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 Differential Analysis of Operating System Indicators for Anomaly Detection in 

Dependable Systems: An Experimental Study 
 

Abstract– Dependable complex systems often operate under variable and non-stationary 

conditions, which requires efficient and extensive monitoring and error detection solutions. 

Amongst the many, the paper focuses on anomaly detection techniques, which require measuring 

the evolution of monitored indicators through time to identify anomalies, i.e. deviations from the 

expected operational behavior. The timely identification of anomalies in dependable, fault tolerant 

systems allows to timely detect errors in the services and react appropriately. In this paper, we 

investigate the possibility to monitor the evolution of indicators through time using the random 

walk model on indicators belonging to Operating Systems, specifically in our study the Linux Red 

Hat EL5. The approach is based on the experimental evaluation of a large set of heterogeneous 

indicators, which are acquired under different operating conditions, both in terms of workload and 

faultload, on an air traffic management target system. The statistical analysis is based on a best-

fitting approach aiming to minimize the integral distance between the empirical data distribution 

and some reference distributions. The outcomes of the analysis show that the idea of adopting a 

random walk model for the development of an anomaly detection monitor for critical systems that 

operates at Operating System level is promising. Moreover, standard distributions such as Laplace 

and Cauchy, rather than Normal, should be used for setting up the thresholds of the monitor. 

Further studies that involve a new application, a different Operating System and a new layer (an 

Application Server) will allow verifying the generalization of the approach to other fault tolerant 

systems, monitored layers and set of indicators. 

 

Keywords: System monitoring; Measurements on computer systems; OS anomalies; Anomaly 

detection; Dependability measurement; Fault detection.  
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I. INTRODUCTION 

It is well-known that dependable complex and real-time systems require to implement extensive 

monitoring functionalities to timely detect both hardware and software errors [1], [21]. In the last 

years, several monitors and error detectors have been proposed to continuously check the health 

of the system being monitored and detect errors within specific time deadlines. Amongst the 

possible error detection approaches, attention has recently been focused on anomaly detection, 

which refers to the problem of finding patterns in data that do not conform to the expected behavior 

[6]. Such patterns are changes in the indicators characterizing the behavior of the system that are 

caused by specific and non-random factors, such as a system overload, or to the activation of faults 

[3], [5]. 

Anomalies can be detected using various techniques such as statistics, machine learning, model 

based and information theory. In general, a prior knowledge of the system behavior and/or a 

preliminary profiling phase are required, to define thresholds and rules for the monitored indicators 

used by the anomaly detector. This information can be gained by using a system model, either 

defined from experience or inferred from data collected on field [4]. For example, in [5] the CPU 

consumption of transactions in web application is modeled on the basis of statistical linear 

regression. The model is then used to detect performance anomalies, namely those changes in CPU 

usage that are not clearly justified by the actual workload. In [2] the authors propose a configurable 

detection framework to reveal anomalies in the Operating System (OS) behavior, related to system 

misbehaviors (software faults injected at the application level). For each monitored OS indicator, 

the framework computes lower and upper adaptive thresholds in order to take into account the 

dynamic behavior of the system. If the value of a specific indicator does not fall within the 

estimated interval, it is marked as suspicious. All suspicious indicators are combined to reveal an 

anomaly. The work in [2] models the behavior and dynamics of the OS indicators using the 

Gaussian random walk model [10], [11], so that changes in the features of indicators caused by 

non-random factors are considered suspicious. The random walk model is intuitive and easy-to-
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model, thus resulting practical in many scenarios e.g., for the modeling of a software clock in [12]-

[15]. While the results shown in [2] are encouraging, it has to be noted that the random walk model 

is empirically used without any quantitative assessment of its validity for the indicators taken into 

consideration, nor any motivated choice of the expected CDF.  

The objective of the paper is to analyze the appropriateness of the random walk model to 

represent the behavior of the monitored variables belonging to the OS, with respect to an 

experimental study. Specifically, the target system is Linux Red Hat EL5 and the approach is based 

on the experimental evaluation of 16 heterogeneous indicators, selected amongst the many offered 

by the OSs due to their semantics which bounds them to part of the OS that are mostly impacted 

by system anomalies, acquired under different operating conditions, both in terms of workload and 

faultload, on a target system. These monitors are implemented as a loadable kernel module by 

means of the SystemTap tool [16], which allows to program breakpoint handlers in a high level 

scripting language. As for practical applicability, this means that algorithms for the anomaly 

detection at OS level could be properly designed by analyzing the first-order time differences of 

some monitoring variables, represented by OS indicators: the analysis can lead to the definition of 

monitoring rules that can be applied in anomaly detectors built at the OS levels. 

The insights of this work have potential to be verified (and thus generalized) for other OSs or 

different system layers (e.g., middleware software as the Application Servers), as well as different 

kinds of systems, e.g. for the anomaly detection monitoring in cloud computing infrastructures 

[26], or the anomaly-based resource usage monitoring in large cluster systems [27]. 

While it is well known from detection theory that a statistical analysis of the first-order time 

differences can be useful to detect faults [35], there is no established statistical model for the OS-

level heterogeneous indicators considered in our experimental study. Indeed, to the best of the 

authors’ knowledge, there has been no attempt to approach anomaly detection in dependable 

systems through a differential analysis of the system indicators. 
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The paper is the extended version of [20], which presented a simple qualitative analysis of the 

first-order differences of monitored indicators to evaluate whether the application of a Gaussian 

random walk approach was feasible for such systems. The value of this extended version of the 

paper lies in the quantitative assessment of the validity of the random walk approach for the 

heterogeneous indicators selected at OS level, and to the determination of possible alternative 

reference CDFs, different from the Normal, to fit the data. In particular, the experimental data are 

analyzed by comparing their goodness of fitness with the Gaussian, Cauchy, Laplace and Skellam 

theoretical distributions. The metric used to the scope is the Cramer-Von Mises integral distance. 

The results of the analysis show that for a large number of cases, the histogram of the first order 

time differences well approximates a Cauchy or a Laplace distribution, independently of the nature 

of the indicator and its statistical distribution. So, the conclusions given in [20] have to be partially 

corrected as a consequence of the statistical analysis presented here.  

The rest of this paper describes basics on dependable systems and anomaly detection in Section 

II, the experimental campaign in Section III, experimental results in Section IV and conclusions 

in Section V. 

 

II. ANOMALY DETECTION IN DEPENDABLE SYSTEMS 

This section summarizes the main concepts and definitions related to dependable computing 

and anomaly detection that are necessary for a complete understanding of the work; an exhaustive 

description of this set of concepts and definitions can be found in [1], [21] for dependability and 

in [5] for anomaly detection in dependable systems. 

A. Dependability concepts 

A service is defined as a sequence of external states of the system, and a service failure (or 

simply, failure) as an event that occurs when the delivered service deviates from the correct 

service. Dependability of a system is the ability to avoid failures that are more frequent and more 
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severe than acceptable. Deviation from correct service may assume different forms that are 

called failure modes and are ranked according to failure severities. An error is instead the 

part of the total state of the system that may lead to its subsequent service failure. The 

adjudged or hypothesized cause of an error is called a fault. 

A fault is active when it produces an error; otherwise, it is dormant. Error propagation 

within a given component is caused by the computation process; a failure occurs when an 

error is propagated to the service interface and causes the service delivered by the system 

to deviate from correct service. Failure of a system causes a permanent or transient external 

fault for the other system(s) that receive service from the given system. This set of 

mechanisms constitutes the “fault-error-failure” chain of threats shown in Fig. 1. 

 

 

Fig. 1. Fault-error-failure chain. 

 

Failures in complex systems have a variety of possible causes, which range from software to 

hardware, up to human errors, which are the most probable form of operational error [22]. It is not 

rare that failures “involve complex combinations of equipment failure, environmental factors, 

human error, and other causes” [23]. Among other possible causes of failure we have 

environmental causes, such as wide temperature variations, material aging and fatigue [22].   

Means to attain dependability can be grouped into four categories: i) fault prevention to 

prevent the occurrence or introduction of faults; it is typically part of general engineering 

activities; ii) fault tolerance, whose introduction is facilitated by the addition of specialized 

support systems (e.g. for QoS monitoring, [24]), to avoid service failures in the presence of 

faults; iii) fault removal to reduce the number and severity of faults, e.g the fault tolerance 

mechanisms of the systems may be tested by fault injections tests [25]; iv) fault forecasting 

fault error failure activation propagation causation fault … … 
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to estimate the present number, the future incidence and the likely consequences of faults. 

The latter is conducted by performing a qualitative or quantitative evaluation of system 

behavior with respect to fault occurrence or activation.  

Our work, like other anomaly detection approaches for dependable systems monitoring in 

general, can be considered as part of the fault tolerance group, as their aim is to collect 

indications, whenever not evidence, of the occurrence of faults and the consequent 

generation of errors in system's services. 

B. Anomaly detection 

Modern complex software systems usually consist of many interacting components and 

layers, including operating systems and network protocols, virtual machines, middleware 

technologies and OTS items that all together may reach millions of lines of code (and several 

connections and physical nodes). Revealing all software faults with pre-operational testing 

is very difficult and expensive and exhaustive testing is typically unfeasible. As a result, such 

systems suffer from residual faults, i.e., faults that escape testing and get activated only 

during operation. 

Very often these software systems have a long lifetime, during which they evolve as they 

are integrated with other (possibly legacy) systems, and/or are updated either to reflect 

changes in their requirements or for bugs fixing. Such evolution is reflected in the 

progressive increase in the complexity of services and often causes services to operate 

beyond the design conditions that were initially planned for them. Also, new and unexpected 

overload conditions could occur as a consequence of a new and heavier workload, which can 

result in failures and costly service downtime. 

The IEEE Standard 1044-1993 [31] defines an anomaly as “any condition that deviates from 

expectations”. These expectations represent nominal/desired behavior that may be derived 

from requirements, design documents, standards and on-field experience.  
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Anomaly detection is an important mean to design monitoring procedures for timely 

detection of errors or attacks, since anomalies may be related to the activation of faults, 

performance issues, and malicious activities [29], [30]. 

Engineers often use knowledge of the system behavior or preliminary profiling phases to 

define worst-case thresholds and a-priori rules to detect anomalies [4], [28].  

Recent studies show that revealing anomalies at OS level is a promising approach when 

traditional detection mechanisms (e.g., based on event logs, probes and heartbeats) exhibit 

poor performance or have limited applicability [33], [34]. The driving idea is to shift the 

observation perspective to the OS, monitoring its behaviour and interactions with the 

applications. The aim is to detect OS anomalies, such as system call errors and scheduling 

delays, which may be symptoms of incorrect behaviours. The approach is particularly suited 

for off-the-shelf (OTS) and legacy-based services, as it does not require to modify the service 

itself but only the underlying layer (the OS). Revealing anomalies at OS level is a general 

approach that can be applied to a variety of circumstances and applications in a much more 

efficient and cheap way than instrumenting the applications themselves. In fact, instead of 

re-instrumenting each application each time, it would only be necessary to tune an already 

existing instrumentation. 

 

III. THE EXPERIMENTAL DATASET 

The dataset that has been used for the analyses is the result of the experimental campaign 

performed in [2], where the authors implemented an instrumentation infrastructures able 

to collect OS-level indicators, both for Linux and Windows environments. The testing activity 

was performed by analyzing a large amount of data monitored in a real and complex case 

application, namely the SWIM-BOX® [2], a prototype to support global interoperability for 

the novel Air Traffic Management (ATM) systems. SWIM-BOX is deployed on Windows and 
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Linux platforms. It is a complex OTS (Off-The-Shelf)-based application, which offers several 

facilities to SWIM-BOX users: synchronous/asynchronous communication pattern (i.e. 

request/reply, publish/subscribe), security services (e.g., authentication, authorization, 

encryption) and distributed and transactional data storage.  The application is made of 

several OTS, e.g., OS, the application Server (JBoss) and the data distribution middleware 

(OpenSplice). 

The experiments consist in the execution of several functional and performance tests. In 

addition, faults are injected to mimic the activation of residual software faults in the data 

distribution middleware during operation. Errors resulting from the injection of software 

faults may propagate to the interface of the JBoss application server by leading to: i) hang; 

ii) crash; or iii) content failures. 

Using SWIM-BOX under Linux OS, the collection of system indicators is accomplished by 

means of probes dynamically inserted into the kernel, without modifying and recompiling 

the OS or application source code. A probe consists of a breakpoint (i.e a special CPU 

instruction that suspends the execution of the kernel instruction) and a handler routine, 

which is executed at the breakpoint to provide the desired information (e.g., input 

parameters or return values of called functions). These monitors are implemented as a 

loadable kernel module by means of the SystemTap tool [16], which allows to program 

breakpoint handlers in a high level scripting language. 

Using SWIM-BOX under Windows OS the monitoring infrastructure has been implemented 

using the Windows Reliability and Performance Monitor (WRPM) [17]. WRPM is a 

monitoring tool, available on both Windows desktop and Server releases, which provides 

several functionalities to: i) monitor application and hardware performance in real time; ii) 

track the performance impact of applications and services; iii) generate alerts and reports; 

iv) take actions when user-defined thresholds are exceeded.  
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The OS Level indicators that have been monitored in both systems are the following (in 

brackets we present an acronym that will be used in the following of the paper): 

• system call errors (SYSCALL): number of error codes returned from system calls 

invocation; 

• OS signals (SIGNAL): number of signals used for coordination or information 

purposes (e.g., invalid memory access, process crash, loss of a socket connection, I/O data 

available); 

• task scheduling timeouts (TASK_SCHED_TO): number of timeouts expired since a 

process released the CPU; 

• waiting time for critical section timeouts (MUTEX): number of timeouts expired since 

a process (thread) started waiting for entering a critical section; 

• holding time in critical section timeouts (SCHED_THRESHOLD): number of timeouts 

expired since a process (thread) entered a critical section; 

• process (thread) activation/termination (PROCESS_EXIT): number of processes 

(threads) starting/terminating their execution;   

• disk Read/Write timeouts (DISK/ReadTO and DISK/WriteTO respectively for 

timeouts on reading and writing): number of timeouts expired since the last read/write 

operation on disks; 

• socket I/O timeouts (NET/IN and NET/OUT respectively for inputs and outputs): 

number of timeouts expired since the last read/write operation on a network socket; 

• disk I/O throughput (DISK/IN and DISK/OUT respectively for inputs and outputs): 

bytes transferred per time unit in operations on disks; 

• network I/O throughput (UDP_SEND and UDP_RECV respectively for UDP inputs and 

outputs; TCP_SEND and TCP_RECV respectively for TCP inputs and outputs): bytes 

transferred per time unit in operations on network devices. 
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This experimental data are organized in an OLAP [7] data warehouse modeled through 

fact and dimension tables.  

Facts tables contain an entry for each sample measured in experiments. An entry contains 

the values measured for the monitored resources and parameters of that particular 

experimental setup, namely the values of dimensions.  

Dimension tables refer to specific characteristics of the experimental setup and they store 

the possible values for them. We consider the following dimensions: 

• Target System (SUT). Characteristics of the Target System, e.g., OS, number of CPU, 

CPU speed, RAM, disk speed. By SUT 1 we indicate a Linux testbed, equipped with Intel Xeon 

2.5 GHz (4 cores) CPU, 8GB RAM, running Red Hat Enterprise Linux 5.By SUT2 we indicate a 

Windows testbed composed by an Intel Pentium 4 3.4 GHz (2 cores), with 3GB RAM, running 

Windows Server 2008. 

• Events. Monitored events, which are described in this section. 

• Workload. Characteristics of the adopted workload. Message rate, message burst rate 

(a burst is a collection of message received into a single interaction) and messages per burst 

have been varied through different executions. 

• Faultload. The type of faults injected and the software component target of the 

injection. In this campaign we used code mutation technique.  

• Run. Information on the executed run (e.g., start time, end time, sample period). 

• Scenario. The description of the application scenario, e.g., the number of entities 

involved in the communication and their role (i.e. Manager Contributor). 
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IV. EXPERIMENTAL RESULTS 

While some of the system indicators monitored during the experimental campaign can be 

generally associated to discrete-time and continuous amplitude random processes, in many cases 

the system indicators take values in the set of natural numbers N (number of last scheduling 

timeout, number of allocated threads, number of disk read timeout, number of disk write timeout). 

Figures 2, 3 and 4 show measurement results related to three different indicators, in absence of 

faults. They are related respectively to disk write timeout; net in throughput (Byte/s); and I/O write 

throughput (Byte/s). In each figure, the evolution versus time of the indicator is shown (subfigure 

a), along with the histogram of the values acquired for the indicator (subfigure b) and the histogram 

of the first-order time differences of the indicator (subfigure c). The first order time difference ∆ of 

the generic indicator x is defined as 

 ∆(k) = x(k+1) - x(k) (1) 

where k is the discrete-time variable. Indicators values are acquired with a sampling period 

Tc = 1 s. The number of samples for each indicator varies with the experiment, ranging from few 

hundreds to few thousands.  

As expected, the histograms in figures 2.b, 3.b and 4.b show that the monitored system 

indicators have their “own” probability distributions, which in principle can depend on the specific 

run of the experiment, as well as on the characteristics of the machine under test and the workload, 

not to mention possible faults. What is really interesting is that the histograms of the first order 

time differences Δ  have very similar shapes, no matter what the original distribution of the 

indicators is. Indeed, even histograms of indicator values that appear very different in shape, range 

and characteristics give place to a related histogram of first order time differences that appears to 

be Gaussian-like (see figures 2.c, 3.c and 4.c). 
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Fig.2. SUT 1, workload 1, event 10 (disk write timeout), no faultload, run 8. (a) signal, (b) histogram of the 

signal and (c) histogram of first order time difference. 

 
Fig.3. SUT 2, workload 6, event 19 (net in throughput), no faultload, run 63. (a) signal, (b) histogram of the 

signal and (c) histogram of first order time difference. 
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Fig.4 SUT 2, workload 6, event 28 (IO write throughput), no faultload, run 63. (a) Signal, (b) histogram of the 

signal and (c) histogram of first order time difference. 
 

Similar outcomes have been observed in experiments with faults. As an example, Figure 5 is 

related to the indicator “scheduling timeouts” (i.e., number of timeouts expired since a process 

released the CPU). The figure shows the histograms for the indicator and its first time difference, 

in presence of a natural fault (i.e., an error has been detected with no injection) starting after about 

160 s. Figure 5.c shows that the histogram of the monitored system indicator first order time 

difference resembles a discretized Gaussian distribution, again. Another experiment with fault 

related to the indicator disk write timeout is shown in Figure 6.  

In both these cases, an inspection of subfigures c (Figures 5.c and 6.c) suggests that the step 

size at the time of the fault is well over six-sigma limits (Fig. 5.c, in a neighborhood of -216 and 

Fig. 6.c, in a neighborhood of -18), so the system indicators can easily be considered out of control.  
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Fig.5. SUT 1, workload 2, event 8 (scheduling timeouts), faultload 2, run19. (a) Signal, (b) histogram of the 

signal and (c) histogram of first order time difference. 

 
Fig.6. SUT 1, workload 2, event 10 (disk write timeout), faultload 2, run 27. (a) Signal, (b) histogram of the 

signal and (c) histogram of first order time difference. 
 

However, if we look back at Figure 3, some observations of the first order time difference are 

well over 1000, in absolute terms, which could lead to false positive, if the indicator is used alone 
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to detect a fault. It is thus advisable, and in line with the literature, to monitor several indicators 

jointly in order to establish if the whole system undergoes a fault. 

A. Best-fitting approach  

In order to obtain a model of the first-order time difference of the monitored indicators, the 

empirical cumulative distribution function (ECDF) of each monitored indicator, given by: 

 ECDF(x) = number of the elements in the sample ≤ x
N

  (2) 

where N is the total number of the elements, has been compared to some models CDFs.  

The model distributions have been selected according to the features of the histograms shown 

in the previous section. In particular, for variables representing throughputs (such as DISK/IN-

OUT, UDP_SEND-RECV and TCP_SEND-RECV), which can be reasonably modeled as 

continuous-amplitude variables, models CDFs like the Laplace, the Cauchy and the Normal have 

been considered [18].  

For the first-order time difference of discrete amplitude variables, such as PROCESS_EXIT, 

MUTEX and SYSCALL, the Skellam distribution was originally considered for fitting purposes. 

The reason for such a choice is the nature of the indicators. For example, let us consider the variable 

PROCESS_EXIT: its value at a given discrete-time instant k represents the number of processes 

(threads) that have started their execution in the time interval (k Tc, (k+1) Tc). So, if the 

number of process that have started their execution at a given time t since the beginning of 

the experiment can be reasonably modeled as a Poisson process N(t, λ), the variable 

PROCESS_EXIT representing the difference N(k Tc, λ)- N((k+1) Tc, λ), can be modeled as 

N(Tc, λ) for any k. Consequently, the first order time difference can be considered as the 

difference of two independent Poisson processes, i.e. a Skellam distribution of parameters 

λ1 = λ2 for t = Tc. As the experimental results show, however, the Skellam model does not 

come out to be suitable for fitting the empirical CDF. This is the reason why we have included 

also Laplace, Cauchy and Normal model CDFs in the tests with discrete amplitude variables. In 
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fact, the paper is not focused on finding the optimal detector or the rigorous model for such 

heterogeneous indicators, but rather on refining the empirical approach used in [2], according to a 

quantitative assessment that is based on real measurements. 

The selected model distributions are briefly reviewed here in the following. 

The Laplace CDF with parameters µ and b > 0 is given by 

 𝐹𝐹𝑋𝑋(𝑥𝑥) = �
1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑥𝑥−𝜇𝜇

𝑏𝑏
� , 𝑥𝑥 < 𝜇𝜇

1 − 1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑥𝑥−𝜇𝜇

𝑏𝑏
� , 𝑥𝑥 ≥ 𝜇𝜇

  (3) 

with E[X] = µ, where E[∙] is the statistical expectation operator, and variance Var[X] = 2b2. 

The Cauchy CDF with parameters x0 and y0 is given by 

 𝐹𝐹𝑋𝑋(𝑥𝑥) = 1
𝜋𝜋

arctan 𝑥𝑥−𝑥𝑥0
𝑦𝑦0

+ 1
2
  (4) 

where x0 is the location of the peak of the probability density function, and y0 is the scale parameter 

which specifies the half-width at half-maximum. The Cauchy distribution’s mean and variance are 

undefined. 

The CDF of the well-known normal distribution is  

 𝐹𝐹𝑋𝑋(𝑥𝑥) = 1
2
�1 + erf � 𝑥𝑥−𝜇𝜇

√2𝜎𝜎2
��  (5) 

where E[X] = µ , Var[X] = σ2, and erf(x) is the error function, defined as 

 erf(𝑥𝑥) = 1
√𝜋𝜋
∫ 𝑒𝑒−𝑡𝑡2 𝑑𝑑𝑡𝑡𝑥𝑥
−𝑥𝑥  (6) 

The Skellam distribution is the discrete probability distribution of the difference of two 

statistically independent Poisson variables, with parameters λ1 and λ2. Its probability density 

function is 

 𝑓𝑓𝑥𝑥(𝑛𝑛) = 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2)  �𝜆𝜆1
𝜆𝜆2
�
𝑛𝑛
2 𝐼𝐼|𝑛𝑛|(2�𝜆𝜆1𝜆𝜆2) (7) 
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where In(x) is the modified Bessel function of the first kind, and being n integer the relation 

In(x)=I|n|(x) holds. In our cases, we have λ1 = λ2= λ and so 

 𝑓𝑓𝑥𝑥(𝑛𝑛) = 𝑒𝑒−2𝜆𝜆 𝐼𝐼|𝑛𝑛|(2𝜆𝜆) (8) 

The criterion used to quantitatively assess the goodness of fit of the empirical distribution with 

the theoretical ones consists in the evaluation of an integral distance between the two CDFs. So, 

the model that best fits empirical data is the one whose integral distance from the ECDF is the 

smallest. The distance is defined according to Cramer-Von Mises (CV) [19]. In details, named X1, 

X2, …, XN the observations of the variable that is to model, the CV distance dCV between the 

continuous theoretical distribution FX(x) and the empirical distribution F*X(x) is defined as 

 𝑑𝑑𝐶𝐶𝐶𝐶2 =𝑁𝑁∫ |𝐹𝐹𝑋𝑋(𝑥𝑥) − 𝐹𝐹𝑋𝑋∗(𝑥𝑥)|2𝑑𝑑𝐹𝐹𝑋𝑋(𝑥𝑥)∞
−∞  (9) 

The integral in (9) can be calculated as [19] 

 𝑑𝑑𝐶𝐶𝐶𝐶2 = 1
12𝑁𝑁

+ ∑ �𝐹𝐹𝑋𝑋�𝑋𝑋(𝑖𝑖)� −
2𝑖𝑖−1
2𝑁𝑁

�
2

𝑁𝑁
𝑖𝑖=1  (10) 

where X(i) is the i-th order statistic from the set of observations. The parameters of the fitting CDFs 

have been chosen according to the moment matching procedure: the parameters µ and b of the 

Laplace distribution, the parameters µ and σ of the Normal distribution as well as the parameter λ 

of the Skellam distribution have been set so to ensure that the theoretical CDF has the same first 

and second order moments of the ECDF. As the Cauchy distribution has undefined moments, its 

parameters x0 and y0 have been determined as the values that minimize the CV distance between 

the ECDF and the Cauchy CDF.  

B. Best-fitting results 

Table I reports the average values of CV distance measured for each continuous system 

indicator, with reference to the three considered model probability distributions. For the sake of 

clarity, the values in Table I are graphically represented in Fig. 7. Table I also indicates the 

reference distribution that best fits the experimental data, along with the parameters estimated for 
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each distribution in the best fitting conditions. It is worth noting that the values of CV distances 

reported in Table I are average values over several runs, and the percentage values reported in 

brackets in the column "Best Fitting Distribution" represent the fraction of runs for which the 

related model distribution best fits the empirical data.  

First of all, one can note that some indicators do not have a really good fitting with any of the 

distributions considered for comparison. These are DISK/ReadTO and DISK/WriteTO, which 

exhibit an average CV distance above 1.5. Similarly, an average CV distance greater than 1 is 

observed with regard to the indicators DISK/IN and DISK/OUT, which consequently cannot be 

said to have a good fitting with any of the considered standard CDFs.  

On the contrary, a good fitting has been observed for some indicators. These are: Signal, 

NET/IN, Process_Exit, Sched_Threshold, MUTEX and Task_Sched_TO, all of which exhibit an 

average CV distance lower than 0.5. The first five of them best fit a Cauchy distribution, whereas 

the latter best fit a Laplace distribution.  

Some conclusive observations are related to the groups of indicators for the timeout and the 

throughput. All the indicators that are related to timeout, such as the task scheduling timeouts 

TASK_SCHED_TO, the waiting time for critical section timeouts MUTEX, and the disk 

Read/Write timeouts DISK/ReadTO and DISK/WriteTO, show a preference for the Laplace 

distribution, even though the CV distance is so high that we cannot say the Laplace 

distribution fits the experimental data well, in absolute terms.. On the contrary, in the case 

of NET/IN and NET/OUT, the best fitting distribution is Cauchy, which fits the data well, with 

average CV distance equal to 0.43 and 0.70, respectively. 

Similar considerations can be made for the indicators that are related to network I/O 

throughput (UDP_SEND, UDP_RECV, TCP_SEND and TCP_RECV). While the average CV 

distance is generally lower than 1 for both Cauchy and Laplace distribution, the latter 

exhibits the lowest dCV and is therefore the best fitting model for such indicators. Figures 8 

and 9 show the ECDF of the first-order time differences of indicators TCP_SEND and 



 

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems: 
An Experimental Study  

20 

Process_Exit respectively, with the theoretical CDF models whose parameters are estimated 

according to the procedure outlined above. The curves give evidence that the best fitting 

distributions are Laplace and Cauchy, respectively.  

It is interesting to observe that the discrete variable Skellam gives good fitting results only for 

the two indicators Process_Exit and Task_Sched_TO. Nevertheless, in both cases, an alternative 

continuous variable distribution fits better the empirical data. 

 

 

 

Table I. Parameters and CV distance of the CDF fitting the experimental data 

INDICATOR 
dCV BEST FITTING 

DISTRIBUTION 
PARAMETERS 

VALUES Laplace Normal  Cauchy Skellam 

MUTEX 6.15 5.89 0.03 7.84 Cauchy (100%) x = -0.58; y = 0.05 

SYSCALL 1.25 2.03 0.75 2.69 Cauchy (100%) x = 1.65; y = 125.5 

SIGNAL 1.76 1.91 0.49 3.45 Cauchy (100%) x = -0.43; y=3.37 

Task_Sched_TO 0.29 0.31 0.35 1.11 Laplace/Normal 
(50%/50%) 

𝜇𝜇 = 0; b = 8.94 
𝜇𝜇 = -0.40; σ = 6.10 

Process_Exit 0.57 0.86 0.48 0.99 Cauchy (87.5%) x = -0.52; y = 4.51 

Sched_Threshold 0.62 1.74 0.39 1.84 Cauchy (75%) x = 0.59; y = 7.15 

DISK/ReadTO 1.81 2.36 3.56 4.95 Laplace (100%) x = -0.49; y = 0.37 

DISK/WriteTO 1.64 2.41 2.85 4.45 Laplace (100%) 𝜇𝜇 = -0.42; b = 0.51 

NET/IN 0.61 1.39 0.43 7.30 Cauchy (71.4%) x = -3174; y = 
302932 

NET/OUT 3.04 3.51 0.70 7.68 Cauchy (100%) x = -35.65; y =  2251 

DISK/IN 2.28 2.88 1.08 - Cauchy (100%) x = -2437; y = 70520 

DISK/OUT 2.72 3.30 1.23 - Cauchy (100%) x = -2092; y = 21844 

UDP_SEND 0.83 1.77 1.08 - Laplace (87.5%) 𝜇𝜇 = 0; b = 3.15 

UDP_RECV 0.58 1.32 0.99 - Laplace (87.5%) 𝜇𝜇 = 0; b = 2.96 

TCP_SEND 0.69 1.35 0.91 - Laplace (62.5%) 𝜇𝜇 = 0; b = 3.68 
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Finally, Table II reports the average values of the measured CV distance between couples of 

standard variables. Distances are generally low, which explains why rather good results were 

obtained in [2] where the hypothesis of Normal random walk was made without empirical evidence 

of its validity. 

TCP_RECV 0.79 1.38 0.96 - Laplace (62.5%) 𝜇𝜇 = 0; b = 4.18 



 

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems: 
An Experimental Study  

22 

 

Fig.7. Graphical representation of the CV distances in Table I. 
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Table II. CV distance between considered Normal, Laplace and Cauchy distributions 

 

 

 

INDICATOR 
dCV 

Normal-
Laplace 

dCV 
Normal-
Cauchy 

dCV 
Laplace-
Cauchy 

dCV 
Normal-
Skellam 

dCV 
Laplace-
Skellam 

dCV 
Cauchy-
Skellam 

MUTEX 0.03 0.39 0.96 0.28 0.26 0.17 

SYSCALL 0.11 0.18 0.10 0.27 0.27 0.26 

SIGNAL 0.19 0.34 0.32 0.37 0.50 0.52 

TaskSchedTO 0.03 0.04 0.02 0.14 0.11 0.11 

ProcessExit 0.06 0.10 0.05 0.16 0.12 0.10 

SchedThreshold 0.25 0.25 0.05 0.15 0.17 0.15 

DISK/READTo 0.19 0.24 0.23 0.22 0.25 0.28 

DISK/WRITETO 0.25 0.28 0.16 0.21 0.27 0.28 

NET/IN 0.09 0.14 0.11 0.46 0.46 1.02 

NET/OUT 0.36 0.48 0.33 0.65 0.95 0.59 

DISK/IN 0.15 0.27 0.22 - - - 

DISK/OUT 0.19 0.29 0.26 - - - 

UDP_SEND 0.19 0.20 0.07 - - - 

UDP_RECV 0.13 0.14 0.06 - - - 

TCP_SEND 0.16 0.16 0.05 - - - 

TCP_RECV 0.17 0.18 0.05 - - - 
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Fig.8. Comparison of the ECDF and model CDF for the first-order  
time difference of the indicator TCP_SEND 

 

Fig.9. Comparison of the ECDF and model CDF for the first-order  
time difference of the indicator Process_Exit 
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V. CONCLUSIONS 

The paper has presented the results of an experimental study aimed at verifying the 

appropriateness of an anomaly detection approach based on random walk model for the 

observation of complex dependable systems through the monitoring of heterogeneous indicators 

at OS level. Specifically, we considered the Operating System Linux Red Hat EL5 and monitored 

16 indicators, which were semantically considered the most appropriate to reflect the behavior of 

the system with regard to the occurrence of faults. The objective is to arrive to define monitoring 

rules that can be applied in anomaly detectors built at the OS levels. 

As expected, for the system under test, the values assumed by different monitored indicators 

follow their own probability distribution, which is not known a priori and, in general, varies with 

the indicator taken into account. In spite of such heterogeneity in the indicators distributions, the 

paper has shown that the histograms of the first order time differences of such indicators are better 

approximated by a Cauchy and/or Laplace distribution in most of the cases, instead of a Gaussian 

distribution, as erroneously proposed in [20] on the basis of a purely qualitative analysis.  

Being able to understand the behaviour of key Operating System (OS) indicators through time 

allows building a monitoring system, and especially anomaly-detector systems as the one in [2], 

that can accurately distinguish anomalies by identifying the deviation of the actual behavior of the 

indicator from its behavioural model. In particular, by singling out indicators that can be 

statistically modelled with good approximation and discarding those which cannot be reduced to 

some model (i.e., indicators whose behavioral model is unknown or unpredictable, at least up to 

the current state of the art in complex systems monitoring), a two-fold benefit can be achieved: (i) 

the set of variables to monitor and ultimately the monitoring effort and overload introduced on the 

system can be reduced, and (ii) the significance of the analysis can be increased, as the monitoring 

thresholds can be fixed on the basis of the statistical analysis of empirical data under no faultload. 

In line with such considerations, future work will consist in comparing the outcome of the traces 

processed in this work with traces logged in tests where faults are injected in the application, i.e. 
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where anomalies can be identified through the monitoring of the OS indicators. The final goal is 

to design and implement a real-time anomaly detector based on monitoring the first order 

differences of a set of selected OS indicators. 

We remark that at present there has been no attempt to approach anomaly detection in 

dependable system through a differential analysis of the system indicators. The insights of this 

work, that is focused on the Operating System Linux Red Hat EL5, have the potential to be verified 

and thus generalized for other OS or different system layers (e.g., middleware software as the 

Application Servers), as well as different kind of systems. Relevant examples are anomaly 

detection monitoring in cloud computing infrastructure in [27] and anomaly-based resource usage 

monitoring in large cluster system in [28]. This can potentially result in more accurate rules for 

modeling the nominal behavior of dependable system where anomaly-detector monitors are 

intended. 

We aim to verify the generalization of the approach reproducing the experiments on systems 

with different settings and components. A testbed has been recently developed and described in 

[36] where the application is a customized version of the Liferay portal 6.1.2 Community Edition 

running on Tomcat 7.0.40 Application Server, and the Operating System is Linux CentOS 6 with 

kernel 2.6.32. This setting, together with an injector that introduces software errors in the code of 

the application and guides the tests [35], will allow to reproduce the experiments described in this 

paper. Additionally a new layer, the Application Server, is considered and its indicators are 

observed to detect anomalies [35], [36]. This made necessary to identify a new set of indicators 

that describe the behaviour of an Application Server, in a similar way as we progressed for the 

Operating Systems. 
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Table I.  

 

 

 

  

INDICATOR 
dCV BEST FITTING 

DISTRIBUTION 
PARAMETERS 

VALUES Laplace Normal  Cauchy Skellam 

MUTEX 6.15 5.89 0.03 7.84 Cauchy (100%) x = -0.58; y = 0.05 

SYSCALL 1.25 2.03 0.75 2.69 Cauchy (100%) x = 1.65; y = 125.5 

SIGNAL 1.76 1.91 0.49 3.45 Cauchy (100%) x = -0.43; y=3.37 

Task_Sched_TO 0.29 0.31 0.35 1.11 Laplace/Normal 
(50%/50%) 

𝜇𝜇 = 0; b = 8.94 
𝜇𝜇 = -0.40; σ = 6.10 

Process_Exit 0.57 0.86 0.48 0.99 Cauchy (87.5%) x = -0.52; y = 4.51 

Sched_Threshold 0.62 1.74 0.39 1.84 Cauchy (75%) x = 0.59; y = 7.15 

DISK/ReadTO 1.81 2.36 3.56 4.95 Laplace (100%) x = -0.49; y = 0.37 

DISK/WriteTO 1.64 2.41 2.85 4.45 Laplace (100%) 𝜇𝜇 = -0.42; b = 0.51 

NET/IN 0.61 1.39 0.43 7.30 Cauchy (71.4%) x = -3174; y = 
302932 

NET/OUT 3.04 3.51 0.70 7.68 Cauchy (100%) x = -35.65; y =  2251 

DISK/IN 2.28 2.88 1.08 - Cauchy (100%) x = -2437; y = 70520 

DISK/OUT 2.72 3.30 1.23 - Cauchy (100%) x = -2092; y = 21844 

UDP_SEND 0.83 1.77 1.08 - Laplace (87.5%) 𝜇𝜇 = 0; b = 3.15 

UDP_RECV 0.58 1.32 0.99 - Laplace (87.5%) 𝜇𝜇 = 0; b = 2.96 

TCP_SEND 0.69 1.35 0.91 - Laplace (62.5%) 𝜇𝜇 = 0; b = 3.68 

TCP_RECV 0.79 1.38 0.96 - Laplace (62.5%) 𝜇𝜇 = 0; b = 4.18 
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Table II. 

 

  

INDICATOR 
dCV 

Normal-
Laplace 

dCV 
Normal-
Cauchy 

dCV 
Laplace-
Cauchy 

dCV 
Normal-
Skellam 

dCV 
Laplace-
Skellam 

dCV 
Cauchy-
Skellam 

MUTEX 0.03 0.39 0.96 0.28 0.26 0.17 

SYSCALL 0.11 0.18 0.10 0.27 0.27 0.26 

SIGNAL 0.19 0.34 0.32 0.37 0.50 0.52 

TaskSchedTO 0.03 0.04 0.02 0.14 0.11 0.11 

ProcessExit 0.06 0.10 0.05 0.16 0.12 0.10 

SchedThreshold 0.25 0.25 0.05 0.15 0.17 0.15 

DISK/READTo 0.19 0.24 0.23 0.22 0.25 0.28 

DISK/WRITETO 0.25 0.28 0.16 0.21 0.27 0.28 

NET/IN 0.09 0.14 0.11 0.46 0.46 1.02 

NET/OUT 0.36 0.48 0.33 0.65 0.95 0.59 

DISK/IN 0.15 0.27 0.22 - - - 

DISK/OUT 0.19 0.29 0.26 - - - 

UDP_SEND 0.19 0.20 0.07 - - - 

UDP_RECV 0.13 0.14 0.06 - - - 

TCP_SEND 0.16 0.16 0.05 - - - 

TCP_RECV 0.17 0.18 0.05 - - - 
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Fig. 2.  
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Fig.3. 
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Fig.4. 
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Fig.5. 
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Fig.6. 
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Fig.8.  
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