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Some adipokines known to regulate food intake at a central level can also affect
gastrointestinal motor responses. These are recognized to be peripheral signals able
to influence feeding behavior as well. In this view, it has been recently observed
that adiponectin (ADPN), which seems to have a role in sending satiety signals at
the central nervous system level, actually affects the mechanical responses in gastric
strips from mice. However, at present, there are no data in the literature about the
electrophysiological effects of ADPN on gastric smooth muscle. To this aim, we achieved
experiments on smooth muscle cells (SMCs) of gastric fundus to find out a possible
action on SMC excitability and on membrane phenomena leading to the mechanical
response. Experiments were made inserting a microelectrode in a single cell of a muscle
strip of the gastric fundus excised from adult female mice. We found that ADPN was
able to hyperpolarize the resting membrane potential, to enhance the delayed rectifier
K+ currents and to reduce the voltage-dependent Ca2+ currents. Our overall results
suggest an inhibitory action of ADPN on gastric SMC excitation–contraction coupling.
In conclusion, the depressant action of ADPN on the gastric SMC excitability, here
reported for the first time, together with its well-known involvement in metabolism, might
lead us to consider a possible contribution of ADPN also as a peripheral signal in the
hunger–satiety cycle and thus in feeding behavior.

Keywords: adiponectin, gastric fundus, membrane properties, ion currents, satiety signals

INTRODUCTION

Adipokines are cytokines secreted by the white adipose tissue, able to influence a variety of
physiological and pathophysiological processes through endocrine, paracrine, and autocrine
mechanisms. ADPN, one of the most abundant adipokines secreted in the blood stream, regulates
food intake by sending satiety signals at the central level, and exerts peripheral effects (Idrizaj
et al., 2019). The observation that ADPN serum levels are correlated with body fat content and are

Abbreviations: ADPN, adiponectin; Cm, cell linear capacitance; Ctrl, control; Gm, membrane conductance; Gm/Cm, specific
membrane conductance; HP, holding potential; Ia, current activation; ICa, Ca2+ current; IK, voltage-dependent delayed
rectifier K+ currents; ka, steepness factor of activation; kh, steepness factor of inactivation; RMP, resting membrane potential;
SMC, smooth muscle cell; Va, half-maximal activation voltage; Vh, half-maximal inactivation voltage; Vrev, apparent reversal
potential.
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lower in obese subjects (Bastard et al., 2006) has generated
enormous interest within the scientific community (Henstridge
and Febbraio, 2010). ADPN receptors, Adipo-R1 and Adipo-
R2, have been originally identified in the hypothalamus (Scherer
et al., 1995). Previous studies (Hoyda and Ferguson, 2010)
showed that ADPN acts at a central level, controlling neuronal
excitability of the hypothalamic paraventricular nucleus through
the modulation of different K+ conductances and contributing
to changes in membrane potential. Moreover, ADPN receptors
have been found also in a variety of peripheral tissues (Yamauchi
et al., 2003; Fasshauer et al., 2004; Kharroubi et al., 2004;
Blüher et al., 2005; Liu et al., 2008; González et al., 2010;
Hong et al., 2016) including the gastrointestinal tract (Idrizaj
et al., 2018a). Acting through different signaling pathways,
ADPN exerts antidiabetic, anti-inflammatory, antiatherogenic,
and antiapoptotic effects (Idrizaj et al., 2019). Recently, other
physiological roles of ADPN have emerged including the skeletal
muscle sensitivity to this hormone (Krause et al., 2019), the
prevention of cardiac dysfunctions (Francisco et al., 2016), and
actions on the smooth muscle (AlSaif et al., 2015). Particularly, it
has a proved vasorelaxant effect on vascular cells (Hong et al.,
2016; Schinzari et al., 2017), and some of the mechanisms by
which ADPN influences the contractile tone of small arteries
have been clarified (Baylie et al., 2017). Besides vascular muscle
activity, ADPN can influence that of the gastric one (Idrizaj et al.,
2018a), but no effects of ADPN on the excitability of the SMCs
of the gastrointestinal tract are reported at present. To this aim,
we here intended to investigate the effect of this hormone on the
bioelectric properties of SMC from the gastric fundus, focusing
on the RMP, the ion currents responsible of the RMP control
(Currò, 2014), and the voltage-dependent ICa, mainly responsible
for triggering the mechanical activity.

MATERIALS AND METHODS

The experimental procedure followed the European Community
guidelines for animal care (DL 116/92, application of the
European Communities Council Directive of 24 November 1986;
86/609/EEC) and was approved by the Committee for Animal
Care and Experimental Use of the University of Florence in
conformity with the Guide for the Care and Use of Laboratory
Animals of the US National Institutes of Health (Idrizaj et al.,
2018a,b). C57BL/6 (8–12 weeks old) female mice (Charles River,
Lecco, Italy) were used (Squecco et al., 2013).

A muscular strip from the gastric fundus was pinned in a
recording chamber (Squecco et al., 2013) bathed with a Krebs–
Henseleit solution (mM): 118 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2
KH2PO4, 25 NaHCO3, 2.5 CaCl2, and 10 glucose (pH 7.4).
Intracellular recording was made by conventional microelectrode
(resistance = 60–70 M�) inserted in a cell of the longitudinal
smooth muscle layer and filled with the following internal
solution (mM): 130 KCl, 10 NaH2PO4, 0.2 CaCl2, 1 ethylene-
bis(oxyethylenenitrilo)tetraacetic acid (EGTA), 5 MgATP, and
10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
(pH 7.2), unless otherwise stated. We used the Krebs–Henseleit
solution as Ctrl external solution to record RMP and passive

properties of SMCs. In order to record K+ current (IK) we
used the Krebs–Henseleit as external solution with specific
channel blockers such as Nifedipine (10 µM) for L-type ICa,
BaCl2 (0.4 mM) for eventual inward rectifier K+ current, 4-
aminopyridine (4-AP, 2 mM) for eventual transient outward
K+ current (Castle and Slawsky, 1993; Crescioli et al., 2008).
According to Idrizaj et al. (2018a), to record only ICa we
used a high-TEA external solution (mM): 10 CaCl2, 145
tetraethylammonium bromide, 10 HEPES, and a suitable filling
pipette solution (mM): 150 CsBr, 5 MgCl2, 10 EGTA, and 10
HEPES (pH = 7.2). The current amplitude was normalized to cell
capacitance, Cm, to properly compare the currents recorded from
cells of different size.

Recombinant full-length mouse ADPN was tested from
2 × 10−11 up to 10−7 M. Heptanol (1 mM) was consistently
used to block gap junctional currents of the functional syncytium
(Squecco et al., 2013). Drugs were from Sigma Chemical (St.
Louis, MO, United States).

We recorded RMP of the SMCs before and after chemical
stimulation in current clamp mode, with a stimulus waveform:
I = 0 pA (Squecco et al., 2015). The membrane passive properties
were consistently estimated in voltage clamp starting from
a HP of −70 mV. IK activation was elicited by 1-s long
voltage pulses ranging from −80 to 50 mV applied in 10-
mV increments (HP = −60 mV). ICa kinetics was analyzed
as in Idrizaj et al. (2018b). Mathematical analysis of data was
performed by pClamp6 (Axon Instruments). Statistical analysis
was done using Student’s t-test or one-way ANOVA followed
by Bonferroni’s post hoc test when more than two groups of
data were compared. n represents the number of SMCs analyzed.
Results are mean ± SEM. P ≤ 0.05 was considered significant
unless otherwise specified.

RESULTS

ADPN Hyperpolarizes the RMP of Gastric
Fundus SMCs
We first evaluated the effects of ADPN on the RMP of SMCs
to assess its possible impact on cell excitability. Acute ADPN
addition to the bath solution caused a hyperpolarization already
appreciable at the lowest doses employed (2 × 10−11 M)
that reached the maximal value in about 3 min (Figure 1A).
However, only starting from 2 × 10−8 M we observed
a hyperpolarization statistically different compared to the
RMP of the Ctrl cells. Higher doses did not cause further
hyperpolarization (Figure 1B). This hyperpolarizing effect may
indeed concur to hinder the SMC excitability (Squecco et al.,
2015; Idrizaj et al., 2018b).

Effects of ADPN on the Membrane
Passive Properties of Gastric Fundus
SMCs
To estimate possible modifications of the SMC membrane
passive properties, we first measured the Cm value in Ctrl
condition and 10 min after the addition of ADPN to the external
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FIGURE 1 | Effects of different ADPN concentrations on RMP and passive membrane properties of SMC from the gastric fundus. (A) Acute addition of ADPN to the
bath solution (indicated by the horizontal line starting from the artifact) causes RMP hyperpolarization already appreciable with the lowest concentration used, namely
2 × 10-11 M. (B) The statistically significant hyperpolarization was induced by ADPN 2 × 10-8 M (P = 0.0068). (C–E) Data evaluated in Ctrl condition and 5 min after
the addition of different ADPN concentrations to the bath solution. (C) Cell capacitance (Cm) as an index of cell surface. (D) Membrane conductance as an index of
resting permeability (Gm). (E) Gm/Cm. Values are means ± SEM. One-way ANOVA with repeated measures was used for multiple comparisons followed by
Bonferroni’s post hoc test. ∗P < 0.05 vs. Ctrl. Ctrl n = 50, ADPN n = 35 (10 mice).

bath solution. Compared to the Ctrl values, ADPN induced
a slight augmentation of Cm starting from a concentration
of 2 × 10−9 M, that became progressively higher as the
dose increased, although not statistically significant for any
concentration used (Figure 1C). The analysis of the Gm
(Figure 1D) and of the specific conductance, Gm/Cm, in
the presence of ADPN (Figure 1E) revealed a tendency to
become smaller compared to the Ctrl values starting from
2 × 10−8 M, indicating that ADPN scarcely affected the SMC
membrane properties.

ADPN Increases IK and Decreases ICa
Amplitude in Gastric Fundus SMCs
Trying to explain the observed membrane hyperpolarization, we
tested the effects of ADPN on the main voltage-dependent IK
commonly supposed to Ctrl the RMP. Since the major effect
of ADPN on the RMP was obtained at the concentration of
2 × 10−8 M, we used this dose for all the following experiments.
As expected, ADPN treatment increased IK compared to
Ctrl (Figures 2A–C) and this can undoubtedly contribute to
membrane hyperpolarization.

Aiming to investigate if ADPN could affect the first steps of
electro-mechanical coupling, we also evaluated its effect on ICa.
In Ctrl preparations, we constantly recorded inward current from
the SMC resembling smooth muscular ICa (Figure 2D) with the
0-mV step pulse evoking the maximal ICa amplitude. The acute
addition of ADPN (2 × 10−8 M) to the external bath solution

decreased this current amplitude and caused a different voltage
dependence. In fact, the maximal peak size was reached with the
10-mV step pulse in the presence of ADPN (Figure 2E). The I–
V curve analysis confirmed this general behavior (Figure 2F).
We also performed the steady state analysis of the ICa activation
and inactivation curves that were best-fitted by the Boltzmann
function (Figure 2G): ADPN added to the bath solution strongly
reduced the current size but did not affect the voltage dependence
of its inactivation, whereas that of activation was positively
shifted. The related Boltzmann parameters with the statistical
significance are listed in Supplementary Table 1. These earliest
results on ICa indicate that ADPN modulates Ca2+ influx altering
the voltage-dependent channel kinetics in the gastric SMC.

DISCUSSION

Some adipokines that act at the central level to influence feeding
behavior seem to affect gastrointestinal motor phenomena,
which represent peripheral signals involved in the regulation
of food intake (Duca and Covasa, 2012). In this view, leptin
(Yarandi et al., 2011) and more recently ADPN appear to
influence gastrointestinal motility in addition to their central
actions. Particularly, ADPN is able to induce a decrease of the
gastric mechanical activity in mice (Idrizaj et al., 2018a). The
present results indicate for the first time that the hormone can
influence the gastric SMCs’ electrophysiological properties, which
represent the first steps for the mechanical responses. Indeed,
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FIGURE 2 | Effects of ADPN on voltage-dependent K+ current and ICa recorded in a SMC from the gastric fundus. (A,B) Representative total outward K+ currents
(IK) recorded in Ctrl (A) and in the presence of ADPN (2 × 10-8 M) (B), elicited by voltage steps from –80 to 50 mV (HP = –60 mV). (C) I–V plots related to IK in Ctrl
(filled circles) and in the presence of ADPN (open circles). (D) Typical ICa traces obtained in a Ctrl (D) and ADPN (2 × 10-8 M) treated (E) SMCs in response to 4-s
voltage pulses from –70 to 50 mV (HP = –80 mV), in 10-mV increments, in high-TEA bath solution. (F) I–V plots related to ICa in Ctrl (filled circles) and ADPN-treated
SMCs (open circles). All the ADPN data points are statistically different (P < 0.05) to Ctrl over ICa threshold. (G) Steady state activation (m) and inactivation (h)
analysis of normalized ICa: effect of ADPN (open circles) compared to Ctrl (filled circles) and lack of effects on inactivation (triangles). The continuous lines through the
experimental data represent the fitted Boltzmann function. Note that, at positive potentials, the inactivation curve is U-shaped and decreased by ADPN. Current
values are normalized to Cm. All of the data are mean values ± SEM. Differences with P < 0.05 were considered significant: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001
(Student’s t-test). Statistical significance is not depicted in the figure for clarity but is reported for the various Boltzmann parameters in Supplementary Table 1.
Data are from 18 to 20 cells (four mice).

in keeping with our previous observation that ADPN induced
gastric relaxation (Idrizaj et al., 2018a), we note that the hormone
strongly influences SMCs’ excitability by inducing membrane
hyperpolarization. This effect can be determined, at least in
part, by the here-observed tendency toward the reduction of
Gm, since this may hamper the aspecific entry of depolarizing
ions, leading to a decreased SMC excitability. Moreover, we
also noted that ADPN induces an increase of IK, which is
known to play an important role in RMP Ctrl. Although this
effect was not extraordinarily broad, it may indeed contribute to
the hyperpolarization. A more negative RMP definitely disturbs
the related electromechanical coupling since a more intense
stimulus than usual is required to activate high voltage threshold-
operated ionic channels (Dwyer et al., 2011; Idrizaj et al., 2018a).
Accordingly, it became remarkable to study ADPN effect also on
ICa. In fact, this current represents a chief source for intracellular
Ca2+ elevation useful for contractile activation and its eventual
modifications may further affect the SMC mechanical activity.

Interestingly, we found that ADPN reduced ICa amplitude
exerting an inhibitory effect on Ca2+ influx through voltage-
dependent Ca2+ channels, further supporting its influence in
hindering the SMC electromechanical coupling.

However, our study raises several additional queries needing
further investigation, such as the type of K+ channel mostly
involved ADPN effects, and the possible signaling pathways
through which ADPN modulates the gastric SMC excitability.
To answer these questions, further studies are in progress in our
laboratory. Several signaling paths have been reported in relation
to non-gastric smooth muscle and other targets for ADPN
such as AMP-activated protein kinase (AMPK), peroxisome
proliferative-activated receptor (PPAR)-α expression, ceramidase
activity, and sphingosine 1 phosphate (S1P) formation (Botta
et al., 2019; Kim and Park, 2019). This and some other previous
reports dealing with NO signaling (Chen et al., 2003; Grossini
et al., 2016; Nour-Eldine et al., 2016) will provide a useful
background for our future studies.
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CONCLUSION

In conclusion, this preliminary study offers the first evidence that
ADPN exerts a novel inhibitory function at the SMC plasma
membrane level in gastric preparations that concurs to an actual
weakened SMC excitability (Koh et al., 2012). ADPN seems to
hinder the first steps of the excitation–contraction coupling,
which is in perfect agreement with our previously published
mechanical findings (Idrizaj et al., 2018a). Thus, ADPN seems to
favor gastric muscle relaxation, which may lead to a consequent
increase of organ capacity. Because gastric distension represents,
from a physiological point of view, a peripheral satiety signal,
we speculated that the here-observed peripheral effects are part
of a control system designed to regulate food intake, which
might concur to suppress feeding behavior. These observations
provide a stimulating background to the challenging hypothesis
that ADPN and/or its receptors could be a potential therapeutic
tool in the treatment of obesity (Li et al., 2017) and eating
disorders and, certainly, this issue deserves further investigation
in a translational perspective.
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