

Different studies have tested the short term reproducibility of MBF
measurements using PET with 13NH3 and H2

15O. [20,31]. Repeated
measurements of resting and hyperemic MBF using intravenous
dipyridamole and adenosine during the same study session were
not significantly different, demonstrating the validity of the tech-
nique. The variability of hyperemic flow was larger, as indicated by
the larger repeatability coefficient, and was paralleled by a greater
Please cite this article as: Camici PG, et al, The coronary circulation and
doi:10.1016/j.yjmcc.2011.08.028
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variability of the rate pressure product. This could mean that the
greater variability of MBF during stress is more likely due to a variable
response to vasodilators rather than to a larger measurement error. In
a subsequent study from the same group, the authors tested the fea-
sibility and reproducibility of MBF measurement during supine bicy-
cle exercise. The study results demonstrated the feasibility of this
protocol which was found at least as repeatable as using adenosine
stress. [21] More recently, Jagathesan et al. [32] have tested the long
term reproducibility of MBFmeasurement at rest and following dobu-
tamine stress in patients with stable coronary artery disease using
PET with H2

15O. Dobutamine induced reproducible changes in both
global and regional MBF and flow reserve over a time interval of
24 weeks. The reproducibility of MBF and CFR with dobutamine was
comparable with the short-term repeatability reported for adenosine
and physical exercise in healthy subjects.

4. Primary hypertrophy

Genetic cardiomyopathies comprise a wide spectrum of familial
diseases characterized by considerable clinical heterogeneity [33–
36]. The current ESC classification identifies four major groups
based on phenotype: HCM, dilated cardiomyopathy, arrhythmogenic
right ventricular cardiomyopathy and restrictive cardiomyopathy; a
fifth group includes unclassified conditions such as isolated left ven-
tricular non-compaction [37]. Despite substantial differences among
these entities, there is significant overlap in genetic etiology, pheno-
typic aspects and clinical manifestations, often overriding strict classi-
fications. All cardiomyopathies share common elements such as the
modality of transmission, generally autosomal dominant and incom-
pletely penetrant, an increased risk of arrhythmias and sudden cardi-
ac death, as well as a variable tendency to progress towards heart
failure and its complications [35,37]. In addition, virtually all cardio-
myopathies seem to share some degree of CMD, which can be
detected even at early stages and is related with disease progression
and long-term outcome [5,38–40]. Multiple mechanisms underlie
CMD in the various types of familial cardiomyopathies, which are
likely different in the various conditions, and in many cases remain
to be elucidated. One notable exception is represented by HCM, a con-
dition in which the causes, clinical correlates and prognostic implica-
tions of CMD have been thoroughly investigated over the last two
decades, providing important elements for risk stratification and
promising treatment options for this condition [5,7,8,41].

HCM is the most common genetic heart disease, with a 1:500
prevalence in the general population, and is generally associated
with mutations in one of eight genes coding for sarcomere proteins,
including myosin binding protein C (MYBPC3), thick filament pro-
teins (beta-myosin heavy chain [MYH7] and the regulatory and es-
sential light chains [MYL2 and MYL3]), and thin filament proteins
(troponin-T [TNNT2], troponin-I [TNNI3] alpha-tropomyosin [TPM1],
and alpha-actin [ACTC]) [33,35,42]. To date, however, over 20 genes
have been described as HCM-causing, and include those coding for
Z-disk proteins such as titin, muscle LIM protein, telethonin, myoze-
nin 2 and vinculin, as well as rare variants causing rare storage syn-
dromes which result in HCM phenocopies, such as the γ2 subunit of
AMP-dependent protein kinase (PRKAG2) and the liposomal-associ-
ated membrane protein 2 (LAMP2) [35].

The hallmark of HCM is represented by primary LVH, which is gen-
erally asymmetric and develops in the absence of cardiac or systemic
triggers [33,35]. Besides LVH, however, the HCM phenotype involves
a complex interplay of myocardial disarray, interstitial fibrosis, mitral
valve and sub-valvular abnormalities, and coronary microvascular
remodeling [43]. At the arteriolar level, HCM patients exhibit marked
wall thickening of intramural coronary arterioles, largely due to me-
dial hypertrophy and intimal hyperplasia, which cause severe reduc-
tion in luminal area [5,44,45]. These structural abnormalities are
considered the most relevant substrate of CMDwhich, in the presence
blood flow in left ventricular hypertrophy, J Mol Cell Cardiol (2011),
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of increased oxygen demand, such as may occur with exercise or sus-
tained arrhythmias, ultimately exposes the myocardium to recurrent
ischemia and its consequences [5,8,46]. Additional features such as
myocyte disarray, interstitial fibrosis, reduced capillary density and
increase in subendocardial LV wall stress due to obstruction may all
contribute to impairment of flow and CMD [5,45,47]. Compelling ev-
idence for the occurrence of myocardial ischemia in HCM patients,
despite normal coronary angiograms, comes from in vivo studies
demonstrating net lactate release in coronary venous blood during
atrial pacing [48] as well as from post-mortem studies on patients
who died suddenly, or at transplant, showing frequent and often ex-
tensive areas of myocardial damage (Fig. 2) [45,49,50] exhibiting all
stages of ischemic injury; from an acute phase with coagulative ne-
crosis and neutrophilic infiltrate, to a subacute phase with myocytoly-
sis and granulation tissue healing, to a chronic phase characterized by
post-necrotic replacement-type fibrosis [45]. Unfortunately, myocar-
dial ischemia is often silent in HCM patients, and symptoms are not
reliable in identifying patients with severe CMD. In addition, several
techniques employed over the years to assess the occurrence myocar-
dial hypoperfusion or ischemia, such as standard exercise testing,
stress echocardiography and thallium-201 scintigraphy, have proven
neither sensitive nor specific in this disease [5,48,51,52].

In the early nineties, a study from our group using PET first dem-
onstrated the occurrence of severe CMD in HCM patients, not only
in the hypertrophied septum, but also in the non-hypertrophied LV
free wall [7]. Subsequent studies using PET and, more recently, cardi-
ac magnetic resonance (CMR), have confirmed that CMD is a diffuse
phenomenon in HCM hearts. Nevertheless, the absolute degree of mi-
crovascular impairment remains partly related to the extent of LVH,
with most severe blunting generally occurring at the septal level,
where maximum wall thickening is usually present [41]. In addition,
the subendocardial layers of the LV were found to have more severe
CMD compared to the subepicardium, likely due to the effects of ex-
travascular compressive forces and elevated intraventricular pres-
sures that are higher in the inner LV layers [5,53]. The latter account
for improvement of subendocardial perfusion following invasive re-
lief of obstruction with surgical myectomy or alcohol septal ablation
[54,55].

In the last decade, important pathophysiological information re-
garding the long-term consequences of ischemia has been acquired
in HCM patients following the introduction of CMR. Convincing
U
N
C
O

R
R

Fig. 2. Small-vessel disease and the morphologic basis for myocardial ischemia in HCM. (A
areas of gross macroscopic scarring are evident throughout the LV myocardium (white arrow
dial layers of the vessel wall associated with small luminal area. (C) Area of myocardium wit
to an area of normal myocardium. Original magnification 55×.
Reprinted, with permission, from Maron et al. [44].
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evidence has been accrued that late gadolinium enhancement
(LGE), as visualized by CMR, is representative of myocardial fibrosis
in HCM, based on several case reports which have compared in vivo
CMR findings with explanted specimens [56]. In large HCM cohorts,
approximately 50–80% of patients demonstrate areas of LGE, in vari-
able patterns, occupying on average 10% of the overall LV myocardial
volume [57,58]. The extent of LGE is inversely related to segmental
wall thickening and LV ejection fraction, suggesting a direct relation-
ship between extent of myocardial fibrosis and degree of LV function
impairment [58]. Furthermore, substantial CMD has been described in
LV segments with LGE, but also in those that are contiguous, as com-
pared to remote, to LGE [59,60]. These findings suggest that CMD over
time may lead to recurrent ischemia and myocyte death, thus acting
as a localizer of replacement fibrosis [51].

Noticeably, severe impairment of microvascular function and
myocardial fibrosis are significantly more prevalent among HCM pa-
tients harboring sarcomere gene mutations, compared to those that
are genotype-negative [61], accounting for the increased long-term
prevalence of ventricular dysfunction and heart failure reported in
the genotype-positive subgroup [42]. Thus, the specific genetic defect
causing HCM may represent a major determinant of microvascular
remodeling, following molecular pathways that are largely indepen-
dent of hypertrophy itself and potentially date back to the early
phases of cardiac development [36].

The chain of events leading from microvascular remodeling to CMD,
ischemia and replacement fibrosis, has important clinical implications
for long-term outcome in HCM patients (Fig. 3) [5,51]. In about one-
third of HCM patients, the clinical course is progressive and disabling,
leading to chronic limiting symptoms and complications such as atrial fi-
brillation and stroke, and ultimately causing heart failure-related death
[33,43]. In this subgroup, consistent evidence points to CMD as a critical
determinant of clinical progression and adverse outcome [51].We previ-
ously reported on the long-term outcome of 51 HCM patients prospec-
tively followed after the initial measurement of dipyridamole-MBF by
PET [8]. During an average follow-up ofmore than 8 years, 31% of the pa-
tients died or experienced severe clinical deterioration. At multivariate
analysis, a hyperemic flow value ≤1.1 ml/min/g, reflecting severe
CMD, was the most powerful independent predictor of outcome in our
cohort, with a 9.6 independent increase in risk of cardiovascular mortal-
ity [8]. In addition, patients with the most severe degrees of CMD
showed higher risk of progressive LV remodeling and systolic
) Native heart of a patient with end-stage HCM who underwent transplantation. Large
s). (B) Intramural coronary artery in cross-section showing thickened intimal and me-

h numerous abnormal intramural coronary arteries within a region of scarring, adjacent
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Fig. 3. Proposed chain of pathophysiologic events linking microvascular remodeling and dysfunction to myocardial ischemia and LV remodeling and their consequences on patient
outcome.
Modified from Maron et al., [51].
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dysfunction, including the so-called end-stage phase [62]. It is notewor-
thy that at the time of PET scan, none of the patients had severe symp-
toms, and only a few would have been considered at high risk based
on the established indicators of outcome [34, 8]. Altogether these find-
ings have stimulating implications, in that assessment of myocardial
flow and fibrosis may significantly improve risk stratification and allow
the implementation of preventive measures in patients with HCM
[5,49,51,63].

Finally, among male genotype-negative patients with HCM, a subset
of 2–4% is likely to be affected by the cardiac variant of Anderson Fabry
disease (AFD), an X-linked disease caused by mutations in the gene
encoding alpha-galactosidase A, which results in accumulation of a gly-
cosphingolipid, globotriaosylceramide, within lysosomes [64]. This accu-
mulation leads to cellular dysfunction, particularly in the endothelium,
resulting in tissue hypoperfusion. Classic AFD is a multi-organ disease
with associated cardiac manifestations including arrhythmias, valvular
abnormalities and cardiomyopathy [64]. However, the cardiac variant
of the disease often exhibits little extracardiac involvement, making
the diagnosis difficult, and presents with a cardiomyopathy character-
ized bymild to moderate degrees of LVH generally seen inmale patients
over the age of 40 years [40,65]. Despite being labeled as a myocardial
storage disease, glycosphingolipid deposition accounts for less than 3%
of the total increase in cardiac mass, the rest being expression of true,
and as yet unexplained cardiomyocyte hypertrophy [65]. Patients with
AFD may have angina, progressively deteriorating LV systolic function
andmyocardial scarring despite angiographically normal coronary arter-
ies. These abnormalities are secondary to severe CMD, comparable to
Please cite this article as: Camici PG, et al, The coronary circulation and
doi:10.1016/j.yjmcc.2011.08.028
that observed in HCM, although due to differentmechanisms, in that en-
dothelial globotriaosylceramide deposition and myocardial fibrosis,
rather than microvascular remodeling, are believed to play a major role
[5,64,65]. Unfortunately, in the only pilot trial with enzyme replacement
therapy in AFD patients, no improvement in coronary microvascular
function could be observed, despite a significant reduction in plasma
concentrations of globotriaosylceramide [40].

5. Secondary hypertrophy

Exercised-induced cardiac adaptations are thought to be benign, and
include increased cardiac mass, enhanced aerobic capacity, and diastolic
enlargement, resulting in increased ventricular stroke volume and cardi-
ac output [66]. These changes are largely the consequences of endurance
exercise training, such as long distance running or swimming, and are
associatedwith eccentric remodeling. On the other hand physical condi-
tioning based on strenuous strength training, such as weight lifting and
wrestling, causes concentric cardiac hypertrophywith amodest increase
in cardiac output but without chamber dilatation and an increase in pe-
ripheral resistance, the intermittent pressure-overload and concentric
hypertrophy may not have the same benefits as endurance training.
There is evidence that prolonged exercise conditioning including a
strength component [67] and endurance training such as marathon run-
ning in subjects over 50 years [68,69] cannot be distinguished from
pathological hypertrophy and can potentially lead tomyocardial disease.
LVH induced by intense physical training in elite athletes is accompanied
by an increase in coronary flow capacity [70]. It seems unlikely, though,
blood flow in left ventricular hypertrophy, J Mol Cell Cardiol (2011),
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that the increase of hyperemic MBF could be related to an increase in
capillary or arteriolar density. In swine undergoing treadmill training,
capillary growth occurring in the early phases may outgrow the in-
crease in LV mass. However, with prolonged training, capillary growth
does not exceed but rather matches the increase in left ventricular
mass [71]. The supernormal coronary capacity is more likely to be as-
cribed to shifts of the neuro-humoral and metabolic regulation.

Thyroid hormone actionmarkedly stimulates the cardiac protein syn-
thesis and leads to concentric cardiac hypertrophy and neo-angiogenesis
[72]. When hyperthyroidism is of a limited duration, a “physiological”
hypertrophic phenotype prevails characterized by increased SERCa2
levels, increased MHC alpha levels, and decreased MHC beta levels. An-
giogenesis stimulated by thyroid hormone is initiated at the integrin re-
ceptor (αvβ3) for the hormone on endothelial and vascular smooth
muscle cells [73].

Functional and structural alterations of the coronary circulation
have been well documented in all forms of pathologic LVH [74]. In chil-
dren ventricular hypertrophy induced by pressure overload, e.g. aortic
coarctation, is paralleled by angiogenesis, hence the capillary density
is similar to normal hearts. Conversely, in adults with acquired aortic
stenosis capillary density can bedecreased [75]. If capillary density is es-
timated as capillary number per unit area the density is decreased pro-
portionally to the increase of the volume of the myocytes [76]. When
vascular growth does not match myocyte growth there is relative rare-
faction rather than absolute decrease in the number of capillaries. As a
consequence minimal coronary resistance per gram of tissue is in-
creased. This picture is worsened when medial hypertrophy of the ves-
sels ensues and results in luminal narrowing. Besides myocyte
hypertrophy coronary arterioles undergo structural and functional al-
terations in patients with systemic hypertension [77]. On the one
hand vessel and lumen areas in hypertensive patients with LVH are sig-
nificantly enlarged compared with those in hypertensive patients with-
out LVH [78]. On the other hand intramyocardial arterioles b80 μm
show a thickening of thewall with a twofold increase of thewall/lumen
ratio. In parallel there is increased perivascular fibrosis. Larger intra-
myocardial arterioles do not show a significant wall thickening [79].
As a consequence CFR is reduced [6,80–82] andminimal coronary resis-
tance is increased significantly [78]. The reduction of CFR in hypertro-
phied hypertensive hearts is caused both by a concomitant increase of
resting MBF [78], due to higher workload and oxygen consumption,
and a reduction of hyperemic response [83] to endothelial dependent
[78,84] and independent [78] stressors. The impairment of endothelial
function seems to be a consequence rather than cause of the reduction
of hyperemic flow [84,85] and it can be reversed by appropriate treat-
ment [82,86–88]. Interestingly, spontaneously hypertensive rats trea-
ted for 8 weeks with perindopril alone or in combination with
indapamide had evidence of reverse remodeling of the coronarymicro-
vasculature, paralleled by an increased coronary flow. The authors
found a significant inverse relationship between hyperemic coronary
flow and arteriolar medial area. Indapamide alone led to a similar re-
duction in medial area, but had no effect on coronary flow supporting
the hypothesis that perindopril may increase MBF not only by promot-
ing reverse remodeling of the coronary microvessels, but also by im-
proving endothelial function [76,82].

Increased myocardial and extravascular compressive forces con-
tribute mechanically to flow impediment in LVH [89].The subendo-
cardium is underperfused during systole and it must compensate by
means of a reverse gradient flow in diastole [90]. Elevated end dia-
stolic pressure in the long term can restrain subendocardial perfusion
particularly during physical or pharmacological stress causing signs
and symptoms of ischemia [91] in the absence of significant epicardial
lesions [92]. Moreover, the risk of ischemia is higher in dilated hearts
which have exhausted the coronary reserve already under resting
conditions [93].

In aortic stenosis the structure of the arterioles is preserved, the
external matrix and fibroblasts and myofibroblasts [79] are increased
Please cite this article as: Camici PG, et al, The coronary circulation and
doi:10.1016/j.yjmcc.2011.08.028
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together with biomarkers of matrix turnover [94]. The current guide-
lines indicate surgery for aortic stenosis (AS) when the left ventricu-
lar (LV) ejection fraction is b50% or when symptoms (class I for ESC,
IIb for AHA:ACC) are unmasked during an exercise test [95]. The inci-
dence of angina pectoris is between 30% and 40% of patients with aor-
tic stenosis in the absence of coronary artery disease; however, no
relationship has been demonstrated between angina pectoris and im-
pairment of flow reserve in these patients. Moreover, in asymptomat-
ic AS, the LV ejection fraction may remain in the normal range for
years despite the occurrence of profound LV remodeling [96,97] mul-
tidirectional impairment of myocardial strain [98] and concomitant
decrease of the vasodilatory capacity of the microcirculation [90,99].

Rajappan and colleagues measuring MBF with positron emission to-
mography in patients with AS found that total MBF to the heart at rest in-
creased proportionally with LV mass, suggesting that the demand of the
hypertrophied myocardium is met by an increase in baseline MBF [90].
This latter can be envisaged as a compensating mechanism of adaptation
within the coronarymicrocirculation for the increased hemodynamic and
intramural forces that the LV are subjected to. CFR is reduced both in the
subepicardium and in the subendocardium, although at greater haemo-
dynamic workloads, the subendocardial microcirculation appears to be
affected to a greater extent than the subepicardium. This would suggest,
as it is often clinically apparent, that as the severity of the aortic stenosis
increases, the compensation afforded by hypertrophy of themyocardium
is eventually offset by the hemodynamic effects exerted upon it. CFR is
strongly related to the hemodynamic severity of valve stenosis, i.e. valve
orifice area [100], and reduction in hyperemic diastolic perfusion time
whereas there is only aweak correlationwith LVmass [90]. A subsequent
study by Rajappan et al. [101] lent further support to this notion demon-
strating that in spite of a significant and prompt regression of LV mass
after aortic valve repair and a reduction in total left ventricular blood
flow, coronary microcirculatory function improved only slightly and
remained blunted 1 year after aortic valve repair. The slight improvement
in CFR was more closely related to changes in hemodynamic variables
such as aortic valve area and diastolic perfusion time [102]. The Canadian
TOPAS study analyzed patients with low-flow, low-gradient AS; this is a
heterogeneous population consisting of patients with “true” severe AS,
in whom an afterload mismatch results from a severely stenotic valve;
and “pseudo-severe” AS, in whom the valve is only mildly or moderately
stenotic, but appears severe due to difficulties in determining disease se-
verity under low-flow conditions. Patients with true severe AS showed a
strong trend towards a higher restingMBF and greater impairment of CFR
comparedwithpatientswith “pseudo-severe”AS, consistentwith a great-
er haemodynamic burden on the left ventricle [103]. The results were in
apparent discrepancy with the findings of Rajappan et al.: on the one
hand there was a strong relationship of CFR with indexes of stenosis se-
verity on the other hand Burwash and colleagues observed that resting
MBF and not hyperaemic MBF, was directly related to stenosis severity
in patientswith low-flow, low-gradient AS. In this latter condition end di-
astolic LV pressure andwall stresses were likely to bemore elevated dur-
ing near-maximal vasodilation. Thus, similarly towhat has been observed
in conscious dogs the pre-load [104] more than the afterload can be held
responsible for the impairment in hyperemic bloodflow.Moreover, in the
TOPAS substudy [103] there was a higher incidence of coronary artery
disease whereas the population described by Rajappan et al. had angio-
graphycally normal coronary arteries [90].

6. Conclusions

The availability of techniques such as PET that enables the non-
invasive measurement of myocardial blood flow in humans in vivo
has contributed to highlight the role of coronary microvascular
remodeling and dysfunction in patients with primary and secondary
LVH.

Undoubtedly, our understanding of the mechanisms leading to is-
chemia in patients with LVH has improved significantly and the in
blood flow in left ventricular hypertrophy, J Mol Cell Cardiol (2011),
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vivo demonstration of CMDwith PET is providing new important infor-
mation on patient stratification and prognosis and may become also a
valuable surrogate marker to test the efficacy of old and new drugs.
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