
05 May 2024

Differential analysis of Operating System indicators for anomaly detection in dependable systems: An
experimental study / Bondavalli, Andrea; Ceccarelli, Andrea; Brancati, Francesco; Santoro, Diego; Vadursi,
Michele. - In: MEASUREMENT. - ISSN 0263-2241. - ELETTRONICO. - 80:(2016), pp. 229-240.
[10.1016/j.measurement.2015.11.010]

Original Citation:

Differential analysis of Operating System indicators for anomaly
detection in dependable systems: An experimental study

Published version:
10.1016/j.measurement.2015.11.010

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1015007 since: 2021-03-23T14:33:06Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

DIFFERENTIAL ANALYSIS OF OPERATING SYSTEM

INDICATORS FOR ANOMALY DETECTION IN DEPENDABLE

SYSTEMS: AN EXPERIMENTAL STUDY

Andrea Bondavalli, Andrea Ceccarelli
Dipartimento di Matematica e Informatica, Università degli Studi di Firenze

Viale Morgagni, 65– I-50134 Firenze

Phone : +390554237457 – Email : {bondavalli; andrea.ceccarelli}@unifi.it

Francesco Brancati
ResilTech s.r.l. – Technologies for Resilience

Piazza Nilde Iotti, 25 – I-56025 Pontedera (PI)

Phone :+290587212465– Email : francesco.brancati@resiltech.com

Diego Santoro, Michele Vadursi
Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”

Centro Direzionale di Napoli Isola C4 – I-80143 Napoli

Phone: +390815476791 –Email : {diego.santoro; michele.vadursi}@uniparthenope.it

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

2

 Differential Analysis of Operating System Indicators for Anomaly Detection in

Dependable Systems: An Experimental Study

Abstract– Dependable complex systems often operate under variable and non-stationary

conditions, which requires efficient and extensive monitoring and error detection solutions.

Amongst the many, the paper focuses on anomaly detection techniques, which require measuring

the evolution of monitored indicators through time to identify anomalies, i.e. deviations from the

expected operational behavior. The timely identification of anomalies in dependable, fault tolerant

systems allows to timely detect errors in the services and react appropriately. In this paper, we

investigate the possibility to monitor the evolution of indicators through time using the random

walk model on indicators belonging to Operating Systems, specifically in our study the Linux Red

Hat EL5. The approach is based on the experimental evaluation of a large set of heterogeneous

indicators, which are acquired under different operating conditions, both in terms of workload and

faultload, on an air traffic management target system. The statistical analysis is based on a best-

fitting approach aiming to minimize the integral distance between the empirical data distribution

and some reference distributions. The outcomes of the analysis show that the idea of adopting a

random walk model for the development of an anomaly detection monitor for critical systems that

operates at Operating System level is promising. Moreover, standard distributions such as Laplace

and Cauchy, rather than Normal, should be used for setting up the thresholds of the monitor.

Further studies that involve a new application, a different Operating System and a new layer (an

Application Server) will allow verifying the generalization of the approach to other fault tolerant

systems, monitored layers and set of indicators.

Keywords: System monitoring; Measurements on computer systems; OS anomalies; Anomaly

detection; Dependability measurement; Fault detection.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

3

I. INTRODUCTION

It is well-known that dependable complex and real-time systems require to implement extensive

monitoring functionalities to timely detect both hardware and software errors [1], [21]. In the last

years, several monitors and error detectors have been proposed to continuously check the health

of the system being monitored and detect errors within specific time deadlines. Amongst the

possible error detection approaches, attention has recently been focused on anomaly detection,

which refers to the problem of finding patterns in data that do not conform to the expected behavior

[6]. Such patterns are changes in the indicators characterizing the behavior of the system that are

caused by specific and non-random factors, such as a system overload, or to the activation of faults

[3], [5].

Anomalies can be detected using various techniques such as statistics, machine learning, model

based and information theory. In general, a prior knowledge of the system behavior and/or a

preliminary profiling phase are required, to define thresholds and rules for the monitored indicators

used by the anomaly detector. This information can be gained by using a system model, either

defined from experience or inferred from data collected on field [4]. For example, in [5] the CPU

consumption of transactions in web application is modeled on the basis of statistical linear

regression. The model is then used to detect performance anomalies, namely those changes in CPU

usage that are not clearly justified by the actual workload. In [2] the authors propose a configurable

detection framework to reveal anomalies in the Operating System (OS) behavior, related to system

misbehaviors (software faults injected at the application level). For each monitored OS indicator,

the framework computes lower and upper adaptive thresholds in order to take into account the

dynamic behavior of the system. If the value of a specific indicator does not fall within the

estimated interval, it is marked as suspicious. All suspicious indicators are combined to reveal an

anomaly. The work in [2] models the behavior and dynamics of the OS indicators using the

Gaussian random walk model [10], [11], so that changes in the features of indicators caused by

non-random factors are considered suspicious. The random walk model is intuitive and easy-to-

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

4

model, thus resulting practical in many scenarios e.g., for the modeling of a software clock in [12]-

[15]. While the results shown in [2] are encouraging, it has to be noted that the random walk model

is empirically used without any quantitative assessment of its validity for the indicators taken into

consideration, nor any motivated choice of the expected CDF.

The objective of the paper is to analyze the appropriateness of the random walk model to

represent the behavior of the monitored variables belonging to the OS, with respect to an

experimental study. Specifically, the target system is Linux Red Hat EL5 and the approach is based

on the experimental evaluation of 16 heterogeneous indicators, selected amongst the many offered

by the OSs due to their semantics which bounds them to part of the OS that are mostly impacted

by system anomalies, acquired under different operating conditions, both in terms of workload and

faultload, on a target system. These monitors are implemented as a loadable kernel module by

means of the SystemTap tool [16], which allows to program breakpoint handlers in a high level

scripting language. As for practical applicability, this means that algorithms for the anomaly

detection at OS level could be properly designed by analyzing the first-order time differences of

some monitoring variables, represented by OS indicators: the analysis can lead to the definition of

monitoring rules that can be applied in anomaly detectors built at the OS levels.

The insights of this work have potential to be verified (and thus generalized) for other OSs or

different system layers (e.g., middleware software as the Application Servers), as well as different

kinds of systems, e.g. for the anomaly detection monitoring in cloud computing infrastructures

[26], or the anomaly-based resource usage monitoring in large cluster systems [27].

While it is well known from detection theory that a statistical analysis of the first-order time

differences can be useful to detect faults [35], there is no established statistical model for the OS-

level heterogeneous indicators considered in our experimental study. Indeed, to the best of the

authors’ knowledge, there has been no attempt to approach anomaly detection in dependable

systems through a differential analysis of the system indicators.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

5

The paper is the extended version of [20], which presented a simple qualitative analysis of the

first-order differences of monitored indicators to evaluate whether the application of a Gaussian

random walk approach was feasible for such systems. The value of this extended version of the

paper lies in the quantitative assessment of the validity of the random walk approach for the

heterogeneous indicators selected at OS level, and to the determination of possible alternative

reference CDFs, different from the Normal, to fit the data. In particular, the experimental data are

analyzed by comparing their goodness of fitness with the Gaussian, Cauchy, Laplace and Skellam

theoretical distributions. The metric used to the scope is the Cramer-Von Mises integral distance.

The results of the analysis show that for a large number of cases, the histogram of the first order

time differences well approximates a Cauchy or a Laplace distribution, independently of the nature

of the indicator and its statistical distribution. So, the conclusions given in [20] have to be partially

corrected as a consequence of the statistical analysis presented here.

The rest of this paper describes basics on dependable systems and anomaly detection in Section

II, the experimental campaign in Section III, experimental results in Section IV and conclusions

in Section V.

II. ANOMALY DETECTION IN DEPENDABLE SYSTEMS

This section summarizes the main concepts and definitions related to dependable computing

and anomaly detection that are necessary for a complete understanding of the work; an exhaustive

description of this set of concepts and definitions can be found in [1], [21] for dependability and

in [5] for anomaly detection in dependable systems.

A. Dependability concepts

A service is defined as a sequence of external states of the system, and a service failure (or

simply, failure) as an event that occurs when the delivered service deviates from the correct

service. Dependability of a system is the ability to avoid failures that are more frequent and more

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

6

severe than acceptable. Deviation from correct service may assume different forms that are

called failure modes and are ranked according to failure severities. An error is instead the

part of the total state of the system that may lead to its subsequent service failure. The

adjudged or hypothesized cause of an error is called a fault.

A fault is active when it produces an error; otherwise, it is dormant. Error propagation

within a given component is caused by the computation process; a failure occurs when an

error is propagated to the service interface and causes the service delivered by the system

to deviate from correct service. Failure of a system causes a permanent or transient external

fault for the other system(s) that receive service from the given system. This set of

mechanisms constitutes the “fault-error-failure” chain of threats shown in Fig. 1.

Fig. 1. Fault-error-failure chain.

Failures in complex systems have a variety of possible causes, which range from software to

hardware, up to human errors, which are the most probable form of operational error [22]. It is not

rare that failures “involve complex combinations of equipment failure, environmental factors,

human error, and other causes” [23]. Among other possible causes of failure we have

environmental causes, such as wide temperature variations, material aging and fatigue [22].

Means to attain dependability can be grouped into four categories: i) fault prevention to

prevent the occurrence or introduction of faults; it is typically part of general engineering

activities; ii) fault tolerance, whose introduction is facilitated by the addition of specialized

support systems (e.g. for QoS monitoring, [24]), to avoid service failures in the presence of

faults; iii) fault removal to reduce the number and severity of faults, e.g the fault tolerance

mechanisms of the systems may be tested by fault injections tests [25]; iv) fault forecasting

fault error failure activation propagation causation fault … …

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

7

to estimate the present number, the future incidence and the likely consequences of faults.

The latter is conducted by performing a qualitative or quantitative evaluation of system

behavior with respect to fault occurrence or activation.

Our work, like other anomaly detection approaches for dependable systems monitoring in

general, can be considered as part of the fault tolerance group, as their aim is to collect

indications, whenever not evidence, of the occurrence of faults and the consequent

generation of errors in system's services.

B. Anomaly detection

Modern complex software systems usually consist of many interacting components and

layers, including operating systems and network protocols, virtual machines, middleware

technologies and OTS items that all together may reach millions of lines of code (and several

connections and physical nodes). Revealing all software faults with pre-operational testing

is very difficult and expensive and exhaustive testing is typically unfeasible. As a result, such

systems suffer from residual faults, i.e., faults that escape testing and get activated only

during operation.

Very often these software systems have a long lifetime, during which they evolve as they

are integrated with other (possibly legacy) systems, and/or are updated either to reflect

changes in their requirements or for bugs fixing. Such evolution is reflected in the

progressive increase in the complexity of services and often causes services to operate

beyond the design conditions that were initially planned for them. Also, new and unexpected

overload conditions could occur as a consequence of a new and heavier workload, which can

result in failures and costly service downtime.

The IEEE Standard 1044-1993 [31] defines an anomaly as “any condition that deviates from

expectations”. These expectations represent nominal/desired behavior that may be derived

from requirements, design documents, standards and on-field experience.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

8

Anomaly detection is an important mean to design monitoring procedures for timely

detection of errors or attacks, since anomalies may be related to the activation of faults,

performance issues, and malicious activities [29], [30].

Engineers often use knowledge of the system behavior or preliminary profiling phases to

define worst-case thresholds and a-priori rules to detect anomalies [4], [28].

Recent studies show that revealing anomalies at OS level is a promising approach when

traditional detection mechanisms (e.g., based on event logs, probes and heartbeats) exhibit

poor performance or have limited applicability [33], [34]. The driving idea is to shift the

observation perspective to the OS, monitoring its behaviour and interactions with the

applications. The aim is to detect OS anomalies, such as system call errors and scheduling

delays, which may be symptoms of incorrect behaviours. The approach is particularly suited

for off-the-shelf (OTS) and legacy-based services, as it does not require to modify the service

itself but only the underlying layer (the OS). Revealing anomalies at OS level is a general

approach that can be applied to a variety of circumstances and applications in a much more

efficient and cheap way than instrumenting the applications themselves. In fact, instead of

re-instrumenting each application each time, it would only be necessary to tune an already

existing instrumentation.

III. THE EXPERIMENTAL DATASET

The dataset that has been used for the analyses is the result of the experimental campaign

performed in [2], where the authors implemented an instrumentation infrastructures able

to collect OS-level indicators, both for Linux and Windows environments. The testing activity

was performed by analyzing a large amount of data monitored in a real and complex case

application, namely the SWIM-BOX® [2], a prototype to support global interoperability for

the novel Air Traffic Management (ATM) systems. SWIM-BOX is deployed on Windows and

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

9

Linux platforms. It is a complex OTS (Off-The-Shelf)-based application, which offers several

facilities to SWIM-BOX users: synchronous/asynchronous communication pattern (i.e.

request/reply, publish/subscribe), security services (e.g., authentication, authorization,

encryption) and distributed and transactional data storage. The application is made of

several OTS, e.g., OS, the application Server (JBoss) and the data distribution middleware

(OpenSplice).

The experiments consist in the execution of several functional and performance tests. In

addition, faults are injected to mimic the activation of residual software faults in the data

distribution middleware during operation. Errors resulting from the injection of software

faults may propagate to the interface of the JBoss application server by leading to: i) hang;

ii) crash; or iii) content failures.

Using SWIM-BOX under Linux OS, the collection of system indicators is accomplished by

means of probes dynamically inserted into the kernel, without modifying and recompiling

the OS or application source code. A probe consists of a breakpoint (i.e a special CPU

instruction that suspends the execution of the kernel instruction) and a handler routine,

which is executed at the breakpoint to provide the desired information (e.g., input

parameters or return values of called functions). These monitors are implemented as a

loadable kernel module by means of the SystemTap tool [16], which allows to program

breakpoint handlers in a high level scripting language.

Using SWIM-BOX under Windows OS the monitoring infrastructure has been implemented

using the Windows Reliability and Performance Monitor (WRPM) [17]. WRPM is a

monitoring tool, available on both Windows desktop and Server releases, which provides

several functionalities to: i) monitor application and hardware performance in real time; ii)

track the performance impact of applications and services; iii) generate alerts and reports;

iv) take actions when user-defined thresholds are exceeded.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

10

The OS Level indicators that have been monitored in both systems are the following (in

brackets we present an acronym that will be used in the following of the paper):

• system call errors (SYSCALL): number of error codes returned from system calls

invocation;

• OS signals (SIGNAL): number of signals used for coordination or information

purposes (e.g., invalid memory access, process crash, loss of a socket connection, I/O data

available);

• task scheduling timeouts (TASK_SCHED_TO): number of timeouts expired since a

process released the CPU;

• waiting time for critical section timeouts (MUTEX): number of timeouts expired since

a process (thread) started waiting for entering a critical section;

• holding time in critical section timeouts (SCHED_THRESHOLD): number of timeouts

expired since a process (thread) entered a critical section;

• process (thread) activation/termination (PROCESS_EXIT): number of processes

(threads) starting/terminating their execution;

• disk Read/Write timeouts (DISK/ReadTO and DISK/WriteTO respectively for

timeouts on reading and writing): number of timeouts expired since the last read/write

operation on disks;

• socket I/O timeouts (NET/IN and NET/OUT respectively for inputs and outputs):

number of timeouts expired since the last read/write operation on a network socket;

• disk I/O throughput (DISK/IN and DISK/OUT respectively for inputs and outputs):

bytes transferred per time unit in operations on disks;

• network I/O throughput (UDP_SEND and UDP_RECV respectively for UDP inputs and

outputs; TCP_SEND and TCP_RECV respectively for TCP inputs and outputs): bytes

transferred per time unit in operations on network devices.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

11

This experimental data are organized in an OLAP [7] data warehouse modeled through

fact and dimension tables.

Facts tables contain an entry for each sample measured in experiments. An entry contains

the values measured for the monitored resources and parameters of that particular

experimental setup, namely the values of dimensions.

Dimension tables refer to specific characteristics of the experimental setup and they store

the possible values for them. We consider the following dimensions:

• Target System (SUT). Characteristics of the Target System, e.g., OS, number of CPU,

CPU speed, RAM, disk speed. By SUT 1 we indicate a Linux testbed, equipped with Intel Xeon

2.5 GHz (4 cores) CPU, 8GB RAM, running Red Hat Enterprise Linux 5.By SUT2 we indicate a

Windows testbed composed by an Intel Pentium 4 3.4 GHz (2 cores), with 3GB RAM, running

Windows Server 2008.

• Events. Monitored events, which are described in this section.

• Workload. Characteristics of the adopted workload. Message rate, message burst rate

(a burst is a collection of message received into a single interaction) and messages per burst

have been varied through different executions.

• Faultload. The type of faults injected and the software component target of the

injection. In this campaign we used code mutation technique.

• Run. Information on the executed run (e.g., start time, end time, sample period).

• Scenario. The description of the application scenario, e.g., the number of entities

involved in the communication and their role (i.e. Manager Contributor).

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

12

IV. EXPERIMENTAL RESULTS

While some of the system indicators monitored during the experimental campaign can be

generally associated to discrete-time and continuous amplitude random processes, in many cases

the system indicators take values in the set of natural numbers N (number of last scheduling

timeout, number of allocated threads, number of disk read timeout, number of disk write timeout).

Figures 2, 3 and 4 show measurement results related to three different indicators, in absence of

faults. They are related respectively to disk write timeout; net in throughput (Byte/s); and I/O write

throughput (Byte/s). In each figure, the evolution versus time of the indicator is shown (subfigure

a), along with the histogram of the values acquired for the indicator (subfigure b) and the histogram

of the first-order time differences of the indicator (subfigure c). The first order time difference ∆ of

the generic indicator x is defined as

 ∆(k) = x(k+1) - x(k) (1)

where k is the discrete-time variable. Indicators values are acquired with a sampling period

Tc = 1 s. The number of samples for each indicator varies with the experiment, ranging from few

hundreds to few thousands.

As expected, the histograms in figures 2.b, 3.b and 4.b show that the monitored system

indicators have their “own” probability distributions, which in principle can depend on the specific

run of the experiment, as well as on the characteristics of the machine under test and the workload,

not to mention possible faults. What is really interesting is that the histograms of the first order

time differences Δ have very similar shapes, no matter what the original distribution of the

indicators is. Indeed, even histograms of indicator values that appear very different in shape, range

and characteristics give place to a related histogram of first order time differences that appears to

be Gaussian-like (see figures 2.c, 3.c and 4.c).

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

13

Fig.2. SUT 1, workload 1, event 10 (disk write timeout), no faultload, run 8. (a) signal, (b) histogram of the

signal and (c) histogram of first order time difference.

Fig.3. SUT 2, workload 6, event 19 (net in throughput), no faultload, run 63. (a) signal, (b) histogram of the

signal and (c) histogram of first order time difference.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

14

Fig.4 SUT 2, workload 6, event 28 (IO write throughput), no faultload, run 63. (a) Signal, (b) histogram of the

signal and (c) histogram of first order time difference.

Similar outcomes have been observed in experiments with faults. As an example, Figure 5 is

related to the indicator “scheduling timeouts” (i.e., number of timeouts expired since a process

released the CPU). The figure shows the histograms for the indicator and its first time difference,

in presence of a natural fault (i.e., an error has been detected with no injection) starting after about

160 s. Figure 5.c shows that the histogram of the monitored system indicator first order time

difference resembles a discretized Gaussian distribution, again. Another experiment with fault

related to the indicator disk write timeout is shown in Figure 6.

In both these cases, an inspection of subfigures c (Figures 5.c and 6.c) suggests that the step

size at the time of the fault is well over six-sigma limits (Fig. 5.c, in a neighborhood of -216 and

Fig. 6.c, in a neighborhood of -18), so the system indicators can easily be considered out of control.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

15

Fig.5. SUT 1, workload 2, event 8 (scheduling timeouts), faultload 2, run19. (a) Signal, (b) histogram of the

signal and (c) histogram of first order time difference.

Fig.6. SUT 1, workload 2, event 10 (disk write timeout), faultload 2, run 27. (a) Signal, (b) histogram of the

signal and (c) histogram of first order time difference.

However, if we look back at Figure 3, some observations of the first order time difference are

well over 1000, in absolute terms, which could lead to false positive, if the indicator is used alone

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

16

to detect a fault. It is thus advisable, and in line with the literature, to monitor several indicators

jointly in order to establish if the whole system undergoes a fault.

A. Best-fitting approach

In order to obtain a model of the first-order time difference of the monitored indicators, the

empirical cumulative distribution function (ECDF) of each monitored indicator, given by:

 ECDF(x) = number of the elements in the sample ≤ x
N

 (2)

where N is the total number of the elements, has been compared to some models CDFs.

The model distributions have been selected according to the features of the histograms shown

in the previous section. In particular, for variables representing throughputs (such as DISK/IN-

OUT, UDP_SEND-RECV and TCP_SEND-RECV), which can be reasonably modeled as

continuous-amplitude variables, models CDFs like the Laplace, the Cauchy and the Normal have

been considered [18].

For the first-order time difference of discrete amplitude variables, such as PROCESS_EXIT,

MUTEX and SYSCALL, the Skellam distribution was originally considered for fitting purposes.

The reason for such a choice is the nature of the indicators. For example, let us consider the variable

PROCESS_EXIT: its value at a given discrete-time instant k represents the number of processes

(threads) that have started their execution in the time interval (k Tc, (k+1) Tc). So, if the

number of process that have started their execution at a given time t since the beginning of

the experiment can be reasonably modeled as a Poisson process N(t, λ), the variable

PROCESS_EXIT representing the difference N(k Tc, λ)- N((k+1) Tc, λ), can be modeled as

N(Tc, λ) for any k. Consequently, the first order time difference can be considered as the

difference of two independent Poisson processes, i.e. a Skellam distribution of parameters

λ1 = λ2 for t = Tc. As the experimental results show, however, the Skellam model does not

come out to be suitable for fitting the empirical CDF. This is the reason why we have included

also Laplace, Cauchy and Normal model CDFs in the tests with discrete amplitude variables. In

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

17

fact, the paper is not focused on finding the optimal detector or the rigorous model for such

heterogeneous indicators, but rather on refining the empirical approach used in [2], according to a

quantitative assessment that is based on real measurements.

The selected model distributions are briefly reviewed here in the following.

The Laplace CDF with parameters µ and b > 0 is given by

 𝐹𝐹𝑋𝑋(𝑥𝑥) = �
1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑥𝑥−𝜇𝜇

𝑏𝑏
� , 𝑥𝑥 < 𝜇𝜇

1 − 1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑥𝑥−𝜇𝜇

𝑏𝑏
� , 𝑥𝑥 ≥ 𝜇𝜇

 (3)

with E[X] = µ, where E[∙] is the statistical expectation operator, and variance Var[X] = 2b2.

The Cauchy CDF with parameters x0 and y0 is given by

 𝐹𝐹𝑋𝑋(𝑥𝑥) = 1
𝜋𝜋

arctan 𝑥𝑥−𝑥𝑥0
𝑦𝑦0

+ 1
2
 (4)

where x0 is the location of the peak of the probability density function, and y0 is the scale parameter

which specifies the half-width at half-maximum. The Cauchy distribution’s mean and variance are

undefined.

The CDF of the well-known normal distribution is

 𝐹𝐹𝑋𝑋(𝑥𝑥) = 1
2
�1 + erf � 𝑥𝑥−𝜇𝜇

√2𝜎𝜎2
�� (5)

where E[X] = µ , Var[X] = σ2, and erf(x) is the error function, defined as

 erf(𝑥𝑥) = 1
√𝜋𝜋
∫ 𝑒𝑒−𝑡𝑡2 𝑑𝑑𝑡𝑡𝑥𝑥
−𝑥𝑥 (6)

The Skellam distribution is the discrete probability distribution of the difference of two

statistically independent Poisson variables, with parameters λ1 and λ2. Its probability density

function is

 𝑓𝑓𝑥𝑥(𝑛𝑛) = 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2) �𝜆𝜆1
𝜆𝜆2
�
𝑛𝑛
2 𝐼𝐼|𝑛𝑛|(2�𝜆𝜆1𝜆𝜆2) (7)

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

18

where In(x) is the modified Bessel function of the first kind, and being n integer the relation

In(x)=I|n|(x) holds. In our cases, we have λ1 = λ2= λ and so

 𝑓𝑓𝑥𝑥(𝑛𝑛) = 𝑒𝑒−2𝜆𝜆 𝐼𝐼|𝑛𝑛|(2𝜆𝜆) (8)

The criterion used to quantitatively assess the goodness of fit of the empirical distribution with

the theoretical ones consists in the evaluation of an integral distance between the two CDFs. So,

the model that best fits empirical data is the one whose integral distance from the ECDF is the

smallest. The distance is defined according to Cramer-Von Mises (CV) [19]. In details, named X1,

X2, …, XN the observations of the variable that is to model, the CV distance dCV between the

continuous theoretical distribution FX(x) and the empirical distribution F*X(x) is defined as

 𝑑𝑑𝐶𝐶𝐶𝐶2 =𝑁𝑁∫ |𝐹𝐹𝑋𝑋(𝑥𝑥) − 𝐹𝐹𝑋𝑋∗(𝑥𝑥)|2𝑑𝑑𝐹𝐹𝑋𝑋(𝑥𝑥)∞
−∞ (9)

The integral in (9) can be calculated as [19]

 𝑑𝑑𝐶𝐶𝐶𝐶2 = 1
12𝑁𝑁

+ ∑ �𝐹𝐹𝑋𝑋�𝑋𝑋(𝑖𝑖)� −
2𝑖𝑖−1
2𝑁𝑁

�
2

𝑁𝑁
𝑖𝑖=1 (10)

where X(i) is the i-th order statistic from the set of observations. The parameters of the fitting CDFs

have been chosen according to the moment matching procedure: the parameters µ and b of the

Laplace distribution, the parameters µ and σ of the Normal distribution as well as the parameter λ

of the Skellam distribution have been set so to ensure that the theoretical CDF has the same first

and second order moments of the ECDF. As the Cauchy distribution has undefined moments, its

parameters x0 and y0 have been determined as the values that minimize the CV distance between

the ECDF and the Cauchy CDF.

B. Best-fitting results

Table I reports the average values of CV distance measured for each continuous system

indicator, with reference to the three considered model probability distributions. For the sake of

clarity, the values in Table I are graphically represented in Fig. 7. Table I also indicates the

reference distribution that best fits the experimental data, along with the parameters estimated for

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

19

each distribution in the best fitting conditions. It is worth noting that the values of CV distances

reported in Table I are average values over several runs, and the percentage values reported in

brackets in the column "Best Fitting Distribution" represent the fraction of runs for which the

related model distribution best fits the empirical data.

First of all, one can note that some indicators do not have a really good fitting with any of the

distributions considered for comparison. These are DISK/ReadTO and DISK/WriteTO, which

exhibit an average CV distance above 1.5. Similarly, an average CV distance greater than 1 is

observed with regard to the indicators DISK/IN and DISK/OUT, which consequently cannot be

said to have a good fitting with any of the considered standard CDFs.

On the contrary, a good fitting has been observed for some indicators. These are: Signal,

NET/IN, Process_Exit, Sched_Threshold, MUTEX and Task_Sched_TO, all of which exhibit an

average CV distance lower than 0.5. The first five of them best fit a Cauchy distribution, whereas

the latter best fit a Laplace distribution.

Some conclusive observations are related to the groups of indicators for the timeout and the

throughput. All the indicators that are related to timeout, such as the task scheduling timeouts

TASK_SCHED_TO, the waiting time for critical section timeouts MUTEX, and the disk

Read/Write timeouts DISK/ReadTO and DISK/WriteTO, show a preference for the Laplace

distribution, even though the CV distance is so high that we cannot say the Laplace

distribution fits the experimental data well, in absolute terms.. On the contrary, in the case

of NET/IN and NET/OUT, the best fitting distribution is Cauchy, which fits the data well, with

average CV distance equal to 0.43 and 0.70, respectively.

Similar considerations can be made for the indicators that are related to network I/O

throughput (UDP_SEND, UDP_RECV, TCP_SEND and TCP_RECV). While the average CV

distance is generally lower than 1 for both Cauchy and Laplace distribution, the latter

exhibits the lowest dCV and is therefore the best fitting model for such indicators. Figures 8

and 9 show the ECDF of the first-order time differences of indicators TCP_SEND and

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

20

Process_Exit respectively, with the theoretical CDF models whose parameters are estimated

according to the procedure outlined above. The curves give evidence that the best fitting

distributions are Laplace and Cauchy, respectively.

It is interesting to observe that the discrete variable Skellam gives good fitting results only for

the two indicators Process_Exit and Task_Sched_TO. Nevertheless, in both cases, an alternative

continuous variable distribution fits better the empirical data.

Table I. Parameters and CV distance of the CDF fitting the experimental data

INDICATOR
dCV BEST FITTING

DISTRIBUTION
PARAMETERS

VALUES Laplace Normal Cauchy Skellam

MUTEX 6.15 5.89 0.03 7.84 Cauchy (100%) x = -0.58; y = 0.05

SYSCALL 1.25 2.03 0.75 2.69 Cauchy (100%) x = 1.65; y = 125.5

SIGNAL 1.76 1.91 0.49 3.45 Cauchy (100%) x = -0.43; y=3.37

Task_Sched_TO 0.29 0.31 0.35 1.11 Laplace/Normal
(50%/50%)

𝜇𝜇 = 0; b = 8.94
𝜇𝜇 = -0.40; σ = 6.10

Process_Exit 0.57 0.86 0.48 0.99 Cauchy (87.5%) x = -0.52; y = 4.51

Sched_Threshold 0.62 1.74 0.39 1.84 Cauchy (75%) x = 0.59; y = 7.15

DISK/ReadTO 1.81 2.36 3.56 4.95 Laplace (100%) x = -0.49; y = 0.37

DISK/WriteTO 1.64 2.41 2.85 4.45 Laplace (100%) 𝜇𝜇 = -0.42; b = 0.51

NET/IN 0.61 1.39 0.43 7.30 Cauchy (71.4%) x = -3174; y =
302932

NET/OUT 3.04 3.51 0.70 7.68 Cauchy (100%) x = -35.65; y = 2251

DISK/IN 2.28 2.88 1.08 - Cauchy (100%) x = -2437; y = 70520

DISK/OUT 2.72 3.30 1.23 - Cauchy (100%) x = -2092; y = 21844

UDP_SEND 0.83 1.77 1.08 - Laplace (87.5%) 𝜇𝜇 = 0; b = 3.15

UDP_RECV 0.58 1.32 0.99 - Laplace (87.5%) 𝜇𝜇 = 0; b = 2.96

TCP_SEND 0.69 1.35 0.91 - Laplace (62.5%) 𝜇𝜇 = 0; b = 3.68

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

21

Finally, Table II reports the average values of the measured CV distance between couples of

standard variables. Distances are generally low, which explains why rather good results were

obtained in [2] where the hypothesis of Normal random walk was made without empirical evidence

of its validity.

TCP_RECV 0.79 1.38 0.96 - Laplace (62.5%) 𝜇𝜇 = 0; b = 4.18

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

22

Fig.7. Graphical representation of the CV distances in Table I.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

23

Table II. CV distance between considered Normal, Laplace and Cauchy distributions

INDICATOR
dCV

Normal-
Laplace

dCV
Normal-
Cauchy

dCV
Laplace-
Cauchy

dCV
Normal-
Skellam

dCV
Laplace-
Skellam

dCV
Cauchy-
Skellam

MUTEX 0.03 0.39 0.96 0.28 0.26 0.17

SYSCALL 0.11 0.18 0.10 0.27 0.27 0.26

SIGNAL 0.19 0.34 0.32 0.37 0.50 0.52

TaskSchedTO 0.03 0.04 0.02 0.14 0.11 0.11

ProcessExit 0.06 0.10 0.05 0.16 0.12 0.10

SchedThreshold 0.25 0.25 0.05 0.15 0.17 0.15

DISK/READTo 0.19 0.24 0.23 0.22 0.25 0.28

DISK/WRITETO 0.25 0.28 0.16 0.21 0.27 0.28

NET/IN 0.09 0.14 0.11 0.46 0.46 1.02

NET/OUT 0.36 0.48 0.33 0.65 0.95 0.59

DISK/IN 0.15 0.27 0.22 - - -

DISK/OUT 0.19 0.29 0.26 - - -

UDP_SEND 0.19 0.20 0.07 - - -

UDP_RECV 0.13 0.14 0.06 - - -

TCP_SEND 0.16 0.16 0.05 - - -

TCP_RECV 0.17 0.18 0.05 - - -

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

24

Fig.8. Comparison of the ECDF and model CDF for the first-order
time difference of the indicator TCP_SEND

Fig.9. Comparison of the ECDF and model CDF for the first-order
time difference of the indicator Process_Exit

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

25

V. CONCLUSIONS

The paper has presented the results of an experimental study aimed at verifying the

appropriateness of an anomaly detection approach based on random walk model for the

observation of complex dependable systems through the monitoring of heterogeneous indicators

at OS level. Specifically, we considered the Operating System Linux Red Hat EL5 and monitored

16 indicators, which were semantically considered the most appropriate to reflect the behavior of

the system with regard to the occurrence of faults. The objective is to arrive to define monitoring

rules that can be applied in anomaly detectors built at the OS levels.

As expected, for the system under test, the values assumed by different monitored indicators

follow their own probability distribution, which is not known a priori and, in general, varies with

the indicator taken into account. In spite of such heterogeneity in the indicators distributions, the

paper has shown that the histograms of the first order time differences of such indicators are better

approximated by a Cauchy and/or Laplace distribution in most of the cases, instead of a Gaussian

distribution, as erroneously proposed in [20] on the basis of a purely qualitative analysis.

Being able to understand the behaviour of key Operating System (OS) indicators through time

allows building a monitoring system, and especially anomaly-detector systems as the one in [2],

that can accurately distinguish anomalies by identifying the deviation of the actual behavior of the

indicator from its behavioural model. In particular, by singling out indicators that can be

statistically modelled with good approximation and discarding those which cannot be reduced to

some model (i.e., indicators whose behavioral model is unknown or unpredictable, at least up to

the current state of the art in complex systems monitoring), a two-fold benefit can be achieved: (i)

the set of variables to monitor and ultimately the monitoring effort and overload introduced on the

system can be reduced, and (ii) the significance of the analysis can be increased, as the monitoring

thresholds can be fixed on the basis of the statistical analysis of empirical data under no faultload.

In line with such considerations, future work will consist in comparing the outcome of the traces

processed in this work with traces logged in tests where faults are injected in the application, i.e.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

26

where anomalies can be identified through the monitoring of the OS indicators. The final goal is

to design and implement a real-time anomaly detector based on monitoring the first order

differences of a set of selected OS indicators.

We remark that at present there has been no attempt to approach anomaly detection in

dependable system through a differential analysis of the system indicators. The insights of this

work, that is focused on the Operating System Linux Red Hat EL5, have the potential to be verified

and thus generalized for other OS or different system layers (e.g., middleware software as the

Application Servers), as well as different kind of systems. Relevant examples are anomaly

detection monitoring in cloud computing infrastructure in [27] and anomaly-based resource usage

monitoring in large cluster system in [28]. This can potentially result in more accurate rules for

modeling the nominal behavior of dependable system where anomaly-detector monitors are

intended.

We aim to verify the generalization of the approach reproducing the experiments on systems

with different settings and components. A testbed has been recently developed and described in

[36] where the application is a customized version of the Liferay portal 6.1.2 Community Edition

running on Tomcat 7.0.40 Application Server, and the Operating System is Linux CentOS 6 with

kernel 2.6.32. This setting, together with an injector that introduces software errors in the code of

the application and guides the tests [35], will allow to reproduce the experiments described in this

paper. Additionally a new layer, the Application Server, is considered and its indicators are

observed to detect anomalies [35], [36]. This made necessary to identify a new set of indicators

that describe the behaviour of an Application Server, in a similar way as we progressed for the

Operating Systems.

ACKNOWLEDGEMENTS

This work was partially funded by the University of Naples “Parthenope” through its funds for

individual research.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

27

REFERENCES

[1] A. Bondavalli, A. Ceccarelli, L. Falai, M. Vadursi, “A New Approach and a Related Tool for Dependability

Measurements on Distributed Systems,” IEEE Trans. on Instr. and Meas., vol.59, No.4, pp.820-831, April

2010.

[2] A. Bovenzi, F. Brancati, S. Russo, A. Bondavalli. "An OS-level Framework for Anomaly Detection in Complex

Software Systems", IEEE Trans. on Dependable and Secure Computing, vol. 12, no. 3, pp. 366-372, May-

Jun 1, 2015.

[3] N. Delgado, A. Q. Gates and S. Roach, “A Taxonomy and Catalog of Runtime Software-Fault Monitoring

Tools,” IEEE Transactions on Software Engineering, Vol. 30, No. 12, December 2004.

[4] G. Khanna, P. Varadharajan, and S. Bagchi, “Automated online monitoring of distributed applications through

external monitors”, IEE Trans. on Dependable and Secure Computing, , vol.3, no.2 pp. 115-129, 2006.

[5] V. Chandola, B. Arindam, and K. Vipin, "Anomaly detection: a survey." ACM Computing Surveys

(CSUR) 41.3: 15, 2009.

[6] D.C. Montgomery. Statistical quality control. McGraw-Hill, 2000.

[7] H. Madeira, J. Costa, M. Vieira, The OLAP and data warehousing approaches for analysis and sharing of

results from dependability evaluation experiments, International Conference on Dependable Systems and

Networks, pp. 86- 91, 22-25 June 2003.

[8] G. Carrozza, M. Cinque, D. Cotroneo, R. Natella, “Operating System Support to Detect Application Hangs,”

International Workshop on Verification and Evaluation of Computer and Communication Systems, VECoS,

2008.

[9] K. C. Gross, K. Mishra, “Improved Methods for Early Fault Detection in Enterprise Computing Servers Using

SAS Tools,” Proc. of SAS® Users Group International Conference, Paper 160, Montreal, Canada, pp. 1-9,

2004.

[10] P. Révész, “Random walk in random and non random environments,” World Scientific Publishing Company,

Second Edition, 2005.

[11] M. Picardello, W. Woess, “Random walks and discrete potential theory,” Cambridge University Press, 1999.

[12] A. Bondavalli, F. Brancati, A. Ceccarelli. "Safe Estimation of Time Uncertainty of Local Clocks". Proc. of Int.

IEEE Symp. on Precision Clock Synch. for Measur., Contr. and Comm., ISPCS 2009, pp. 47-52.

[13] P. Ferrari, A. Flammini, S. Rinaldi, A. Bondavalli, F. Brancati, "Improving robustness of the synchronization

quality of IEEE1588 nodes", Proc. of Int. IEEE Symp. on Precision Clock Synch. for Measur., Contr. and

Comm., ISPCS 2010. pp. 36 -41.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

28

[14] A. Bondavalli, F. Brancati, A. Flammini, S. Rinaldi, "Master Failure Detection Protocol in Internal

Synchronization Environment," IEEE Trans. on Instr. and Meas., vol.62, no.1, pp.4-12, Jan. 2013.

[15] A. Bondavalli, A. Ceccarelli, L. Falai, M. Vadursi, “Resilient Estimation of Synchronization Uncertainty

through Software Clocks,” International Journal of Critical Computer-Based Systems, vol. 4, 2013.

[16] B. Jacob, P. Larson, B. Leitao, S.A.M.M. Da Silva, “SystemTap: instrumenting the Linux kernel for analyzing

performance and functional problems, IBM Redbook REDP-4469-00, Jan. 2009.

[17] http://technet.microsoft.com/enus/library/dd744567(WS.10).aspx [online]

[18] M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, Wiley Interscience, 1993.

[19] R. B. D’Agostino and M. A. Stephens, Goodness of Fit Techniques, M.A., New York, 1986.

[20] A. Bondavalli, F. Brancati, A. Ceccarelli, D. Santoro, M. Vadursi,” Experimental analysis of the first order

time difference of indicators used in the monitoring of complex systems,” Proc. of IEEE Intern. Workshop on

Measurements & Networking, M&N2013, Naples, Italy, pp. 138-142, 7-8 October 2013.

[21] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, “Basic concepts and taxonomy of dependable and secure

computing,” IEEE Trans. on Dependable and Secure Computing, vol.1, no.1, 2004

[22] D. K. Pradhan, Fault-Tolerant Computer Systems Design, Englewood Cliffs.

[23] W. R. Dunn, “Practical design of safety critical computer systems,” Solvang, CA:Reliability Press, 2002.

[24] Y. Jiang, C. Tham, C. Ko, “Challenges and approaches in providing QoS monitoring,” Int. J. Netw. Manag.,

vol. 10, no. 6, pp. 323-334, Nov. 2000.

[25] D. Avresky, J. Arlat, J.C. Laprie, Y. Crouzet, “Fault Injection for Formal Testing of Fault Tolerance,” IEEE

Trans. Reliability, vol. 45, no. 3, pp. 443-455, Sept. 1996.

[26] Guan, Qiang, and Song Fu. "Adaptive Anomaly Identification by Exploring Metric Subspace in Cloud

Computing Infrastructures." Proc.of IEEE 32nd Intern. Symp. on Reliable Distributed Systems (SRDS), 2013.

[27] Chuah, Edward, et al. "Linking resource usage anomalies with system failures from cluster log data." Proc.of

IEEE 32nd Intern. Symp. on Reliable Distributed Systems (SRDS), 2013.

[28] W. Chen, S. Toueg, and M. Aguilera, “On the Quality of Service of Failure Detectors,” IEEE Trans. on

Computers, vol. 51, no. 1, pp. 561–580, 2002.

[29] R. P. Jagadeesh Chandra Bose and S. H. Srinivasan, “Data Mining Approaches to Software Fault Diagnosis,”

15th Int’l Workshop Research Issues in Data Eng.: Stream Data Mining and Applications, pp. 45–52, 2005.

[30] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly? Application change? or Workload

change? Towards Automated Detection of Application Performance Anomaly and Change,” in Proc. IEEE

Int’l Conf. on Dependable Systems and Networks, pp. 452–461, 2008.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

29

[31] IEEE Std 1044-1993, “IEEE Standard Classification for Software Anomalies,” 1993.

[32] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. Peterson, “Lightweight, high-resolution monitoring for

troubleshooting production systems,” in Proc. 8th USENIX Conf. on Operating systems design and

implementation, 2008, pp. 103–116.

[33] A. Bovenzi, F. Brancati, S. Russo, and A. Bondavalli, “A Statistical Anomaly-Based Algorithm for On-line

Fault Detection in Complex Software Critical Systems,” ser. Lecture Notes in Computer Science, vol. 6894,

pp. 128–142, 2011.

[34] S. M. Kay, “Fundamentals of Statistical Signal Processing – vol. II Detection Theory”, Prentice Hall, 1998.

[35] A. Ceccarelli, T. Zoppi, A. Bondavalli, F. Duchi, G. Vella, "A Testbed for Evaluating Anomaly Detection

Monitors through Fault Injection," Proc. of 2014 IEEE 17th Intern. Symp. On Object/Component/Service-

Oriented Real-Time Distributed Computing (ISORC), pp.358-365, 10-12 June 2014.

[36] A. Ceccarelli, T. Zoppi, M. Leone Itria, A. Bondavalli, “A Multi-layer Anomaly Detector for Dynamic Service-

Based Systems,” Lecture Notes in Computer Science vol 9337, Koornneef, Floor, van Gulijk, Coen (eds.),

Computer Safety, Reliability, and Security (SAFECOMP), pp. 166-180, 2015.

http://dblp.uni-trier.de/pers/hd/z/Zoppi:Tommaso
http://dblp.uni-trier.de/pers/hd/i/Itria:Massimiliano_Leone
http://dblp.uni-trier.de/pers/hd/b/Bondavalli:Andrea
http://dblp.uni-trier.de/db/conf/safecomp/safecomp2015.html#CeccarelliZIB15

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

30

LIST OF FIGURE CAPTIONS

Fig.1. Fault-error-failure chain.

Fig. 2 SUT 1, workload 1, event 10 (disk write timeout), no faultload, run 8. (a) signal, (b)

histogram of the signal and (c) histogram of first order time difference.

Fig.3. SUT 2, workload 6, event 19 (net in throughput), no faultload, run 63. (a) signal, (b)

histogram of the signal and (c) histogram of first order time difference.

Fig.4. SUT 2, workload 6, event 28 (IO write throughput), no faultload, run 63. (a) Signal, (b)

histogram of the signal and (c) histogram of first order time difference.

Fig.5. SUT 1, workload 2, event 8 (scheduling timeouts), faultload 2, run19. (a) Signal, (b)

histogram of the signal and (c) histogram of first order time difference.

Fig.6. SUT 1, workload 2, event 10 (disk write timeout), faultload 2, run 27. (a) Signal, (b)

histogram of the signal and (c) histogram of first order time difference.

Fig.7. Graphical representation of the CV distances of Table I.

Fig.8. Comparison of the ECDF and model CDF for the first-order time difference of the

indicator TCP_SEND.

Fig.9. Comparison of the ECDF and model CDF for the first-order time difference of the

indicator Process_Exit.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

31

LIST OF TABLE CAPTIONS

Table I. Parameters and CV distance of the CDF fitting the experimental data

Table II. CV distance between considered Normal, Laplace and Cauchy distributions

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

32

Table I.

INDICATOR
dCV BEST FITTING

DISTRIBUTION
PARAMETERS

VALUES Laplace Normal Cauchy Skellam

MUTEX 6.15 5.89 0.03 7.84 Cauchy (100%) x = -0.58; y = 0.05

SYSCALL 1.25 2.03 0.75 2.69 Cauchy (100%) x = 1.65; y = 125.5

SIGNAL 1.76 1.91 0.49 3.45 Cauchy (100%) x = -0.43; y=3.37

Task_Sched_TO 0.29 0.31 0.35 1.11 Laplace/Normal
(50%/50%)

𝜇𝜇 = 0; b = 8.94
𝜇𝜇 = -0.40; σ = 6.10

Process_Exit 0.57 0.86 0.48 0.99 Cauchy (87.5%) x = -0.52; y = 4.51

Sched_Threshold 0.62 1.74 0.39 1.84 Cauchy (75%) x = 0.59; y = 7.15

DISK/ReadTO 1.81 2.36 3.56 4.95 Laplace (100%) x = -0.49; y = 0.37

DISK/WriteTO 1.64 2.41 2.85 4.45 Laplace (100%) 𝜇𝜇 = -0.42; b = 0.51

NET/IN 0.61 1.39 0.43 7.30 Cauchy (71.4%) x = -3174; y =
302932

NET/OUT 3.04 3.51 0.70 7.68 Cauchy (100%) x = -35.65; y = 2251

DISK/IN 2.28 2.88 1.08 - Cauchy (100%) x = -2437; y = 70520

DISK/OUT 2.72 3.30 1.23 - Cauchy (100%) x = -2092; y = 21844

UDP_SEND 0.83 1.77 1.08 - Laplace (87.5%) 𝜇𝜇 = 0; b = 3.15

UDP_RECV 0.58 1.32 0.99 - Laplace (87.5%) 𝜇𝜇 = 0; b = 2.96

TCP_SEND 0.69 1.35 0.91 - Laplace (62.5%) 𝜇𝜇 = 0; b = 3.68

TCP_RECV 0.79 1.38 0.96 - Laplace (62.5%) 𝜇𝜇 = 0; b = 4.18

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

33

Table II.

INDICATOR
dCV

Normal-
Laplace

dCV
Normal-
Cauchy

dCV
Laplace-
Cauchy

dCV
Normal-
Skellam

dCV
Laplace-
Skellam

dCV
Cauchy-
Skellam

MUTEX 0.03 0.39 0.96 0.28 0.26 0.17

SYSCALL 0.11 0.18 0.10 0.27 0.27 0.26

SIGNAL 0.19 0.34 0.32 0.37 0.50 0.52

TaskSchedTO 0.03 0.04 0.02 0.14 0.11 0.11

ProcessExit 0.06 0.10 0.05 0.16 0.12 0.10

SchedThreshold 0.25 0.25 0.05 0.15 0.17 0.15

DISK/READTo 0.19 0.24 0.23 0.22 0.25 0.28

DISK/WRITETO 0.25 0.28 0.16 0.21 0.27 0.28

NET/IN 0.09 0.14 0.11 0.46 0.46 1.02

NET/OUT 0.36 0.48 0.33 0.65 0.95 0.59

DISK/IN 0.15 0.27 0.22 - - -

DISK/OUT 0.19 0.29 0.26 - - -

UDP_SEND 0.19 0.20 0.07 - - -

UDP_RECV 0.13 0.14 0.06 - - -

TCP_SEND 0.16 0.16 0.05 - - -

TCP_RECV 0.17 0.18 0.05 - - -

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

34

Fig. 1.

fault error failure activation propagation causation fault
… …

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

35

Fig. 2.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

36

Fig.3.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

37

Fig.4.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

38

Fig.5.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

39

Fig.6.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

40

Fig.7.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

41

Fig.8.

A. Bondavalli et al. – Differential Analysis of Operating System Indicators for Anomaly Detection in Dependable Systems:
An Experimental Study

42

Fig.9.

	A. Dependability concepts
	B. Anomaly detection
	A. Best-fitting approach
	B. Best-fitting results
	ACKNOWLEDGEMENTS
	REFERENCES

